code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from datetime import datetime import requests def __magic_name__ ( A : str ): '''simple docstring''' a = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" a = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(A ).content if __name__ == "__main__": __lowerCAmelCase : int = input('Enter Video/IGTV url: ').strip() __lowerCAmelCase : Optional[Any] = F'''{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4''' with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F'''Done. Video saved to disk as {file_name}.''')
107
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer a_ : Dict = logging.get_logger(__name__) a_ : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} # See all BART models at https://huggingface.co/models?filter=bart a_ : int = { "vocab_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/vocab.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/vocab.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json", }, "merges_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/merges.txt", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/merges.txt", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt", }, "tokenizer_file": { "facebook/bart-base": "https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json", "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json", "facebook/bart-large-mnli": "https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json", "facebook/bart-large-cnn": "https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json", "facebook/bart-large-xsum": "https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json", "yjernite/bart_eli5": "https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json", }, } a_ : int = { "facebook/bart-base": 1_0_2_4, "facebook/bart-large": 1_0_2_4, "facebook/bart-large-mnli": 1_0_2_4, "facebook/bart-large-cnn": 1_0_2_4, "facebook/bart-large-xsum": 1_0_2_4, "yjernite/bart_eli5": 1_0_2_4, } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = ["""input_ids""", """attention_mask"""] _lowerCAmelCase = BartTokenizer def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="replace" , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=False , __magic_name__=True , **__magic_name__ , ) -> List[Any]: super().__init__( __magic_name__ , __magic_name__ , tokenizer_file=__magic_name__ , errors=__magic_name__ , bos_token=__magic_name__ , eos_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , unk_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , add_prefix_space=__magic_name__ , trim_offsets=__magic_name__ , **__magic_name__ , ) _a = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __magic_name__ ) != add_prefix_space: _a = getattr(__magic_name__ , pre_tok_state.pop('type' ) ) _a = add_prefix_space _a = pre_tok_class(**__magic_name__ ) _a = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _a = 'post_processor' _a = getattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) if tokenizer_component_instance: _a = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _a = tuple(state['sep'] ) if "cls" in state: _a = tuple(state['cls'] ) _a = False if state.get('add_prefix_space' , __magic_name__ ) != add_prefix_space: _a = add_prefix_space _a = True if state.get('trim_offsets' , __magic_name__ ) != trim_offsets: _a = trim_offsets _a = True if changes_to_apply: _a = getattr(__magic_name__ , state.pop('type' ) ) _a = component_class(**__magic_name__ ) setattr(self.backend_tokenizer , __magic_name__ , __magic_name__ ) @property def __UpperCAmelCase ( self ) -> str: if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __UpperCAmelCase ( self , __magic_name__ ) -> Union[str, Any]: _a = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else value _a = value def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: _a = kwargs.get('is_split_into_words' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , *__magic_name__ , **__magic_name__ ) -> BatchEncoding: _a = kwargs.get('is_split_into_words' , __magic_name__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__magic_name__ , **__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=None ) -> Any: _a = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
168
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Dict = { 'configuration_git': ['GIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GitConfig', 'GitVisionConfig'], 'processing_git': ['GitProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Any = [ 'GIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GitForCausalLM', 'GitModel', 'GitPreTrainedModel', 'GitVisionModel', ] if TYPE_CHECKING: from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig from .processing_git import GitProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_git import ( GIT_PRETRAINED_MODEL_ARCHIVE_LIST, GitForCausalLM, GitModel, GitPreTrainedModel, GitVisionModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
354
'''simple docstring''' from __future__ import annotations def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : List[str] = 2 A : Dict = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(snake_case__ ) if n > 1: factors.append(snake_case__ ) return factors if __name__ == "__main__": import doctest doctest.testmod()
311
0
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets lowerCamelCase : int = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" lowerCamelCase : List[str] = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" lowerCamelCase : Optional[Any] = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Any ) -> List[str]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def A ( self : List[str] ) -> List[str]: '''simple docstring''' if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def A ( self : Tuple , _a : Optional[Any] , _a : str , _a : str=None , _a : Optional[int]="uniform_average" , _a : Optional[Any]=True ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =mean_squared_error( _a , _a , sample_weight=_a , multioutput=_a , squared=_a ) return {"mse": mse}
47
'''simple docstring''' def _A ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __A = generate_large_matrix() __A = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _A ( lowercase__ ): assert all(row == sorted(lowercase__ , reverse=lowercase__ ) for row in grid ) assert all(list(lowercase__ ) == sorted(lowercase__ , reverse=lowercase__ ) for col in zip(*lowercase__ ) ) def _A ( lowercase__ ): lowercase__ = 0 lowercase__ = len(lowercase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowercase__ = (left + right) // 2 lowercase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowercase__ = mid + 1 else: lowercase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase__ ) def _A ( lowercase__ ): lowercase__ = 0 lowercase__ = len(grid[0] ) for i in range(len(lowercase__ ) ): lowercase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase__ ) * len(grid[0] )) - total def _A ( lowercase__ ): return len([number for row in grid for number in row if number < 0] ) def _A ( lowercase__ ): lowercase__ = 0 for row in grid: for i, number in enumerate(lowercase__ ): if number < 0: total += len(lowercase__ ) - i break return total def _A ( ): from timeit import timeit print("""Running benchmarks""" ) lowercase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowercase__ = timeit(f'''{func}(grid=grid)''' , setup=lowercase__ , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
164
0
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = '''pix2struct_text_model''' __lowercase : Any = ['''past_key_values'''] __lowercase : int = { '''hidden_size''': '''hidden_size''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self ,__UpperCAmelCase=5_0244 ,__UpperCAmelCase=768 ,__UpperCAmelCase=64 ,__UpperCAmelCase=2048 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase=32 ,__UpperCAmelCase=128 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=1E-6 ,__UpperCAmelCase=1.0 ,__UpperCAmelCase="gelu_new" ,__UpperCAmelCase=0 ,__UpperCAmelCase=False ,__UpperCAmelCase=0 ,__UpperCAmelCase=1 ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,**__UpperCAmelCase ,) -> Tuple: lowerCAmelCase__ : Dict = vocab_size lowerCAmelCase__ : Any = hidden_size lowerCAmelCase__ : Union[str, Any] = d_kv lowerCAmelCase__ : Optional[int] = d_ff lowerCAmelCase__ : List[Any] = num_layers lowerCAmelCase__ : Any = num_heads lowerCAmelCase__ : Union[str, Any] = relative_attention_num_buckets lowerCAmelCase__ : Optional[Any] = relative_attention_max_distance lowerCAmelCase__ : Any = dropout_rate lowerCAmelCase__ : str = layer_norm_epsilon lowerCAmelCase__ : Optional[Any] = initializer_factor lowerCAmelCase__ : Dict = use_cache lowerCAmelCase__ : Optional[Any] = eos_token_id lowerCAmelCase__ : Dict = decoder_start_token_id # for backwards compatibility lowerCAmelCase__ : Any = dense_act_fn super().__init__( pad_token_id=__UpperCAmelCase ,eos_token_id=__UpperCAmelCase ,decoder_start_token_id=__UpperCAmelCase ,tie_word_embeddings=__UpperCAmelCase ,is_decoder=__UpperCAmelCase ,**__UpperCAmelCase ,) @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,**__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ : int = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowerCAmelCase__ : Optional[int] = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = '''pix2struct_vision_model''' def __init__( self ,__UpperCAmelCase=768 ,__UpperCAmelCase=768 ,__UpperCAmelCase=2048 ,__UpperCAmelCase=64 ,__UpperCAmelCase=12 ,__UpperCAmelCase=12 ,__UpperCAmelCase="gelu_new" ,__UpperCAmelCase=1E-6 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=0.0 ,__UpperCAmelCase=1E-10 ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=4096 ,__UpperCAmelCase=32 ,__UpperCAmelCase=128 ,**__UpperCAmelCase ,) -> int: super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : int = hidden_size lowerCAmelCase__ : Any = patch_embed_hidden_size lowerCAmelCase__ : List[str] = d_ff lowerCAmelCase__ : int = dropout_rate lowerCAmelCase__ : str = num_hidden_layers lowerCAmelCase__ : Union[str, Any] = num_attention_heads lowerCAmelCase__ : Dict = initializer_range lowerCAmelCase__ : int = initializer_factor lowerCAmelCase__ : List[Any] = attention_dropout lowerCAmelCase__ : str = layer_norm_eps lowerCAmelCase__ : Tuple = dense_act_fn lowerCAmelCase__ : Tuple = seq_len lowerCAmelCase__ : Tuple = relative_attention_num_buckets lowerCAmelCase__ : str = relative_attention_max_distance lowerCAmelCase__ : Any = d_kv @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,**__UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(__UpperCAmelCase ) lowerCAmelCase__ : Tuple = cls.get_config_dict(__UpperCAmelCase ,**__UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get("""model_type""" ) == "pix2struct": lowerCAmelCase__ : int = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls ,"""model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(__UpperCAmelCase ,**__UpperCAmelCase ) class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = '''pix2struct''' __lowercase : Union[str, Any] = True def __init__( self ,__UpperCAmelCase=None ,__UpperCAmelCase=None ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=False ,__UpperCAmelCase=False ,__UpperCAmelCase=True ,**__UpperCAmelCase ,) -> List[Any]: super().__init__(tie_word_embeddings=__UpperCAmelCase ,is_encoder_decoder=__UpperCAmelCase ,**__UpperCAmelCase ) if text_config is None: lowerCAmelCase__ : Any = {} logger.info("""text_config is None. Initializing the Pix2StructTextConfig with default values.""" ) if vision_config is None: lowerCAmelCase__ : str = {} logger.info("""vision_config is None. Initializing the Pix2StructVisionConfig with default values.""" ) lowerCAmelCase__ : Dict = PixaStructTextConfig(**__UpperCAmelCase ) lowerCAmelCase__ : str = PixaStructVisionConfig(**__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = self.text_config.decoder_start_token_id lowerCAmelCase__ : str = self.text_config.pad_token_id lowerCAmelCase__ : Union[str, Any] = self.text_config.eos_token_id lowerCAmelCase__ : Optional[Any] = initializer_factor lowerCAmelCase__ : Optional[Any] = initializer_range lowerCAmelCase__ : List[str] = self.initializer_range lowerCAmelCase__ : str = self.initializer_range lowerCAmelCase__ : Optional[Any] = is_vqa @classmethod def UpperCAmelCase_ ( cls ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: return cls(text_config=text_config.to_dict() ,vision_config=vision_config.to_dict() ,**__UpperCAmelCase ) def UpperCAmelCase_ ( self ) -> str: lowerCAmelCase__ : Optional[Any] = copy.deepcopy(self.__dict__ ) lowerCAmelCase__ : Union[str, Any] = self.text_config.to_dict() lowerCAmelCase__ : Tuple = self.vision_config.to_dict() lowerCAmelCase__ : int = self.__class__.model_type return output
363
'''simple docstring''' _lowerCAmelCase = '''Input must be a string of 8 numbers plus letter''' _lowerCAmelCase = '''TRWAGMYFPDXBNJZSQVHLCKE''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCAmelCase__ : List[Any] = f"""Expected string as input, found {type(UpperCamelCase ).__name__}""" raise TypeError(UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = spanish_id.replace("""-""" , """""" ).upper() if len(UpperCamelCase ) != 9: raise ValueError(UpperCamelCase ) try: lowerCAmelCase__ : Optional[int] = int(spanish_id_clean[0:8] ) lowerCAmelCase__ : int = spanish_id_clean[8] except ValueError as ex: raise ValueError(UpperCamelCase ) from ex if letter.isdigit(): raise ValueError(UpperCamelCase ) return letter == LOOKUP_LETTERS[number % 23] if __name__ == "__main__": import doctest doctest.testmod()
184
0
from math import sqrt def __magic_name__ ( A : int ): '''simple docstring''' a = 0 for i in range(1, int(sqrt(A ) + 1 ) ): if n % i == 0 and i != sqrt(A ): total += i + n // i elif i == sqrt(A ): total += i return total - n def __magic_name__ ( A : int = 10000 ): '''simple docstring''' a = sum( i for i in range(1, A ) if sum_of_divisors(sum_of_divisors(A ) ) == i and sum_of_divisors(A ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
107
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCAmelCase : List[str] = { 'configuration_resnet': ['RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ResNetConfig', 'ResNetOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Dict = [ 'RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'ResNetForImageClassification', 'ResNetModel', 'ResNetPreTrainedModel', 'ResNetBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ 'TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFResNetForImageClassification', 'TFResNetModel', 'TFResNetPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Optional[Any] = [ 'FlaxResNetForImageClassification', 'FlaxResNetModel', 'FlaxResNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_resnet import RESNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ResNetConfig, ResNetOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_resnet import ( RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, ResNetBackbone, ResNetForImageClassification, ResNetModel, ResNetPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_resnet import ( TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFResNetForImageClassification, TFResNetModel, TFResNetPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_resnet import FlaxResNetForImageClassification, FlaxResNetModel, FlaxResNetPreTrainedModel else: import sys __lowerCAmelCase : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
107
1
import unittest from transformers import RoFormerTokenizer, RoFormerTokenizerFast from transformers.testing_utils import require_rjieba, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_rjieba @require_tokenizers class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Any = RoFormerTokenizer __lowerCamelCase : Optional[int] = RoFormerTokenizerFast __lowerCamelCase : List[Any] = True __lowerCamelCase : List[Any] = True def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() def UpperCAmelCase__ ( self , **snake_case__ ) -> List[str]: '''simple docstring''' return self.tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **snake_case__ ) def UpperCAmelCase__ ( self , **snake_case__ ) -> List[str]: '''simple docstring''' return self.rust_tokenizer_class.from_pretrained('''junnyu/roformer_chinese_base''' , **snake_case__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] ='''永和服装饰品有限公司,今天天气非常好''' UpperCAmelCase : List[Any] ='''永和 服装 饰品 有限公司 , 今 天 天 气 非常 好''' return input_text, output_text def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] =self.get_tokenizer() UpperCAmelCase , UpperCAmelCase : List[str] =self.get_chinese_input_output_texts() UpperCAmelCase : Tuple =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , output_text.split() ) UpperCAmelCase : str =tokens + [tokenizer.unk_token] UpperCAmelCase : str =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.get_rust_tokenizer() UpperCAmelCase , UpperCAmelCase : Union[str, Any] =self.get_chinese_input_output_texts() UpperCAmelCase : Any =tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , output_text.split() ) UpperCAmelCase : Optional[Any] =tokens + [tokenizer.unk_token] UpperCAmelCase : str =[2_2943, 2_1332, 3_4431, 4_5904, 117, 306, 1231, 1231, 2653, 3_3994, 1266, 100] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case__ ) , snake_case__ ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' pass def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' pass
78
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[Any] = KandinskyVaaControlnetPipeline __lowerCamelCase : int = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """hint"""] __lowerCamelCase : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __lowerCamelCase : Dict = False @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' return 100 @property def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase : List[Any] =UNetaDConditionModel(**snake_case__ ) return model @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase : Any =VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : List[str] =self.dummy_unet UpperCAmelCase : Tuple =self.dummy_movq UpperCAmelCase : Union[str, Any] =DDIMScheduler( num_train_timesteps=1000 , beta_schedule='''linear''' , beta_start=0.0_0085 , beta_end=0.012 , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , steps_offset=1 , prediction_type='''epsilon''' , thresholding=snake_case__ , ) UpperCAmelCase : Tuple ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def UpperCAmelCase__ ( self , snake_case__ , snake_case__=0 ) -> Any: '''simple docstring''' UpperCAmelCase : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( snake_case__ ) # create hint UpperCAmelCase : Tuple =floats_tensor((1, 3, 64, 64) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) if str(snake_case__ ).startswith('''mps''' ): UpperCAmelCase : Optional[int] =torch.manual_seed(snake_case__ ) else: UpperCAmelCase : int =torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase : List[str] ={ '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''guidance_scale''': 4.0, '''num_inference_steps''': 2, '''output_type''': '''np''', } return inputs def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : List[Any] ='''cpu''' UpperCAmelCase : List[Any] =self.get_dummy_components() UpperCAmelCase : Tuple =self.pipeline_class(**snake_case__ ) UpperCAmelCase : Tuple =pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : Optional[int] =pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase : str =output.images UpperCAmelCase : List[str] =pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase : Union[str, Any] =image[0, -3:, -3:, -1] UpperCAmelCase : List[str] =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase : Union[str, Any] =np.array( [0.695_9826, 0.86_8279, 0.755_8092, 0.6876_9467, 0.8580_5804, 0.6597_7496, 0.4488_5302, 0.595_9111, 0.425_1595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : Union[str, Any] =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy''' ) UpperCAmelCase : Tuple =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) UpperCAmelCase : int =torch.from_numpy(np.array(snake_case__ ) ).float() / 255.0 UpperCAmelCase : List[str] =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) UpperCAmelCase : Dict =KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase : int =KandinskyVaaControlnetPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) UpperCAmelCase : str =pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase : int ='''A robot, 4k photo''' UpperCAmelCase : int =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase : List[str] =pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase : List[str] =torch.Generator(device='''cuda''' ).manual_seed(0 ) UpperCAmelCase : Dict =pipeline( image_embeds=snake_case__ , negative_image_embeds=snake_case__ , hint=snake_case__ , generator=snake_case__ , num_inference_steps=100 , output_type='''np''' , ) UpperCAmelCase : List[Any] =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
78
1
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a__ : Optional[int] = logging.get_logger(__name__) a__ : int = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } a__ : List[Any] = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } a__ : Union[str, Any] = {"facebook/blenderbot-3B": 1_2_8} class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : str = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Union[str, Any] = ['input_ids', 'attention_mask'] UpperCAmelCase__ : int = BlenderbotTokenizer def __init__( self :int , _A :Optional[Any]=None , _A :Union[str, Any]=None , _A :Union[str, Any]=None , _A :Any="replace" , _A :int="<s>" , _A :Any="</s>" , _A :List[Any]="</s>" , _A :Dict="<s>" , _A :str="<unk>" , _A :Union[str, Any]="<pad>" , _A :str="<mask>" , _A :Optional[int]=False , _A :str=True , **_A :List[Any] , ) -> int: '''simple docstring''' super().__init__( _A , _A , tokenizer_file=_A , errors=_A , bos_token=_A , eos_token=_A , sep_token=_A , cls_token=_A , unk_token=_A , pad_token=_A , mask_token=_A , add_prefix_space=_A , trim_offsets=_A , **_A , ) __A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , _A ) != add_prefix_space: __A = getattr(_A , pre_tok_state.pop('type' ) ) __A = add_prefix_space __A = pre_tok_class(**_A ) __A = add_prefix_space __A = 'post_processor' __A = getattr(self.backend_tokenizer , _A , _A ) if tokenizer_component_instance: __A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __A = tuple(state['sep'] ) if "cls" in state: __A = tuple(state['cls'] ) __A = False if state.get('add_prefix_space' , _A ) != add_prefix_space: __A = add_prefix_space __A = True if state.get('trim_offsets' , _A ) != trim_offsets: __A = trim_offsets __A = True if changes_to_apply: __A = getattr(_A , state.pop('type' ) ) __A = component_class(**_A ) setattr(self.backend_tokenizer , _A , _A ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def lowercase_ ( self :Tuple ) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def lowercase_ ( self :Any , _A :Any ) -> Union[str, Any]: '''simple docstring''' __A = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else value __A = value def lowercase_ ( self :List[str] , *_A :Dict , **_A :List[Any] ) -> BatchEncoding: '''simple docstring''' __A = kwargs.get('is_split_into_words' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_A , **_A ) def lowercase_ ( self :Optional[Any] , *_A :int , **_A :str ) -> BatchEncoding: '''simple docstring''' __A = kwargs.get('is_split_into_words' , _A ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*_A , **_A ) def lowercase_ ( self :Dict , _A :str , _A :Optional[str] = None ) -> Tuple[str]: '''simple docstring''' __A = self._tokenizer.model.save(_A , name=_A ) return tuple(_A ) def lowercase_ ( self :Optional[Any] , _A :List[int] , _A :Optional[List[int]] = None ) -> List[int]: '''simple docstring''' __A = [self.sep_token_id] __A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self :int , _A :List[int] , _A :Optional[List[int]] = None ) -> Any: '''simple docstring''' return token_ids_a + [self.eos_token_id] def lowercase_ ( self :Optional[Any] , _A :"Conversation" ) -> List[int]: '''simple docstring''' __A = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(_A ) __A = ' '.join(_A ) __A = self.encode(_A ) if len(_A ) > self.model_max_length: __A = input_ids[-self.model_max_length :] logger.warning(F'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
