code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: if digit_amount > 0: return round(number - int(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) return number - int(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
217
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() _A : List[str] =logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=False ) -> Union[str, Any]: lowerCamelCase__ : str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''transformer.blocks.{i}.norm1.weight''', f'''vilt.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm1.bias''', f'''vilt.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.weight''', f'''vilt.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''transformer.blocks.{i}.attn.proj.bias''', f'''vilt.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.weight''', f'''vilt.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.norm2.bias''', f'''vilt.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append( (f'''transformer.blocks.{i}.mlp.fc1.weight''', f'''vilt.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc1.bias''', f'''vilt.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.weight''', f'''vilt.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''transformer.blocks.{i}.mlp.fc2.bias''', f'''vilt.encoder.layer.{i}.output.dense.bias''') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Optional[Any]: for i in range(config.num_hidden_layers ): lowerCamelCase__ : str = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase__ : List[str] = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.weight''' ) lowerCamelCase__ : str = state_dict.pop(f'''transformer.blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase__ : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase__ : Union[str, Any] = in_proj_bias[: config.hidden_size] lowerCamelCase__ : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase__ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase__ : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase__ : List[str] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Any: lowerCamelCase__ : Dict = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> Dict: lowerCamelCase__ : int = dct.pop(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = val @torch.no_grad() def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> Tuple: lowerCamelCase__ : List[str] = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = False lowerCamelCase__ : List[str] = False lowerCamelCase__ : Any = False lowerCamelCase__ : int = False if "vqa" in checkpoint_url: lowerCamelCase__ : List[Any] = True lowerCamelCase__ : Any = 3129 lowerCamelCase__ : Tuple = """huggingface/label-files""" lowerCamelCase__ : List[str] = """vqa2-id2label.json""" lowerCamelCase__ : str = json.load(open(hf_hub_download(UpperCamelCase , UpperCamelCase , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase__ : Any = {int(UpperCamelCase ): v for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = idalabel lowerCamelCase__ : int = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Tuple = ViltForQuestionAnswering(UpperCamelCase ) elif "nlvr" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : Any = {0: """False""", 1: """True"""} lowerCamelCase__ : int = {v: k for k, v in config.idalabel.items()} lowerCamelCase__ : Any = 3 lowerCamelCase__ : List[str] = ViltForImagesAndTextClassification(UpperCamelCase ) elif "irtr" in checkpoint_url: lowerCamelCase__ : List[str] = True lowerCamelCase__ : Optional[int] = ViltForImageAndTextRetrieval(UpperCamelCase ) elif "mlm_itm" in checkpoint_url: lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Optional[Any] = ViltForMaskedLM(UpperCamelCase ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys lowerCamelCase__ : Dict = torch.hub.load_state_dict_from_url(UpperCamelCase , map_location="""cpu""" )["""state_dict"""] lowerCamelCase__ : List[Any] = create_rename_keys(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) for src, dest in rename_keys: rename_key(UpperCamelCase , UpperCamelCase , UpperCamelCase ) read_in_q_k_v(UpperCamelCase , UpperCamelCase ) if mlm_model or irtr_model: lowerCamelCase__ : List[str] = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(UpperCamelCase , UpperCamelCase ) # load state dict into HuggingFace model model.eval() if mlm_model: lowerCamelCase__ , lowerCamelCase__ : List[Any] = model.load_state_dict(UpperCamelCase , strict=UpperCamelCase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(UpperCamelCase ) # Define processor lowerCamelCase__ : Optional[int] = ViltImageProcessor(size=384 ) lowerCamelCase__ : List[str] = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowerCamelCase__ : Union[str, Any] = ViltProcessor(UpperCamelCase , UpperCamelCase ) # Forward pass on example inputs (image + text) if nlvr_model: lowerCamelCase__ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=UpperCamelCase ).raw ) lowerCamelCase__ : int = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=UpperCamelCase ).raw ) lowerCamelCase__ : Dict = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) lowerCamelCase__ : Optional[int] = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : Dict = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowerCamelCase__ : str = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=UpperCamelCase ).raw ) if mlm_model: lowerCamelCase__ : str = """a bunch of [MASK] laying on a [MASK].""" else: lowerCamelCase__ : Optional[int] = """How many cats are there?""" lowerCamelCase__ : List[str] = processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) lowerCamelCase__ : Union[str, Any] = model(**UpperCamelCase ) # Verify outputs if mlm_model: lowerCamelCase__ : Tuple = torch.Size([1, 11, 30522] ) lowerCamelCase__ : int = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1E-4 ) # verify masked token prediction equals "cats" lowerCamelCase__ : int = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowerCamelCase__ : str = torch.Size([1, 3129] ) lowerCamelCase__ : Any = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , UpperCamelCase , atol=1E-4 ) # verify vqa prediction equals "2" lowerCamelCase__ : Tuple = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowerCamelCase__ : str = torch.Size([1, 2] ) lowerCamelCase__ : Optional[Any] = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(UpperCamelCase ).mkdir(exist_ok=UpperCamelCase ) print(f'''Saving model and processor to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCamelCase ) processor.save_pretrained(UpperCamelCase ) if __name__ == "__main__": _A : str =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _A : Tuple =parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
41
0
'''simple docstring''' from torch import nn class A_ ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowercase_ : Optional[Any] , lowercase_ : List[Any] ) -> int: super().__init__() UpperCAmelCase : Optional[int] = class_size UpperCAmelCase : Optional[int] = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) UpperCAmelCase : Dict = nn.Linear(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : List[Any] , lowercase_ : Any ) -> Union[str, Any]: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) UpperCAmelCase : Optional[int] = self.mlp(lowercase_ ) return logits
351
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = len(UpperCAmelCase_ ) UpperCAmelCase : int = ( first_str_length if first_str_length > second_str_length else second_str_length ) UpperCAmelCase : list = [] for char_count in range(UpperCAmelCase_ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
280
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _a : List[Any] = logging.get_logger(__name__) _a : Any = { 'microsoft/swinv2-tiny-patch4-window8-256': ( 'https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256/resolve/main/config.json' ), } class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : int = "swinv2" _UpperCamelCase : List[str] = { "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , a__=224 , a__=4 , a__=3 , a__=96 , a__=[2, 2, 6, 2] , a__=[3, 6, 12, 24] , a__=7 , a__=4.0 , a__=True , a__=0.0 , a__=0.0 , a__=0.1 , a__="gelu" , a__=False , a__=0.0_2 , a__=1e-5 , a__=32 , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : int = image_size _lowerCAmelCase : Optional[Any] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : List[Any] = embed_dim _lowerCAmelCase : Optional[int] = depths _lowerCAmelCase : List[Any] = len(a__ ) _lowerCAmelCase : Any = num_heads _lowerCAmelCase : Tuple = window_size _lowerCAmelCase : Tuple = mlp_ratio _lowerCAmelCase : Any = qkv_bias _lowerCAmelCase : Optional[int] = hidden_dropout_prob _lowerCAmelCase : Tuple = attention_probs_dropout_prob _lowerCAmelCase : str = drop_path_rate _lowerCAmelCase : List[str] = hidden_act _lowerCAmelCase : List[str] = use_absolute_embeddings _lowerCAmelCase : Optional[int] = layer_norm_eps _lowerCAmelCase : List[Any] = initializer_range _lowerCAmelCase : Any = encoder_stride # we set the hidden_size attribute in order to make Swinv2 work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _lowerCAmelCase : Tuple = int(embed_dim * 2 ** (len(a__ ) - 1) ) _lowerCAmelCase : Tuple = (0, 0, 0, 0)
44
"""simple docstring""" from __future__ import annotations _a : List[str] = 10 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : list[int] ) -> list[int]: _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Union[str, Any] = max(_lowerCamelCase ) while placement <= max_digit: # declare and initialize empty buckets _lowerCAmelCase : list[list] = [[] for _ in range(_lowerCamelCase )] # split list_of_ints between the buckets for i in list_of_ints: _lowerCAmelCase : Tuple = int((i / placement) % RADIX ) buckets[tmp].append(_lowerCamelCase ) # put each buckets' contents into list_of_ints _lowerCAmelCase : List[str] = 0 for b in range(_lowerCamelCase ): for i in buckets[b]: _lowerCAmelCase : Any = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
44
1
'''simple docstring''' from math import factorial def _lowerCAmelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : float ): if successes > trials: raise ValueError('''successes must be lower or equal to trials''' ) if trials < 0 or successes < 0: raise ValueError('''the function is defined for non-negative integers''' ) if not isinstance(lowerCamelCase_ , lowerCamelCase_ ) or not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise ValueError('''the function is defined for non-negative integers''' ) if not 0 < prob < 1: raise ValueError('''prob has to be in range of 1 - 0''' ) __lowercase = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! __lowercase = float(factorial(lowerCamelCase_ ) ) coefficient /= factorial(lowerCamelCase_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.7_5))
217
'''simple docstring''' import numpy as np def _lowerCAmelCase ( lowerCamelCase_ : np.array ): return 1 / (1 + np.exp(-vector )) def _lowerCAmelCase ( lowerCamelCase_ : np.array ): return vector * sigmoid(1.7_02 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
217
1
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> float: if digit_amount > 0: return round(number - int(UpperCAmelCase__ ), UpperCAmelCase__ ) return number - int(UpperCAmelCase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
162
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { '''RUCAIBox/mvp''': '''https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json''', } class A__ ( _snake_case ): lowercase = "mvp" lowercase = ["past_key_values"] lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , UpperCamelCase__=50267 , UpperCamelCase__=1024 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=12 , UpperCamelCase__=4096 , UpperCamelCase__=16 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__="gelu" , UpperCamelCase__=1024 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.02 , UpperCamelCase__=0.0 , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=1 , UpperCamelCase__=0 , UpperCamelCase__=2 , UpperCamelCase__=True , UpperCamelCase__=2 , UpperCamelCase__=2 , UpperCamelCase__=False , UpperCamelCase__=100 , UpperCamelCase__=800 , **UpperCamelCase__ , ) -> Tuple: '''simple docstring''' A_ = vocab_size A_ = max_position_embeddings A_ = d_model A_ = encoder_ffn_dim A_ = encoder_layers A_ = encoder_attention_heads A_ = decoder_ffn_dim A_ = decoder_layers A_ = decoder_attention_heads A_ = dropout A_ = attention_dropout A_ = activation_dropout A_ = activation_function A_ = init_std A_ = encoder_layerdrop A_ = decoder_layerdrop A_ = classifier_dropout A_ = use_cache A_ = encoder_layers A_ = scale_embedding # scale factor will be sqrt(d_model) if True A_ = use_prompt A_ = prompt_length A_ = prompt_mid_dim super().__init__( pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , is_encoder_decoder=UpperCamelCase__ , decoder_start_token_id=UpperCamelCase__ , forced_eos_token_id=UpperCamelCase__ , **UpperCamelCase__ , ) if self.forced_bos_token_id is None and kwargs.get("""force_bos_token_to_be_generated""" , UpperCamelCase__ ): A_ = self.bos_token_id warnings.warn( f'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' """The config can simply be saved and uploaded again to be fixed.""" )
162
1
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'Salesforce/blip-image-captioning-base' snake_case_ = ( 'This is a tool that generates a description of an image. It takes an input named `image` which should be the ' 'image to caption, and returns a text that contains the description in English.' ) snake_case_ = 'image_captioner' snake_case_ = AutoModelForVisionaSeq snake_case_ = ['image'] snake_case_ = ['text'] def __init__( self : int , *snake_case : Optional[int] , **snake_case : Optional[int] ): '''simple docstring''' requires_backends(self , ["""vision"""] ) super().__init__(*snake_case , **snake_case ) def _UpperCamelCase ( self : int , snake_case : "Image" ): '''simple docstring''' return self.pre_processor(images=snake_case , return_tensors="""pt""" ) def _UpperCamelCase ( self : int , snake_case : List[Any] ): '''simple docstring''' return self.model.generate(**snake_case ) def _UpperCamelCase ( self : Optional[int] , snake_case : Any ): '''simple docstring''' return self.pre_processor.batch_decode(snake_case , skip_special_tokens=snake_case )[0].strip()
296
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]: A__ : Union[str, Any] = DPTConfig() if "large" in checkpoint_url: A__ : int = 1_0_2_4 A__ : Union[str, Any] = 4_0_9_6 A__ : Optional[int] = 2_4 A__ : int = 1_6 A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3] A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4] A__ : Tuple = (1, 3_8_4, 3_8_4) if "ade" in checkpoint_url: A__ : Optional[int] = True A__ : int = 1_5_0 A__ : Union[str, Any] = """huggingface/label-files""" A__ : List[Any] = """ade20k-id2label.json""" A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) ) A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} A__ : Dict = idalabel A__ : List[Any] = {v: k for k, v in idalabel.items()} A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0] return config, expected_shape def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any: A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ ) def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" ) if "pretrained.model" in name: A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" ) if "patch_embed" in name: A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" ) if "pos_embed" in name: A__ : int = name.replace("""pos_embed""", """position_embeddings""" ) if "attn.proj" in name: A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" ) if "proj" in name and "project" not in name: A__ : List[Any] = name.replace("""proj""", """projection""" ) if "blocks" in name: A__ : Optional[Any] = name.replace("""blocks""", """layer""" ) if "mlp.fc1" in name: A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" ) if "mlp.fc2" in name: A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" ) if "norm1" in name: A__ : Any = name.replace("""norm1""", """layernorm_before""" ) if "norm2" in name: A__ : List[str] = name.replace("""norm2""", """layernorm_after""" ) if "scratch.output_conv" in name: A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" ) if "scratch" in name: A__ : List[str] = name.replace("""scratch""", """neck""" ) if "layer1_rn" in name: A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" ) if "layer2_rn" in name: A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" ) if "layer3_rn" in name: A__ : Any = name.replace("""layer3_rn""", """convs.2""" ) if "layer4_rn" in name: A__ : Any = name.replace("""layer4_rn""", """convs.3""" ) if "refinenet" in name: A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: A__ : Optional[Any] = name.replace("""out_conv""", """projection""" ) if "resConfUnit1" in name: A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" ) if "resConfUnit2" in name: A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" ) if "conv1" in name: A__ : Tuple = name.replace("""conv1""", """convolution1""" ) if "conv2" in name: A__ : List[Any] = name.replace("""conv2""", """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" ) if "bn" in name: A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" ) if "head" in name: A__ : Dict = name.replace("""head""", """head.head""" ) if "encoder.norm" in name: A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" ) if "auxlayer" in name: A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" ) return name def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict A__ : List[str] = in_proj_weight[: config.hidden_size, :] A__ : int = in_proj_bias[: config.hidden_size] A__ : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A__ : Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A__ : str = in_proj_weight[ -config.hidden_size :, : ] A__ : Optional[Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) ->List[str]: A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg""" A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str: A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ ) # load original state_dict from URL A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(UpperCAmelCase__ ) # rename keys for key in state_dict.copy().keys(): A__ : int = state_dict.pop(UpperCAmelCase__ ) A__ : str = val # read in qkv matrices read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ ) # load HuggingFace model A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() # Check outputs on an image A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4 A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ ) A__ : Optional[int] = prepare_img() A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" ) # forward pass A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth # Assert logits A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(UpperCAmelCase__ ) assert ( torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ ) ) Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(UpperCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(UpperCAmelCase__ ) if push_to_hub: print("""Pushing model to hub...""" ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, ) image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) A_ = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
296
1
import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class __snake_case ( a , a , unittest.TestCase ): UpperCAmelCase__ : List[str] = VQModel UpperCAmelCase__ : Optional[Any] = '''sample''' @property def lowerCamelCase ( self : Optional[int] , _snake_case : List[str]=(32, 32)): """simple docstring""" UpperCAmelCase_ = 4 UpperCAmelCase_ = 3 UpperCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes).to(_snake_case) return {"sample": image} @property def lowerCamelCase ( self : Optional[int]): """simple docstring""" return (3, 32, 32) @property def lowerCamelCase ( self : Dict): """simple docstring""" return (3, 32, 32) def lowerCamelCase ( self : Optional[Any]): """simple docstring""" UpperCAmelCase_ = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } UpperCAmelCase_ = self.dummy_input return init_dict, inputs_dict def lowerCamelCase ( self : List[str]): """simple docstring""" pass def lowerCamelCase ( self : Optional[int]): """simple docstring""" pass def lowerCamelCase ( self : str): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_snake_case) self.assertIsNotNone(_snake_case) self.assertEqual(len(loading_info['''missing_keys''']) , 0) model.to(_snake_case) UpperCAmelCase_ = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = VQModel.from_pretrained('''fusing/vqgan-dummy''') model.to(_snake_case).eval() torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) UpperCAmelCase_ = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size) UpperCAmelCase_ = image.to(_snake_case) with torch.no_grad(): UpperCAmelCase_ = model(_snake_case).sample UpperCAmelCase_ = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off UpperCAmelCase_ = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3]) # fmt: on self.assertTrue(torch.allclose(_snake_case , _snake_case , atol=1e-3))
51
# A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def UpperCamelCase_( _snake_case : Tuple ): """simple docstring""" __a =[False] * len(_snake_case ) __a =[-1] * len(_snake_case ) def dfs(_snake_case : Dict , _snake_case : Any ): __a =True __a =c for u in graph[v]: if not visited[u]: dfs(_snake_case , 1 - c ) for i in range(len(_snake_case ) ): if not visited[i]: dfs(_snake_case , 0 ) for i in range(len(_snake_case ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph _lowerCAmelCase : int = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
218
0
'''simple docstring''' def __UpperCAmelCase ( a_: Optional[int] ): _UpperCAmelCase : Tuple = [0] * len(__lowerCAmelCase ) _UpperCAmelCase : List[str] = [] _UpperCAmelCase : Optional[Any] = [1] * len(__lowerCAmelCase ) for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(__lowerCAmelCase ) ): if indegree[i] == 0: queue.append(__lowerCAmelCase ) while queue: _UpperCAmelCase : Union[str, Any] = queue.pop(0 ) for x in graph[vertex]: indegree[x] -= 1 if long_dist[vertex] + 1 > long_dist[x]: _UpperCAmelCase : Optional[int] = long_dist[vertex] + 1 if indegree[x] == 0: queue.append(__lowerCAmelCase ) print(max(__lowerCAmelCase ) ) # Adjacency list of Graph __a = {0: [2, 3, 4], 1: [2, 7], 2: [5], 3: [5, 7], 4: [7], 5: [6], 6: [7], 7: []} longest_distance(graph)
370
'''simple docstring''' import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files", [ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ], ) def __UpperCAmelCase ( a_: Tuple, a_: Any ): _UpperCAmelCase : Union[str, Any] = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md", "w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json", "w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) _UpperCAmelCase : List[str] = DatasetInfosDict.from_directory(a_ ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info", [ DatasetInfo(), DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ), ], ) def __UpperCAmelCase ( a_: Union[str, Any], a_: DatasetInfo ): _UpperCAmelCase : Tuple = str(a_ ) dataset_info.write_to_directory(a_ ) _UpperCAmelCase : Any = DatasetInfo.from_directory(a_ ) assert dataset_info == reloaded assert os.path.exists(os.path.join(a_, "dataset_info.json" ) ) def __UpperCAmelCase ( ): _UpperCAmelCase : Optional[int] = DatasetInfo( description="foo", citation="bar", homepage="https://foo.bar", license="CC0", features=Features({"a": Value("int32" )} ), post_processed={}, supervised_keys=(), task_templates=[], builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train", "num_examples": 42}], download_checksums={}, download_size=1_337, post_processing_size=442, dataset_size=1_234, size_in_bytes=1_337 + 442 + 1_234, ) _UpperCAmelCase : Tuple = dataset_info._to_yaml_dict() assert sorted(a_ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key], (list, dict, int, str) ) _UpperCAmelCase : List[Any] = yaml.safe_dump(a_ ) _UpperCAmelCase : Optional[int] = yaml.safe_load(a_ ) assert dataset_info_yaml_dict == reloaded def __UpperCAmelCase ( ): _UpperCAmelCase : str = DatasetInfo() _UpperCAmelCase : List[str] = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict", [ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo", features=Features({"a": Value("int32" )} ), builder_name="builder", config_name="config", version="1.0.0", splits=[{"name": "train"}], download_size=42, ) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1_337 ), } ), ], ) def __UpperCAmelCase ( a_: str, a_: DatasetInfosDict ): _UpperCAmelCase : Union[str, Any] = str(a_ ) dataset_infos_dict.write_to_directory(a_ ) _UpperCAmelCase : Union[str, Any] = DatasetInfosDict.from_directory(a_ ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): _UpperCAmelCase : Optional[int] = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml _UpperCAmelCase : List[str] = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(a_, "README.md" ) )
17
0
'''simple docstring''' def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ): '''simple docstring''' if length <= 0 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise ValueError("""Length must be a positive integer.""" ) return [n * (2 * n - 1) for n in range(SCREAMING_SNAKE_CASE__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=1_0))
346
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( a ) -> int: if not nums: return 0 __A : Optional[int] = nums[0] __A : str = 0 for num in nums[1:]: __A , __A : Tuple = ( max_excluding + num, max(a , a ), ) return max(a , a ) if __name__ == "__main__": import doctest doctest.testmod()
280
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : Dict = logging.get_logger(__name__) _lowercase : Tuple = { 'google/pix2struct-textcaps-base': ( 'https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json' ), } class _UpperCAmelCase ( snake_case_ ): a__ : str = "pix2struct_text_model" a__ : List[Any] = ["past_key_values"] a__ : Tuple = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self : List[Any] , _lowercase : Any=5_02_44 , _lowercase : Union[str, Any]=7_68 , _lowercase : Optional[int]=64 , _lowercase : Any=20_48 , _lowercase : Any=12 , _lowercase : List[Any]=12 , _lowercase : Optional[int]=32 , _lowercase : List[Any]=1_28 , _lowercase : Any=0.1 , _lowercase : Union[str, Any]=1E-6 , _lowercase : Any=1.0 , _lowercase : List[str]="gelu_new" , _lowercase : List[str]=0 , _lowercase : str=False , _lowercase : Tuple=0 , _lowercase : Any=1 , _lowercase : int=False , _lowercase : List[Any]=True , **_lowercase : List[Any] , ): __UpperCAmelCase = vocab_size __UpperCAmelCase = hidden_size __UpperCAmelCase = d_kv __UpperCAmelCase = d_ff __UpperCAmelCase = num_layers __UpperCAmelCase = num_heads __UpperCAmelCase = relative_attention_num_buckets __UpperCAmelCase = relative_attention_max_distance __UpperCAmelCase = dropout_rate __UpperCAmelCase = layer_norm_epsilon __UpperCAmelCase = initializer_factor __UpperCAmelCase = use_cache __UpperCAmelCase = eos_token_id __UpperCAmelCase = decoder_start_token_id # for backwards compatibility __UpperCAmelCase = dense_act_fn super().__init__( pad_token_id=_lowercase , eos_token_id=_lowercase , decoder_start_token_id=_lowercase , tie_word_embeddings=_lowercase , is_decoder=_lowercase , **_lowercase , ) @classmethod def a ( cls : Any , _lowercase : Union[str, os.PathLike] , **_lowercase : Tuple ): cls._set_token_in_kwargs(_lowercase ) __UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __UpperCAmelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class _UpperCAmelCase ( snake_case_ ): a__ : List[str] = "pix2struct_vision_model" def __init__( self : Union[str, Any] , _lowercase : Optional[Any]=7_68 , _lowercase : List[str]=7_68 , _lowercase : List[str]=20_48 , _lowercase : int=64 , _lowercase : int=12 , _lowercase : Tuple=12 , _lowercase : Optional[Any]="gelu_new" , _lowercase : int=1E-6 , _lowercase : Dict=0.0 , _lowercase : Any=0.0 , _lowercase : Any=1E-10 , _lowercase : Union[str, Any]=1.0 , _lowercase : Any=40_96 , _lowercase : Dict=32 , _lowercase : Union[str, Any]=1_28 , **_lowercase : Optional[Any] , ): super().__init__(**_lowercase ) __UpperCAmelCase = hidden_size __UpperCAmelCase = patch_embed_hidden_size __UpperCAmelCase = d_ff __UpperCAmelCase = dropout_rate __UpperCAmelCase = num_hidden_layers __UpperCAmelCase = num_attention_heads __UpperCAmelCase = initializer_range __UpperCAmelCase = initializer_factor __UpperCAmelCase = attention_dropout __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = dense_act_fn __UpperCAmelCase = seq_len __UpperCAmelCase = relative_attention_num_buckets __UpperCAmelCase = relative_attention_max_distance __UpperCAmelCase = d_kv @classmethod def a ( cls : Optional[int] , _lowercase : Union[str, os.PathLike] , **_lowercase : int ): cls._set_token_in_kwargs(_lowercase ) __UpperCAmelCase = cls.get_config_dict(_lowercase , **_lowercase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __UpperCAmelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_lowercase , **_lowercase ) class _UpperCAmelCase ( snake_case_ ): a__ : Any = "pix2struct" a__ : Optional[Any] = True def __init__( self : str , _lowercase : int=None , _lowercase : Any=None , _lowercase : List[str]=1.0 , _lowercase : int=0.02 , _lowercase : List[str]=False , _lowercase : Optional[int]=False , _lowercase : Optional[Any]=True , **_lowercase : Any , ): super().__init__(tie_word_embeddings=_lowercase , is_encoder_decoder=_lowercase , **_lowercase ) if text_config is None: __UpperCAmelCase = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __UpperCAmelCase = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __UpperCAmelCase = PixaStructTextConfig(**_lowercase ) __UpperCAmelCase = PixaStructVisionConfig(**_lowercase ) __UpperCAmelCase = self.text_config.decoder_start_token_id __UpperCAmelCase = self.text_config.pad_token_id __UpperCAmelCase = self.text_config.eos_token_id __UpperCAmelCase = initializer_factor __UpperCAmelCase = initializer_range __UpperCAmelCase = self.initializer_range __UpperCAmelCase = self.initializer_range __UpperCAmelCase = is_vqa @classmethod def a ( cls : List[str] , _lowercase : PixaStructTextConfig , _lowercase : PixaStructVisionConfig , **_lowercase : Union[str, Any] ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def a ( self : int ): __UpperCAmelCase = copy.deepcopy(self.__dict__ ) __UpperCAmelCase = self.text_config.to_dict() __UpperCAmelCase = self.vision_config.to_dict() __UpperCAmelCase = self.__class__.model_type return output
356
"""simple docstring""" import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class _UpperCAmelCase : def __init__( self : Dict , _lowercase : int , _lowercase : List[str]=13 , _lowercase : Dict=32 , _lowercase : Any=2 , _lowercase : Optional[int]=3 , _lowercase : Optional[Any]=16 , _lowercase : Optional[int]=[1, 2, 1] , _lowercase : int=[2, 2, 4] , _lowercase : Optional[Any]=2 , _lowercase : Union[str, Any]=2.0 , _lowercase : Any=True , _lowercase : Optional[Any]=0.0 , _lowercase : Dict=0.0 , _lowercase : Dict=0.1 , _lowercase : str="gelu" , _lowercase : List[Any]=False , _lowercase : List[Any]=True , _lowercase : Optional[Any]=0.02 , _lowercase : str=1E-5 , _lowercase : str=True , _lowercase : Any=None , _lowercase : Tuple=True , _lowercase : Any=10 , _lowercase : int=8 , _lowercase : Optional[Any]=["stage1", "stage2", "stage3"] , _lowercase : Optional[Any]=[1, 2, 3] , ): __UpperCAmelCase = parent __UpperCAmelCase = batch_size __UpperCAmelCase = image_size __UpperCAmelCase = patch_size __UpperCAmelCase = num_channels __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = num_heads __UpperCAmelCase = window_size __UpperCAmelCase = mlp_ratio __UpperCAmelCase = qkv_bias __UpperCAmelCase = hidden_dropout_prob __UpperCAmelCase = attention_probs_dropout_prob __UpperCAmelCase = drop_path_rate __UpperCAmelCase = hidden_act __UpperCAmelCase = use_absolute_embeddings __UpperCAmelCase = patch_norm __UpperCAmelCase = layer_norm_eps __UpperCAmelCase = initializer_range __UpperCAmelCase = is_training __UpperCAmelCase = scope __UpperCAmelCase = use_labels __UpperCAmelCase = type_sequence_label_size __UpperCAmelCase = encoder_stride __UpperCAmelCase = out_features __UpperCAmelCase = out_indices def a ( self : int ): __UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCAmelCase = None if self.use_labels: __UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase = self.get_config() return config, pixel_values, labels def a ( self : Dict ): return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : str , _lowercase : int ): __UpperCAmelCase = MaskFormerSwinModel(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) __UpperCAmelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __UpperCAmelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def a ( self : int , _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Dict ): __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = model(_lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [13, 16, 16, 16] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , [16, 32, 64] ) # verify ValueError with self.parent.assertRaises(_lowercase ): __UpperCAmelCase = ['''stem'''] __UpperCAmelCase = MaskFormerSwinBackbone(config=_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.prepare_config_and_inputs() __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = config_and_inputs __UpperCAmelCase = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): a__ : List[Any] = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) a__ : Optional[int] = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} a__ : List[str] = False a__ : int = False a__ : str = False a__ : str = False a__ : Any = False def a ( self : Optional[Any] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) __UpperCAmelCase = ConfigTester(self , config_class=_lowercase , embed_dim=37 ) @require_torch_multi_gpu @unittest.skip( reason=( '''`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn\'t work well with''' ''' `nn.DataParallel`''' ) ) def a ( self : int ): pass def a ( self : Dict ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def a ( self : str ): return def a ( self : Optional[Any] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def a ( self : Optional[int] ): __UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*_lowercase ) @unittest.skip('''Swin does not use inputs_embeds''' ) def a ( self : List[Any] ): pass @unittest.skip('''Swin does not support feedforward chunking''' ) def a ( self : str ): pass def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowercase , nn.Linear ) ) def a ( self : Union[str, Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) __UpperCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCAmelCase = [*signature.parameters.keys()] __UpperCAmelCase = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _lowercase ) @unittest.skip(reason='''MaskFormerSwin is only used as backbone and doesn\'t support output_attentions''' ) def a ( self : Optional[Any] ): pass @unittest.skip(reason='''MaskFormerSwin is only used as an internal backbone''' ) def a ( self : Optional[Any] ): pass def a ( self : List[Any] , _lowercase : Union[str, Any] , _lowercase : List[str] , _lowercase : Dict , _lowercase : Tuple ): __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() with torch.no_grad(): __UpperCAmelCase = model(**self._prepare_for_class(_lowercase , _lowercase ) ) __UpperCAmelCase = outputs.hidden_states __UpperCAmelCase = getattr( self.model_tester , '''expected_num_hidden_layers''' , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(_lowercase ) , _lowercase ) # Swin has a different seq_length __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def a ( self : str ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , _lowercase ) def a ( self : Optional[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = 3 __UpperCAmelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __UpperCAmelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __UpperCAmelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __UpperCAmelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCAmelCase = True self.check_hidden_states_output(_lowercase , _lowercase , _lowercase , (padded_height, padded_width) ) @unittest.skip(reason='''MaskFormerSwin doesn\'t have pretrained checkpoints''' ) def a ( self : Any ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : str ): pass @unittest.skip(reason='''This will be fixed once MaskFormerSwin is replaced by native Swin''' ) def a ( self : Tuple ): pass def a ( self : Tuple ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(_lowercase : List[str] ): __UpperCAmelCase = 0 return t def check_equivalence(_lowercase : List[Any] , _lowercase : Any , _lowercase : str , _lowercase : List[str]={} ): with torch.no_grad(): __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ) __UpperCAmelCase = model(**_lowercase , return_dict=_lowercase , **_lowercase ).to_tuple() def recursive_check(_lowercase : Dict , _lowercase : Optional[Any] ): if isinstance(_lowercase , (List, Tuple) ): for tuple_iterable_value, dict_iterable_value in zip(_lowercase , _lowercase ): recursive_check(_lowercase , _lowercase ) elif isinstance(_lowercase , _lowercase ): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values() ): recursive_check(_lowercase , _lowercase ) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(_lowercase ) , set_nan_tensor_to_zero(_lowercase ) , atol=1E-5 ) , msg=( '''Tuple and dict output are not equal. Difference:''' F''' {torch.max(torch.abs(tuple_object - dict_object ) )}. Tuple has `nan`:''' F''' {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}. Dict has''' F''' `nan`: {torch.isnan(_lowercase ).any()} and `inf`: {torch.isinf(_lowercase )}.''' ) , ) recursive_check(_lowercase , _lowercase ) for model_class in self.all_model_classes: __UpperCAmelCase = model_class(_lowercase ) model.to(_lowercase ) model.eval() __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) __UpperCAmelCase = self._prepare_for_class(_lowercase , _lowercase , return_labels=_lowercase ) check_equivalence(_lowercase , _lowercase , _lowercase , {'''output_hidden_states''': True} ) @require_torch class _UpperCAmelCase ( unittest.TestCase , _lowerCAmelCase ): a__ : Optional[Any] = (MaskFormerSwinBackbone,) if is_torch_available() else () a__ : List[str] = MaskFormerSwinConfig def a ( self : List[str] ): __UpperCAmelCase = MaskFormerSwinModelTester(self ) def a ( self : List[Any] ): __UpperCAmelCase , __UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase = inputs_dict['''pixel_values'''].shape[0] for backbone_class in self.all_model_classes: __UpperCAmelCase = backbone_class(_lowercase ) backbone.to(_lowercase ) backbone.eval() __UpperCAmelCase = backbone(**_lowercase ) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , _lowercase ) self.assertTrue(len(outputs.feature_maps ) == len(backbone.channels ) ) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels ): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels) ) self.assertIsNone(outputs.hidden_states ) self.assertIsNone(outputs.attentions ) # Test output_hidden_states=True __UpperCAmelCase = backbone(**_lowercase , output_hidden_states=_lowercase ) self.assertIsNotNone(outputs.hidden_states ) self.assertTrue(len(outputs.hidden_states ) , len(backbone.stage_names ) ) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels ): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels) ) # Test output_attentions=True if self.has_attentions: __UpperCAmelCase = backbone(**_lowercase , output_attentions=_lowercase ) self.assertIsNotNone(outputs.attentions )
86
0
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE = 1_0_0_0 ) -> int: __lowerCAmelCase: str = 2**power __lowerCAmelCase: Any = 0 while n: __lowerCAmelCase , __lowerCAmelCase: Tuple = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
217
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __A = logging.get_logger(__name__) __A = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } __A = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } __A = {"facebook/blenderbot-3B": 128} class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Dict = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Optional[int] = ["""input_ids""", """attention_mask"""] SCREAMING_SNAKE_CASE_ : List[Any] = BlenderbotTokenizer def __init__( self : Any , UpperCamelCase__ : str=None , UpperCamelCase__ : Tuple=None , UpperCamelCase__ : List[Any]=None , UpperCamelCase__ : Optional[Any]="replace" , UpperCamelCase__ : int="<s>" , UpperCamelCase__ : str="</s>" , UpperCamelCase__ : List[Any]="</s>" , UpperCamelCase__ : Union[str, Any]="<s>" , UpperCamelCase__ : List[str]="<unk>" , UpperCamelCase__ : Dict="<pad>" , UpperCamelCase__ : List[Any]="<mask>" , UpperCamelCase__ : Any=False , UpperCamelCase__ : int=True , **UpperCamelCase__ : Union[str, Any] , )-> int: '''simple docstring''' super().__init__( UpperCamelCase__ , UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , errors=UpperCamelCase__ , bos_token=UpperCamelCase__ , eos_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , add_prefix_space=UpperCamelCase__ , trim_offsets=UpperCamelCase__ , **UpperCamelCase__ , ) __lowerCAmelCase: Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Dict = getattr(UpperCamelCase__ , pre_tok_state.pop("type")) __lowerCAmelCase: int = add_prefix_space __lowerCAmelCase: str = pre_tok_class(**UpperCamelCase__) __lowerCAmelCase: List[Any] = add_prefix_space __lowerCAmelCase: Union[str, Any] = "post_processor" __lowerCAmelCase: Tuple = getattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) if tokenizer_component_instance: __lowerCAmelCase: List[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __lowerCAmelCase: str = tuple(state["sep"]) if "cls" in state: __lowerCAmelCase: Any = tuple(state["cls"]) __lowerCAmelCase: int = False if state.get("add_prefix_space" , UpperCamelCase__) != add_prefix_space: __lowerCAmelCase: Dict = add_prefix_space __lowerCAmelCase: Optional[Any] = True if state.get("trim_offsets" , UpperCamelCase__) != trim_offsets: __lowerCAmelCase: Dict = trim_offsets __lowerCAmelCase: Tuple = True if changes_to_apply: __lowerCAmelCase: Dict = getattr(UpperCamelCase__ , state.pop("type")) __lowerCAmelCase: str = component_class(**UpperCamelCase__) setattr(self.backend_tokenizer , UpperCamelCase__ , UpperCamelCase__) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_ ( self : Optional[Any])-> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet.") return None return str(self._mask_token) @mask_token.setter def lowercase_ ( self : str , UpperCamelCase__ : Union[str, Any])-> Tuple: '''simple docstring''' __lowerCAmelCase: int = AddedToken(UpperCamelCase__ , lstrip=UpperCamelCase__ , rstrip=UpperCamelCase__) if isinstance(UpperCamelCase__ , UpperCamelCase__) else value __lowerCAmelCase: Any = value def lowercase_ ( self : Union[str, Any] , *UpperCamelCase__ : List[str] , **UpperCamelCase__ : Optional[int])-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[str] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : Any , *UpperCamelCase__ : Optional[int] , **UpperCamelCase__ : int)-> BatchEncoding: '''simple docstring''' __lowerCAmelCase: List[Any] = kwargs.get("is_split_into_words" , UpperCamelCase__) assert self.add_prefix_space or not is_split_into_words, ( f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True " "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCamelCase__ , **UpperCamelCase__) def lowercase_ ( self : List[str] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None)-> Tuple[str]: '''simple docstring''' __lowerCAmelCase: Optional[int] = self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__) return tuple(UpperCamelCase__) def lowercase_ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[int]: '''simple docstring''' __lowerCAmelCase: Tuple = [self.sep_token_id] __lowerCAmelCase: Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def lowercase_ ( self : Union[str, Any] , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None)-> List[Any]: '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowercase_ ( self : Dict , UpperCamelCase__ : "Conversation")-> List[int]: '''simple docstring''' __lowerCAmelCase: str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text) else: # Generated responses should contain them already. inputs.append(UpperCamelCase__) __lowerCAmelCase: Optional[int] = " ".join(UpperCamelCase__) __lowerCAmelCase: Tuple = self.encode(UpperCamelCase__) if len(UpperCamelCase__) > self.model_max_length: __lowerCAmelCase: int = input_ids[-self.model_max_length :] logger.warning(f"Trimmed input from conversation as it was longer than {self.model_max_length} tokens.") return input_ids
217
1
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : List[str] = ['''input_features'''] def __init__( self : Any , UpperCAmelCase_ : List[str]=80 , UpperCAmelCase_ : str=1_6000 , UpperCAmelCase_ : Optional[int]=160 , UpperCAmelCase_ : int=30 , UpperCAmelCase_ : Union[str, Any]=400 , UpperCAmelCase_ : Optional[int]=0.0 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : Tuple , ): super().__init__( feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , **UpperCAmelCase_ , ) SCREAMING_SNAKE_CASE : Any = n_fft SCREAMING_SNAKE_CASE : List[Any] = hop_length SCREAMING_SNAKE_CASE : List[str] = chunk_length SCREAMING_SNAKE_CASE : Optional[Any] = chunk_length * sampling_rate SCREAMING_SNAKE_CASE : List[Any] = self.n_samples // hop_length SCREAMING_SNAKE_CASE : Union[str, Any] = sampling_rate SCREAMING_SNAKE_CASE : Optional[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=UpperCAmelCase_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=UpperCAmelCase_ , norm="slaney" , mel_scale="slaney" , ) def _A ( self : Optional[int] , UpperCAmelCase_ : np.array ): SCREAMING_SNAKE_CASE : List[Any] = spectrogram( UpperCAmelCase_ , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) SCREAMING_SNAKE_CASE : List[str] = log_spec[:, :-1] SCREAMING_SNAKE_CASE : Tuple = np.maximum(UpperCAmelCase_ , log_spec.max() - 8.0 ) SCREAMING_SNAKE_CASE : Dict = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def _A ( UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : List[np.ndarray] , UpperCAmelCase_ : float = 0.0 ): if attention_mask is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = np.array(UpperCAmelCase_ , np.intaa ) SCREAMING_SNAKE_CASE : int = [] for vector, length in zip(UpperCAmelCase_ , attention_mask.sum(-1 ) ): SCREAMING_SNAKE_CASE : Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: SCREAMING_SNAKE_CASE : Optional[Any] = padding_value normed_input_values.append(UpperCAmelCase_ ) else: SCREAMING_SNAKE_CASE : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self : List[Any] , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[str] = "max_length" , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[bool] = None , **UpperCAmelCase_ : Union[str, Any] , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' f''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' f''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) SCREAMING_SNAKE_CASE : Any = isinstance(UpperCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) SCREAMING_SNAKE_CASE : List[Any] = is_batched_numpy or ( isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : int = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ): SCREAMING_SNAKE_CASE : List[str] = np.asarray(UpperCAmelCase_ , dtype=np.floataa ) elif isinstance(UpperCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Any = [np.asarray([raw_speech] ).T] SCREAMING_SNAKE_CASE : Optional[Any] = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding SCREAMING_SNAKE_CASE : Tuple = self.pad( UpperCAmelCase_ , padding=UpperCAmelCase_ , max_length=max_length if max_length else self.n_samples , truncation=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: SCREAMING_SNAKE_CASE : List[str] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) SCREAMING_SNAKE_CASE : int = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format SCREAMING_SNAKE_CASE : Union[str, Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) SCREAMING_SNAKE_CASE : int = [self._np_extract_fbank_features(UpperCAmelCase_ ) for waveform in input_features[0]] if isinstance(input_features[0] , UpperCAmelCase_ ): SCREAMING_SNAKE_CASE : List[str] = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ) for feature in input_features] else: SCREAMING_SNAKE_CASE : int = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) SCREAMING_SNAKE_CASE : List[Any] = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: SCREAMING_SNAKE_CASE : Optional[Any] = padded_inputs.convert_to_tensors(UpperCAmelCase_ ) return padded_inputs def _A ( self : str ): SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : List[Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
355
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert isinstance(lowercase , lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = tmp_path / "cache" SCREAMING_SNAKE_CASE : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Any = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : Optional[int] = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetReader(lowercase , features=lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : str = ParquetDatasetReader(lowercase , cache_dir=lowercase , split=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Optional[Any] = parquet_path elif issubclass(lowercase , lowercase ): SCREAMING_SNAKE_CASE : Union[str, Any] = [parquet_path] SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Tuple = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_dataset(lowercase , lowercase ) def lowerCamelCase__ ( lowercase , lowercase , lowercase=("train",) ): """simple docstring""" assert isinstance(lowercase , lowercase ) for split in splits: SCREAMING_SNAKE_CASE : Optional[int] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tmp_path / "cache" SCREAMING_SNAKE_CASE : Dict = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): SCREAMING_SNAKE_CASE : str = ParquetDatasetReader( {"train": parquet_path} , cache_dir=lowercase , keep_in_memory=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = tmp_path / "cache" SCREAMING_SNAKE_CASE : Optional[int] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : Dict = features.copy() if features else default_expected_features SCREAMING_SNAKE_CASE : str = ( Features({feature: Value(lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) SCREAMING_SNAKE_CASE : Optional[Any] = ParquetDatasetReader({"train": parquet_path} , features=lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def lowerCamelCase__ ( lowercase , lowercase , lowercase ): """simple docstring""" if split: SCREAMING_SNAKE_CASE : Any = {split: parquet_path} else: SCREAMING_SNAKE_CASE : Tuple = "train" SCREAMING_SNAKE_CASE : int = {"train": parquet_path, "test": parquet_path} SCREAMING_SNAKE_CASE : Dict = tmp_path / "cache" SCREAMING_SNAKE_CASE : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} SCREAMING_SNAKE_CASE : int = ParquetDatasetReader(lowercase , cache_dir=lowercase ).read() _check_parquet_datasetdict(lowercase , lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : Tuple = pq.ParquetFile(tmp_path / "foo.parquet" ) SCREAMING_SNAKE_CASE : List[Any] = pf.read() assert dataset.data.table == output_table def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : int = str(shared_datadir / "test_image_rgb.jpg" ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"image": [image_path]} SCREAMING_SNAKE_CASE : Union[str, Any] = Features({"image": Image()} ) SCREAMING_SNAKE_CASE : int = Dataset.from_dict(lowercase , features=lowercase ) SCREAMING_SNAKE_CASE : List[str] = ParquetDatasetWriter(lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 SCREAMING_SNAKE_CASE : str = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features SCREAMING_SNAKE_CASE : Any = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" assert get_writer_batch_size(lowercase ) == expected
319
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json""", # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Any = "convbert" def __init__( self : Union[str, Any] ,lowerCamelCase__ : List[Any]=30522 ,lowerCamelCase__ : Optional[Any]=768 ,lowerCamelCase__ : Union[str, Any]=12 ,lowerCamelCase__ : str=12 ,lowerCamelCase__ : Union[str, Any]=3072 ,lowerCamelCase__ : Any="gelu" ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : Dict=512 ,lowerCamelCase__ : str=2 ,lowerCamelCase__ : Any=0.02 ,lowerCamelCase__ : Optional[int]=1e-1_2 ,lowerCamelCase__ : int=1 ,lowerCamelCase__ : Union[str, Any]=0 ,lowerCamelCase__ : int=2 ,lowerCamelCase__ : Union[str, Any]=768 ,lowerCamelCase__ : Any=2 ,lowerCamelCase__ : Optional[Any]=9 ,lowerCamelCase__ : Union[str, Any]=1 ,lowerCamelCase__ : Any=None ,**lowerCamelCase__ : Union[str, Any] ,) -> str: '''simple docstring''' super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = type_vocab_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = embedding_size SCREAMING_SNAKE_CASE = head_ratio SCREAMING_SNAKE_CASE = conv_kernel_size SCREAMING_SNAKE_CASE = num_groups SCREAMING_SNAKE_CASE = classifier_dropout class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ("""token_type_ids""", dynamic_axis), ] )
296
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git_vision_model" def __init__( self : List[Any] ,lowerCamelCase__ : Dict=768 ,lowerCamelCase__ : Union[str, Any]=3072 ,lowerCamelCase__ : Optional[int]=12 ,lowerCamelCase__ : Tuple=12 ,lowerCamelCase__ : Tuple=3 ,lowerCamelCase__ : Optional[Any]=224 ,lowerCamelCase__ : Union[str, Any]=16 ,lowerCamelCase__ : List[Any]="quick_gelu" ,lowerCamelCase__ : Optional[Any]=1e-5 ,lowerCamelCase__ : str=0.0 ,lowerCamelCase__ : Optional[int]=0.02 ,**lowerCamelCase__ : Union[str, Any] ,) -> Optional[int]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = attention_dropout SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = hidden_act @classmethod def SCREAMING_SNAKE_CASE__ ( cls : Tuple ,lowerCamelCase__ : Union[str, os.PathLike] ,**lowerCamelCase__ : int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(lowerCamelCase__ ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = cls.get_config_dict(lowerCamelCase__ ,**lowerCamelCase__ ) # get the vision config dict if we are loading from GITConfig if config_dict.get("""model_type""" ) == "git": SCREAMING_SNAKE_CASE = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCamelCase__ ,**lowerCamelCase__ ) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Dict = "git" def __init__( self : Optional[int] ,lowerCamelCase__ : int=None ,lowerCamelCase__ : str=30522 ,lowerCamelCase__ : Tuple=768 ,lowerCamelCase__ : Union[str, Any]=6 ,lowerCamelCase__ : str=12 ,lowerCamelCase__ : List[str]=3072 ,lowerCamelCase__ : Dict="gelu" ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : Any=0.1 ,lowerCamelCase__ : List[str]=1024 ,lowerCamelCase__ : List[str]=0.02 ,lowerCamelCase__ : str=1e-1_2 ,lowerCamelCase__ : Optional[int]=0 ,lowerCamelCase__ : Optional[int]="absolute" ,lowerCamelCase__ : Optional[Any]=True ,lowerCamelCase__ : str=False ,lowerCamelCase__ : int=101 ,lowerCamelCase__ : int=102 ,lowerCamelCase__ : Dict=None ,**lowerCamelCase__ : List[Any] ,) -> Optional[Any]: '''simple docstring''' super().__init__(bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) if vision_config is None: SCREAMING_SNAKE_CASE = {} logger.info("""vision_config is None. initializing the GitVisionConfig with default values.""" ) SCREAMING_SNAKE_CASE = GitVisionConfig(**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = position_embedding_type SCREAMING_SNAKE_CASE = use_cache SCREAMING_SNAKE_CASE = tie_word_embeddings SCREAMING_SNAKE_CASE = num_image_with_embedding SCREAMING_SNAKE_CASE = bos_token_id SCREAMING_SNAKE_CASE = eos_token_id def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE = self.vision_config.to_dict() SCREAMING_SNAKE_CASE = self.__class__.model_type return output
296
1
"""simple docstring""" from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not arr: return None, None, 0 if low == high: return low, high, arr[low] lowerCamelCase__ : Union[str, Any] = (low + high) // 2 lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = max_subarray(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : List[Any] = max_subarray(_lowerCamelCase , mid + 1 , _lowerCamelCase ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = max_cross_sum(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCamelCase__ , lowerCamelCase__ : str = float('-inf' ), -1 lowerCamelCase__ , lowerCamelCase__ : List[str] = float('-inf' ), -1 lowerCamelCase__ : int | float = 0 for i in range(_lowerCamelCase , low - 1 , -1 ): summ += arr[i] if summ > left_sum: lowerCamelCase__ : Any = summ lowerCamelCase__ : List[str] = i lowerCamelCase__ : str = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: lowerCamelCase__ : Tuple = summ lowerCamelCase__ : Union[str, Any] = i return max_left, max_right, (left_sum + right_sum) def lowerCamelCase_ ( _lowerCamelCase ): lowerCamelCase__ : Optional[int] = [randint(1 , _lowerCamelCase ) for _ in range(_lowerCamelCase )] lowerCamelCase__ : str = time.time() max_subarray(_lowerCamelCase , 0 , input_size - 1 ) lowerCamelCase__ : Union[str, Any] = time.time() return end - start def lowerCamelCase_ ( ): lowerCamelCase__ : List[str] = [10, 100, 1000, 1_0000, 5_0000, 10_0000, 20_0000, 30_0000, 40_0000, 50_0000] lowerCamelCase__ : Tuple = [time_max_subarray(_lowerCamelCase ) for input_size in input_sizes] print('No of Inputs\t\tTime Taken' ) for input_size, runtime in zip(_lowerCamelCase , _lowerCamelCase ): print(_lowerCamelCase , '\t\t' , _lowerCamelCase ) plt.plot(_lowerCamelCase , _lowerCamelCase ) plt.xlabel('Number of Inputs' ) plt.ylabel('Time taken in seconds' ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
316
"""simple docstring""" def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): while second != 0: lowerCamelCase__ : Tuple = first & second first ^= second lowerCamelCase__ : int = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() A_ : Tuple = int(input("Enter the first number: ").strip()) A_ : Union[str, Any] = int(input("Enter the second number: ").strip()) print(f"{add(first, second) = }")
316
1
"""simple docstring""" A: Dict = 8.314_4598 def _snake_case ( UpperCamelCase : float , UpperCamelCase : float ): if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example A: Dict = 3_0_0 A: Dict = 2_8 A: str = rms_speed_of_molecule(temperature, molar_mass) print(f"""Vrms of Nitrogen gas at 300 K is {vrms} m/s""")
109
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class _lowerCAmelCase : """simple docstring""" @staticmethod def _lowercase ( *UpperCAmelCase__ : Tuple, **UpperCAmelCase__ : List[Any] ): pass def _A ( UpperCamelCase_ : Union[str, Any]) -> Any: '''simple docstring''' return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. _a = ( 'https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png' ) @is_pipeline_test @require_torch @require_vision class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Tuple = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[Any] ): __lowercase = pipeline( "document-question-answering", model=UpperCAmelCase__, tokenizer=UpperCAmelCase__, image_processor=UpperCAmelCase__ ) __lowercase = INVOICE_URL __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) __lowercase = "What is the placebo?" __lowercase = [ { "image": load_image(UpperCAmelCase__ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _lowercase ( self : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any ): __lowercase = dqa_pipeline(UpperCAmelCase__, top_k=2 ) self.assertEqual( UpperCAmelCase__, [ [ {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, {"score": ANY(UpperCAmelCase__ ), "answer": ANY(UpperCAmelCase__ ), "start": ANY(UpperCAmelCase__ ), "end": ANY(UpperCAmelCase__ )}, ] ] * 3, ) @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline("document-question-answering", model="hf-internal-testing/tiny-random-layoutlmv2" ) __lowercase = INVOICE_URL __lowercase = "How many cats are there?" __lowercase = [ {"score": 0.0_001, "answer": "oy 2312/2019", "start": 3_8, "end": 3_9}, {"score": 0.0_001, "answer": "oy 2312/2019 DUE", "start": 3_8, "end": 4_0}, ] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), UpperCAmelCase__ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) # We can optionnally pass directly the words and bounding boxes __lowercase = "./tests/fixtures/tests_samples/COCO/000000039769.png" __lowercase = [] __lowercase = [] __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, words=UpperCAmelCase__, boxes=UpperCAmelCase__, top_k=2 ) self.assertEqual(UpperCAmelCase__, [] ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : List[str] ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_944, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_009, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ] * 2, ) @slow @require_torch @require_detectrona @require_pytesseract def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa", revision="9977165", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_974, "answer": "1110212019", "start": 2_3, "end": 2_3}, {"score": 0.9_948, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline({"image": image, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.4_251, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.0_819, "answer": "1110212019", "start": 2_3, "end": 2_3}, ], ) @slow @require_torch @require_pytesseract @require_vision def _lowercase ( self : Union[str, Any] ): __lowercase = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa", revision="3dc6de3", add_prefix_space=UpperCAmelCase__ ) __lowercase = pipeline( "document-question-answering", model="impira/layoutlm-document-qa", tokenizer=UpperCAmelCase__, revision="3dc6de3", max_seq_len=5_0, ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) __lowercase = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}], top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ] ] * 2, ) __lowercase = list(zip(*apply_tesseract(load_image(UpperCAmelCase__ ), UpperCAmelCase__, "" ) ) ) # This model should also work if `image` is set to None __lowercase = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question}, top_k=2 ) self.assertEqual( nested_simplify(UpperCAmelCase__, decimals=4 ), [ {"score": 0.9_999, "answer": "us-001", "start": 1_6, "end": 1_6}, {"score": 0.9_998, "answer": "us-001", "start": 1_6, "end": 1_6}, ], ) @slow @require_torch def _lowercase ( self : Dict ): __lowercase = pipeline( "document-question-answering", model="naver-clova-ix/donut-base-finetuned-docvqa", tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ), feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa", ) __lowercase = INVOICE_URL __lowercase = "What is the invoice number?" __lowercase = dqa_pipeline(image=UpperCAmelCase__, question=UpperCAmelCase__, top_k=2 ) self.assertEqual(nested_simplify(UpperCAmelCase__, decimals=4 ), [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _lowercase ( self : List[Any] ): pass
17
0
import argparse import os import re UpperCamelCase__ = 'src/diffusers' # Pattern that looks at the indentation in a line. UpperCamelCase__ = re.compile(R'^(\s*)\S') # Pattern that matches `"key":" and puts `key` in group 0. UpperCamelCase__ = re.compile(R'^\s*"([^"]+)":') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. UpperCamelCase__ = re.compile(R'^\s*_import_structure\["([^"]+)"\]') # Pattern that matches `"key",` and puts `key` in group 0. UpperCamelCase__ = re.compile(R'^\s*"([^"]+)",\s*$') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. UpperCamelCase__ = re.compile(R'\[([^\]]+)\]') def lowerCAmelCase_ ( __A ) -> str: '''simple docstring''' UpperCAmelCase__ = _re_indent.search(__A ) return "" if search is None else search.groups()[0] def lowerCAmelCase_ ( __A, __A="", __A=None, __A=None ) -> str: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(__A ): index += 1 UpperCAmelCase__ = ["\n".join(lines[:index] )] else: UpperCAmelCase__ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). UpperCAmelCase__ = [lines[index]] index += 1 while index < len(__A ) and (end_prompt is None or not lines[index].startswith(__A )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(__A ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(__A ) ) if index < len(__A ) - 1: UpperCAmelCase__ = [lines[index + 1]] index += 1 else: UpperCAmelCase__ = [] else: blocks.append("\n".join(__A ) ) UpperCAmelCase__ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(__A ) > 0: blocks.append("\n".join(__A ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(__A ): blocks.append("\n".join(lines[index:] ) ) return blocks def lowerCAmelCase_ ( __A ) -> Tuple: '''simple docstring''' def _inner(__A ): return key(__A ).lower().replace("_", "" ) return _inner def lowerCAmelCase_ ( __A, __A=None ) -> List[str]: '''simple docstring''' def noop(__A ): return x if key is None: UpperCAmelCase__ = noop # Constants are all uppercase, they go first. UpperCAmelCase__ = [obj for obj in objects if key(__A ).isupper()] # Classes are not all uppercase but start with a capital, they go second. UpperCAmelCase__ = [obj for obj in objects if key(__A )[0].isupper() and not key(__A ).isupper()] # Functions begin with a lowercase, they go last. UpperCAmelCase__ = [obj for obj in objects if not key(__A )[0].isupper()] UpperCAmelCase__ = ignore_underscore(__A ) return sorted(__A, key=__A ) + sorted(__A, key=__A ) + sorted(__A, key=__A ) def lowerCAmelCase_ ( __A ) -> Optional[Any]: '''simple docstring''' def _replace(__A ): UpperCAmelCase__ = match.groups()[0] if "," not in imports: return f"""[{imports}]""" UpperCAmelCase__ = [part.strip().replace("\"", "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(__A )] ) + "]" UpperCAmelCase__ = import_statement.split("\n" ) if len(__A ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. UpperCAmelCase__ = 2 if lines[1].strip() == "[" else 1 UpperCAmelCase__ = [(i, _re_strip_line.search(__A ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] UpperCAmelCase__ = sort_objects(__A, key=lambda __A : x[1] ) UpperCAmelCase__ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(__A ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: UpperCAmelCase__ = _re_bracket_content.sub(_replace, lines[1] ) else: UpperCAmelCase__ = [part.strip().replace("\"", "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: UpperCAmelCase__ = keys[:-1] UpperCAmelCase__ = get_indent(lines[1] ) + ", ".join([f"""\"{k}\"""" for k in sort_objects(__A )] ) return "\n".join(__A ) else: # Finally we have to deal with imports fitting on one line UpperCAmelCase__ = _re_bracket_content.sub(_replace, __A ) return import_statement def lowerCAmelCase_ ( __A, __A=True ) -> Any: '''simple docstring''' with open(__A, "r" ) as f: UpperCAmelCase__ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 UpperCAmelCase__ = split_code_in_indented_blocks( __A, start_prompt="_import_structure = {", end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1, len(__A ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. UpperCAmelCase__ = main_blocks[block_idx] UpperCAmelCase__ = block.split("\n" ) # Get to the start of the imports. UpperCAmelCase__ = 0 while line_idx < len(__A ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: UpperCAmelCase__ = len(__A ) else: line_idx += 1 if line_idx >= len(__A ): continue # Ignore beginning and last line: they don't contain anything. UpperCAmelCase__ = "\n".join(block_lines[line_idx:-1] ) UpperCAmelCase__ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. UpperCAmelCase__ = split_code_in_indented_blocks(__A, indent_level=__A ) # We have two categories of import key: list or _import_structure[key].append/extend UpperCAmelCase__ = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. UpperCAmelCase__ = [(pattern.search(__A ).groups()[0] if pattern.search(__A ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. UpperCAmelCase__ = [(i, key) for i, key in enumerate(__A ) if key is not None] UpperCAmelCase__ = [x[0] for x in sorted(__A, key=lambda __A : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. UpperCAmelCase__ = 0 UpperCAmelCase__ = [] for i in range(len(__A ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: UpperCAmelCase__ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(__A ) count += 1 # And we put our main block back together with its first and last line. UpperCAmelCase__ = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(__A ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(__A, "w" ) as f: f.write("\n".join(__A ) ) def lowerCAmelCase_ ( __A=True ) -> List[str]: '''simple docstring''' UpperCAmelCase__ = [] for root, _, files in os.walk(__A ): if "__init__.py" in files: UpperCAmelCase__ = sort_imports(os.path.join(__A, "__init__.py" ), check_only=__A ) if result: UpperCAmelCase__ = [os.path.join(__A, "__init__.py" )] if len(__A ) > 0: raise ValueError(f"""Would overwrite {len(__A )} files, run `make style`.""" ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.') UpperCamelCase__ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
143
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__(self : Tuple , __UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForSequenceClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFDistilBertForMultipleChoice(__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForTokenClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = False def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = TFDistilBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , dim=3_7 ) def lowercase_ (self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase__ = TFDistilBertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 7_6_8] self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 )
143
1
def A ( _SCREAMING_SNAKE_CASE ) -> int: if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): raise TypeError("Input value must be a 'int' type" ) return bin(_SCREAMING_SNAKE_CASE ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
48
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class A__ ( _lowerCamelCase): A_ : List[Any] = 'markuplm' def __init__( self , _SCREAMING_SNAKE_CASE=3_05_22 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=2_16 , _SCREAMING_SNAKE_CASE=10_01 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Union[str, Any] = vocab_size __lowerCAmelCase : Any = hidden_size __lowerCAmelCase : List[Any] = num_hidden_layers __lowerCAmelCase : Tuple = num_attention_heads __lowerCAmelCase : Union[str, Any] = hidden_act __lowerCAmelCase : List[Any] = intermediate_size __lowerCAmelCase : List[str] = hidden_dropout_prob __lowerCAmelCase : List[str] = attention_probs_dropout_prob __lowerCAmelCase : Optional[int] = max_position_embeddings __lowerCAmelCase : int = type_vocab_size __lowerCAmelCase : Tuple = initializer_range __lowerCAmelCase : int = layer_norm_eps __lowerCAmelCase : List[str] = position_embedding_type __lowerCAmelCase : List[Any] = use_cache __lowerCAmelCase : Optional[Any] = classifier_dropout # additional properties __lowerCAmelCase : Optional[int] = max_depth __lowerCAmelCase : List[str] = max_xpath_tag_unit_embeddings __lowerCAmelCase : Optional[Any] = max_xpath_subs_unit_embeddings __lowerCAmelCase : Any = tag_pad_id __lowerCAmelCase : Union[str, Any] = subs_pad_id __lowerCAmelCase : int = xpath_unit_hidden_size
86
0
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def a (self : Dict , a__ : str ): """simple docstring""" with open(a__ , encoding='''utf-8''' ) as input_file: __snake_case = re.compile(R'''(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)''' ) __snake_case = input_file.read() __snake_case = regexp.search(a__ ) return match def a (self : Union[str, Any] , a__ : str ): """simple docstring""" with open(a__ , encoding='''utf-8''' ) as input_file: __snake_case = re.compile(R'''#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()''' , re.DOTALL ) __snake_case = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` __snake_case = regexp.finditer(a__ ) __snake_case = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def a (self : List[str] ): """simple docstring""" __snake_case = Path('''./datasets''' ) __snake_case = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(a__ ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def a (self : Tuple ): """simple docstring""" __snake_case = Path('''./datasets''' ) __snake_case = list(dataset_paths.absolute().glob('''**/*.py''' ) ) for dataset in dataset_files: if self._no_print_statements(str(a__ ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
238
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def a (self : int ): """simple docstring""" super().tearDown() gc.collect() def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-canny''' , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case , __snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case = controlnet_params __snake_case = '''bird''' __snake_case = jax.device_count() __snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ) __snake_case = pipe.prepare_image_inputs([canny_image] * num_samples ) __snake_case = jax.random.PRNGKey(0 ) __snake_case = jax.random.split(a__ , jax.device_count() ) __snake_case = replicate(a__ ) __snake_case = shard(a__ ) __snake_case = shard(a__ ) __snake_case = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case = images[0, 253:256, 253:256, -1] __snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def a (self : Dict ): """simple docstring""" __snake_case , __snake_case = FlaxControlNetModel.from_pretrained( '''lllyasviel/sd-controlnet-openpose''' , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case , __snake_case = FlaxStableDiffusionControlNetPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , controlnet=a__ , from_pt=a__ , dtype=jnp.bfloataa ) __snake_case = controlnet_params __snake_case = '''Chef in the kitchen''' __snake_case = jax.device_count() __snake_case = pipe.prepare_text_inputs([prompts] * num_samples ) __snake_case = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png''' ) __snake_case = pipe.prepare_image_inputs([pose_image] * num_samples ) __snake_case = jax.random.PRNGKey(0 ) __snake_case = jax.random.split(a__ , jax.device_count() ) __snake_case = replicate(a__ ) __snake_case = shard(a__ ) __snake_case = shard(a__ ) __snake_case = pipe( prompt_ids=a__ , image=a__ , params=a__ , prng_seed=a__ , num_inference_steps=50 , jit=a__ , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) __snake_case = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) __snake_case = images[0, 253:256, 253:256, -1] __snake_case = jnp.asarray(jax.device_get(image_slice.flatten() ) ) __snake_case = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
238
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowercase , id=__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: A: Tuple = 0 # Doctest custom flag to ignore output. UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''') UpperCamelCase = doctest.OutputChecker class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CustomOutputChecker UpperCamelCase = HfDoctestModule UpperCamelCase = HfDocTestParser
319
0
"""simple docstring""" import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE__ : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=64 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=[1, 16, 4, 4] , _SCREAMING_SNAKE_CASE=None , ) -> Any: '''simple docstring''' UpperCAmelCase : Tuple = parent UpperCAmelCase : Union[str, Any] = batch_size UpperCAmelCase : Dict = image_size UpperCAmelCase : Union[str, Any] = patch_size UpperCAmelCase : Union[str, Any] = num_channels UpperCAmelCase : List[Any] = is_training UpperCAmelCase : str = use_labels UpperCAmelCase : List[str] = hidden_size UpperCAmelCase : Union[str, Any] = num_hidden_layers UpperCAmelCase : Optional[Any] = num_attention_heads UpperCAmelCase : Dict = intermediate_size UpperCAmelCase : Any = hidden_act UpperCAmelCase : List[Any] = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : Optional[Any] = type_sequence_label_size UpperCAmelCase : Optional[int] = initializer_range UpperCAmelCase : List[str] = scope UpperCAmelCase : Optional[int] = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size UpperCAmelCase : Dict = (self.image_size // 32) ** 2 UpperCAmelCase : Optional[int] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : int = None if self.use_labels: UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : Tuple = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' UpperCAmelCase : int = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, """hidden_sizes""": [4, 8, 16, 32], """num_groups""": 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=_SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = ViTHybridModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Union[str, Any] = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Any = self.type_sequence_label_size UpperCAmelCase : List[Any] = ViTHybridForImageClassification(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() UpperCAmelCase : Dict = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] = self.prepare_config_and_inputs() UpperCAmelCase : Union[str, Any] = config_and_inputs UpperCAmelCase : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): __lowerCAmelCase : Tuple = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __lowerCAmelCase : List[str] = ( {'feature-extraction': ViTHybridModel, 'image-classification': ViTHybridForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Any = False __lowerCAmelCase : Union[str, Any] = False def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = ViTHybridModelTester(self ) UpperCAmelCase : int = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""ViT does not use inputs_embeds""" ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Dict = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCAmelCase : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Optional[int] = model_class(_SCREAMING_SNAKE_CASE ) UpperCAmelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : str = [*signature.parameters.keys()] UpperCAmelCase : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: UpperCAmelCase : Any = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": UpperCAmelCase : List[Any] = [F"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"Parameter {name} of model {model_class} seems not properly initialized" , ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Tuple = ViTHybridModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def _snake_case ( ) -> Tuple: UpperCAmelCase : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to( _SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : List[Any] = prepare_img() UpperCAmelCase : Any = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): UpperCAmelCase : Any = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCAmelCase : List[str] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCAmelCase : List[str] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow @require_accelerate def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] = ViTHybridImageProcessor.from_pretrained("""google/vit-hybrid-base-bit-384""" ) UpperCAmelCase : List[Any] = ViTHybridForImageClassification.from_pretrained("""google/vit-hybrid-base-bit-384""" , device_map="""auto""" ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[int] = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ) UpperCAmelCase : Any = model(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : str = outputs.logits # model predicts one of the 1000 ImageNet classes UpperCAmelCase : List[Any] = logits.argmax(-1 ).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , """tabby, tabby cat""" )
366
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer A: int = logging.get_logger(__name__) A: Any = {"vocab_file": "vocab.txt"} A: Optional[int] = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } A: Optional[int] = { "YituTech/conv-bert-base": 5_1_2, "YituTech/conv-bert-medium-small": 5_1_2, "YituTech/conv-bert-small": 5_1_2, } A: int = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): __lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES __lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase : int = ConvBertTokenizer def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="[UNK]" , _SCREAMING_SNAKE_CASE="[SEP]" , _SCREAMING_SNAKE_CASE="[PAD]" , _SCREAMING_SNAKE_CASE="[CLS]" , _SCREAMING_SNAKE_CASE="[MASK]" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ) -> Union[str, Any]: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , tokenizer_file=_SCREAMING_SNAKE_CASE , do_lower_case=_SCREAMING_SNAKE_CASE , unk_token=_SCREAMING_SNAKE_CASE , sep_token=_SCREAMING_SNAKE_CASE , pad_token=_SCREAMING_SNAKE_CASE , cls_token=_SCREAMING_SNAKE_CASE , mask_token=_SCREAMING_SNAKE_CASE , tokenize_chinese_chars=_SCREAMING_SNAKE_CASE , strip_accents=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) UpperCAmelCase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , _SCREAMING_SNAKE_CASE ) != do_lower_case or normalizer_state.get("""strip_accents""" , _SCREAMING_SNAKE_CASE ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , _SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars ): UpperCAmelCase : Dict = getattr(_SCREAMING_SNAKE_CASE , normalizer_state.pop("""type""" ) ) UpperCAmelCase : str = do_lower_case UpperCAmelCase : Optional[int] = strip_accents UpperCAmelCase : List[str] = tokenize_chinese_chars UpperCAmelCase : Dict = normalizer_class(**_SCREAMING_SNAKE_CASE ) UpperCAmelCase : int = do_lower_case def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ) -> Tuple: '''simple docstring''' UpperCAmelCase : Any = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: '''simple docstring''' UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: '''simple docstring''' UpperCAmelCase : Dict = self._tokenizer.model.save(_SCREAMING_SNAKE_CASE , name=_SCREAMING_SNAKE_CASE ) return tuple(_SCREAMING_SNAKE_CASE )
76
0
"""simple docstring""" from __future__ import annotations import queue class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = data __UpperCamelCase = None __UpperCamelCase = None def A ( ) -> TreeNode: print('\n********Press N to stop entering at any point of time********\n' ) __UpperCamelCase = input('Enter the value of the root node: ' ).strip().lower() __UpperCamelCase = queue.Queue() __UpperCamelCase = TreeNode(int(snake_case ) ) q.put(snake_case ) while not q.empty(): __UpperCamelCase = q.get() __UpperCamelCase = f'Enter the left node of {node_found.data}: ' __UpperCamelCase = input(snake_case ).strip().lower() or 'n' if check == "n": return tree_node __UpperCamelCase = TreeNode(int(snake_case ) ) __UpperCamelCase = left_node q.put(snake_case ) __UpperCamelCase = f'Enter the right node of {node_found.data}: ' __UpperCamelCase = input(snake_case ).strip().lower() or 'n' if check == "n": return tree_node __UpperCamelCase = TreeNode(int(snake_case ) ) __UpperCamelCase = right_node q.put(snake_case ) raise def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return print(node.data , end=',' ) pre_order(node.left ) pre_order(node.right ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return in_order(node.left ) print(node.data , end=',' ) in_order(node.right ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=',' ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = queue.Queue() q.put(snake_case ) while not q.empty(): __UpperCamelCase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = queue.Queue() q.put(snake_case ) while not q.empty(): __UpperCamelCase = [] while not q.empty(): __UpperCamelCase = q.get() print(node_dequeued.data , end=',' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(snake_case ) def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = [] __UpperCamelCase = node while n or stack: while n: # start from root node, find its left child print(n.data , end=',' ) stack.append(snake_case ) __UpperCamelCase = n.left # end of while means current node doesn't have left child __UpperCamelCase = stack.pop() # start to traverse its right child __UpperCamelCase = n.right def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase = [] __UpperCamelCase = node while n or stack: while n: stack.append(snake_case ) __UpperCamelCase = n.left __UpperCamelCase = stack.pop() print(n.data , end=',' ) __UpperCamelCase = n.right def A ( snake_case :TreeNode ) -> None: if not isinstance(snake_case , snake_case ) or not node: return __UpperCamelCase , __UpperCamelCase = [], [] __UpperCamelCase = node stacka.append(snake_case ) while stacka: # to find the reversed order of post order, store it in stack2 __UpperCamelCase = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(snake_case ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=',' ) def A ( snake_case :str = "" , snake_case :str=5_0 , snake_case :Any="*" ) -> str: if not s: return "\n" + width * char __UpperCamelCase , __UpperCamelCase = divmod(width - len(snake_case ) - 2 , 2 ) return f'{left * char} {s} {(left + extra) * char}' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) UpperCamelCase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = { """microsoft/markuplm-base""": """https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json""", """microsoft/markuplm-large""": """https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json""", } class __magic_name__ ( snake_case ): UpperCamelCase_ :Union[str, Any] = """markuplm""" def __init__( self , _lowercase=30_522 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=2 , _lowercase=0.02 , _lowercase=1e-1_2 , _lowercase=0 , _lowercase=0 , _lowercase=2 , _lowercase=256 , _lowercase=1_024 , _lowercase=216 , _lowercase=1_001 , _lowercase=32 , _lowercase=50 , _lowercase="absolute" , _lowercase=True , _lowercase=None , **_lowercase , )-> int: super().__init__( pad_token_id=_lowercase , bos_token_id=_lowercase , eos_token_id=_lowercase , **_lowercase , ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = classifier_dropout # additional properties UpperCamelCase_ = max_depth UpperCamelCase_ = max_xpath_tag_unit_embeddings UpperCamelCase_ = max_xpath_subs_unit_embeddings UpperCamelCase_ = tag_pad_id UpperCamelCase_ = subs_pad_id UpperCamelCase_ = xpath_unit_hidden_size
60
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ ( unittest.TestCase ): def __init__( self , _lowercase , _lowercase=7 , _lowercase=3 , _lowercase=18 , _lowercase=30 , _lowercase=400 , _lowercase=True , _lowercase=None , _lowercase=True , )-> Optional[int]: UpperCamelCase_ = size if size is not None else {"height": 18, "width": 18} UpperCamelCase_ = parent UpperCamelCase_ = batch_size UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = min_resolution UpperCamelCase_ = max_resolution UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = apply_ocr def UpperCAmelCase_ ( self )-> str: return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class __magic_name__ ( snake_case , unittest.TestCase ): UpperCamelCase_ :Union[str, Any] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def UpperCAmelCase_ ( self )-> Any: UpperCamelCase_ = LayoutLMvaImageProcessingTester(self ) @property def UpperCAmelCase_ ( self )-> Optional[Any]: return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self )-> Dict: UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowercase , "do_resize" ) ) self.assertTrue(hasattr(_lowercase , "size" ) ) self.assertTrue(hasattr(_lowercase , "apply_ocr" ) ) def UpperCAmelCase_ ( self )-> List[Any]: UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def UpperCAmelCase_ ( self )-> Any: pass def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , Image.Image ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , _lowercase ) self.assertIsInstance(encoding.boxes , _lowercase ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> str: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , numpify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , np.ndarray ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> List[str]: # Initialize image_processing UpperCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowercase , torchify=_lowercase ) for image in image_inputs: self.assertIsInstance(_lowercase , torch.Tensor ) # Test not batched input UpperCamelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def UpperCAmelCase_ ( self )-> Any: # with apply_OCR = True UpperCamelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCamelCase_ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCamelCase_ = Image.open(ds[0]["file"] ).convert("RGB" ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCamelCase_ = [["11:14", "to", "11:39", "a.m", "11:39", "to", "11:44", "a.m.", "11:44", "a.m.", "to", "12:25", "p.m.", "12:25", "to", "12:58", "p.m.", "12:58", "to", "4:00", "p.m.", "2:00", "to", "5:00", "p.m.", "Coffee", "Break", "Coffee", "will", "be", "served", "for", "men", "and", "women", "in", "the", "lobby", "adjacent", "to", "exhibit", "area.", "Please", "move", "into", "exhibit", "area.", "(Exhibits", "Open)", "TRRF", "GENERAL", "SESSION", "(PART", "|)", "Presiding:", "Lee", "A.", "Waller", "TRRF", "Vice", "President", "“Introductory", "Remarks”", "Lee", "A.", "Waller,", "TRRF", "Vice", "Presi-", "dent", "Individual", "Interviews", "with", "TRRF", "Public", "Board", "Members", "and", "Sci-", "entific", "Advisory", "Council", "Mem-", "bers", "Conducted", "by", "TRRF", "Treasurer", "Philip", "G.", "Kuehn", "to", "get", "answers", "which", "the", "public", "refrigerated", "warehousing", "industry", "is", "looking", "for.", "Plus", "questions", "from", "the", "floor.", "Dr.", "Emil", "M.", "Mrak,", "University", "of", "Cal-", "ifornia,", "Chairman,", "TRRF", "Board;", "Sam", "R.", "Cecil,", "University", "of", "Georgia", "College", "of", "Agriculture;", "Dr.", "Stanley", "Charm,", "Tufts", "University", "School", "of", "Medicine;", "Dr.", "Robert", "H.", "Cotton,", "ITT", "Continental", "Baking", "Company;", "Dr.", "Owen", "Fennema,", "University", "of", "Wis-", "consin;", "Dr.", "Robert", "E.", "Hardenburg,", "USDA.", "Questions", "and", "Answers", "Exhibits", "Open", "Capt.", "Jack", "Stoney", "Room", "TRRF", "Scientific", "Advisory", "Council", "Meeting", "Ballroom", "Foyer"]] # noqa: E231 UpperCamelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , _lowercase ) self.assertListEqual(encoding.boxes , _lowercase ) # with apply_OCR = False UpperCamelCase_ = LayoutLMvaImageProcessor(apply_ocr=_lowercase ) UpperCamelCase_ = image_processing(_lowercase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
60
1
import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = ['''model.decoder.embed_positions.weights'''] def UpperCamelCase__ ( A__ ) -> List[str]: if "emb" in name: snake_case__ : Union[str, Any] = name.replace('emb' , 'model.decoder.embed_tokens' ) if "transformer" in name: snake_case__ : Tuple = name.replace('transformer' , 'model.decoder' ) if "cross_attention" in name: snake_case__ : Tuple = name.replace('cross_attention' , 'encoder_attn' ) if "linear1" in name: snake_case__ : Optional[Any] = name.replace('linear1' , 'fc1' ) if "linear2" in name: snake_case__ : int = name.replace('linear2' , 'fc2' ) if "norm1" in name: snake_case__ : Any = name.replace('norm1' , 'self_attn_layer_norm' ) if "norm_cross" in name: snake_case__ : str = name.replace('norm_cross' , 'encoder_attn_layer_norm' ) if "norm2" in name: snake_case__ : List[Any] = name.replace('norm2' , 'final_layer_norm' ) if "out_norm" in name: snake_case__ : List[str] = name.replace('out_norm' , 'model.decoder.layer_norm' ) if "linears" in name: snake_case__ : List[Any] = name.replace('linears' , 'lm_heads' ) if "condition_provider.conditioners.description.output_proj" in name: snake_case__ : Dict = name.replace('condition_provider.conditioners.description.output_proj' , 'enc_to_dec_proj' ) return name def UpperCamelCase__ ( A__ , A__ ) -> Tuple[Dict, Dict]: snake_case__ : List[str] = list(state_dict.keys() ) snake_case__ : Tuple = {} for key in keys: snake_case__ : Tuple = state_dict.pop(A__ ) snake_case__ : Optional[Any] = rename_keys(A__ ) if "in_proj_weight" in key: # split fused qkv proj snake_case__ : Dict = val[:hidden_size, :] snake_case__ : List[Any] = val[hidden_size : 2 * hidden_size, :] snake_case__ : str = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: snake_case__ : Tuple = val else: snake_case__ : str = val return state_dict, enc_dec_proj_state_dict def UpperCamelCase__ ( A__ ) -> MusicgenDecoderConfig: if checkpoint == "small": # default config values snake_case__ : List[str] = 1024 snake_case__ : Optional[Any] = 24 snake_case__ : str = 16 elif checkpoint == "medium": snake_case__ : Optional[Any] = 1536 snake_case__ : Optional[Any] = 48 snake_case__ : Dict = 24 elif checkpoint == "large": snake_case__ : Dict = 2048 snake_case__ : Dict = 48 snake_case__ : Dict = 32 else: raise ValueError(F"""Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}.""" ) snake_case__ : Optional[int] = MusicgenDecoderConfig( hidden_size=A__ , ffn_dim=hidden_size * 4 , num_hidden_layers=A__ , num_attention_heads=A__ , ) return config @torch.no_grad() def UpperCamelCase__ ( A__ , A__=None , A__=None , A__="cpu" ) -> Optional[int]: snake_case__ : Union[str, Any] = MusicGen.get_pretrained(A__ , device=A__ ) snake_case__ : Any = decoder_config_from_checkpoint(A__ ) snake_case__ : Any = fairseq_model.lm.state_dict() snake_case__ , snake_case__ : Union[str, Any] = rename_state_dict( A__ , hidden_size=decoder_config.hidden_size ) snake_case__ : Any = TaEncoderModel.from_pretrained('t5-base' ) snake_case__ : Dict = EncodecModel.from_pretrained('facebook/encodec_32khz' ) snake_case__ : Optional[Any] = MusicgenForCausalLM(A__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection snake_case__ , snake_case__ : List[Any] = decoder.load_state_dict(A__ , strict=A__ ) for key in missing_keys.copy(): if key.startswith(('text_encoder', 'audio_encoder') ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(A__ ) if len(A__ ) > 0: raise ValueError(F"""Missing key(s) in state_dict: {missing_keys}""" ) if len(A__ ) > 0: raise ValueError(F"""Unexpected key(s) in state_dict: {unexpected_keys}""" ) # init the composite model snake_case__ : Dict = MusicgenForConditionalGeneration(text_encoder=A__ , audio_encoder=A__ , decoder=A__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(A__ ) # check we can do a forward pass snake_case__ : Tuple = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) snake_case__ : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): snake_case__ : List[str] = model(input_ids=A__ , decoder_input_ids=A__ ).logits if logits.shape != (8, 1, 2048): raise ValueError('Incorrect shape for logits' ) # now construct the processor snake_case__ : List[str] = AutoTokenizer.from_pretrained('t5-base' ) snake_case__ : Union[str, Any] = AutoFeatureExtractor.from_pretrained('facebook/encodec_32khz' , padding_side='left' ) snake_case__ : List[Any] = MusicgenProcessor(feature_extractor=A__ , tokenizer=A__ ) # set the appropriate bos/pad token ids snake_case__ : Optional[int] = 2048 snake_case__ : List[Any] = 2048 # set other default generation config params snake_case__ : Any = int(30 * audio_encoder.config.frame_rate ) snake_case__ : int = True snake_case__ : Tuple = 3.0 if pytorch_dump_folder is not None: Path(A__ ).mkdir(exist_ok=A__ ) logger.info(F"""Saving model {checkpoint} to {pytorch_dump_folder}""" ) model.save_pretrained(A__ ) processor.save_pretrained(A__ ) if repo_id: logger.info(F"""Pushing model {checkpoint} to {repo_id}""" ) model.push_to_hub(A__ ) processor.push_to_hub(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint''', default='''small''', type=str, help='''Checkpoint size of the MusicGen model you\'d like to convert. Can be one of: `[\'small\', \'medium\', \'large\']`.''', ) parser.add_argument( '''--pytorch_dump_folder''', required=True, default=None, type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) parser.add_argument( '''--device''', default='''cpu''', type=str, help='''Torch device to run the conversion, either cpu or cuda.''' ) lowerCAmelCase__ : Optional[Any] = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
143
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase__ : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase__ : Optional[int] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase__ : Optional[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase__ : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase__ : Any = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase__ : Dict = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase__ : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def UpperCamelCase__ ( ) -> Any: snake_case__ , snake_case__ : List[str] = randrange(len(A__ ) ), randrange(len(A__ ) ) snake_case__ : str = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] snake_case__ , snake_case__ : Any = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase__ ( A__ = 100 ) -> Optional[int]: return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Any: assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Dict: snake_case__ : Optional[int] = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> str: assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Optional[Any]: assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : Union[str, Any] = [PokerHand(A__ ) for hand in SORTED_HANDS] snake_case__ : Optional[Any] = poker_hands.copy() shuffle(A__ ) snake_case__ : Tuple = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def UpperCamelCase__ ( ) -> str: # Test that five high straights are compared correctly. snake_case__ : int = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase__ ( ) -> Union[str, Any]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. snake_case__ : Optional[int] = PokerHand('2C 4S AS 3D 5C' ) snake_case__ : Optional[int] = True snake_case__ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase__ ( ) -> List[str]: # Problem number 54 from Project Euler # Testing from poker_hands.txt file snake_case__ : Any = 0 snake_case__ : Optional[Any] = os.path.abspath(os.path.dirname(A__ ) ) snake_case__ : List[str] = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: snake_case__ : Tuple = line[:14].strip() snake_case__ : List[str] = line[15:].strip() snake_case__ , snake_case__ : Any = PokerHand(A__ ), PokerHand(A__ ) snake_case__ : Tuple = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
143
1
"""simple docstring""" import operator as op _UpperCamelCase = """scaler.pt""" _UpperCamelCase = """pytorch_model""" _UpperCamelCase = """random_states""" _UpperCamelCase = """optimizer""" _UpperCamelCase = """scheduler""" _UpperCamelCase = """pytorch_model.bin""" _UpperCamelCase = """pytorch_model.bin.index.json""" _UpperCamelCase = """model.safetensors""" _UpperCamelCase = """model.safetensors.index.json""" _UpperCamelCase = """1.10.2""" _UpperCamelCase = """py38""" _UpperCamelCase = """4.17.0""" _UpperCamelCase = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] _UpperCamelCase = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] _UpperCamelCase = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] _UpperCamelCase = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] _UpperCamelCase = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] _UpperCamelCase = """2.0.1""" _UpperCamelCase = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] _UpperCamelCase = ["""default""", """reduce-overhead""", """max-autotune"""] _UpperCamelCase = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _UpperCamelCase = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] _UpperCamelCase = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] _UpperCamelCase = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
351
"""simple docstring""" import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel _UpperCamelCase = { """text_branch""": """text_model""", """audio_branch""": """audio_model.audio_encoder""", """attn""": """attention.self""", """self.proj""": """output.dense""", """attention.self_mask""": """attn_mask""", """mlp.fc1""": """intermediate.dense""", """mlp.fc2""": """output.dense""", """norm1""": """layernorm_before""", """norm2""": """layernorm_after""", """bn0""": """batch_norm""", } _UpperCamelCase = AutoFeatureExtractor.from_pretrained("""laion/clap-htsat-unfused""", truncation="""rand_trunc""") def _a ( _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = create_model( """HTSAT-tiny""" , """roberta""" , _snake_case , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=_snake_case , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = {} UpperCAmelCase = R""".*sequential.(\d+).*""" UpperCAmelCase = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase = key.replace(_snake_case , _snake_case ) if re.match(_snake_case , _snake_case ): # replace sequential layers with list UpperCAmelCase = re.match(_snake_case , _snake_case ).group(1 ) UpperCAmelCase = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(_snake_case )//3}.linear.''' ) elif re.match(_snake_case , _snake_case ): UpperCAmelCase = int(re.match(_snake_case , _snake_case ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... UpperCAmelCase = 1 if projecton_layer == 0 else 2 UpperCAmelCase = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value UpperCAmelCase = value UpperCAmelCase = mixed_qkv.size(0 ) // 3 UpperCAmelCase = mixed_qkv[:qkv_dim] UpperCAmelCase = mixed_qkv[qkv_dim : qkv_dim * 2] UpperCAmelCase = mixed_qkv[qkv_dim * 2 :] UpperCAmelCase = query_layer UpperCAmelCase = key_layer UpperCAmelCase = value_layer else: UpperCAmelCase = value return model_state_dict def _a ( _snake_case , _snake_case , _snake_case , _snake_case=False ): """simple docstring""" UpperCAmelCase , UpperCAmelCase = init_clap(_snake_case , enable_fusion=_snake_case ) clap_model.eval() UpperCAmelCase = clap_model.state_dict() UpperCAmelCase = rename_state_dict(_snake_case ) UpperCAmelCase = ClapConfig() UpperCAmelCase = enable_fusion UpperCAmelCase = ClapModel(_snake_case ) # ignore the spectrogram embedding layer model.load_state_dict(_snake_case , strict=_snake_case ) model.save_pretrained(_snake_case ) transformers_config.save_pretrained(_snake_case ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument("""--enable_fusion""", action="""store_true""", help="""Whether to enable fusion or not""") _UpperCamelCase = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
234
0
"""simple docstring""" import importlib import os import fsspec import pytest from fsspec import register_implementation from fsspec.registry import _registry as _fsspec_registry from datasets.filesystems import COMPRESSION_FILESYSTEMS, HfFileSystem, extract_path_from_uri, is_remote_filesystem from .utils import require_lza, require_zstandard def snake_case__ ( __lowerCamelCase : Union[str, Any] ): """simple docstring""" assert "mock" in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case__ ( ): """simple docstring""" assert "mock" not in _fsspec_registry assert "bz2" in _fsspec_registry def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='''mock-s3-bucket''' lowerCamelCase__ : Optional[int] =f'''s3://{mock_bucket}''' lowerCamelCase__ : Dict =extract_path_from_uri(__lowerCamelCase ) assert dataset_path.startswith('''s3://''' ) is False lowerCamelCase__ : Dict ='''./local/path''' lowerCamelCase__ : str =extract_path_from_uri(__lowerCamelCase ) assert dataset_path == new_dataset_path def snake_case__ ( __lowerCamelCase : Tuple ): """simple docstring""" lowerCamelCase__ : str =is_remote_filesystem(__lowerCamelCase ) assert is_remote is True lowerCamelCase__ : Tuple =fsspec.filesystem('''file''' ) lowerCamelCase__ : List[str] =is_remote_filesystem(__lowerCamelCase ) assert is_remote is False @pytest.mark.parametrize('''compression_fs_class''' , __lowerCamelCase ) def snake_case__ ( __lowerCamelCase : Union[str, Any] , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] ={'''gzip''': gz_file, '''xz''': xz_file, '''zstd''': zstd_file, '''bz2''': bza_file, '''lz4''': lza_file} lowerCamelCase__ : Any =input_paths[compression_fs_class.protocol] if input_path is None: lowerCamelCase__ : List[Any] =f'''for \'{compression_fs_class.protocol}\' compression protocol, ''' if compression_fs_class.protocol == "lz4": reason += require_lza.kwargs["reason"] elif compression_fs_class.protocol == "zstd": reason += require_zstandard.kwargs["reason"] pytest.skip(__lowerCamelCase ) lowerCamelCase__ : List[Any] =fsspec.filesystem(compression_fs_class.protocol , fo=__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) lowerCamelCase__ : Optional[Any] =os.path.basename(__lowerCamelCase ) lowerCamelCase__ : List[str] =expected_filename[: expected_filename.rindex('''.''' )] assert fs.glob('''*''' ) == [expected_filename] with fs.open(__lowerCamelCase , '''r''' , encoding='''utf-8''' ) as f, open(__lowerCamelCase , encoding='''utf-8''' ) as expected_file: assert f.read() == expected_file.read() @pytest.mark.parametrize('''protocol''' , ['''zip''', '''gzip'''] ) def snake_case__ ( __lowerCamelCase : List[Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[int] ): """simple docstring""" lowerCamelCase__ : int ={'''zip''': zip_jsonl_path, '''gzip''': jsonl_gz_path} lowerCamelCase__ : str =compressed_file_paths[protocol] lowerCamelCase__ : Tuple ='''dataset.jsonl''' lowerCamelCase__ : Dict =f'''{protocol}://{member_file_path}::{compressed_file_path}''' lowerCamelCase__ , *lowerCamelCase__ : str =fsspec.get_fs_token_paths(__lowerCamelCase ) assert fs.isfile(__lowerCamelCase ) assert not fs.isfile('''non_existing_''' + member_file_path ) @pytest.mark.integration def snake_case__ ( __lowerCamelCase : Tuple , __lowerCamelCase : List[str] , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =hf_api.dataset_info(__lowerCamelCase , token=__lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =HfFileSystem(repo_info=__lowerCamelCase , token=__lowerCamelCase ) assert sorted(hffs.glob('''*''' ) ) == [".gitattributes", "data"] assert hffs.isdir('''data''' ) assert hffs.isfile('''.gitattributes''' ) and hffs.isfile('''data/text_data.txt''' ) with open(__lowerCamelCase ) as f: assert hffs.open('''data/text_data.txt''' , '''r''' ).read() == f.read() def snake_case__ ( ): """simple docstring""" lowerCamelCase__ : Optional[Any] ='''bz2''' # Import module import datasets.filesystems # Overwrite protocol and reload register_implementation(__lowerCamelCase , __lowerCamelCase , clobber=__lowerCamelCase ) with pytest.warns(__lowerCamelCase ) as warning_info: importlib.reload(datasets.filesystems ) assert len(__lowerCamelCase ) == 1 assert ( str(warning_info[0].message ) == f'''A filesystem protocol was already set for {protocol} and will be overwritten.''' )
238
"""simple docstring""" class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : Dict, lowerCamelCase : list )-> None: lowerCamelCase__ : Tuple =set_counts lowerCamelCase__ : Dict =max(lowerCamelCase ) lowerCamelCase__ : Union[str, Any] =len(lowerCamelCase ) lowerCamelCase__ : List[str] =[1] * num_sets lowerCamelCase__ : str =list(range(lowerCamelCase ) ) def snake_case ( self : Tuple, lowerCamelCase : int, lowerCamelCase : int )-> bool: lowerCamelCase__ : List[Any] =self.get_parent(lowerCamelCase ) lowerCamelCase__ : str =self.get_parent(lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] lowerCamelCase__ : Tuple =0 lowerCamelCase__ : int =dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 lowerCamelCase__ : str =self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] lowerCamelCase__ : List[Any] =0 lowerCamelCase__ : List[str] =src_parent lowerCamelCase__ : Dict =self.set_counts[src_parent] lowerCamelCase__ : str =max(self.max_set, lowerCamelCase ) return True def snake_case ( self : Union[str, Any], lowerCamelCase : int )-> int: if self.parents[disj_set] == disj_set: return disj_set lowerCamelCase__ : Tuple =self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
238
1
'''simple docstring''' def a ( lowerCamelCase__ ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
135
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :List[Any] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[int] = 'camembert' def __init__(self , lowercase=30522 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=512 , lowercase=2 , lowercase=0.02 , lowercase=1E-12 , lowercase=1 , lowercase=0 , lowercase=2 , lowercase="absolute" , lowercase=True , lowercase=None , **lowercase , ): super().__init__(pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , **lowercase ) A_ : List[Any] = vocab_size A_ : int = hidden_size A_ : Dict = num_hidden_layers A_ : Dict = num_attention_heads A_ : Optional[Any] = hidden_act A_ : str = intermediate_size A_ : int = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[int] = type_vocab_size A_ : int = initializer_range A_ : str = layer_norm_eps A_ : int = position_embedding_type A_ : Dict = use_cache A_ : Any = classifier_dropout class _lowerCAmelCase ( __UpperCAmelCase ): @property def _a (self ): if self.task == "multiple-choice": A_ : Optional[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A_ : int = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
135
1
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Tuple: snake_case__ : Dict = os.path.abspath(_a ) logger.info(F"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model snake_case__ : Any = tf.train.list_variables(_a ) snake_case__ : str = [] snake_case__ : Tuple = [] snake_case__ : Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") snake_case__ : Tuple = full_name.split('/' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(F"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' snake_case__ : Optional[Any] = name[1:] # figure out how many levels deep the name is snake_case__ : Dict = 0 for _name in name: if _name.startswith('layer_with_weights' ): depth += 1 else: break layer_depth.append(_a ) # read data snake_case__ : Optional[int] = tf.train.load_variable(_a , _a ) names.append('/'.join(_a ) ) arrays.append(_a ) logger.info(F"""Read a total of {len(_a ):,} layers""" ) # Sanity check if len(set(_a ) ) != 1: raise ValueError(F"""Found layer names with different depths (layer depth {list(set(_a ) )})""" ) snake_case__ : int = list(set(_a ) )[0] if layer_depth != 1: raise ValueError( 'The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP' ' heads.' ) # convert layers logger.info('Converting weights...' ) for full_name, array in zip(_a , _a ): snake_case__ : int = full_name.split('/' ) snake_case__ : List[str] = model snake_case__ : List[str] = [] for i, m_name in enumerate(_a ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('layer_with_weights' ): snake_case__ : List[str] = int(m_name.split('-' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['embeddings', 'LayerNorm'] ) snake_case__ : List[Any] = getattr(_a , 'embeddings' ) snake_case__ : Any = getattr(_a , 'LayerNorm' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['encoder', 'layer', str(layer_num - 4 )] ) snake_case__ : Optional[int] = getattr(_a , 'encoder' ) snake_case__ : Union[str, Any] = getattr(_a , 'layer' ) snake_case__ : str = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['pooler', 'dense'] ) snake_case__ : Dict = getattr(_a , 'pooler' ) snake_case__ : Union[str, Any] = getattr(_a , 'dense' ) elif m_name == "embeddings": trace.append('embeddings' ) snake_case__ : Optional[Any] = getattr(_a , 'embeddings' ) if layer_num == 0: trace.append('word_embeddings' ) snake_case__ : str = getattr(_a , 'word_embeddings' ) elif layer_num == 1: trace.append('position_embeddings' ) snake_case__ : Optional[int] = getattr(_a , 'position_embeddings' ) elif layer_num == 2: trace.append('token_type_embeddings' ) snake_case__ : Optional[int] = getattr(_a , 'token_type_embeddings' ) else: raise ValueError(F"""Unknown embedding layer with name {full_name}""" ) trace.append('weight' ) snake_case__ : str = getattr(_a , 'weight' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['attention', 'self'] ) snake_case__ : List[str] = getattr(_a , 'attention' ) snake_case__ : Union[str, Any] = getattr(_a , 'self' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['attention', 'output', 'LayerNorm'] ) snake_case__ : str = getattr(_a , 'attention' ) snake_case__ : Optional[Any] = getattr(_a , 'output' ) snake_case__ : Tuple = getattr(_a , 'LayerNorm' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['attention', 'output', 'dense'] ) snake_case__ : int = getattr(_a , 'attention' ) snake_case__ : List[str] = getattr(_a , 'output' ) snake_case__ : int = getattr(_a , 'dense' ) elif m_name == "_output_dense": # output dense trace.extend(['output', 'dense'] ) snake_case__ : Union[str, Any] = getattr(_a , 'output' ) snake_case__ : str = getattr(_a , 'dense' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['output', 'LayerNorm'] ) snake_case__ : Dict = getattr(_a , 'output' ) snake_case__ : List[str] = getattr(_a , 'LayerNorm' ) elif m_name == "_key_dense": # attention key trace.append('key' ) snake_case__ : Optional[int] = getattr(_a , 'key' ) elif m_name == "_query_dense": # attention query trace.append('query' ) snake_case__ : int = getattr(_a , 'query' ) elif m_name == "_value_dense": # attention value trace.append('value' ) snake_case__ : Union[str, Any] = getattr(_a , 'value' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['intermediate', 'dense'] ) snake_case__ : Optional[Any] = getattr(_a , 'intermediate' ) snake_case__ : Any = getattr(_a , 'dense' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('output' ) snake_case__ : Any = getattr(_a , 'output' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('bias' ) snake_case__ : Optional[int] = getattr(_a , 'bias' ) elif m_name in ["kernel", "gamma"]: trace.append('weight' ) snake_case__ : Optional[int] = getattr(_a , 'weight' ) else: logger.warning(F"""Ignored {m_name}""" ) # for certain layers reshape is necessary snake_case__ : List[str] = ".".join(_a ) if re.match(r'(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)' , _a ) or re.match( r'(\S+)\.attention\.output\.dense\.weight' , _a ): snake_case__ : Optional[Any] = array.reshape(pointer.data.shape ) if "kernel" in full_name: snake_case__ : int = array.transpose() if pointer.shape == array.shape: snake_case__ : Optional[Any] = torch.from_numpy(_a ) else: raise ValueError( F"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" F""" {array.shape}""" ) logger.info(F"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def UpperCamelCase__ ( A__ , A__ , A__ ) -> Union[str, Any]: # Instantiate model logger.info(F"""Loading model based on config from {config_path}...""" ) snake_case__ : Optional[int] = BertConfig.from_json_file(_a ) snake_case__ : Dict = BertModel(_a ) # Load weights from checkpoint logger.info(F"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(_a , _a , _a ) # Save pytorch-model logger.info(F"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict() , _a ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) lowerCAmelCase__ : Union[str, Any] = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
143
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='vit_msn' def __init__( self : str , a : Tuple=768 , a : Tuple=12 , a : Any=12 , a : int=3072 , a : List[Any]="gelu" , a : Dict=0.0 , a : int=0.0 , a : str=0.02 , a : List[str]=1e-06 , a : List[Any]=224 , a : Union[str, Any]=16 , a : Union[str, Any]=3 , a : Tuple=True , **a : Dict , ) -> List[Any]: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : Dict = hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = intermediate_size SCREAMING_SNAKE_CASE : int = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = initializer_range SCREAMING_SNAKE_CASE : int = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = image_size SCREAMING_SNAKE_CASE : Tuple = patch_size SCREAMING_SNAKE_CASE : Optional[int] = num_channels SCREAMING_SNAKE_CASE : List[str] = qkv_bias
76
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase ), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase ), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
356
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCAmelCase = {'''UserAgent''': UserAgent().random} def _lowerCamelCase( lowercase__ ) -> dict: '''simple docstring''' __lowercase= script.contents[0] __lowercase= json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A : def __init__(self , lowerCAmelCase ): __lowercase= f'https://www.instagram.com/{username}/' __lowercase= self.get_json() def _A (self ): __lowercase= requests.get(self.url , headers=lowerCAmelCase ).text __lowercase= BeautifulSoup(lowerCAmelCase , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__(self ): return f'{self.__class__.__name__}(\'{self.username}\')' def __str__(self ): return f'{self.fullname} ({self.username}) is {self.biography}' @property def _A (self ): return self.user_data["username"] @property def _A (self ): return self.user_data["full_name"] @property def _A (self ): return self.user_data["biography"] @property def _A (self ): return self.user_data["business_email"] @property def _A (self ): return self.user_data["external_url"] @property def _A (self ): return self.user_data["edge_followed_by"]["count"] @property def _A (self ): return self.user_data["edge_follow"]["count"] @property def _A (self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _A (self ): return self.user_data["profile_pic_url_hd"] @property def _A (self ): return self.user_data["is_verified"] @property def _A (self ): return self.user_data["is_private"] def _lowerCamelCase( lowercase__ = "github" ) -> None: '''simple docstring''' import os if os.environ.get('CI' ): return # test failing on GitHub Actions __lowercase= InstagramUser(lowercase__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , lowercase__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_5_0 assert instagram_user.number_of_followers > 1_2_0_0_0_0 assert instagram_user.number_of_followings > 1_5 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCAmelCase = InstagramUser('''github''') print(instagram_user) print(F'{instagram_user.number_of_posts = }') print(F'{instagram_user.number_of_followers = }') print(F'{instagram_user.number_of_followings = }') print(F'{instagram_user.email = }') print(F'{instagram_user.website = }') print(F'{instagram_user.profile_picture_url = }') print(F'{instagram_user.is_verified = }') print(F'{instagram_user.is_private = }')
304
0
"""simple docstring""" from manim import * class snake_case_( a__ ): def lowerCamelCase__ ( self : Tuple ): lowerCAmelCase : List[str] = Rectangle(height=0.5 , width=0.5 ) lowerCAmelCase : Union[str, Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCAmelCase : str = [mem.copy() for i in range(6 )] lowerCAmelCase : str = [mem.copy() for i in range(6 )] lowerCAmelCase : List[str] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCAmelCase : Optional[Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCAmelCase : Optional[Any] = VGroup(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCAmelCase : Optional[int] = Text('''CPU''' , font_size=2_4 ) lowerCAmelCase : List[str] = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = [mem.copy() for i in range(1 )] lowerCAmelCase : Any = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCAmelCase : str = Text('''GPU''' , font_size=2_4 ) lowerCAmelCase : int = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) gpu.align_to(UpperCamelCase_ , UpperCamelCase_ ) gpu.set_x(gpu.get_x() - 1 ) self.add(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] lowerCAmelCase : Union[str, Any] = VGroup(*UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0 ) lowerCAmelCase : List[Any] = Text('''Model''' , font_size=2_4 ) lowerCAmelCase : Any = Group(UpperCamelCase_ , UpperCamelCase_ ).arrange(UpperCamelCase_ , buff=0.5 , aligned_edge=UpperCamelCase_ ) model.move_to([3, -1.0, 0] ) self.play( Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , Create(UpperCamelCase_ , run_time=1 ) , ) lowerCAmelCase : Union[str, Any] = MarkupText( F'''First, an empty model skeleton is loaded\ninto <span fgcolor=\'{YELLOW}\'>memory</span> without using much RAM.''' , font_size=2_4 , ) lowerCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCAmelCase : Optional[Any] = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCamelCase_ , run_time=2.5 ) , Write(UpperCamelCase_ ) , Write(UpperCamelCase_ ) ) self.add(UpperCamelCase_ ) lowerCAmelCase : Dict = [] lowerCAmelCase : str = [] lowerCAmelCase : List[str] = [] for i, rect in enumerate(UpperCamelCase_ ): lowerCAmelCase : Optional[int] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(UpperCamelCase_ , opacity=0.7 ) cpu_target.move_to(UpperCamelCase_ ) cpu_target.generate_target() lowerCAmelCase : Dict = 0.46 / 4 lowerCAmelCase : int = 0.46 / 3 if i == 0: cpu_target.target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCamelCase_ ) cpu_target.target.set_x(cpu_target.target.get_x() + 0.1 ) elif i == 3: cpu_target.target.next_to(cpu_targs[0].target , direction=UpperCamelCase_ , buff=0.0 ) else: cpu_target.target.next_to(cpu_targs[i - 1].target , direction=UpperCamelCase_ , buff=0.0 ) cpu_targs.append(UpperCamelCase_ ) first_animations.append(rect.animate(run_time=0.5 ).set_stroke(UpperCamelCase_ ) ) second_animations.append(MoveToTarget(UpperCamelCase_ , run_time=1.5 ) ) self.play(*UpperCamelCase_ ) self.play(*UpperCamelCase_ ) self.wait()
60