161
'''simple docstring''' import math import unittest def snake_case ( UpperCAmelCase )-> bool: """simple docstring""" assert isinstance(UpperCAmelCase , UpperCAmelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :List[Any] ) -> str: '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def lowercase_ ( self :Union[str, Any] ) -> Tuple: '''simple docstring''' with self.assertRaises(_A ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , 'Zero doesn\'t have any positive factors, primes must have exactly two.' , ) self.assertFalse( is_prime(1 ) , 'One only has 1 positive factor, primes must have exactly two.' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
161
1
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class snake_case : def UpperCAmelCase__ ( self , __UpperCAmelCase) ->str: raise NotImplementedError() def UpperCAmelCase__ ( self) ->Optional[int]: raise NotImplementedError() class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = False , **__UpperCAmelCase) ->int: a_ = tokenizer a_ = skip_prompt a_ = decode_kwargs # variables used in the streaming process a_ = [] a_ = 0 a_ = True def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Union[str, Any]: if len(value.shape) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1") elif len(value.shape) > 1: a_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: a_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist()) a_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs) # After the symbol for a new line, we flush the cache. if text.endswith("\n"): a_ = text[self.print_len :] a_ = [] a_ = 0 # If the last token is a CJK character, we print the characters. elif len(__UpperCAmelCase) > 0 and self._is_chinese_char(ord(text[-1])): a_ = text[self.print_len :] self.print_len += len(__UpperCAmelCase) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: a_ = text[self.print_len : text.rfind(" ") + 1] self.print_len += len(__UpperCAmelCase) self.on_finalized_text(__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Tuple: # Flush the cache, if it exists if len(self.token_cache) > 0: a_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs) a_ = text[self.print_len :] a_ = [] a_ = 0 else: a_ = "" a_ = True self.on_finalized_text(__UpperCAmelCase , stream_end=__UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False) ->Dict: print(__UpperCAmelCase , flush=__UpperCAmelCase , end="" if not stream_end else None) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[int]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4_E00 and cp <= 0X9_FFF) or (cp >= 0X3_400 and cp <= 0X4_DBF) # or (cp >= 0X20_000 and cp <= 0X2A_6DF) # or (cp >= 0X2A_700 and cp <= 0X2B_73F) # or (cp >= 0X2B_740 and cp <= 0X2B_81F) # or (cp >= 0X2B_820 and cp <= 0X2C_EAF) # or (cp >= 0XF_900 and cp <= 0XF_AFF) or (cp >= 0X2F_800 and cp <= 0X2F_A1F) # ): # return True return False class snake_case ( SCREAMING_SNAKE_CASE_ ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , **__UpperCAmelCase) ->Optional[int]: super().__init__(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) a_ = Queue() a_ = None a_ = timeout def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False) ->str: self.text_queue.put(__UpperCAmelCase , timeout=self.timeout) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout) def __iter__( self) ->Dict: return self def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.text_queue.get(timeout=self.timeout) if value == self.stop_signal: raise StopIteration() else: return value
303
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if "resnet-50" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: a_ = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) a_ = DetrConfig(use_timm_backbone=UpperCAmelCase , backbone_config=UpperCAmelCase ) # set label attributes a_ = "panoptic" in model_name if is_panoptic: a_ = 250 else: a_ = 91 a_ = "huggingface/label-files" a_ = "coco-detection-id2label.json" a_ = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type="dataset" ) , "r" ) ) a_ = {int(UpperCAmelCase ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = state_dict.pop(UpperCAmelCase ) a_ = val def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->Optional[Any]: """simple docstring""" a_ = "" if is_panoptic: a_ = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[:256, :] a_ = in_proj_bias[:256] a_ = in_proj_weight[256:512, :] a_ = in_proj_bias[256:512] a_ = in_proj_weight[-256:, :] a_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention a_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) a_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict a_ = in_proj_weight_cross_attn[:256, :] a_ = in_proj_bias_cross_attn[:256] a_ = in_proj_weight_cross_attn[256:512, :] a_ = in_proj_bias_cross_attn[256:512] a_ = in_proj_weight_cross_attn[-256:, :] a_ = in_proj_bias_cross_attn[-256:] def UpperCamelCase ( ) ->Dict: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=False ) ->List[str]: """simple docstring""" a_ , a_ = get_detr_config(UpperCAmelCase ) # load original model from torch hub a_ = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F'''Converting model {model_name}...''' ) a_ = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=UpperCAmelCase ).eval() a_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(UpperCAmelCase ): if is_panoptic: a_ = "detr." + src rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCAmelCase , is_panoptic=UpperCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a_ = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a_ = state_dict.pop(UpperCAmelCase ) a_ = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a_ = state_dict.pop(UpperCAmelCase ) a_ = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a_ = state_dict.pop(UpperCAmelCase ) a_ = val # finally, create HuggingFace model and load state dict a_ = DetrForSegmentation(UpperCAmelCase ) if is_panoptic else DetrForObjectDetection(UpperCAmelCase ) model.load_state_dict(UpperCAmelCase ) model.eval() # verify our conversion on an image a_ = "coco_panoptic" if is_panoptic else "coco_detection" a_ = DetrImageProcessor(format=UpperCAmelCase ) a_ = processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = detr(UpperCAmelCase ) a_ = model(UpperCAmelCase ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) model.save_pretrained(UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument( '--model_name', default='detr-resnet-50', type=str, choices=['detr-resnet-50', 'detr-resnet-101'], help='Name of the DETR model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the model to the hub or not.') UpperCamelCase_ = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
303
1
'''simple docstring''' from __future__ import annotations def lowercase ( __magic_name__ ): '''simple docstring''' if len(__magic_name__ ) == 0: return [] UpperCAmelCase , UpperCAmelCase : List[str] = min(__magic_name__ ), max(__magic_name__ ) UpperCAmelCase : int = int(max_value - min_value ) + 1 UpperCAmelCase : list[list] = [[] for _ in range(__magic_name__ )] for i in my_list: buckets[int(i - min_value )].append(__magic_name__ ) return [v for bucket in buckets for v in sorted(__magic_name__ )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
311
'''simple docstring''' import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) a : Tuple = logging.getLogger(__name__) def lowercase ( ): '''simple docstring''' UpperCAmelCase : Any = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=__magic_name__ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=__magic_name__ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=__magic_name__ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=__magic_name__ , default="data/dump" , help="The dump file prefix." ) UpperCAmelCase : List[Any] = parser.parse_args() logger.info(F"Loading Tokenizer ({args.tokenizer_name})" ) if args.tokenizer_type == "bert": UpperCAmelCase : Any = BertTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["cls_token"] # `[CLS]` UpperCAmelCase : Any = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": UpperCAmelCase : List[Any] = RobertaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Tuple = tokenizer.special_tokens_map["cls_token"] # `<s>` UpperCAmelCase : Optional[int] = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": UpperCAmelCase : List[str] = GPTaTokenizer.from_pretrained(args.tokenizer_name ) UpperCAmelCase : Optional[Any] = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` UpperCAmelCase : List[Any] = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F"Loading text from {args.file_path}" ) with open(args.file_path , "r" , encoding="utf8" ) as fp: UpperCAmelCase : str = fp.readlines() logger.info("Start encoding" ) logger.info(F"{len(__magic_name__ )} examples to process." ) UpperCAmelCase : int = [] UpperCAmelCase : int = 0 UpperCAmelCase : Union[str, Any] = 1_0000 UpperCAmelCase : Union[str, Any] = time.time() for text in data: UpperCAmelCase : Dict = F"{bos} {text.strip()} {sep}" UpperCAmelCase : Tuple = tokenizer.encode(__magic_name__ , add_special_tokens=__magic_name__ ) rslt.append(__magic_name__ ) iter += 1 if iter % interval == 0: UpperCAmelCase : Dict = time.time() logger.info(F"{iter} examples processed. - {(end-start):.2f}s/{interval}expl" ) UpperCAmelCase : Any = time.time() logger.info("Finished binarization" ) logger.info(F"{len(__magic_name__ )} examples processed." ) UpperCAmelCase : str = F"{args.dump_file}.{args.tokenizer_name}.pickle" UpperCAmelCase : List[str] = tokenizer.vocab_size if vocab_size < (1 << 16): UpperCAmelCase : int = [np.uintaa(__magic_name__ ) for d in rslt] else: UpperCAmelCase : int = [np.intaa(__magic_name__ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F"Dump to {dp_file}" ) with open(__magic_name__ , "wb" ) as handle: pickle.dump(rslt_ , __magic_name__ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
311
1
"""simple docstring""" import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = None def _snake_case ( UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=0.9_99 , UpperCAmelCase_ : Optional[int]="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase_ : Union[str, Any] ): return math.cos((t + 0.0_08) / 1.0_08 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase_ : Any ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) A__ = [] for i in range(UpperCAmelCase_ ): A__ = i / num_diffusion_timesteps A__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase_ ) / alpha_bar_fn(UpperCAmelCase_ ) , UpperCAmelCase_ ) ) return torch.tensor(UpperCAmelCase_ , dtype=torch.floataa ) class a ( _lowerCamelCase, _lowerCamelCase ): """simple docstring""" @register_to_config def __init__( self: List[str] , UpperCamelCase: int = 10_00 , UpperCamelCase: str = "fixed_small_log" , UpperCamelCase: bool = True , UpperCamelCase: Optional[float] = 1.0 , UpperCamelCase: str = "epsilon" , UpperCamelCase: str = "squaredcos_cap_v2" , ): """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("""UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'""" ) A__ = betas_for_alpha_bar(UpperCamelCase ) A__ = 1.0 - self.betas A__ = torch.cumprod(self.alphas , dim=0 ) A__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution A__ = 1.0 # setable values A__ = None A__ = torch.from_numpy(np.arange(0 , UpperCamelCase )[::-1].copy() ) A__ = variance_type def UpperCamelCase ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Optional[int] = None ): """simple docstring""" return sample def UpperCamelCase ( self: str , UpperCamelCase: int , UpperCamelCase: Union[str, torch.device] = None ): """simple docstring""" A__ = num_inference_steps A__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) A__ = (np.arange(0 , UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) A__ = torch.from_numpy(UpperCamelCase ).to(UpperCamelCase ) def UpperCamelCase ( self: Optional[Any] , UpperCamelCase: Union[str, Any] , UpperCamelCase: int=None , UpperCamelCase: Any=None , UpperCamelCase: Tuple=None ): """simple docstring""" if prev_timestep is None: A__ = t - 1 A__ = self.alphas_cumprod[t] A__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A__ = 1 - alpha_prod_t A__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A__ = self.betas[t] else: A__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample A__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: A__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": A__ = torch.log(torch.clamp(UpperCamelCase , min=1e-2_0 ) ) A__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler A__ = variance.log() A__ = beta.log() A__ = (predicted_variance + 1) / 2 A__ = frac * max_log + (1 - frac) * min_log return variance def UpperCamelCase ( self: List[str] , UpperCamelCase: torch.FloatTensor , UpperCamelCase: int , UpperCamelCase: torch.FloatTensor , UpperCamelCase: Optional[int] = None , UpperCamelCase: Any=None , UpperCamelCase: bool = True , ): """simple docstring""" A__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": A__ , A__ = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: A__ = None # 1. compute alphas, betas if prev_timestep is None: A__ = t - 1 A__ = self.alphas_cumprod[t] A__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one A__ = 1 - alpha_prod_t A__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: A__ = self.betas[t] A__ = self.alphas[t] else: A__ = 1 - alpha_prod_t / alpha_prod_t_prev A__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": A__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": A__ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" """ for the UnCLIPScheduler.""" ) # 3. Clip "predicted x_0" if self.config.clip_sample: A__ = torch.clamp( UpperCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t A__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf A__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise A__ = 0 if t > 0: A__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase , device=model_output.device ) A__ = self._get_variance( UpperCamelCase , predicted_variance=UpperCamelCase , prev_timestep=UpperCamelCase , ) if self.variance_type == "fixed_small_log": A__ = variance elif self.variance_type == "learned_range": A__ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" """ for the UnCLIPScheduler.""" ) A__ = variance * variance_noise A__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def UpperCamelCase ( self: int , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.FloatTensor , UpperCamelCase: torch.IntTensor , ): """simple docstring""" A__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) A__ = timesteps.to(original_samples.device ) A__ = alphas_cumprod[timesteps] ** 0.5 A__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): A__ = sqrt_alpha_prod.unsqueeze(-1 ) A__ = (1 - alphas_cumprod[timesteps]) ** 0.5 A__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): A__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) A__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
69
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Tuple = { 'configuration_nllb_moe': [ 'NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'NllbMoeConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : int = [ 'NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST', 'NllbMoeForConditionalGeneration', 'NllbMoeModel', 'NllbMoePreTrainedModel', 'NllbMoeTop2Router', 'NllbMoeSparseMLP', ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys SCREAMING_SNAKE_CASE_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
69
1
import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : def __init__(self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=7 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=9_9 , UpperCAmelCase=1_6 , UpperCAmelCase=3_6 , UpperCAmelCase=6 , UpperCAmelCase=6 , UpperCAmelCase=6 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=5_1_2 , UpperCAmelCase=1_6 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=4 , UpperCAmelCase=None , ) -> str: _lowercase =parent _lowercase =batch_size _lowercase =seq_length _lowercase =is_training _lowercase =use_input_mask _lowercase =use_token_type_ids _lowercase =use_labels _lowercase =vocab_size _lowercase =embedding_size _lowercase =hidden_size _lowercase =num_hidden_layers _lowercase =num_hidden_groups _lowercase =num_attention_heads _lowercase =intermediate_size _lowercase =hidden_act _lowercase =hidden_dropout_prob _lowercase =attention_probs_dropout_prob _lowercase =max_position_embeddings _lowercase =type_vocab_size _lowercase =type_sequence_label_size _lowercase =initializer_range _lowercase =num_labels _lowercase =num_choices _lowercase =scope def __A (self ) -> str: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase =None if self.use_input_mask: _lowercase =random_attention_mask([self.batch_size, self.seq_length] ) _lowercase =None if self.use_token_type_ids: _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase =None _lowercase =None _lowercase =None if self.use_labels: _lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase =ids_tensor([self.batch_size] , self.num_choices ) _lowercase =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A (self ) -> Optional[Any]: return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =AlbertModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _lowercase =model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase ) _lowercase =model(__lowerCamelCase , token_type_ids=__lowerCamelCase ) _lowercase =model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _lowercase =AlbertForPreTraining(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _lowercase =model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , sentence_order_label=__lowerCamelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =AlbertForMaskedLM(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _lowercase =model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =AlbertForQuestionAnswering(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _lowercase =model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , start_positions=__lowerCamelCase , end_positions=__lowerCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> int: _lowercase =self.num_labels _lowercase =AlbertForSequenceClassification(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _lowercase =model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[Any]: _lowercase =self.num_labels _lowercase =AlbertForTokenClassification(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _lowercase =model(__lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: _lowercase =self.num_choices _lowercase =AlbertForMultipleChoice(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() _lowercase =input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase =model( __lowerCamelCase , attention_mask=__lowerCamelCase , token_type_ids=__lowerCamelCase , labels=__lowerCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A (self ) -> Union[str, Any]: _lowercase =self.prepare_config_and_inputs() ( _lowercase ) =config_and_inputs _lowercase ={"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class lowerCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase): SCREAMING_SNAKE_CASE__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = ( { '''feature-extraction''': AlbertModel, '''fill-mask''': AlbertForMaskedLM, '''question-answering''': AlbertForQuestionAnswering, '''text-classification''': AlbertForSequenceClassification, '''token-classification''': AlbertForTokenClassification, '''zero-shot''': AlbertForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE__ = True def __A (self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Any: _lowercase =super()._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) if return_labels: if model_class in get_values(__lowerCamelCase ): _lowercase =torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCamelCase ) _lowercase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCamelCase ) return inputs_dict def __A (self ) -> List[str]: _lowercase =AlbertModelTester(self ) _lowercase =ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 ) def __A (self ) -> Optional[int]: self.config_tester.run_common_tests() def __A (self ) -> Optional[int]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowerCamelCase ) def __A (self ) -> Tuple: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def __A (self ) -> Any: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def __A (self ) -> List[Any]: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def __A (self ) -> str: _lowercase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def __A (self ) -> int: _lowercase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowercase =type self.model_tester.create_and_check_model(*__lowerCamelCase ) @slow def __A (self ) -> List[Any]: for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase =AlbertModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) @require_torch class lowerCamelCase__ ( unittest.TestCase): @slow def __A (self ) -> Union[str, Any]: _lowercase =AlbertModel.from_pretrained('''albert-base-v2''' ) _lowercase =torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _lowercase =torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase =model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _lowercase =torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , __lowerCamelCase ) _lowercase =torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1e-4 ) )
5
from __future__ import annotations A : Union[str, Any] = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } class _lowercase : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : dict[str, list[str]] , __lowerCamelCase : str ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = graph # mapping node to its parent in resulting breadth first tree lowerCamelCase__ : dict[str, str | None] = {} lowerCamelCase__ : Dict = source_vertex def lowerCAmelCase ( self : Any ): '''simple docstring''' lowerCamelCase__ : int = {self.source_vertex} lowerCamelCase__ : Optional[int] = None lowerCamelCase__ : Dict = [self.source_vertex] # first in first out queue while queue: lowerCamelCase__ : Optional[int] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(__lowerCamelCase ) lowerCamelCase__ : List[str] = vertex queue.append(__lowerCamelCase ) def lowerCAmelCase ( self : Optional[Any] , __lowerCamelCase : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex lowerCamelCase__ : Tuple = self.parent.get(__lowerCamelCase ) if target_vertex_parent is None: lowerCamelCase__ : Tuple = ( f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}" ) raise ValueError(__lowerCamelCase ) return self.shortest_path(__lowerCamelCase ) + f"->{target_vertex}" if __name__ == "__main__": A : List[str] = Graph(graph, "G") g.breath_first_search() print(g.shortest_path("D")) print(g.shortest_path("G")) print(g.shortest_path("Foo"))
184
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __A : Dict = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' if isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_SCREAMING_SNAKE_CASE , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_SCREAMING_SNAKE_CASE ): return [[videos]] raise ValueError(f'Could not make batched video from {videos}' ) class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = ["""pixel_values"""] def __init__( self : Dict , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : bool = True , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = True , __UpperCamelCase : Union[int, float] = 1 / 2_5_5 , __UpperCamelCase : bool = True , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , **__UpperCamelCase : List[Any] , )->None: super().__init__(**__UpperCamelCase ) _UpperCAmelCase = size if size is not None else {'''shortest_edge''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = resample _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self : Dict , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[int] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) if "shortest_edge" in size: _UpperCAmelCase = get_resize_output_image_size(__UpperCamelCase , size['''shortest_edge'''] , default_to_square=__UpperCamelCase ) elif "height" in size and "width" in size: _UpperCAmelCase = (size['''height'''], size['''width''']) else: raise ValueError(F'Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}' ) return resize(__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Dict[str, int] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Union[str, Any] , )->np.ndarray: _UpperCAmelCase = get_size_dict(__UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'Size must have \'height\' and \'width\' as keys. Got {size.keys()}' ) return center_crop(__UpperCamelCase , size=(size['''height'''], size['''width''']) , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : List[str] , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[int, float] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Optional[Any] , )->int: return rescale(__UpperCamelCase , scale=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : str , __UpperCamelCase : np.ndarray , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Union[float, List[float]] , __UpperCamelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCamelCase : Dict , )->np.ndarray: return normalize(__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase , data_format=__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Tuple , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[ChannelDimension] = ChannelDimension.FIRST , )->np.ndarray: if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. _UpperCAmelCase = to_numpy_array(__UpperCamelCase ) if do_resize: _UpperCAmelCase = self.resize(image=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase ) if do_center_crop: _UpperCAmelCase = self.center_crop(__UpperCamelCase , size=__UpperCamelCase ) if do_rescale: _UpperCAmelCase = self.rescale(image=__UpperCamelCase , scale=__UpperCamelCase ) if do_normalize: _UpperCAmelCase = self.normalize(image=__UpperCamelCase , mean=__UpperCamelCase , std=__UpperCamelCase ) _UpperCAmelCase = to_channel_dimension_format(__UpperCamelCase , __UpperCamelCase ) return image def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : ImageInput , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : PILImageResampling = None , __UpperCamelCase : bool = None , __UpperCamelCase : Dict[str, int] = None , __UpperCamelCase : bool = None , __UpperCamelCase : float = None , __UpperCamelCase : bool = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[float, List[float]]] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : ChannelDimension = ChannelDimension.FIRST , **__UpperCamelCase : Any , )->PIL.Image.Image: _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(__UpperCamelCase , default_to_square=__UpperCamelCase ) _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(__UpperCamelCase , param_name='''crop_size''' ) if not valid_images(__UpperCamelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) _UpperCAmelCase = make_batched(__UpperCamelCase ) _UpperCAmelCase = [ [ self._preprocess_image( image=__UpperCamelCase , do_resize=__UpperCamelCase , size=__UpperCamelCase , resample=__UpperCamelCase , do_center_crop=__UpperCamelCase , crop_size=__UpperCamelCase , do_rescale=__UpperCamelCase , rescale_factor=__UpperCamelCase , do_normalize=__UpperCamelCase , image_mean=__UpperCamelCase , image_std=__UpperCamelCase , data_format=__UpperCamelCase , ) for img in video ] for video in videos ] _UpperCAmelCase = {'''pixel_values''': videos} return BatchFeature(data=__UpperCamelCase , tensor_type=__UpperCamelCase )
326
"""simple docstring""" from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def lowercase ( _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = int(number**0.5 ) return number == sq * sq def lowercase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den _UpperCAmelCase = x_den * y_den * z_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def lowercase ( _SCREAMING_SNAKE_CASE : int = 35 ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = 42 _UpperCAmelCase = Fraction(0 ) _UpperCAmelCase = 42 for x_num in range(1 , order + 1 ): for x_den in range(x_num + 1 , order + 1 ): for y_num in range(1 , order + 1 ): for y_den in range(y_num + 1 , order + 1 ): # n=1 _UpperCAmelCase = x_num * y_den + x_den * y_num _UpperCAmelCase = x_den * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) _UpperCAmelCase = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 _UpperCAmelCase = x_num * y_num _UpperCAmelCase = x_den * y_num + x_num * y_den _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 _UpperCAmelCase = x_num * x_num * y_num * y_num _UpperCAmelCase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = int(sqrt(_SCREAMING_SNAKE_CASE ) ) _UpperCAmelCase = gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: _UpperCAmelCase = add_three( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
326
1
"""simple docstring""" import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home snake_case_ = HUGGINGFACE_HUB_CACHE snake_case_ = """config.json""" snake_case_ = """diffusion_pytorch_model.bin""" snake_case_ = """diffusion_flax_model.msgpack""" snake_case_ = """model.onnx""" snake_case_ = """diffusion_pytorch_model.safetensors""" snake_case_ = """weights.pb""" snake_case_ = """https://huggingface.co""" snake_case_ = default_cache_path snake_case_ = """diffusers_modules""" snake_case_ = os.getenv("""HF_MODULES_CACHE""", os.path.join(hf_cache_home, """modules""")) snake_case_ = ["""fp16""", """non-ema"""] snake_case_ = """.self_attn"""
78
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __init__( self :Dict , lowercase_ :str = "▁" , lowercase_ :bool = True , lowercase_ :Union[str, AddedToken] = "<unk>" , lowercase_ :Union[str, AddedToken] = "</s>" , lowercase_ :Union[str, AddedToken] = "<pad>" , ) -> str: UpperCAmelCase = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict['token'] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}' ) , ' ' ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ), pre_tokenizers.Digits(individual_digits=lowercase_ ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=lowercase_ , add_prefix_space=lowercase_ ) UpperCAmelCase = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) UpperCAmelCase = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(lowercase_ , lowercase_ ) def UpperCAmelCase__ ( self :Optional[int] , lowercase_ :Union[str, List[str]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Union[str, Any]: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) if isinstance(lowercase_ , lowercase_ ): UpperCAmelCase = [files] self._tokenizer.train(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :str , lowercase_ :Union[Iterator[str], Iterator[Iterator[str]]] , lowercase_ :int = 80_00 , lowercase_ :bool = True , ) -> Tuple: UpperCAmelCase = trainers.UnigramTrainer( vocab_size=lowercase_ , special_tokens=self.special_tokens_list , show_progress=lowercase_ , ) self._tokenizer.train_from_iterator(lowercase_ , trainer=lowercase_ ) self.add_unk_id() def UpperCAmelCase__ ( self :Union[str, Any] ) -> int: UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens['unk']['id'] UpperCAmelCase = Tokenizer.from_str(json.dumps(lowercase_ ) )
78
1
'''simple docstring''' import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden _UpperCamelCase = deepcopy(lowerCAmelCase__ ) elif os.path.exists(lowerCAmelCase__ ): with io.open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: _UpperCamelCase = json.load(lowerCAmelCase__ ) else: try: _UpperCamelCase = baseaa.urlsafe_baadecode(lowerCAmelCase__ ).decode('''utf-8''' ) _UpperCamelCase = json.loads(lowerCAmelCase__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( f"""Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}""" ) _UpperCamelCase = config self.set_stage_and_offload() def snake_case__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.get_value('''zero_optimization.stage''' , -1 ) # offload _UpperCamelCase = False if self.is_zeroa() or self.is_zeroa(): _UpperCamelCase = set(['''cpu''', '''nvme'''] ) _UpperCamelCase = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: _UpperCamelCase = True def snake_case__ ( self : Tuple , lowerCAmelCase__ : int ) -> Dict: '''simple docstring''' _UpperCamelCase = self.config # find the config node of interest if it exists _UpperCamelCase = ds_key_long.split('''.''' ) _UpperCamelCase = nodes.pop() for node in nodes: _UpperCamelCase = config.get(lowerCAmelCase__ ) if config is None: return None, ds_key return config, ds_key def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None ) -> List[Any]: '''simple docstring''' _UpperCamelCase , _UpperCamelCase = self.find_config_node(lowerCAmelCase__ ) if config is None: return default return config.get(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : int=False ) -> Any: '''simple docstring''' _UpperCamelCase = self.config # find the config node of interest if it exists _UpperCamelCase = ds_key_long.split('''.''' ) for node in nodes: _UpperCamelCase = config _UpperCamelCase = config.get(lowerCAmelCase__ ) if config is None: if must_exist: raise ValueError(f"""Can't find {ds_key_long} entry in the config: {self.config}""" ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowerCAmelCase__ ) def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = self.get_value(lowerCAmelCase__ ) return False if value is None else bool(lowerCAmelCase__ ) def snake_case__ ( self : Any , lowerCAmelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_value(lowerCAmelCase__ ) return False if value is None else not bool(lowerCAmelCase__ ) def snake_case__ ( self : Optional[int] ) -> str: '''simple docstring''' return self._stage == 2 def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return self._stage == 3 def snake_case__ ( self : List[str] ) -> str: '''simple docstring''' return self._offload class __lowerCAmelCase : """simple docstring""" def __init__( self : str , lowerCAmelCase__ : int ) -> Tuple: '''simple docstring''' _UpperCamelCase = engine def snake_case__ ( self : List[str] , lowerCAmelCase__ : Tuple , **lowerCAmelCase__ : Union[str, Any] ) -> List[str]: '''simple docstring''' self.engine.backward(lowerCAmelCase__ , **lowerCAmelCase__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : Any ) -> List[Any]: '''simple docstring''' super().__init__(lowerCAmelCase__ , device_placement=lowerCAmelCase__ , scaler=lowerCAmelCase__ ) _UpperCamelCase = hasattr(self.optimizer , '''overflow''' ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any]=None ) -> Tuple: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def snake_case__ ( self : List[Any] ) -> List[Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def snake_case__ ( self : Dict ) -> str: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self : Optional[int] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ) -> Tuple: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class __lowerCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Any=0.001 , lowerCAmelCase__ : str=0 , **lowerCAmelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' _UpperCamelCase = params _UpperCamelCase = lr _UpperCamelCase = weight_decay _UpperCamelCase = kwargs class __lowerCAmelCase : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Dict=0 , **lowerCAmelCase__ : List[str] ) -> Any: '''simple docstring''' _UpperCamelCase = optimizer _UpperCamelCase = total_num_steps _UpperCamelCase = warmup_num_steps _UpperCamelCase = kwargs
358
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''c'''] ) self.assertEqual(lowerCAmelCase__ , [2] ) # Out indices set to match out features _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features set to match out indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [0, 2] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [0, 2] ) # Out features selected from negative indices _UpperCamelCase , _UpperCamelCase = get_aligned_output_features_output_indices(lowerCAmelCase__ , [-3, -1] , lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , ['''a''', '''c'''] ) self.assertEqual(lowerCAmelCase__ , [-3, -1] ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , lowerCAmelCase__ ) # Out features must be a list with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(lowerCAmelCase__ , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(lowerCAmelCase__ ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def snake_case__ ( self : Any ) -> str: '''simple docstring''' _UpperCamelCase = BackboneMixin() _UpperCamelCase = ['''a''', '''b''', '''c'''] _UpperCamelCase = ['''a''', '''c'''] _UpperCamelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly _UpperCamelCase = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) _UpperCamelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
287
0
from timeit import timeit def a__ ( snake_case ): """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = 0 while number: number &= number - 1 result += 1 return result def a__ ( snake_case ): """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) __SCREAMING_SNAKE_CASE : List[str] = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def a__ ( ): """simple docstring""" def do_benchmark(snake_case ) -> None: __SCREAMING_SNAKE_CASE : Tuple = '''import __main__ as z''' print(F'''Benchmark when {number = }:''' ) print(F'''{get_set_bits_count_using_modulo_operator(snake_case ) = }''' ) __SCREAMING_SNAKE_CASE : List[str] = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=snake_case ) print(F'''timeit() runs in {timing} seconds''' ) print(F'''{get_set_bits_count_using_brian_kernighans_algorithm(snake_case ) = }''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=snake_case , ) print(F'''timeit() runs in {timing} seconds''' ) for number in (25, 37, 58, 0): do_benchmark(snake_case ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
303
import sys from collections import defaultdict class __UpperCamelCase : """simple docstring""" def __init__( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = [] def UpperCAmelCase__ ( self : List[str] , _A : str ): """simple docstring""" return self.node_position[vertex] def UpperCAmelCase__ ( self : Dict , _A : List[str] , _A : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = pos def UpperCAmelCase__ ( self : List[Any] , _A : Union[str, Any] , _A : List[Any] , _A : List[str] , _A : Union[str, Any] ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __SCREAMING_SNAKE_CASE : List[Any] = 2 * start + 1 else: __SCREAMING_SNAKE_CASE : Dict = 2 * start + 2 if heap[smallest_child] < heap[start]: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = heap[smallest_child], positions[smallest_child] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = ( heap[start], positions[start], ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Tuple = temp, tempa __SCREAMING_SNAKE_CASE : Any = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _A ) self.top_to_bottom(_A , _A , _A , _A ) def UpperCAmelCase__ ( self : Any , _A : Union[str, Any] , _A : Dict , _A : Optional[Any] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = position[index] while index != 0: __SCREAMING_SNAKE_CASE : Optional[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __SCREAMING_SNAKE_CASE : Optional[Any] = heap[parent] __SCREAMING_SNAKE_CASE : str = position[parent] self.set_position(position[parent] , _A ) else: __SCREAMING_SNAKE_CASE : List[str] = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , _A ) break __SCREAMING_SNAKE_CASE : List[Any] = parent else: __SCREAMING_SNAKE_CASE : Tuple = val __SCREAMING_SNAKE_CASE : List[str] = temp self.set_position(_A , 0 ) def UpperCAmelCase__ ( self : List[str] , _A : Tuple , _A : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = len(_A ) // 2 - 1 for i in range(_A , -1 , -1 ): self.top_to_bottom(_A , _A , len(_A ) , _A ) def UpperCAmelCase__ ( self : List[str] , _A : Dict , _A : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = positions[0] __SCREAMING_SNAKE_CASE : Tuple = sys.maxsize self.top_to_bottom(_A , 0 , len(_A ) , _A ) return temp def a__ ( snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = Heap() __SCREAMING_SNAKE_CASE : int = [0] * len(snake_case ) __SCREAMING_SNAKE_CASE : Dict = [-1] * len(snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __SCREAMING_SNAKE_CASE : Dict = [] # Heap of Distance of vertices from their neighboring vertex __SCREAMING_SNAKE_CASE : Optional[int] = [] for vertex in range(len(snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(snake_case ) heap.node_position.append(snake_case ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [] __SCREAMING_SNAKE_CASE : str = 1 __SCREAMING_SNAKE_CASE : int = sys.maxsize for neighbor, distance in adjacency_list[0]: __SCREAMING_SNAKE_CASE : Optional[Any] = 0 __SCREAMING_SNAKE_CASE : Dict = distance heap.heapify(snake_case , snake_case ) for _ in range(1 , len(snake_case ) ): __SCREAMING_SNAKE_CASE : Tuple = heap.delete_minimum(snake_case , snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __SCREAMING_SNAKE_CASE : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(snake_case )] ): __SCREAMING_SNAKE_CASE : int = distance heap.bottom_to_top( snake_case , heap.get_position(snake_case ) , snake_case , snake_case ) __SCREAMING_SNAKE_CASE : Any = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > lowercase_ = int(input("""Enter number of edges: """).strip()) lowercase_ = defaultdict(list) for _ in range(edges_number): lowercase_ = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
303
1
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case__ = logging.get_logger(__name__) snake_case__ = { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCamelCase_ (a__ ): """simple docstring""" _lowerCAmelCase = 'mvp' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Dict , _lowerCamelCase : Dict=50267 , _lowerCamelCase : Union[str, Any]=1024 , _lowerCamelCase : Optional[int]=12 , _lowerCamelCase : str=4096 , _lowerCamelCase : str=16 , _lowerCamelCase : int=12 , _lowerCamelCase : Union[str, Any]=4096 , _lowerCamelCase : Any=16 , _lowerCamelCase : List[str]=0.0 , _lowerCamelCase : Union[str, Any]=0.0 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Tuple=1024 , _lowerCamelCase : Optional[Any]=0.1 , _lowerCamelCase : Tuple=0.0 , _lowerCamelCase : List[Any]=0.0 , _lowerCamelCase : Union[str, Any]=0.02 , _lowerCamelCase : int=0.0 , _lowerCamelCase : List[str]=False , _lowerCamelCase : int=True , _lowerCamelCase : Tuple=1 , _lowerCamelCase : Union[str, Any]=0 , _lowerCamelCase : Optional[Any]=2 , _lowerCamelCase : List[Any]=True , _lowerCamelCase : int=2 , _lowerCamelCase : int=2 , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=100 , _lowerCamelCase : int=800 , **_lowerCamelCase : int , ): """simple docstring""" A_ : List[Any] = vocab_size A_ : Dict = max_position_embeddings A_ : str = d_model A_ : int = encoder_ffn_dim A_ : Optional[Any] = encoder_layers A_ : Dict = encoder_attention_heads A_ : Optional[Any] = decoder_ffn_dim A_ : Dict = decoder_layers A_ : str = decoder_attention_heads A_ : List[str] = dropout A_ : str = attention_dropout A_ : int = activation_dropout A_ : List[str] = activation_function A_ : Dict = init_std A_ : List[Any] = encoder_layerdrop A_ : int = decoder_layerdrop A_ : int = classifier_dropout A_ : int = use_cache A_ : Any = encoder_layers A_ : List[Any] = scale_embedding # scale factor will be sqrt(d_model) if True A_ : List[Any] = use_prompt A_ : int = prompt_length A_ : Optional[Any] = prompt_mid_dim super().__init__( pad_token_id=_lowerCamelCase , bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , is_encoder_decoder=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , forced_eos_token_id=_lowerCamelCase , **_lowerCamelCase , ) if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , _lowerCamelCase ): A_ : List[str] = self.bos_token_id warnings.warn( f'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' )
4