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import numpy as np from utils_multiple_choice import MultipleChoiceDataset, Split, processors import transformers from transformers import ( AutoConfig, AutoModelForMultipleChoice, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process snake_case__ : Dict = logging.getLogger(__name__) def _snake_case ( _snake_case : Any , _snake_case : Any ): return (preds == labels).mean() @dataclass class snake_case_: __UpperCamelCase = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class snake_case_: __UpperCamelCase = field(metadata={'''help''': '''The name of the task to train on: ''' + ''', '''.join(processors.keys() )} ) __UpperCamelCase = field(metadata={'''help''': '''Should contain the data files for the task.'''} ) __UpperCamelCase = field( default=128 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) __UpperCamelCase = field( default=a__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def _snake_case ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : str = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase, lowerCAmelCase, lowerCAmelCase : Optional[int] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ''' --overwrite_output_dir to overcome.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) try: lowerCAmelCase : Tuple = processors[data_args.task_name]() lowerCAmelCase : Any = processor.get_labels() lowerCAmelCase : Union[str, Any] = len(_snake_case ) except KeyError: raise ValueError('''Task not found: %s''' % (data_args.task_name) ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_snake_case , finetuning_task=data_args.task_name , cache_dir=model_args.cache_dir , ) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCAmelCase : List[str] = AutoModelForMultipleChoice.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , ) # Get datasets lowerCAmelCase : Dict = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowerCAmelCase : Any = ( MultipleChoiceDataset( data_dir=data_args.data_dir , tokenizer=_snake_case , task=data_args.task_name , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def compute_metrics(_snake_case : EvalPrediction ) -> Dict: lowerCAmelCase : int = np.argmax(p.predictions , axis=1 ) return {"acc": simple_accuracy(_snake_case , p.label_ids )} # Data collator lowerCAmelCase : List[Any] = DataCollatorWithPadding(_snake_case , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowerCAmelCase : Union[str, Any] = Trainer( model=_snake_case , args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , compute_metrics=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCAmelCase : int = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowerCAmelCase : Any = trainer.evaluate() lowerCAmelCase : int = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_master(): with open(_snake_case , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , _snake_case , _snake_case ) writer.write('''%s = %s\n''' % (key, value) ) results.update(_snake_case ) return results def _snake_case ( _snake_case : List[str] ): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
60
1
from ..utils import DummyObject, requires_backends class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : Dict , **snake_case__ : Optional[int] ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Dict = ["sentencepiece"] def __init__(self : str , *snake_case__ : str , **snake_case__ : int ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : List[Any] , **snake_case__ : Any ) -> Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Optional[int] = ["sentencepiece"] def __init__(self : Dict , *snake_case__ : Any , **snake_case__ : List[Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Optional[Any] = ["sentencepiece"] def __init__(self : int , *snake_case__ : Tuple , **snake_case__ : Optional[int] ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Union[str, Any] = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : str , **snake_case__ : int ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : str , **snake_case__ : int ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Dict = ["sentencepiece"] def __init__(self : str , *snake_case__ : Optional[Any] , **snake_case__ : Optional[Any] ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : List[Any] , **snake_case__ : List[str] ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : Union[str, Any] , **snake_case__ : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : int = ["sentencepiece"] def __init__(self : Optional[Any] , *snake_case__ : List[str] , **snake_case__ : Dict ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Union[str, Any] , *snake_case__ : Optional[Any] , **snake_case__ : int ) -> Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : str , **snake_case__ : List[str] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[Any] = ["sentencepiece"] def __init__(self : Tuple , *snake_case__ : Any , **snake_case__ : int ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : str , *snake_case__ : int , **snake_case__ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : int , *snake_case__ : List[Any] , **snake_case__ : Tuple ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Union[str, Any] = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : Tuple , **snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Union[str, Any] = ["sentencepiece"] def __init__(self : int , *snake_case__ : List[str] , **snake_case__ : Any ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : int , *snake_case__ : List[Any] , **snake_case__ : List[str] ) -> Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : Tuple , *snake_case__ : Tuple , **snake_case__ : List[Any] ) -> int: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : int , *snake_case__ : Any , **snake_case__ : List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[Any] = ["sentencepiece"] def __init__(self : int , *snake_case__ : Dict , **snake_case__ : List[str] ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : str , *snake_case__ : int , **snake_case__ : Union[str, Any] ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[Any] = ["sentencepiece"] def __init__(self : str , *snake_case__ : Tuple , **snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Optional[int] , *snake_case__ : str , **snake_case__ : str ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Optional[Any] = ["sentencepiece"] def __init__(self : Dict , *snake_case__ : int , **snake_case__ : Any ) -> str: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Tuple = ["sentencepiece"] def __init__(self : Dict , *snake_case__ : Tuple , **snake_case__ : str ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : int = ["sentencepiece"] def __init__(self : List[str] , *snake_case__ : Any , **snake_case__ : str ) -> List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : Dict = ["sentencepiece"] def __init__(self : Optional[Any] , *snake_case__ : Optional[Any] , **snake_case__ : List[str] ) -> str: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : str = ["sentencepiece"] def __init__(self : List[Any] , *snake_case__ : List[Any] , **snake_case__ : Tuple ) -> List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"] ) class UpperCAmelCase ( metaclass=A_ ): A__ : List[str] = ["sentencepiece"] def __init__(self : int , *snake_case__ : str , **snake_case__ : str ) -> Any: '''simple docstring''' requires_backends(self , ["sentencepiece"] )
10
import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class UpperCAmelCase : def __init__(self : Dict , snake_case__ : Any , snake_case__ : Tuple=99 , snake_case__ : Tuple=13 , snake_case__ : int=16 , snake_case__ : Tuple=7 , snake_case__ : Union[str, Any]=True , snake_case__ : int=True , snake_case__ : List[Any]=True , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True , snake_case__ : Any=2 , snake_case__ : List[Any]=32 , snake_case__ : List[str]=4 , snake_case__ : List[str]=4 , snake_case__ : int=30 , snake_case__ : int=0 , snake_case__ : Tuple=1 , snake_case__ : Optional[Any]=2 , snake_case__ : int=None , ) -> List[Any]: '''simple docstring''' snake_case : Optional[Any] = parent snake_case : Any = batch_size snake_case : Any = decoder_seq_length # For common tests snake_case : Any = self.decoder_seq_length snake_case : Optional[int] = is_training snake_case : List[str] = use_attention_mask snake_case : Tuple = use_labels snake_case : int = vocab_size snake_case : Any = d_model snake_case : Dict = d_model snake_case : List[str] = decoder_layers snake_case : Union[str, Any] = decoder_layers snake_case : int = decoder_ffn_dim snake_case : List[Any] = decoder_attention_heads snake_case : Dict = decoder_attention_heads snake_case : Optional[int] = eos_token_id snake_case : Dict = bos_token_id snake_case : List[str] = pad_token_id snake_case : int = decoder_start_token_id snake_case : List[Any] = use_cache snake_case : List[str] = max_position_embeddings snake_case : Dict = None snake_case : Union[str, Any] = decoder_seq_length snake_case : Union[str, Any] = 2 snake_case : Union[str, Any] = 1 def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[Any]: '''simple docstring''' snake_case : Dict = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : List[str] = None if self.use_attention_mask: snake_case : Optional[int] = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) snake_case : Union[str, Any] = None if self.use_labels: snake_case : List[str] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) snake_case : Union[str, Any] = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : str , snake_case__ : Union[str, Any] , ) -> str: '''simple docstring''' snake_case : Optional[int] = True snake_case : List[Any] = TrOCRDecoder(config=snake_case__ ).to(snake_case__ ).eval() snake_case : Dict = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass snake_case : List[str] = model(snake_case__ , use_cache=snake_case__ ) snake_case : Any = model(snake_case__ ) snake_case : Any = model(snake_case__ , use_cache=snake_case__ ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) ) self.parent.assertTrue(len(snake_case__ ) == len(snake_case__ ) + 1 ) snake_case : List[Any] = outputs["past_key_values"] # create hypothetical next token and extent to next_input_ids snake_case : Optional[Any] = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and snake_case : Union[str, Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) snake_case : str = model(snake_case__ )["last_hidden_state"] snake_case : str = model(snake_case__ , past_key_values=snake_case__ )["last_hidden_state"] # select random slice snake_case : int = ids_tensor((1,) , output_from_past.shape[-1] ).item() snake_case : str = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() snake_case : Optional[Any] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case , snake_case : Dict = config_and_inputs snake_case : List[Any] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,A_ ,unittest.TestCase ): A__ : int = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () A__ : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () A__ : int = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} A__ : int = True A__ : Optional[Any] = False def _SCREAMING_SNAKE_CASE (self : Any ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = TrOCRStandaloneDecoderModelTester(self , is_training=snake_case__ ) snake_case : int = ConfigTester(self , config_class=snake_case__ ) def _SCREAMING_SNAKE_CASE (self : int ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> List[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[str]: '''simple docstring''' snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Dict ) -> Any: '''simple docstring''' return @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def _SCREAMING_SNAKE_CASE (self : Any ) -> Any: '''simple docstring''' pass
10
1
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class lowercase_ ( UpperCAmelCase__ ): A__ : Any = DistilBertTokenizer A__ : int = DistilBertTokenizerFast A__ : Any = True @slow def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = DistilBertTokenizer.from_pretrained("""distilbert-base-uncased""" ) UpperCamelCase_ = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase__ ) UpperCamelCase_ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase__ ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) UpperCamelCase_ = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ , lowerCamelCase__ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
122
'''simple docstring''' import logging from pathlib import Path import numpy as np import pytorch_lightning as pl import torch from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint from pytorch_lightning.utilities import rank_zero_only from utils_rag import save_json def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : Dict = filter(lambda __lowerCAmelCase : p.requires_grad , model.parameters() ) _UpperCAmelCase : Optional[Any] = sum([np.prod(p.size() ) for p in model_parameters] ) return params lowerCamelCase__ = logging.getLogger(__name__) def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): if metric == "rouge2": _UpperCAmelCase : List[str] = "{val_avg_rouge2:.4f}-{step_count}" elif metric == "bleu": _UpperCAmelCase : int = "{val_avg_bleu:.4f}-{step_count}" elif metric == "em": _UpperCAmelCase : str = "{val_avg_em:.4f}-{step_count}" elif metric == "loss": _UpperCAmelCase : List[Any] = "{val_avg_loss:.4f}-{step_count}" else: raise NotImplementedError( F"""seq2seq callbacks only support rouge2 and bleu, got {metric}, You can make your own by adding to this""" " function." ) _UpperCAmelCase : Any = ModelCheckpoint( dirpath=__lowerCAmelCase , filename=__lowerCAmelCase , monitor=F"""val_{metric}""" , mode="max" , save_top_k=1 , every_n_epochs=1 , ) return checkpoint_callback def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase ): return EarlyStopping( monitor=F"""val_{metric}""" , mode="min" if "loss" in metric else "max" , patience=__lowerCAmelCase , verbose=__lowerCAmelCase , ) class lowerCAmelCase__ ( pl.Callback ): def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->int: '''simple docstring''' _UpperCAmelCase : Dict = {F"""lr_group_{i}""": param["lr"] for i, param in enumerate(pl_module.trainer.optimizers[0].param_groups )} pl_module.logger.log_metrics(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule , lowerCamelCase__ : str , lowerCamelCase__ : Union[str, Any]=True ) ->None: '''simple docstring''' logger.info(F"""***** {type_path} results at step {trainer.global_step:05d} *****""" ) _UpperCAmelCase : str = trainer.callback_metrics trainer.logger.log_metrics({k: v for k, v in metrics.items() if k not in ["log", "progress_bar", "preds"]} ) # Log results _UpperCAmelCase : Any = Path(pl_module.hparams.output_dir ) if type_path == "test": _UpperCAmelCase : List[Any] = od / "test_results.txt" _UpperCAmelCase : Union[str, Any] = od / "test_generations.txt" else: # this never gets hit. I prefer not to save intermediate generations, and results are in metrics.json # If people want this it will be easy enough to add back. _UpperCAmelCase : Optional[Any] = od / F"""{type_path}_results/{trainer.global_step:05d}.txt""" _UpperCAmelCase : Dict = od / F"""{type_path}_generations/{trainer.global_step:05d}.txt""" results_file.parent.mkdir(exist_ok=lowerCamelCase__ ) generations_file.parent.mkdir(exist_ok=lowerCamelCase__ ) with open(lowerCamelCase__ , "a+" ) as writer: for key in sorted(lowerCamelCase__ ): if key in ["log", "progress_bar", "preds"]: continue _UpperCAmelCase : Dict = metrics[key] if isinstance(lowerCamelCase__ , torch.Tensor ): _UpperCAmelCase : Tuple = val.item() _UpperCAmelCase : str = F"""{key}: {val:.6f}\n""" writer.write(lowerCamelCase__ ) if not save_generations: return if "preds" in metrics: _UpperCAmelCase : Optional[int] = "\n".join(metrics["preds"] ) generations_file.open("w+" ).write(lowerCamelCase__ ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Optional[int] ) ->Any: '''simple docstring''' try: _UpperCAmelCase : Tuple = pl_module.model.model.num_parameters() except AttributeError: _UpperCAmelCase : int = pl_module.model.num_parameters() _UpperCAmelCase : int = count_trainable_parameters(lowerCamelCase__ ) # mp stands for million parameters trainer.logger.log_metrics({"n_params": npars, "mp": npars / 1E6, "grad_mp": n_trainable_pars / 1E6} ) @rank_zero_only def lowerCAmelCase__ ( self : Dict , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : pl.LightningModule ) ->int: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) return self._write_logs(lowerCamelCase__ , lowerCamelCase__ , "test" ) @rank_zero_only def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : pl.Trainer , lowerCamelCase__ : Union[str, Any] ) ->Union[str, Any]: '''simple docstring''' save_json(pl_module.metrics , pl_module.metrics_save_path ) # Uncommenting this will save val generations # return self._write_logs(trainer, pl_module, "valid")
234
0
from __future__ import annotations from random import choice def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: return choice(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list[int] , lowerCAmelCase: int ) -> int: _UpperCAmelCase : List[Any] = random_pivot(lowerCAmelCase ) # partition based on pivot # linear time _UpperCAmelCase : List[str] = [e for e in lst if e < pivot] _UpperCAmelCase : Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCAmelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCAmelCase ) < k - 1: return kth_number(lowerCAmelCase , k - len(lowerCAmelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod()
189
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class a : def __init__( self , A_ = None ): '''simple docstring''' if components is None: _UpperCAmelCase : Dict = [] _UpperCAmelCase : Dict = list(A_ ) def __len__( self ): '''simple docstring''' return len(self.__components ) def __str__( self ): '''simple docstring''' return "(" + ",".join(map(A_ , self.__components ) ) + ")" def __add__( self , A_ ): '''simple docstring''' _UpperCAmelCase : int = len(self ) if size == len(A_ ): _UpperCAmelCase : Union[str, Any] = [self.__components[i] + other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: raise Exception("must have the same size" ) def __sub__( self , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = len(self ) if size == len(A_ ): _UpperCAmelCase : Optional[Any] = [self.__components[i] - other.component(A_ ) for i in range(A_ )] return Vector(A_ ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self , A_ ): '''simple docstring''' ... @overload def __mul__( self , A_ ): '''simple docstring''' ... def __mul__( self , A_ ): '''simple docstring''' if isinstance(A_ , (float, int) ): _UpperCAmelCase : str = [c * other for c in self.__components] return Vector(A_ ) elif isinstance(A_ , A_ ) and len(self ) == len(A_ ): _UpperCAmelCase : int = len(self ) _UpperCAmelCase : Any = [self.__components[i] * other.component(A_ ) for i in range(A_ )] return sum(A_ ) else: # error case raise Exception("invalid operand!" ) def _UpperCAmelCase ( self ): '''simple docstring''' return Vector(self.__components ) def _UpperCAmelCase ( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' assert -len(self.__components ) <= pos < len(self.__components ) _UpperCAmelCase : Any = value def _UpperCAmelCase ( self ): '''simple docstring''' if len(self.__components ) == 0: raise Exception("Vector is empty" ) _UpperCAmelCase : Dict = [c**2 for c in self.__components] return math.sqrt(sum(A_ ) ) def _UpperCAmelCase ( self , A_ , A_ = False ): '''simple docstring''' _UpperCAmelCase : List[Any] = self * other _UpperCAmelCase : str = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) return Vector([0] * dimension ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> Vector: assert isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , lowerCAmelCase )) _UpperCAmelCase : Tuple = [0] * dimension _UpperCAmelCase : Optional[Any] = 1 return Vector(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: float , lowerCAmelCase: Vector , lowerCAmelCase: Vector ) -> Vector: assert ( isinstance(lowerCAmelCase , lowerCAmelCase ) and isinstance(lowerCAmelCase , lowerCAmelCase ) and (isinstance(lowerCAmelCase , (int, float) )) ) return x * scalar + y def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> Vector: random.seed(lowerCAmelCase ) _UpperCAmelCase : Optional[int] = [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] return Vector(lowerCAmelCase ) class a : def __init__( self , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[Any] = matrix _UpperCAmelCase : Union[str, Any] = w _UpperCAmelCase : str = h def __str__( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , A_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[int] = [] for i in range(self.__height ): _UpperCAmelCase : List[str] = [ self.__matrix[i][j] + other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self , A_ ): '''simple docstring''' if self.__width == other.width() and self.__height == other.height(): _UpperCAmelCase : Optional[Any] = [] for i in range(self.__height ): _UpperCAmelCase : Tuple = [ self.__matrix[i][j] - other.component(A_ , A_ ) for j in range(self.__width ) ] matrix.append(A_ ) return Matrix(A_ , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self , A_ ): '''simple docstring''' ... @overload def __mul__( self , A_ ): '''simple docstring''' ... def __mul__( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ): # matrix-vector if len(A_ ) == self.__width: _UpperCAmelCase : Union[str, Any] = zero_vector(self.__height ) for i in range(self.__height ): _UpperCAmelCase : List[Any] = [ self.__matrix[i][j] * other.component(A_ ) for j in range(self.__width ) ] ans.change_component(A_ , sum(A_ ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(A_ , (int, float) ): # matrix-scalar _UpperCAmelCase : Any = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(A_ , self.__width , self.__height ) return None def _UpperCAmelCase ( self ): '''simple docstring''' return self.__height def _UpperCAmelCase ( self ): '''simple docstring''' return self.__width def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def _UpperCAmelCase ( self , A_ , A_ , A_ ): '''simple docstring''' if 0 <= x < self.__height and 0 <= y < self.__width: _UpperCAmelCase : Tuple = value else: raise Exception("change_component: indices out of bounds" ) def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) _UpperCAmelCase : Union[str, Any] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(A_ ) ): _UpperCAmelCase : Tuple = minor[i][:y] + minor[i][y + 1 :] return Matrix(A_ , self.__width - 1 , self.__height - 1 ).determinant() def _UpperCAmelCase ( self , A_ , A_ ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(A_ , A_ ) else: raise Exception("Indices out of bounds" ) def _UpperCAmelCase ( self ): '''simple docstring''' if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: _UpperCAmelCase : Dict = [ self.__matrix[0][y] * self.cofactor(0 , A_ ) for y in range(self.__width ) ] return sum(A_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Matrix: _UpperCAmelCase : list[list[float]] = [[0] * n for _ in range(lowerCAmelCase )] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int , lowerCAmelCase: int ) -> Matrix: random.seed(lowerCAmelCase ) _UpperCAmelCase : list[list[float]] = [ [random.randint(lowerCAmelCase , lowerCAmelCase ) for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase ) ] return Matrix(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
189
1
"""simple docstring""" import datasets from .nmt_bleu import compute_bleu # From: https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py __A = '''\ @INPROCEEDINGS{Papineni02bleu:a, author = {Kishore Papineni and Salim Roukos and Todd Ward and Wei-jing Zhu}, title = {BLEU: a Method for Automatic Evaluation of Machine Translation}, booktitle = {}, year = {2002}, pages = {311--318} } @inproceedings{lin-och-2004-orange, title = "{ORANGE}: a Method for Evaluating Automatic Evaluation Metrics for Machine Translation", author = "Lin, Chin-Yew and Och, Franz Josef", booktitle = "{COLING} 2004: Proceedings of the 20th International Conference on Computational Linguistics", month = "aug 23{--}aug 27", year = "2004", address = "Geneva, Switzerland", publisher = "COLING", url = "https://www.aclweb.org/anthology/C04-1072", pages = "501--507", } ''' __A = '''\ BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of text which has been machine-translated from one natural language to another. Quality is considered to be the correspondence between a machine\'s output and that of a human: "the closer a machine translation is to a professional human translation, the better it is" – this is the central idea behind BLEU. BLEU was one of the first metrics to claim a high correlation with human judgements of quality, and remains one of the most popular automated and inexpensive metrics. Scores are calculated for individual translated segments—generally sentences—by comparing them with a set of good quality reference translations. Those scores are then averaged over the whole corpus to reach an estimate of the translation\'s overall quality. Intelligibility or grammatical correctness are not taken into account[citation needed]. BLEU\'s output is always a number between 0 and 1. This value indicates how similar the candidate text is to the reference texts, with values closer to 1 representing more similar texts. Few human translations will attain a score of 1, since this would indicate that the candidate is identical to one of the reference translations. For this reason, it is not necessary to attain a score of 1. Because there are more opportunities to match, adding additional reference translations will increase the BLEU score. ''' __A = ''' Computes BLEU score of translated segments against one or more references. Args: predictions: list of translations to score. Each translation should be tokenized into a list of tokens. references: list of lists of references for each translation. Each reference should be tokenized into a list of tokens. max_order: Maximum n-gram order to use when computing BLEU score. smooth: Whether or not to apply Lin et al. 2004 smoothing. Returns: \'bleu\': bleu score, \'precisions\': geometric mean of n-gram precisions, \'brevity_penalty\': brevity penalty, \'length_ratio\': ratio of lengths, \'translation_length\': translation_length, \'reference_length\': reference_length Examples: >>> predictions = [ ... ["hello", "there", "general", "kenobi"], # tokenized prediction of the first sample ... ["foo", "bar", "foobar"] # tokenized prediction of the second sample ... ] >>> references = [ ... [["hello", "there", "general", "kenobi"], ["hello", "there", "!"]], # tokenized references for the first sample (2 references) ... [["foo", "bar", "foobar"]] # tokenized references for the second sample (1 reference) ... ] >>> bleu = datasets.load_metric("bleu") >>> results = bleu.compute(predictions=predictions, references=references) >>> print(results["bleu"]) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): def lowerCamelCase__ ( self : List[Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" , id="token" ) , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/tensorflow/nmt/blob/master/nmt/scripts/bleu.py"] , reference_urls=[ "https://en.wikipedia.org/wiki/BLEU", "https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213", ] , ) def lowerCamelCase__ ( self : Any , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : Any=4 , UpperCAmelCase : str=False ): __lowerCamelCase : Dict = compute_bleu( reference_corpus=UpperCAmelCase , translation_corpus=UpperCAmelCase , max_order=UpperCAmelCase , smooth=UpperCAmelCase ) ((__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase) , (__lowerCamelCase)) : List[Any] = score return { "bleu": bleu, "precisions": precisions, "brevity_penalty": bp, "length_ratio": ratio, "translation_length": translation_length, "reference_length": reference_length, }
135
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def lowercase_ ( _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: str , _lowerCamelCase: PreTrainedTokenizer , _lowerCamelCase: int , _lowerCamelCase: Optional[int] = None , ) -> Tuple: '''simple docstring''' __lowerCamelCase : Optional[int] = {} if train_file is not None: __lowerCamelCase : List[Any] = [train_file] if eval_file is not None: __lowerCamelCase : List[Any] = [eval_file] if test_file is not None: __lowerCamelCase : Optional[int] = [test_file] __lowerCamelCase : Optional[int] = datasets.load_dataset("csv" , data_files=_lowerCamelCase ) __lowerCamelCase : Union[str, Any] = list(ds[list(files.keys() )[0]].features.keys() ) __lowerCamelCase : Optional[Any] = features_name.pop(_lowerCamelCase ) __lowerCamelCase : Dict = list(set(ds[list(files.keys() )[0]][label_name] ) ) __lowerCamelCase : List[str] = {label: i for i, label in enumerate(_lowerCamelCase )} __lowerCamelCase : Dict = tokenizer.model_input_names __lowerCamelCase : int = {} if len(_lowerCamelCase ) == 1: for k in files.keys(): __lowerCamelCase : Optional[int] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" ) , batched=_lowerCamelCase , ) elif len(_lowerCamelCase ) == 2: for k in files.keys(): __lowerCamelCase : Optional[Any] = ds[k].map( lambda _lowerCamelCase : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=_lowerCamelCase , max_length=_lowerCamelCase , padding="max_length" , ) , batched=_lowerCamelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: __lowerCamelCase : Optional[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : str = labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: __lowerCamelCase : str = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Optional[int] = labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: __lowerCamelCase : List[Any] = {k: v for k, v in ex.items() if k in input_names} __lowerCamelCase : Dict = labelaid[ex[label_name]] yield (d, label) __lowerCamelCase : Optional[Any] = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: __lowerCamelCase : int = train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) __lowerCamelCase : Tuple = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: __lowerCamelCase : List[Any] = val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) __lowerCamelCase : int = ( tf.data.Dataset.from_generator( _lowerCamelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: __lowerCamelCase : Optional[Any] = test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid __A = logging.getLogger(__name__) @dataclass class _snake_case : snake_case__ = field(metadata={"help": "Which column contains the label"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the training file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the development file"} ) snake_case__ = field(default=a__ , metadata={"help": "The path of the test file"} ) snake_case__ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case__ = field( default=a__ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class _snake_case : snake_case__ = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case__ = field( default=a__ , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case__ = field(default=a__ , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. snake_case__ = field( default=a__ , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) def lowercase_ ( ) -> str: '''simple docstring''' __lowerCamelCase : Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowerCamelCase : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=_lowerCamelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) __lowerCamelCase : Any = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(_lowerCamelCase ) , labelaid=_lowerCamelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): __lowerCamelCase : List[str] = TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(_lowerCamelCase: EvalPrediction ) -> Dict: __lowerCamelCase : List[str] = np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer __lowerCamelCase : Dict = TFTrainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=_lowerCamelCase , eval_dataset=_lowerCamelCase , compute_metrics=_lowerCamelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __lowerCamelCase : int = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) __lowerCamelCase : Any = trainer.evaluate() __lowerCamelCase : List[str] = os.path.join(training_args.output_dir , "eval_results.txt" ) with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(_lowerCamelCase ) return results if __name__ == "__main__": main()
135
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__ ( lowercase_ ) -> list[list[float]]: """simple docstring""" _UpperCamelCase : int = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowercase_ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix _UpperCamelCase : Tuple = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements _UpperCamelCase : Union[str, Any] = [[0.0, 0.0], [0.0, 0.0]] _UpperCamelCase, _UpperCamelCase : Optional[int] = matrix[1][1], matrix[0][0] _UpperCamelCase, _UpperCamelCase : Any = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowercase_ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowercase_ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule _UpperCamelCase : Optional[int] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix _UpperCamelCase : Union[str, Any] = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] _UpperCamelCase : str = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) _UpperCamelCase : Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) _UpperCamelCase : Tuple = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) _UpperCamelCase : int = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) _UpperCamelCase : Optional[int] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) _UpperCamelCase : str = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) _UpperCamelCase : Dict = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) _UpperCamelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) _UpperCamelCase : str = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) _UpperCamelCase : str = array(lowercase_ ) for i in range(3 ): for j in range(3 ): _UpperCamelCase : Union[str, Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix _UpperCamelCase : Tuple = array(lowercase_ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowercase_ ) # Calculate the inverse of the matrix return [[float(d(lowercase_ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
310
"""simple docstring""" from typing import Any def lowercase__ ( lowercase_ ) -> list[Any]: """simple docstring""" if not input_list: return [] _UpperCamelCase : Dict = [input_list.count(lowercase_ ) for value in input_list] _UpperCamelCase : Union[str, Any] = max(lowercase_ ) # Gets the maximum count in the input list. # Gets values of modes return sorted({input_list[i] for i, value in enumerate(lowercase_ ) if value == y} ) if __name__ == "__main__": import doctest doctest.testmod()
310
1
def _A ( _lowercase = 10_00 ) -> int: """simple docstring""" __UpperCamelCase = 1, 1 __UpperCamelCase = [] for i in range(1 , n + 1 ): __UpperCamelCase = prev_numerator + 2 * prev_denominator __UpperCamelCase = prev_numerator + prev_denominator if len(str(_lowercase ) ) > len(str(_lowercase ) ): result.append(_lowercase ) __UpperCamelCase = numerator __UpperCamelCase = denominator return len(_lowercase ) if __name__ == "__main__": print(f"""{solution() = }""")
310
'''simple docstring''' import functools def __UpperCAmelCase ( A : str , A : str ) -> int: UpperCAmelCase_ : Optional[Any] = len(A ) UpperCAmelCase_ : List[str] = len(A ) @functools.cache def min_distance(A : int , A : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa UpperCAmelCase_ : Any = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , A ) , 1 + min_distance(A , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
304
0
import argparse __A : List[Any] = '''docs/source/_static/js/custom.js''' def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> int: '''simple docstring''' with open(_UpperCAmelCase, encoding='utf-8', newline='\n' ) as f: lowerCAmelCase : Union[str, Any] = f.readlines() lowerCAmelCase : List[str] = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 lowerCAmelCase : Dict = f"const stableVersion = \"v{version}\"\n" # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f" \"v{version}\": \"v{version}\",\n" with open(_UpperCAmelCase, 'w', encoding='utf-8', newline='\n' ) as f: f.writelines(_UpperCAmelCase ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') __A : str = parser.parse_args() update_custom_js(args.version)
323
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A : Union[str, Any] = { '''configuration_informer''': [ '''INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''InformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Any = [ '''INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''InformerForPrediction''', '''InformerModel''', '''InformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_informer import INFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, InformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_informer import ( INFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, InformerForPrediction, InformerModel, InformerPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
from ..utils import DummyObject, requires_backends class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[int]) ->Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : str) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : int) ->str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Any) ->List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[str]) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any]) ->List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Dict , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any) ->Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Tuple) ->List[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Dict) ->Optional[Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int) ->Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : str) ->str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Tuple , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : str , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : List[Any]) ->Dict: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Any , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : Dict) ->Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict) ->int: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Dict , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : int) ->Any: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str]) ->Optional[int]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[int] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[int]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any]) ->Tuple: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Union[str, Any] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Optional[Any]) ->int: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Optional[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : Any , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Any) ->Union[str, Any]: '''simple docstring''' requires_backends(self , ["sentencepiece"]) class _SCREAMING_SNAKE_CASE ( metaclass=__SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = ["sentencepiece"] def __init__(self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int) ->List[str]: '''simple docstring''' requires_backends(self , ["sentencepiece"])
10
from typing import Any def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list: """simple docstring""" _validation( __a , __a , __a , __a , __a , ) # Creates data structures and fill initial step lowerCamelCase__: dict ={} lowerCamelCase__: dict ={} for state in states_space: lowerCamelCase__: Optional[Any] =observations_space[0] lowerCamelCase__: List[Any] =( initial_probabilities[state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =None # Fills the data structure with the probabilities of # different transitions and pointers to previous states for o in range(1 , len(__a ) ): lowerCamelCase__: Tuple =observations_space[o] lowerCamelCase__: Optional[Any] =observations_space[o - 1] for state in states_space: # Calculates the argmax for probability function lowerCamelCase__: Tuple ="" lowerCamelCase__: Optional[Any] =-1 for k_state in states_space: lowerCamelCase__: int =( probabilities[(k_state, prior_observation)] * transition_probabilities[k_state][state] * emission_probabilities[state][observation] ) if probability > max_probability: lowerCamelCase__: List[str] =probability lowerCamelCase__: int =k_state # Update probabilities and pointers dicts lowerCamelCase__: Any =( probabilities[(arg_max, prior_observation)] * transition_probabilities[arg_max][state] * emission_probabilities[state][observation] ) lowerCamelCase__: int =arg_max # The final observation lowerCamelCase__: Any =observations_space[len(__a ) - 1] # argmax for given final observation lowerCamelCase__: Optional[Any] ="" lowerCamelCase__: int =-1 for k_state in states_space: lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)] if probability > max_probability: lowerCamelCase__: List[Any] =probability lowerCamelCase__: Dict =k_state lowerCamelCase__: str =arg_max # Process pointers backwards lowerCamelCase__: Union[str, Any] =last_state lowerCamelCase__: List[str] =[] for o in range(len(__a ) - 1 , -1 , -1 ): result.append(__a ) lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]] result.reverse() return result def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" _validate_not_empty( __a , __a , __a , __a , __a , ) _validate_lists(__a , __a ) _validate_dicts( __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None: """simple docstring""" if not all( [ observations_space, states_space, initial_probabilities, transition_probabilities, emission_probabilities, ] ): raise ValueError("There's an empty parameter" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_list(__a , "observations_space" ) _validate_list(__a , "states_space" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Tuple =F"""{var_name} must be a list""" raise ValueError(__a ) else: for x in _object: if not isinstance(__a , __a ): lowerCamelCase__: str =F"""{var_name} must be a list of strings""" raise ValueError(__a ) def lowerCAmelCase_ ( __a , __a , __a , ) -> None: """simple docstring""" _validate_dict(__a , "initial_probabilities" , __a ) _validate_nested_dict(__a , "transition_probabilities" ) _validate_nested_dict(__a , "emission_probabilities" ) def lowerCAmelCase_ ( __a , __a ) -> None: """simple docstring""" _validate_dict(_object , __a , __a ) for x in _object.values(): _validate_dict(__a , __a , __a , __a ) def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None: """simple docstring""" if not isinstance(_object , __a ): lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object ): lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings""" raise ValueError(__a ) if not all(isinstance(__a , __a ) for x in _object.values() ): lowerCamelCase__: Dict ="nested dictionary " if nested else "" lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}""" raise ValueError(__a ) if __name__ == "__main__": from doctest import testmod testmod()
10
1
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : Any = logging.get_logger(__name__) UpperCamelCase__ : int = { 'b0': efficientnet.EfficientNetBa, 'b1': efficientnet.EfficientNetBa, 'b2': efficientnet.EfficientNetBa, 'b3': efficientnet.EfficientNetBa, 'b4': efficientnet.EfficientNetBa, 'b5': efficientnet.EfficientNetBa, 'b6': efficientnet.EfficientNetBa, 'b7': efficientnet.EfficientNetBa, } UpperCamelCase__ : List[Any] = { 'b0': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.0, 'image_size': 224, 'dropout_rate': 0.2, 'dw_padding': [], }, 'b1': { 'hidden_dim': 1_280, 'width_coef': 1.0, 'depth_coef': 1.1, 'image_size': 240, 'dropout_rate': 0.2, 'dw_padding': [16], }, 'b2': { 'hidden_dim': 1_408, 'width_coef': 1.1, 'depth_coef': 1.2, 'image_size': 260, 'dropout_rate': 0.3, 'dw_padding': [5, 8, 16], }, 'b3': { 'hidden_dim': 1_536, 'width_coef': 1.2, 'depth_coef': 1.4, 'image_size': 300, 'dropout_rate': 0.3, 'dw_padding': [5, 18], }, 'b4': { 'hidden_dim': 1_792, 'width_coef': 1.4, 'depth_coef': 1.8, 'image_size': 380, 'dropout_rate': 0.4, 'dw_padding': [6], }, 'b5': { 'hidden_dim': 2_048, 'width_coef': 1.6, 'depth_coef': 2.2, 'image_size': 456, 'dropout_rate': 0.4, 'dw_padding': [13, 27], }, 'b6': { 'hidden_dim': 2_304, 'width_coef': 1.8, 'depth_coef': 2.6, 'image_size': 528, 'dropout_rate': 0.5, 'dw_padding': [31], }, 'b7': { 'hidden_dim': 2_560, 'width_coef': 2.0, 'depth_coef': 3.1, 'image_size': 600, 'dropout_rate': 0.5, 'dw_padding': [18], }, } def UpperCAmelCase ( a_ ) -> Tuple: """simple docstring""" A_ : int = EfficientNetConfig() A_ : List[str] = CONFIG_MAP[model_name]["""hidden_dim"""] A_ : Optional[Any] = CONFIG_MAP[model_name]["""width_coef"""] A_ : List[str] = CONFIG_MAP[model_name]["""depth_coef"""] A_ : Dict = CONFIG_MAP[model_name]["""image_size"""] A_ : Tuple = CONFIG_MAP[model_name]["""dropout_rate"""] A_ : Optional[int] = CONFIG_MAP[model_name]["""dw_padding"""] A_ : Tuple = """huggingface/label-files""" A_ : List[Any] = """imagenet-1k-id2label.json""" A_ : Any = 1_0_0_0 A_ : int = json.load(open(hf_hub_download(a_ , a_ , repo_type="""dataset""" ) , """r""" ) ) A_ : Optional[int] = {int(a_ ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : List[Any] = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase ( ) -> Optional[Any]: """simple docstring""" A_ : Tuple = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : str = Image.open(requests.get(a_ , stream=a_ ).raw ) return im def UpperCAmelCase ( a_ ) -> Optional[int]: """simple docstring""" A_ : Optional[int] = CONFIG_MAP[model_name]["""image_size"""] A_ : Dict = EfficientNetImageProcessor( size={"""height""": size, """width""": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=a_ , ) return preprocessor def UpperCAmelCase ( a_ ) -> List[Any]: """simple docstring""" A_ : Union[str, Any] = [v.split("""_""" )[0].split("""block""" )[1] for v in original_param_names if v.startswith("""block""" )] A_ : List[str] = sorted(set(a_ ) ) A_ : List[str] = len(a_ ) A_ : Optional[int] = {b: str(a_ ) for b, i in zip(a_ , range(a_ ) )} A_ : Dict = [] rename_keys.append(("""stem_conv/kernel:0""", """embeddings.convolution.weight""") ) rename_keys.append(("""stem_bn/gamma:0""", """embeddings.batchnorm.weight""") ) rename_keys.append(("""stem_bn/beta:0""", """embeddings.batchnorm.bias""") ) rename_keys.append(("""stem_bn/moving_mean:0""", """embeddings.batchnorm.running_mean""") ) rename_keys.append(("""stem_bn/moving_variance:0""", """embeddings.batchnorm.running_var""") ) for b in block_names: A_ : Dict = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("""top_conv/kernel:0""", """encoder.top_conv.weight""") ) rename_keys.append(("""top_bn/gamma:0""", """encoder.top_bn.weight""") ) rename_keys.append(("""top_bn/beta:0""", """encoder.top_bn.bias""") ) rename_keys.append(("""top_bn/moving_mean:0""", """encoder.top_bn.running_mean""") ) rename_keys.append(("""top_bn/moving_variance:0""", """encoder.top_bn.running_var""") ) A_ : int = {} for item in rename_keys: if item[0] in original_param_names: A_ : Dict = """efficientnet.""" + item[1] A_ : Optional[Any] = """classifier.weight""" A_ : Union[str, Any] = """classifier.bias""" return key_mapping def UpperCAmelCase ( a_ , a_ , a_ ) -> int: """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue A_ : Tuple = key_mapping[key] if "_conv" in key and "kernel" in key: A_ : Tuple = torch.from_numpy(a_ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A_ : Optional[int] = torch.from_numpy(a_ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A_ : Any = torch.from_numpy(np.transpose(a_ ) ) else: A_ : int = torch.from_numpy(a_ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(a_ ) @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_ , a_ ) -> Optional[int]: """simple docstring""" A_ : List[Any] = model_classes[model_name]( include_top=a_ , weights="""imagenet""" , input_tensor=a_ , input_shape=a_ , pooling=a_ , classes=1_0_0_0 , classifier_activation="""softmax""" , ) A_ : Union[str, Any] = original_model.trainable_variables A_ : Optional[Any] = original_model.non_trainable_variables A_ : Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A_ : Tuple = param.numpy() A_ : str = list(tf_params.keys() ) # Load HuggingFace model A_ : List[Any] = get_efficientnet_config(a_ ) A_ : Dict = EfficientNetForImageClassification(a_ ).eval() A_ : List[str] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("""Converting parameters...""" ) A_ : int = rename_keys(a_ ) replace_params(a_ , a_ , a_ ) # Initialize preprocessor and preprocess input image A_ : List[str] = convert_image_processor(a_ ) A_ : Tuple = preprocessor(images=prepare_img() , return_tensors="""pt""" ) # HF model inference hf_model.eval() with torch.no_grad(): A_ : str = hf_model(**a_ ) A_ : Optional[Any] = outputs.logits.detach().numpy() # Original model inference A_ : List[Any] = False A_ : Optional[Any] = CONFIG_MAP[model_name]["""image_size"""] A_ : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A_ : str = image.img_to_array(a_ ) A_ : Any = np.expand_dims(a_ , axis=0 ) A_ : Union[str, Any] = original_model.predict(a_ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(a_ , a_ , atol=1E-3 ), "The predicted logits are not the same." print("""Model outputs match!""" ) if save_model: # Create folder to save model if not os.path.isdir(a_ ): os.mkdir(a_ ) # Save converted model and image processor hf_model.save_pretrained(a_ ) preprocessor.save_pretrained(a_ ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) A_ : Tuple = F"efficientnet-{model_name}" preprocessor.push_to_hub(a_ ) hf_model.push_to_hub(a_ ) if __name__ == "__main__": UpperCamelCase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='b0', type=str, help='Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].', ) parser.add_argument( '--pytorch_dump_folder_path', default='hf_model', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--save_model', action='store_true', help='Save model to local') parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') UpperCamelCase__ : str = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Any = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
164
1
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow lowerCamelCase : Union[str, Any] =[ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ '''text-classification''', '''language-modeling''', '''summarization''', '''token-classification''', '''question-answering''', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) lowerCamelCase : List[str] =logging.getLogger() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument("-f" ) UpperCamelCase__ : Dict = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase="eval" ) -> Optional[Any]: UpperCamelCase__ : Tuple = os.path.join(__lowerCAmelCase , f'{split}_results.json' ) if os.path.exists(__lowerCAmelCase ): with open(__lowerCAmelCase , "r" ) as f: return json.load(__lowerCAmelCase ) raise ValueError(f'can\'t find {path}' ) lowerCamelCase : int =logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __a ( A__ ): def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[str] = F'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(SCREAMING_SNAKE_CASE , "argv" , SCREAMING_SNAKE_CASE ): run_flax_glue.main() UpperCamelCase__ : Dict = get_results(SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) @slow def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : str = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Any = F'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(SCREAMING_SNAKE_CASE , "argv" , SCREAMING_SNAKE_CASE ): run_clm_flax.main() UpperCamelCase__ : Union[str, Any] = get_results(SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 1_00 ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCamelCase__ : int = self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[Any] = F'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(SCREAMING_SNAKE_CASE , "argv" , SCREAMING_SNAKE_CASE ): run_summarization_flax.main() UpperCamelCase__ : List[Any] = get_results(SCREAMING_SNAKE_CASE , split="test" ) self.assertGreaterEqual(result["test_rouge1"] , 10 ) self.assertGreaterEqual(result["test_rouge2"] , 2 ) self.assertGreaterEqual(result["test_rougeL"] , 7 ) self.assertGreaterEqual(result["test_rougeLsum"] , 7 ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Dict = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Any = F'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(SCREAMING_SNAKE_CASE , "argv" , SCREAMING_SNAKE_CASE ): run_mlm_flax.main() UpperCamelCase__ : List[str] = get_results(SCREAMING_SNAKE_CASE ) self.assertLess(result["eval_perplexity"] , 42 ) @slow def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[Any] = F'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(SCREAMING_SNAKE_CASE , "argv" , SCREAMING_SNAKE_CASE ): run_ta_mlm_flax.main() UpperCamelCase__ : Optional[Any] = get_results(SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.4_2 ) @slow def __lowercase ( self : int ): '''simple docstring''' UpperCamelCase__ : Optional[int] = 7 if get_gpu_count() > 1 else 2 UpperCamelCase__ : int = self.get_auto_remove_tmp_dir() UpperCamelCase__ : List[str] = F'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(SCREAMING_SNAKE_CASE , "argv" , SCREAMING_SNAKE_CASE ): run_flax_ner.main() UpperCamelCase__ : Optional[int] = get_results(SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_accuracy"] , 0.7_5 ) self.assertGreaterEqual(result["eval_f1"] , 0.3 ) @slow def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : List[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Dict = F'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(SCREAMING_SNAKE_CASE , "argv" , SCREAMING_SNAKE_CASE ): run_qa.main() UpperCamelCase__ : Optional[int] = get_results(SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(result["eval_f1"] , 30 ) self.assertGreaterEqual(result["eval_exact"] , 30 )
189
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCamelCase : Union[str, Any] =logging.get_logger(__name__) lowerCamelCase : str ={ '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } lowerCamelCase : str ={ '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } lowerCamelCase : str ={'''facebook/blenderbot-3B''': 128} class __a ( A__ ): _lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES _lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase : int = ['''input_ids''', '''attention_mask'''] _lowerCAmelCase : Tuple = BlenderbotTokenizer def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Tuple="replace" , SCREAMING_SNAKE_CASE : Union[str, Any]="<s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : str="</s>" , SCREAMING_SNAKE_CASE : Tuple="<s>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<unk>" , SCREAMING_SNAKE_CASE : str="<pad>" , SCREAMING_SNAKE_CASE : Union[str, Any]="<mask>" , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=True , **SCREAMING_SNAKE_CASE : int , ): '''simple docstring''' super().__init__( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , errors=SCREAMING_SNAKE_CASE , bos_token=SCREAMING_SNAKE_CASE , eos_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , add_prefix_space=SCREAMING_SNAKE_CASE , trim_offsets=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase__ : str = getattr(SCREAMING_SNAKE_CASE , pre_tok_state.pop("type" ) ) UpperCamelCase__ : Union[str, Any] = add_prefix_space UpperCamelCase__ : Union[str, Any] = pre_tok_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = add_prefix_space UpperCamelCase__ : Optional[int] = "post_processor" UpperCamelCase__ : Union[str, Any] = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: UpperCamelCase__ : Tuple = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCamelCase__ : Tuple = tuple(state["sep"] ) if "cls" in state: UpperCamelCase__ : Optional[int] = tuple(state["cls"] ) UpperCamelCase__ : List[Any] = False if state.get("add_prefix_space" , SCREAMING_SNAKE_CASE ) != add_prefix_space: UpperCamelCase__ : str = add_prefix_space UpperCamelCase__ : Optional[Any] = True if state.get("trim_offsets" , SCREAMING_SNAKE_CASE ) != trim_offsets: UpperCamelCase__ : Optional[Any] = trim_offsets UpperCamelCase__ : Tuple = True if changes_to_apply: UpperCamelCase__ : Optional[int] = getattr(SCREAMING_SNAKE_CASE , state.pop("type" ) ) UpperCamelCase__ : Dict = component_class(**SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowercase ( self : Union[str, Any] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Dict = AddedToken(SCREAMING_SNAKE_CASE , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else value UpperCamelCase__ : str = value def __lowercase ( self : Any , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' UpperCamelCase__ : List[Any] = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' UpperCamelCase__ : Dict = kwargs.get("is_split_into_words" , SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE ) return tuple(SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = [self.sep_token_id] UpperCamelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def __lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : "Conversation" ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = " ".join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[Any] = self.encode(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > self.model_max_length: UpperCamelCase__ : Dict = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
189
1
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __a ( _SCREAMING_SNAKE_CASE ) ->List[Any]: a__: Optional[int] = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCamelCase__ , lowerCamelCase__ ) def __a ( _SCREAMING_SNAKE_CASE ) ->Any: a__: Any = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: a__: List[Any] = s_dict.pop(lowerCamelCase__ ) elif "subsample" in key: a__: Tuple = s_dict.pop(lowerCamelCase__ ) def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple: a__ , a__: Optional[int] = emb.weight.shape a__: List[Any] = nn.Linear(lowerCamelCase__ , lowerCamelCase__ , bias=lowerCamelCase__ ) a__: Dict = emb.weight.data return lin_layer def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: a__: List[str] = torch.load(lowerCamelCase__ , map_location='cpu' ) a__: List[Any] = mam_aaa['args'] a__: str = mam_aaa['model'] a__: List[Any] = state_dict['decoder.output_projection.weight'] remove_ignore_keys_(lowerCamelCase__ ) rename_keys(lowerCamelCase__ ) a__: List[Any] = state_dict['decoder.embed_tokens.weight'].shape[0] a__: Union[str, Any] = args.share_decoder_input_output_embed a__: Optional[Any] = [int(lowerCamelCase__ ) for i in args.conv_kernel_sizes.split(',' )] a__: str = SpeechaTextConfig( vocab_size=lowerCamelCase__ , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='relu' , num_conv_layers=len(lowerCamelCase__ ) , conv_channels=args.conv_channels , conv_kernel_sizes=lowerCamelCase__ , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=lowerCamelCase__ , num_beams=5 , max_length=200 , use_cache=lowerCamelCase__ , decoder_start_token_id=2 , early_stopping=lowerCamelCase__ , ) a__: Optional[int] = SpeechaTextForConditionalGeneration(lowerCamelCase__ ) a__ , a__: Optional[int] = model.model.load_state_dict(lowerCamelCase__ , strict=lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0 and not set(lowerCamelCase__ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( 'Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,' F' but all the following weights are missing {missing}' ) if tie_embeds: a__: Any = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a__: List[str] = lm_head_weights model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') lowercase__ = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
350
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING lowercase__ = logging.get_logger(__name__) lowercase__ = Dict[str, Any] lowercase__ = List[Prediction] @add_end_docstrings(__lowerCAmelCase ) class __snake_case ( __lowerCAmelCase ): def __init__( self , *lowercase , **lowercase) -> Dict: '''simple docstring''' super().__init__(*lowercase , **lowercase) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.') requires_backends(self , 'vision') self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items())) def lowerCamelCase_ ( self , **lowercase) -> int: '''simple docstring''' a__: Optional[Any] = {} if "threshold" in kwargs: a__: Dict = kwargs['threshold'] return {}, {}, postprocess_kwargs def __call__( self , *lowercase , **lowercase) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*lowercase , **lowercase) def lowerCamelCase_ ( self , lowercase) -> List[Any]: '''simple docstring''' a__: Optional[Any] = load_image(lowercase) a__: List[Any] = torch.IntTensor([[image.height, image.width]]) a__: Any = self.image_processor(images=[image] , return_tensors='pt') if self.tokenizer is not None: a__: Any = self.tokenizer(text=inputs['words'] , boxes=inputs['boxes'] , return_tensors='pt') a__: List[str] = target_size return inputs def lowerCamelCase_ ( self , lowercase) -> int: '''simple docstring''' a__: Any = model_inputs.pop('target_size') a__: Union[str, Any] = self.model(**lowercase) a__: List[str] = outputs.__class__({'target_size': target_size, **outputs}) if self.tokenizer is not None: a__: Union[str, Any] = model_inputs['bbox'] return model_outputs def lowerCamelCase_ ( self , lowercase , lowercase=0.9) -> Optional[Any]: '''simple docstring''' a__: int = model_outputs['target_size'] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. a__ , a__: str = target_size[0].tolist() def unnormalize(lowercase): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ])) a__ , a__: Optional[Any] = model_outputs['logits'].squeeze(0).softmax(dim=-1).max(dim=-1) a__: str = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] a__: Union[str, Any] = [unnormalize(lowercase) for bbox in model_outputs['bbox'].squeeze(0)] a__: Dict = ['score', 'label', 'box'] a__: Any = [dict(zip(lowercase , lowercase)) for vals in zip(scores.tolist() , lowercase , lowercase) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel a__: List[str] = self.image_processor.post_process_object_detection(lowercase , lowercase , lowercase) a__: Tuple = raw_annotations[0] a__: List[str] = raw_annotation['scores'] a__: int = raw_annotation['labels'] a__: int = raw_annotation['boxes'] a__: List[Any] = scores.tolist() a__: Any = [self.model.config.idalabel[label.item()] for label in labels] a__: Dict = [self._get_bounding_box(lowercase) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] a__: Optional[Any] = ['score', 'label', 'box'] a__: List[Any] = [ dict(zip(lowercase , lowercase)) for vals in zip(raw_annotation['scores'] , raw_annotation['labels'] , raw_annotation['boxes']) ] return annotation def lowerCamelCase_ ( self , lowercase) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('The ObjectDetectionPipeline is only available in PyTorch.') a__ , a__ , a__ , a__: List[Any] = box.int().tolist() a__: Optional[int] = { 'xmin': xmin, 'ymin': ymin, 'xmax': xmax, 'ymax': ymax, } return bbox
203
0
from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record __snake_case = '''\ @article{wang2019superglue, title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems}, author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R}, journal={arXiv preprint arXiv:1905.00537}, year={2019} } ''' __snake_case = '''\ SuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after GLUE with a new set of more difficult language understanding tasks, improved resources, and a new public leaderboard. ''' __snake_case = ''' Compute SuperGLUE evaluation metric associated to each SuperGLUE dataset. Args: predictions: list of predictions to score. Depending on the SuperGlUE subset: - for \'record\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'prediction_text\': the predicted answer text - for \'multirc\': list of question-answer dictionaries with the following keys: - \'idx\': index of the question-answer pair as specified by the dataset - \'prediction\': the predicted answer label - otherwise: list of predicted labels references: list of reference labels. Depending on the SuperGLUE subset: - for \'record\': list of question-answers dictionaries with the following keys: - \'idx\': index of the question as specified by the dataset - \'answers\': list of possible answers - otherwise: list of reference labels Returns: depending on the SuperGLUE subset: - for \'record\': - \'exact_match\': Exact match between answer and gold answer - \'f1\': F1 score - for \'multirc\': - \'exact_match\': Exact match between answer and gold answer - \'f1_m\': Per-question macro-F1 score - \'f1_a\': Average F1 score over all answers - for \'axb\': \'matthews_correlation\': Matthew Correlation - for \'cb\': - \'accuracy\': Accuracy - \'f1\': F1 score - for all others: - \'accuracy\': Accuracy Examples: >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'copa\') # any of ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"] >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'cb\') >>> predictions = [0, 1] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'record\') >>> predictions = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'prediction_text\': \'answer\'}] >>> references = [{\'idx\': {\'passage\': 0, \'query\': 0}, \'answers\': [\'answer\', \'another_answer\']}] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'multirc\') >>> predictions = [{\'idx\': {\'answer\': 0, \'paragraph\': 0, \'question\': 0}, \'prediction\': 0}, {\'idx\': {\'answer\': 1, \'paragraph\': 2, \'question\': 3}, \'prediction\': 1}] >>> references = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 1.0, \'f1_m\': 1.0, \'f1_a\': 1.0} >>> super_glue_metric = datasets.load_metric(\'super_glue\', \'axb\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = super_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'matthews_correlation\': 1.0} ''' def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" return float((preds == labels).mean() ) def _A ( _lowercase , _lowercase , _lowercase="binary" ) -> Any: """simple docstring""" __UpperCamelCase = simple_accuracy(_lowercase , _lowercase ) __UpperCamelCase = float(fa_score(y_true=_lowercase , y_pred=_lowercase , average=_lowercase ) ) return { "accuracy": acc, "f1": fa, } def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" __UpperCamelCase = {} for id_pred, label in zip(_lowercase , _lowercase ): __UpperCamelCase = f'''{id_pred['idx']['paragraph']}-{id_pred['idx']['question']}''' __UpperCamelCase = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: __UpperCamelCase = [(pred, label)] __UpperCamelCase, __UpperCamelCase = [], [] for question, preds_labels in question_map.items(): __UpperCamelCase, __UpperCamelCase = zip(*_lowercase ) __UpperCamelCase = fa_score(y_true=_lowercase , y_pred=_lowercase , average='macro' ) fas.append(_lowercase ) __UpperCamelCase = int(sum(pred == label for pred, label in preds_labels ) == len(_lowercase ) ) ems.append(_lowercase ) __UpperCamelCase = float(sum(_lowercase ) / len(_lowercase ) ) __UpperCamelCase = sum(_lowercase ) / len(_lowercase ) __UpperCamelCase = float(fa_score(y_true=_lowercase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase (datasets.Metric ): def snake_case_ ( self: List[str] ): '''simple docstring''' if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features(self._get_feature_types() ),codebase_urls=[],reference_urls=[],format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None,) def snake_case_ ( self: Tuple ): '''simple docstring''' if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def snake_case_ ( self: Any,A_: int,A_: str ): '''simple docstring''' if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(A_,A_ )} elif self.config_name == "cb": return acc_and_fa(A_,A_,fa_avg='macro' ) elif self.config_name == "record": __UpperCamelCase = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] __UpperCamelCase = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(A_,A_ )[0] elif self.config_name == "multirc": return evaluate_multirc(A_,A_ ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(A_,A_ )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
310
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __snake_case = get_tests_dir() + '''/test_data/fsmt/fsmt_val_data.json''' with io.open(filename, '''r''', encoding='''utf-8''') as f: __snake_case = json.load(f) @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int,A_: int ): '''simple docstring''' return FSMTTokenizer.from_pretrained(A_ ) def snake_case_ ( self: Dict,A_: int ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(A_ ).to(A_ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def snake_case_ ( self: Tuple,A_: Any,A_: Optional[Any] ): '''simple docstring''' __UpperCamelCase = F'''facebook/wmt19-{pair}''' __UpperCamelCase = self.get_tokenizer(A_ ) __UpperCamelCase = self.get_model(A_ ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(A_,return_tensors='pt',truncation=A_,padding='longest' ).to(A_ ) __UpperCamelCase = model.generate( input_ids=batch.input_ids,num_beams=8,) __UpperCamelCase = tokenizer.batch_decode( A_,skip_special_tokens=A_,clean_up_tokenization_spaces=A_ ) __UpperCamelCase = calculate_bleu(A_,A_ ) print(A_ ) self.assertGreaterEqual(scores['bleu'],A_ )
310
1
import os import pytest from transformers.dynamic_module_utils import get_imports lowerCamelCase__ : List[Any] = '\nimport os\n' lowerCamelCase__ : Optional[int] = '\ndef foo():\n import os\n return False\n' lowerCamelCase__ : Optional[Any] = '\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' lowerCamelCase__ : List[str] = '\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' lowerCamelCase__ : Dict = '\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' lowerCamelCase__ : List[str] = '\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' lowerCamelCase__ : int = '\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' lowerCamelCase__ : int = '\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' lowerCamelCase__ : List[str] = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' lowerCamelCase__ : str = '\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' lowerCamelCase__ : int = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('case' , __UpperCAmelCase ) def UpperCAmelCase_ ( __UpperCAmelCase : str , __UpperCAmelCase : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE_ = os.path.join(__UpperCAmelCase , 'test_file.py' ) with open(__UpperCAmelCase , 'w' ) as _tmp_file: _tmp_file.write(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = get_imports(__UpperCAmelCase ) assert parsed_imports == ["os"]
210
import gc import threading import time import psutil import torch class lowerCamelCase_ : '''simple docstring''' def __init__( self : Optional[Any] ): SCREAMING_SNAKE_CASE_ = psutil.Process() SCREAMING_SNAKE_CASE_ = False def lowerCAmelCase_ ( self : Dict ): SCREAMING_SNAKE_CASE_ = -1 while True: SCREAMING_SNAKE_CASE_ = max(self.process.memory_info().rss , self.cpu_memory_peak ) # can't sleep or will not catch the peak right (this comment is here on purpose) if not self.peak_monitoring: break def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = threading.Thread(target=self.peak_monitor ) SCREAMING_SNAKE_CASE_ = True self.thread.start() def lowerCAmelCase_ ( self : List[str] ): SCREAMING_SNAKE_CASE_ = False self.thread.join() return self.cpu_memory_peak lowerCamelCase__ : List[str] = PeakCPUMemory() def UpperCAmelCase_ ( ) -> Tuple: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time()} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = psutil.Process().memory_info().rss cpu_peak_tracker.start() # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = torch.cuda.memory_allocated(__UpperCAmelCase ) torch.cuda.reset_peak_memory_stats() return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] ) -> Optional[Any]: # Time SCREAMING_SNAKE_CASE_ = {'time': time.time() - start_measures['time']} gc.collect() torch.cuda.empty_cache() # CPU mem SCREAMING_SNAKE_CASE_ = (psutil.Process().memory_info().rss - start_measures['cpu']) / 2**20 SCREAMING_SNAKE_CASE_ = (cpu_peak_tracker.stop() - start_measures['cpu']) / 2**20 # GPU mem for i in range(torch.cuda.device_count() ): SCREAMING_SNAKE_CASE_ = (torch.cuda.memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 SCREAMING_SNAKE_CASE_ = (torch.cuda.max_memory_allocated(__UpperCAmelCase ) - start_measures[str(__UpperCAmelCase )]) / 2**20 return measures def UpperCAmelCase_ ( __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[Any]: print(f"{description}:" ) print(f"- Time: {measures['time']:.2f}s" ) for i in range(torch.cuda.device_count() ): print(f"- GPU {i} allocated: {measures[str(__UpperCAmelCase )]:.2f}MiB" ) SCREAMING_SNAKE_CASE_ = measures[f"{i}-peak"] print(f"- GPU {i} peak: {peak:.2f}MiB" ) print(f"- CPU RAM allocated: {measures['cpu']:.2f}MiB" ) print(f"- CPU RAM peak: {measures['cpu-peak']:.2f}MiB" )
210
1
'''simple docstring''' import argparse __UpperCAmelCase = """docs/source/_static/js/custom.js""" def __A ( lowerCamelCase_ ): """simple docstring""" with open(lowerCamelCase_ , encoding="""utf-8""" , newline="""\n""" ) as f: SCREAMING_SNAKE_CASE : int = f.readlines() SCREAMING_SNAKE_CASE : List[Any] = 0 # First let's put the right version while not lines[index].startswith("""const stableVersion =""" ): index += 1 SCREAMING_SNAKE_CASE : str = f'''const stableVersion = "v{version}"\n''' # Then update the dictionary while not lines[index].startswith("""const versionMapping = {""" ): index += 1 # We go until the end while not lines[index].startswith("""}""" ): index += 1 # We add the new version at the end lines[index - 1] += f''' "v{version}": "v{version}",\n''' with open(lowerCamelCase_ , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lowerCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--version""", help="""Release version.""") __UpperCAmelCase = parser.parse_args() update_custom_js(args.version)
323
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase__ ( lowercase_ , lowercase_ , lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [R'''h\.\d+\.attn\.bias''', R'''h\.\d+\.attn\.masked_bias'''] @register_to_config def __init__( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : int = 5_02_57 , lowerCamelCase_ : int = 10_24 , lowerCamelCase_ : int = 7_68 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : int = 12 , lowerCamelCase_ : Optional[int] = None , lowerCamelCase_ : str = "gelu_new" , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 0.1 , lowerCamelCase_ : float = 1e-5 , lowerCamelCase_ : float = 0.02 , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = True , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , ): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f'''`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and''' f''' `n_embd`: {n_embd} are not equal.''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = prefix_inner_dim SCREAMING_SNAKE_CASE : List[str] = prefix_hidden_dim SCREAMING_SNAKE_CASE : Tuple = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : str = ( nn.Linear(self.prefix_hidden_dim , lowerCamelCase_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) SCREAMING_SNAKE_CASE : Any = GPTaConfig( vocab_size=lowerCamelCase_ , n_positions=lowerCamelCase_ , n_embd=lowerCamelCase_ , n_layer=lowerCamelCase_ , n_head=lowerCamelCase_ , n_inner=lowerCamelCase_ , activation_function=lowerCamelCase_ , resid_pdrop=lowerCamelCase_ , embd_pdrop=lowerCamelCase_ , attn_pdrop=lowerCamelCase_ , layer_norm_epsilon=lowerCamelCase_ , initializer_range=lowerCamelCase_ , scale_attn_weights=lowerCamelCase_ , use_cache=lowerCamelCase_ , scale_attn_by_inverse_layer_idx=lowerCamelCase_ , reorder_and_upcast_attn=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaLMHeadModel(lowerCamelCase_ ) def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : torch.Tensor , lowerCamelCase_ : Optional[torch.Tensor] = None , lowerCamelCase_ : Optional[torch.Tensor] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.transformer.transformer.wte(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.encode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.decode_prefix(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: SCREAMING_SNAKE_CASE : List[Any] = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) SCREAMING_SNAKE_CASE : Dict = torch.cat((dummy_token, input_ids) , dim=1 ) SCREAMING_SNAKE_CASE : str = self.transformer(inputs_embeds=lowerCamelCase_ , labels=lowerCamelCase_ , attention_mask=lowerCamelCase_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase_ ( self : Dict , lowerCamelCase_ : int , lowerCamelCase_ : torch.device ): '''simple docstring''' return torch.zeros(lowerCamelCase_ , self.prefix_length , dtype=torch.intaa , device=lowerCamelCase_ ) def lowerCamelCase_ ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.encode_prefix(lowerCamelCase_ ) @torch.no_grad() def lowerCamelCase_ ( self : List[Any] , lowerCamelCase_ : int , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Tuple ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = torch.split(lowerCamelCase_ , 1 , dim=0 ) SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Tuple = [] for feature in features: SCREAMING_SNAKE_CASE : Optional[int] = self.decode_prefix(feature.to(lowerCamelCase_ ) ) # back to the clip feature # Only support beam search for now SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Any = self.generate_beam( input_embeds=lowerCamelCase_ , device=lowerCamelCase_ , eos_token_id=lowerCamelCase_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.stack(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Tuple = torch.stack(lowerCamelCase_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase_ ( self : str , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : int=None , lowerCamelCase_ : int = 5 , lowerCamelCase_ : int = 67 , lowerCamelCase_ : float = 1.0 , lowerCamelCase_ : Optional[int] = None , ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : int = None SCREAMING_SNAKE_CASE : List[Any] = None SCREAMING_SNAKE_CASE : Union[str, Any] = torch.ones(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.int ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.zeros(lowerCamelCase_ , device=lowerCamelCase_ , dtype=torch.bool ) if input_embeds is not None: SCREAMING_SNAKE_CASE : Dict = input_embeds else: SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(lowerCamelCase_ ) for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = self.transformer(inputs_embeds=lowerCamelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = outputs.logits SCREAMING_SNAKE_CASE : Optional[int] = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) SCREAMING_SNAKE_CASE : Any = logits.softmax(-1 ).log() if scores is None: SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Dict = logits.topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : Optional[Any] = generated.expand(lowerCamelCase_ , *generated.shape[1:] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: SCREAMING_SNAKE_CASE : List[Any] = next_tokens else: SCREAMING_SNAKE_CASE : Dict = tokens.expand(lowerCamelCase_ , *tokens.shape[1:] ) SCREAMING_SNAKE_CASE : str = torch.cat((tokens, next_tokens) , dim=1 ) else: SCREAMING_SNAKE_CASE : Tuple = -float(np.inf ) SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 SCREAMING_SNAKE_CASE : List[str] = scores_sum / seq_lengths[:, None] SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average.view(-1 ).topk(lowerCamelCase_ , -1 ) SCREAMING_SNAKE_CASE : str = next_tokens // scores_sum.shape[1] SCREAMING_SNAKE_CASE : Tuple = seq_lengths[next_tokens_source] SCREAMING_SNAKE_CASE : int = next_tokens % scores_sum.shape[1] SCREAMING_SNAKE_CASE : Dict = next_tokens.unsqueeze(1 ) SCREAMING_SNAKE_CASE : Dict = tokens[next_tokens_source] SCREAMING_SNAKE_CASE : Any = torch.cat((tokens, next_tokens) , dim=1 ) SCREAMING_SNAKE_CASE : List[str] = generated[next_tokens_source] SCREAMING_SNAKE_CASE : Optional[Any] = scores_sum_average * seq_lengths SCREAMING_SNAKE_CASE : Any = is_stopped[next_tokens_source] SCREAMING_SNAKE_CASE : Dict = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) SCREAMING_SNAKE_CASE : str = torch.cat((generated, next_token_embed) , dim=1 ) SCREAMING_SNAKE_CASE : Dict = is_stopped + next_tokens.eq(lowerCamelCase_ ).squeeze() if is_stopped.all(): break SCREAMING_SNAKE_CASE : int = scores / seq_lengths SCREAMING_SNAKE_CASE : Dict = scores.argsort(descending=lowerCamelCase_ ) # tokens tensors are already padded to max_seq_length SCREAMING_SNAKE_CASE : Union[str, Any] = [tokens[i] for i in order] SCREAMING_SNAKE_CASE : Dict = torch.stack(lowerCamelCase_ , dim=0 ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
323
1
from typing import List import numpy as np def __UpperCamelCase ( lowercase__ : dict ) -> int: '''simple docstring''' lowerCAmelCase_ : int = {key: len(lowercase__ ) for key, value in gen_kwargs.items() if isinstance(lowercase__ , lowercase__ )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( """Sharding is ambiguous for this dataset: """ + """we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n""" + """\n""".join(f'\t- key {key} has length {length}' for key, length in lists_lengths.items() ) + """\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, """ + """and use tuples otherwise. In the end there should only be one single list, or several lists with the same length.""" ) ) lowerCAmelCase_ : int = max(lists_lengths.values() , default=0 ) return max(1 , lowercase__ ) def __UpperCamelCase ( lowercase__ : int , lowercase__ : int ) -> List[range]: '''simple docstring''' lowerCAmelCase_ : Optional[Any] = [] for group_idx in range(lowercase__ ): lowerCAmelCase_ : Optional[Any] = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break lowerCAmelCase_ : Tuple = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 lowerCAmelCase_ : List[str] = range(lowercase__ , start + num_shards_to_add ) shards_indices_per_group.append(lowercase__ ) return shards_indices_per_group def __UpperCamelCase ( lowercase__ : dict , lowercase__ : int ) -> List[dict]: '''simple docstring''' lowerCAmelCase_ : str = _number_of_shards_in_gen_kwargs(lowercase__ ) if num_shards == 1: return [dict(lowercase__ )] else: lowerCAmelCase_ : Tuple = _distribute_shards(num_shards=lowercase__ , max_num_jobs=lowercase__ ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(lowercase__ , lowercase__ ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(lowercase__ ) ) ] def __UpperCamelCase ( lowercase__ : List[dict] ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , lowercase__ ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __UpperCamelCase ( lowercase__ : np.random.Generator , lowercase__ : dict ) -> dict: '''simple docstring''' lowerCAmelCase_ : str = {len(lowercase__ ) for value in gen_kwargs.values() if isinstance(lowercase__ , lowercase__ )} lowerCAmelCase_ : Tuple = {} for size in list_sizes: lowerCAmelCase_ : List[Any] = list(range(lowercase__ ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes lowerCAmelCase_ : Optional[Any] = dict(lowercase__ ) for key, value in shuffled_kwargs.items(): if isinstance(lowercase__ , lowercase__ ): lowerCAmelCase_ : str = [value[i] for i in indices_per_size[len(lowercase__ )]] return shuffled_kwargs
28
from math import ceil def __UpperCamelCase ( lowercase__ : int = 1001 ) -> int: '''simple docstring''' lowerCAmelCase_ : List[str] = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): lowerCAmelCase_ : Optional[Any] = 2 * i + 1 lowerCAmelCase_ : Union[str, Any] = 2 * i lowerCAmelCase_ : Optional[Any] = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: __UpperCAmelCase = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number')
28
1
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): lowercase__ = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowercase__ )] ) lowercase__ = np.array(lowercase__ ) lowercase__ = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowercase__ ) ) , x.transpose() ) , lowercase__ ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = (1, 2, 1) lowercase__ = (1, 1, 0, 7) lowercase__ = SARIMAX( lowercase__ , exog=lowercase__ , order=lowercase__ , seasonal_order=lowercase__ ) lowercase__ = model.fit(disp=lowercase__ , maxiter=600 , method="""nm""" ) lowercase__ = model_fit.predict(1 , len(lowercase__ ) , exog=[test_match] ) return result[0] def _A ( lowercase__ , lowercase__ , lowercase__ ): lowercase__ = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowercase__ , lowercase__ ) lowercase__ = regressor.predict(lowercase__ ) return y_pred[0] def _A ( lowercase__ ): train_user.sort() lowercase__ = np.percentile(lowercase__ , 25 ) lowercase__ = np.percentile(lowercase__ , 75 ) lowercase__ = qa - qa lowercase__ = qa - (iqr * 0.1) return low_lim def _A ( lowercase__ , lowercase__ ): lowercase__ = 0 lowercase__ = 0 for i in list_vote: if i > actual_result: lowercase__ = not_safe + 1 else: if abs(abs(lowercase__ ) - abs(lowercase__ ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) __A = [[18_231, 0.0, 1], [22_621, 1.0, 2], [15_675, 0.0, 3], [23_583, 1.0, 4]] __A = pd.DataFrame( data_input, columns=["total_user", "total_even", "days"] ) __A = Normalizer().fit_transform(data_input_df.values) # split data __A = normalize_df[:, 2].tolist() __A = normalize_df[:, 0].tolist() __A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) __A = normalize_df[:, [1, 2]].tolist() __A = x[: len(x) - 1] __A = x[len(x) - 1 :] # for linear regression & sarimax __A = total_date[: len(total_date) - 1] __A = total_user[: len(total_user) - 1] __A = total_match[: len(total_match) - 1] __A = total_date[len(total_date) - 1 :] __A = total_user[len(total_user) - 1 :] __A = total_match[len(total_match) - 1 :] # voting system with forecasting __A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data __A = "" if data_safety_checker(res_vote, tst_user) else "not " print("Today's data is {not_str}safe.")
164
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __A = False class A ( unittest.TestCase ): pass @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
164
1
import torch from diffusers import DiffusionPipeline class __A ( UpperCamelCase__ ): def __init__(self : List[str] , __a : Optional[int] , __a : Optional[int] ): super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) def __call__(self : List[Any] ): UpperCAmelCase_ = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) UpperCAmelCase_ = 1 UpperCAmelCase_ = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample UpperCAmelCase_ = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample UpperCAmelCase_ = scheduler_output - scheduler_output + torch.ones_like(__UpperCAmelCase ) return result
354
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE_: Dict =logging.get_logger(__name__) class __A ( UpperCamelCase__ ): def _lowercase (self : Dict , __a : Any ): if isinstance(__a , __a ): UpperCAmelCase_ = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__(self : Union[str, Any] , __a : Optional[int] , __a : Optional[int] , __a : int ): if len(__a ) == 0 or len(__a ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(__a ) ) if isinstance(__a , __a ): UpperCAmelCase_ = [sequences] UpperCAmelCase_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__a )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(UpperCamelCase__ ) class __A ( UpperCamelCase__ ): def __init__(self : Optional[Any] , __a : Union[str, Any]=ZeroShotClassificationArgumentHandler() , *__a : Optional[int] , **__a : List[str] ): UpperCAmelCase_ = args_parser super().__init__(*__a , **__a ) if self.entailment_id == -1: logger.warning( "Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def _lowercase (self : str ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def _lowercase (self : Any , __a : Any , __a : int=True , __a : Dict=True , __a : Any=TruncationStrategy.ONLY_FIRST , **__a : Tuple ): UpperCAmelCase_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) UpperCAmelCase_ = self.tokenizer.eos_token try: UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=__a , ) except Exception as e: if "too short" in str(__a ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase_ = self.tokenizer( __a , add_special_tokens=__a , return_tensors=__a , padding=__a , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase (self : List[str] , **__a : Tuple ): if kwargs.get("multi_class" , __a ) is not None: UpperCAmelCase_ = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) UpperCAmelCase_ = {} if "candidate_labels" in kwargs: UpperCAmelCase_ = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: UpperCAmelCase_ = kwargs["hypothesis_template"] UpperCAmelCase_ = {} if "multi_label" in kwargs: UpperCAmelCase_ = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__(self : Tuple , __a : Union[str, List[str]] , *__a : Optional[Any] , **__a : Tuple , ): if len(__a ) == 0: pass elif len(__a ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase_ = args[0] else: raise ValueError(f"""Unable to understand extra arguments {args}""" ) return super().__call__(__a , **__a ) def _lowercase (self : Optional[int] , __a : Optional[Any] , __a : List[str]=None , __a : Any="This example is {}." ): UpperCAmelCase_ , UpperCAmelCase_ = self._args_parser(__a , __a , __a ) for i, (candidate_label, sequence_pair) in enumerate(zip(__a , __a ) ): UpperCAmelCase_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__a ) - 1, **model_input, } def _lowercase (self : List[str] , __a : Any ): UpperCAmelCase_ = inputs["candidate_label"] UpperCAmelCase_ = inputs["sequence"] UpperCAmelCase_ = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase_ = self.model(**__a ) UpperCAmelCase_ = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def _lowercase (self : Optional[Any] , __a : List[str] , __a : Tuple=False ): UpperCAmelCase_ = [outputs["candidate_label"] for outputs in model_outputs] UpperCAmelCase_ = [outputs["sequence"] for outputs in model_outputs] UpperCAmelCase_ = np.concatenate([output["logits"].numpy() for output in model_outputs] ) UpperCAmelCase_ = logits.shape[0] UpperCAmelCase_ = len(__a ) UpperCAmelCase_ = N // n UpperCAmelCase_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__a ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase_ = self.entailment_id UpperCAmelCase_ = -1 if entailment_id == 0 else 0 UpperCAmelCase_ = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase_ = reshaped_outputs[..., self.entailment_id] UpperCAmelCase_ = np.exp(__a ) / np.exp(__a ).sum(-1 , keepdims=__a ) UpperCAmelCase_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
106
0
from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase__ ( A_ ): """simple docstring""" def __init__( self , A_ , A_ ) -> str: super().__init__() # make sure scheduler can always be converted to DDIM __UpperCamelCase =DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self , A_ = 1 , A_ = None , A_ = 0.0 , A_ = 50 , A_ = None , A_ = "pil" , A_ = True , ) -> Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , A_ ): __UpperCamelCase =( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __UpperCamelCase =(batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(A_ , A_ ) and len(A_ ) != batch_size: raise ValueError( f'You have passed a list of generators of length {len(A_ )}, but requested an effective batch' f' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __UpperCamelCase =randn_tensor(A_ , generator=A_ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCamelCase =self.unet(A_ , A_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCamelCase =self.scheduler.step( A_ , A_ , A_ , eta=A_ , use_clipped_model_output=A_ , generator=A_ ).prev_sample __UpperCamelCase =(image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase =self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
62
"""simple docstring""" import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup __snake_case = { """User-Agent""": """Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36""" """ (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582""" } def __lowerCAmelCase ( lowercase : str = "dhaka" , lowercase : int = 5 ) -> int: """simple docstring""" snake_case : List[Any] = min(lowercase , 50 ) # Prevent abuse! snake_case : Optional[Any] = { "q": query, "tbm": "isch", "hl": "en", "ijn": "0", } snake_case : str = requests.get("https://www.google.com/search" , params=lowercase , headers=lowercase ) snake_case : List[str] = BeautifulSoup(html.text , "html.parser" ) snake_case : List[Any] = "".join( re.findall(R"AF_initDataCallback\(([^<]+)\);" , str(soup.select("script" ) ) ) ) snake_case : Optional[Any] = json.dumps(lowercase ) snake_case : str = json.loads(lowercase ) snake_case : List[str] = re.findall( R"\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\"," , lowercase , ) if not matched_google_image_data: return 0 snake_case : List[str] = re.sub( R"\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]" , "" , str(lowercase ) , ) snake_case : Dict = re.findall( R"(?:'|,),\[\"(https:|http.*?)\",\d+,\d+\]" , lowercase , ) for index, fixed_full_res_image in enumerate(lowercase ): if index >= max_images: return index snake_case : List[str] = bytes(lowercase , "ascii" ).decode( "unicode-escape" ) snake_case : Dict = bytes(lowercase , "ascii" ).decode( "unicode-escape" ) snake_case : int = urllib.request.build_opener() snake_case : int = [ ( "User-Agent", "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582", ) ] urllib.request.install_opener(lowercase ) snake_case : Optional[int] = F'query_{query.replace(" " , "_" )}' if not os.path.exists(lowercase ): os.makedirs(lowercase ) urllib.request.urlretrieve( # noqa: S310 lowercase , F'{path_name}/original_size_img_{index}.jpg' ) return index if __name__ == "__main__": try: __snake_case = download_images_from_google_query(sys.argv[1]) print(F'''{image_count} images were downloaded to disk.''') except IndexError: print("""Please provide a search term.""") raise
203
0
import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase_ ( _A , _A , _A , _A , _A = None , _A = None , _A = None , ): '''simple docstring''' if config_name_or_path is None: SCREAMING_SNAKE_CASE__ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: SCREAMING_SNAKE_CASE__ = question_encoder_name_or_path SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. SCREAMING_SNAKE_CASE__ = RagConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(_A ) SCREAMING_SNAKE_CASE__ = gen_config SCREAMING_SNAKE_CASE__ = question_encoder_config SCREAMING_SNAKE_CASE__ = model_class.from_pretrained_question_encoder_generator( _A , _A , config=_A ) rag_model.save_pretrained(_A ) # Sanity check. model_class.from_pretrained(_A ) # Save tokenizers. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) gen_tokenizer.save_pretrained(dest_dir / '''generator_tokenizer/''' ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(_A ) question_encoder_tokenizer.save_pretrained(dest_dir / '''question_encoder_tokenizer/''' ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Any = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) _SCREAMING_SNAKE_CASE : Dict = parser.parse_args() _SCREAMING_SNAKE_CASE : Dict = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
357
from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
218
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. __a : Optional[int] = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" __a : List[Any] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __a : Any = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __a : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __a : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) __lowercase = text_classifier('''This is great !''' , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}] ) __lowercase = text_classifier(['''This is great !''', '''This is bad'''] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) __lowercase = text_classifier('''This is great !''' , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) # Legacy behavior __lowercase = text_classifier('''This is great !''' , return_all_scores=lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) __lowercase = text_classifier('''This is great !''' , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}]] ) __lowercase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], [{'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_1''', '''score''': 0.496}], ] , ) __lowercase = text_classifier(['''This is great !''', '''Something else'''] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {'''label''': '''LABEL_0''', '''score''': 0.504}, {'''label''': '''LABEL_0''', '''score''': 0.504}, ] , ) @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' import torch __lowercase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''pt''' , device=torch.device('''cpu''' ) , ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @require_tf def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = pipeline( task='''text-classification''' , model='''hf-internal-testing/tiny-random-distilbert''' , framework='''tf''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''LABEL_0''', '''score''': 0.504}] ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = pipeline('''text-classification''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) @slow @require_tf def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' __lowercase = pipeline('''text-classification''' , framework='''tf''' ) __lowercase = text_classifier('''This is great !''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''POSITIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''This is bad !''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''NEGATIVE''', '''score''': 1.0}] ) __lowercase = text_classifier('''Birds are a type of animal''' ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': '''POSITIVE''', '''score''': 0.988}] ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' __lowercase = TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' __lowercase = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __lowercase = '''HuggingFace is in''' __lowercase = text_classifier(lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{'''label''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ )}] ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) __lowercase = ['''HuggingFace is in ''', '''Paris is in France'''] __lowercase = text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{'''label''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ )}, {'''label''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() ) self.assertTrue(outputs[1]['''label'''] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __lowercase = text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__ ) __lowercase = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{'''label''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ )}] * N, [{'''label''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ )}] * N] , ) __lowercase = {'''text''': '''HuggingFace is in ''', '''text_pair''': '''Paris is in France'''} __lowercase = text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , {'''label''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ )} , ) self.assertTrue(outputs['''label'''] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __lowercase = [['''HuggingFace is in ''', '''Paris is in France''']] with self.assertRaises(lowerCAmelCase__ ): text_classifier(lowerCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __lowercase = text_classifier([[['''HuggingFace is in ''', '''Paris is in France''']]] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{'''label''': ANY(lowerCAmelCase__ ), '''score''': ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]['''label'''] in model.config.idalabel.values() )
210
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a : int = logging.get_logger(__name__) __a : str = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" __a : Optional[int] = '''deta''' __a : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=9_00 , lowerCAmelCase__=20_48 , lowerCAmelCase__=6 , lowerCAmelCase__=20_48 , lowerCAmelCase__=8 , lowerCAmelCase__=6 , lowerCAmelCase__=10_24 , lowerCAmelCase__=8 , lowerCAmelCase__=0.0 , lowerCAmelCase__=True , lowerCAmelCase__="relu" , lowerCAmelCase__=2_56 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=1.0 , lowerCAmelCase__=True , lowerCAmelCase__=False , lowerCAmelCase__="sine" , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=4 , lowerCAmelCase__=True , lowerCAmelCase__=3_00 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=1 , lowerCAmelCase__=5 , lowerCAmelCase__=2 , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.25 , **lowerCAmelCase__ , ) -> List[Any]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) __lowercase = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __lowercase = backbone_config.pop('''model_type''' ) __lowercase = CONFIG_MAPPING[backbone_model_type] __lowercase = config_class.from_dict(lowerCAmelCase__ ) __lowercase = backbone_config __lowercase = num_queries __lowercase = max_position_embeddings __lowercase = d_model __lowercase = encoder_ffn_dim __lowercase = encoder_layers __lowercase = encoder_attention_heads __lowercase = decoder_ffn_dim __lowercase = decoder_layers __lowercase = decoder_attention_heads __lowercase = dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = activation_function __lowercase = init_std __lowercase = init_xavier_std __lowercase = encoder_layerdrop __lowercase = auxiliary_loss __lowercase = position_embedding_type # deformable attributes __lowercase = num_feature_levels __lowercase = encoder_n_points __lowercase = decoder_n_points __lowercase = two_stage __lowercase = two_stage_num_proposals __lowercase = with_box_refine __lowercase = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher __lowercase = class_cost __lowercase = bbox_cost __lowercase = giou_cost # Loss coefficients __lowercase = mask_loss_coefficient __lowercase = dice_loss_coefficient __lowercase = bbox_loss_coefficient __lowercase = giou_loss_coefficient __lowercase = eos_coefficient __lowercase = focal_alpha super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self.d_model def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.backbone_config.to_dict() __lowercase = self.__class__.model_type return output
210
1
'''simple docstring''' UpperCamelCase : List[Any] = 256 # Modulus to hash a string UpperCamelCase : List[Any] = 1_000_003 def SCREAMING_SNAKE_CASE__ ( snake_case : str , snake_case : str ) -> bool: """simple docstring""" a : Dict = len(snake_case ) a : Dict = len(snake_case ) if p_len > t_len: return False a : int = 0 a : int = 0 a : Any = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case ): a : int = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus a : int = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue a : Dict = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash a : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def SCREAMING_SNAKE_CASE__ ( ) -> None: """simple docstring""" a : Union[str, Any] = 'abc1abc12' a : Union[str, Any] = 'alskfjaldsabc1abc1abc12k23adsfabcabc' a : List[Any] = 'alskfjaldsk23adsfabcabc' assert rabin_karp(snake_case , snake_case ) and not rabin_karp(snake_case , snake_case ) # Test 2) a : Optional[int] = 'ABABX' a : Optional[int] = 'ABABZABABYABABX' assert rabin_karp(snake_case , snake_case ) # Test 3) a : List[Any] = 'AAAB' a : int = 'ABAAAAAB' assert rabin_karp(snake_case , snake_case ) # Test 4) a : int = 'abcdabcy' a : List[str] = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(snake_case , snake_case ) # Test 5) a : int = 'Lü' a : Tuple = 'Lüsai' assert rabin_karp(snake_case , snake_case ) a : str = 'Lue' assert not rabin_karp(snake_case , snake_case ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
345
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig UpperCamelCase : Optional[Any] = logging.getLogger(__name__) class UpperCamelCase ( a_ ): """simple docstring""" A : Tuple = "masked_bert" def __init__( self : Tuple , UpperCAmelCase_ : List[Any]=3_0_5_2_2 , UpperCAmelCase_ : str=7_6_8 , UpperCAmelCase_ : Optional[Any]=1_2 , UpperCAmelCase_ : Optional[int]=1_2 , UpperCAmelCase_ : Union[str, Any]=3_0_7_2 , UpperCAmelCase_ : Union[str, Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=5_1_2 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : Optional[Any]=1e-12 , UpperCAmelCase_ : Dict=0 , UpperCAmelCase_ : Dict="topK" , UpperCAmelCase_ : str="constant" , UpperCAmelCase_ : Optional[Any]=0.0 , **UpperCAmelCase_ : Optional[Any] , ): """simple docstring""" super().__init__(pad_token_id=UpperCAmelCase_ , **UpperCAmelCase_) a : Union[str, Any] = vocab_size a : List[Any] = hidden_size a : List[str] = num_hidden_layers a : Any = num_attention_heads a : Optional[Any] = hidden_act a : str = intermediate_size a : Dict = hidden_dropout_prob a : Any = attention_probs_dropout_prob a : Any = max_position_embeddings a : Dict = type_vocab_size a : List[str] = initializer_range a : int = layer_norm_eps a : Dict = pruning_method a : List[str] = mask_init a : Union[str, Any] = mask_scale
345
1
'''simple docstring''' import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger _lowerCamelCase : Dict = get_logger(__name__) class SCREAMING_SNAKE_CASE ( enum.Enum ): """simple docstring""" _SCREAMING_SNAKE_CASE = """all_checks""" _SCREAMING_SNAKE_CASE = """basic_checks""" _SCREAMING_SNAKE_CASE = """no_checks""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __lowerCamelCase ( A__ , A__ , A__=None ) -> List[Any]: """simple docstring""" if expected_checksums is None: logger.info('Unable to verify checksums.' ) return if len(set(A__ ) - set(A__ ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(A__ ) - set(A__ ) ) ) if len(set(A__ ) - set(A__ ) ) > 0: raise UnexpectedDownloadedFile(str(set(A__ ) - set(A__ ) ) ) UpperCamelCase = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] UpperCamelCase = ' for ' + verification_name if verification_name is not None else '' if len(A__ ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" 'Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error' ) logger.info('All the checksums matched successfully' + for_verification_name ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __lowerCamelCase ( A__ , A__ ) -> Tuple: """simple docstring""" if expected_splits is None: logger.info('Unable to verify splits sizes.' ) return if len(set(A__ ) - set(A__ ) ) > 0: raise ExpectedMoreSplits(str(set(A__ ) - set(A__ ) ) ) if len(set(A__ ) - set(A__ ) ) > 0: raise UnexpectedSplits(str(set(A__ ) - set(A__ ) ) ) UpperCamelCase = [ {'expected': expected_splits[name], 'recorded': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(A__ ) > 0: raise NonMatchingSplitsSizesError(str(A__ ) ) logger.info('All the splits matched successfully.' ) def __lowerCamelCase ( A__ , A__ = True ) -> dict: """simple docstring""" if record_checksum: UpperCamelCase = shaaaa() with open(A__ , 'rb' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , B'' ): m.update(A__ ) UpperCamelCase = m.hexdigest() else: UpperCamelCase = None return {"num_bytes": os.path.getsize(A__ ), "checksum": checksum} def __lowerCamelCase ( A__ ) -> Optional[int]: """simple docstring""" if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
28
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : List[Any] = { "configuration_m2m_100": ["M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP", "M2M100Config", "M2M100OnnxConfig"], "tokenization_m2m_100": ["M2M100Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = [ "M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST", "M2M100ForConditionalGeneration", "M2M100Model", "M2M100PreTrainedModel", ] if TYPE_CHECKING: from .configuration_mam_aaa import M2M_100_PRETRAINED_CONFIG_ARCHIVE_MAP, MaMaaaConfig, MaMaaaOnnxConfig from .tokenization_mam_aaa import MaMaaaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mam_aaa import ( M2M_100_PRETRAINED_MODEL_ARCHIVE_LIST, MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
28
1
'''simple docstring''' from math import isqrt, loga def lowerCamelCase__ ( A : int ): '''simple docstring''' UpperCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , A , A ): UpperCAmelCase = False return [i for i in range(2 , A ) if is_prime[i]] def lowerCamelCase__ ( A : int = 80_08_00 , A : int = 80_08_00 ): '''simple docstring''' UpperCAmelCase = degree * loga(A ) UpperCAmelCase = int(A ) UpperCAmelCase = calculate_prime_numbers(A ) UpperCAmelCase = 0 UpperCAmelCase = 0 UpperCAmelCase = len(A ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
91
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class UpperCamelCase__: __magic_name__ : int __magic_name__ : TreeNode | None = None __magic_name__ : TreeNode | None = None _lowercase : Tuple = namedtuple("""CoinsDistribResult""", """moves excess""") def lowerCamelCase__ ( A : TreeNode | None ): '''simple docstring''' if root is None: return 0 # Validation def count_nodes(A : TreeNode | None ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(A : TreeNode | None ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(A ) != count_coins(A ): raise ValueError('''The nodes number should be same as the number of coins''' ) # Main calculation def get_distrib(A : TreeNode | None ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.left ) UpperCAmelCase , UpperCAmelCase = get_distrib(node.right ) UpperCAmelCase = 1 - left_distrib_excess UpperCAmelCase = 1 - right_distrib_excess UpperCAmelCase = ( left_distrib_moves + right_distrib_moves + abs(A ) + abs(A ) ) UpperCAmelCase = node.data - coins_to_left - coins_to_right return CoinsDistribResult(A , A ) return get_distrib(A )[0] if __name__ == "__main__": import doctest doctest.testmod()
91
1
'''simple docstring''' import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class SCREAMING_SNAKE_CASE( unittest.TestCase ): """simple docstring""" def __init__( self : List[str] , __snake_case : Tuple , __snake_case : Dict=13 , __snake_case : Optional[int]=7 , __snake_case : Optional[int]=True , __snake_case : Dict=True , __snake_case : Union[str, Any]=True , __snake_case : Dict=True , __snake_case : List[Any]=99 , __snake_case : List[Any]=32 , __snake_case : Union[str, Any]=5 , __snake_case : Optional[int]=4 , __snake_case : Optional[int]=37 , __snake_case : Union[str, Any]="gelu" , __snake_case : int=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Optional[int]=512 , __snake_case : int=16 , __snake_case : List[str]=2 , __snake_case : Dict=0.02 , __snake_case : Tuple=4 , ) -> Union[str, Any]: UpperCAmelCase : int = parent UpperCAmelCase : Optional[Any] = batch_size UpperCAmelCase : List[str] = seq_length UpperCAmelCase : List[Any] = is_training UpperCAmelCase : Tuple = use_attention_mask UpperCAmelCase : Optional[int] = use_token_type_ids UpperCAmelCase : Dict = use_labels UpperCAmelCase : List[Any] = vocab_size UpperCAmelCase : Tuple = hidden_size UpperCAmelCase : Any = num_hidden_layers UpperCAmelCase : Optional[int] = num_attention_heads UpperCAmelCase : List[str] = intermediate_size UpperCAmelCase : List[Any] = hidden_act UpperCAmelCase : str = hidden_dropout_prob UpperCAmelCase : str = attention_probs_dropout_prob UpperCAmelCase : List[Any] = max_position_embeddings UpperCAmelCase : Any = type_vocab_size UpperCAmelCase : List[Any] = type_sequence_label_size UpperCAmelCase : List[str] = initializer_range UpperCAmelCase : int = num_choices def A ( self : List[str] ) -> List[str]: UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_attention_mask: UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[Any] = None if self.use_token_type_ids: UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def A ( self : Optional[Any] ) -> Optional[int]: UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : int = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def A ( self : Optional[int] ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : int = config_and_inputs UpperCAmelCase : Optional[Any] = True UpperCAmelCase : int = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class SCREAMING_SNAKE_CASE( A__ , unittest.TestCase ): """simple docstring""" lowerCamelCase__ = True lowerCamelCase__ = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def A ( self : Optional[Any] ) -> Union[str, Any]: UpperCAmelCase : str = FlaxRobertaModelTester(self ) @slow def A ( self : Optional[Any] ) -> int: for model_class_name in self.all_model_classes: UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained('''roberta-base''' , from_pt=__snake_case ) UpperCAmelCase : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(__snake_case )
23
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available __UpperCamelCase : str = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : int = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys __UpperCamelCase : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
106
0
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase A = logging.get_logger(__name__) A = { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json''', '''allenai/longformer-large-4096''': '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json''', '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json''' ), } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''longformer''' def __init__( self , _UpperCAmelCase = 512 , _UpperCAmelCase = 2 , _UpperCAmelCase = 1 , _UpperCAmelCase = 0 , _UpperCAmelCase = 2 , _UpperCAmelCase = 30522 , _UpperCAmelCase = 768 , _UpperCAmelCase = 12 , _UpperCAmelCase = 12 , _UpperCAmelCase = 3072 , _UpperCAmelCase = "gelu" , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 0.1 , _UpperCAmelCase = 512 , _UpperCAmelCase = 2 , _UpperCAmelCase = 0.0_2 , _UpperCAmelCase = 1e-1_2 , _UpperCAmelCase = False , **_UpperCAmelCase , ): super().__init__(pad_token_id=_UpperCAmelCase , **_UpperCAmelCase ) __a : int = attention_window __a : Tuple = sep_token_id __a : Union[str, Any] = bos_token_id __a : int = eos_token_id __a : int = vocab_size __a : Any = hidden_size __a : Tuple = num_hidden_layers __a : str = num_attention_heads __a : List[Any] = hidden_act __a : Any = intermediate_size __a : List[str] = hidden_dropout_prob __a : Tuple = attention_probs_dropout_prob __a : Dict = max_position_embeddings __a : Any = type_vocab_size __a : Any = initializer_range __a : str = layer_norm_eps __a : Any = onnx_export class __lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase = "default" , _UpperCAmelCase = None ): super().__init__(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __a : Optional[int] = True @property def _lowerCamelCase ( self ): if self.task == "multiple-choice": __a : List[str] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a : str = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''global_attention_mask''', dynamic_axis), ] ) @property def _lowerCamelCase ( self ): __a : Tuple = super().outputs if self.task == "default": __a : List[str] = {0: '''batch'''} return outputs @property def _lowerCamelCase ( self ): return 1e-4 @property def _lowerCamelCase ( self ): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14 ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = False , _UpperCAmelCase = None , ): __a : Union[str, Any] = super().generate_dummy_inputs( preprocessor=_UpperCAmelCase , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , is_pair=_UpperCAmelCase , framework=_UpperCAmelCase ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly __a : Optional[int] = torch.zeros_like(inputs['''input_ids'''] ) # make every second token global __a : Dict = 1 return inputs
188
"""simple docstring""" def __A ( a_ :int = 1_00_00_00) -> int: __a : Tuple = [i - 1 for i in range(limit + 1)] for i in range(2 , limit + 1): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , a_): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1]) if __name__ == "__main__": print(solution())
188
1
import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __a ( lowerCAmelCase_ ): def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: List[str] = tempfile.mkdtemp() lowercase__: Optional[Any] = 5 # Realm tok lowercase__: Dict = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase__: Union[str, Any] = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(__snake_case , exist_ok=__snake_case ) lowercase__: Optional[int] = os.path.join(__snake_case , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase__: Dict = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(__snake_case , exist_ok=__snake_case ) def SCREAMING_SNAKE_CASE__ ( self ) -> RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' lowercase__: Any = RealmConfig(num_block_records=self.num_block_records ) return config def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: List[str] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' lowercase__: Union[str, Any] = np.array( [ b'This is the first record', b'This is the second record', b'This is the third record', b'This is the fourth record', b'This is the fifth record', b'This is a longer longer longer record', ] , dtype=__snake_case , ) return block_records def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Dict = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: str = self.get_config() lowercase__: Any = self.get_dummy_retriever() lowercase__: Any = retriever.tokenizer lowercase__: Union[str, Any] = np.array([0, 3] , dtype='long' ) lowercase__: List[Any] = tokenizer(['Test question'] ).input_ids lowercase__: Union[str, Any] = tokenizer( ['the fourth'] , add_special_tokens=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , ).input_ids lowercase__: Optional[Any] = config.reader_seq_len lowercase__ , lowercase__ , lowercase__ , lowercase__: Tuple = retriever( __snake_case , __snake_case , answer_ids=__snake_case , max_length=__snake_case , return_tensors='np' ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(len(__snake_case ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]: '''simple docstring''' lowercase__: str = self.get_config() lowercase__: int = self.get_dummy_retriever() lowercase__: Optional[Any] = retriever.tokenizer lowercase__: Any = np.array([0, 3, 5] , dtype='long' ) lowercase__: Any = tokenizer(['Test question'] ).input_ids lowercase__: int = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=__snake_case , return_token_type_ids=__snake_case , return_attention_mask=__snake_case , ).input_ids lowercase__: int = config.reader_seq_len lowercase__ , lowercase__ , lowercase__ , lowercase__: Dict = retriever( __snake_case , __snake_case , answer_ids=__snake_case , max_length=__snake_case , return_tensors='np' ) self.assertEqual([False, True, True] , __snake_case ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , __snake_case ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , __snake_case ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path lowercase__: Optional[int] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , b'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: lowercase__: Any = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) lowercase__: str = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , b'This is the first record' )
196
import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device _lowerCAmelCase : Optional[Any] = False class __magic_name__ ( unittest.TestCase ): pass @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): def __magic_name__ ( self ) -> Optional[int]: '''simple docstring''' __a =VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) __a =load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) __a =torch.manual_seed(0 ) __a =pipe( image=__snake_case , generator=__snake_case , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images __a =image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) __a =np.array([0.0441, 0.0469, 0.0507, 0.0575, 0.0632, 0.0650, 0.0865, 0.0909, 0.0945] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
218
0