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.multihead_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("""input_proj.weight""", """input_projection.weight"""), ("""input_proj.bias""", """input_projection.bias"""), ("""query_embed.weight""", """query_position_embeddings.weight"""), ("""transformer.encoder.norm.weight""", """encoder.layernorm.weight"""), ("""transformer.encoder.norm.bias""", """encoder.layernorm.bias"""), ("""transformer.decoder.norm.weight""", """decoder.layernorm.weight"""), ("""transformer.decoder.norm.bias""", """decoder.layernorm.bias"""), ("""class_embed.weight""", """class_labels_classifier.weight"""), ("""class_embed.bias""", """class_labels_classifier.bias"""), ("""bbox_embed.layers.0.weight""", """bbox_predictor.layers.0.weight"""), ("""bbox_embed.layers.0.bias""", """bbox_predictor.layers.0.bias"""), ("""bbox_embed.layers.1.weight""", """bbox_predictor.layers.1.weight"""), ("""bbox_embed.layers.1.bias""", """bbox_predictor.layers.1.bias"""), ("""bbox_embed.layers.2.weight""", """bbox_predictor.layers.2.weight"""), ("""bbox_embed.layers.2.bias""", """bbox_predictor.layers.2.bias"""), ] ) def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[Any] ) -> Optional[Any]: A_ : Tuple = state_dict.pop(lowerCamelCase__ ) A_ : Optional[Any] = val def snake_case__ ( lowerCamelCase__ : Dict ) -> Any: A_ : int = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: A_ : int = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' ) A_ : List[str] = value else: A_ : Optional[int] = value return new_state_dict def snake_case__ ( lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: A_ : Any = '''''' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) A_ : Tuple = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : str = in_proj_weight[:2_5_6, :] A_ : Optional[Any] = in_proj_bias[:2_5_6] A_ : Dict = in_proj_weight[2_5_6:5_1_2, :] A_ : Tuple = in_proj_bias[2_5_6:5_1_2] A_ : Tuple = in_proj_weight[-2_5_6:, :] A_ : Optional[int] = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention A_ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) A_ : Dict = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict A_ : List[str] = in_proj_weight[:2_5_6, :] A_ : int = in_proj_bias[:2_5_6] A_ : Any = in_proj_weight[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias[2_5_6:5_1_2] A_ : Union[str, Any] = in_proj_weight[-2_5_6:, :] A_ : Optional[Any] = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention A_ : Tuple = state_dict.pop( f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight' ) A_ : Optional[Any] = state_dict.pop(f'{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias' ) # next, add query, keys and values (in that order) of cross-attention to the state dict A_ : Dict = in_proj_weight_cross_attn[:2_5_6, :] A_ : Tuple = in_proj_bias_cross_attn[:2_5_6] A_ : int = in_proj_weight_cross_attn[2_5_6:5_1_2, :] A_ : List[str] = in_proj_bias_cross_attn[2_5_6:5_1_2] A_ : Any = in_proj_weight_cross_attn[-2_5_6:, :] A_ : Any = in_proj_bias_cross_attn[-2_5_6:] def snake_case__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Tuple ) -> Dict: A_ ,A_ : int = image.size A_ : Tuple = max(lowerCamelCase__ , lowerCamelCase__ ) A_ : Optional[Any] = 8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 A_ : Union[str, Any] = target_max_size / current_max_size A_ : Any = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def snake_case__ ( lowerCamelCase__ : Tuple ) -> str: A_ : Any = F.to_tensor(lowerCamelCase__ ) A_ : Optional[Any] = F.normalize(lowerCamelCase__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def snake_case__ ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : int , lowerCamelCase__ : int ) -> str: logger.info('''Converting model...''' ) # load original state dict A_ : Tuple = torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location='''cpu''' ) # rename keys for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) A_ : str = rename_backbone_keys(lowerCamelCase__ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them A_ : List[Any] = '''model.''' for key in state_dict.copy().keys(): if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ): A_ : List[Any] = state_dict.pop(lowerCamelCase__ ) A_ : str = val # create HuggingFace model and load state dict A_ : Union[str, Any] = TableTransformerConfig( backbone='''resnet18''' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: A_ : Dict = 1_5 A_ : Dict = 2 A_ : int = {0: '''table''', 1: '''table rotated'''} A_ : List[str] = idalabel A_ : Optional[int] = {v: k for k, v in idalabel.items()} else: A_ : Union[str, Any] = 1_2_5 A_ : Optional[Any] = 6 A_ : Optional[Any] = { 0: '''table''', 1: '''table column''', 2: '''table row''', 3: '''table column header''', 4: '''table projected row header''', 5: '''table spanning cell''', } A_ : int = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Optional[Any] = DetrImageProcessor( format='''coco_detection''' , max_size=8_0_0 if '''detection''' in checkpoint_url else 1_0_0_0 ) A_ : int = TableTransformerForObjectDetection(lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify our conversion A_ : Optional[int] = '''example_pdf.png''' if '''detection''' in checkpoint_url else '''example_table.png''' A_ : Union[str, Any] = hf_hub_download(repo_id='''nielsr/example-pdf''' , repo_type='''dataset''' , filename=lowerCamelCase__ ) A_ : Tuple = Image.open(lowerCamelCase__ ).convert('''RGB''' ) A_ : int = normalize(resize(lowerCamelCase__ , lowerCamelCase__ ) ).unsqueeze(0 ) A_ : str = model(lowerCamelCase__ ) if "detection" in checkpoint_url: A_ : str = (1, 1_5, 3) A_ : int = torch.tensor( [[-6.7897, -16.9985, 6.7937], [-8.0186, -22.2192, 6.9677], [-7.3117, -21.0708, 7.4055]] ) A_ : Tuple = torch.tensor([[0.4867, 0.1767, 0.6732], [0.6718, 0.4479, 0.3830], [0.4716, 0.1760, 0.6364]] ) else: A_ : Optional[int] = (1, 1_2_5, 7) A_ : Dict = torch.tensor( [[-18.1430, -8.3214, 4.8274], [-18.4685, -7.1361, -4.2667], [-26.3693, -9.3429, -4.9962]] ) A_ : Any = torch.tensor([[0.4983, 0.5595, 0.9440], [0.4916, 0.6315, 0.5954], [0.6108, 0.8637, 0.1135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(lowerCamelCase__ ).mkdir(exist_ok=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) image_processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model to HF hub logger.info('''Pushing model to the hub...''' ) A_ : List[Any] = ( '''microsoft/table-transformer-detection''' if '''detection''' in checkpoint_url else '''microsoft/table-transformer-structure-recognition''' ) model.push_to_hub(lowerCamelCase__ ) image_processor.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", type=str, choices=[ """https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth""", """https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth""", ], help="""URL of the Table Transformer checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) snake_case__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
4
1
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Union[str, Any]: return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase=0 ) -> List[str]: return sorted(UpperCAmelCase , key=lambda UpperCAmelCase : x[column] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=float('inf' ) ) -> Any: for i in range(points_counts - 1 ): for j in range(i + 1 , UpperCAmelCase ): snake_case_ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ = current_dis return min_dis def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=float('inf' ) ) -> Optional[int]: for i in range(min(6 , points_counts - 1 ) , UpperCAmelCase ): for j in range(max(0 , i - 6 ) , UpperCAmelCase ): snake_case_ = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: snake_case_ = current_dis return min_dis def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: # base case if points_counts <= 3: return dis_between_closest_pair(UpperCAmelCase , UpperCAmelCase ) # recursion snake_case_ = points_counts // 2 snake_case_ = closest_pair_of_points_sqr( UpperCAmelCase , points_sorted_on_y[:mid] , UpperCAmelCase ) snake_case_ = closest_pair_of_points_sqr( UpperCAmelCase , points_sorted_on_y[mid:] , points_counts - mid ) snake_case_ = min(UpperCAmelCase , UpperCAmelCase ) snake_case_ = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(UpperCAmelCase ) snake_case_ = dis_between_closest_in_strip( UpperCAmelCase , len(UpperCAmelCase ) , UpperCAmelCase ) return min(UpperCAmelCase , UpperCAmelCase ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> Dict: snake_case_ = column_based_sort(UpperCAmelCase , column=0 ) snake_case_ = column_based_sort(UpperCAmelCase , column=1 ) return ( closest_pair_of_points_sqr( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ) ** 0.5 if __name__ == "__main__": __UpperCamelCase = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print('''Distance:''', closest_pair_of_points(points, len(points)))
69
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ) -> None: create_state_space_tree(UpperCAmelCase , [] , 0 , [0 for i in range(len(UpperCAmelCase ) )] ) def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) -> None: if index == len(UpperCAmelCase ): print(UpperCAmelCase ) return for i in range(len(UpperCAmelCase ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case_ = True create_state_space_tree(UpperCAmelCase , UpperCAmelCase , index + 1 , UpperCAmelCase ) current_sequence.pop() snake_case_ = False __UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) __UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
69
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch lowerCAmelCase__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Dict =["pixel_values"] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = True , snake_case__ = 1 / 255 , snake_case__ = True , snake_case__ = None , snake_case__ = None , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) lowerCAmelCase : str = size if size is not None else {"shortest_edge": 256} lowerCAmelCase : Tuple = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase : Dict = crop_size if crop_size is not None else {"height": 224, "width": 224} lowerCAmelCase : Dict = get_size_dict(snake_case__ , param_name="crop_size" ) lowerCAmelCase : Any = do_resize lowerCAmelCase : Dict = size lowerCAmelCase : List[str] = resample lowerCAmelCase : Dict = do_center_crop lowerCAmelCase : Dict = crop_size lowerCAmelCase : Optional[Any] = do_rescale lowerCAmelCase : int = rescale_factor lowerCAmelCase : str = do_normalize lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowerCAmelCase : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BICUBIC , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : int = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "shortest_edge" not in size: raise ValueError(f"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCAmelCase : Optional[int] = get_resize_output_image_size(snake_case__ , size=size["shortest_edge"] , default_to_square=snake_case__ ) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" lowerCAmelCase : Union[str, Any] = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(snake_case__ , size=(size["height"], size["width"]) , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ ): """simple docstring""" return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , **snake_case__ , ): """simple docstring""" return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): """simple docstring""" lowerCAmelCase : List[str] = do_resize if do_resize is not None else self.do_resize lowerCAmelCase : Dict = size if size is not None else self.size lowerCAmelCase : int = get_size_dict(snake_case__ , default_to_square=snake_case__ ) lowerCAmelCase : Dict = resample if resample is not None else self.resample lowerCAmelCase : Dict = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else self.crop_size lowerCAmelCase : str = get_size_dict(snake_case__ , param_name="crop_size" ) lowerCAmelCase : int = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCAmelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize lowerCAmelCase : int = image_mean if image_mean is not None else self.image_mean lowerCAmelCase : Optional[int] = image_std if image_std is not None else self.image_std lowerCAmelCase : List[str] = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. lowerCAmelCase : Union[str, Any] = [to_numpy_array(snake_case__ ) for image in images] if do_resize: lowerCAmelCase : Union[str, Any] = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_center_crop: lowerCAmelCase : Any = [self.center_crop(image=snake_case__ , size=snake_case__ ) for image in images] if do_rescale: lowerCAmelCase : Union[str, Any] = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: lowerCAmelCase : str = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] lowerCAmelCase : Optional[int] = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] lowerCAmelCase : Optional[int] = {"pixel_values": images} return BatchFeature(data=snake_case__ , tensor_type=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ = None ): """simple docstring""" lowerCAmelCase : Dict = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(snake_case__ ) != len(snake_case__ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(snake_case__ ): lowerCAmelCase : int = target_sizes.numpy() lowerCAmelCase : Dict = [] for idx in range(len(snake_case__ ) ): lowerCAmelCase : Dict = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=snake_case__ ) lowerCAmelCase : Any = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(snake_case__ ) else: lowerCAmelCase : Dict = logits.argmax(dim=1 ) lowerCAmelCase : Any = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
133
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : Optional[int] =(DEISMultistepScheduler,) a : str =(("num_inference_steps", 25),) def lowercase__ ( self , **snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = { "num_train_timesteps": 1_000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "solver_order": 2, } config.update(**snake_case__ ) return config def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : int = 0.1 * sample lowerCAmelCase : Tuple = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : Any = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : str = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : List[str] = scheduler_class.from_pretrained(snake_case__ ) new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase , lowerCAmelCase : Union[str, Any] = sample, sample for t in range(snake_case__ , time_step + scheduler.config.solver_order + 1 ): lowerCAmelCase : Any = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : str = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self , snake_case__=0 , **snake_case__ ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : List[str] = kwargs.pop("num_inference_steps" , snake_case__ ) lowerCAmelCase : List[str] = self.dummy_sample lowerCAmelCase : Optional[int] = 0.1 * sample lowerCAmelCase : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowerCAmelCase : int = self.get_scheduler_config() lowerCAmelCase : Any = scheduler_class(**snake_case__ ) scheduler.set_timesteps(snake_case__ ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case__ ) lowerCAmelCase : Any = scheduler_class.from_pretrained(snake_case__ ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case__ ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : int = new_scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowercase__ ( self , snake_case__=None , **snake_case__ ): """simple docstring""" if scheduler is None: lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Optional[int] = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : Any = scheduler_class(**snake_case__ ) lowerCAmelCase : List[str] = self.scheduler_classes[0] lowerCAmelCase : Tuple = self.get_scheduler_config(**snake_case__ ) lowerCAmelCase : List[str] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = 10 lowerCAmelCase : List[str] = self.dummy_model() lowerCAmelCase : List[Any] = self.dummy_sample_deter scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Any = model(snake_case__ , snake_case__ ) lowerCAmelCase : List[Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample return sample def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) lowerCAmelCase : Optional[Any] = kwargs.pop("num_inference_steps" , snake_case__ ) for scheduler_class in self.scheduler_classes: lowerCAmelCase : Dict = self.get_scheduler_config() lowerCAmelCase : List[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : int = self.dummy_sample lowerCAmelCase : int = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case__ , "set_timesteps" ): scheduler.set_timesteps(snake_case__ ) elif num_inference_steps is not None and not hasattr(snake_case__ , "set_timesteps" ): lowerCAmelCase : List[str] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase : int = [residual + 0.2, residual + 0.15, residual + 0.10] lowerCAmelCase : Tuple = dummy_past_residuals[: scheduler.config.solver_order] lowerCAmelCase : int = scheduler.timesteps[5] lowerCAmelCase : str = scheduler.timesteps[6] lowerCAmelCase : str = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample lowerCAmelCase : Union[str, Any] = scheduler.step(snake_case__ , snake_case__ , snake_case__ , **snake_case__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = DEISMultistepScheduler(**self.get_scheduler_config() ) lowerCAmelCase : Dict = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : Optional[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 lowerCAmelCase : List[str] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) lowerCAmelCase : Any = DPMSolverMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : str = UniPCMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) lowerCAmelCase : Union[str, Any] = self.full_loop(scheduler=snake_case__ ) lowerCAmelCase : str = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case__ ) def lowercase__ ( self ): """simple docstring""" self.check_over_configs(thresholding=snake_case__ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , algorithm_type="deis" , solver_order=snake_case__ , solver_type=snake_case__ , ) def lowercase__ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) lowerCAmelCase : Any = self.full_loop( solver_order=snake_case__ , solver_type=snake_case__ , prediction_type=snake_case__ , algorithm_type=snake_case__ , ) assert not torch.isnan(snake_case__ ).any(), "Samples have nan numbers" def lowercase__ ( self ): """simple docstring""" self.check_over_configs(lower_order_final=snake_case__ ) self.check_over_configs(lower_order_final=snake_case__ ) def lowercase__ ( self ): """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case__ , time_step=0 ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.full_loop() lowerCAmelCase : Dict = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.23916 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.full_loop(prediction_type="v_prediction" ) lowerCAmelCase : List[Any] = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = self.scheduler_classes[0] lowerCAmelCase : str = self.get_scheduler_config(thresholding=snake_case__ , dynamic_thresholding_ratio=0 ) lowerCAmelCase : Optional[Any] = scheduler_class(**snake_case__ ) lowerCAmelCase : Optional[Any] = 10 lowerCAmelCase : Tuple = self.dummy_model() lowerCAmelCase : List[str] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase : Union[str, Any] = model(snake_case__ , snake_case__ ) lowerCAmelCase : Tuple = scheduler.step(snake_case__ , snake_case__ , snake_case__ ).prev_sample assert sample.dtype == torch.floataa
133
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _UpperCamelCase = logging.get_logger(__name__) def lowerCAmelCase__( lowercase : int ) -> List[List[ImageInput]]: if isinstance(lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(lowercase ): return [[videos]] raise ValueError(f"""Could not make batched video from {videos}""" ) class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Dict =["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) __snake_case : int = size if size is not None else {"shortest_edge": 224} __snake_case : List[Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) __snake_case : Optional[Any] = crop_size if crop_size is not None else {"height": 224, "width": 224} __snake_case : str = get_size_dict(UpperCAmelCase , param_name="crop_size" ) __snake_case : str = do_resize __snake_case : str = size __snake_case : Union[str, Any] = do_center_crop __snake_case : Any = crop_size __snake_case : Any = resample __snake_case : Dict = do_rescale __snake_case : Optional[Any] = rescale_factor __snake_case : Optional[Any] = do_normalize __snake_case : Dict = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Any = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __snake_case : Union[str, Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) if "shortest_edge" in size: __snake_case : int = get_resize_output_image_size(UpperCAmelCase , size["shortest_edge"] , default_to_square=UpperCAmelCase ) elif "height" in size and "width" in size: __snake_case : Any = (size["height"], size["width"]) else: raise ValueError(F"""Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __snake_case : int = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size must have 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(UpperCAmelCase , size=(size["height"], size["width"]) , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> Tuple: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , ) -> np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. __snake_case : Union[str, Any] = to_numpy_array(UpperCAmelCase ) if do_resize: __snake_case : List[Any] = self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) if do_center_crop: __snake_case : str = self.center_crop(UpperCAmelCase , size=UpperCAmelCase ) if do_rescale: __snake_case : str = self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) if do_normalize: __snake_case : Dict = self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) __snake_case : Any = to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) return image def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __snake_case : Union[str, Any] = do_resize if do_resize is not None else self.do_resize __snake_case : str = resample if resample is not None else self.resample __snake_case : Optional[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __snake_case : Tuple = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Any = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : List[Any] = image_mean if image_mean is not None else self.image_mean __snake_case : Union[str, Any] = image_std if image_std is not None else self.image_std __snake_case : Tuple = size if size is not None else self.size __snake_case : Optional[Any] = get_size_dict(UpperCAmelCase , default_to_square=UpperCAmelCase ) __snake_case : Optional[int] = crop_size if crop_size is not None else self.crop_size __snake_case : Dict = get_size_dict(UpperCAmelCase , param_name="crop_size" ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) __snake_case : List[str] = make_batched(UpperCAmelCase ) __snake_case : Optional[int] = [ [ self._preprocess_image( image=UpperCAmelCase , do_resize=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , do_center_crop=UpperCAmelCase , crop_size=UpperCAmelCase , do_rescale=UpperCAmelCase , rescale_factor=UpperCAmelCase , do_normalize=UpperCAmelCase , image_mean=UpperCAmelCase , image_std=UpperCAmelCase , data_format=UpperCAmelCase , ) for img in video ] for video in videos ] __snake_case : List[str] = {"pixel_values": videos} return BatchFeature(data=UpperCAmelCase , tensor_type=UpperCAmelCase )
326