'''simple docstring''' import os import sys import tempfile import torch from .state import AcceleratorState from .utils import PrecisionType, PrepareForLaunch, is_mps_available, patch_environment def __a ( _UpperCamelCase: List[Any] , _UpperCamelCase: List[str]=() , _UpperCamelCase: Any=None , _UpperCamelCase: Dict="no" , _UpperCamelCase: Any="29500" ) -> Tuple: """simple docstring""" _snake_case = False _snake_case = False if any(key.startswith("KAGGLE" ) for key in os.environ.keys() ): _snake_case = True elif "IPython" in sys.modules: _snake_case = "google.colab" in str(sys.modules["IPython"].get_ipython() ) try: _snake_case = PrecisionType(mixed_precision.lower() ) except ValueError: raise ValueError( F"""Unknown mixed_precision mode: {args.mixed_precision.lower()}. Choose between {PrecisionType.list()}.""" ) if (in_colab or in_kaggle) and (os.environ.get("TPU_NAME" , _lowerCAmelCase ) is not None): # TPU launch import torch_xla.distributed.xla_multiprocessing as xmp if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To train on TPU in Colab or Kaggle Kernel, the `Accelerator` should only be initialized inside " "your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if num_processes is None: _snake_case = 8 _snake_case = PrepareForLaunch(_lowerCAmelCase , distributed_type="TPU" ) print(F"""Launching a training on {num_processes} TPU cores.""" ) xmp.spawn(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" ) elif in_colab: # No need for a distributed launch otherwise as it's either CPU or one GPU. if torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on one CPU." ) function(*_lowerCAmelCase ) else: if num_processes is None: raise ValueError( "You have to specify the number of GPUs you would like to use, add `num_processes=...` to your call." ) if num_processes > 1: # Multi-GPU launch from torch.multiprocessing import start_processes from torch.multiprocessing.spawn import ProcessRaisedException if len(AcceleratorState._shared_state ) > 0: raise ValueError( "To launch a multi-GPU training from your notebook, the `Accelerator` should only be initialized " "inside your training function. Restart your notebook and make sure no cells initializes an " "`Accelerator`." ) if torch.cuda.is_initialized(): raise ValueError( "To launch a multi-GPU training from your notebook, you need to avoid running any instruction " "using `torch.cuda` in any cell. Restart your notebook and make sure no cells use any CUDA " "function." ) # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="127.0.01" , master_port=_lowerCAmelCase , mixed_precision=_lowerCAmelCase ): _snake_case = PrepareForLaunch(_lowerCAmelCase , distributed_type="MULTI_GPU" ) print(F"""Launching training on {num_processes} GPUs.""" ) try: start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" ) except ProcessRaisedException as e: if "Cannot re-initialize CUDA in forked subprocess" in e.args[0]: raise RuntimeError( "CUDA has been initialized before the `notebook_launcher` could create a forked subprocess. " "This likely stems from an outside import causing issues once the `notebook_launcher()` is called. " "Please review your imports and test them when running the `notebook_launcher()` to identify " "which one is problematic." ) from e else: # No need for a distributed launch otherwise as it's either CPU, GPU or MPS. if is_mps_available(): _snake_case = "1" print("Launching training on MPS." ) elif torch.cuda.is_available(): print("Launching training on one GPU." ) else: print("Launching training on CPU." ) function(*_lowerCAmelCase ) def __a ( _UpperCamelCase: str , _UpperCamelCase: int=() , _UpperCamelCase: Dict=2 ) -> int: """simple docstring""" from torch.multiprocessing import start_processes with tempfile.NamedTemporaryFile() as tmp_file: # torch.distributed will expect a few environment variable to be here. We set the ones common to each # process here (the other ones will be set be the launcher). with patch_environment( world_size=_lowerCAmelCase , master_addr="127.0.01" , master_port="29500" , accelerate_mixed_precision="no" , accelerate_debug_rdv_file=tmp_file.name , accelerate_use_cpu="yes" , ): _snake_case = PrepareForLaunch(_lowerCAmelCase , debug=_lowerCAmelCase ) start_processes(_lowerCAmelCase , args=_lowerCAmelCase , nprocs=_lowerCAmelCase , start_method="fork" )
354
'''simple docstring''' # Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) UpperCamelCase_ : int = '''pytorch_model.bin''' UpperCamelCase_ : str = '''pytorch_model.bin.index.json''' UpperCamelCase_ : int = '''adapter_config.json''' UpperCamelCase_ : str = '''adapter_model.bin''' UpperCamelCase_ : str = '''adapter_model.safetensors''' UpperCamelCase_ : List[Any] = '''tf_model.h5''' UpperCamelCase_ : Union[str, Any] = '''tf_model.h5.index.json''' UpperCamelCase_ : Tuple = '''model.ckpt''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack''' UpperCamelCase_ : Union[str, Any] = '''flax_model.msgpack.index.json''' UpperCamelCase_ : Dict = '''model.safetensors''' UpperCamelCase_ : List[Any] = '''model.safetensors.index.json''' UpperCamelCase_ : Tuple = '''config.json''' UpperCamelCase_ : List[str] = '''preprocessor_config.json''' UpperCamelCase_ : List[Any] = FEATURE_EXTRACTOR_NAME UpperCamelCase_ : Union[str, Any] = '''generation_config.json''' UpperCamelCase_ : str = '''modelcard.json''' UpperCamelCase_ : List[Any] = '''▁''' UpperCamelCase_ : Tuple = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility UpperCamelCase_ : Any = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. UpperCamelCase_ : Tuple = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] UpperCamelCase_ : str = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def __a ( _UpperCamelCase: Optional[Any] ) -> int: """simple docstring""" if version.parse(_UpperCamelCase ) < version.parse(_UpperCamelCase ): if "dev" in min_version: _snake_case = ( "This example requires a source install from HuggingFace Transformers (see " "`https://huggingface.co/docs/transformers/installation#install-from-source`)," ) else: _snake_case = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + "Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other " "versions of HuggingFace Transformers." )
142
0
UpperCamelCase_ = 256 # Modulus to hash a string UpperCamelCase_ = 1000003 def lowerCamelCase_ ( _a : str , _a : str ): '''simple docstring''' UpperCAmelCase_ : Any = len(_a ) UpperCAmelCase_ : List[Any] = len(_a ) if p_len > t_len: return False UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(_a ): UpperCAmelCase_ : Dict = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus UpperCAmelCase_ : Any = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue UpperCAmelCase_ : Union[str, Any] = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash UpperCAmelCase_ : Union[str, Any] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCamelCase_ ( ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = """abc1abc12""" UpperCAmelCase_ : Optional[int] = """alskfjaldsabc1abc1abc12k23adsfabcabc""" UpperCAmelCase_ : str = """alskfjaldsk23adsfabcabc""" assert rabin_karp(_a , _a ) and not rabin_karp(_a , _a ) # Test 2) UpperCAmelCase_ : List[Any] = """ABABX""" UpperCAmelCase_ : int = """ABABZABABYABABX""" assert rabin_karp(_a , _a ) # Test 3) UpperCAmelCase_ : Tuple = """AAAB""" UpperCAmelCase_ : Dict = """ABAAAAAB""" assert rabin_karp(_a , _a ) # Test 4) UpperCAmelCase_ : Union[str, Any] = """abcdabcy""" UpperCAmelCase_ : Union[str, Any] = """abcxabcdabxabcdabcdabcy""" assert rabin_karp(_a , _a ) # Test 5) UpperCAmelCase_ : Dict = """Lü""" UpperCAmelCase_ : Tuple = """Lüsai""" assert rabin_karp(_a , _a ) UpperCAmelCase_ : Any = """Lue""" assert not rabin_karp(_a , _a ) print("""Success.""" ) if __name__ == "__main__": test_rabin_karp()
345
import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _snake_case ( __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Optional[Any] = CTRLTokenizer A__ : Optional[Any] = False A__ : str = False def A__ ( self: Optional[int] ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase_ : Dict = ["""adapt""", """re@@""", """a@@""", """apt""", """c@@""", """t""", """<unk>"""] UpperCAmelCase_ : Union[str, Any] = dict(zip(lowerCamelCase_ ,range(len(lowerCamelCase_ ) ) ) ) UpperCAmelCase_ : List[Any] = ["""#version: 0.2""", """a p""", """ap t</w>""", """r e""", """a d""", """ad apt</w>""", """"""] UpperCAmelCase_ : Optional[Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase_ : Optional[Any] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + """\n""" ) with open(self.merges_file ,"""w""" ,encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCamelCase_ ) ) def A__ ( self: Optional[int] ,**lowerCamelCase_: Any ) -> str: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase_ ) def A__ ( self: int ,lowerCamelCase_: int ) -> str: UpperCAmelCase_ : List[str] = """adapt react readapt apt""" UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" return input_text, output_text def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) UpperCAmelCase_ : List[Any] = """adapt react readapt apt""" UpperCAmelCase_ : Optional[int] = """adapt re@@ a@@ c@@ t re@@ adapt apt""".split() UpperCAmelCase_ : Tuple = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ ,lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = tokens + [tokenizer.unk_token] UpperCAmelCase_ : List[str] = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) ,lowerCamelCase_ )
345
1
"""simple docstring""" import os import re import shutil import sys import tempfile import unittest import black UpperCAmelCase = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated. UpperCAmelCase = ''' \""" Output class for the scheduler\'s step function output. Args: prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the denoising loop. pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): The predicted denoised sample (x_{0}) based on the model output from the current timestep. `pred_original_sample` can be used to preview progress or for guidance. \""" prev_sample: torch.FloatTensor pred_original_sample: Optional[torch.FloatTensor] = None ''' class __magic_name__ ( unittest.TestCase ): def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Tuple = tempfile.mkdtemp() os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) ) lowercase :Tuple = self.diffusers_dir shutil.copy( os.path.join(snake_case__ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Any = '''src/diffusers''' shutil.rmtree(self.diffusers_dir ) def __snake_case ( self : Dict , snake_case__ : Any , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : int=None ): '''simple docstring''' lowercase :Tuple = comment + f"""\nclass {class_name}(nn.Module):\n""" + class_code if overwrite_result is not None: lowercase :List[str] = comment + f"""\nclass {class_name}(nn.Module):\n""" + overwrite_result lowercase :List[Any] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_1_9 ) lowercase :List[str] = black.format_str(snake_case__ , mode=snake_case__ ) lowercase :Dict = os.path.join(self.diffusers_dir , '''new_code.py''' ) with open(snake_case__ , '''w''' , newline='''\n''' ) as f: f.write(snake_case__ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(snake_case__ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name , overwrite=snake_case__ ) with open(snake_case__ , '''r''' ) as f: self.assertTrue(f.read() , snake_case__ ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[int] = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' ) self.assertEqual(snake_case__ , snake_case__ ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , ) # With no empty line at the end self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , snake_case__ , ) # Copy consistency with rename self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , snake_case__ ) , ) # Copy consistency with a really long name lowercase :Union[str, Any] = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason''' self.check_copy_consistency( f"""# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}""" , f"""{long_class_name}SchedulerOutput""" , re.sub('''Bert''' , snake_case__ , snake_case__ ) , ) # Copy consistency with overwrite self.check_copy_consistency( '''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , snake_case__ , overwrite_result=re.sub('''DDPM''' , '''Test''' , snake_case__ ) , )
172
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def lowerCamelCase (a_ :Optional[int] , a_ :Union[str, Any] , a_ :Optional[Any]=None) -> List[Any]: # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F"""{torch_layer} layer.weight does not match""" lowercase :int = nn.Parameter(a_) if bias is not None: assert torch_layer.bias.shape == bias.shape, F"""{torch_layer} layer.bias does not match""" lowercase :Tuple = nn.Parameter(a_) def lowerCamelCase (a_ :int , a_ :Any , a_ :Optional[int]) -> List[Any]: # set torch weights for 1-to-1 comparison lowercase :str = np.asarray(weights[0]) lowercase :List[Any] = np.asarray(weights[1]) lowercase :Optional[int] = np.asarray(weights[2]) set_param( torch_layer.self_attention.query_key , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.output.dense , torch.tensor(a_).view(-1 , a_).contiguous().transpose(0 , 1) , ) def lowerCamelCase (a_ :str , a_ :Any , a_ :Union[str, Any]) -> Dict: # set torch weights for 1-to-1 comparison lowercase :str = np.asarray(weights[0]) lowercase :Dict = np.asarray(weights[1]) lowercase :Dict = np.asarray(weights[2]) lowercase :Optional[Any] = np.asarray(weights[3]) set_param( torch_layer.self_attention.query , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.key , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.self_attention.value , torch.tensor(a_).transpose(1 , 2).contiguous().view(-1 , a_) , ) set_param( torch_layer.output.dense , torch.tensor(a_).view(-1 , a_).contiguous().transpose(0 , 1) , ) def lowerCamelCase (a_ :Union[str, Any] , a_ :Dict , a_ :Optional[int]) -> Optional[Any]: # layernorm 1 lowercase :Optional[int] = weights[0][0][0] lowercase :Union[str, Any] = np.asarray(layer_norm_a[0]) lowercase :List[str] = np.asarray(layer_norm_a[1]) set_param( torch_block.attention.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # lsh weights + output lowercase :Optional[Any] = weights[0][1] if len(a_) < 4: set_layer_weights_in_torch_lsh(a_ , torch_block.attention , a_) else: set_layer_weights_in_torch_local(a_ , torch_block.attention , a_) # intermediate weighs lowercase :Optional[int] = weights[2][0][1][2] # Chunked Feed Forward if len(a_) == 4: lowercase :int = intermediate_weights[2] # layernorm 2 lowercase :int = np.asarray(intermediate_weights[0][0]) lowercase :Union[str, Any] = np.asarray(intermediate_weights[0][1]) set_param( torch_block.feed_forward.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # intermediate dense lowercase :Dict = np.asarray(intermediate_weights[1][0]) lowercase :Optional[Any] = np.asarray(intermediate_weights[1][1]) set_param( torch_block.feed_forward.dense.dense , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) # intermediate out lowercase :Union[str, Any] = np.asarray(intermediate_weights[4][0]) lowercase :Tuple = np.asarray(intermediate_weights[4][1]) set_param( torch_block.feed_forward.output.dense , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) def lowerCamelCase (a_ :Tuple , a_ :Dict , a_ :Tuple) -> str: # reformer model lowercase :Union[str, Any] = torch_model.reformer # word embeds lowercase :Tuple = np.asarray(weights[1]) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(a_) , ) if isinstance(weights[3] , a_): lowercase :str = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights)): lowercase :List[str] = np.asarray(weights[3][emb_idx][0]) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F"""{position_embeddings[emb_idx]} emb does not match""" lowercase :int = nn.Parameter(torch.tensor(a_)) lowercase :Dict = weights[5] assert len(torch_model_reformer.encoder.layers) * 4 == len( a_), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers): lowercase :Optional[int] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(a_ , a_ , a_) # output layer norm lowercase :Dict = np.asarray(weights[7][0]) lowercase :Optional[Any] = np.asarray(weights[7][1]) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(a_) , torch.tensor(a_) , ) # output embeddings lowercase :str = np.asarray(weights[9][0]) lowercase :Union[str, Any] = np.asarray(weights[9][1]) set_param( torch_model.lm_head.decoder , torch.tensor(a_).transpose(0 , 1).contiguous() , torch.tensor(a_) , ) def lowerCamelCase (a_ :Optional[Any] , a_ :List[Any] , a_ :Tuple) -> Union[str, Any]: # Initialise PyTorch model lowercase :Optional[Any] = ReformerConfig.from_json_file(a_) print(F"""Building PyTorch model from configuration: {config}""") lowercase :Dict = ReformerModelWithLMHead(a_) with open(a_ , '''rb''') as f: lowercase :Tuple = pickle.load(a_)['''weights'''] set_model_weights_in_torch(a_ , a_ , config.hidden_size) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""") torch.save(model.state_dict() , a_) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
172
1
"""simple docstring""" import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = """The Nymphenburg Palace is a beautiful palace in Munich!""" def _A (__a , __a ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = { '''attention_cell''': '''multi_head''', '''num_layers''': 4, '''units''': 10_24, '''hidden_size''': 7_68, '''max_length''': 5_12, '''num_heads''': 8, '''scaled''': True, '''dropout''': 0.1, '''use_residual''': True, '''embed_size''': 10_24, '''embed_dropout''': 0.1, '''word_embed''': None, '''layer_norm_eps''': 1e-5, '''token_type_vocab_size''': 2, } SCREAMING_SNAKE_CASE_ : str = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py SCREAMING_SNAKE_CASE_ : Dict = BERTEncoder( attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__a , output_all_encodings=__a , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __a ) , ) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later SCREAMING_SNAKE_CASE_ : str = '''openwebtext_ccnews_stories_books_cased''' # Specify download folder to Gluonnlp's vocab SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(get_home_dir() , '''models''' ) SCREAMING_SNAKE_CASE_ : List[Any] = _load_vocab(__a , __a , __a , cls=__a ) SCREAMING_SNAKE_CASE_ : Optional[Any] = nlp.model.BERTModel( __a , len(__a ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__a , use_token_type_embed=__a , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__a , use_decoder=__a , ) original_bort.load_parameters(__a , cast_dtype=__a , ignore_extra=__a ) SCREAMING_SNAKE_CASE_ : List[str] = original_bort._collect_params_with_prefix() # Build our config 🤗 SCREAMING_SNAKE_CASE_ : List[Any] = { '''architectures''': ['''BertForMaskedLM'''], '''attention_probs_dropout_prob''': predefined_args['''dropout'''], '''hidden_act''': '''gelu''', '''hidden_dropout_prob''': predefined_args['''dropout'''], '''hidden_size''': predefined_args['''embed_size'''], '''initializer_range''': 0.02, '''intermediate_size''': predefined_args['''hidden_size'''], '''layer_norm_eps''': predefined_args['''layer_norm_eps'''], '''max_position_embeddings''': predefined_args['''max_length'''], '''model_type''': '''bort''', '''num_attention_heads''': predefined_args['''num_heads'''], '''num_hidden_layers''': predefined_args['''num_layers'''], '''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa '''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa '''vocab_size''': len(__a ), } SCREAMING_SNAKE_CASE_ : List[str] = BertConfig.from_dict(__a ) SCREAMING_SNAKE_CASE_ : str = BertForMaskedLM(__a ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(__a ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(__a , __a ): SCREAMING_SNAKE_CASE_ : Tuple = hf_param.shape SCREAMING_SNAKE_CASE_ : Optional[int] = to_torch(params[gluon_param] ) SCREAMING_SNAKE_CASE_ : Tuple = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param SCREAMING_SNAKE_CASE_ : str = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) SCREAMING_SNAKE_CASE_ : Dict = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): SCREAMING_SNAKE_CASE_ : BertLayer = hf_bort_model.bert.encoder.layer[i] # self attention SCREAMING_SNAKE_CASE_ : BertSelfAttention = layer.attention.self SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params( self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) SCREAMING_SNAKE_CASE_ : str = check_and_map_params( self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) SCREAMING_SNAKE_CASE_ : str = check_and_map_params( self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) SCREAMING_SNAKE_CASE_ : Tuple = check_and_map_params( self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params( self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output SCREAMING_SNAKE_CASE_ : BertSelfOutput = layer.attention.output SCREAMING_SNAKE_CASE_ : List[str] = check_and_map_params( self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' ) SCREAMING_SNAKE_CASE_ : List[str] = check_and_map_params( self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' ) SCREAMING_SNAKE_CASE_ : Tuple = check_and_map_params( self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate SCREAMING_SNAKE_CASE_ : BertIntermediate = layer.intermediate SCREAMING_SNAKE_CASE_ : List[Any] = check_and_map_params( intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) SCREAMING_SNAKE_CASE_ : Any = check_and_map_params( intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output SCREAMING_SNAKE_CASE_ : BertOutput = layer.output SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params( bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params( bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params( bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) SCREAMING_SNAKE_CASE_ : str = check_and_map_params( bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models SCREAMING_SNAKE_CASE_ : int = RobertaTokenizer.from_pretrained('''roberta-base''' ) SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode_plus(__a )['''input_ids'''] # Get gluon output SCREAMING_SNAKE_CASE_ : List[str] = mx.nd.array([input_ids] ) SCREAMING_SNAKE_CASE_ : int = original_bort(inputs=__a , token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(__a ) SCREAMING_SNAKE_CASE_ : List[str] = BertModel.from_pretrained(__a ) hf_bort_model.eval() SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode_plus(__a , return_tensors='''pt''' ) SCREAMING_SNAKE_CASE_ : List[Any] = hf_bort_model(**__a )[0] SCREAMING_SNAKE_CASE_ : List[Any] = output_gluon[0].asnumpy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_hf[0].detach().numpy() SCREAMING_SNAKE_CASE_ : int = np.max(np.abs(hf_layer - gluon_layer ) ).item() SCREAMING_SNAKE_CASE_ : Tuple = np.allclose(__a , __a , atol=1e-3 ) if success: print('''✔️ Both model do output the same tensors''' ) else: print('''❌ Both model do **NOT** output the same tensors''' ) print('''Absolute difference is:''' , __a ) if __name__ == "__main__": UpperCAmelCase_ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ : Optional[Any] = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
91
"""simple docstring""" import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = (PNDMScheduler,) __UpperCamelCase = (("num_inference_steps", 5_0),) def _SCREAMING_SNAKE_CASE ( self : Any , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = { '''num_train_timesteps''': 1000, '''beta_start''': 0.00_01, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', } config.update(**lowercase_) return config def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowercase_ : List[str]=0 , **lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = self.dummy_sample SCREAMING_SNAKE_CASE_ : List[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : Dict = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class.from_pretrained(lowercase_) new_scheduler.set_timesteps(lowercase_) # copy over dummy past residuals SCREAMING_SNAKE_CASE_ : Optional[Any] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Dict = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : List[str]=0 , **lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Optional[Any] = kwargs.pop('''num_inference_steps''' , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.1 * sample SCREAMING_SNAKE_CASE_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Dict = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Union[str, Any] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Dict = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler_class.from_pretrained(lowercase_) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase_) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE_ : Any = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Optional[Any] = new_scheduler.step_prk(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Tuple = new_scheduler.step_plms(lowercase_ , lowercase_ , lowercase_ , **lowercase_).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def _SCREAMING_SNAKE_CASE ( self : str , **lowercase_ : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : Optional[int] = self.get_scheduler_config(**lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Dict = 10 SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_model() SCREAMING_SNAKE_CASE_ : str = self.dummy_sample_deter scheduler.set_timesteps(lowercase_) for i, t in enumerate(scheduler.prk_timesteps): SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : str = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample for i, t in enumerate(scheduler.plms_timesteps): SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scheduler.step_plms(lowercase_ , lowercase_ , lowercase_).prev_sample return sample def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = dict(self.forward_default_kwargs) SCREAMING_SNAKE_CASE_ : Dict = kwargs.pop('''num_inference_steps''' , lowercase_) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : Tuple = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[Any] = scheduler_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = self.dummy_sample SCREAMING_SNAKE_CASE_ : Any = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase_ , '''set_timesteps'''): scheduler.set_timesteps(lowercase_) elif num_inference_steps is not None and not hasattr(lowercase_ , '''set_timesteps'''): SCREAMING_SNAKE_CASE_ : Optional[Any] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE_ : str = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE_ : Optional[int] = dummy_past_residuals[:] SCREAMING_SNAKE_CASE_ : Dict = scheduler.step_prk(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : List[Any] = scheduler.step_prk(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler.step_plms(lowercase_ , 0 , lowercase_ , **lowercase_).prev_sample SCREAMING_SNAKE_CASE_ : Any = scheduler.step_plms(lowercase_ , 1 , lowercase_ , **lowercase_).prev_sample self.assertEqual(output_a.shape , sample.shape) self.assertEqual(output_a.shape , output_a.shape) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config(steps_offset=1) SCREAMING_SNAKE_CASE_ : Tuple = scheduler_class(**lowercase_) scheduler.set_timesteps(10) assert torch.equal( scheduler.timesteps , torch.LongTensor( [901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]) , ) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for beta_start, beta_end in zip([0.00_01, 0.0_01] , [0.0_02, 0.02]): self.check_over_configs(beta_start=lowercase_ , beta_end=lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' for t in [1, 5, 10]: self.check_over_forward(time_step=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100]): self.check_over_forward(num_inference_steps=lowercase_) def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = 27 for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE_ : List[Any] = self.dummy_sample SCREAMING_SNAKE_CASE_ : str = 0.1 * sample SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_class(**lowercase_) scheduler.set_timesteps(lowercase_) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): SCREAMING_SNAKE_CASE_ : int = scheduler.step_prk(lowercase_ , lowercase_ , lowercase_).prev_sample def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' with self.assertRaises(lowercase_): SCREAMING_SNAKE_CASE_ : int = self.scheduler_classes[0] SCREAMING_SNAKE_CASE_ : List[str] = self.get_scheduler_config() SCREAMING_SNAKE_CASE_ : Dict = scheduler_class(**lowercase_) scheduler.step_plms(self.dummy_sample , 1 , self.dummy_sample).prev_sample def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = self.full_loop() SCREAMING_SNAKE_CASE_ : List[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_98.13_18) < 1e-2 assert abs(result_mean.item() - 0.25_80) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.full_loop(prediction_type='''v_prediction''') SCREAMING_SNAKE_CASE_ : str = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 67.39_86) < 1e-2 assert abs(result_mean.item() - 0.08_78) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : Any = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 2_30.03_99) < 1e-2 assert abs(result_mean.item() - 0.29_95) < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.full_loop(set_alpha_to_one=lowercase_ , beta_start=0.01) SCREAMING_SNAKE_CASE_ : int = torch.sum(torch.abs(lowercase_)) SCREAMING_SNAKE_CASE_ : List[str] = torch.mean(torch.abs(lowercase_)) assert abs(result_sum.item() - 1_86.94_82) < 1e-2 assert abs(result_mean.item() - 0.24_34) < 1e-3
91
1
_A : List[Any] = [ 'DownloadConfig', 'DownloadManager', 'DownloadMode', 'StreamingDownloadManager', ] from .download_config import DownloadConfig from .download_manager import DownloadManager, DownloadMode from .streaming_download_manager import StreamingDownloadManager
265
def _a ( UpperCAmelCase ) -> bool: """simple docstring""" return str(UpperCAmelCase ) == str(UpperCAmelCase )[::-1] def _a ( UpperCAmelCase ) -> int: """simple docstring""" return int(UpperCAmelCase ) + int(str(UpperCAmelCase )[::-1] ) def _a ( UpperCAmelCase = 10000 ) -> int: """simple docstring""" lowerCamelCase__ : Tuple = [] for num in range(1 , UpperCAmelCase ): lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Union[str, Any] = num while iterations < 50: lowerCamelCase__ : Dict = sum_reverse(UpperCAmelCase ) iterations += 1 if is_palindrome(UpperCAmelCase ): break else: lychrel_nums.append(UpperCAmelCase ) return len(UpperCAmelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
265
1
def UpperCAmelCase__ ( ): '''simple docstring''' return [ a * b * (10_00 - a - b) for a in range(1 , 9_99 ) for b in range(_A , 9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
188
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Dict: """simple docstring""" super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self, lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" return super().__call__(lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> int: """simple docstring""" a__ ={} if "candidate_labels" in kwargs: a__ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: a__ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCAmelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a sound of {}." ) -> Union[str, Any]: """simple docstring""" if isinstance(lowercase_, lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a__ =requests.get(lowercase_ ).content else: with open(lowercase_, '''rb''' ) as f: a__ =f.read() if isinstance(lowercase_, lowercase_ ): a__ =ffmpeg_read(lowercase_, self.feature_extractor.sampling_rate ) if not isinstance(lowercase_, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) a__ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) a__ =candidate_labels a__ =[hypothesis_template.format(lowercase_ ) for x in candidate_labels] a__ =self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) a__ =[text_inputs] return inputs def _UpperCAmelCase ( self, lowercase_ ) -> str: """simple docstring""" a__ =model_inputs.pop('''candidate_labels''' ) a__ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowercase_ ): a__ =text_inputs[0] else: # Batching case. a__ =text_inputs[0][0] a__ =self.model(**lowercase_, **lowercase_ ) a__ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _UpperCAmelCase ( self, lowercase_ ) -> Any: """simple docstring""" a__ =model_outputs.pop('''candidate_labels''' ) a__ =model_outputs['''logits'''][0] if self.framework == "pt": a__ =logits.softmax(dim=0 ) a__ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) a__ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
188
1
"""simple docstring""" def _snake_case ( UpperCamelCase : int ): UpperCAmelCase : Tuple = int(UpperCamelCase ) if n_element < 1: UpperCAmelCase : Tuple = ValueError("""a should be a positive number""" ) raise my_error UpperCAmelCase : Tuple = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = (0, 0, 0) UpperCAmelCase : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": A: int = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") A: List[str] = hamming(int(n)) print("-----------------------------------------------------") print(f"""The list with nth numbers is: {hamming_numbers}""") print("-----------------------------------------------------")
76
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[str] = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 128, """min_length""": 12, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 142, """min_length""": 56, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 62, """min_length""": 11, """num_beams""": 6}, } } UpperCAmelCase : Optional[Any] = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 128, """task_specific_params.summarization.min_length""": 12, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 142, """task_specific_params.summarization_cnn.min_length""": 56, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 62, """task_specific_params.summarization_xsum.min_length""": 11, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , x.transpose() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , transpose(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : List[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : int = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) , np.asarray(transpose(_SCREAMING_SNAKE_CASE , axes=(1, 2, 0) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) UpperCAmelCase : Any = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , reshape(_SCREAMING_SNAKE_CASE , (4, 3) ).numpy() ) ) UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[Any] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , reshape(_SCREAMING_SNAKE_CASE , (12, 5) ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[Any] = np.random.randn(3 , 4 ) UpperCAmelCase : Union[str, Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (4, 3) ) ) ) ) UpperCAmelCase : List[str] = np.random.randn(3 , 4 , 5 ) UpperCAmelCase : List[str] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) , np.asarray(reshape(_SCREAMING_SNAKE_CASE , (12, 5) ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.squeeze(_SCREAMING_SNAKE_CASE ) ) ) UpperCAmelCase : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[Any] = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : List[str] = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : int = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Tuple = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Dict = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , squeeze(_SCREAMING_SNAKE_CASE ).numpy() ) ) UpperCAmelCase : Dict = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , squeeze(_SCREAMING_SNAKE_CASE , axis=2 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(1 , 3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase : Optional[Any] = np.random.randn(1 , 4 , 1 , 5 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) , np.asarray(squeeze(_SCREAMING_SNAKE_CASE , axis=2 ) ) ) ) def SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Dict = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) @require_torch def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple = np.random.randn(3 , 4 ) UpperCAmelCase : str = torch.tensor(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_tf def SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int = np.random.randn(3 , 4 ) UpperCAmelCase : List[str] = tf.constant(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ).numpy() ) ) @require_flax def SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] = np.random.randn(3 , 4 ) UpperCAmelCase : Optional[Any] = jnp.array(_SCREAMING_SNAKE_CASE ) self.assertTrue(np.allclose(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) , np.asarray(expand_dims(_SCREAMING_SNAKE_CASE , axis=1 ) ) ) )
76
1
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "tokenizer_file": { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json", }, } lowercase_ = { "gpt-neox-20b": 2_0_4_8, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Any = VOCAB_FILES_NAMES __UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Dict = ['input_ids', 'attention_mask'] def __init__( self , _a=None , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ): super().__init__( _a , _a , tokenizer_file=_a , unk_token=_a , bos_token=_a , eos_token=_a , add_prefix_space=_a , **_a , ) __a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _a ) != add_prefix_space: __a = getattr(_a , pre_tok_state.pop('''type''' ) ) __a = add_prefix_space __a = pre_tok_class(**_a ) __a = add_prefix_space def __UpperCAmelCase ( self , _a , _a = None ): __a = self._tokenizer.model.save(_a , name=_a ) return tuple(_a ) def __UpperCAmelCase ( self , _a ): __a = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_a , add_special_tokens=_a ) + [self.eos_token_id] ) if len(_a ) > self.model_max_length: __a = input_ids[-self.model_max_length :] return input_ids
45
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Dict , A : int , A : int , A : int , A : Union[str, Any]=0.0 , A : Optional[int] = None , A : str = "geglu" , A : Optional[int] = None , A : bool = False , A : bool = False , A : bool = False , A : bool = False , A : bool = True , A : str = "layer_norm" , A : bool = False , ) ->Any: super().__init__() lowerCamelCase__ : int = only_cross_attention lowerCamelCase__ : Optional[Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' lowerCamelCase__ : Union[str, Any] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCamelCase__ : Optional[Any] = AdaLayerNorm(A , A ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ : int = AdaLayerNormZero(A , A ) else: lowerCamelCase__ : Dict = nn.LayerNorm(A , elementwise_affine=A ) lowerCamelCase__ : Any = Attention( query_dim=A , heads=A , dim_head=A , dropout=A , bias=A , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=A , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCamelCase__ : Tuple = ( AdaLayerNorm(A , A ) if self.use_ada_layer_norm else nn.LayerNorm(A , elementwise_affine=A ) ) lowerCamelCase__ : int = Attention( query_dim=A , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=A , dim_head=A , dropout=A , bias=A , upcast_attention=A , ) # is self-attn if encoder_hidden_states is none else: lowerCamelCase__ : Dict = None lowerCamelCase__ : Tuple = None # 3. Feed-forward lowerCamelCase__ : Optional[int] = nn.LayerNorm(A , elementwise_affine=A ) lowerCamelCase__ : Union[str, Any] = FeedForward(A , dropout=A , activation_fn=A , final_dropout=A ) # let chunk size default to None lowerCamelCase__ : str = None lowerCamelCase__ : Tuple = 0 def __lowerCamelCase ( self : Any , A : Optional[int] , A : int ) ->List[str]: # Sets chunk feed-forward lowerCamelCase__ : List[Any] = chunk_size lowerCamelCase__ : List[str] = dim def __lowerCamelCase ( self : str , A : torch.FloatTensor , A : Optional[torch.FloatTensor] = None , A : Optional[torch.FloatTensor] = None , A : Optional[torch.FloatTensor] = None , A : Optional[torch.LongTensor] = None , A : Dict[str, Any] = None , A : Optional[torch.LongTensor] = None , ) ->Tuple: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: lowerCamelCase__ : Union[str, Any] = self.norma(A , A ) elif self.use_ada_layer_norm_zero: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Any = self.norma( A , A , A , hidden_dtype=hidden_states.dtype ) else: lowerCamelCase__ : List[str] = self.norma(A ) lowerCamelCase__ : str = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCamelCase__ : Any = self.attna( A , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=A , **A , ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Any = gate_msa.unsqueeze(1 ) * attn_output lowerCamelCase__ : Optional[int] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCamelCase__ : int = ( self.norma(A , A ) if self.use_ada_layer_norm else self.norma(A ) ) lowerCamelCase__ : int = self.attna( A , encoder_hidden_states=A , attention_mask=A , **A , ) lowerCamelCase__ : Any = attn_output + hidden_states # 3. Feed-forward lowerCamelCase__ : Union[str, Any] = self.norma(A ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[int] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) lowerCamelCase__ : Optional[int] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCamelCase__ : Optional[int] = torch.cat( [self.ff(A ) for hid_slice in norm_hidden_states.chunk(A , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCamelCase__ : Optional[int] = self.ff(A ) if self.use_ada_layer_norm_zero: lowerCamelCase__ : Optional[Any] = gate_mlp.unsqueeze(1 ) * ff_output lowerCamelCase__ : List[Any] = ff_output + hidden_states return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : Optional[int] = None , A : int = 4 , A : float = 0.0 , A : str = "geglu" , A : bool = False , ) ->int: super().__init__() lowerCamelCase__ : List[Any] = int(dim * mult ) lowerCamelCase__ : List[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCamelCase__ : int = GELU(A , A ) if activation_fn == "gelu-approximate": lowerCamelCase__ : Optional[int] = GELU(A , A , approximate='''tanh''' ) elif activation_fn == "geglu": lowerCamelCase__ : Any = GEGLU(A , A ) elif activation_fn == "geglu-approximate": lowerCamelCase__ : int = ApproximateGELU(A , A ) lowerCamelCase__ : Union[str, Any] = nn.ModuleList([] ) # project in self.net.append(A ) # project dropout self.net.append(nn.Dropout(A ) ) # project out self.net.append(nn.Linear(A , A ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(A ) ) def __lowerCamelCase ( self : Dict , A : List[Any] ) ->Optional[Any]: for module in self.net: lowerCamelCase__ : int = module(A ) return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , A : int , A : int , A : str = "none" ) ->Optional[Any]: super().__init__() lowerCamelCase__ : List[Any] = nn.Linear(A , A ) lowerCamelCase__ : Any = approximate def __lowerCamelCase ( self : List[str] , A : Tuple ) ->str: if gate.device.type != "mps": return F.gelu(A , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __lowerCamelCase ( self : List[str] , A : str ) ->Optional[int]: lowerCamelCase__ : List[str] = self.proj(A ) lowerCamelCase__ : Optional[int] = self.gelu(A ) return hidden_states class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Tuple , A : int , A : int ) ->Dict: super().__init__() lowerCamelCase__ : Optional[Any] = nn.Linear(A , dim_out * 2 ) def __lowerCamelCase ( self : List[Any] , A : List[Any] ) ->Tuple: if gate.device.type != "mps": return F.gelu(A ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __lowerCamelCase ( self : Any , A : Union[str, Any] ) ->Any: lowerCamelCase__ , lowerCamelCase__ : List[Any] = self.proj(A ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(A ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : int ) ->str: super().__init__() lowerCamelCase__ : Optional[int] = nn.Linear(A , A ) def __lowerCamelCase ( self : Union[str, Any] , A : Dict ) ->Optional[Any]: lowerCamelCase__ : List[str] = self.proj(A ) return x * torch.sigmoid(1.7_02 * x ) class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : int , A : Dict , A : Optional[Any] ) ->str: super().__init__() lowerCamelCase__ : List[str] = nn.Embedding(A , A ) lowerCamelCase__ : str = nn.SiLU() lowerCamelCase__ : int = nn.Linear(A , embedding_dim * 2 ) lowerCamelCase__ : Optional[Any] = nn.LayerNorm(A , elementwise_affine=A ) def __lowerCamelCase ( self : int , A : Union[str, Any] , A : Union[str, Any] ) ->Union[str, Any]: lowerCamelCase__ : Union[str, Any] = self.linear(self.silu(self.emb(A ) ) ) lowerCamelCase__ , lowerCamelCase__ : List[str] = torch.chunk(A , 2 ) lowerCamelCase__ : Any = self.norm(A ) * (1 + scale) + shift return x class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : str , A : Optional[Any] , A : int ) ->str: super().__init__() lowerCamelCase__ : Union[str, Any] = CombinedTimestepLabelEmbeddings(A , A ) lowerCamelCase__ : int = nn.SiLU() lowerCamelCase__ : List[str] = nn.Linear(A , 6 * embedding_dim , bias=A ) lowerCamelCase__ : str = nn.LayerNorm(A , elementwise_affine=A , eps=1e-6 ) def __lowerCamelCase ( self : List[str] , A : Any , A : List[Any] , A : Tuple , A : Dict=None ) ->Union[str, Any]: lowerCamelCase__ : List[Any] = self.linear(self.silu(self.emb(A , A , hidden_dtype=A ) ) ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : int = emb.chunk(6 , dim=1 ) lowerCamelCase__ : List[Any] = self.norm(A ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self : Any , A : int , A : int , A : int , A : Optional[str] = None , A : float = 1e-5 ) ->Any: super().__init__() lowerCamelCase__ : int = num_groups lowerCamelCase__ : List[str] = eps if act_fn is None: lowerCamelCase__ : Tuple = None else: lowerCamelCase__ : Dict = get_activation(A ) lowerCamelCase__ : Any = nn.Linear(A , out_dim * 2 ) def __lowerCamelCase ( self : List[str] , A : Optional[int] , A : str ) ->Tuple: if self.act: lowerCamelCase__ : Union[str, Any] = self.act(A ) lowerCamelCase__ : Optional[Any] = self.linear(A ) lowerCamelCase__ : Optional[Any] = emb[:, :, None, None] lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = emb.chunk(2 , dim=1 ) lowerCamelCase__ : str = F.group_norm(A , self.num_groups , eps=self.eps ) lowerCamelCase__ : Dict = x * (1 + scale) + shift return x
142
0
'''simple docstring''' from __future__ import annotations def _UpperCAmelCase ( _UpperCamelCase : list[list[int]] ) -> bool: A_ = len(_UpperCamelCase ) # We need to create solution object to save path. A_ = [[0 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] A_ = run_maze(_UpperCamelCase, 0, 0, _UpperCamelCase ) if solved: print('''\n'''.join(str(_UpperCamelCase ) for row in solutions ) ) else: print('''No solution exists!''' ) return solved def _UpperCAmelCase ( _UpperCamelCase : list[list[int]], _UpperCamelCase : int, _UpperCamelCase : int, _UpperCamelCase : list[list[int]] ) -> bool: A_ = len(_UpperCamelCase ) # Final check point. if i == j == (size - 1): A_ = 1 return True A_ = (not i < 0) and (not j < 0) # Check lower bounds A_ = (i < size) and (j < size) # Check upper bounds if lower_flag and upper_flag: # check for already visited and block points. A_ = (not solutions[i][j]) and (not maze[i][j]) if block_flag: # check visited A_ = 1 # check for directions if ( run_maze(_UpperCamelCase, i + 1, _UpperCamelCase, _UpperCamelCase ) or run_maze(_UpperCamelCase, _UpperCamelCase, j + 1, _UpperCamelCase ) or run_maze(_UpperCamelCase, i - 1, _UpperCamelCase, _UpperCamelCase ) or run_maze(_UpperCamelCase, _UpperCamelCase, j - 1, _UpperCamelCase ) ): return True A_ = 0 return False return False if __name__ == "__main__": import doctest doctest.testmod()
18
'''simple docstring''' import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __UpperCAmelCase : '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=[0, 1, 2, 3] , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=[1, 384, 24, 24] , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , ) -> Tuple: A_ = parent A_ = batch_size A_ = image_size A_ = patch_size A_ = num_channels A_ = is_training A_ = use_labels A_ = hidden_size A_ = num_hidden_layers A_ = backbone_out_indices A_ = num_attention_heads A_ = intermediate_size A_ = hidden_act A_ = hidden_dropout_prob A_ = attention_probs_dropout_prob A_ = initializer_range A_ = num_labels A_ = backbone_featmap_shape A_ = scope A_ = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A_ = (image_size // patch_size) ** 2 A_ = num_patches + 1 def __A ( self ) -> Optional[Any]: A_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A_ = self.get_config() return config, pixel_values, labels def __A ( self ) -> Optional[Any]: A_ = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=_SCREAMING_SNAKE_CASE , backbone_featmap_shape=self.backbone_featmap_shape , ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: A_ = DPTModel(config=_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: A_ = self.num_labels A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = self.num_labels A_ = DPTForSemanticSegmentation(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.eval() A_ = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __A ( self ) -> Optional[int]: A_ = self.prepare_config_and_inputs() A_ ,A_ ,A_ = config_and_inputs A_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowercase : Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () __lowercase : Optional[int] = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) __lowercase : Any = False __lowercase : Tuple = False __lowercase : List[Any] = False def __A ( self ) -> Tuple: A_ = DPTModelTester(self ) A_ = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def __A ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def __A ( self ) -> Union[str, Any]: pass def __A ( self ) -> Dict: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , nn.Linear ) ) def __A ( self ) -> Optional[int]: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ = model_class(_SCREAMING_SNAKE_CASE ) A_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ = [*signature.parameters.keys()] A_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> str: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[Any]: A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ): continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = False A_ = True if model_class in get_values(_SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing: continue A_ = model_class(_SCREAMING_SNAKE_CASE ) model.to(_SCREAMING_SNAKE_CASE ) model.gradient_checkpointing_enable() model.train() A_ = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) A_ = model(**_SCREAMING_SNAKE_CASE ).loss loss.backward() def __A ( self ) -> Tuple: A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = _config_zero_init(_SCREAMING_SNAKE_CASE ) for model_class in self.all_model_classes: A_ = model_class(config=_SCREAMING_SNAKE_CASE ) # Skip the check for the backbone A_ = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A_ = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def __A ( self ) -> int: pass @slow def __A ( self ) -> Dict: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A_ = DPTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type A_ ,A_ = self.model_tester.prepare_config_and_inputs_for_common() A_ = '''add''' with self.assertRaises(_SCREAMING_SNAKE_CASE ): A_ = DPTForDepthEstimation(_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( ) -> Optional[int]: A_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __A ( self ) -> Any: A_ = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A_ = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(_SCREAMING_SNAKE_CASE ) A_ = prepare_img() A_ = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='''pt''' ).to(_SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): A_ = model(**_SCREAMING_SNAKE_CASE ) A_ = outputs.predicted_depth # verify the predicted depth A_ = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , _SCREAMING_SNAKE_CASE ) A_ = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(_SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
18
1
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : list , UpperCAmelCase_ : list , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 __snake_case : List[Any] = 0 __snake_case : List[Any] = 0 __snake_case : Optional[int] = knapsack(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , index + 1 ) if weights[index] <= max_weight: __snake_case : int = values[index] + knapsack( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , max_weight - weights[index] , index + 1 ) return max(UpperCAmelCase_ , UpperCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod()
172
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Optional[int]= logging.get_logger(__name__) _a : Dict= {"vocab_file": "spiece.model"} _a : int= { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } _a : int= { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _a : Optional[Any]= "▁" class UpperCamelCase ( lowercase ): UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self : Optional[Any] , _A : List[str] , _A : int=True , _A : Optional[int]=True , _A : Any=False , _A : str="[CLS]" , _A : Dict="[SEP]" , _A : Any="<unk>" , _A : List[Any]="[SEP]" , _A : Any="<pad>" , _A : List[str]="[CLS]" , _A : int="[MASK]" , _A : Optional[Dict[str, Any]] = None , **_A : List[str] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __snake_case : Dict = ( AddedToken(_A , lstrip=_A , rstrip=_A , normalized=_A) if isinstance(_A , _A) else mask_token ) __snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_A , remove_space=_A , keep_accents=_A , bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , pad_token=_A , cls_token=_A , mask_token=_A , sp_model_kwargs=self.sp_model_kwargs , **_A , ) __snake_case : Optional[int] = do_lower_case __snake_case : Any = remove_space __snake_case : Any = keep_accents __snake_case : Dict = vocab_file __snake_case : int = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(_A) @property def _lowercase (self : str) -> Optional[Any]: return len(self.sp_model) def _lowercase (self : Dict) -> List[str]: __snake_case : int = {self.convert_ids_to_tokens(_A): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def __getstate__(self : Optional[int]) -> int: __snake_case : List[Any] = self.__dict__.copy() __snake_case : Any = None return state def __setstate__(self : Union[str, Any] , _A : Optional[Any]) -> int: __snake_case : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs'): __snake_case : Optional[int] = {} __snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def _lowercase (self : Tuple , _A : int) -> int: if self.remove_space: __snake_case : int = ' '.join(inputs.strip().split()) else: __snake_case : str = inputs __snake_case : Optional[int] = outputs.replace('``' , '"').replace('\'\'' , '"') if not self.keep_accents: __snake_case : Tuple = unicodedata.normalize('NFKD' , _A) __snake_case : Optional[Any] = ''.join([c for c in outputs if not unicodedata.combining(_A)]) if self.do_lower_case: __snake_case : Union[str, Any] = outputs.lower() return outputs def _lowercase (self : Any , _A : str) -> List[str]: __snake_case : Union[str, Any] = self.preprocess_text(_A) __snake_case : Optional[Any] = self.sp_model.encode(_A , out_type=_A) __snake_case : Tuple = [] for piece in pieces: if len(_A) > 1 and piece[-1] == str(',') and piece[-2].isdigit(): __snake_case : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(_A , '')) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0]) == 1: __snake_case : Any = cur_pieces[1:] else: __snake_case : Optional[int] = cur_pieces[0][1:] cur_pieces.append(piece[-1]) new_pieces.extend(_A) else: new_pieces.append(_A) return new_pieces def _lowercase (self : Optional[Any] , _A : List[str]) -> int: return self.sp_model.PieceToId(_A) def _lowercase (self : Optional[int] , _A : Tuple) -> Union[str, Any]: return self.sp_model.IdToPiece(_A) def _lowercase (self : Union[str, Any] , _A : Union[str, Any]) -> Dict: __snake_case : Any = [] __snake_case : Dict = '' __snake_case : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_A) + token __snake_case : List[str] = True __snake_case : int = [] else: current_sub_tokens.append(_A) __snake_case : int = False out_string += self.sp_model.decode(_A) return out_string.strip() def _lowercase (self : List[Any] , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : Dict = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase (self : Tuple , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A) if token_ids_a is not None: return [1] + ([0] * len(_A)) + [1] + ([0] * len(_A)) + [1] return [1] + ([0] * len(_A)) + [1] def _lowercase (self : str , _A : List[int] , _A : Optional[List[int]] = None) -> List[int]: __snake_case : int = [self.sep_token_id] __snake_case : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowercase (self : Optional[Any] , _A : str , _A : Optional[str] = None) -> Tuple[str]: if not os.path.isdir(_A): logger.error(f"Vocabulary path ({save_directory}) should be a directory") return __snake_case : Optional[Any] = os.path.join( _A , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(_A) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file , _A) elif not os.path.isfile(self.vocab_file): with open(_A , 'wb') as fi: __snake_case : Optional[Any] = self.sp_model.serialized_model_proto() fi.write(_A) return (out_vocab_file,)
172
1
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ : List[str] = logging.get_logger(__name__) def UpperCAmelCase ( a_ ) -> str: """simple docstring""" A_ : Any = torch.load(a_ , map_location="""cpu""" ) if "model" in sd.keys(): A_ : int = torch.load(a_ , map_location="""cpu""" )["""model"""] # pop unnecessary weights A_ : Optional[int] = [ """decoder.version""", """decoder.output_projection.weight""", ] for key in keys_to_delete: if key in sd: sd.pop(a_ ) A_ : Tuple = { """decoder.project_in_dim.weight""": """decoder.project_in.weight""", """decoder.project_out_dim.weight""": """decoder.project_out.weight""", """decoder.layer_norm.weight""": """decoder.final_layer_norm.weight""", """decoder.layer_norm.bias""": """decoder.final_layer_norm.bias""", } for old_key, new_key in keys_to_rename.items(): if old_key in sd: A_ : int = sd.pop(a_ ) A_ : str = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: A_ : Optional[Any] = sd[key] # We split QKV in separate Q,K,V A_ : List[str] = key.replace(""".qkv_proj.""" , """.q_proj.""" ) A_ : int = key.replace(""".qkv_proj.""" , """.k_proj.""" ) A_ : int = key.replace(""".qkv_proj.""" , """.v_proj.""" ) A_ : Any = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 A_ , A_ , A_ : Tuple = torch.split(a_ , depth // 3 , dim=0 ) A_ : str = q A_ : Any = k A_ : Union[str, Any] = v del sd[key] return sd @torch.no_grad() def UpperCAmelCase ( a_ , a_ , a_=None ) -> Any: """simple docstring""" A_ : Union[str, Any] = load_checkpoint(a_ ) if config is not None: A_ : Optional[int] = OPTConfig.from_pretrained(a_ ) else: A_ : Dict = OPTConfig() A_ : Optional[int] = OPTModel(a_ ).half().eval() model.load_state_dict(a_ ) # Check results Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) if __name__ == "__main__": UpperCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--fairseq_path', type=str, help=( 'path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:' ' https://huggingface.co/models?other=opt_metasq' ), ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--hf_config', default=None, type=str, help='Define HF config.') UpperCamelCase__ : List[Any] = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
164
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Any = { 'configuration_luke': ['LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LukeConfig'], 'tokenization_luke': ['LukeTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : int = [ 'LUKE_PRETRAINED_MODEL_ARCHIVE_LIST', 'LukeForEntityClassification', 'LukeForEntityPairClassification', 'LukeForEntitySpanClassification', 'LukeForMultipleChoice', 'LukeForQuestionAnswering', 'LukeForSequenceClassification', 'LukeForTokenClassification', 'LukeForMaskedLM', 'LukeModel', 'LukePreTrainedModel', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCamelCase__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
164
1
'''simple docstring''' def __lowerCamelCase ( _lowercase = 1_0_0_0 ) -> int: return sum(e for e in range(3 , _lowercase ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
265
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a : Dict = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a : List[str] = 2_5_0_0_0_4 a : List[str] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( __magic_name__ , unittest.TestCase ): lowercase = MBartTokenizer lowercase = MBartTokenizerFast lowercase = True lowercase = True def _lowercase( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase : str = MBartTokenizer(A , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def _lowercase( self ) -> int: UpperCAmelCase : Optional[Any] = MBartTokenizer(A , keep_accents=A ) UpperCAmelCase : Tuple = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase : str = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase : List[str] = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def _lowercase( self ) -> Union[str, Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase : Tuple = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : str = self.tokenizer_class.from_pretrained(A , **A ) UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Dict = tokenizer_r.save_pretrained(A ) UpperCAmelCase : int = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase : int = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[int] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Tuple = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True UpperCAmelCase : Optional[int] = tempfile.mkdtemp() UpperCAmelCase : Any = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way UpperCAmelCase : List[str] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False UpperCAmelCase : Optional[Any] = tempfile.mkdtemp() UpperCAmelCase : Optional[Any] = tokenizer_r.save_pretrained(A , legacy_format=A ) UpperCAmelCase : List[str] = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase : Optional[Any] = tokenizer_r.from_pretrained(A ) UpperCAmelCase : str = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( unittest.TestCase ): lowercase = 'facebook/mbart-large-en-ro' lowercase = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] lowercase = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] lowercase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def _lowercase( cls ) -> Tuple: UpperCAmelCase : MBartTokenizer = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) UpperCAmelCase : int = 1 return cls def _lowercase( self ) -> Union[str, Any]: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250020 ) def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def _lowercase( self ) -> List[str]: self.assertIn(A , self.tokenizer.all_special_ids ) UpperCAmelCase : str = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] UpperCAmelCase : int = self.tokenizer.decode(A , skip_special_tokens=A ) UpperCAmelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def _lowercase( self ) -> List[Any]: UpperCAmelCase : List[str] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A ) UpperCAmelCase : int = 10 UpperCAmelCase : List[Any] = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , A ) self.assertEqual(len(A ) , A ) def _lowercase( self ) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250026, 250001] ) def _lowercase( self ) -> Dict: UpperCAmelCase : Any = tempfile.mkdtemp() UpperCAmelCase : Dict = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) UpperCAmelCase : Tuple = MBartTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def _lowercase( self ) -> List[str]: UpperCAmelCase : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors="""pt""" ) UpperCAmelCase : Union[str, Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) UpperCAmelCase : Optional[int] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCAmelCase : str = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _lowercase( self ) -> List[str]: UpperCAmelCase : Optional[Any] = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="""pt""" ) UpperCAmelCase : Dict = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="""pt""" ) UpperCAmelCase : Dict = targets["""input_ids"""] UpperCAmelCase : Union[str, Any] = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowercase( self ) -> Union[str, Any]: UpperCAmelCase : List[Any] = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A ) , { # A, test, EOS, en_XX """input_ids""": [[62, 3034, 2, 250004]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250001, } , )
265
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = StableDiffusionPanoramaPipeline __A = TEXT_TO_IMAGE_PARAMS __A = TEXT_TO_IMAGE_BATCH_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS __A = TEXT_TO_IMAGE_IMAGE_PARAMS def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" torch.manual_seed(0) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) _UpperCamelCase = DDIMScheduler() torch.manual_seed(0) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase = CLIPTextModel(lowercase_) _UpperCamelCase = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") _UpperCamelCase = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : List[Any]=0) -> List[str]: """simple docstring""" _UpperCamelCase = torch.manual_seed(lowercase_) _UpperCamelCase = { "prompt": "a photo of the dolomites", "generator": generator, # Setting height and width to None to prevent OOMs on CPU. "height": None, "width": None, "num_inference_steps": 1, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def __UpperCAmelCase ( self : Tuple) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : List[Any]) -> Optional[int]: """simple docstring""" super().test_inference_batch_consistent(batch_sizes=[1, 2]) def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" super().test_inference_batch_single_identical(batch_size=2 , expected_max_diff=3.2_5e-3) def __UpperCAmelCase ( self : Optional[int]) -> int: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = "french fries" _UpperCamelCase = sd_pipe(**lowercase_ , negative_prompt=lowercase_) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : Dict) -> Any: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_ , view_batch_size=2) _UpperCamelCase = output.images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear") _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 def __UpperCAmelCase ( self : int) -> Tuple: """simple docstring""" _UpperCamelCase = "cpu" # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = PNDMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="scaled_linear" , skip_prk_steps=lowercase_) _UpperCamelCase = StableDiffusionPanoramaPipeline(**lowercase_) _UpperCamelCase = sd_pipe.to(lowercase_) sd_pipe.set_progress_bar_config(disable=lowercase_) _UpperCamelCase = self.get_dummy_inputs(lowercase_) _UpperCamelCase = sd_pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCamelCase = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __UpperCAmelCase ( self : Optional[int]) -> List[str]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : List[Any] , lowercase_ : Any=0) -> Optional[int]: """simple docstring""" _UpperCamelCase = torch.manual_seed(lowercase_) _UpperCamelCase = { "prompt": "a photo of the dolomites", "generator": generator, "num_inference_steps": 3, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCAmelCase ( self : int) -> Optional[int]: """simple docstring""" _UpperCamelCase = "stabilityai/stable-diffusion-2-base" _UpperCamelCase = DDIMScheduler.from_pretrained(lowercase_ , subfolder="scheduler") _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCamelCase = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ]) assert np.abs(expected_slice - image_slice).max() < 1e-2 def __UpperCAmelCase ( self : Tuple) -> List[Any]: """simple docstring""" _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained( "stabilityai/stable-diffusion-2-base" , safety_checker=lowercase_) _UpperCamelCase = LMSDiscreteScheduler.from_config(pipe.scheduler.config) pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**lowercase_).images _UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) _UpperCamelCase = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ]) assert np.abs(expected_slice - image_slice).max() < 1e-3 def __UpperCAmelCase ( self : Any) -> Any: """simple docstring""" _UpperCamelCase = 0 def callback_fn(lowercase_ : int , lowercase_ : int , lowercase_ : torch.FloatTensor) -> None: _UpperCamelCase = True nonlocal number_of_steps number_of_steps += 1 if step == 1: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 elif step == 2: _UpperCamelCase = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) _UpperCamelCase = latents[0, -3:, -3:, -1] _UpperCamelCase = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ]) assert np.abs(latents_slice.flatten() - expected_slice).max() < 5e-2 _UpperCamelCase = False _UpperCamelCase = "stabilityai/stable-diffusion-2-base" _UpperCamelCase = DDIMScheduler.from_pretrained(lowercase_ , subfolder="scheduler") _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_) _UpperCamelCase = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing() _UpperCamelCase = self.get_inputs() pipe(**lowercase_ , callback=lowercase_ , callback_steps=1) assert callback_fn.has_been_called assert number_of_steps == 3 def __UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() _UpperCamelCase = "stabilityai/stable-diffusion-2-base" _UpperCamelCase = DDIMScheduler.from_pretrained(lowercase_ , subfolder="scheduler") _UpperCamelCase = StableDiffusionPanoramaPipeline.from_pretrained(lowercase_ , scheduler=lowercase_ , safety_checker=lowercase_) _UpperCamelCase = pipe.to(lowercase_) pipe.set_progress_bar_config(disable=lowercase_) pipe.enable_attention_slicing(1) pipe.enable_sequential_cpu_offload() _UpperCamelCase = self.get_inputs() _UpperCamelCase = pipe(**lowercase_) _UpperCamelCase = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
350
import math class _UpperCAmelCase : '''simple docstring''' def __UpperCAmelCase ( self : Dict , lowercase_ : list[list[float]] , lowercase_ : list[int]) -> int: """simple docstring""" _UpperCamelCase = 0.0 _UpperCamelCase = 0.0 for i in range(len(lowercase_)): da += math.pow((sample[i] - weights[0][i]) , 2) da += math.pow((sample[i] - weights[1][i]) , 2) return 0 if da > da else 1 return 0 def __UpperCAmelCase ( self : Any , lowercase_ : list[list[int | float]] , lowercase_ : list[int] , lowercase_ : int , lowercase_ : float) -> list[list[int | float]]: """simple docstring""" for i in range(len(lowercase_)): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def lowerCAmelCase__ ( ) ->None: '''simple docstring''' _UpperCamelCase = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _UpperCamelCase = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _UpperCamelCase = SelfOrganizingMap() _UpperCamelCase = 3 _UpperCamelCase = 0.5 for _ in range(a__ ): for j in range(len(a__ ) ): # training sample _UpperCamelCase = training_samples[j] # Compute the winning vector _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # Update the winning vector _UpperCamelCase = self_organizing_map.update(a__ , a__ , a__ , a__ ) # classify test sample _UpperCamelCase = [0, 0, 0, 1] _UpperCamelCase = self_organizing_map.get_winner(a__ , a__ ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
63
0
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def lowerCamelCase__ ( _a , _a , _a): SCREAMING_SNAKE_CASE : Optional[Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] SCREAMING_SNAKE_CASE : Any = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } SCREAMING_SNAKE_CASE : Tuple = f"{src_lang}-{tgt_lang}" SCREAMING_SNAKE_CASE : Union[str, Any] = f"\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR's WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = \"facebook/wmt19-{src_lang}-{tgt_lang}\"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = \"{texts[src_lang]}\"\ninput_ids = tokenizer.encode(input, return_tensors=\"pt\")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn't seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn't support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR's WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n" os.makedirs(_a , exist_ok=_a) SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(_a , "README.md") print(f"Generating {path}") with open(_a , "w" , encoding="utf-8") as f: f.write(_a) # make sure we are under the root of the project a_ = Path(__file__).resolve().parent.parent.parent a_ = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: a_ , a_ , a_ = model_name.split('-') a_ = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
76
import baseaa def lowerCamelCase__ ( _a): return baseaa.aaaencode(string.encode("utf-8")) def lowerCamelCase__ ( _a): return baseaa.aaadecode(_a).decode("utf-8") if __name__ == "__main__": import doctest doctest.testmod()
76
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class _a : def __init__( self ,_SCREAMING_SNAKE_CASE ) -> Dict: _snake_case = value _snake_case = None _snake_case = None class _a : def __init__( self ,_SCREAMING_SNAKE_CASE ) -> Optional[Any]: _snake_case = tree def _lowercase ( self ,_SCREAMING_SNAKE_CASE ) -> Dict: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ) -> Any: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
352
'''simple docstring''' import argparse import json import os from collections import OrderedDict import numpy as np import tensorflow as tf import torch def __a ( _UpperCamelCase: Tuple ) -> Union[str, Any]: """simple docstring""" _snake_case = os.path.join(args.tf_model_dir , "parameters.json" ) _snake_case = json.loads(open(_UpperCamelCase ).read() ) if not params: raise ValueError( F"""It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file.""" ) if not args.output.endswith(".pt" ): _snake_case = args.output + ".pt" _snake_case = OrderedDict() with tf.device("/CPU:0" ): _snake_case = tf.train.load_checkpoint(args.tf_model_dir ) _snake_case = reader.get_variable_to_shape_map() for key_name in shapes.keys(): _snake_case = reader.get_tensor(_UpperCamelCase ).astype(np.floataa ) if key_name.endswith("/adam_m" ) or key_name.endswith("/adam_v" ): continue if key_name.startswith("pasts/" ): if key_name.startswith("pasts/mlp" ): _snake_case = int(key_name[9] ) elif key_name.startswith("pasts/out" ): _snake_case = 8 _snake_case = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/moe" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/switch_gating/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/softmlp/kernel" ): _snake_case = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/wo/kernel" ) or key_name.endswith("/wi/kernel" ): _snake_case = key_name[-9:-7] for i in range(16 ): _snake_case = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer) _snake_case = ( vnp[i].transpose([1, 0] ).copy() ) # In Mesh-Tensorflow, it is one array, so it is divided _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/mlp" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/p1/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p1/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wi.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/kernel" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.weight" % player _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/p2/bias" ): _snake_case = "model.blocks.%d.feed_forward.mlp.wo.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/ln" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.feed_forward.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.feed_forward.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/att" ): _snake_case = int(key_name[9:].split("/" )[0] ) if key_name.endswith("/qkv/kernel" ): _snake_case = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum _snake_case = state[:, 0, :, :] _snake_case = state[:, 1, :, :] _snake_case = state[:, 2, :, :] _snake_case = ( state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = ( state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]] ) .transpose([1, 0] ) .copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) _snake_case = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/o/kernel" ): _snake_case = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player _snake_case = ( vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]] ).transpose([1, 0] ).copy() ) # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/an" ): _snake_case = int(key_name[8:].split("/" )[0] ) if key_name.endswith("/b" ): _snake_case = "model.blocks.%d.self_attn.norm.bias" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.endswith("/g" ): _snake_case = "model.blocks.%d.self_attn.norm.weight" % player _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) elif ( key_name.startswith("model/wte" ) or key_name.startswith("model/wpe" ) or key_name.startswith("model/ete" ) ): _snake_case = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[ key_name[-3:] ] _snake_case = "model.%s.weight" % nlayer _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) if key_name.startswith("model/wte" ): _snake_case = "lm_head.weight" _snake_case = vnp.copy() # same in embedded _snake_case = torch.tensor(_UpperCamelCase ) elif key_name.startswith("model/wob" ): _snake_case = "final_logits_bias" _snake_case = vnp.copy() # same in embedded _snake_case = state.reshape((1, -1) ) _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense/kernel": _snake_case = "model.last_project.weight" _snake_case = vnp.transpose([1, 0] ).copy() # Mesh-Tensorflow is a diagonal matrix _snake_case = torch.tensor(_UpperCamelCase ) elif key_name == "model/dense_1/bias": _snake_case = "model.last_project.bias" _snake_case = vnp.copy() # same because it is one dimensional _snake_case = torch.tensor(_UpperCamelCase ) torch.save(_UpperCamelCase , args.output ) if __name__ == "__main__": UpperCamelCase_ : Tuple = argparse.ArgumentParser( description='''model converter.''', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('''--tf_model_dir''', metavar='''PATH''', type=str, required=True, help='''import model''') parser.add_argument('''--output''', metavar='''PATH''', type=str, required=True, help='''output model''') UpperCamelCase_ : Any = parser.parse_args() convert_tf_gptsan_to_pt(args)
142
0
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class a__ ( A__ ): A = 42 A = jnp.floataa A = True def __UpperCamelCase ( self : Dict ): """simple docstring""" super().setup() SCREAMING_SNAKE_CASE_ : Any = nn.Dense(5,dtype=self.dtype ) def __call__( self : Any,*_A : str,**_A : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = super().__call__(*_A,**_A ) SCREAMING_SNAKE_CASE_ : List[str] = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class a__ ( A__ ): A = FlaxBigBirdForNaturalQuestionsModule def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" def cross_entropy(lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int]=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] = logits.shape[-1] SCREAMING_SNAKE_CASE_ : Optional[Any] = (labels[..., None] == jnp.arange(lowerCAmelCase )[None]).astype("f4" ) SCREAMING_SNAKE_CASE_ : str = jax.nn.log_softmax(lowerCAmelCase , axis=-1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = reduction(lowerCAmelCase ) return loss SCREAMING_SNAKE_CASE_ : str = partial(lowerCAmelCase , reduction=jnp.mean ) SCREAMING_SNAKE_CASE_ : str = cross_entropy(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = cross_entropy(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = cross_entropy(lowerCAmelCase , lowerCAmelCase ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class a__ : A = "google/bigbird-roberta-base" A = 3000 A = 10500 A = 128 A = 3 A = 1 A = 5 # tx_args A = 3E-5 A = 0.0 A = 20000 A = 0.0095 A = "bigbird-roberta-natural-questions" A = "training-expt" A = "data/nq-training.jsonl" A = "data/nq-validation.jsonl" def __UpperCamelCase ( self : Dict ): """simple docstring""" os.makedirs(self.base_dir,exist_ok=_A ) SCREAMING_SNAKE_CASE_ : int = os.path.join(self.base_dir,self.save_dir ) SCREAMING_SNAKE_CASE_ : List[Any] = self.batch_size_per_device * jax.device_count() @dataclass class a__ : A = 42 A = 4096 # no dynamic padding on TPUs def __call__( self : str,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = self.collate_fn(_A ) SCREAMING_SNAKE_CASE_ : str = jax.tree_util.tree_map(_A,_A ) return batch def __UpperCamelCase ( self : List[str],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = self.fetch_inputs(features["input_ids"] ) SCREAMING_SNAKE_CASE_ : Any = { "input_ids": jnp.array(_A,dtype=jnp.intaa ), "attention_mask": jnp.array(_A,dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"],dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"],dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"],dtype=jnp.intaa ), } return batch def __UpperCamelCase ( self : Tuple,_A : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = [self._fetch_inputs(_A ) for ids in input_ids] return zip(*_A ) def __UpperCamelCase ( self : Optional[int],_A : list ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = [1 for _ in range(len(_A ) )] while len(_A ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : str , lowerCAmelCase : Any=None ): """simple docstring""" if seed is not None: SCREAMING_SNAKE_CASE_ : Optional[int] = dataset.shuffle(seed=lowerCAmelCase ) for i in range(len(lowerCAmelCase ) // batch_size ): SCREAMING_SNAKE_CASE_ : List[str] = dataset[i * batch_size : (i + 1) * batch_size] yield dict(lowerCAmelCase ) @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCAmelCase : str , lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int] ): """simple docstring""" def loss_fn(lowerCAmelCase : List[Any] ): SCREAMING_SNAKE_CASE_ : Optional[int] = model_inputs.pop("start_labels" ) SCREAMING_SNAKE_CASE_ : Dict = model_inputs.pop("end_labels" ) SCREAMING_SNAKE_CASE_ : List[str] = model_inputs.pop("pooled_labels" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = state.apply_fn(**lowerCAmelCase , params=lowerCAmelCase , dropout_rng=lowerCAmelCase , train=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = outputs return state.loss_fn( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[int] = jax.random.split(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = jax.value_and_grad(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = grad_fn(state.params ) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) SCREAMING_SNAKE_CASE_ : Tuple = jax.lax.pmean(lowerCAmelCase , "batch" ) SCREAMING_SNAKE_CASE_ : List[Any] = state.apply_gradients(grads=lowerCAmelCase ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def _snake_case ( lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = model_inputs.pop("start_labels" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_inputs.pop("end_labels" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = model_inputs.pop("pooled_labels" ) SCREAMING_SNAKE_CASE_ : str = state.apply_fn(**lowerCAmelCase , params=state.params , train=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = outputs SCREAMING_SNAKE_CASE_ : Tuple = state.loss_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class a__ ( train_state.TrainState ): A = struct.field(pytree_node=A__ ) @dataclass class a__ : A = 42 A = 42 A = 42 A = 42 A = 42 A = 42 A = None def __UpperCamelCase ( self : Dict,_A : Union[str, Any],_A : int,_A : Union[str, Any],_A : Dict=None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = model.params SCREAMING_SNAKE_CASE_ : int = TrainState.create( apply_fn=model.__call__,params=_A,tx=_A,loss_fn=_A,) if ckpt_dir is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = restore_checkpoint(_A,_A ) SCREAMING_SNAKE_CASE_ : Any = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = build_tx(**_A ) SCREAMING_SNAKE_CASE_ : List[str] = train_state.TrainState( step=_A,apply_fn=model.__call__,params=_A,tx=_A,opt_state=_A,) SCREAMING_SNAKE_CASE_ : Optional[int] = args SCREAMING_SNAKE_CASE_ : Optional[int] = data_collator SCREAMING_SNAKE_CASE_ : int = lr SCREAMING_SNAKE_CASE_ : Dict = params SCREAMING_SNAKE_CASE_ : List[str] = jax_utils.replicate(_A ) return state def __UpperCamelCase ( self : Union[str, Any],_A : Optional[int],_A : List[Any],_A : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.args SCREAMING_SNAKE_CASE_ : List[Any] = len(_A ) // args.batch_size SCREAMING_SNAKE_CASE_ : Optional[int] = jax.random.PRNGKey(0 ) SCREAMING_SNAKE_CASE_ : str = jax.random.split(_A,jax.device_count() ) for epoch in range(args.max_epochs ): SCREAMING_SNAKE_CASE_ : Any = jnp.array(0,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Any = get_batched_dataset(_A,args.batch_size,seed=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 for batch in tqdm(_A,total=_A,desc=F'Running EPOCH-{epoch}' ): SCREAMING_SNAKE_CASE_ : Optional[int] = self.data_collator(_A ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = self.train_step_fn(_A,_A,**_A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: SCREAMING_SNAKE_CASE_ : int = jax_utils.unreplicate(state.step ) SCREAMING_SNAKE_CASE_ : int = running_loss.item() / i SCREAMING_SNAKE_CASE_ : Dict = self.scheduler_fn(state_step - 1 ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.evaluate(_A,_A ) SCREAMING_SNAKE_CASE_ : int = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(_A ) ) self.logger.log(_A,commit=_A ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F'-e{epoch}-s{i}',state=_A ) def __UpperCamelCase ( self : List[Any],_A : Dict,_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = get_batched_dataset(_A,self.args.batch_size ) SCREAMING_SNAKE_CASE_ : Optional[int] = len(_A ) // self.args.batch_size SCREAMING_SNAKE_CASE_ : Optional[Any] = jnp.array(0,dtype=jnp.floataa ) SCREAMING_SNAKE_CASE_ : Any = 0 for batch in tqdm(_A,total=_A,desc="Evaluating ... " ): SCREAMING_SNAKE_CASE_ : int = self.data_collator(_A ) SCREAMING_SNAKE_CASE_ : int = self.val_step_fn(_A,**_A ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def __UpperCamelCase ( self : Union[str, Any],_A : Union[str, Any],_A : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = jax_utils.unreplicate(_A ) print(F'SAVING CHECKPOINT IN {save_dir}',end=" ... " ) self.model_save_fn(_A,params=state.params ) with open(os.path.join(_A,"opt_state.msgpack" ),"wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args,os.path.join(_A,"args.joblib" ) ) joblib.dump(self.data_collator,os.path.join(_A,"data_collator.joblib" ) ) with open(os.path.join(_A,"training_state.json" ),"w" ) as f: json.dump({"step": state.step.item()},_A ) print("DONE" ) def _snake_case ( lowerCAmelCase : Any , lowerCAmelCase : Any ): """simple docstring""" print(f'RESTORING CHECKPOINT FROM {save_dir}' , end=" ... " ) with open(os.path.join(lowerCAmelCase , "flax_model.msgpack" ) , "rb" ) as f: SCREAMING_SNAKE_CASE_ : Union[str, Any] = from_bytes(state.params , f.read() ) with open(os.path.join(lowerCAmelCase , "opt_state.msgpack" ) , "rb" ) as f: SCREAMING_SNAKE_CASE_ : int = from_bytes(state.opt_state , f.read() ) SCREAMING_SNAKE_CASE_ : str = joblib.load(os.path.join(lowerCAmelCase , "args.joblib" ) ) SCREAMING_SNAKE_CASE_ : Any = joblib.load(os.path.join(lowerCAmelCase , "data_collator.joblib" ) ) with open(os.path.join(lowerCAmelCase , "training_state.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE_ : Optional[int] = json.load(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def _snake_case ( lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = num_train_steps - warmup_steps SCREAMING_SNAKE_CASE_ : str = optax.linear_schedule(init_value=lowerCAmelCase , end_value=lowerCAmelCase , transition_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Any = optax.linear_schedule(init_value=lowerCAmelCase , end_value=1E-7 , transition_steps=lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def _snake_case ( lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] ): """simple docstring""" def weight_decay_mask(lowerCAmelCase : Dict ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = traverse_util.flatten_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[str] = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = scheduler_fn(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : List[Any] = optax.adamw(learning_rate=lowerCAmelCase , weight_decay=lowerCAmelCase , mask=lowerCAmelCase ) return tx, lr
18
from math import factorial, radians def _snake_case ( lowerCAmelCase : float , lowerCAmelCase : int = 1_8 , lowerCAmelCase : int = 1_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians SCREAMING_SNAKE_CASE_ : Tuple = radians(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] = angle_in_radians SCREAMING_SNAKE_CASE_ : List[str] = 3 SCREAMING_SNAKE_CASE_ : str = -1 for _ in range(lowerCAmelCase ): result += (b * (angle_in_radians**a)) / factorial(lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Dict = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCAmelCase , lowerCAmelCase ) if __name__ == "__main__": __import__('''doctest''').testmod()
18
1
from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=3_0 , _lowerCamelCase=2 , _lowerCamelCase=3 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1_0 , _lowerCamelCase=0.0_2 , _lowerCamelCase=3 , _lowerCamelCase=None , ): UpperCamelCase_: str = parent UpperCamelCase_: str = batch_size UpperCamelCase_: int = image_size UpperCamelCase_: Any = patch_size UpperCamelCase_: Dict = num_channels UpperCamelCase_: Dict = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Optional[int] = hidden_size UpperCamelCase_: str = num_hidden_layers UpperCamelCase_: int = num_attention_heads UpperCamelCase_: Optional[int] = intermediate_size UpperCamelCase_: List[str] = hidden_act UpperCamelCase_: Optional[Any] = hidden_dropout_prob UpperCamelCase_: List[str] = attention_probs_dropout_prob UpperCamelCase_: Tuple = type_sequence_label_size UpperCamelCase_: Optional[int] = initializer_range UpperCamelCase_: Tuple = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCamelCase_: Tuple = (image_size // patch_size) ** 2 UpperCamelCase_: List[str] = num_patches + 1 def _a ( self ): UpperCamelCase_: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase_: List[Any] = None if self.use_labels: UpperCamelCase_: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_: List[Any] = self.get_config() return config, pixel_values, labels def _a ( self ): return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Union[str, Any] = TFViTModel(config=_lowerCamelCase ) UpperCamelCase_: List[Any] = model(_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase_: int = self.image_size // 2 UpperCamelCase_: List[str] = pixel_values[:, :, :image_size, :image_size] UpperCamelCase_: List[Any] = model(_lowerCamelCase , interpolate_pos_encoding=_lowerCamelCase , training=_lowerCamelCase ) UpperCamelCase_: Optional[int] = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _a ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = self.type_sequence_label_size UpperCamelCase_: Tuple = TFViTForImageClassification(_lowerCamelCase ) UpperCamelCase_: Optional[Any] = model(_lowerCamelCase , labels=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. UpperCamelCase_: List[Any] = self.image_size // 2 UpperCamelCase_: Union[str, Any] = pixel_values[:, :, :image_size, :image_size] UpperCamelCase_: int = model(_lowerCamelCase , interpolate_pos_encoding=_lowerCamelCase , training=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase_: Optional[int] = 1 UpperCamelCase_: Tuple = TFViTForImageClassification(_lowerCamelCase ) UpperCamelCase_: str = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase_: int = model(_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a ( self ): UpperCamelCase_: List[str] = self.prepare_config_and_inputs() UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_: List[Any] = config_and_inputs UpperCamelCase_: int = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : List[str] =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () a : Tuple =( {'''feature-extraction''': TFViTModel, '''image-classification''': TFViTForImageClassification} if is_tf_available() else {} ) a : Tuple =False a : int =False a : int =False def _a ( self ): UpperCamelCase_: Tuple = TFViTModelTester(self ) UpperCamelCase_: List[str] = ConfigTester(self , config_class=_lowerCamelCase , has_text_modality=_lowerCamelCase , hidden_size=3_7 ) def _a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ): pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def _a ( self ): pass def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Optional[int] = model_class(_lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase_: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCamelCase , tf.keras.layers.Layer ) ) def _a ( self ): UpperCamelCase_ ,UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase_: Optional[int] = model_class(_lowerCamelCase ) UpperCamelCase_: Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase_: List[str] = [*signature.parameters.keys()] UpperCamelCase_: List[str] = ['pixel_values'] self.assertListEqual(arg_names[:1] , _lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCamelCase ) @slow def _a ( self ): UpperCamelCase_: int = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_lowerCamelCase ) def snake_case () -> Optional[int]: UpperCamelCase_: Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ): return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _a ( self ): UpperCamelCase_: str = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) UpperCamelCase_: str = self.default_image_processor UpperCamelCase_: Any = prepare_img() UpperCamelCase_: Optional[Any] = image_processor(images=_lowerCamelCase , return_tensors='tf' ) # forward pass UpperCamelCase_: Union[str, Any] = model(**_lowerCamelCase ) # verify the logits UpperCamelCase_: List[Any] = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _lowerCamelCase ) UpperCamelCase_: str = tf.constant([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ) tf.debugging.assert_near(outputs.logits[0, :3] , _lowerCamelCase , atol=1e-4 )
292
import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def snake_case (UpperCAmelCase__ ) -> Optional[int]: # picklable for multiprocessing return x.sum() def snake_case (UpperCAmelCase__ ) -> Any: # picklable for multiprocessing return i + 1 @dataclass class _lowerCAmelCase: """simple docstring""" a : int a : str class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" def _a ( self ): UpperCamelCase_: Optional[Any] = {} UpperCamelCase_: List[str] = [] UpperCamelCase_: Any = 1 UpperCamelCase_: Optional[int] = [1, 2] UpperCamelCase_: List[str] = {'a': 1, 'b': 2} UpperCamelCase_: Tuple = {'a': [1, 2], 'b': [3, 4]} UpperCamelCase_: Optional[int] = {'a': {'1': 1}, 'b': 2} UpperCamelCase_: Optional[Any] = {'a': 1, 'b': 2, 'c': 3, 'd': 4} UpperCamelCase_: Tuple = {} UpperCamelCase_: str = [] UpperCamelCase_: List[Any] = 2 UpperCamelCase_: List[Any] = [2, 3] UpperCamelCase_: Optional[Any] = {'a': 2, 'b': 3} UpperCamelCase_: List[str] = {'a': [2, 3], 'b': [4, 5]} UpperCamelCase_: Any = {'a': {'1': 2}, 'b': 3} UpperCamelCase_: List[str] = {'a': 2, 'b': 3, 'c': 4, 'd': 5} self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_: Optional[int] = 2 self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) UpperCamelCase_: Tuple = {'a': np.eye(2 ), 'b': np.zeros(3 ), 'c': np.ones(2 )} UpperCamelCase_: Tuple = {'a': 2, 'b': 0, 'c': 2} UpperCamelCase_: str = { 'a': np.eye(2 ).astype(_lowerCamelCase ), 'b': np.zeros(3 ).astype(_lowerCamelCase ), 'c': np.ones(2 ).astype(_lowerCamelCase ), } self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual( {k: v.tolist() for k, v in map_nested(_lowerCamelCase , _lowerCamelCase , map_numpy=_lowerCamelCase , num_proc=_lowerCamelCase ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(_lowerCamelCase ): # can't pickle a local lambda map_nested(lambda _lowerCamelCase : x + 1 , _lowerCamelCase , num_proc=_lowerCamelCase ) def _a ( self ): UpperCamelCase_: Optional[Any] = {'a': 1, 'b': 2} UpperCamelCase_: Dict = {'a': 3, 'b': 4} UpperCamelCase_: Optional[int] = {'a': 5, 'b': 6} UpperCamelCase_: int = sorted([('a', (1, 3, 5)), ('b', (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) ) , _lowerCamelCase ) def _a ( self ): class _lowerCAmelCase: """simple docstring""" a : str ='''bar''' UpperCamelCase_: int = Foo() self.assertEqual(foo.my_attr , 'bar' ) with temporary_assignment(_lowerCamelCase , 'my_attr' , 'BAR' ): self.assertEqual(foo.my_attr , 'BAR' ) self.assertEqual(foo.my_attr , 'bar' ) @pytest.mark.parametrize( 'iterable_length, num_proc, expected_num_proc' , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (1_6, 1_6, 1_6), (1_6, 1_7, 1_6), (1_7, 1_6, 1_6), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: with patch('datasets.utils.py_utils._single_map_nested' ) as mock_single_map_nested, patch( 'datasets.parallel.parallel.Pool' ) as mock_multiprocessing_pool: UpperCamelCase_: Any = {F'''{i}''': i for i in range(UpperCAmelCase__ )} UpperCamelCase_: int = map_nested(lambda UpperCAmelCase__ : x + 1_0 , UpperCAmelCase__ , num_proc=UpperCAmelCase__ , parallel_min_length=1_6 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @require_tf def _a ( self ): import tensorflow as tf from tensorflow.keras import layers UpperCamelCase_: Dict = layers.Dense(2 ) def gen_random_output(): UpperCamelCase_: Optional[Any] = tf.random.uniform((1, 3) ) return model(_lowerCamelCase ).numpy() with temp_seed(4_2 , set_tensorflow=_lowerCamelCase ): UpperCamelCase_: int = gen_random_output() with temp_seed(4_2 , set_tensorflow=_lowerCamelCase ): UpperCamelCase_: List[str] = gen_random_output() UpperCamelCase_: str = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def _a ( self ): import torch def gen_random_output(): UpperCamelCase_: Any = torch.nn.Linear(3 , 2 ) UpperCamelCase_: Optional[Any] = torch.rand(1 , 3 ) return model(_lowerCamelCase ).detach().numpy() with temp_seed(4_2 , set_pytorch=_lowerCamelCase ): UpperCamelCase_: Dict = gen_random_output() with temp_seed(4_2 , set_pytorch=_lowerCamelCase ): UpperCamelCase_: str = gen_random_output() UpperCamelCase_: str = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def _a ( self ): def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(4_2 ): UpperCamelCase_: Optional[Any] = gen_random_output() with temp_seed(4_2 ): UpperCamelCase_: Tuple = gen_random_output() UpperCamelCase_: Optional[int] = gen_random_output() np.testing.assert_equal(_lowerCamelCase , _lowerCamelCase ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize('input_data' , [{}] ) def snake_case (UpperCAmelCase__ ) -> Dict: UpperCamelCase_: str = NestedDataStructure(UpperCAmelCase__ ).data assert output_data == input_data @pytest.mark.parametrize( 'data, expected_output' , [ ({}, []), ([], []), ('foo', ['foo']), (['foo', 'bar'], ['foo', 'bar']), ([['foo', 'bar']], ['foo', 'bar']), ([[['foo'], ['bar']]], ['foo', 'bar']), ([[['foo'], 'bar']], ['foo', 'bar']), ({'a': 1, 'b': 2}, [1, 2]), ({'a': [1, 2], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[1, 2]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[[3], [4]]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [[3, 4]]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, 4]}, [1, 2, 3, 4]), ({'a': [[[1], [2]]], 'b': [3, [4]]}, [1, 2, 3, 4]), ({'a': {'1': 1}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': 2}, [1, 2]), ({'a': {'1': [1]}, 'b': [2]}, [1, 2]), ] , ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: UpperCamelCase_: Optional[Any] = NestedDataStructure(UpperCAmelCase__ ).flatten() assert output == expected_output def snake_case () -> Optional[int]: UpperCamelCase_: List[Any] = A(x=1 , y='foobar' ) UpperCamelCase_: Optional[int] = {'x': 1, 'y': 'foobar'} assert asdict(UpperCAmelCase__ ) == expected_output UpperCamelCase_: List[str] = {'a': {'b': A(x=1_0 , y='foo' )}, 'c': [A(x=2_0 , y='bar' )]} UpperCamelCase_: Tuple = {'a': {'b': {'x': 1_0, 'y': 'foo'}}, 'c': [{'x': 2_0, 'y': 'bar'}]} assert asdict(UpperCAmelCase__ ) == expected_output with pytest.raises(UpperCAmelCase__ ): asdict([1, A(x=1_0 , y='foo' )] ) def snake_case (UpperCAmelCase__ ) -> Optional[Any]: return text.split() def snake_case (UpperCAmelCase__ ) -> str: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def snake_case () -> Union[str, Any]: with Pool(2 ) as pool: UpperCamelCase_: Optional[Any] = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 1_0 ) ) assert out.count('hello' ) == 1_0 assert out.count('there' ) == 1_0 assert len(UpperCAmelCase__ ) == 2_0 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: UpperCamelCase_: Optional[int] = list(iflatmap_unordered(UpperCAmelCase__ , _split_text , kwargs_iterable=[{'text': 'hello there'}] * 1_0 ) ) assert out.count('hello' ) == 1_0 assert out.count('there' ) == 1_0 assert len(UpperCAmelCase__ ) == 2_0 # check that we get items as fast as possible with Pool(2 ) as pool: UpperCamelCase_: Any = [] for yield_time, content in iflatmap_unordered( UpperCAmelCase__ , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{'content': 'a'}, {'content': 'b'}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(UpperCAmelCase__ ) assert out.count('a' ) == 2 assert out.count('b' ) == 2 assert len(UpperCAmelCase__ ) == 4
292
1
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers __A = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _A ( ): lowercase__ = os.path.dirname(os.path.realpath(lowercase__ ) ) lowercase__ = os.path.join(lowercase__ , """words.txt""" ) lowercase__ = """""" with open(lowercase__ ) as f: lowercase__ = f.readline() lowercase__ = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] lowercase__ = [ word for word in [sum(ord(lowercase__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowercase__ ) if __name__ == "__main__": print(solution())
164
'''simple docstring''' import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device __A = False class A ( unittest.TestCase ): pass @slow @require_torch_gpu class A ( unittest.TestCase ): def A__ ( self ) -> Any: '''simple docstring''' lowercase__ = VersatileDiffusionImageVariationPipeline.from_pretrained("""shi-labs/versatile-diffusion""" ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) lowercase__ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) lowercase__ = torch.manual_seed(0 ) lowercase__ = pipe( image=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images lowercase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
164
1
import os def a( ) -> List[str]: """simple docstring""" with open(os.path.dirname(A ) + "/grid.txt" ) as f: a = [] # noqa: E741 for _ in range(20 ): l.append([int(A ) for x in f.readline().split()] ) a = 0 # right for i in range(20 ): for j in range(17 ): a = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a = temp # down for i in range(17 ): for j in range(20 ): a = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a = temp return maximum if __name__ == "__main__": print(solution())
71
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase ) class _lowercase ( lowerCAmelCase ): """simple docstring""" __A = field(default="automatic-speech-recognition", metadata={"include_in_asdict_even_if_is_default": True} ) __A = Features({"audio": Audio()} ) __A = Features({"transcription": Value("string" )} ) __A = "audio" __A = "transcription" def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , lowerCamelCase_ ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) a = copy.deepcopy(self ) a = self.input_schema.copy() a = features[self.audio_column] a = input_schema return task_template @property def UpperCamelCase_ (self ): """simple docstring""" return {self.audio_column: "audio", self.transcription_column: "transcription"}
71
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor A: int = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' warnings.warn( """The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use ChineseCLIPImageProcessor instead.""" , _SCREAMING_SNAKE_CASE , ) super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )
109
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a =['image_processor', 'tokenizer'] __a ='OwlViTImageProcessor' __a =('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : List[Any] , __a : str=None , __a : List[str]=None , **__a : List[Any] ): _a = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __a , ) _a = kwargs.pop("feature_extractor" ) _a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__a , __a ) def __call__( self : Union[str, Any] , __a : Any=None , __a : List[str]=None , __a : int=None , __a : Optional[int]="max_length" , __a : List[str]="np" , **__a : Any ): if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(__a , __a ) or (isinstance(__a , __a ) and not isinstance(text[0] , __a )): _a = [self.tokenizer(__a , padding=__a , return_tensors=__a , **__a )] elif isinstance(__a , __a ) and isinstance(text[0] , __a ): _a = [] # Maximum number of queries across batch _a = max([len(__a ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__a ) != max_num_queries: _a = t + [" "] * (max_num_queries - len(__a )) _a = self.tokenizer(__a , padding=__a , return_tensors=__a , **__a ) encodings.append(__a ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": _a = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _a = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _a = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) _a = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _a = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) _a = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) _a = BatchEncoding() _a = input_ids _a = attention_mask if query_images is not None: _a = BatchEncoding() _a = self.image_processor( __a , return_tensors=__a , **__a ).pixel_values _a = query_pixel_values if images is not None: _a = self.image_processor(__a , return_tensors=__a , **__a ) if text is not None and images is not None: _a = image_features.pixel_values return encoding elif query_images is not None and images is not None: _a = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__a ) , tensor_type=__a ) def UpperCamelCase__ ( self : List[str] , *__a : Union[str, Any] , **__a : int ): return self.image_processor.post_process(*__a , **__a ) def UpperCamelCase__ ( self : Optional[int] , *__a : Optional[Any] , **__a : List[str] ): return self.image_processor.post_process_object_detection(*__a , **__a ) def UpperCamelCase__ ( self : Optional[Any] , *__a : Dict , **__a : Union[str, Any] ): return self.image_processor.post_process_image_guided_detection(*__a , **__a ) def UpperCamelCase__ ( self : str , *__a : Tuple , **__a : Tuple ): return self.tokenizer.batch_decode(*__a , **__a ) def UpperCamelCase__ ( self : List[str] , *__a : List[Any] , **__a : Optional[int] ): return self.tokenizer.decode(*__a , **__a ) @property def UpperCamelCase__ ( self : List[str] ): warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __a , ) return self.image_processor_class @property def UpperCamelCase__ ( self : str ): warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __a , ) return self.image_processor
63
0
'''simple docstring''' import math from datetime import datetime, timedelta def _snake_case ( A ) -> datetime: lowerCAmelCase__ = year % 19 lowerCAmelCase__ = year % 4 lowerCAmelCase__ = year % 7 lowerCAmelCase__ = math.floor(year / 100 ) lowerCAmelCase__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) lowerCAmelCase__ = leap_day_inhibits / 4 lowerCAmelCase__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 lowerCAmelCase__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 lowerCAmelCase__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon lowerCAmelCase__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(A , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(A , 4 , 18 ) else: return datetime(A , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_994, 2_000, 2_010, 2_021, 2_023): __UpperCAmelCase = '''will be''' if year > datetime.now().year else '''was''' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
228
'''simple docstring''' from __future__ import annotations def _snake_case ( A , A ) -> float: lowerCAmelCase__ = sorted(numsa + numsa ) lowerCAmelCase__ , lowerCAmelCase__ = divmod(len(A ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = [float(x) for x in input('''Enter the elements of first array: ''').split()] __UpperCAmelCase = [float(x) for x in input('''Enter the elements of second array: ''').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
228
1
import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def lowercase_ ( _lowerCamelCase : Any , _lowerCamelCase : List[str]=False): try: lowercase__ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowercase__ : int = default else: # KEY is set, convert it to True or False. try: lowercase__ : Optional[int] = strtobool(_lowerCamelCase) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''') return _value UpperCamelCase = parse_flag_from_env('''RUN_SLOW''', default=False) UpperCamelCase = parse_flag_from_env('''RUN_REMOTE''', default=False) UpperCamelCase = parse_flag_from_env('''RUN_LOCAL''', default=True) UpperCamelCase = parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression UpperCamelCase = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') UpperCamelCase = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') UpperCamelCase = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio UpperCamelCase = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam UpperCamelCase = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility UpperCamelCase = pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows UpperCamelCase = pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def lowercase_ ( _lowerCamelCase : int): try: import faiss # noqa except ImportError: lowercase__ : Optional[Any] = unittest.skip("test requires faiss")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): try: import regex # noqa except ImportError: lowercase__ : List[Any] = unittest.skip("test requires regex")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): try: import elasticsearch # noqa except ImportError: lowercase__ : Optional[int] = unittest.skip("test requires elasticsearch")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Union[str, Any]): try: import sqlalchemy # noqa except ImportError: lowercase__ : Optional[int] = unittest.skip("test requires sqlalchemy")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not config.TORCH_AVAILABLE: lowercase__ : Tuple = unittest.skip("test requires PyTorch")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): if not config.TF_AVAILABLE: lowercase__ : Any = unittest.skip("test requires TensorFlow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Dict): if not config.JAX_AVAILABLE: lowercase__ : List[str] = unittest.skip("test requires JAX")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not config.PIL_AVAILABLE: lowercase__ : Dict = unittest.skip("test requires Pillow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): try: import transformers # noqa F401 except ImportError: return unittest.skip("test requires transformers")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Optional[Any]): try: import tiktoken # noqa F401 except ImportError: return unittest.skip("test requires tiktoken")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Dict): try: import spacy # noqa F401 except ImportError: return unittest.skip("test requires spacy")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Optional[int]): def _require_spacy_model(_lowerCamelCase : Optional[int]): try: import spacy # noqa F401 spacy.load(_lowerCamelCase) except ImportError: return unittest.skip("test requires spacy")(_lowerCamelCase) except OSError: return unittest.skip("test requires spacy model '{}'".format(_lowerCamelCase))(_lowerCamelCase) else: return test_case return _require_spacy_model def lowercase_ ( _lowerCamelCase : Dict): try: import pyspark # noqa F401 except ImportError: return unittest.skip("test requires pyspark")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : List[str]): try: import joblibspark # noqa F401 except ImportError: return unittest.skip("test requires joblibspark")(_lowerCamelCase) else: return test_case def lowercase_ ( _lowerCamelCase : Dict): if not _run_slow_tests or _run_slow_tests == 0: lowercase__ : Tuple = unittest.skip("test is slow")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : int): if not _run_local_tests or _run_local_tests == 0: lowercase__ : str = unittest.skip("test is local")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Optional[int]): if not _run_packaged_tests or _run_packaged_tests == 0: lowercase__ : List[Any] = unittest.skip("test is packaged")(_lowerCamelCase) return test_case def lowercase_ ( _lowerCamelCase : Tuple): if not _run_remote_tests or _run_remote_tests == 0: lowercase__ : Union[str, Any] = unittest.skip("test requires remote")(_lowerCamelCase) return test_case def lowercase_ ( *_lowerCamelCase : str): def decorate(cls : str): for name, fn in cls.__dict__.items(): if callable(_lowerCamelCase) and name.startswith("test"): for decorator in decorators: lowercase__ : Optional[int] = decorator(_lowerCamelCase) setattr(cls , _lowerCamelCase , _lowerCamelCase) return cls return decorate class snake_case_ ( __A ): pass class snake_case_ ( __A ): __A : List[Any] = 0 __A : str = 1 __A : int = 2 @contextmanager def lowercase_ ( _lowerCamelCase : List[str]=OfflineSimulationMode.CONNECTION_FAILS , _lowerCamelCase : int=1E-16): lowercase__ : int = requests.Session().request def timeout_request(_lowerCamelCase : str , _lowerCamelCase : Dict , _lowerCamelCase : Dict , **_lowerCamelCase : str): # Change the url to an invalid url so that the connection hangs lowercase__ : Any = "https://10.255.255.1" if kwargs.get("timeout") is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''') lowercase__ : Dict = timeout try: return online_request(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowercase__ : Dict = url lowercase__ : Union[str, Any] = e.args[0] lowercase__ : Optional[Any] = (max_retry_error.args[0].replace("10.255.255.1" , f'''OfflineMock[{url}]'''),) lowercase__ : int = (max_retry_error,) raise def raise_connection_error(_lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , **_lowerCamelCase : Tuple): raise requests.ConnectionError("Offline mode is enabled." , request=_lowerCamelCase) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("requests.Session.send" , _lowerCamelCase): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("requests.Session.request" , _lowerCamelCase): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("datasets.config.HF_DATASETS_OFFLINE" , _lowerCamelCase): yield else: raise ValueError("Please use a value from the OfflineSimulationMode enum.") @contextmanager def lowercase_ ( *_lowerCamelCase : str , **_lowerCamelCase : Tuple): lowercase__ : Dict = str(Path().resolve()) with tempfile.TemporaryDirectory(*_lowerCamelCase , **_lowerCamelCase) as tmp_dir: try: os.chdir(_lowerCamelCase) yield finally: os.chdir(_lowerCamelCase) @contextmanager def lowercase_ ( ): import gc gc.collect() lowercase__ : Union[str, Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def lowercase_ ( ): import gc gc.collect() lowercase__ : int = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def lowercase_ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any]): return deepcopy(_lowerCamelCase).integers(0 , 100 , 10).tolist() == deepcopy(_lowerCamelCase).integers(0 , 100 , 10).tolist() def lowercase_ ( _lowerCamelCase : str): import decorator from requests.exceptions import HTTPError def _wrapper(_lowerCamelCase : str , *_lowerCamelCase : Dict , **_lowerCamelCase : Dict): try: return func(*_lowerCamelCase , **_lowerCamelCase) except HTTPError as err: if str(_lowerCamelCase).startswith("500") or str(_lowerCamelCase).startswith("502"): pytest.xfail(str(_lowerCamelCase)) raise err return decorator.decorator(_wrapper , _lowerCamelCase) class snake_case_ : def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Dict , lowercase_ : List[str] ) -> List[str]: lowercase__ : Tuple = returncode lowercase__ : int = stdout lowercase__ : Union[str, Any] = stderr async def lowercase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Dict): while True: lowercase__ : Optional[int] = await stream.readline() if line: callback(_lowerCamelCase) else: break async def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Optional[Any]=None , _lowerCamelCase : int=None , _lowerCamelCase : Optional[Any]=False , _lowerCamelCase : Tuple=False): if echo: print("\nRunning: " , " ".join(_lowerCamelCase)) lowercase__ : Optional[int] = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowerCamelCase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowerCamelCase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowercase__ : str = [] lowercase__ : List[str] = [] def tee(_lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[int]=""): lowercase__ : Optional[int] = line.decode("utf-8").rstrip() sink.append(_lowerCamelCase) if not quiet: print(_lowerCamelCase , _lowerCamelCase , file=_lowerCamelCase) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stdout , label="stdout:")), _read_stream(p.stderr , lambda _lowerCamelCase: tee(_lowerCamelCase , _lowerCamelCase , sys.stderr , label="stderr:")), ] , timeout=_lowerCamelCase , ) return _RunOutput(await p.wait() , _lowerCamelCase , _lowerCamelCase) def lowercase_ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : List[str]=None , _lowerCamelCase : Dict=None , _lowerCamelCase : int=180 , _lowerCamelCase : Union[str, Any]=False , _lowerCamelCase : Optional[Any]=True): lowercase__ : Any = asyncio.get_event_loop() lowercase__ : Tuple = loop.run_until_complete( _stream_subprocess(_lowerCamelCase , env=_lowerCamelCase , stdin=_lowerCamelCase , timeout=_lowerCamelCase , quiet=_lowerCamelCase , echo=_lowerCamelCase)) lowercase__ : int = " ".join(_lowerCamelCase) if result.returncode > 0: lowercase__ : Any = "\n".join(result.stderr) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''') # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''') return result def lowercase_ ( ): lowercase__ : List[str] = os.environ.get("PYTEST_XDIST_WORKER" , "gw0") lowercase__ : str = re.sub(R"^gw" , "" , _lowerCamelCase , 0 , re.M) return int(_lowerCamelCase) def lowercase_ ( ): lowercase__ : Union[str, Any] = 2_9500 lowercase__ : Optional[int] = pytest_xdist_worker_id() return port + uniq_delta
87
import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def _a ( UpperCAmelCase ) -> Dict: """simple docstring""" lowerCamelCase__ : Dict = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) elif "subsample" in key: lowerCamelCase__ : Any = s_dict.pop(UpperCAmelCase ) def _a ( UpperCAmelCase ) -> Union[str, Any]: """simple docstring""" lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = emb.weight.shape lowerCamelCase__ : str = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = emb.weight.data return lin_layer def _a ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: """simple docstring""" lowerCamelCase__ : List[Any] = torch.load(UpperCAmelCase , map_location='''cpu''' ) lowerCamelCase__ : List[Any] = mam_aaa['''args'''] lowerCamelCase__ : Dict = mam_aaa['''model'''] lowerCamelCase__ : Optional[Any] = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) lowerCamelCase__ : Tuple = state_dict['''decoder.embed_tokens.weight'''].shape[0] lowerCamelCase__ : Tuple = args.share_decoder_input_output_embed lowerCamelCase__ : Dict = [int(UpperCAmelCase ) for i in args.conv_kernel_sizes.split(''',''' )] lowerCamelCase__ : str = SpeechaTextConfig( vocab_size=UpperCAmelCase , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(UpperCAmelCase ) , conv_channels=args.conv_channels , conv_kernel_sizes=UpperCAmelCase , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=UpperCAmelCase , num_beams=5 , max_length=200 , use_cache=UpperCAmelCase , decoder_start_token_id=2 , early_stopping=UpperCAmelCase , ) lowerCamelCase__ : Optional[int] = SpeechaTextForConditionalGeneration(UpperCAmelCase ) lowerCamelCase__ , lowerCamelCase__ : Dict = model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f" but all the following weights are missing {missing}" ) if tie_embeds: lowerCamelCase__ : List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: lowerCamelCase__ : Tuple = lm_head_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": _A : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _A : str = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
142
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[int] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowercase__ ( self : int ): """simple docstring""" lowercase_ :int = 1 lowercase_ :List[str] = 3 lowercase_ :List[Any] = (32, 32) lowercase_ :Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def lowercase__ ( self : Any ): """simple docstring""" torch.manual_seed(0 ) lowercase_ :str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def lowercase__ ( self : List[Any] ): """simple docstring""" torch.manual_seed(0 ) lowercase_ :List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def lowercase__ ( self : Union[str, Any] ): """simple docstring""" torch.manual_seed(0 ) lowercase_ :str = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(lowercase ) @property def lowercase__ ( self : int ): """simple docstring""" def extract(*lowercase : int , **lowercase : List[Any] ): class a_ : def __init__( self : str ): """simple docstring""" lowercase_ :List[Any] = torch.ones([0] ) def lowercase__ ( self : List[str] , lowercase : str ): """simple docstring""" self.pixel_values.to(lowercase ) return self return Out() return extract def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Dict = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase_ :Dict = self.dummy_cond_unet lowercase_ :List[str] = PNDMScheduler(skip_prk_steps=lowercase ) lowercase_ :Any = self.dummy_vae lowercase_ :Union[str, Any] = self.dummy_text_encoder lowercase_ :int = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ :List[str] = 77 lowercase_ :List[Any] = self.dummy_image.to(lowercase ) lowercase_ :Dict = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowercase_ :Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) lowercase_ :List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase ) lowercase_ :str = alt_pipe.to(lowercase ) alt_pipe.set_progress_bar_config(disable=lowercase ) lowercase_ :Optional[Any] = "A painting of a squirrel eating a burger" lowercase_ :Any = torch.Generator(device=lowercase ).manual_seed(0 ) lowercase_ :int = alt_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowercase , ) lowercase_ :Union[str, Any] = output.images lowercase_ :Tuple = torch.Generator(device=lowercase ).manual_seed(0 ) lowercase_ :str = alt_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , image=lowercase , return_dict=lowercase , )[0] lowercase_ :Optional[int] = image[0, -3:, -3:, -1] lowercase_ :Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowercase_ :List[str] = np.array([0.44_27, 0.37_31, 0.42_49, 0.49_41, 0.45_46, 0.41_48, 0.41_93, 0.46_66, 0.44_99] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5e-3 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase__ ( self : Union[str, Any] ): """simple docstring""" lowercase_ :Any = self.dummy_cond_unet lowercase_ :List[Any] = PNDMScheduler(skip_prk_steps=lowercase ) lowercase_ :Optional[int] = self.dummy_vae lowercase_ :str = self.dummy_text_encoder lowercase_ :List[str] = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta" ) lowercase_ :int = 77 lowercase_ :Optional[Any] = self.dummy_image.to(lowercase ) # put models in fp16 lowercase_ :List[str] = unet.half() lowercase_ :Any = vae.half() lowercase_ :List[str] = bert.half() # make sure here that pndm scheduler skips prk lowercase_ :Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) lowercase_ :Optional[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=lowercase ) lowercase_ :Tuple = alt_pipe.to(lowercase ) alt_pipe.set_progress_bar_config(disable=lowercase ) lowercase_ :Optional[Any] = "A painting of a squirrel eating a burger" lowercase_ :Any = torch.manual_seed(0 ) lowercase_ :Any = alt_pipe( [prompt] , generator=lowercase , num_inference_steps=2 , output_type="np" , image=lowercase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowercase_ :int = init_image.resize((760, 504) ) lowercase_ :Union[str, Any] = "BAAI/AltDiffusion" lowercase_ :Union[str, Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowercase , safety_checker=lowercase , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() lowercase_ :Union[str, Any] = "A fantasy landscape, trending on artstation" lowercase_ :str = torch.manual_seed(0 ) lowercase_ :Dict = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , generator=lowercase , output_type="np" , ) lowercase_ :Dict = output.images[0] lowercase_ :Any = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowercase_ :List[Any] = np.array([0.93_58, 0.93_97, 0.95_99, 0.99_01, 1.00_00, 1.00_00, 0.98_82, 1.00_00, 1.00_00] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class a_ ( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) lowercase_ :Union[str, Any] = init_image.resize((768, 512) ) lowercase_ :str = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy" ) lowercase_ :Union[str, Any] = "BAAI/AltDiffusion" lowercase_ :Tuple = AltDiffusionImgaImgPipeline.from_pretrained( lowercase , safety_checker=lowercase , ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) pipe.enable_attention_slicing() lowercase_ :Tuple = "A fantasy landscape, trending on artstation" lowercase_ :Dict = torch.manual_seed(0 ) lowercase_ :List[str] = pipe( prompt=lowercase , image=lowercase , strength=0.75 , guidance_scale=7.5 , generator=lowercase , output_type="np" , ) lowercase_ :Dict = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1e-2