import unittest from transformers import JukeboxTokenizer from transformers.testing_utils import require_torch class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : str =JukeboxTokenizer UpperCAmelCase_ : Tuple ={ "artist": "Zac Brown Band", "genres": "Country", "lyrics": "I met a traveller from an antique land,\n Who said \"Two vast and trunkless legs of stone\n Stand in the desert. . . . Near them, on the sand,\n Half sunk a shattered visage lies, whose frown,\n And wrinkled lip, and sneer of cold command,\n Tell that its sculptor well those passions read\n Which yet survive, stamped on these lifeless things,\n The hand that mocked them, and the heart that fed;\n And on the pedestal, these words appear:\n My name is Ozymandias, King of Kings;\n Look on my Works, ye Mighty, and despair!\n Nothing beside remains. Round the decay\n Of that colossal Wreck, boundless and bare\n The lone and level sands stretch far away\n ", } @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : List[str] = JukeboxTokenizer.from_pretrained("openai/jukebox-1b-lyrics" ) __snake_case : Union[str, Any] = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : Optional[Any] = [ torch.tensor([[ 0, 0, 0, 7169, 507, 9, 76, 39, 31, 46, 76, 27, 76, 46, 44, 27, 48, 31, 38, 38, 31, 44, 76, 32, 44, 41, 39, 76, 27, 40, 76, 27, 40, 46, 35, 43, 47, 31, 76, 38, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 41, 76, 45, 27, 35, 30, 76, 71, 20, 49, 41, 76, 48, 27, 45, 46, 76, 27, 40, 30, 76, 46, 44, 47, 40, 37, 38, 31, 45, 45, 76, 38, 31, 33, 45, 76, 41, 32, 76, 45, 46, 41, 40, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 19, 46, 27, 40, 30, 76, 35, 40, 76, 46, 34, 31, 76, 30, 31, 45, 31, 44, 46, 63, 76, 63, 76, 63, 76, 63, 76, 14, 31, 27, 44, 76, 46, 34, 31, 39, 64, 76, 41, 40, 76, 46, 34, 31, 76, 45, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 8, 27, 38, 32, 76, 45, 47, 40, 37, 76, 27, 76, 45, 34, 27, 46, 46, 31, 44, 31, 30, 76, 48, 35, 45, 27, 33, 31, 76, 38, 35, 31, 45, 64, 76, 49, 34, 41, 45, 31, 76, 32, 44, 41, 49, 40, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 49, 44, 35, 40, 37, 38, 31, 30, 76, 38, 35, 42, 64, 76, 27, 40, 30, 76, 45, 40, 31, 31, 44, 76, 41, 32, 76, 29, 41, 38, 30, 76, 29, 41, 39, 39, 27, 40, 30, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 31, 38, 38, 76, 46, 34, 27, 46, 76, 35, 46, 45, 76, 45, 29, 47, 38, 42, 46, 41, 44, 76, 49, 31, 38, 38, 76, 46, 34, 41, 45, 31, 76, 42, 27, 45, 45, 35, 41, 40, 45, 76, 44, 31, 27, 30, 78, 76, 76, 76, 76, 76, 76, 76, 76, 23, 34, 35, 29, 34, 76, 51, 31, 46, 76, 45, 47, 44, 48, 35, 48, 31, 64, 76, 45, 46, 27, 39, 42, 31, 30, 76, 41, 40, 76, 46, 34, 31, 45, 31, 76, 38, 35, 32, 31, 38, 31, 45, 45, 76, 46, 34, 35, 40, 33, 45, 64, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 34, 27, 40, 30, 76, 46, 34, 27, 46, 76, 39, 41, 29, 37, 31, 30, 76, 46, 34, 31, 39, 64, 76, 27, 40, 30, 76, 46, 34, 31, 76, 34, 31, 27, 44, 46, 76, 46, 34, 27, 46, 76, 32, 31, 30, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 1, 40, 30, 76, 41, 40, 76, 46, 34, 31, 76, 42, 31, 30, 31, 45, 46, 27, 38, 64, 76, 46, 34, 31, 45, 31, 76, 49, 41, 44, 30, 45, 76, 27, 42, 42, 31, 27, 44, 65, 78, 76, 76, 76, 76, 76, 76, 76, 76, 13, 51, 76, 40, 27, 39, 31, 76, 35, 45, 76, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 76, 11, 35, 40, 33, 76, 41, 32, 76, 11, 35, 40, 33, 45, 66, 78, 76, 76, 76, 76, 76, 76, 76, 76, 12, 41, 41, 37, 76, 41, 40, 76, 39, 51, 76, 23, 41, 44, 37, 45, 64, 76, 51, 31, 76, 13, 35, 33, 34, 46, 51, 64, 76, 27, 40, 30, 76, 30, 31, 45, 42, 27, 35, 44, 67, 78, 76, 76, 76, 76, 76, 76, 76, 76, 14, 41, 46, 34, 35, 40, 33, 76, 28, 31, 45, 35, 30, 31, 76, 44, 31, 39, 27, 35, 40, 45, 63, 76, 18, 41, 47, 40, 30, 76, 46, 34, 31, 76, 30, 31, 29, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76, 15, 32, 76, 46, 34, 27, 46, 76, 29, 41, 38, 41, 45, 45, 27, 38, 76, 23, 44, 31, 29, 37, 64, 76, 28, 41, 47, 40, 30, 38, 31, 45, 45, 76, 27, 40, 30, 76, 28, 27, 44, 31, 78, 76, 76, 76, 76, 76, 76, 76, 76, 20, 34, 31, 76, 38, 41, 40, 31, 76, 27, 40, 30, 76, 38, 31, 48, 31, 38, 76, 45, 27, 40, 30, 45, 76, 45, 46, 44, 31, 46, 29, 34, 76, 32, 27, 44, 76, 27, 49, 27, 51, 78, 76, 76, 76, 76, 76, 76, 76, 76]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), torch.tensor([[0, 0, 0, 1069, 11]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) ) @require_torch def UpperCAmelCase ( self ) -> str: '''simple docstring''' import torch __snake_case : Optional[Any] = JukeboxTokenizer.from_pretrained("openai/jukebox-5b-lyrics" ) __snake_case : Tuple = tokenizer(**self.metas )["input_ids"] # fmt: off __snake_case : int = [ torch.tensor([[ 0, 0, 0, 1069, 11, -1, -1, -1, -1, 9, 77, 39, 31, 46, 77, 27, 77, 46, 44, 27, 48, 31, 38, 38, 31, 44, 77, 32, 44, 41, 39, 77, 27, 40, 77, 27, 40, 46, 35, 43, 47, 31, 77, 38, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 41, 77, 45, 27, 35, 30, 77, 72, 20, 49, 41, 77, 48, 27, 45, 46, 77, 27, 40, 30, 77, 46, 44, 47, 40, 37, 38, 31, 45, 45, 77, 38, 31, 33, 45, 77, 41, 32, 77, 45, 46, 41, 40, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 19, 46, 27, 40, 30, 77, 35, 40, 77, 46, 34, 31, 77, 30, 31, 45, 31, 44, 46, 63, 77, 63, 77, 63, 77, 63, 77, 14, 31, 27, 44, 77, 46, 34, 31, 39, 64, 77, 41, 40, 77, 46, 34, 31, 77, 45, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 8, 27, 38, 32, 77, 45, 47, 40, 37, 77, 27, 77, 45, 34, 27, 46, 46, 31, 44, 31, 30, 77, 48, 35, 45, 27, 33, 31, 77, 38, 35, 31, 45, 64, 77, 49, 34, 41, 45, 31, 77, 32, 44, 41, 49, 40, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 49, 44, 35, 40, 37, 38, 31, 30, 77, 38, 35, 42, 64, 77, 27, 40, 30, 77, 45, 40, 31, 31, 44, 77, 41, 32, 77, 29, 41, 38, 30, 77, 29, 41, 39, 39, 27, 40, 30, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 31, 38, 38, 77, 46, 34, 27, 46, 77, 35, 46, 45, 77, 45, 29, 47, 38, 42, 46, 41, 44, 77, 49, 31, 38, 38, 77, 46, 34, 41, 45, 31, 77, 42, 27, 45, 45, 35, 41, 40, 45, 77, 44, 31, 27, 30, 79, 77, 77, 77, 77, 77, 77, 77, 77, 23, 34, 35, 29, 34, 77, 51, 31, 46, 77, 45, 47, 44, 48, 35, 48, 31, 64, 77, 45, 46, 27, 39, 42, 31, 30, 77, 41, 40, 77, 46, 34, 31, 45, 31, 77, 38, 35, 32, 31, 38, 31, 45, 45, 77, 46, 34, 35, 40, 33, 45, 64, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 34, 27, 40, 30, 77, 46, 34, 27, 46, 77, 39, 41, 29, 37, 31, 30, 77, 46, 34, 31, 39, 64, 77, 27, 40, 30, 77, 46, 34, 31, 77, 34, 31, 27, 44, 46, 77, 46, 34, 27, 46, 77, 32, 31, 30, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 1, 40, 30, 77, 41, 40, 77, 46, 34, 31, 77, 42, 31, 30, 31, 45, 46, 27, 38, 64, 77, 46, 34, 31, 45, 31, 77, 49, 41, 44, 30, 45, 77, 27, 42, 42, 31, 27, 44, 65, 79, 77, 77, 77, 77, 77, 77, 77, 77, 13, 51, 77, 40, 27, 39, 31, 77, 35, 45, 77, 15, 52, 51, 39, 27, 40, 30, 35, 27, 45, 64, 77, 11, 35, 40, 33, 77, 41, 32, 77, 11, 35, 40, 33, 45, 66, 79, 77, 77, 77, 77, 77, 77, 77, 77, 12, 41, 41, 37, 77, 41, 40, 77, 39, 51, 77, 23, 41, 44, 37, 45, 64, 77, 51, 31, 77, 13, 35, 33, 34, 46, 51, 64, 77, 27, 40, 30, 77, 30, 31, 45, 42, 27, 35, 44, 67, 79, 77, 77, 77, 77, 77, 77, 77, 77, 14, 41, 46, 34, 35, 40, 33, 77, 28, 31, 45, 35, 30, 31, 77, 44, 31, 39, 27, 35, 40, 45, 63, 77, 18, 41, 47, 40, 30, 77, 46, 34, 31, 77, 30, 31, 29, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77, 15, 32, 77, 46, 34, 27, 46, 77, 29, 41, 38, 41, 45, 45, 27, 38, 77, 23, 44, 31, 29, 37, 64, 77, 28, 41, 47, 40, 30, 38, 31, 45, 45, 77, 27, 40, 30, 77, 28, 27, 44, 31, 79, 77, 77, 77, 77, 77, 77, 77, 77, 20, 34, 31, 77, 38, 41, 40, 31, 77, 27, 40, 30, 77, 38, 31, 48, 31, 38, 77, 45, 27, 40, 30, 45, 77, 45, 46, 44, 31, 46, 29, 34, 77, 32, 27, 44, 77, 27, 49, 27, 51, 79, 77, 77, 77, 77, 77, 77, 77, 77]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), torch.tensor([[0, 0, 0, 1069, 11, -1, -1, -1, -1]] ), ] # fmt: on self.assertTrue(torch.allclose(tokens[0] , EXPECTED_OUTPUT[0] ) ) self.assertTrue(torch.allclose(tokens[1] , EXPECTED_OUTPUT[1] ) ) self.assertTrue(torch.allclose(tokens[2] , EXPECTED_OUTPUT[2] ) )
326
1
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = {'''vocab_file''': '''vocab.json'''} _lowerCAmelCase : List[Any] = { '''vocab_file''': { '''mgp-str''': '''https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json''', } } _lowerCAmelCase : Union[str, Any] = {'''mgp-str''': 27} class __magic_name__ ( _UpperCAmelCase ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self :Union[str, Any] , snake_case :str , snake_case :str="[GO]" , snake_case :Optional[Any]="[GO]" , snake_case :Optional[Any]="[s]" , snake_case :List[Any]="[GO]" , **snake_case :List[Any] ): '''simple docstring''' super().__init__( unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding="utf-8" ) as vocab_handle: A_ : Dict = json.load(SCREAMING_SNAKE_CASE_ ) A_ : Optional[int] = {v: k for k, v in self.vocab.items()} @property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return len(self.vocab ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return dict(self.vocab , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :List[Any] ): '''simple docstring''' A_ : Dict = [] for s in text: char_tokens.extend(SCREAMING_SNAKE_CASE_ ) return char_tokens def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :Optional[int] ): '''simple docstring''' return self.vocab.get(SCREAMING_SNAKE_CASE_ , self.vocab.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Any ): '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( self :Any , snake_case :Optional[Any] , snake_case :List[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error("Vocabulary path ({}) should be a directory".format(SCREAMING_SNAKE_CASE_ ) ) return A_ : str = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + "\n" ) return (vocab_file,)
355
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Dict = { '''microsoft/git-base''': '''https://huggingface.co/microsoft/git-base/resolve/main/config.json''', } class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''git_vision_model''' def __init__( self :Union[str, Any] , snake_case :str=768 , snake_case :str=3_072 , snake_case :Optional[Any]=12 , snake_case :Any=12 , snake_case :Dict=3 , snake_case :Union[str, Any]=224 , snake_case :Optional[int]=16 , snake_case :Union[str, Any]="quick_gelu" , snake_case :Optional[int]=1e-5 , snake_case :List[str]=0.0 , snake_case :Any=0.02 , **snake_case :str , ): '''simple docstring''' super().__init__(**snake_case ) A_ : Optional[int] = hidden_size A_ : Optional[Any] = intermediate_size A_ : Dict = num_hidden_layers A_ : int = num_attention_heads A_ : int = num_channels A_ : Tuple = patch_size A_ : Dict = image_size A_ : Optional[int] = initializer_range A_ : str = attention_dropout A_ : Tuple = layer_norm_eps A_ : List[str] = hidden_act @classmethod def SCREAMING_SNAKE_CASE ( cls :Any , snake_case :Union[str, os.PathLike] , **snake_case :List[str] ): '''simple docstring''' cls._set_token_in_kwargs(snake_case ) A_ , A_ : Optional[Any] = cls.get_config_dict(snake_case , **snake_case ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": A_ : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( f"You are using a model of type {config_dict['model_type']} to instantiate a model of type " f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(snake_case , **snake_case ) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = '''git''' def __init__( self :List[str] , snake_case :Any=None , snake_case :int=30_522 , snake_case :Dict=768 , snake_case :List[Any]=6 , snake_case :Any=12 , snake_case :Any=3_072 , snake_case :List[Any]="gelu" , snake_case :Union[str, Any]=0.1 , snake_case :Any=0.1 , snake_case :Optional[int]=1_024 , snake_case :str=0.02 , snake_case :int=1e-12 , snake_case :Optional[int]=0 , snake_case :int="absolute" , snake_case :Tuple=True , snake_case :List[str]=False , snake_case :List[str]=101 , snake_case :int=102 , snake_case :str=None , **snake_case :List[Any] , ): '''simple docstring''' super().__init__(bos_token_id=snake_case , eos_token_id=snake_case , pad_token_id=snake_case , **snake_case ) if vision_config is None: A_ : Union[str, Any] = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) A_ : List[Any] = GitVisionConfig(**snake_case ) A_ : Optional[int] = vocab_size A_ : List[str] = hidden_size A_ : int = num_hidden_layers A_ : Union[str, Any] = num_attention_heads A_ : List[str] = hidden_act A_ : Dict = intermediate_size A_ : Tuple = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = max_position_embeddings A_ : List[str] = initializer_range A_ : int = layer_norm_eps A_ : Dict = position_embedding_type A_ : str = use_cache A_ : str = tie_word_embeddings A_ : Optional[Any] = num_image_with_embedding A_ : int = bos_token_id A_ : Optional[int] = eos_token_id def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Tuple = copy.deepcopy(self.__dict__ ) A_ : Optional[int] = self.vision_config.to_dict() A_ : Optional[Any] = self.__class__.model_type return output
70
0
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Audio, Features, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class A__(__SCREAMING_SNAKE_CASE ): """simple docstring""" _A : str = field(default='''automatic-speech-recognition''', metadata={'''include_in_asdict_even_if_is_default''': True} ) _A : ClassVar[Features] = Features({'''audio''': Audio()} ) _A : ClassVar[Features] = Features({'''transcription''': Value('''string''' )} ) _A : str = "audio" _A : str = "transcription" def UpperCamelCase__ ( self , _lowercase ) -> int: if self.audio_column not in features: raise ValueError(F'''Column {self.audio_column} is not present in features.''' ) if not isinstance(features[self.audio_column] , _lowercase ): raise ValueError(F'''Column {self.audio_column} is not an Audio type.''' ) a_ : Optional[Any] = copy.deepcopy(self ) a_ : List[Any] = self.input_schema.copy() a_ : Tuple = features[self.audio_column] a_ : int = input_schema return task_template @property def UpperCamelCase__ ( self ) -> Optional[int]: return {self.audio_column: "audio", self.transcription_column: "transcription"}
248
_lowerCamelCase ={ "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355818, } def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCamelCase : Dict = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {", ".join(lowerCamelCase )}''' ) raise ValueError(lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
287
0
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { 'asapp/sew-d-tiny-100k': 'https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json', # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class lowercase__ ( __lowerCamelCase ): '''simple docstring''' a : List[str] = "sew-d" def __init__( self, __magic_name__=32, __magic_name__=768, __magic_name__=12, __magic_name__=12, __magic_name__=3072, __magic_name__=2, __magic_name__=512, __magic_name__=256, __magic_name__=True, __magic_name__=True, __magic_name__=("p2c", "c2p"), __magic_name__="layer_norm", __magic_name__="gelu_python", __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.1, __magic_name__=0.0, __magic_name__=0.1, __magic_name__=0.02, __magic_name__=1E-7, __magic_name__=1E-5, __magic_name__="group", __magic_name__="gelu", __magic_name__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512), __magic_name__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1), __magic_name__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1), __magic_name__=False, __magic_name__=128, __magic_name__=16, __magic_name__=True, __magic_name__=0.05, __magic_name__=10, __magic_name__=2, __magic_name__=0.0, __magic_name__=10, __magic_name__=0, __magic_name__="mean", __magic_name__=False, __magic_name__=False, __magic_name__=256, __magic_name__=0, __magic_name__=1, __magic_name__=2, **__magic_name__, ) -> Dict: """simple docstring""" super().__init__(**__magic_name__, pad_token_id=__magic_name__, bos_token_id=__magic_name__, eos_token_id=__magic_name__ ) UpperCamelCase__ : Optional[Any] = hidden_size UpperCamelCase__ : str = feat_extract_norm UpperCamelCase__ : Union[str, Any] = feat_extract_activation UpperCamelCase__ : Any = list(__magic_name__ ) UpperCamelCase__ : Optional[Any] = list(__magic_name__ ) UpperCamelCase__ : Optional[Any] = list(__magic_name__ ) UpperCamelCase__ : Any = conv_bias UpperCamelCase__ : str = num_conv_pos_embeddings UpperCamelCase__ : int = num_conv_pos_embedding_groups UpperCamelCase__ : Union[str, Any] = len(self.conv_dim ) UpperCamelCase__ : Union[str, Any] = num_hidden_layers UpperCamelCase__ : Any = intermediate_size UpperCamelCase__ : List[Any] = squeeze_factor UpperCamelCase__ : int = max_position_embeddings UpperCamelCase__ : List[str] = position_buckets UpperCamelCase__ : int = share_att_key UpperCamelCase__ : Any = relative_attention UpperCamelCase__ : Union[str, Any] = norm_rel_ebd UpperCamelCase__ : Tuple = list(__magic_name__ ) UpperCamelCase__ : str = hidden_act UpperCamelCase__ : Optional[Any] = num_attention_heads UpperCamelCase__ : Any = hidden_dropout UpperCamelCase__ : Optional[int] = attention_dropout UpperCamelCase__ : str = activation_dropout UpperCamelCase__ : int = feat_proj_dropout UpperCamelCase__ : Dict = final_dropout UpperCamelCase__ : Optional[Any] = layer_norm_eps UpperCamelCase__ : int = feature_layer_norm_eps UpperCamelCase__ : str = initializer_range UpperCamelCase__ : Union[str, Any] = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect.''' '''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,''' f"but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)" f"= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCamelCase__ : List[Any] = apply_spec_augment UpperCamelCase__ : Union[str, Any] = mask_time_prob UpperCamelCase__ : Any = mask_time_length UpperCamelCase__ : Optional[int] = mask_time_min_masks UpperCamelCase__ : List[Any] = mask_feature_prob UpperCamelCase__ : str = mask_feature_length UpperCamelCase__ : Optional[int] = mask_feature_min_masks # ctc loss UpperCamelCase__ : int = ctc_loss_reduction UpperCamelCase__ : Tuple = ctc_zero_infinity # sequence classification UpperCamelCase__ : Tuple = use_weighted_layer_sum UpperCamelCase__ : Optional[int] = classifier_proj_size @property def UpperCamelCase__ ( self ) -> Union[str, Any]: """simple docstring""" return functools.reduce(operator.mul, self.conv_stride, 1 )
360
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ = { 'configuration_xlm_roberta': [ 'XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XLMRobertaConfig', 'XLMRobertaOnnxConfig', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['XLMRobertaTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['XLMRobertaTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'XLMRobertaForCausalLM', 'XLMRobertaForMaskedLM', 'XLMRobertaForMultipleChoice', 'XLMRobertaForQuestionAnswering', 'XLMRobertaForSequenceClassification', 'XLMRobertaForTokenClassification', 'XLMRobertaModel', 'XLMRobertaPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXLMRobertaForCausalLM', 'TFXLMRobertaForMaskedLM', 'TFXLMRobertaForMultipleChoice', 'TFXLMRobertaForQuestionAnswering', 'TFXLMRobertaForSequenceClassification', 'TFXLMRobertaForTokenClassification', 'TFXLMRobertaModel', 'TFXLMRobertaPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ 'FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST', 'FlaxXLMRobertaForMaskedLM', 'FlaxXLMRobertaForCausalLM', 'FlaxXLMRobertaForMultipleChoice', 'FlaxXLMRobertaForQuestionAnswering', 'FlaxXLMRobertaForSequenceClassification', 'FlaxXLMRobertaForTokenClassification', 'FlaxXLMRobertaModel', 'FlaxXLMRobertaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
247
0
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json""", } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : str = '''mvp''' lowerCamelCase : str = ['''past_key_values'''] lowerCamelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : List[str] , UpperCAmelCase__ : List[Any]=5_0_2_6_7 , UpperCAmelCase__ : Union[str, Any]=1_0_2_4 , UpperCAmelCase__ : Union[str, Any]=1_2 , UpperCAmelCase__ : Optional[Any]=4_0_9_6 , UpperCAmelCase__ : str=1_6 , UpperCAmelCase__ : List[str]=1_2 , UpperCAmelCase__ : int=4_0_9_6 , UpperCAmelCase__ : List[Any]=1_6 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Union[str, Any]=0.0 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Optional[Any]=1_0_2_4 , UpperCAmelCase__ : Union[str, Any]=0.1 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : str=0.02 , UpperCAmelCase__ : Optional[int]=0.0 , UpperCAmelCase__ : str=False , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Tuple=1 , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : List[str]=2 , UpperCAmelCase__ : Optional[int]=False , UpperCAmelCase__ : Union[str, Any]=1_0_0 , UpperCAmelCase__ : Tuple=8_0_0 , **UpperCAmelCase__ : Optional[int] , ) -> List[str]: lowerCAmelCase = vocab_size lowerCAmelCase = max_position_embeddings lowerCAmelCase = d_model lowerCAmelCase = encoder_ffn_dim lowerCAmelCase = encoder_layers lowerCAmelCase = encoder_attention_heads lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = encoder_layerdrop lowerCAmelCase = decoder_layerdrop lowerCAmelCase = classifier_dropout lowerCAmelCase = use_cache lowerCAmelCase = encoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = use_prompt lowerCAmelCase = prompt_length lowerCAmelCase = prompt_mid_dim super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , is_encoder_decoder=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , forced_eos_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , UpperCAmelCase__ ): lowerCAmelCase = self.bos_token_id warnings.warn( F'''Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ''' 'The config can simply be saved and uploaded again to be fixed.' )
4
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case =logging.get_logger(__name__) __snake_case ={ """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json""" ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : Union[str, Any] = '''speech_to_text_2''' lowerCamelCase : Any = ['''past_key_values'''] lowerCamelCase : Optional[Any] = {'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCAmelCase__ : Optional[Any]=1_0_0_0_0 , UpperCAmelCase__ : int=6 , UpperCAmelCase__ : Optional[Any]=2_0_4_8 , UpperCAmelCase__ : Union[str, Any]=4 , UpperCAmelCase__ : List[Any]=0.0 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : str="relu" , UpperCAmelCase__ : Any=2_5_6 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Any=0.0 , UpperCAmelCase__ : Tuple=0.0 , UpperCAmelCase__ : List[Any]=0.02 , UpperCAmelCase__ : List[Any]=2 , UpperCAmelCase__ : str=True , UpperCAmelCase__ : List[str]=1 , UpperCAmelCase__ : Any=0 , UpperCAmelCase__ : Dict=2 , UpperCAmelCase__ : int=1_0_2_4 , **UpperCAmelCase__ : Optional[Any] , ) -> Dict: lowerCAmelCase = vocab_size lowerCAmelCase = d_model lowerCAmelCase = decoder_ffn_dim lowerCAmelCase = decoder_layers lowerCAmelCase = decoder_attention_heads lowerCAmelCase = dropout lowerCAmelCase = attention_dropout lowerCAmelCase = activation_dropout lowerCAmelCase = activation_function lowerCAmelCase = init_std lowerCAmelCase = decoder_layerdrop lowerCAmelCase = use_cache lowerCAmelCase = decoder_layers lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase = max_target_positions super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , decoder_start_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , )
4
1
import sys import webbrowser import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": print("""Googling.....""") SCREAMING_SNAKE_CASE__ = """https://www.google.com/search?q=""" + """ """.join(sys.argv[1:]) SCREAMING_SNAKE_CASE__ = requests.get(url, headers={"""UserAgent""": UserAgent().random}) # res.raise_for_status() with open("""project1a.html""", """wb""") as out_file: # only for knowing the class for data in res.iter_content(1_0_0_0_0): out_file.write(data) SCREAMING_SNAKE_CASE__ = BeautifulSoup(res.text, """html.parser""") SCREAMING_SNAKE_CASE__ = list(soup.select(""".eZt8xd"""))[:5] print(len(links)) for link in links: if link.text == "Maps": webbrowser.open(link.get("""href""")) else: webbrowser.open(f"""https://google.com{link.get('href')}""")
297
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} SCREAMING_SNAKE_CASE__ = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } SCREAMING_SNAKE_CASE__ = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ["input_ids", "attention_mask"] lowerCAmelCase__ = GPTaTokenizer def __init__( self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase="<|endoftext|>" , UpperCAmelCase=False , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' super().__init__( UpperCAmelCase , UpperCAmelCase , tokenizer_file=UpperCAmelCase , unk_token=UpperCAmelCase , bos_token=UpperCAmelCase , eos_token=UpperCAmelCase , add_prefix_space=UpperCAmelCase , **UpperCAmelCase , ) lowercase_ = kwargs.pop("add_bos_token" , UpperCAmelCase ) lowercase_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , UpperCAmelCase ) != add_prefix_space: lowercase_ = getattr(UpperCAmelCase , pre_tok_state.pop("type" ) ) lowercase_ = add_prefix_space lowercase_ = pre_tok_class(**UpperCAmelCase ) lowercase_ = add_prefix_space def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , *UpperCAmelCase , **UpperCAmelCase ) -> BatchEncoding: '''simple docstring''' lowercase_ = kwargs.get("is_split_into_words" , UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*UpperCAmelCase , **UpperCAmelCase ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None ) -> Tuple[str]: '''simple docstring''' lowercase_ = self._tokenizer.model.save(UpperCAmelCase , name=UpperCAmelCase ) return tuple(UpperCAmelCase ) def A__ ( self , UpperCAmelCase ) -> List[int]: '''simple docstring''' lowercase_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [self.eos_token_id] ) if len(UpperCAmelCase ) > self.model_max_length: lowercase_ = input_ids[-self.model_max_length :] return input_ids
297
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class __lowerCAmelCase ( unittest.TestCase ): def UpperCamelCase ( self : List[Any] ): """simple docstring""" _UpperCAmelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _UpperCAmelCase = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(snake_case__ ) , torch_builtin(snake_case__ ) ) ) self.assertFalse(torch.allclose(gelu_python(snake_case__ ) , gelu_new(snake_case__ ) ) ) def UpperCamelCase ( self : str ): """simple docstring""" _UpperCAmelCase = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) _UpperCAmelCase = get_activation("gelu" ) _UpperCAmelCase = get_activation("gelu_10" ) _UpperCAmelCase = torch_builtin(snake_case__ ) _UpperCAmelCase = geluaa(snake_case__ ) _UpperCAmelCase = torch.where(y_gelu_aa < 10.0 , 1 , 0 ) self.assertTrue(torch.max(snake_case__ ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def UpperCamelCase ( self : Any ): """simple docstring""" get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(snake_case__ ): get_activation("bogus" ) with self.assertRaises(snake_case__ ): get_activation(snake_case__ ) def UpperCamelCase ( self : Any ): """simple docstring""" _UpperCAmelCase = get_activation("gelu" ) _UpperCAmelCase = 1 _UpperCAmelCase = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(snake_case__ ): _UpperCAmelCase = acta.a
133
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_=True , snake_case_="pt" ): '''simple docstring''' _UpperCAmelCase = {"add_prefix_space": True} if isinstance(snake_case_ , snake_case_ ) and not line.startswith(" " ) else {} _UpperCAmelCase = padding_side return tokenizer( [line] , max_length=snake_case_ , padding="max_length" if pad_to_max_length else None , truncation=snake_case_ , return_tensors=snake_case_ , add_special_tokens=snake_case_ , **snake_case_ , ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=None , ): '''simple docstring''' _UpperCAmelCase = input_ids.ne(snake_case_ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( UpperCAmelCase__ ): def __init__( self : Dict , snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Union[str, Any] , snake_case__ : List[str]="train" , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=None , snake_case__ : int=None , snake_case__ : List[str]="" , ): """simple docstring""" super().__init__() _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".source" ) _UpperCAmelCase = Path(snake_case__ ).joinpath(type_path + ".target" ) _UpperCAmelCase = self.get_char_lens(self.src_file ) _UpperCAmelCase = max_source_length _UpperCAmelCase = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" _UpperCAmelCase = tokenizer _UpperCAmelCase = prefix if n_obs is not None: _UpperCAmelCase = self.src_lens[:n_obs] _UpperCAmelCase = src_lang _UpperCAmelCase = tgt_lang def __len__( self : Optional[int] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : Optional[Any] , snake_case__ : str ): """simple docstring""" _UpperCAmelCase = index + 1 # linecache starts at 1 _UpperCAmelCase = self.prefix + linecache.getline(str(self.src_file ) , snake_case__ ).rstrip("\n" ) _UpperCAmelCase = linecache.getline(str(self.tgt_file ) , snake_case__ ).rstrip("\n" ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , snake_case__ ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right _UpperCAmelCase = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer ) _UpperCAmelCase = self.tokenizer.generator if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_source_length , "right" ) _UpperCAmelCase = encode_line(snake_case__ , snake_case__ , self.max_target_length , "right" ) _UpperCAmelCase = source_inputs["input_ids"].squeeze() _UpperCAmelCase = target_inputs["input_ids"].squeeze() _UpperCAmelCase = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : Optional[Any] ): """simple docstring""" return [len(snake_case__ ) for x in Path(snake_case__ ).open().readlines()] def UpperCamelCase ( self : Any , snake_case__ : List[Any] ): """simple docstring""" _UpperCAmelCase = torch.stack([x["input_ids"] for x in batch] ) _UpperCAmelCase = torch.stack([x["attention_mask"] for x in batch] ) _UpperCAmelCase = torch.stack([x["decoder_input_ids"] for x in batch] ) _UpperCAmelCase = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , snake_case__ ) else self.tokenizer.pad_token_id ) _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ ) _UpperCAmelCase , _UpperCAmelCase = trim_batch(snake_case__ , snake_case__ , attention_mask=snake_case__ ) _UpperCAmelCase = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase_ : Dict = getLogger(__name__) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return list(itertools.chain.from_iterable(snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = get_git_info() save_json(snake_case_ , os.path.join(snake_case_ , "git_log.json" ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_=4 , **snake_case_ ): '''simple docstring''' with open(snake_case_ , "w" ) as f: json.dump(snake_case_ , snake_case_ , indent=snake_case_ , **snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' with open(snake_case_ ) as f: return json.load(snake_case_ ) def __SCREAMING_SNAKE_CASE ( ): '''simple docstring''' _UpperCAmelCase = git.Repo(search_parent_directories=snake_case_ ) _UpperCAmelCase = { "repo_id": str(snake_case_ ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return list(map(snake_case_ , snake_case_ ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' with open(snake_case_ , "wb" ) as f: return pickle.dump(snake_case_ , snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' def remove_articles(snake_case_ ): return re.sub(R"\b(a|an|the)\b" , " " , snake_case_ ) def white_space_fix(snake_case_ ): return " ".join(text.split() ) def remove_punc(snake_case_ ): _UpperCAmelCase = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(snake_case_ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(snake_case_ ) ) ) ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = normalize_answer(snake_case_ ).split() _UpperCAmelCase = Counter(snake_case_ ) & Counter(snake_case_ ) _UpperCAmelCase = sum(common.values() ) if num_same == 0: return 0 _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = 1.0 * num_same / len(snake_case_ ) _UpperCAmelCase = (2 * precision * recall) / (precision + recall) return fa def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' return normalize_answer(snake_case_ ) == normalize_answer(snake_case_ ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ ): '''simple docstring''' assert len(snake_case_ ) == len(snake_case_ ) _UpperCAmelCase = 0 for hypo, pred in zip(snake_case_ , snake_case_ ): em += exact_match_score(snake_case_ , snake_case_ ) if len(snake_case_ ) > 0: em /= len(snake_case_ ) return {"em": em} def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' return model_prefix.startswith("rag" ) def __SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' _UpperCAmelCase = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead _UpperCAmelCase = "dropout_rate" for p in extra_params: if getattr(snake_case_ , snake_case_ , snake_case_ ): if not hasattr(snake_case_ , snake_case_ ) and not hasattr(snake_case_ , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(snake_case_ ) ) delattr(snake_case_ , snake_case_ ) continue _UpperCAmelCase = p if hasattr(snake_case_ , snake_case_ ) else equivalent_param[p] setattr(snake_case_ , snake_case_ , getattr(snake_case_ , snake_case_ ) ) delattr(snake_case_ , snake_case_ ) return hparams, config
133
1
from __future__ import annotations from math import pi def __A (__A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
354
from timeit import timeit def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: number &= number - 1 result += 1 return result def A (__A : int ) -> int: """simple docstring""" if number < 0: raise ValueError('''the value of input must not be negative''' ) UpperCAmelCase_ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def A () -> None: """simple docstring""" def do_benchmark(__A : int ) -> None: UpperCAmelCase_ = '''import __main__ as z''' print(F"""Benchmark when {number = }:""" ) print(F"""{get_set_bits_count_using_modulo_operator(__A ) = }""" ) UpperCAmelCase_ = timeit('''z.get_set_bits_count_using_modulo_operator(25)''' , setup=__A ) print(F"""timeit() runs in {timing} seconds""" ) print(F"""{get_set_bits_count_using_brian_kernighans_algorithm(__A ) = }""" ) UpperCAmelCase_ = timeit( '''z.get_set_bits_count_using_brian_kernighans_algorithm(25)''' , setup=__A , ) print(F"""timeit() runs in {timing} seconds""" ) for number in (25, 37, 58, 0): do_benchmark(__A ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
7
0
"""simple docstring""" from __future__ import annotations from typing import Any def lowercase_ ( _snake_case ): create_state_space_tree(_snake_case ,[] ,0 ) def lowercase_ ( _snake_case ,_snake_case ,_snake_case ): if index == len(_snake_case ): print(_snake_case ) return create_state_space_tree(_snake_case ,_snake_case ,index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(_snake_case ,_snake_case ,index + 1 ) current_subsequence.pop() if __name__ == "__main__": UpperCAmelCase__ : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
25
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class UpperCAmelCase : def __init__( self : str , __snake_case : Any ) -> str: _lowerCAmelCase = str(id_ ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = [] _lowerCAmelCase = {} # {vertex:distance} def __lt__( self : List[str] , __snake_case : Union[str, Any] ) -> Any: return self.key < other.key def __repr__( self : Optional[Any] ) -> Optional[Any]: return self.id def lowercase__ ( self : Union[str, Any] , __snake_case : Tuple ) -> Optional[Any]: self.neighbors.append(__snake_case ) def lowercase__ ( self : Tuple , __snake_case : List[str] , __snake_case : Tuple ) -> Any: _lowerCAmelCase = weight def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , lowerCAmelCase ) graph[b - 1].add_edge(graph[a - 1] , lowerCAmelCase ) def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = graph[:] while q: _lowerCAmelCase = min(lowerCAmelCase ) q.remove(lowerCAmelCase ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] for i in range(1 , len(lowerCAmelCase ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" for u in graph: _lowerCAmelCase = math.inf _lowerCAmelCase = None _lowerCAmelCase = 0 _lowerCAmelCase = list(lowerCAmelCase ) hq.heapify(lowerCAmelCase ) while h: _lowerCAmelCase = hq.heappop(lowerCAmelCase ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _lowerCAmelCase = u _lowerCAmelCase = u.edges[v.id] hq.heapify(lowerCAmelCase ) for i in range(1 , len(lowerCAmelCase ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase__ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
70
0
'''simple docstring''' import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' _lowercase : str = (DDPMScheduler,) def _lowercase ( self , **_lowercase ): """simple docstring""" _lowerCAmelCase = { """num_train_timesteps""": 1_000, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """variance_type""": """fixed_small""", """clip_sample""": True, } config.update(**_lowercase ) return config def _lowercase ( self ): """simple docstring""" for timesteps in [1, 5, 100, 1_000]: self.check_over_configs(num_train_timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=_lowercase , beta_end=_lowercase ) def _lowercase ( self ): """simple docstring""" for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=_lowercase ) def _lowercase ( self ): """simple docstring""" for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowercase ) def _lowercase ( self ): """simple docstring""" self.check_over_configs(thresholding=_lowercase ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=_lowercase , prediction_type=_lowercase , sample_max_value=_lowercase , ) def _lowercase ( self ): """simple docstring""" for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=_lowercase ) def _lowercase ( self ): """simple docstring""" for t in [0, 500, 999]: self.check_over_forward(time_step=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.02 ) ) < 1e-5 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config(prediction_type="""v_prediction""" ) _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = len(_lowercase ) _lowerCAmelCase = self.dummy_model() _lowerCAmelCase = self.dummy_sample_deter _lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(_lowercase ) ): # 1. predict noise residual _lowerCAmelCase = model(_lowercase , _lowercase ) # 2. predict previous mean of sample x_t-1 _lowerCAmelCase = scheduler.step(_lowercase , _lowercase , _lowercase , generator=_lowercase ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCAmelCase = pred_prev_sample _lowerCAmelCase = torch.sum(torch.abs(_lowercase ) ) _lowerCAmelCase = torch.mean(torch.abs(_lowercase ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=_lowercase ) _lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(_lowercase ): if i == len(_lowercase ) - 1: _lowerCAmelCase = -1 else: _lowerCAmelCase = timesteps[i + 1] _lowerCAmelCase = scheduler.previous_timestep(_lowercase ) _lowerCAmelCase = prev_t.item() self.assertEqual(_lowercase , _lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(_lowercase , msg="""`custom_timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [100, 87, 50, 1, 0] _lowerCAmelCase = len(_lowercase ) with self.assertRaises(_lowercase , msg="""Can only pass one of `num_inference_steps` or `custom_timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=_lowercase , timesteps=_lowercase ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.scheduler_classes[0] _lowerCAmelCase = self.get_scheduler_config() _lowerCAmelCase = scheduler_class(**_lowercase ) _lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( _lowercase , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=_lowercase )
229
'''simple docstring''' # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position _lowercase = """2.13.1""" import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse("""3.7"""): raise ImportWarning( """To use `datasets`, Python>=3.7 is required, and the current version of Python doesn't match this condition.""" ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( """To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn't match this condition.\n""" """If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.""" ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip _lowercase = concatenate_datasets _lowercase = DownloadConfig _lowercase = DownloadManager _lowercase = DownloadMode _lowercase = DownloadConfig _lowercase = DownloadMode _lowercase = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
229
1
import random def lowerCamelCase_ ( _a , _a ): """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Tuple = [], [], [] for element in data: if element < pivot: less.append(lowercase_ ) elif element > pivot: greater.append(lowercase_ ) else: equal.append(lowercase_ ) return less, equal, greater def lowerCamelCase_ ( _a , _a ): """simple docstring""" if index >= len(lowercase_ ) or index < 0: return None lowerCAmelCase__ : Optional[int] = items[random.randint(0 , len(lowercase_ ) - 1 )] lowerCAmelCase__ : int = 0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = _partition(lowercase_ , lowercase_ ) lowerCAmelCase__ : Optional[Any] = len(lowercase_ ) lowerCAmelCase__ : Dict = len(lowercase_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(lowercase_ , lowercase_ ) # must be in larger else: return quick_select(lowercase_ , index - (m + count) )
131
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> list[int]: if length <= 0 or not isinstance(lowercase_ , lowercase_ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(lowercase_ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
247
0
from collections.abc import Generator def A ( ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : int = 0, 1 while True: _lowerCAmelCase , _lowerCAmelCase : List[str] = b, a + b yield b def A ( _lowerCamelCase = 1_000 ): '''simple docstring''' _lowerCAmelCase : Dict = 1 _lowerCAmelCase : Any = fibonacci_generator() while len(str(next(_lowerCamelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
300
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): def __init__( self, *__a, **__a): '''simple docstring''' warnings.warn( "The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use VideoMAEImageProcessor instead.", __a, ) super().__init__(*__a, **__a)
300
1
'''simple docstring''' from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class a__: lowercase__ = 42 lowercase__ = None lowercase__ = None lowerCAmelCase: Optional[Any] = namedtuple('CoinsDistribResult', 'moves excess') def lowerCamelCase__ ( _A ): if root is None: return 0 # Validation def count_nodes(_A ) -> int: if node is None: return 0 return count_nodes(node.left ) + count_nodes(node.right ) + 1 def count_coins(_A ) -> int: if node is None: return 0 return count_coins(node.left ) + count_coins(node.right ) + node.data if count_nodes(_A ) != count_coins(_A ): raise ValueError('The nodes number should be same as the number of coins' ) # Main calculation def get_distrib(_A ) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1 ) a , a : str = get_distrib(node.left ) a , a : int = get_distrib(node.right ) a : Dict = 1 - left_distrib_excess a : List[Any] = 1 - right_distrib_excess a : int = ( left_distrib_moves + right_distrib_moves + abs(_A ) + abs(_A ) ) a : str = node.data - coins_to_left - coins_to_right return CoinsDistribResult(_A , _A ) return get_distrib(_A )[0] if __name__ == "__main__": import doctest doctest.testmod()
297
'''simple docstring''' from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class a__( nn.Module ): def __init__( self : Any , __snake_case : int = 16 , __snake_case : int = 88 , __snake_case : Optional[int] = None , __snake_case : int = 1 , __snake_case : float = 0.0 , __snake_case : int = 32 , __snake_case : Optional[int] = None , __snake_case : bool = False , __snake_case : Optional[int] = None , __snake_case : Optional[int] = None , __snake_case : str = "geglu" , __snake_case : Optional[int] = None , ): super().__init__() a : Optional[int] = nn.ModuleList( [ TransformeraDModel( num_attention_heads=__snake_case , attention_head_dim=__snake_case , in_channels=__snake_case , num_layers=__snake_case , dropout=__snake_case , norm_num_groups=__snake_case , cross_attention_dim=__snake_case , attention_bias=__snake_case , sample_size=__snake_case , num_vector_embeds=__snake_case , activation_fn=__snake_case , num_embeds_ada_norm=__snake_case , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference a : Union[str, Any] = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` a : Tuple = [77, 2_57] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` a : Any = [1, 0] def lowercase_ ( self : str , __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : Optional[Any]=None , __snake_case : int=None , __snake_case : Dict=None , __snake_case : bool = True , ): a : Dict = hidden_states a : Tuple = [] a : Optional[int] = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens a : Union[str, Any] = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] a : Tuple = self.transformer_index_for_condition[i] a : Union[str, Any] = self.transformers[transformer_index]( __snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case , cross_attention_kwargs=__snake_case , return_dict=__snake_case , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] a : Optional[Any] = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) a : int = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=__snake_case )
297