147
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase : int ={ '''configuration_clip''': [ '''CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPConfig''', '''CLIPOnnxConfig''', '''CLIPTextConfig''', '''CLIPVisionConfig''', ], '''processing_clip''': ['''CLIPProcessor'''], '''tokenization_clip''': ['''CLIPTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =['''CLIPTokenizerFast'''] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str =['''CLIPFeatureExtractor'''] lowerCAmelCase : Optional[int] =['''CLIPImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any =[ '''CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPModel''', '''CLIPPreTrainedModel''', '''CLIPTextModel''', '''CLIPTextModelWithProjection''', '''CLIPVisionModel''', '''CLIPVisionModelWithProjection''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Union[str, Any] =[ '''TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFCLIPModel''', '''TFCLIPPreTrainedModel''', '''TFCLIPTextModel''', '''TFCLIPVisionModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =[ '''FlaxCLIPModel''', '''FlaxCLIPPreTrainedModel''', '''FlaxCLIPTextModel''', '''FlaxCLIPTextPreTrainedModel''', '''FlaxCLIPVisionModel''', '''FlaxCLIPVisionPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys lowerCAmelCase : int =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
147
1
"""simple docstring""" _snake_case : List[str] = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } _snake_case : List[Any] = {value: key for key, value in encode_dict.items()} def A__ ( UpperCamelCase ): A = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces" ) return encoded def A__ ( UpperCamelCase ): if set(UpperCamelCase ) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces" ) A = "" for word in coded.split(): while len(UpperCamelCase ) != 0: decoded += decode_dict[word[:5]] A = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
292
"""simple docstring""" from math import isqrt, loga def A__ ( UpperCamelCase ): A = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , UpperCamelCase , UpperCamelCase ): A = False return [i for i in range(2 , UpperCamelCase ) if is_prime[i]] def A__ ( UpperCamelCase = 800_800 , UpperCamelCase = 800_800 ): A = degree * loga(UpperCamelCase ) A = int(UpperCamelCase ) A = calculate_prime_numbers(UpperCamelCase ) A = 0 A = 0 A = len(UpperCamelCase ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F"""{solution() = }""")
292
1
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFGPTaLMHeadModel, is_keras_nlp_available, is_tf_available from transformers.models.gpta.tokenization_gpta import GPTaTokenizer from transformers.testing_utils import require_keras_nlp, require_tf, slow if is_tf_available(): import tensorflow as tf if is_keras_nlp_available(): from transformers.models.gpta import TFGPTaTokenizer __UpperCAmelCase = ["""gpt2"""] __UpperCAmelCase = """gpt2""" if is_tf_available(): class SCREAMING_SNAKE_CASE ( tf.Module ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" super().__init__() __lowerCAmelCase : str = tokenizer __lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = TFGPTaLMHeadModel.from_config(lowerCAmelCase ) @tf.function(input_signature=(tf.TensorSpec((None,) , tf.string , name="""text""" ),) ) def SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase : Tuple ) -> str: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.tokenizer(lowerCAmelCase ) __lowerCAmelCase : Union[str, Any] = tokenized["""input_ids"""].to_tensor() __lowerCAmelCase : List[str] = tf.cast(input_ids_dense > 0 , tf.intaa ) # input_mask = tf.reshape(input_mask, [-1, MAX_SEQ_LEN]) __lowerCAmelCase : List[str] = self.model(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase )["""logits"""] return outputs @require_tf @require_keras_nlp class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE ( self : int ) -> Optional[int]: """simple docstring""" super().setUp() __lowerCAmelCase : str = [GPTaTokenizer.from_pretrained(lowerCAmelCase ) for checkpoint in (TOKENIZER_CHECKPOINTS)] __lowerCAmelCase : Dict = [TFGPTaTokenizer.from_pretrained(lowerCAmelCase ) for checkpoint in TOKENIZER_CHECKPOINTS] assert len(self.tokenizers ) == len(self.tf_tokenizers ) __lowerCAmelCase : Optional[Any] = [ """This is a straightforward English test sentence.""", """This one has some weird characters\rto\nsee\r\nif those\u00E9break things.""", """Now we're going to add some Chinese: 一 二 三 一二三""", """And some much more rare Chinese: 齉 堃 齉堃""", """Je vais aussi écrire en français pour tester les accents""", """Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ""", ] __lowerCAmelCase : str = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in self.test_sentences: __lowerCAmelCase : Union[str, Any] = tokenizer([test_inputs] , return_tensors="""tf""" ) __lowerCAmelCase : Tuple = tf_tokenizer([test_inputs] ) for key in python_outputs.keys(): # convert them to numpy to avoid messing with ragged tensors __lowerCAmelCase : Any = python_outputs[key].numpy() __lowerCAmelCase : Dict = tf_outputs[key].numpy() self.assertTrue(tf.reduce_all(python_outputs_values.shape == tf_outputs_values.shape ) ) self.assertTrue(tf.reduce_all(tf.cast(lowerCAmelCase , tf.intaa ) == tf_outputs_values ) ) @slow def SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase : int = tf.function(lowerCAmelCase ) for test_inputs in self.test_sentences: __lowerCAmelCase : Optional[int] = tf.constant(lowerCAmelCase ) __lowerCAmelCase : Optional[int] = compiled_tokenizer(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = tf_tokenizer(lowerCAmelCase ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase : Any = ModelToSave(tokenizer=lowerCAmelCase ) __lowerCAmelCase : Optional[int] = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase : Optional[int] = model.serving(lowerCAmelCase ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: __lowerCAmelCase : int = Path(lowerCAmelCase ) / """saved.model""" tf.saved_model.save(lowerCAmelCase , lowerCAmelCase , signatures={"""serving_default""": model.serving} ) __lowerCAmelCase : Union[str, Any] = tf.saved_model.load(lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = loaded_model.signatures["""serving_default"""](lowerCAmelCase )["""output_0"""] # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertTrue(tf.reduce_all(out == loaded_output ) ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: __lowerCAmelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase : Optional[int] = tf_tokenizer(lowerCAmelCase ) # Build model with some sample inputs __lowerCAmelCase : List[Any] = tf_tokenizer.get_config() __lowerCAmelCase : Optional[int] = TFGPTaTokenizer.from_config(lowerCAmelCase ) __lowerCAmelCase : Tuple = model_from_config(lowerCAmelCase ) for key in from_config_output.keys(): self.assertTrue(tf.reduce_all(from_config_output[key] == out[key] ) ) @slow def SCREAMING_SNAKE_CASE ( self : int ) -> List[str]: """simple docstring""" for tf_tokenizer in self.tf_tokenizers: # for the test to run __lowerCAmelCase : Optional[int] = 12_31_23 for max_length in [3, 5, 10_24]: __lowerCAmelCase : Dict = tf.convert_to_tensor([self.test_sentences[0]] ) __lowerCAmelCase : int = tf_tokenizer(lowerCAmelCase , max_length=lowerCAmelCase ) __lowerCAmelCase : Tuple = out["""input_ids"""].numpy().shape[1] assert out_length == max_length
139
import warnings from ...utils import logging from .image_processing_glpn import GLPNImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int] ) -> None: """simple docstring""" warnings.warn( """The class GLPNFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use GLPNImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase )
139
1
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A_ :List[Any] = logging.get_logger(__name__) def A ( a_ ,a_ ,a_ ,a_ ) -> Any: __UpperCamelCase : List[Any] =original_name.split('.' )[0] __UpperCamelCase : Any =key.split('.' ) __UpperCamelCase : Any =int(key_list[key_list.index(a_ ) - 2] ) __UpperCamelCase : Optional[int] =int(key_list[key_list.index(a_ ) - 1] ) __UpperCamelCase : Tuple =orig_block_num - offset __UpperCamelCase : Any =key.replace(F'{orig_block_num}.{layer_num}.{original_name}' ,F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def A ( a_ ) -> Optional[int]: __UpperCamelCase : List[str] =OrderedDict() __UpperCamelCase , __UpperCamelCase : Dict =0, 0 for key, value in state_dict.items(): if key.startswith('network' ): __UpperCamelCase : str =key.replace('network' ,'poolformer.encoder' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('bias' ) and "patch_embed" not in key: patch_emb_offset += 1 __UpperCamelCase : int =key[: key.find('proj' )] __UpperCamelCase : str =key.replace(a_ ,F'patch_embeddings.{total_embed_found}.' ) __UpperCamelCase : int =key.replace('proj' ,'projection' ) if key.endswith('bias' ): total_embed_found += 1 if "patch_embeddings" in key: __UpperCamelCase : str ='poolformer.encoder.' + key if "mlp.fc1" in key: __UpperCamelCase : Any =replace_key_with_offset(a_ ,a_ ,'mlp.fc1' ,'output.conv1' ) if "mlp.fc2" in key: __UpperCamelCase : Tuple =replace_key_with_offset(a_ ,a_ ,'mlp.fc2' ,'output.conv2' ) if "norm1" in key: __UpperCamelCase : Any =replace_key_with_offset(a_ ,a_ ,'norm1' ,'before_norm' ) if "norm2" in key: __UpperCamelCase : List[str] =replace_key_with_offset(a_ ,a_ ,'norm2' ,'after_norm' ) if "layer_scale_1" in key: __UpperCamelCase : Tuple =replace_key_with_offset(a_ ,a_ ,'layer_scale_1' ,'layer_scale_1' ) if "layer_scale_2" in key: __UpperCamelCase : Dict =replace_key_with_offset(a_ ,a_ ,'layer_scale_2' ,'layer_scale_2' ) if "head" in key: __UpperCamelCase : List[Any] =key.replace('head' ,'classifier' ) __UpperCamelCase : Optional[Any] =value return new_state_dict def A ( ) -> int: __UpperCamelCase : List[Any] ='http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase : Dict =Image.open(requests.get(a_ ,stream=a_ ).raw ) return image @torch.no_grad() def A ( a_ ,a_ ,a_ ) -> List[str]: __UpperCamelCase : Optional[Any] =PoolFormerConfig() # set attributes based on model_name __UpperCamelCase : Union[str, Any] ='huggingface/label-files' __UpperCamelCase : List[Any] =model_name[-3:] __UpperCamelCase : Optional[int] =1_000 __UpperCamelCase : str ='imagenet-1k-id2label.json' __UpperCamelCase : Any =(1, 1_000) # set config attributes __UpperCamelCase : Tuple =json.load(open(hf_hub_download(a_ ,a_ ,repo_type='dataset' ) ,'r' ) ) __UpperCamelCase : Optional[Any] ={int(a_ ): v for k, v in idalabel.items()} __UpperCamelCase : str =idalabel __UpperCamelCase : List[str] ={v: k for k, v in idalabel.items()} if size == "s12": __UpperCamelCase : Tuple =[2, 2, 6, 2] __UpperCamelCase : List[Any] =[64, 128, 320, 512] __UpperCamelCase : Any =4.0 __UpperCamelCase : Tuple =0.9 elif size == "s24": __UpperCamelCase : str =[4, 4, 12, 4] __UpperCamelCase : Optional[Any] =[64, 128, 320, 512] __UpperCamelCase : int =4.0 __UpperCamelCase : Union[str, Any] =0.9 elif size == "s36": __UpperCamelCase : int =[6, 6, 18, 6] __UpperCamelCase : int =[64, 128, 320, 512] __UpperCamelCase : List[Any] =4.0 __UpperCamelCase : Any =1e-6 __UpperCamelCase : str =0.9 elif size == "m36": __UpperCamelCase : Optional[Any] =[6, 6, 18, 6] __UpperCamelCase : Union[str, Any] =[96, 192, 384, 768] __UpperCamelCase : int =4.0 __UpperCamelCase : Tuple =1e-6 __UpperCamelCase : Dict =0.95 elif size == "m48": __UpperCamelCase : Union[str, Any] =[8, 8, 24, 8] __UpperCamelCase : List[Any] =[96, 192, 384, 768] __UpperCamelCase : Optional[Any] =4.0 __UpperCamelCase : Optional[Any] =1e-6 __UpperCamelCase : Dict =0.95 else: raise ValueError(F'Size {size} not supported' ) # load image processor __UpperCamelCase : List[str] =PoolFormerImageProcessor(crop_pct=a_ ) # Prepare image __UpperCamelCase : Optional[Any] =prepare_img() __UpperCamelCase : int =image_processor(images=a_ ,return_tensors='pt' ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict __UpperCamelCase : List[str] =torch.load(a_ ,map_location=torch.device('cpu' ) ) # rename keys __UpperCamelCase : Union[str, Any] =rename_keys(a_ ) # create HuggingFace model and load state dict __UpperCamelCase : List[Any] =PoolFormerForImageClassification(a_ ) model.load_state_dict(a_ ) model.eval() # Define image processor __UpperCamelCase : List[Any] =PoolFormerImageProcessor(crop_pct=a_ ) __UpperCamelCase : str =image_processor(images=prepare_img() ,return_tensors='pt' ).pixel_values # forward pass __UpperCamelCase : List[Any] =model(a_ ) __UpperCamelCase : Union[str, Any] =outputs.logits # define expected logit slices for different models if size == "s12": __UpperCamelCase : List[Any] =torch.tensor([-0.3_045, -0.6_758, -0.4_869] ) elif size == "s24": __UpperCamelCase : Tuple =torch.tensor([0.4_402, -0.1_374, -0.8_045] ) elif size == "s36": __UpperCamelCase : List[Any] =torch.tensor([-0.6_080, -0.5_133, -0.5_898] ) elif size == "m36": __UpperCamelCase : Optional[int] =torch.tensor([0.3_952, 0.2_263, -1.2_668] ) elif size == "m48": __UpperCamelCase : List[str] =torch.tensor([0.1_167, -0.0_656, -0.3_423] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] ,a_ ,atol=1e-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(a_ ) if __name__ == "__main__": A_ :Tuple = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''poolformer_s12''', type=str, help='''Name of the model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original PyTorch checkpoint (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) A_ :Dict = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
71
from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[str] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModel.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =AutoModel.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =AutoModelForPreTraining.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Tuple =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =TFAutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForCausalLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[int] =AutoModelForCausalLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Union[str, Any] =AutoModelForCausalLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : int =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =TFAutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Tuple =TFAutoModelForMaskedLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[str] =AutoModelForMaskedLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : Optional[Any] =AutoModelForMaskedLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Any =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : List[Any] =TFAutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[str] =TFAutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Dict =AutoModelForSeqaSeqLM.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) __UpperCamelCase , __UpperCamelCase : List[Any] =AutoModelForSeqaSeqLM.from_pretrained( lowerCamelCase__ , output_loading_info=lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : str =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =TFAutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : str =AutoModelForSequenceClassification.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["bert-base-uncased"]: __UpperCamelCase : List[Any] =AutoConfig.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Tuple =TFAutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =AutoModelForQuestionAnswering.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) __UpperCamelCase : str =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFAutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_pt=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 ) __UpperCamelCase : int =AutoModelWithLMHead.from_pretrained(lowerCamelCase__ , from_tf=lowerCamelCase__ ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual(model.num_parameters() , 14410 ) self.assertEqual(model.num_parameters(only_trainable=lowerCamelCase__ ) , 14410 )
71
1
"""simple docstring""" from __future__ import annotations def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> None: lowerCamelCase = len(snake_case__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(snake_case__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , snake_case__ , snake_case__ , ) def a__ ( snake_case__ ) -> None: lowerCamelCase = [] depth_first_search([] , [] , [] , snake_case__ , snake_case__ ) # Print all the boards for board in boards: for column in board: print(snake_case__ ) print("""""" ) print(len(snake_case__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
368
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging lowerCAmelCase : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a , _a , _a , _a , _a , ): """simple docstring""" super().__init__() if safety_checker is None: logger.warning( f'You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure' """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( speech_model=_a , speech_processor=_a , vae=_a , text_encoder=_a , tokenizer=_a , unet=_a , scheduler=_a , feature_extractor=_a , ) def _lowerCAmelCase ( self , _a = "auto" ): """simple docstring""" if slice_size == "auto": lowerCamelCase = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_a ) def _lowerCAmelCase ( self ): """simple docstring""" self.enable_attention_slicing(_a ) @torch.no_grad() def __call__( self , _a , _a=16_000 , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , **_a , ): """simple docstring""" lowerCamelCase = self.speech_processor.feature_extractor( _a , return_tensors="""pt""" , sampling_rate=_a ).input_features.to(self.device ) lowerCamelCase = self.speech_model.generate(_a , max_length=480_000 ) lowerCamelCase = self.speech_processor.tokenizer.batch_decode(_a , skip_special_tokens=_a , normalize=_a )[ 0 ] if isinstance(_a , _a ): lowerCamelCase = 1 elif isinstance(_a , _a ): lowerCamelCase = len(_a ) else: raise ValueError(f'`prompt` has to be of type `str` or `list` but is {type(_a )}' ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f'`height` and `width` have to be divisible by 8 but are {height} and {width}.' ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_a , _a ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(_a )}.' ) # get prompt text embeddings lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) lowerCamelCase = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCamelCase = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f' {self.tokenizer.model_max_length} tokens: {removed_text}' ) lowerCamelCase = text_input_ids[:, : self.tokenizer.model_max_length] lowerCamelCase = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCamelCase , lowerCamelCase , lowerCamelCase = text_embeddings.shape lowerCamelCase = text_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = text_embeddings.view(bs_embed * num_images_per_prompt , _a , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCamelCase = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCamelCase = 42 if negative_prompt is None: lowerCamelCase = [""""""] * batch_size elif type(_a ) is not type(_a ): raise TypeError( f'`negative_prompt` should be the same type to `prompt`, but got {type(_a )} !=' f' {type(_a )}.' ) elif isinstance(_a , _a ): lowerCamelCase = [negative_prompt] elif batch_size != len(_a ): raise ValueError( f'`negative_prompt`: {negative_prompt} has batch size {len(_a )}, but `prompt`:' f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' """ the batch size of `prompt`.""" ) else: lowerCamelCase = negative_prompt lowerCamelCase = text_input_ids.shape[-1] lowerCamelCase = self.tokenizer( _a , padding="""max_length""" , max_length=_a , truncation=_a , return_tensors="""pt""" , ) lowerCamelCase = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCamelCase = uncond_embeddings.shape[1] lowerCamelCase = uncond_embeddings.repeat(1 , _a , 1 ) lowerCamelCase = uncond_embeddings.view(batch_size * num_images_per_prompt , _a , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCamelCase = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCamelCase = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCamelCase = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCamelCase = torch.randn(_a , generator=_a , device="""cpu""" , dtype=_a ).to( self.device ) else: lowerCamelCase = torch.randn(_a , generator=_a , device=self.device , dtype=_a ) else: if latents.shape != latents_shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {latents_shape}' ) lowerCamelCase = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(_a ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCamelCase = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCamelCase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCamelCase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCamelCase = {} if accepts_eta: lowerCamelCase = eta for i, t in enumerate(self.progress_bar(_a ) ): # expand the latents if we are doing classifier free guidance lowerCamelCase = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCamelCase = self.scheduler.scale_model_input(_a , _a ) # predict the noise residual lowerCamelCase = self.unet(_a , _a , encoder_hidden_states=_a ).sample # perform guidance if do_classifier_free_guidance: lowerCamelCase , lowerCamelCase = noise_pred.chunk(2 ) lowerCamelCase = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase = self.scheduler.step(_a , _a , _a , **_a ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_a , _a , _a ) lowerCamelCase = 1 / 0.18_215 * latents lowerCamelCase = self.vae.decode(_a ).sample lowerCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": lowerCamelCase = self.numpy_to_pil(_a ) if not return_dict: return image return StableDiffusionPipelineOutput(images=_a , nsfw_content_detected=_a )
168
0
def __A ( __lowerCamelCase , __lowerCamelCase ) -> str: if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError("""iterations must be defined as integers""" ) if not isinstance(__lowerCamelCase , __lowerCamelCase ) or not number >= 1: raise ValueError( """starting number must be and integer and be more than 0""" ) if not iterations >= 1: raise ValueError("""Iterations must be done more than 0 times to play FizzBuzz""" ) a = """""" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowerCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
228
def __A ( __lowerCamelCase ) -> int: a = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __A ( __lowerCamelCase = 100 ) -> int: a = 1 a = 2 for i in range(2 , max_n + 1 ): a = pre_numerator a = 2 * i // 3 if i % 3 == 0 else 1 a = cur_numerator a = e_cont * pre_numerator + temp return sum_digits(__lowerCamelCase ) if __name__ == "__main__": print(F'{solution() = }')
228
1
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase : Optional[Any] = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[int] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys lowerCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
361
'''simple docstring''' from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = BlenderbotConfig lowerCAmelCase_ = {} lowerCAmelCase_ = """gelu""" def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=False , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_=0.1 , A_=0.1 , A_=20 , A_=2 , A_=1 , A_=0 , )-> List[Any]: '''simple docstring''' UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = seq_length UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = eos_token_id UpperCamelCase = pad_token_id UpperCamelCase = bos_token_id def UpperCAmelCase_ ( self )-> Tuple: '''simple docstring''' UpperCamelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase = prepare_blenderbot_inputs_dict(A_ , A_ , A_ ) return config, inputs_dict def UpperCAmelCase_ ( self , A_ , A_ )-> int: '''simple docstring''' UpperCamelCase = TFBlenderbotModel(config=A_ ).get_decoder() UpperCamelCase = inputs_dict['input_ids'] UpperCamelCase = input_ids[:1, :] UpperCamelCase = inputs_dict['attention_mask'][:1, :] UpperCamelCase = inputs_dict['head_mask'] UpperCamelCase = 1 # first forward pass UpperCamelCase = model(A_ , attention_mask=A_ , head_mask=A_ , use_cache=A_ ) UpperCamelCase , UpperCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase = model(A_ , attention_mask=A_ )[0] UpperCamelCase = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) def A_( A : List[Any] , A : Tuple , A : Optional[Any] , A : List[str]=None , A : str=None , A : List[Any]=None , A : Dict=None , A : Any=None , ): if attention_mask is None: UpperCamelCase = tf.cast(tf.math.not_equal(A , config.pad_token_id) , tf.inta) if decoder_attention_mask is None: UpperCamelCase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id) , tf.inta), ] , axis=-1 , ) if head_mask is None: UpperCamelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: UpperCamelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , unittest.TestCase): lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () lowerCAmelCase_ = (TFBlenderbotForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase_ = ( { """conversational""": TFBlenderbotForConditionalGeneration, """feature-extraction""": TFBlenderbotModel, """summarization""": TFBlenderbotForConditionalGeneration, """text2text-generation""": TFBlenderbotForConditionalGeneration, """translation""": TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = TFBlenderbotModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=A_ ) def UpperCAmelCase_ ( self )-> Dict: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self )-> List[Any]: '''simple docstring''' UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) @require_tokenizers @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase): lowerCAmelCase_ = ["""My friends are cool but they eat too many carbs."""] lowerCAmelCase_ = """facebook/blenderbot-400M-distill""" @cached_property def UpperCAmelCase_ ( self )-> List[str]: '''simple docstring''' return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def UpperCAmelCase_ ( self )-> Any: '''simple docstring''' UpperCamelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' UpperCamelCase = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCamelCase = self.model.generate( model_inputs.input_ids , ) UpperCamelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=A_ )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
251
0
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class _a ( unittest.TestCase ): def __snake_case (self ) -> List[Any]: UpperCAmelCase_: int = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: Union[str, Any] = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Optional[int] = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", """unet/diffusion_pytorch_model.bin""", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Tuple = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> str: UpperCAmelCase_: Tuple = [ """safety_checker/pytorch_model.bin""", """safety_checker/model.safetensors""", """vae/diffusion_pytorch_model.bin""", """vae/diffusion_pytorch_model.safetensors""", """text_encoder/pytorch_model.bin""", # Removed: 'text_encoder/model.safetensors', """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> str: UpperCAmelCase_: Any = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] UpperCAmelCase_: List[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Any: UpperCAmelCase_: List[Any] = [ """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] UpperCAmelCase_: List[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Any: # pass variant but use the non-variant filenames UpperCAmelCase_: Any = [ """unet/diffusion_pytorch_model.bin""", """unet/diffusion_pytorch_model.safetensors""", ] UpperCAmelCase_: Dict = """fp16""" self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Dict = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", """unet/diffusion_pytorch_model.fp16.bin""", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] UpperCAmelCase_: List[Any] = """fp16""" self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> List[str]: UpperCAmelCase_: Optional[int] = [ """text_encoder/pytorch_model.fp16.bin""", """text_encoder/model.fp16.safetensors""", ] UpperCAmelCase_: Dict = """fp16""" self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[int]: # pass variant but use the non-variant filenames UpperCAmelCase_: Optional[int] = [ """text_encoder/pytorch_model.bin""", """text_encoder/model.safetensors""", ] UpperCAmelCase_: List[Any] = """fp16""" self.assertTrue(is_safetensors_compatible(SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Any: UpperCAmelCase_: Optional[Any] = [ """safety_checker/pytorch_model.fp16.bin""", """safety_checker/model.fp16.safetensors""", """vae/diffusion_pytorch_model.fp16.bin""", """vae/diffusion_pytorch_model.fp16.safetensors""", """text_encoder/pytorch_model.fp16.bin""", # 'text_encoder/model.fp16.safetensors', """unet/diffusion_pytorch_model.fp16.bin""", """unet/diffusion_pytorch_model.fp16.safetensors""", ] UpperCAmelCase_: Optional[int] = """fp16""" self.assertFalse(is_safetensors_compatible(SCREAMING_SNAKE_CASE_, variant=SCREAMING_SNAKE_CASE_ ) )
147
from collections import namedtuple a : List[Any] = namedtuple('from_to', 'from_ to') a : Tuple = { 'cubicmeter': from_to(1, 1), 'litre': from_to(0.0_0_1, 1_000), 'kilolitre': from_to(1, 1), 'gallon': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), 'cubicyard': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), 'cubicfoot': from_to(0.0_2_8, 3_5.3_1_4_7), 'cup': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def lowerCAmelCase_ (lowerCAmelCase__: float , lowerCAmelCase__: str , lowerCAmelCase__: str ): """simple docstring""" if from_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'from_type\' value: {from_type!r} Supported values are:\n' + """, """.join(lowerCAmelCase__ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'Invalid \'to_type\' value: {to_type!r}. Supported values are:\n' + """, """.join(lowerCAmelCase__ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
147
1
'''simple docstring''' import json import os from typing import Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__ : Dict = { "vocab_file": "vocab.json", "merges_file": "merges.txt", } lowerCAmelCase__ : List[Any] = { "vocab_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-vocab.json"}, "merges_file": {"ctrl": "https://raw.githubusercontent.com/salesforce/ctrl/master/ctrl-merges.txt"}, } lowerCAmelCase__ : List[Any] = { "ctrl": 2_56, } lowerCAmelCase__ : str = { "Pregnancy": 16_86_29, "Christianity": 76_75, "Explain": 10_64_23, "Fitness": 6_34_40, "Saving": 6_31_63, "Ask": 2_71_71, "Ass": 9_59_85, "Joke": 16_35_09, "Questions": 4_56_22, "Thoughts": 4_96_05, "Retail": 5_23_42, "Feminism": 16_43_38, "Writing": 1_19_92, "Atheism": 19_22_63, "Netflix": 4_86_16, "Computing": 3_96_39, "Opinion": 4_32_13, "Alone": 4_49_67, "Funny": 5_89_17, "Gaming": 4_03_58, "Human": 40_88, "India": 13_31, "Joker": 7_71_38, "Diet": 3_62_06, "Legal": 1_18_59, "Norman": 49_39, "Tip": 7_26_89, "Weight": 5_23_43, "Movies": 4_62_73, "Running": 2_34_25, "Science": 20_90, "Horror": 3_77_93, "Confession": 6_05_72, "Finance": 1_22_50, "Politics": 1_63_60, "Scary": 19_19_85, "Support": 1_26_54, "Technologies": 3_25_16, "Teenage": 6_61_60, "Event": 3_27_69, "Learned": 6_74_60, "Notion": 18_27_70, "Wikipedia": 3_75_83, "Books": 66_65, "Extract": 7_60_50, "Confessions": 10_27_01, "Conspiracy": 7_59_32, "Links": 6_36_74, "Narcissus": 15_04_25, "Relationship": 5_47_66, "Relationships": 13_47_96, "Reviews": 4_16_71, "News": 42_56, "Translation": 2_68_20, "multilingual": 12_84_06, } def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : str = set() __UpperCAmelCase : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __UpperCAmelCase : Optional[int] = char __UpperCAmelCase : Optional[int] = set(_UpperCAmelCase ) return pairs class SCREAMING_SNAKE_CASE__ ( snake_case__ ): """simple docstring""" SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = CONTROL_CODES def __init__( self : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str="<unk>" , **UpperCAmelCase_ : Optional[int] ): """simple docstring""" super().__init__(unk_token=UpperCAmelCase_ , **UpperCAmelCase_ ) with open(UpperCAmelCase_ , encoding="utf-8" ) as vocab_handle: __UpperCAmelCase : Optional[Any] = json.load(UpperCAmelCase_ ) __UpperCAmelCase : Optional[int] = {v: k for k, v in self.encoder.items()} with open(UpperCAmelCase_ , encoding="utf-8" ) as merges_handle: __UpperCAmelCase : List[Any] = merges_handle.read().split("\n" )[1:-1] __UpperCAmelCase : List[str] = [tuple(merge.split() ) for merge in merges] __UpperCAmelCase : List[Any] = dict(zip(UpperCAmelCase_ , range(len(UpperCAmelCase_ ) ) ) ) __UpperCAmelCase : int = {} @property def lowerCamelCase_ ( self : Tuple ): """simple docstring""" return len(self.encoder ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : int ): """simple docstring""" if token in self.cache: return self.cache[token] __UpperCAmelCase : Union[str, Any] = tuple(UpperCAmelCase_ ) __UpperCAmelCase : Tuple = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) __UpperCAmelCase : str = get_pairs(UpperCAmelCase_ ) if not pairs: return token while True: __UpperCAmelCase : Tuple = min(UpperCAmelCase_ , key=lambda UpperCAmelCase_ : self.bpe_ranks.get(UpperCAmelCase_ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __UpperCAmelCase , __UpperCAmelCase : Any = bigram __UpperCAmelCase : List[str] = [] __UpperCAmelCase : Any = 0 while i < len(UpperCAmelCase_ ): try: __UpperCAmelCase : Union[str, Any] = word.index(UpperCAmelCase_ , UpperCAmelCase_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __UpperCAmelCase : List[Any] = j if word[i] == first and i < len(UpperCAmelCase_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __UpperCAmelCase : List[Any] = tuple(UpperCAmelCase_ ) __UpperCAmelCase : List[Any] = new_word if len(UpperCAmelCase_ ) == 1: break else: __UpperCAmelCase : Optional[int] = get_pairs(UpperCAmelCase_ ) __UpperCAmelCase : Union[str, Any] = "@@ ".join(UpperCAmelCase_ ) __UpperCAmelCase : Dict = word[:-4] __UpperCAmelCase : List[Any] = word return word def lowerCamelCase_ ( self : int , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : Dict = re.findall(R"\S+\n?" , UpperCAmelCase_ ) for token in words: split_tokens.extend(list(self.bpe(UpperCAmelCase_ ).split(" " ) ) ) return split_tokens def lowerCamelCase_ ( self : str , UpperCAmelCase_ : Optional[int] ): """simple docstring""" return self.encoder.get(UpperCAmelCase_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase_ ( self : Tuple , UpperCAmelCase_ : str ): """simple docstring""" return self.decoder.get(UpperCAmelCase_ , self.unk_token ) def lowerCamelCase_ ( self : int , UpperCAmelCase_ : int ): """simple docstring""" __UpperCAmelCase : Tuple = " ".join(UpperCAmelCase_ ).replace("@@ " , "" ).strip() return out_string def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(UpperCAmelCase_ ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return __UpperCAmelCase : Optional[Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __UpperCAmelCase : Union[str, Any] = os.path.join( UpperCAmelCase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=UpperCAmelCase_ , ensure_ascii=UpperCAmelCase_ ) + "\n" ) __UpperCAmelCase : Dict = 0 with open(UpperCAmelCase_ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda UpperCAmelCase_ : kv[1] ): if index != token_index: logger.warning( f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!" ) __UpperCAmelCase : List[str] = token_index writer.write(" ".join(UpperCAmelCase_ ) + "\n" ) index += 1 return vocab_file, merge_file # def decode(self, token_ids, skip_special_tokens=False, clean_up_tokenization_spaces=True): # filtered_tokens = ' '.join(self.convert_ids_to_tokens(token_ids, skip_special_tokens=skip_special_tokens)) # tokens_generated_so_far = re.sub('(@@ )', '', string=filtered_tokens) # tokens_generated_so_far = re.sub('(@@ ?$)', '', string=tokens_generated_so_far) # return ''.join(tokens_generated_so_far)
37
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase ): if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True __UpperCAmelCase : List[str] = 4 __UpperCAmelCase : int = (1 << p) - 1 for _ in range(p - 2 ): __UpperCAmelCase : Optional[Any] = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
37
1
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class _snake_case ( _a ): @staticmethod @abstractmethod def __UpperCamelCase ( SCREAMING_SNAKE_CASE__ : ArgumentParser ): raise NotImplementedError() @abstractmethod def __UpperCamelCase ( self : List[Any] ): raise NotImplementedError()
139
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel A_ = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_80_00, "sample_size": 6_55_36, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_80_00, "sample_size": 13_10_72, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_60_00, "sample_size": 6_55_36, }, } def A_ ( snake_case , snake_case ): return torch.atana(snake_case , snake_case ) / math.pi * 2 def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = torch.sin(t * math.pi / 2 ) ** 2 SCREAMING_SNAKE_CASE:Any = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(snake_case , snake_case ) class _snake_case ( _a ): pass class _snake_case ( nn.Module ): def __init__( self : int ,SCREAMING_SNAKE_CASE__ : str ): super().__init__() SCREAMING_SNAKE_CASE:List[Any] = DiffusionAttnUnetaD(SCREAMING_SNAKE_CASE__ ,n_attn_layers=4 ) SCREAMING_SNAKE_CASE:List[str] = deepcopy(self.diffusion ) SCREAMING_SNAKE_CASE:Dict = torch.quasirandom.SobolEngine(1 ,scramble=SCREAMING_SNAKE_CASE__ ) def A_ ( snake_case ): SCREAMING_SNAKE_CASE:List[Any] = MODELS_MAP[model_name]["url"] os.system(F'''wget {url} ./''' ) return F'''./{model_name}.ckpt''' A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } A_ = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } A_ = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } A_ = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } A_ = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } A_ = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def A_ ( snake_case ): if name.startswith("skip" ): return name.replace("skip" , RES_CONV_MAP["skip"] ) # name has to be of format main.{digit} if not name.startswith("main." ): raise ValueError(F'''ResConvBlock error with {name}''' ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def A_ ( snake_case ): for key, value in ATTN_MAP.items(): if name.startswith(snake_case ) and not isinstance(snake_case , snake_case ): return name.replace(snake_case , snake_case ) elif name.startswith(snake_case ): return [name.replace(snake_case , snake_case ) for v in value] raise ValueError(F'''Attn error with {name}''' ) def A_ ( snake_case , snake_case=13 ): SCREAMING_SNAKE_CASE:Optional[Any] = input_string if string.split("." )[0] == "timestep_embed": return string.replace("timestep_embed" , "time_proj" ) SCREAMING_SNAKE_CASE:List[str] = 0 if string.startswith("net.3." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[6:] elif string.startswith("net." ): SCREAMING_SNAKE_CASE:int = string[4:] while string.startswith("main.7." ): depth += 1 SCREAMING_SNAKE_CASE:Union[str, Any] = string[7:] if string.startswith("main." ): SCREAMING_SNAKE_CASE:str = string[5:] # mid block if string[:2].isdigit(): SCREAMING_SNAKE_CASE:Tuple = string[:2] SCREAMING_SNAKE_CASE:Optional[Any] = string[2:] else: SCREAMING_SNAKE_CASE:Optional[Any] = string[0] SCREAMING_SNAKE_CASE:Optional[Any] = string[1:] if depth == max_depth: SCREAMING_SNAKE_CASE:Any = MID_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:List[str] = "mid_block" elif depth > 0 and int(snake_case ) < 7: SCREAMING_SNAKE_CASE:Union[str, Any] = DOWN_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Dict = F'''down_blocks.{depth}''' elif depth > 0 and int(snake_case ) > 7: SCREAMING_SNAKE_CASE:Any = UP_NUM_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Union[str, Any] = F'''up_blocks.{max_depth - depth - 1}''' elif depth == 0: SCREAMING_SNAKE_CASE:Optional[int] = DEPTH_0_TO_LAYER[layer_num] SCREAMING_SNAKE_CASE:Any = F'''up_blocks.{max_depth - 1}''' if int(snake_case ) > 3 else "down_blocks.0" if not string_left.startswith("." ): raise ValueError(F'''Naming error with {input_string} and string_left: {string_left}.''' ) SCREAMING_SNAKE_CASE:List[Any] = string_left[1:] if "resnets" in new_layer: SCREAMING_SNAKE_CASE:List[str] = convert_resconv_naming(snake_case ) elif "attentions" in new_layer: SCREAMING_SNAKE_CASE:List[Any] = convert_attn_naming(snake_case ) SCREAMING_SNAKE_CASE:List[Any] = new_string_left if not isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Tuple = prefix + "." + new_layer + "." + string_left else: SCREAMING_SNAKE_CASE:int = [prefix + "." + new_layer + "." + s for s in string_left] return new_string def A_ ( snake_case ): SCREAMING_SNAKE_CASE:int = {} for k, v in state_dict.items(): if k.endswith("kernel" ): # up- and downsample layers, don't have trainable weights continue SCREAMING_SNAKE_CASE:str = rename(snake_case ) # check if we need to transform from Conv => Linear for attention if isinstance(snake_case , snake_case ): SCREAMING_SNAKE_CASE:Optional[int] = transform_conv_attns(snake_case , snake_case , snake_case ) else: SCREAMING_SNAKE_CASE:Optional[int] = v return new_state_dict def A_ ( snake_case , snake_case , snake_case ): if len(snake_case ) == 1: if len(v.shape ) == 3: # weight SCREAMING_SNAKE_CASE:List[str] = v[:, :, 0] else: # bias SCREAMING_SNAKE_CASE:Optional[Any] = v else: # qkv matrices SCREAMING_SNAKE_CASE:Optional[int] = v.shape[0] SCREAMING_SNAKE_CASE:Optional[Any] = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: SCREAMING_SNAKE_CASE:Union[str, Any] = v[i * single_shape : (i + 1) * single_shape, :, 0] else: SCREAMING_SNAKE_CASE:List[Any] = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def A_ ( snake_case ): SCREAMING_SNAKE_CASE:Union[str, Any] = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) SCREAMING_SNAKE_CASE:List[str] = args.model_path.split("/" )[-1].split("." )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F'''Make sure to provide one of the official model names {MODELS_MAP.keys()}''' SCREAMING_SNAKE_CASE:List[str] = download(snake_case ) SCREAMING_SNAKE_CASE:List[str] = MODELS_MAP[model_name]["sample_rate"] SCREAMING_SNAKE_CASE:Tuple = MODELS_MAP[model_name]["sample_size"] SCREAMING_SNAKE_CASE:Union[str, Any] = Object() SCREAMING_SNAKE_CASE:int = sample_size SCREAMING_SNAKE_CASE:Any = sample_rate SCREAMING_SNAKE_CASE:List[str] = 0 SCREAMING_SNAKE_CASE:Optional[Any] = UNetaDModel(sample_size=snake_case , sample_rate=snake_case ) SCREAMING_SNAKE_CASE:Optional[Any] = diffusers_model.state_dict() SCREAMING_SNAKE_CASE:Optional[Any] = DiffusionUncond(snake_case ) orig_model.load_state_dict(torch.load(args.model_path , map_location=snake_case )["state_dict"] ) SCREAMING_SNAKE_CASE:Union[str, Any] = orig_model.diffusion_ema.eval() SCREAMING_SNAKE_CASE:Dict = orig_model.state_dict() SCREAMING_SNAKE_CASE:Union[str, Any] = rename_orig_weights(snake_case ) SCREAMING_SNAKE_CASE:Dict = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) SCREAMING_SNAKE_CASE:Dict = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(snake_case ) == 0, F'''Problem with {renamed_minus_diffusers}''' assert all(k.endswith("kernel" ) for k in list(snake_case ) ), F'''Problem with {diffusers_minus_renamed}''' for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F'''Shape for {key} doesn\'t match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}''' if key == "time_proj.weight": SCREAMING_SNAKE_CASE:Dict = value.squeeze() SCREAMING_SNAKE_CASE:Union[str, Any] = value diffusers_model.load_state_dict(snake_case ) SCREAMING_SNAKE_CASE:int = 100 SCREAMING_SNAKE_CASE:int = 33 SCREAMING_SNAKE_CASE:Any = IPNDMScheduler(num_train_timesteps=snake_case ) SCREAMING_SNAKE_CASE:str = torch.manual_seed(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.randn([1, 2, config.sample_size] , generator=snake_case ).to(snake_case ) SCREAMING_SNAKE_CASE:int = torch.linspace(1 , 0 , steps + 1 , device=snake_case )[:-1] SCREAMING_SNAKE_CASE:List[Any] = get_crash_schedule(snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = DanceDiffusionPipeline(unet=snake_case , scheduler=snake_case ) SCREAMING_SNAKE_CASE:Union[str, Any] = torch.manual_seed(33 ) SCREAMING_SNAKE_CASE:Union[str, Any] = pipe(num_inference_steps=snake_case , generator=snake_case ).audios SCREAMING_SNAKE_CASE:Tuple = sampling.iplms_sample(snake_case , snake_case , snake_case , {} ) SCREAMING_SNAKE_CASE:Union[str, Any] = generated.clamp(-1 , 1 ) SCREAMING_SNAKE_CASE:Union[str, Any] = (generated - audio).abs().sum() SCREAMING_SNAKE_CASE:str = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print("Diff sum" , snake_case ) print("Diff max" , snake_case ) assert diff_max < 1e-3, F'''Diff max: {diff_max} is too much :-/''' print(F'''Conversion for {model_name} successful!''' ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") A_ = parser.parse_args() main(args)
139
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case : Optional[Any] = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json', 'google/bigbird-roberta-large': 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json', 'google/bigbird-base-trivia-itc': 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json', # See all BigBird models at https://huggingface.co/models?filter=big_bird } class A ( _a ): lowercase_ = 'big_bird' def __init__( self : Any , lowerCAmelCase_ : Optional[Any]=5_03_58 , lowerCAmelCase_ : Optional[Any]=7_68 , lowerCAmelCase_ : int=12 , lowerCAmelCase_ : Optional[int]=12 , lowerCAmelCase_ : List[Any]=30_72 , lowerCAmelCase_ : Any="gelu_new" , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Dict=0.1 , lowerCAmelCase_ : str=40_96 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Any=0.0_2 , lowerCAmelCase_ : int=1e-12 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : List[Any]=1 , lowerCAmelCase_ : str=2 , lowerCAmelCase_ : Optional[int]=66 , lowerCAmelCase_ : List[Any]="block_sparse" , lowerCAmelCase_ : Tuple=True , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=64 , lowerCAmelCase_ : Optional[int]=3 , lowerCAmelCase_ : List[str]=None , **lowerCAmelCase_ : Union[str, Any] , ) -> List[Any]: """simple docstring""" super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , sep_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , ) _a = vocab_size _a = max_position_embeddings _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = type_vocab_size _a = layer_norm_eps _a = use_cache _a = rescale_embeddings _a = attention_type _a = use_bias _a = block_size _a = num_random_blocks _a = classifier_dropout class A ( _a ): @property def __lowerCAmelCase ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _a = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
355
'''simple docstring''' import argparse from collections import defaultdict import yaml _snake_case : int = 'docs/source/en/_toctree.yml' def snake_case_ (UpperCamelCase : Optional[int] ): '''simple docstring''' _a = defaultdict(UpperCamelCase ) for doc in model_doc: counts[doc["local"]] += 1 _a = [key for key, value in counts.items() if value > 1] _a = [] for duplicate_key in duplicates: _a = list({doc['''title'''] for doc in model_doc if doc['''local'''] == duplicate_key} ) if len(UpperCamelCase ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '''`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ''' '''others.''' ) # Only add this once new_doc.append({'''local''': duplicate_key, '''title''': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc['''local''']] == 1] ) # Sort return sorted(UpperCamelCase , key=lambda UpperCamelCase : s["title"].lower() ) def snake_case_ (UpperCamelCase : str=False ): '''simple docstring''' with open(UpperCamelCase , encoding='''utf-8''' ) as f: _a = yaml.safe_load(f.read() ) # Get to the API doc _a = 0 while content[api_idx]["title"] != "API": api_idx += 1 _a = content[api_idx]['''sections'''] # Then to the model doc _a = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 _a = api_doc[model_idx]['''sections'''] _a = [(idx, section) for idx, section in enumerate(UpperCamelCase ) if '''sections''' in section] _a = False for idx, modality_doc in modalities_docs: _a = modality_doc['''sections'''] _a = clean_model_doc_toc(UpperCamelCase ) if old_modality_doc != new_modality_doc: _a = True if overwrite: _a = new_modality_doc if diff: if overwrite: _a = model_doc _a = api_doc with open(UpperCamelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(yaml.dump(UpperCamelCase , allow_unicode=UpperCamelCase ) ) else: raise ValueError( '''The model doc part of the table of content is not properly sorted, run `make style` to fix this.''' ) if __name__ == "__main__": _snake_case : List[str] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') _snake_case : List[Any] = parser.parse_args() check_model_doc(args.fix_and_overwrite)
179
0
from __future__ import annotations import time import numpy as np __UpperCAmelCase = [8, 5, 9, 7] __UpperCAmelCase = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __UpperCAmelCase = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class lowerCAmelCase_ : def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Any = claim_vector UpperCamelCase : Tuple = allocated_resources_table UpperCamelCase : List[Any] = maximum_claim_table def snake_case_ ( self ) -> list[int]: return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def snake_case_ ( self ) -> list[int]: return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def snake_case_ ( self ) -> list[list[int]]: return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(SCREAMING_SNAKE_CASE_ ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def snake_case_ ( self ) -> dict[int, list[int]]: return {self.__need().index(SCREAMING_SNAKE_CASE_ ): i for i in self.__need()} def snake_case_ ( self, **SCREAMING_SNAKE_CASE_ ) -> None: UpperCamelCase : str = self.__need() UpperCamelCase : Optional[Any] = self.__allocated_resources_table UpperCamelCase : Tuple = self.__available_resources() UpperCamelCase : List[str] = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print('_' * 50 + '\n' ) while need_list: UpperCamelCase : str = False for each_need in need_list: UpperCamelCase : Tuple = True for index, need in enumerate(SCREAMING_SNAKE_CASE_ ): if need > available_resources[index]: UpperCamelCase : int = False break if execution: UpperCamelCase : str = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: UpperCamelCase : int = original_need_index print(F"""Process {process_number + 1} is executing.""" ) # remove the process run from stack need_list.remove(SCREAMING_SNAKE_CASE_ ) # update available/freed resources stack UpperCamelCase : Any = np.array(SCREAMING_SNAKE_CASE_ ) + np.array( alloc_resources_table[process_number] ) print( 'Updated available resource stack for processes: ' + ' '.join([str(SCREAMING_SNAKE_CASE_ ) for x in available_resources] ) ) break if safe: print('The process is in a safe state.\n' ) else: print('System in unsafe state. Aborting...\n' ) break def snake_case_ ( self ) -> Dict: print(' ' * 9 + 'Allocated Resource Table' ) for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(SCREAMING_SNAKE_CASE_ ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print(' ' * 9 + 'System Resource Table' ) for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(SCREAMING_SNAKE_CASE_ ) + 1}""" + ' '.join(F"""{it:>8}""" for it in item ) + '\n' ) print( 'Current Usage by Active Processes: ' + ' '.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__claim_vector ) ) print( 'Initial Available Resources: ' + ' '.join(str(SCREAMING_SNAKE_CASE_ ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
119
'''simple docstring''' import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version a_ : str = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") a_ : Tuple = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization a_ : Any = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } a_ : Union[str, Any] = sorted(arg_to_scheduler.keys()) a_ : List[Any] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class a ( pl.LightningModule ): def __init__( self , __magic_name__ , __magic_name__=None , __magic_name__="base" , __magic_name__=None , __magic_name__=None , __magic_name__=None , **__magic_name__ , ) -> List[str]: super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__magic_name__ ) _a = 0 _a = Path(self.hparams.output_dir ) _a = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: _a = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__magic_name__ , **__magic_name__ , ) else: _a = config _a = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __magic_name__ , __magic_name__ ): assert hasattr(self.config , __magic_name__ ), f'model config doesn\'t have a `{p}` attribute' setattr(self.config , __magic_name__ , getattr(self.hparams , __magic_name__ ) ) if tokenizer is None: _a = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__magic_name__ , ) else: _a = tokenizer _a = MODEL_MODES[mode] if model is None: _a = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__magic_name__ , ) else: _a = model def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> List[Any]: _a = self.model_type.from_pretrained(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self ) -> List[str]: _a = arg_to_scheduler[self.hparams.lr_scheduler] _a = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) _a = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def __UpperCAmelCase ( self ) -> Any: _a = self.model _a = ['bias', 'LayerNorm.weight'] _a = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: _a = Adafactor( __magic_name__ , lr=self.hparams.learning_rate , scale_parameter=__magic_name__ , relative_step=__magic_name__ ) else: _a = AdamW( __magic_name__ , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) _a = optimizer _a = self.get_lr_scheduler() return [optimizer], [scheduler] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> List[str]: return self.validation_step(__magic_name__ , __magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: return self.validation_end(__magic_name__ ) def __UpperCAmelCase ( self ) -> int: _a = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores _a = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def __UpperCAmelCase ( self , __magic_name__ ) -> Optional[int]: if stage == "test": _a = len(self.test_dataloader().dataset ) else: _a = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__magic_name__ ) _a = len(self.train_dataloader().dataset ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ = False ) -> int: raise NotImplementedError('You must implement this for your task' ) def __UpperCAmelCase ( self ) -> Tuple: return self.train_loader def __UpperCAmelCase ( self ) -> Dict: return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self ) -> Tuple: return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ ) -> List[Any]: return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __magic_name__ , list(filter(__magic_name__ , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def __UpperCAmelCase ( self , __magic_name__ ) -> None: _a = self.output_dir.joinpath('best_tfmr' ) _a = self.step_count self.model.save_pretrained(__magic_name__ ) self.tokenizer.save_pretrained(__magic_name__ ) @staticmethod def __UpperCAmelCase ( __magic_name__ , __magic_name__ ) -> Optional[int]: parser.add_argument( '--model_name_or_path' , default=__magic_name__ , type=__magic_name__ , required=__magic_name__ , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__magic_name__ , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__magic_name__ , type=__magic_name__ , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__magic_name__ ).parent / 'test_run' / 'cache' ) , type=__magic_name__ , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__magic_name__ , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__magic_name__ , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__magic_name__ , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__magic_name__ , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5e-5 , type=__magic_name__ , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__magic_name__ , metavar=__magic_name__ , type=__magic_name__ , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__magic_name__ , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1e-8 , type=__magic_name__ , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__magic_name__ , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__magic_name__ , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__magic_name__ ) parser.add_argument('--train_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--eval_batch_size' , default=32 , type=__magic_name__ ) parser.add_argument('--adafactor' , action='store_true' ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Any: # print(pl_module.model.rag) for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__magic_name__ ) class a ( pl.Callback ): def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Optional[int]: _a = trainer.lr_schedulers[0]['scheduler'] _a = {f'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> int: rank_zero_info('***** Validation results *****' ) _a = trainer.callback_metrics # Log results for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> Union[str, Any]: rank_zero_info('***** Test results *****' ) _a = trainer.callback_metrics # Log and save results to file _a = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__magic_name__ , 'w' ) as writer: for key in sorted(__magic_name__ ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__magic_name__ , str(metrics[key] ) ) ) def _A (lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :List[Any] ) -> None: '''simple docstring''' parser.add_argument( '--output_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'model_checkpoints' ) , type=lowerCAmelCase__ , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=lowerCAmelCase__ , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=lowerCAmelCase__ ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=lowerCAmelCase__ , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=lowerCAmelCase__ , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=lowerCAmelCase__ , default=42 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(lowerCAmelCase__ ).parent / 'test_run' / 'dummy-train-data' ) , type=lowerCAmelCase__ , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def _A (lowerCAmelCase__ :BaseTransformer , lowerCAmelCase__ :argparse.Namespace , lowerCAmelCase__ :Tuple=None , lowerCAmelCase__ :Tuple=True , lowerCAmelCase__ :Optional[Any]=[] , lowerCAmelCase__ :Optional[int]=None , lowerCAmelCase__ :Union[str, Any]=None , **lowerCAmelCase__ :List[str] , ) -> str: '''simple docstring''' pl.seed_everything(args.seed ) # init model _a = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=lowerCAmelCase__ ) # add custom checkpoints if checkpoint_callback is None: _a = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(lowerCAmelCase__ ) if logging_callback is None: _a = LoggingCallback() _a = {} if args.fpaa: _a = 16 if args.gpus > 1: _a = 'auto' _a = 'ddp' _a = args.accumulate_grad_batches _a = None _a = 'auto' _a = pl.Trainer.from_argparse_args( lowerCAmelCase__ , weights_summary=lowerCAmelCase__ , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=lowerCAmelCase__ , val_check_interval=1 , num_sanity_val_steps=2 , **lowerCAmelCase__ , ) if args.do_train: trainer.fit(lowerCAmelCase__ ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