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : int = logging.get_logger(__name__) UpperCamelCase : int = { """google/switch-base-8""": """https://huggingface.co/google/switch-base-8/blob/main/config.json""", } class UpperCamelCase ( __lowerCAmelCase ): """simple docstring""" A : Optional[Any] = '''switch_transformers''' A : str = ['''past_key_values'''] A : List[str] = {'''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers'''} def __init__( self : Any , UpperCAmelCase_ : Optional[int]=3_2_1_2_8 , UpperCAmelCase_ : Dict=7_6_8 , UpperCAmelCase_ : List[Any]=6_4 , UpperCAmelCase_ : List[str]=2_0_4_8 , UpperCAmelCase_ : Any=6_4 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Dict=1_2 , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : str=1_2 , UpperCAmelCase_ : Optional[Any]=8 , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[Any]=0.01 , UpperCAmelCase_ : Optional[int]="float32" , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[Any]=3_2 , UpperCAmelCase_ : Dict=1_2_8 , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : List[str]=1e-6 , UpperCAmelCase_ : Optional[int]=0.0_01 , UpperCAmelCase_ : int=0.0_01 , UpperCAmelCase_ : List[str]=1.0 , UpperCAmelCase_ : Tuple="relu" , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : int=0 , UpperCAmelCase_ : int=1 , **UpperCAmelCase_ : int , ): """simple docstring""" a : Any = vocab_size a : Any = d_model a : Dict = d_kv a : Optional[Any] = d_ff a : Dict = num_sparse_encoder_layers a : Optional[Any] = num_layers a : List[str] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry a : Tuple = num_sparse_decoder_layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_encoder_layers > 0: a : Optional[Any] = self.num_layers // self.num_sparse_encoder_layers else: a : Union[str, Any] = self.num_layers # HACK: this will create 0 sparse layers # This tells us, each how many encoder layer we'll have to set a sparse layer. if self.num_sparse_decoder_layers > 0: a : Optional[Any] = self.num_decoder_layers // self.num_sparse_decoder_layers else: a : List[Any] = self.num_decoder_layers # HACK: this will create 0 sparse layers a : Any = num_heads a : Tuple = num_experts a : Optional[Any] = expert_capacity a : int = router_bias a : Union[str, Any] = router_jitter_noise if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of \'float32\', \'float16\' or \'bfloat16\', got {router_dtype}""") a : Dict = router_dtype a : Optional[int] = router_ignore_padding_tokens a : Union[str, Any] = relative_attention_num_buckets a : List[str] = relative_attention_max_distance a : Tuple = dropout_rate a : Tuple = layer_norm_epsilon a : Any = initializer_factor a : Optional[int] = feed_forward_proj a : str = use_cache a : Optional[Any] = add_router_probs a : int = router_z_loss_coef a : Tuple = router_aux_loss_coef a : int = self.feed_forward_proj.split('-') a : int = act_info[-1] a : Any = act_info[0] == 'gated' if len(lowerCAmelCase_) > 1 and act_info[0] != "gated" or len(lowerCAmelCase_) > 2: raise ValueError( f"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'') # for backwards compatibility if feed_forward_proj == "gated-gelu": a : str = 'gelu_new' super().__init__( pad_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ , )
365
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
0
from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers A_ :Dict = [ '''python''', '''tqdm''', '''regex''', '''requests''', '''packaging''', '''filelock''', '''numpy''', '''tokenizers''', '''huggingface-hub''', '''safetensors''', '''accelerate''', '''pyyaml''', ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f"can't find {pkg} in {deps.keys()}, check dependency_versions_table.py") def A ( a_ ,a_=None ) -> Union[str, Any]: require_version(deps[pkg] ,a_ )
71
import os # Precomputes a list of the 100 first triangular numbers lowercase_ = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def _snake_case( ) -> int: '''simple docstring''' A__ = os.path.dirname(os.path.realpath(SCREAMING_SNAKE_CASE__ ) ) A__ = os.path.join(SCREAMING_SNAKE_CASE__ , 'words.txt' ) A__ = '' with open(SCREAMING_SNAKE_CASE__ ) as f: A__ = f.readline() A__ = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] A__ = [ word for word in [sum(ord(SCREAMING_SNAKE_CASE__ ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution())
7
0
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def __UpperCamelCase ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple ): # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file __a : int = TapasConfig.from_json_file(lowerCAmelCase__ ) # set absolute/relative position embeddings parameter __a : Any = reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": __a : Union[str, Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WTQ": # run_task_main.py hparams __a : Optional[Any] = 4 __a : Tuple = True # hparam_utils.py hparams __a : Optional[int] = 0.66_46_94 __a : str = 0.20_79_51 __a : List[str] = 0.12_11_94 __a : Tuple = True __a : Any = True __a : int = False __a : Union[str, Any] = 0.0_35_25_13 __a : List[Any] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams __a : Any = 4 __a : List[Any] = False # hparam_utils.py hparams __a : Union[str, Any] = 36.45_19 __a : str = 0.90_34_21 __a : Optional[int] = 2_2_2.0_8_8 __a : str = True __a : Any = True __a : Optional[Any] = True __a : List[str] = 0.76_31_41 __a : List[str] = TapasForQuestionAnswering(config=lowerCAmelCase__ ) elif task == "TABFACT": __a : Optional[int] = TapasForSequenceClassification(config=lowerCAmelCase__ ) elif task == "MLM": __a : int = TapasForMaskedLM(config=lowerCAmelCase__ ) elif task == "INTERMEDIATE_PRETRAINING": __a : Union[str, Any] = TapasModel(config=lowerCAmelCase__ ) else: raise ValueError(f"Task {task} not supported." ) print(f"Building PyTorch model from configuration: {config}" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Save pytorch-model (weights and configuration) print(f"Save PyTorch model to {pytorch_dump_path}" ) model.save_pretrained(lowerCAmelCase__ ) # Save tokenizer files print(f"Save tokenizer files to {pytorch_dump_path}" ) __a : List[Any] = TapasTokenizer(vocab_file=tf_checkpoint_path[:-1_0] + '''vocab.txt''' , model_max_length=5_1_2 ) tokenizer.save_pretrained(lowerCAmelCase__ ) print('''Used relative position embeddings:''' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase__ =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
367
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
90
0
'''simple docstring''' from __future__ import annotations from typing import Any class _lowercase ( UpperCAmelCase__ ): '''simple docstring''' pass class _lowercase : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Any ) -> None: __lowerCAmelCase = data __lowerCAmelCase = None def __iter__( self : List[Any] ) -> Optional[Any]: __lowerCAmelCase = self __lowerCAmelCase = [] while node: if node in visited: raise ContainsLoopError visited.append(SCREAMING_SNAKE_CASE__ ) yield node.data __lowerCAmelCase = node.next_node @property def a ( self : int ) -> bool: try: list(self ) return False except ContainsLoopError: return True if __name__ == "__main__": _A : Dict = Node(1) _A : Tuple = Node(2) _A : Optional[int] = Node(3) _A : List[Any] = Node(4) print(root_node.has_loop) # False _A : int = root_node.next_node print(root_node.has_loop) # True _A : Any = Node(5) _A : List[Any] = Node(6) _A : Any = Node(5) _A : int = Node(6) print(root_node.has_loop) # False _A : str = Node(1) print(root_node.has_loop) # False
229
'''simple docstring''' import numpy as np import qiskit def UpperCamelCase_ ( snake_case_ : int = 8 , snake_case_ : int | None = None ) -> str: '''simple docstring''' __lowerCAmelCase = np.random.default_rng(seed=snake_case_ ) # Roughly 25% of the qubits will contribute to the key. # So we take more than we need. __lowerCAmelCase = 6 * key_len # Measurement basis for Alice's qubits. __lowerCAmelCase = rng.integers(2 , size=snake_case_ ) # The set of states Alice will prepare. __lowerCAmelCase = rng.integers(2 , size=snake_case_ ) # Measurement basis for Bob's qubits. __lowerCAmelCase = rng.integers(2 , size=snake_case_ ) # Quantum Circuit to simulate BB84 __lowerCAmelCase = qiskit.QuantumCircuit(snake_case_ , name="""BB84""" ) # Alice prepares her qubits according to rules above. for index, _ in enumerate(snake_case_ ): if alice_state[index] == 1: bbaa_circ.x(snake_case_ ) if alice_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() # Bob measures the received qubits according to rules above. for index, _ in enumerate(snake_case_ ): if bob_basis[index] == 1: bbaa_circ.h(snake_case_ ) bbaa_circ.barrier() bbaa_circ.measure_all() # Simulate the quantum circuit. __lowerCAmelCase = qiskit.Aer.get_backend("""aer_simulator""" ) # We only need to run one shot because the key is unique. # Multiple shots will produce the same key. __lowerCAmelCase = qiskit.execute(snake_case_ , snake_case_ , shots=1 , seed_simulator=snake_case_ ) # Returns the result of measurement. __lowerCAmelCase = job.result().get_counts(snake_case_ ).most_frequent() # Extracting the generated key from the simulation results. # Only keep measurement results where Alice and Bob chose the same basis. __lowerCAmelCase = """""".join( [ result_bit for alice_basis_bit, bob_basis_bit, result_bit in zip( snake_case_ , snake_case_ , snake_case_ ) if alice_basis_bit == bob_basis_bit ] ) # Get final key. Pad with 0 if too short, otherwise truncate. __lowerCAmelCase = gen_key[:key_len] if len(snake_case_ ) >= key_len else gen_key.ljust(snake_case_ , """0""" ) return key if __name__ == "__main__": print(f'The generated key is : {bbaa(8, seed=0)}') from doctest import testmod testmod()
229
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu UpperCamelCase = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def __lowerCamelCase ( snake_case__ ,snake_case__=None ,snake_case__=None ,snake_case__=None ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = True while ask_again: _SCREAMING_SNAKE_CASE = input(snake_case__ ) try: if default is not None and len(snake_case__ ) == 0: return default return convert_value(snake_case__ ) if convert_value is not None else result except Exception: if error_message is not None: print(snake_case__ ) def __lowerCamelCase ( snake_case__ ,snake_case__=[] ,snake_case__=None ,snake_case__=0 ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = BulletMenu(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = menu.run(default_choice=snake_case__ ) return convert_value(snake_case__ ) if convert_value is not None else result def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(snake_case__ ) return ComputeEnvironment(["""LOCAL_MACHINE""", """AMAZON_SAGEMAKER"""][value] ) def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE = int(snake_case__ ) return DistributedType(["""NO""", """MULTI_CPU""", """MULTI_XPU""", """MULTI_GPU""", """MULTI_NPU""", """TPU"""][value] ) def __lowerCamelCase ( snake_case__ ) -> Optional[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(snake_case__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def __lowerCamelCase ( snake_case__ ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = int(snake_case__ ) return PrecisionType(["""no""", """fp16""", """bf16""", """fp8"""][value] ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = int(snake_case__ ) return SageMakerDistributedType(["""NO""", """DATA_PARALLEL""", """MODEL_PARALLEL"""][value] ) def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" return {"yes": True, "no": False}[value.lower()] class __UpperCAmelCase (argparse.RawDescriptionHelpFormatter ): def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Any , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = super()._format_usage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = usage.replace("""<command> [<args>] """ , """""" ) return usage
354
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __UpperCAmelCase : def __init__( self: Tuple , UpperCAmelCase_: Tuple , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = 13 _SCREAMING_SNAKE_CASE = 7 _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 99 _SCREAMING_SNAKE_CASE = 32 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = 37 _SCREAMING_SNAKE_CASE = """gelu""" _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 0.1 _SCREAMING_SNAKE_CASE = 512 _SCREAMING_SNAKE_CASE = 16 _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = 0.02 _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = 4 _SCREAMING_SNAKE_CASE = None def UpperCamelCase ( self: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE = None if self.use_input_mask: _SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase ( self: Tuple ): '''simple docstring''' ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def UpperCamelCase ( self: int , UpperCAmelCase_: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict , UpperCAmelCase_: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Optional[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Any , UpperCAmelCase_: List[str] , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = TFEsmModel(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = [input_ids, input_mask] _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , encoder_hidden_states=UpperCAmelCase_ ) # Also check the case where encoder outputs are not passed _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase ( self: Dict , UpperCAmelCase_: List[Any] , UpperCAmelCase_: List[Any] , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str] , UpperCAmelCase_: str , UpperCAmelCase_: List[str] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase ( self: List[Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: str , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: Union[str, Any] , UpperCAmelCase_: int , UpperCAmelCase_: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.num_labels _SCREAMING_SNAKE_CASE = TFEsmForTokenClassification(config=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase ( self: Dict ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) __snake_case : Tuple = ( { "feature-extraction": TFEsmModel, "fill-mask": TFEsmForMaskedLM, "text-classification": TFEsmForSequenceClassification, "token-classification": TFEsmForTokenClassification, "zero-shot": TFEsmForSequenceClassification, } if is_tf_available() else {} ) __snake_case : List[str] = False __snake_case : Union[str, Any] = False def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def UpperCamelCase ( self: Tuple ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*UpperCAmelCase_ ) def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase_ ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ ) @slow def UpperCamelCase ( self: Tuple ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Dict ): '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(UpperCAmelCase_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer _SCREAMING_SNAKE_CASE = model.get_bias() assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for k, v in name.items(): assert isinstance(UpperCAmelCase_ , tf.Variable ) else: _SCREAMING_SNAKE_CASE = model.get_output_embeddings() assert x is None _SCREAMING_SNAKE_CASE = model.get_bias() assert name is None @require_tf class __UpperCAmelCase (unittest.TestCase ): @slow def UpperCamelCase ( self: Any ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] _SCREAMING_SNAKE_CASE = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , UpperCAmelCase_ ) # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def UpperCamelCase ( self: str ): '''simple docstring''' _SCREAMING_SNAKE_CASE = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) _SCREAMING_SNAKE_CASE = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _SCREAMING_SNAKE_CASE = model(UpperCAmelCase_ )[0] # compare the actual values for a slice. _SCREAMING_SNAKE_CASE = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
125
0
_lowerCAmelCase : Optional[Any] = 65_521 def __snake_case ( _lowerCAmelCase : str ) -> int: A_ : str = 1 A_ : List[str] = 0 for plain_chr in plain_text: A_ : Optional[Any] = (a + ord(_lowerCAmelCase )) % MOD_ADLER A_ : Optional[Any] = (b + a) % MOD_ADLER return (b << 16) | a
300
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging _lowerCAmelCase : str = logging.get_logger(__name__) class __magic_name__ ( lowerCamelCase__ ): """simple docstring""" __UpperCamelCase = ['''input_features''', '''attention_mask'''] def __init__( self :int , snake_case :int=80 , snake_case :Optional[int]=16_000 , snake_case :Tuple=0.0 , snake_case :Optional[int]=10 , snake_case :Optional[Any]=25 , snake_case :Dict="hamming_window" , snake_case :Tuple=32768.0 , snake_case :str=0.97 , snake_case :List[str]=1.0 , snake_case :Dict=True , snake_case :str=True , snake_case :Optional[Any]=False , **snake_case :Union[str, Any] , ): '''simple docstring''' super().__init__(feature_size=snake_case , sampling_rate=snake_case , padding_value=snake_case , **snake_case ) A_ : Union[str, Any] = feature_size A_ : int = sampling_rate A_ : str = padding_value A_ : int = hop_length A_ : List[str] = win_length A_ : Any = frame_signal_scale A_ : str = preemphasis_coeff A_ : List[str] = mel_floor A_ : str = normalize_means A_ : Any = normalize_vars A_ : Optional[Any] = win_function A_ : Dict = return_attention_mask A_ : List[str] = win_length * sampling_rate // 1_000 A_ : List[str] = hop_length * sampling_rate // 1_000 A_ : List[str] = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 def SCREAMING_SNAKE_CASE ( self :Any , snake_case :np.array ): '''simple docstring''' if self.win_function == "hamming_window": A_ : Dict = window_function(window_length=self.sample_size , name=self.win_function , periodic=snake_case ) else: A_ : List[str] = window_function(window_length=self.sample_size , name=self.win_function ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A_ : Tuple = spectrogram( one_waveform * self.frame_signal_scale , window=snake_case , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=snake_case , preemphasis=self.preemphasis_coeff , mel_filters=snake_case , mel_floor=self.mel_floor , log_mel="log" , ) return msfc_features.T def SCREAMING_SNAKE_CASE ( self :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :str ): '''simple docstring''' if self.normalize_means: A_ : int = x[:input_length].mean(axis=0 ) A_ : Any = np.subtract(snake_case , snake_case ) if self.normalize_vars: A_ : List[Any] = x[:input_length].std(axis=0 ) A_ : Optional[int] = np.divide(snake_case , snake_case ) if input_length < x.shape[0]: A_ : Optional[int] = padding_value # make sure array is in float32 A_ : Union[str, Any] = x.astype(np.floataa ) return x def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[np.ndarray] , snake_case :Optional[np.ndarray] = None ): '''simple docstring''' A_ : str = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(snake_case , snake_case , self.padding_value ) for x, n in zip(snake_case , snake_case )] def __call__( self :int , snake_case :Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , snake_case :Union[bool, str, PaddingStrategy] = False , snake_case :Optional[int] = None , snake_case :bool = False , snake_case :Optional[int] = None , snake_case :Optional[bool] = None , snake_case :Optional[Union[str, TensorType]] = None , snake_case :Optional[int] = None , **snake_case :Dict , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" f" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with" f" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( "It is strongly recommended to pass the ``sampling_rate`` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) A_ : Optional[int] = isinstance(snake_case , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A_ : Optional[Any] = is_batched_numpy or ( isinstance(snake_case , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : List[Any] = [np.asarray(snake_case , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case , np.ndarray ): A_ : int = np.asarray(snake_case , dtype=np.floataa ) elif isinstance(snake_case , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A_ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A_ : Tuple = [raw_speech] # extract fbank features A_ : int = [self._extract_mfsc_features(snake_case ) for one_waveform in raw_speech] # convert into correct format for padding A_ : Union[str, Any] = BatchFeature({"input_features": features} ) A_ : str = self.pad( snake_case , padding=snake_case , max_length=snake_case , truncation=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , **snake_case , ) # make sure list is in array format A_ : Optional[int] = padded_inputs.get("input_features" ) if isinstance(input_features[0] , snake_case ): A_ : Union[str, Any] = [np.asarray(snake_case , dtype=np.floataa ) for feature in input_features] A_ : Dict = padded_inputs.get("attention_mask" ) if attention_mask is not None: A_ : Any = [np.asarray(snake_case , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A_ : Dict = ( np.array(snake_case , dtype=np.intaa ) if self._get_padding_strategies(snake_case , max_length=snake_case ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A_ : Optional[int] = self.normalize( padded_inputs["input_features"] , attention_mask=snake_case ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(snake_case ) return padded_inputs
300
1
'''simple docstring''' from math import factorial def __magic_name__ ( __UpperCAmelCase = 100 ) -> int: '''simple docstring''' return sum(map(__UpperCAmelCase, str(factorial(__UpperCAmelCase ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
72
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins a : int = ['tests.fixtures.files', 'tests.fixtures.hub', 'tests.fixtures.fsspec'] def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> Tuple: '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' config.addinivalue_line('''markers''', '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase, __UpperCAmelCase ) -> List[Any]: '''simple docstring''' snake_case_ = tmp_path_factory.getbasetemp() / '''cache''' snake_case_ = test_hf_cache_home / '''datasets''' snake_case_ = test_hf_cache_home / '''metrics''' snake_case_ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''', str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''', str(__UpperCAmelCase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''', str(__UpperCAmelCase ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''', str(__UpperCAmelCase ) ) snake_case_ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''', str(__UpperCAmelCase ) ) @pytest.fixture(autouse=__UpperCAmelCase, scope='''session''' ) def __magic_name__ ( ) -> List[Any]: '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=__UpperCAmelCase ) def __magic_name__ ( __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''', __UpperCAmelCase ) @pytest.fixture def __magic_name__ ( __UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''', __UpperCAmelCase )
72
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __SCREAMING_SNAKE_CASE : List[Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : str = { """microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""", } class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase: Tuple = "resnet" __UpperCamelCase: Union[str, Any] = ["basic", "bottleneck"] def __init__( self : Tuple , A : Optional[int]=3 , A : Union[str, Any]=64 , A : Dict=[256, 512, 1024, 2048] , A : Tuple=[3, 4, 6, 3] , A : Optional[Any]="bottleneck" , A : int="relu" , A : List[Any]=False , A : Optional[int]=None , A : Union[str, Any]=None , **A : List[Any] , ): super().__init__(**A ) if layer_type not in self.layer_types: raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" ) _UpperCAmelCase : Tuple = num_channels _UpperCAmelCase : int = embedding_size _UpperCAmelCase : Union[str, Any] = hidden_sizes _UpperCAmelCase : int = depths _UpperCAmelCase : Any = layer_type _UpperCAmelCase : Optional[Any] = hidden_act _UpperCAmelCase : Union[str, Any] = downsample_in_first_stage _UpperCAmelCase : Dict = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(A ) + 1 )] _UpperCAmelCase , _UpperCAmelCase : str = get_aligned_output_features_output_indices( out_features=A , out_indices=A , stage_names=self.stage_names ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[str] = version.parse("1.11" ) @property def _A ( self : Dict ): return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ] ) @property def _A ( self : Dict ): return 1E-3