168
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput lowerCamelCase : str = 8 def _SCREAMING_SNAKE_CASE ( lowercase : int , lowercase : Dict=BITS ): '''simple docstring''' lowerCamelCase_ = x.device lowerCamelCase_ = (x * 2_55).int().clamp(0 , 2_55 ) lowerCamelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase ) lowerCamelCase_ = rearrange(lowercase , 'd -> d 1 1' ) lowerCamelCase_ = rearrange(lowercase , 'b c h w -> b c 1 h w' ) lowerCamelCase_ = ((x & mask) != 0).float() lowerCamelCase_ = rearrange(lowercase , 'b c d h w -> b (c d) h w' ) lowerCamelCase_ = bits * 2 - 1 return bits def _SCREAMING_SNAKE_CASE ( lowercase : Optional[Any] , lowercase : Tuple=BITS ): '''simple docstring''' lowerCamelCase_ = x.device lowerCamelCase_ = (x > 0).int() lowerCamelCase_ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase , dtype=torch.intaa ) lowerCamelCase_ = rearrange(lowercase , 'd -> d 1 1' ) lowerCamelCase_ = rearrange(lowercase , 'b (c d) h w -> b c d h w' , d=8 ) lowerCamelCase_ = reduce(x * mask , 'b c d h w -> b c h w' , 'sum' ) return (dec / 2_55).clamp(0.0 , 1.0 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : float = 0.0 , lowercase : bool = True , lowercase : int=None , lowercase : bool = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase_ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase_ = self.alphas_cumprod[timestep] lowerCamelCase_ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase_ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase_ = self.bit_scale if self.config.clip_sample: lowerCamelCase_ = torch.clamp(lowercase , -scale , lowercase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase_ = self._get_variance(lowercase , lowercase ) lowerCamelCase_ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase_ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase_ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase_ = model_output.device if torch.is_tensor(lowercase ) else 'cpu' lowerCamelCase_ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase ).to(lowercase ) lowerCamelCase_ = self._get_variance(lowercase , lowercase ) ** 0.5 * eta * noise lowerCamelCase_ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase : torch.FloatTensor , lowercase : int , lowercase : torch.FloatTensor , lowercase : Dict="epsilon" , lowercase : Tuple=None , lowercase : bool = True , ): '''simple docstring''' lowerCamelCase_ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase_ , lowerCamelCase_ = torch.split(lowercase , sample.shape[1] , dim=1 ) else: lowerCamelCase_ = None # 1. compute alphas, betas lowerCamelCase_ = self.alphas_cumprod[t] lowerCamelCase_ = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase_ = 1 - alpha_prod_t lowerCamelCase_ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase_ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase_ = model_output else: raise ValueError(f"""Unsupported prediction_type {prediction_type}.""" ) # 3. Clip "predicted x_0" lowerCamelCase_ = self.bit_scale if self.config.clip_sample: lowerCamelCase_ = torch.clamp(lowercase , -scale , lowercase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase_ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase_ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase_ = 0 if t > 0: lowerCamelCase_ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase ).to(model_output.device ) lowerCamelCase_ = (self._get_variance(lowercase , predicted_variance=lowercase ) ** 0.5) * noise lowerCamelCase_ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase , pred_original_sample=lowercase ) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Any , A_ : UNetaDConditionModel , A_ : Union[DDIMScheduler, DDPMScheduler] , A_ : Optional[float] = 1.0 , ) -> Union[str, Any]: """simple docstring""" super().__init__() lowerCamelCase_ = bit_scale lowerCamelCase_ = ( ddim_bit_scheduler_step if isinstance(A_ , A_ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=A_ , scheduler=A_ ) @torch.no_grad() def __call__( self : Optional[int] , A_ : Optional[int] = 256 , A_ : Optional[int] = 256 , A_ : Optional[int] = 50 , A_ : Optional[torch.Generator] = None , A_ : Optional[int] = 1 , A_ : Optional[str] = "pil" , A_ : bool = True , **A_ : Tuple , ) -> Union[Tuple, ImagePipelineOutput]: """simple docstring""" lowerCamelCase_ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=A_ , ) lowerCamelCase_ = decimal_to_bits(A_ ) * self.bit_scale lowerCamelCase_ = latents.to(self.device ) self.scheduler.set_timesteps(A_ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase_ = self.unet(A_ , A_ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase_ = self.scheduler.step(A_ , A_ , A_ ).prev_sample lowerCamelCase_ = bits_to_decimal(A_ ) if output_type == "pil": lowerCamelCase_ = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
208
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''transfo-xl''' UpperCamelCase = ['''mems'''] UpperCamelCase = { '''n_token''': '''vocab_size''', '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , A_ : Optional[Any]=267735 , A_ : Optional[Any]=[20000, 40000, 200000] , A_ : Union[str, Any]=1024 , A_ : Optional[Any]=1024 , A_ : Optional[int]=16 , A_ : Any=64 , A_ : List[Any]=4096 , A_ : str=4 , A_ : int=False , A_ : List[Any]=18 , A_ : Optional[int]=1600 , A_ : Union[str, Any]=1000 , A_ : Optional[Any]=True , A_ : Optional[int]=True , A_ : List[str]=0 , A_ : int=-1 , A_ : List[Any]=True , A_ : List[Any]=0.1 , A_ : str=0.0 , A_ : Dict=True , A_ : Dict="normal" , A_ : Dict=0.01 , A_ : Optional[Any]=0.01 , A_ : Any=0.02 , A_ : int=1E-5 , A_ : List[str]=0 , **A_ : Optional[Any] , ) -> Optional[int]: """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = [] self.cutoffs.extend(A_ ) if proj_share_all_but_first: lowerCamelCase_ = [False] + [True] * len(self.cutoffs ) else: lowerCamelCase_ = [False] + [False] * len(self.cutoffs ) lowerCamelCase_ = d_model lowerCamelCase_ = d_embed lowerCamelCase_ = d_head lowerCamelCase_ = d_inner lowerCamelCase_ = div_val lowerCamelCase_ = pre_lnorm lowerCamelCase_ = n_layer lowerCamelCase_ = n_head lowerCamelCase_ = mem_len lowerCamelCase_ = same_length lowerCamelCase_ = attn_type lowerCamelCase_ = clamp_len lowerCamelCase_ = sample_softmax lowerCamelCase_ = adaptive lowerCamelCase_ = dropout lowerCamelCase_ = dropatt lowerCamelCase_ = untie_r lowerCamelCase_ = init lowerCamelCase_ = init_range lowerCamelCase_ = proj_init_std lowerCamelCase_ = init_std lowerCamelCase_ = layer_norm_epsilon super().__init__(eos_token_id=A_ , **A_ ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , A_ : Optional[int] ) -> List[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
208
1
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class __A : """simple docstring""" UpperCamelCase__ : int =XGLMConfig UpperCamelCase__ : Optional[Any] ={} UpperCamelCase__ : List[str] ="""gelu""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=14 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : Tuple =parent __UpperCamelCase : List[str] =batch_size __UpperCamelCase : str =seq_length __UpperCamelCase : Dict =is_training __UpperCamelCase : Tuple =use_input_mask __UpperCamelCase : List[Any] =use_labels __UpperCamelCase : Any =vocab_size __UpperCamelCase : List[Any] =d_model __UpperCamelCase : Optional[int] =num_hidden_layers __UpperCamelCase : List[str] =num_attention_heads __UpperCamelCase : Optional[int] =ffn_dim __UpperCamelCase : str =activation_function __UpperCamelCase : Any =activation_dropout __UpperCamelCase : Optional[int] =attention_dropout __UpperCamelCase : Optional[int] =max_position_embeddings __UpperCamelCase : Any =initializer_range __UpperCamelCase : Dict =None __UpperCamelCase : Optional[int] =0 __UpperCamelCase : Optional[Any] =2 __UpperCamelCase : str =1 def __lowercase ( self ): """simple docstring""" return XGLMConfig.from_pretrained('facebook/xglm-564M' ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 ) __UpperCamelCase : Union[str, Any] =None if self.use_input_mask: __UpperCamelCase : Dict =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : Any =self.get_config() __UpperCamelCase : Optional[Any] =floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, ) def __lowercase ( self ): """simple docstring""" return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=lowerCamelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=lowerCamelCase__ , ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : int =config_and_inputs __UpperCamelCase : Optional[Any] ={ 'input_ids': input_ids, 'head_mask': head_mask, } return config, inputs_dict @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Union[str, Any] =(TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCamelCase__ : str =(TFXGLMForCausalLM,) if is_tf_available() else () UpperCamelCase__ : Optional[Any] =( {"""feature-extraction""": TFXGLMModel, """text-generation""": TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCamelCase__ : Tuple =False UpperCamelCase__ : Tuple =False UpperCamelCase__ : Optional[Any] =False def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMModelTester(self ) __UpperCamelCase : Dict =ConfigTester(self , config_class=lowerCamelCase__ , n_embd=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() @slow def __lowercase ( self ): """simple docstring""" for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase : Optional[Any] =TFXGLMModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @unittest.skip(reason='Currently, model embeddings are going to undergo a major refactor.' ) def __lowercase ( self ): """simple docstring""" super().test_resize_token_embeddings() @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self , lowerCamelCase__=True ): """simple docstring""" __UpperCamelCase : int =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : List[str] =tf.convert_to_tensor([[2, 268, 9865]] , dtype=tf.intaa ) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off __UpperCamelCase : str =[2, 268, 9865, 67, 11, 1988, 57252, 9865, 5, 984, 67, 1988, 213838, 1658, 53, 70446, 33, 6657, 278, 1581] # fmt: on __UpperCamelCase : Optional[Any] =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , num_beams=1 ) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Union[str, Any] =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) tf.random.set_seed(0 ) __UpperCamelCase : str =tokenizer('Today is a nice day and' , return_tensors='tf' ) __UpperCamelCase : Union[str, Any] =tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(':/CPU:0' ): __UpperCamelCase : Any =model.generate(lowerCamelCase__ , do_sample=lowerCamelCase__ , seed=[7, 0] ) __UpperCamelCase : Tuple =tokenizer.decode(output_ids[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : List[Any] =( 'Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due' ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =TFXGLMForCausalLM.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] =XGLMTokenizer.from_pretrained('facebook/xglm-564M' ) __UpperCamelCase : Optional[Any] ='left' # use different length sentences to test batching __UpperCamelCase : Optional[int] =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When', 'Hello, my dog is a little', ] __UpperCamelCase : List[Any] =tokenizer(lowerCamelCase__ , return_tensors='tf' , padding=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =inputs['input_ids'] __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , attention_mask=inputs['attention_mask'] , max_new_tokens=12 ) __UpperCamelCase : List[Any] =tokenizer(sentences[0] , return_tensors='tf' ).input_ids __UpperCamelCase : Dict =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Any =tokenizer(sentences[1] , return_tensors='tf' ).input_ids __UpperCamelCase : Optional[Any] =model.generate(input_ids=lowerCamelCase__ , max_new_tokens=12 ) __UpperCamelCase : Optional[int] =tokenizer.batch_decode(lowerCamelCase__ , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : int =tokenizer.decode(output_padded[0] , skip_special_tokens=lowerCamelCase__ ) __UpperCamelCase : Any =[ 'This is an extremelly long sentence that only exists to test the ability of the model to cope with ' 'left-padding, such as in batched generation. The output for the sequence below should be the same ' 'regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ' 'a single', 'Hello, my dog is a little bit of a shy one, but he is very friendly', ] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , [non_padded_sentence, padded_sentence] )
71
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase_ = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase_ = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase_ = {ord(char) for char in VALID_CHARS} UpperCamelCase_ = ["the", "be", "to", "of", "and", "in", "that", "have"] def lowercase__( __UpperCamelCase: list[int] ,__UpperCamelCase: tuple[int, ...] ): """simple docstring""" SCREAMING_SNAKE_CASE : str = "" SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int SCREAMING_SNAKE_CASE : int for keychar, cipherchar in zip(cycle(__UpperCamelCase ) ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : Any = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__UpperCamelCase ) return decoded def lowercase__( __UpperCamelCase: list[int] ): """simple docstring""" SCREAMING_SNAKE_CASE : list[str] = [] for key in product(__UpperCamelCase ,repeat=3 ): SCREAMING_SNAKE_CASE : Union[str, Any] = try_key(__UpperCamelCase ,__UpperCamelCase ) if encoded is not None: possibles.append(__UpperCamelCase ) return possibles def lowercase__( __UpperCamelCase: list[str] ,__UpperCamelCase: str ): """simple docstring""" return [possible for possible in possibles if common_word in possible.lower()] def lowercase__( __UpperCamelCase: str = "p059_cipher.txt" ): """simple docstring""" SCREAMING_SNAKE_CASE : list[int] SCREAMING_SNAKE_CASE : list[str] SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : str SCREAMING_SNAKE_CASE : str = Path(__UpperCamelCase ).parent.joinpath(__UpperCamelCase ).read_text(encoding='utf-8' ) SCREAMING_SNAKE_CASE : Optional[int] = [int(__UpperCamelCase ) for number in data.strip().split(',' )] SCREAMING_SNAKE_CASE : List[Any] = filter_valid_chars(__UpperCamelCase ) for common_word in COMMON_WORDS: SCREAMING_SNAKE_CASE : Optional[Any] = filter_common_word(__UpperCamelCase ,__UpperCamelCase ) if len(__UpperCamelCase ) == 1: break SCREAMING_SNAKE_CASE : Dict = possibles[0] return sum(ord(__UpperCamelCase ) for char in decoded_text ) if __name__ == "__main__": print(F"""{solution() = }""")
251
0
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def snake_case (A_ :Optional[Any] , A_ :Any=7 ): '''simple docstring''' a : Tuple = None if token is not None: a : Any = {'Accept': 'application/vnd.github+json', 'Authorization': f'''Bearer {token}'''} # The id of a workflow (not of a workflow run) a : Optional[Any] = '636036' a : List[str] = f'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' a : Any = requests.get(A_ , headers=A_ ).json() return result["workflow_runs"] def snake_case (A_ :Dict ): '''simple docstring''' a : Any = get_daily_ci_runs(A_ ) a : Union[str, Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": a : List[str] = workflow_run['id'] break return workflow_run_id def snake_case (A_ :int , A_ :Tuple , A_ :str ): '''simple docstring''' a : List[str] = get_last_daily_ci_runs(A_ ) if workflow_run_id is not None: a : Union[str, Any] = get_artifacts_links(worflow_run_id=A_ , token=A_ ) for artifact_name in artifact_names: if artifact_name in artifacts_links: a : Any = artifacts_links[artifact_name] download_artifact( artifact_name=A_ , artifact_url=A_ , output_dir=A_ , token=A_ ) def snake_case (A_ :Dict , A_ :int , A_ :Union[str, Any] ): '''simple docstring''' get_last_daily_ci_artifacts(A_ , A_ , A_ ) a : Optional[Any] = {} for artifact_name in artifact_names: a : List[Any] = os.path.join(A_ , f'''{artifact_name}.zip''' ) if os.path.isfile(A_ ): a : Tuple = {} with zipfile.ZipFile(A_ ) as z: for filename in z.namelist(): if not os.path.isdir(A_ ): # read the file with z.open(A_ ) as f: a : str = f.read().decode('UTF-8' ) return results
186
"""simple docstring""" def snake_case (A_ :list[int] , A_ :str ): '''simple docstring''' a : Optional[int] = int(A_ ) # Initialize Result a : int = [] # Traverse through all denomination for denomination in reversed(A_ ): # Find denominations while int(A_ ) >= int(A_ ): total_value -= int(A_ ) answer.append(A_ ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _UpperCamelCase : Dict = [] _UpperCamelCase : str = '0' if ( input('Do you want to enter your denominations ? (yY/n): ').strip().lower() == "y" ): _UpperCamelCase : Dict = int(input('Enter the number of denominations you want to add: ').strip()) for i in range(0, n): denominations.append(int(input(f'''Denomination {i}: ''').strip())) _UpperCamelCase : Optional[int] = input('Enter the change you want to make in Indian Currency: ').strip() else: # All denominations of Indian Currency if user does not enter _UpperCamelCase : Union[str, Any] = [1, 2, 5, 10, 20, 50, 100, 500, 2000] _UpperCamelCase : Dict = input('Enter the change you want to make: ').strip() if int(value) == 0 or int(value) < 0: print('The total value cannot be zero or negative.') else: print(f'''Following is minimal change for {value}: ''') _UpperCamelCase : Tuple = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=' ')
186
1
'''simple docstring''' import os from distutils.util import strtobool def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" for e in env_keys: lowerCAmelCase__ : List[Any] = int(os.environ.get(UpperCamelCase , -1 ) ) if val >= 0: return val return default def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ : List[Any] = os.environ.get(UpperCamelCase , str(UpperCamelCase ) ) return strtobool(UpperCamelCase ) == 1 # As its name indicates `strtobool` actually returns an int... def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase="no" ): """simple docstring""" lowerCAmelCase__ : List[str] = os.environ.get(UpperCamelCase , str(UpperCamelCase ) ) return value
37
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = {'''vocab_file''': '''spiece.model'''} _lowerCAmelCase = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } _lowerCAmelCase = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } _lowerCAmelCase = '''▁''' class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=False ,__UpperCAmelCase="[CLS]" ,__UpperCAmelCase="[SEP]" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="[SEP]" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="[CLS]" ,__UpperCAmelCase="[MASK]" ,__UpperCAmelCase = None ,**__UpperCAmelCase ,) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCAmelCase__ : Tuple = ( AddedToken(__UpperCAmelCase ,lstrip=__UpperCAmelCase ,rstrip=__UpperCAmelCase ,normalized=__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else mask_token ) lowerCAmelCase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase ,remove_space=__UpperCAmelCase ,keep_accents=__UpperCAmelCase ,bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,sp_model_kwargs=self.sp_model_kwargs ,**__UpperCAmelCase ,) lowerCAmelCase__ : str = do_lower_case lowerCAmelCase__ : int = remove_space lowerCAmelCase__ : Tuple = keep_accents lowerCAmelCase__ : Any = vocab_file lowerCAmelCase__ : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def UpperCAmelCase_ ( self ) -> Optional[int]: return len(self.sp_model ) def UpperCAmelCase_ ( self ) -> Optional[Any]: lowerCAmelCase__ : Union[str, Any] = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Any: lowerCAmelCase__ : Optional[Any] = self.__dict__.copy() lowerCAmelCase__ : Optional[Any] = None return state def __setstate__( self ,__UpperCAmelCase ) -> List[Any]: lowerCAmelCase__ : List[str] = d # for backward compatibility if not hasattr(self ,"""sp_model_kwargs""" ): lowerCAmelCase__ : Union[str, Any] = {} lowerCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: if self.remove_space: lowerCAmelCase__ : int = """ """.join(inputs.strip().split() ) else: lowerCAmelCase__ : str = inputs lowerCAmelCase__ : Tuple = outputs.replace("""``""" ,"""\"""" ).replace("""''""" ,"""\"""" ) if not self.keep_accents: lowerCAmelCase__ : Any = unicodedata.normalize("""NFKD""" ,__UpperCAmelCase ) lowerCAmelCase__ : Dict = """""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: lowerCAmelCase__ : Tuple = outputs.lower() return outputs def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = self.preprocess_text(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.sp_model.encode(__UpperCAmelCase ,out_type=__UpperCAmelCase ) lowerCAmelCase__ : str = [] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCAmelCase__ : List[Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase ,"""""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCAmelCase__ : str = cur_pieces[1:] else: lowerCAmelCase__ : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: return self.sp_model.PieceToId(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Any: return self.sp_model.IdToPiece(__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : str = [] lowerCAmelCase__ : Tuple = """""" lowerCAmelCase__ : Tuple = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__UpperCAmelCase ) + token lowerCAmelCase__ : Union[str, Any] = True lowerCAmelCase__ : List[str] = [] else: current_sub_tokens.append(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = False out_string += self.sp_model.decode(__UpperCAmelCase ) return out_string.strip() def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : int = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : List[str] = [self.sep_token_id] lowerCAmelCase__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : int = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase ,"""wb""" ) as fi: lowerCAmelCase__ : List[Any] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
37
1
'''simple docstring''' def lowercase__( __UpperCamelCase: int ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ): raise TypeError('only integers accepted as input' ) else: SCREAMING_SNAKE_CASE : Any = str(abs(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : int = [list(__UpperCamelCase ) for char in range(len(__UpperCamelCase ) )] for index in range(len(__UpperCamelCase ) ): num_transpositions[index].pop(__UpperCamelCase ) return max( int(''.join(list(__UpperCamelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("doctest").testmod()
354
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''openai-gpt''' A : Dict = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=40_478, A=512, A=768, A=12, A=12, A="gelu", A=0.1, A=0.1, A=0.1, A=1E-5, A=0.02, A="cls_index", A=True, A=None, A=True, A=0.1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = n_positions SCREAMING_SNAKE_CASE : Tuple = n_embd SCREAMING_SNAKE_CASE : Any = n_layer SCREAMING_SNAKE_CASE : Tuple = n_head SCREAMING_SNAKE_CASE : Union[str, Any] = afn SCREAMING_SNAKE_CASE : List[str] = resid_pdrop SCREAMING_SNAKE_CASE : List[str] = embd_pdrop SCREAMING_SNAKE_CASE : Tuple = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : List[Any] = summary_type SCREAMING_SNAKE_CASE : int = summary_use_proj SCREAMING_SNAKE_CASE : Union[str, Any] = summary_activation SCREAMING_SNAKE_CASE : List[str] = summary_first_dropout SCREAMING_SNAKE_CASE : Any = summary_proj_to_labels super().__init__(**A )
246
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase ( self : List[Any] ): snake_case__ : Any = 1 snake_case__ : Optional[Any] = 3 snake_case__ : Optional[Any] = (32, 32) snake_case__ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def lowerCamelCase ( self : Optional[int] ): torch.manual_seed(0 ) snake_case__ : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCamelCase ( self : Union[str, Any] ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase ( self : Any ): torch.manual_seed(0 ) snake_case__ : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5_006 , ) return RobertaSeriesModelWithTransformation(__lowerCamelCase ) @property def lowerCamelCase ( self : str ): def extract(*snake_case_ : Any , **snake_case_ : str ): class UpperCAmelCase_ : """simple docstring""" def __init__( self : Tuple ): snake_case__ : Any = torch.ones([0] ) def lowerCamelCase ( self : List[Any] , snake_case_ : Optional[Any] ): self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def lowerCamelCase ( self : int ): snake_case__ : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator snake_case__ : Optional[int] = self.dummy_cond_unet snake_case__ : int = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) snake_case__ : Union[str, Any] = self.dummy_vae snake_case__ : Optional[Any] = self.dummy_text_encoder snake_case__ : int = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) snake_case__ : Dict = 77 snake_case__ : int = self.dummy_image.to(__lowerCamelCase ) snake_case__ : List[str] = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk snake_case__ : Optional[Any] = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) snake_case__ : str = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) snake_case__ : List[str] = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case__ : Any = '''A painting of a squirrel eating a burger''' snake_case__ : Tuple = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) snake_case__ : List[str] = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , ) snake_case__ : List[Any] = output.images snake_case__ : Union[str, Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) snake_case__ : Optional[Any] = alt_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , return_dict=__lowerCamelCase , )[0] snake_case__ : Optional[Any] = image[0, -3:, -3:, -1] snake_case__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case__ : List[Any] = np.array([0.4427, 0.3731, 0.4249, 0.4941, 0.4546, 0.4148, 0.4193, 0.4666, 0.4499] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase ( self : Any ): snake_case__ : Any = self.dummy_cond_unet snake_case__ : Dict = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) snake_case__ : List[Any] = self.dummy_vae snake_case__ : Optional[int] = self.dummy_text_encoder snake_case__ : Tuple = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) snake_case__ : int = 77 snake_case__ : List[Any] = self.dummy_image.to(__lowerCamelCase ) # put models in fp16 snake_case__ : Dict = unet.half() snake_case__ : Tuple = vae.half() snake_case__ : int = bert.half() # make sure here that pndm scheduler skips prk snake_case__ : Dict = AltDiffusionImgaImgPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) snake_case__ : int = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__lowerCamelCase ) snake_case__ : str = alt_pipe.to(__lowerCamelCase ) alt_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case__ : List[Any] = '''A painting of a squirrel eating a burger''' snake_case__ : str = torch.manual_seed(0 ) snake_case__ : int = alt_pipe( [prompt] , generator=__lowerCamelCase , num_inference_steps=2 , output_type="""np""" , image=__lowerCamelCase , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase ( self : Tuple ): snake_case__ : Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 snake_case__ : str = init_image.resize((760, 504) ) snake_case__ : List[Any] = '''BAAI/AltDiffusion''' snake_case__ : List[str] = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() snake_case__ : List[str] = '''A fantasy landscape, trending on artstation''' snake_case__ : List[Any] = torch.manual_seed(0 ) snake_case__ : Tuple = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="""np""" , ) snake_case__ : str = output.images[0] snake_case__ : Optional[int] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) snake_case__ : Optional[Any] = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def lowerCamelCase ( self : str ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase ( self : List[str] ): snake_case__ : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) snake_case__ : Optional[int] = init_image.resize((768, 512) ) snake_case__ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) snake_case__ : Optional[int] = '''BAAI/AltDiffusion''' snake_case__ : Dict = AltDiffusionImgaImgPipeline.from_pretrained( __lowerCamelCase , safety_checker=__lowerCamelCase , ) pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) pipe.enable_attention_slicing() snake_case__ : List[Any] = '''A fantasy landscape, trending on artstation''' snake_case__ : int = torch.manual_seed(0 ) snake_case__ : Dict = pipe( prompt=__lowerCamelCase , image=__lowerCamelCase , strength=0.75 , guidance_scale=7.5 , generator=__lowerCamelCase , output_type="""np""" , ) snake_case__ : int = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
35
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a_ = logging.get_logger(__name__) class __snake_case : """simple docstring""" def __init__( self , __lowerCamelCase = None , __lowerCamelCase = None , __lowerCamelCase=None , __lowerCamelCase=None ): '''simple docstring''' if not conversation_id: __A : List[Any] = uuid.uuida() if past_user_inputs is None: __A : List[str] = [] if generated_responses is None: __A : Tuple = [] __A : uuid.UUID = conversation_id __A : List[str] = past_user_inputs __A : List[str] = generated_responses __A : Optional[str] = text def __eq__( self , __lowerCamelCase ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ F"""with: \"{text}\".""" ) __A : str = text else: logger.warning( F"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ F"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: __A : Union[str, Any] = text def UpperCamelCase__( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) __A : List[Any] = None def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' self.generated_responses.append(__lowerCamelCase ) def UpperCamelCase__( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' __A : Optional[Any] = F"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): __A : Tuple = '''user''' if is_user else '''bot''' output += F"""{name} >> {text} \n""" return output @add_end_docstrings( SCREAMING_SNAKE_CASE__ , R""" min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. """ , ) class __snake_case ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" def __init__( self , *__lowerCamelCase , **__lowerCamelCase ): '''simple docstring''' super().__init__(*__lowerCamelCase , **__lowerCamelCase ) if self.tokenizer.pad_token_id is None: __A : Union[str, Any] = self.tokenizer.eos_token def UpperCamelCase__( self , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase ): '''simple docstring''' __A : str = {} __A : List[str] = {} __A : Any = {} if min_length_for_response is not None: __A : int = min_length_for_response if minimum_tokens is not None: __A : Any = minimum_tokens if "max_length" in generate_kwargs: __A : List[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: __A : str = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self , __lowerCamelCase , __lowerCamelCase=0 , **__lowerCamelCase ): '''simple docstring''' __A : Any = super().__call__(__lowerCamelCase , num_workers=__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) == 1: return outputs[0] return outputs def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=32 ): '''simple docstring''' if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( F"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): __A : List[Any] = self.tokenizer._build_conversation_input_ids(__lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version __A : int = self._legacy_parse_and_tokenize(__lowerCamelCase ) if self.framework == "pt": __A : Union[str, Any] = torch.LongTensor([input_ids] ) elif self.framework == "tf": __A : int = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=10 , **__lowerCamelCase ): '''simple docstring''' __A : Tuple = generate_kwargs.get('''max_length''' , self.model.config.max_length ) __A : str = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(F"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) __A : str = max_length - minimum_tokens __A : Any = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: __A : Union[str, Any] = model_inputs['''attention_mask'''][:, -trim:] __A : Dict = model_inputs.pop('''conversation''' ) __A : List[str] = max_length __A : Dict = self.model.generate(**__lowerCamelCase , **__lowerCamelCase ) if self.model.config.is_encoder_decoder: __A : Any = 1 else: __A : List[Any] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def UpperCamelCase__( self , __lowerCamelCase , __lowerCamelCase=True ): '''simple docstring''' __A : int = model_outputs['''output_ids'''] __A : Optional[int] = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase , ) __A : Dict = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__lowerCamelCase ) return conversation def UpperCamelCase__( self , __lowerCamelCase ): '''simple docstring''' __A : Tuple = self.tokenizer.eos_token_id __A : List[str] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) if len(__lowerCamelCase ) > self.tokenizer.model_max_length: __A : List[str] = input_ids[-self.tokenizer.model_max_length :] return input_ids
179
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
164
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
164
1
'''simple docstring''' from __future__ import annotations _UpperCamelCase = list[tuple[int, int]] _UpperCamelCase = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] _UpperCamelCase = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class lowerCamelCase_ : """simple docstring""" def __init__( self : List[str] , _a : int , _a : int , _a : int , _a : int , _a : float , _a : Node | None , ) -> List[str]: __lowerCamelCase : int = pos_x __lowerCamelCase : List[Any] = pos_y __lowerCamelCase : Dict = (pos_y, pos_x) __lowerCamelCase : Union[str, Any] = goal_x __lowerCamelCase : Any = goal_y __lowerCamelCase : Optional[Any] = g_cost __lowerCamelCase : List[str] = parent __lowerCamelCase : List[Any] = self.calculate_heuristic() def _lowercase ( self : Any ) -> float: __lowerCamelCase : str = abs(self.pos_x - self.goal_x ) __lowerCamelCase : Any = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__( self : List[str] , _a : Optional[Any] ) -> bool: return self.f_cost < other.f_cost class lowerCamelCase_ : """simple docstring""" def __init__( self : List[Any] , _a : tuple[int, int] , _a : tuple[int, int] ) -> Union[str, Any]: __lowerCamelCase : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , _a ) __lowerCamelCase : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , _a ) __lowerCamelCase : str = [self.start] __lowerCamelCase : list[Node] = [] __lowerCamelCase : int = False def _lowercase ( self : List[Any] ) -> Path | None: while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() __lowerCamelCase : Tuple = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: __lowerCamelCase : List[str] = True return self.retrace_path(_a ) self.closed_nodes.append(_a ) __lowerCamelCase : List[str] = self.get_successors(_a ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(_a ) else: # retrieve the best current path __lowerCamelCase : Tuple = self.open_nodes.pop(self.open_nodes.index(_a ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(_a ) else: self.open_nodes.append(_a ) if not self.reached: return [self.start.pos] return None def _lowercase ( self : Union[str, Any] , _a : Node ) -> list[Node]: __lowerCamelCase : Any = [] for action in delta: __lowerCamelCase : Optional[int] = parent.pos_x + action[1] __lowerCamelCase : Tuple = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(_a ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( _a , _a , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , _a , ) ) return successors def _lowercase ( self : Optional[int] , _a : Node | None ) -> Path: __lowerCamelCase : Any = node __lowerCamelCase : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) __lowerCamelCase : str = current_node.parent path.reverse() return path if __name__ == "__main__": _UpperCamelCase = (0, 0) _UpperCamelCase = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print('------') _UpperCamelCase = GreedyBestFirst(init, goal) _UpperCamelCase = greedy_bf.search() if path: for pos_x, pos_y in path: _UpperCamelCase = 2 for elem in grid: print(elem)
208
'''simple docstring''' import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,) -> Optional[int]: if config_name_or_path is None: __lowerCamelCase : List[Any] = 'facebook/rag-token-base' if model_type == 'rag_token' else 'facebook/rag-sequence-base' if generator_tokenizer_name_or_path is None: __lowerCamelCase : Optional[int] = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: __lowerCamelCase : Tuple = question_encoder_name_or_path __lowerCamelCase : Union[str, Any] = RagTokenForGeneration if model_type == 'rag_token' else RagSequenceForGeneration # Save model. __lowerCamelCase : Tuple = RagConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : List[Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Union[str, Any] = AutoConfig.from_pretrained(_lowerCAmelCase ) __lowerCamelCase : Tuple = gen_config __lowerCamelCase : List[Any] = question_encoder_config __lowerCamelCase : str = model_class.from_pretrained_question_encoder_generator( _lowerCAmelCase ,_lowerCAmelCase ,config=_lowerCAmelCase ) rag_model.save_pretrained(_lowerCAmelCase ) # Sanity check. model_class.from_pretrained(_lowerCAmelCase ) # Save tokenizers. __lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) __lowerCamelCase : Optional[int] = AutoTokenizer.from_pretrained(_lowerCAmelCase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--model_type', choices=['rag_sequence', 'rag_token'], required=True, type=str, help='RAG model type: rag_sequence, rag_token', ) parser.add_argument('--dest', type=str, required=True, help='Path to the output checkpoint directory.') parser.add_argument('--generator_name_or_path', type=str, required=True, help='Generator model identifier') parser.add_argument( '--question_encoder_name_or_path', type=str, required=True, help='Question encoder model identifier' ) parser.add_argument( '--generator_tokenizer_name_or_path', type=str, help='Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``', ) parser.add_argument( '--question_encoder_tokenizer_name_or_path', type=str, help='Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``', ) parser.add_argument( '--config_name_or_path', type=str, help=( 'Identifier of the model config to use, if not provided, resolves to a base config for a given' ' ``model_type``' ), ) _UpperCamelCase = parser.parse_args() _UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
208
1
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __UpperCAmelCase = logging.getLogger(__name__) def UpperCamelCase ( snake_case__ : str=2 , snake_case__ : Any=3 , snake_case__ : str=16 , snake_case__ : int = 10 , snake_case__ : int = 2 ) -> Optional[Any]: def get_dataset(snake_case__ : List[Any] ): UpperCamelCase : Tuple = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(snake_case__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase : List[Any] = get_dataset(snake_case__ ) UpperCamelCase : Optional[int] = get_dataset(snake_case__ ) UpperCamelCase : List[str] = DataLoader(snake_case__ , shuffle=snake_case__ , batch_size=snake_case__ , num_workers=4 ) UpperCamelCase : Tuple = DataLoader(snake_case__ , shuffle=snake_case__ , batch_size=snake_case__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def UpperCamelCase ( snake_case__ : Tuple , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Optional[int]=None ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = [] for epoch in range(snake_case__ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase : List[Any] = batch UpperCamelCase : List[Any] = model(snake_case__ ) UpperCamelCase : Optional[int] = torch.nn.functional.mse_loss(snake_case__ , snake_case__ ) accelerator.backward(snake_case__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class lowerCAmelCase_ ( nn.Module ): def __init__( self ) -> Optional[int]: super().__init__() UpperCamelCase : List[str] = nn.Parameter(torch.randn(1 ) ) UpperCamelCase : Dict = nn.Parameter(torch.randn(1 ) ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: return x * self.a + self.b class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase : Union[str, Any] = DummyModel() UpperCamelCase : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) UpperCamelCase , UpperCamelCase : Optional[int] = dummy_dataloaders() UpperCamelCase : Union[str, Any] = ProjectConfiguration(total_limit=1, project_dir=SCREAMING_SNAKE_CASE_, automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase : Dict = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ), 1 ) def snake_case_ ( self ) -> List[str]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase : Union[str, Any] = DummyModel() UpperCamelCase : List[str] = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) UpperCamelCase , UpperCamelCase : Dict = dummy_dataloaders() # Train baseline UpperCamelCase : List[str] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Save initial UpperCamelCase : Dict = os.path.join(SCREAMING_SNAKE_CASE_, 'initial' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) : Dict = model.a.item(), model.b.item() UpperCamelCase : int = optimizer.state_dict() UpperCamelCase : Optional[int] = train(3, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) : Tuple = model.a.item(), model.b.item() UpperCamelCase : Optional[int] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase : str = DummyModel() UpperCamelCase : Dict = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) UpperCamelCase , UpperCamelCase : List[Any] = dummy_dataloaders() UpperCamelCase : str = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) : Tuple = model.a.item(), model.b.item() UpperCamelCase : Any = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = train(2, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Save everything UpperCamelCase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_, 'checkpoint' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) : int = model.a.item(), model.b.item() UpperCamelCase : int = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase : List[Any] = DummyModel() UpperCamelCase : Optional[Any] = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) UpperCamelCase , UpperCamelCase : str = dummy_dataloaders() UpperCamelCase : Any = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase : Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_, project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) : Optional[int] = model.a.item(), model.b.item() UpperCamelCase : List[Any] = optimizer.state_dict() UpperCamelCase : List[str] = train(3, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) : Dict = model.a.item(), model.b.item() UpperCamelCase : str = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase : List[Any] = DummyModel() UpperCamelCase : Optional[int] = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) UpperCamelCase , UpperCamelCase : List[Any] = dummy_dataloaders() UpperCamelCase : Union[str, Any] = ProjectConfiguration(iteration=1, automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_, project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : str = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_, 'checkpoints', 'checkpoint_0' ) ) ((UpperCamelCase) , (UpperCamelCase)) : List[str] = model.a.item(), model.b.item() UpperCamelCase : Optional[Any] = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = train(2, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_, 'checkpoints', 'checkpoint_1' ) ) test_rands += train(1, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) : int = model.a.item(), model.b.item() UpperCamelCase : str = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : List[str] = torch.tensor([1, 2, 3] ) UpperCamelCase : Any = torch.tensor([2, 3, 4] ) UpperCamelCase : Dict = DummyModel() UpperCamelCase : Tuple = torch.optim.Adam(net.parameters() ) UpperCamelCase : Optional[Any] = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = str(ve.exception ) self.assertTrue('Item at index 0' in message ) self.assertTrue('Item at index 1' in message ) self.assertFalse('Item at index 2' in message ) self.assertFalse('Item at index 3' in message ) def snake_case_ ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase : List[Any] = DummyModel() UpperCamelCase : Tuple = torch.optim.Adam(params=model.parameters(), lr=1e-3 ) UpperCamelCase : List[str] = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_, step_size=1, gamma=0.99 ) UpperCamelCase , UpperCamelCase : Dict = dummy_dataloaders() UpperCamelCase : str = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase : int = Accelerator(project_dir=SCREAMING_SNAKE_CASE_, project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = accelerator.prepare( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() UpperCamelCase : str = scheduler.state_dict() train(3, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_, scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_, 'checkpoints', 'checkpoint_0' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_, scheduler.state_dict() ) def snake_case_ ( self ) -> Tuple: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase : List[str] = DummyModel() UpperCamelCase : int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_, total_limit=2 ) # Train baseline UpperCamelCase : Tuple = Accelerator(project_dir=SCREAMING_SNAKE_CASE_, project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Any = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_, 'checkpoints', 'checkpoint_0' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_, 'checkpoints', 'checkpoint_9' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_, 'checkpoints', 'checkpoint_10' ) ) ) @require_cuda def snake_case_ ( self ) -> Tuple: UpperCamelCase : Tuple = ['torchrun', F"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_, env=os.environ.copy() ) if __name__ == "__main__": __UpperCAmelCase = '''/tmp/accelerate/state_checkpointing''' __UpperCAmelCase = DummyModel() __UpperCAmelCase = torch.optim.Adam(params=model.parameters(), lr=1e-3) __UpperCAmelCase = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) __UpperCAmelCase , __UpperCAmelCase = dummy_dataloaders() __UpperCAmelCase = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __UpperCAmelCase = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision='''no''') if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __UpperCAmelCase , __UpperCAmelCase = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __UpperCAmelCase = group['''params'''][0].device break assert param_device.type == accelerator.device.type __UpperCAmelCase = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''cpu''') for group in optimizer.param_groups: __UpperCAmelCase = group['''params'''][0].device break assert ( param_device.type == torch.device('''cpu''').type ), F"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''on_device''') for group in optimizer.param_groups: __UpperCAmelCase = group['''params'''][0].device break assert ( param_device.type == accelerator.device.type ), F"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match='''Unsupported optimizer map location passed'''): accelerator.load_state(os.path.join(savedir, '''checkpoints''', '''checkpoint_0'''), map_location='''invalid''') accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
103
from graphs.minimum_spanning_tree_kruskal import kruskal def UpperCamelCase ( ) -> Tuple: UpperCamelCase : List[str] = 9 UpperCamelCase : Optional[Any] = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] UpperCamelCase : int = kruskal(snake_case__ , snake_case__ ) UpperCamelCase : List[str] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(snake_case__ ) == sorted(snake_case__ )
103
1
import argparse import os import re import packaging.version UpperCamelCase = """examples/""" UpperCamelCase = { """examples""": (re.compile(r"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(r"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(r"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), r"""\1version=\"VERSION\","""), """doc""": (re.compile(r"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCamelCase = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } UpperCamelCase = """README.md""" def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A_ : List[str] = f.read() A_ , A_ : Union[str, Any] = REPLACE_PATTERNS[pattern] A_ : Dict = replace.replace('''VERSION''' , SCREAMING_SNAKE_CASE ) A_ : List[Any] = re_pattern.sub(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.write(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('''research_projects''' ) if "legacy" in directories: directories.remove('''legacy''' ) for fname in fnames: if fname.endswith('''.py''' ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , pattern='''examples''' ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : Any = '''🤗 Transformers currently provides the following architectures''' A_ : Optional[Any] = '''1. Want to contribute a new model?''' with open(SCREAMING_SNAKE_CASE , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: A_ : Optional[int] = f.readlines() # Find the start of the list. A_ : Dict = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 A_ : Any = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('''1.''' ): A_ : int = lines[index].replace( '''https://huggingface.co/docs/diffusers/main/model_doc''' , '''https://huggingface.co/docs/diffusers/model_doc''' , ) index += 1 with open(SCREAMING_SNAKE_CASE , '''w''' , encoding='''utf-8''' , newline='''\n''' ) as f: f.writelines(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): with open(REPLACE_FILES['''init'''] , '''r''' ) as f: A_ : Optional[int] = f.read() A_ : Dict = REPLACE_PATTERNS['''init'''][0].search(SCREAMING_SNAKE_CASE ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE=False ): A_ : Optional[Any] = get_version() if patch and default_version.is_devrelease: raise ValueError('''Can\'t create a patch version from the dev branch, checkout a released version!''' ) if default_version.is_devrelease: A_ : int = default_version.base_version elif patch: A_ : Any = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: A_ : Optional[int] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. A_ : List[str] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(SCREAMING_SNAKE_CASE ) == 0: A_ : str = default_version print(f'''Updating version to {version}.''' ) global_version_update(SCREAMING_SNAKE_CASE , patch=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( ): A_ : Dict = get_version() A_ : Tuple = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' A_ : str = current_version.base_version # Check with the user we got that right. A_ : Union[str, Any] = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(SCREAMING_SNAKE_CASE ) == 0: A_ : Tuple = dev_version print(f'''Updating version to {version}.''' ) global_version_update(SCREAMING_SNAKE_CASE ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCamelCase = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
186
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): A_ : Any = np.inf def set_batch_size(SCREAMING_SNAKE_CASE ) -> None: nonlocal batch_size if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Tuple = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : str = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and feature.dtype == "binary": A_ : Union[str, Any] = min(SCREAMING_SNAKE_CASE , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return None if batch_size is np.inf else batch_size class _lowerCamelCase ( UpperCamelCase ): """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->str: '''simple docstring''' super().__init__( _SCREAMING_SNAKE_CASE , split=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , cache_dir=_SCREAMING_SNAKE_CASE , keep_in_memory=_SCREAMING_SNAKE_CASE , streaming=_SCREAMING_SNAKE_CASE , num_proc=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) A_ : str = path_or_paths if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else {self.split: path_or_paths} A_ : Optional[int] = _PACKAGED_DATASETS_MODULES['''parquet'''][1] A_ : Union[str, Any] = Parquet( cache_dir=_SCREAMING_SNAKE_CASE , data_files=_SCREAMING_SNAKE_CASE , features=_SCREAMING_SNAKE_CASE , hash=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) def _snake_case ( self )->Optional[int]: '''simple docstring''' if self.streaming: A_ : List[str] = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A_ : List[str] = None A_ : List[str] = None A_ : List[Any] = None A_ : Dict = None self.builder.download_and_prepare( download_config=_SCREAMING_SNAKE_CASE , download_mode=_SCREAMING_SNAKE_CASE , verification_mode=_SCREAMING_SNAKE_CASE , base_path=_SCREAMING_SNAKE_CASE , num_proc=self.num_proc , ) A_ : Union[str, Any] = self.builder.as_dataset( split=self.split , verification_mode=_SCREAMING_SNAKE_CASE , in_memory=self.keep_in_memory ) return dataset class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , )->List[Any]: '''simple docstring''' A_ : Union[str, Any] = dataset A_ : Union[str, Any] = path_or_buf A_ : Any = batch_size or get_writer_batch_size(dataset.features ) A_ : Optional[int] = parquet_writer_kwargs def _snake_case ( self )->int: '''simple docstring''' A_ : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , '''wb+''' ) as buffer: A_ : str = self._write(file_obj=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) else: A_ : Tuple = self._write(file_obj=self.path_or_buf , batch_size=_SCREAMING_SNAKE_CASE , **self.parquet_writer_kwargs ) return written def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE )->int: '''simple docstring''' A_ : List[Any] = 0 A_ : int = parquet_writer_kwargs.pop('''path_or_buf''' , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = self.dataset.features.arrow_schema A_ : List[str] = pq.ParquetWriter(_SCREAMING_SNAKE_CASE , schema=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) for offset in logging.tqdm( range(0 , len(self.dataset ) , _SCREAMING_SNAKE_CASE ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating parquet from Arrow format''' , ): A_ : List[Any] = query_table( table=self.dataset._data , key=slice(_SCREAMING_SNAKE_CASE , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(_SCREAMING_SNAKE_CASE ) written += batch.nbytes writer.close() return written
186
1
import string from math import logaa def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> int: UpperCamelCase__ : int = document.translate( str.maketrans("" , "" , string.punctuation ) ).replace("\n" , "" ) UpperCamelCase__ : Optional[Any] = document_without_punctuation.split(" " ) # word tokenization return len([word for word in tokenize_document if word.lower() == term.lower()] ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> tuple[int, int]: UpperCamelCase__ : Union[str, Any] = corpus.lower().translate( str.maketrans("" , "" , string.punctuation ) ) # strip all punctuation and replace it with '' UpperCamelCase__ : str = corpus_without_punctuation.split("\n" ) UpperCamelCase__ : str = term.lower() return (len([doc for doc in docs if term in doc] ), len(__lowerCAmelCase )) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ) -> float: if smoothing: if n == 0: raise ValueError("log10(0) is undefined." ) return round(1 + logaa(n / (1 + df) ) , 3 ) if df == 0: raise ZeroDivisionError("df must be > 0" ) elif n == 0: raise ValueError("log10(0) is undefined." ) return round(logaa(n / df ) , 3 ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> float: return round(tf * idf , 3 )
196
import argparse import os import re import packaging.version lowerCamelCase : Optional[Any] ='''examples/''' lowerCamelCase : List[Any] ={ '''examples''': (re.compile(R'''^check_min_version\("[^"]+"\)\s*$''', re.MULTILINE), '''check_min_version("VERSION")\n'''), '''init''': (re.compile(R'''^__version__\s+=\s+"([^"]+)"\s*$''', re.MULTILINE), '''__version__ = "VERSION"\n'''), '''setup''': (re.compile(R'''^(\s*)version\s*=\s*"[^"]+",''', re.MULTILINE), R'''\1version="VERSION",'''), '''doc''': (re.compile(R'''^(\s*)release\s*=\s*"[^"]+"$''', re.MULTILINE), '''release = "VERSION"\n'''), } lowerCamelCase : List[str] ={ '''init''': '''src/transformers/__init__.py''', '''setup''': '''setup.py''', } lowerCamelCase : int ='''README.md''' def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]: with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ : List[Any] = f.read() UpperCamelCase__ , UpperCamelCase__ : List[str] = REPLACE_PATTERNS[pattern] UpperCamelCase__ : Union[str, Any] = replace.replace("VERSION" , __lowerCAmelCase ) UpperCamelCase__ : Tuple = re_pattern.sub(__lowerCAmelCase , __lowerCAmelCase ) with open(__lowerCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: for folder, directories, fnames in os.walk(__lowerCAmelCase ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , __lowerCAmelCase , pattern="examples" ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase=False ) -> Optional[int]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not patch: update_version_in_examples(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: UpperCamelCase__ : Tuple = "🤗 Transformers currently provides the following architectures" UpperCamelCase__ : Tuple = "1. Want to contribute a new model?" with open(__lowerCAmelCase , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase__ : Optional[int] = f.readlines() # Find the start of the list. UpperCamelCase__ : List[Any] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 UpperCamelCase__ : Dict = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): UpperCamelCase__ : str = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(__lowerCAmelCase , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: with open(REPLACE_FILES["init"] , "r" ) as f: UpperCamelCase__ : str = f.read() UpperCamelCase__ : Dict = REPLACE_PATTERNS["init"][0].search(__lowerCAmelCase ).groups()[0] return packaging.version.parse(__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase=False ) -> Optional[int]: UpperCamelCase__ : Dict = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: UpperCamelCase__ : List[str] = default_version.base_version elif patch: UpperCamelCase__ : int = f'{default_version.major}.{default_version.minor}.{default_version.micro + 1}' else: UpperCamelCase__ : Tuple = f'{default_version.major}.{default_version.minor + 1}.0' # Now let's ask nicely if that's the right one. UpperCamelCase__ : Tuple = input(f'Which version are you releasing? [{default_version}]' ) if len(__lowerCAmelCase ) == 0: UpperCamelCase__ : Any = default_version print(f'Updating version to {version}.' ) global_version_update(__lowerCAmelCase , patch=__lowerCAmelCase ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def SCREAMING_SNAKE_CASE ( ) -> int: UpperCamelCase__ : str = get_version() UpperCamelCase__ : Dict = f'{current_version.major}.{current_version.minor + 1}.0.dev0' UpperCamelCase__ : int = current_version.base_version # Check with the user we got that right. UpperCamelCase__ : List[str] = input(f'Which version are we developing now? [{dev_version}]' ) if len(__lowerCAmelCase ) == 0: UpperCamelCase__ : Optional[Any] = dev_version print(f'Updating version to {version}.' ) global_version_update(__lowerCAmelCase ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowerCamelCase : List[Any] =argparse.ArgumentParser() parser.add_argument('''--post_release''', action='''store_true''', help='''Whether this is pre or post release.''') parser.add_argument('''--patch''', action='''store_true''', help='''Whether or not this is a patch release.''') lowerCamelCase : Optional[Any] =parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('''Nothing to do after a patch :-)''') else: post_release_work()
196
1