31
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow UpperCAmelCase_ = logging.getLogger() @unittest.skip("""Temporarily disable the doc tests.""" ) @require_torch @require_tf @slow class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self : str , _UpperCAmelCase : Path , _UpperCAmelCase : Union[str, None] = None , _UpperCAmelCase : Union[List[str], None] = None , _UpperCAmelCase : Union[str, List[str], None] = None , _UpperCAmelCase : bool = True , ): """simple docstring""" UpperCAmelCase__ = [file for file in os.listdir(_UpperCAmelCase ) if os.path.isfile(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )] if identifier is not None: UpperCAmelCase__ = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_UpperCAmelCase , _UpperCAmelCase ): for n_ in n_identifier: UpperCAmelCase__ = [file for file in files if n_ not in file] else: UpperCAmelCase__ = [file for file in files if n_identifier not in file] UpperCAmelCase__ = ignore_files or [] ignore_files.append("""__init__.py""" ) UpperCAmelCase__ = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , _UpperCAmelCase ) if only_modules: UpperCAmelCase__ = file.split(""".""" )[0] try: UpperCAmelCase__ = getattr(_UpperCAmelCase , _UpperCAmelCase ) UpperCAmelCase__ = doctest.DocTestSuite(_UpperCAmelCase ) UpperCAmelCase__ = unittest.TextTestRunner().run(_UpperCAmelCase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: UpperCAmelCase__ = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """modeling""" UpperCAmelCase__ = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase , ignore_files=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """tokenization""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : str ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = """configuration""" self.analyze_directory(_UpperCAmelCase , identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): """simple docstring""" UpperCAmelCase__ = Path("""src/transformers""" ) UpperCAmelCase__ = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(_UpperCAmelCase , n_identifier=_UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): """simple docstring""" UpperCAmelCase__ = Path("""docs/source""" ) UpperCAmelCase__ = ["""favicon.ico"""] self.analyze_directory(_UpperCAmelCase , ignore_files=_UpperCAmelCase , only_modules=_UpperCAmelCase )
346
0
from typing import Callable, Optional from .. import Features from ..packaged_modules.generator.generator import Generator from .abc import AbstractDatasetInputStream class __magic_name__ ( __UpperCAmelCase ): def __init__( self : Optional[int] , snake_case__ : Callable , snake_case__ : Optional[Features] = None , snake_case__ : str = None , snake_case__ : bool = False , snake_case__ : bool = False , snake_case__ : Optional[dict] = None , snake_case__ : Optional[int] = None , **snake_case__ : Optional[Any] , ): '''simple docstring''' super().__init__( features=snake_case__ , cache_dir=snake_case__ , keep_in_memory=snake_case__ , streaming=snake_case__ , num_proc=snake_case__ , **snake_case__ , ) lowercase :int = Generator( cache_dir=snake_case__ , features=snake_case__ , generator=snake_case__ , gen_kwargs=snake_case__ , **snake_case__ , ) def __snake_case ( self : Optional[int] ): '''simple docstring''' if self.streaming: lowercase :str = self.builder.as_streaming_dataset(split='''train''' ) # Build regular (map-style) dataset else: lowercase :int = None lowercase :List[Any] = None lowercase :Union[str, Any] = None lowercase :Optional[int] = None self.builder.download_and_prepare( download_config=snake_case__ , download_mode=snake_case__ , verification_mode=snake_case__ , base_path=snake_case__ , num_proc=self.num_proc , ) lowercase :List[str] = self.builder.as_dataset( split='''train''' , verification_mode=snake_case__ , in_memory=self.keep_in_memory ) return dataset
351
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :str) -> YolosConfig: lowercase :Union[str, Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: lowercase :List[str] = 192 lowercase :List[str] = 768 lowercase :int = 12 lowercase :str = 3 lowercase :List[Any] = [800, 1333] lowercase :Any = False elif yolos_name == "yolos_s_dWr": lowercase :List[str] = 330 lowercase :List[Any] = 14 lowercase :int = 6 lowercase :List[Any] = 1320 elif "yolos_s" in yolos_name: lowercase :int = 384 lowercase :Union[str, Any] = 1536 lowercase :int = 12 lowercase :str = 6 elif "yolos_b" in yolos_name: lowercase :Dict = [800, 1344] lowercase :List[str] = 91 lowercase :List[Any] = '''huggingface/label-files''' lowercase :Union[str, Any] = '''coco-detection-id2label.json''' lowercase :int = json.load(open(hf_hub_download(a_ , a_ , repo_type='''dataset''') , '''r''')) lowercase :List[Any] = {int(a_): v for k, v in idalabel.items()} lowercase :Dict = idalabel lowercase :Tuple = {v: k for k, v in idalabel.items()} return config def lowerCamelCase (a_ :dict , a_ :YolosConfig , a_ :bool = False) -> Optional[int]: for i in range(config.num_hidden_layers): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase :Dict = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""") lowercase :List[Any] = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""") # next, add query, keys and values (in that order) to the state dict lowercase :int = in_proj_weight[: config.hidden_size, :] lowercase :List[str] = in_proj_bias[: config.hidden_size] lowercase :Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase :int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase :Any = in_proj_weight[-config.hidden_size :, :] lowercase :Union[str, Any] = in_proj_bias[-config.hidden_size :] def lowerCamelCase (a_ :str) -> str: if "backbone" in name: lowercase :Optional[int] = name.replace('''backbone''' , '''vit''') if "cls_token" in name: lowercase :List[Any] = name.replace('''cls_token''' , '''embeddings.cls_token''') if "det_token" in name: lowercase :int = name.replace('''det_token''' , '''embeddings.detection_tokens''') if "mid_pos_embed" in name: lowercase :List[Any] = name.replace('''mid_pos_embed''' , '''encoder.mid_position_embeddings''') if "pos_embed" in name: lowercase :List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''') if "patch_embed.proj" in name: lowercase :Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''') if "blocks" in name: lowercase :Any = name.replace('''blocks''' , '''encoder.layer''') if "attn.proj" in name: lowercase :Dict = name.replace('''attn.proj''' , '''attention.output.dense''') if "attn" in name: lowercase :Tuple = name.replace('''attn''' , '''attention.self''') if "norm1" in name: lowercase :List[Any] = name.replace('''norm1''' , '''layernorm_before''') if "norm2" in name: lowercase :List[Any] = name.replace('''norm2''' , '''layernorm_after''') if "mlp.fc1" in name: lowercase :Union[str, Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''') if "mlp.fc2" in name: lowercase :Dict = name.replace('''mlp.fc2''' , '''output.dense''') if "class_embed" in name: lowercase :Dict = name.replace('''class_embed''' , '''class_labels_classifier''') if "bbox_embed" in name: lowercase :Dict = name.replace('''bbox_embed''' , '''bbox_predictor''') if "vit.norm" in name: lowercase :Dict = name.replace('''vit.norm''' , '''vit.layernorm''') return name def lowerCamelCase (a_ :dict , a_ :YolosForObjectDetection) -> dict: for key in orig_state_dict.copy().keys(): lowercase :List[Any] = orig_state_dict.pop(a_) if "qkv" in key: lowercase :str = key.split('''.''') lowercase :List[str] = int(key_split[2]) lowercase :List[str] = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: lowercase :List[Any] = val[:dim, :] lowercase :Optional[int] = val[ dim : dim * 2, : ] lowercase :Any = val[-dim:, :] else: lowercase :List[str] = val[:dim] lowercase :Union[str, Any] = val[dim : dim * 2] lowercase :List[Any] = val[-dim:] else: lowercase :List[str] = val return orig_state_dict def lowerCamelCase () -> torch.Tensor: lowercase :Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase :Dict = Image.open(requests.get(a_ , stream=a_).raw) return im @torch.no_grad() def lowerCamelCase (a_ :str , a_ :str , a_ :str , a_ :bool = False) -> List[Any]: lowercase :Union[str, Any] = get_yolos_config(a_) # load original state_dict lowercase :List[str] = torch.load(a_ , map_location='''cpu''')['''model'''] # load 🤗 model lowercase :Tuple = YolosForObjectDetection(a_) model.eval() lowercase :Dict = convert_state_dict(a_ , a_) model.load_state_dict(a_) # Check outputs on an image, prepared by YolosImageProcessor lowercase :Tuple = 800 if yolos_name != '''yolos_ti''' else 512 lowercase :Dict = YolosImageProcessor(format='''coco_detection''' , size=a_) lowercase :Optional[int] = image_processor(images=prepare_img() , return_tensors='''pt''') lowercase :List[Any] = model(**a_) lowercase , lowercase :Dict = outputs.logits, outputs.pred_boxes lowercase , lowercase :int = None, None if yolos_name == "yolos_ti": lowercase :Dict = torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]]) lowercase :Dict = torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]]) elif yolos_name == "yolos_s_200_pre": lowercase :Union[str, Any] = torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]]) lowercase :List[str] = torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]]) elif yolos_name == "yolos_s_300_pre": lowercase :int = torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]]) lowercase :Optional[Any] = torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]]) elif yolos_name == "yolos_s_dWr": lowercase :int = torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]]) lowercase :Dict = torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]]) elif yolos_name == "yolos_base": lowercase :Dict = torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]]) lowercase :Tuple = torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]]) else: raise ValueError(F"""Unknown yolos_name: {yolos_name}""") assert torch.allclose(logits[0, :3, :3] , a_ , atol=1E-4) assert torch.allclose(pred_boxes[0, :3, :3] , a_ , atol=1E-4) Path(a_).mkdir(exist_ok=a_) print(F"""Saving model {yolos_name} to {pytorch_dump_folder_path}""") model.save_pretrained(a_) print(F"""Saving image processor to {pytorch_dump_folder_path}""") image_processor.save_pretrained(a_) if push_to_hub: lowercase :Optional[int] = { '''yolos_ti''': '''yolos-tiny''', '''yolos_s_200_pre''': '''yolos-small''', '''yolos_s_300_pre''': '''yolos-small-300''', '''yolos_s_dWr''': '''yolos-small-dwr''', '''yolos_base''': '''yolos-base''', } print('''Pushing to the hub...''') lowercase :Optional[Any] = model_mapping[yolos_name] image_processor.push_to_hub(a_ , organization='''hustvl''') model.push_to_hub(a_ , organization='''hustvl''') if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--yolos_name''', default='''yolos_s_200_pre''', type=str, help=( '''Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',''' ''' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.''' ), ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, help='''Path to the original state dict (.pth file).''' ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) UpperCAmelCase = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
172
0
"""simple docstring""" from math import factorial def _SCREAMING_SNAKE_CASE (__lowerCAmelCase = 1_00 ) -> int: '''simple docstring''' return sum(int(UpperCamelCase__ ) for x in str(factorial(UpperCamelCase__ ) ) ) if __name__ == "__main__": print(solution(int(input("Enter the Number: ").strip())))
136
class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Any: '''simple docstring''' __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = {} def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' if vertex not in self.adjacency: __lowerCamelCase = {} self.num_vertices += 1 def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: '''simple docstring''' self.add_vertex(lowerCamelCase__ ) self.add_vertex(lowerCamelCase__ ) if head == tail: return __lowerCamelCase = weight __lowerCamelCase = weight def lowercase_ ( self ) -> List[str]: '''simple docstring''' __lowerCamelCase = self.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase__ ) ): __lowerCamelCase = list(edges[i] ) edges.sort(key=lambda lowerCamelCase__ : e[2] ) for i in range(len(lowerCamelCase__ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: __lowerCamelCase = edges[i][2] + 1 for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = weight __lowerCamelCase = weight def __str__( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = '' for tail in self.adjacency: for head in self.adjacency[tail]: __lowerCamelCase = self.adjacency[head][tail] string += f"""{head} -> {tail} == {weight}\n""" return string.rstrip('\n' ) def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def lowercase_ ( self ) -> List[Any]: '''simple docstring''' return self.adjacency.keys() @staticmethod def lowercase_ ( lowerCamelCase__=None , lowerCamelCase__=None ) -> str: '''simple docstring''' __lowerCamelCase = Graph() if vertices is None: __lowerCamelCase = [] if edges is None: __lowerCamelCase = [] for vertex in vertices: g.add_vertex(lowerCamelCase__ ) for edge in edges: g.add_edge(*lowerCamelCase__ ) return g class __lowerCAmelCase : """simple docstring""" def __init__( self ) -> Tuple: '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} def __len__( self ) -> Tuple: '''simple docstring''' return len(self.parent ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' if item in self.parent: return self.find(lowerCamelCase__ ) __lowerCamelCase = item __lowerCamelCase = 0 return item def lowercase_ ( self , lowerCamelCase__ ) -> List[str]: '''simple docstring''' if item not in self.parent: return self.make_set(lowerCamelCase__ ) if item != self.parent[item]: __lowerCamelCase = self.find(self.parent[item] ) return self.parent[item] def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = self.find(lowerCamelCase__ ) __lowerCamelCase = self.find(lowerCamelCase__ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] < self.rank[roota]: __lowerCamelCase = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 __lowerCamelCase = roota return roota return None @staticmethod def lowercase_ ( lowerCamelCase__ ) -> str: '''simple docstring''' __lowerCamelCase = graph.num_vertices __lowerCamelCase = Graph.UnionFind() __lowerCamelCase = [] while num_components > 1: __lowerCamelCase = {} for vertex in graph.get_vertices(): __lowerCamelCase = -1 __lowerCamelCase = graph.get_edges() for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge edges.remove((tail, head, weight) ) for edge in edges: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = edge __lowerCamelCase = union_find.find(lowerCamelCase__ ) __lowerCamelCase = union_find.find(lowerCamelCase__ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: __lowerCamelCase = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = cheap_edge[vertex] if union_find.find(lowerCamelCase__ ) != union_find.find(lowerCamelCase__ ): union_find.union(lowerCamelCase__ , lowerCamelCase__ ) mst_edges.append(cheap_edge[vertex] ) __lowerCamelCase = num_components - 1 __lowerCamelCase = Graph.build(edges=lowerCamelCase__ ) return mst
90
0
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' __snake_case : Union[str, Any] = os.path.abspath(__SCREAMING_SNAKE_CASE ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model __snake_case : Optional[Any] = tf.train.list_variables(__SCREAMING_SNAKE_CASE ) __snake_case : Any = [] __snake_case : Union[str, Any] = [] __snake_case : Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") __snake_case : str = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' __snake_case : Optional[Any] = name[1:] # figure out how many levels deep the name is __snake_case : List[Any] = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(__SCREAMING_SNAKE_CASE ) # read data __snake_case : Union[str, Any] = tf.train.load_variable(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) names.append("""/""".join(__SCREAMING_SNAKE_CASE ) ) arrays.append(__SCREAMING_SNAKE_CASE ) logger.info(F'''Read a total of {len(__SCREAMING_SNAKE_CASE ):,} layers''' ) # Sanity check if len(set(__SCREAMING_SNAKE_CASE ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(__SCREAMING_SNAKE_CASE ) )})''' ) __snake_case : Optional[int] = list(set(__SCREAMING_SNAKE_CASE ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = full_name.split("""/""" ) __snake_case : str = model __snake_case : Optional[Any] = [] for i, m_name in enumerate(__SCREAMING_SNAKE_CASE ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): __snake_case : Optional[int] = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) __snake_case : str = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" ) __snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """encoder""" ) __snake_case : Dict = getattr(__SCREAMING_SNAKE_CASE , """layer""" ) __snake_case : int = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) __snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """pooler""" ) __snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) __snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) __snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) __snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """token_type_embeddings""" ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) __snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) __snake_case : str = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Dict = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) __snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """attention""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) __snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) __snake_case : List[str] = getattr(__SCREAMING_SNAKE_CASE , """output""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) __snake_case : Optional[int] = getattr(__SCREAMING_SNAKE_CASE , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) __snake_case : Tuple = getattr(__SCREAMING_SNAKE_CASE , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) __snake_case : List[Any] = getattr(__SCREAMING_SNAKE_CASE , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) __snake_case : int = getattr(__SCREAMING_SNAKE_CASE , """intermediate""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) __snake_case : Any = getattr(__SCREAMING_SNAKE_CASE , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) __snake_case : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) __snake_case : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE , """weight""" ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary __snake_case : Any = """.""".join(__SCREAMING_SNAKE_CASE ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , __SCREAMING_SNAKE_CASE ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , __SCREAMING_SNAKE_CASE ): __snake_case : int = array.reshape(pointer.data.shape ) if "kernel" in full_name: __snake_case : Union[str, Any] = array.transpose() if pointer.shape == array.shape: __snake_case : Union[str, Any] = torch.from_numpy(__SCREAMING_SNAKE_CASE ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) __snake_case : List[Any] = BertConfig.from_json_file(__SCREAMING_SNAKE_CASE ) __snake_case : Optional[Any] = BertModel(__SCREAMING_SNAKE_CASE ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , __SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument( "--tf_checkpoint_path", type=str, required=True, help="Path to the TensorFlow 2.x checkpoint path." ) parser.add_argument( "--bert_config_file", type=str, required=True, help="The config json file corresponding to the BERT model. This specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", type=str, required=True, help="Path to the output PyTorch model (must include filename).", ) lowercase_ = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
20
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : Optional[int] = "microsoft/speecht5_tts" A : List[Any] = ( "This is a tool that reads an English text out loud. It takes an input named `text` which should contain the " "text to read (in English) and returns a waveform object containing the sound." ) A : str = "text_reader" A : Optional[Any] = SpeechTaProcessor A : Any = SpeechTaForTextToSpeech A : Optional[Any] = SpeechTaHifiGan A : str = ["text"] A : Union[str, Any] = ["audio"] def snake_case__ ( self : List[Any] ): if self.post_processor is None: __snake_case : Tuple = """microsoft/speecht5_hifigan""" super().setup() def snake_case__ ( self : Any , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple=None ): __snake_case : str = self.pre_processor(text=_lowerCAmelCase , return_tensors="""pt""" , truncation=_lowerCAmelCase ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) __snake_case : List[Any] = load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) __snake_case : str = torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def snake_case__ ( self : List[Any] , _lowerCAmelCase : Dict ): with torch.no_grad(): return self.model.generate_speech(**_lowerCAmelCase ) def snake_case__ ( self : Union[str, Any] , _lowerCAmelCase : int ): with torch.no_grad(): return self.post_processor(_lowerCAmelCase ).cpu().detach()
20
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging UpperCAmelCase_ : Any = logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( _a ): def __init__( self : str , __lowerCamelCase : CLIPSegForImageSegmentation , __lowerCamelCase : CLIPSegProcessor , __lowerCamelCase : AutoencoderKL , __lowerCamelCase : CLIPTextModel , __lowerCamelCase : CLIPTokenizer , __lowerCamelCase : UNetaDConditionModel , __lowerCamelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __lowerCamelCase : StableDiffusionSafetyChecker , __lowerCamelCase : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , """steps_offset""" ) and scheduler.config.steps_offset != 1: UpperCamelCase :Dict = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate("""steps_offset!=1""" , """1.0.0""" , __lowerCamelCase , standard_warn=__lowerCamelCase ) UpperCamelCase :Optional[int] = dict(scheduler.config ) UpperCamelCase :str = 1 UpperCamelCase :List[str] = FrozenDict(__lowerCamelCase ) if hasattr(scheduler.config , """skip_prk_steps""" ) and scheduler.config.skip_prk_steps is False: UpperCamelCase :Dict = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate("""skip_prk_steps not set""" , """1.0.0""" , __lowerCamelCase , standard_warn=__lowerCamelCase ) UpperCamelCase :Dict = dict(scheduler.config ) UpperCamelCase :str = True UpperCamelCase :Tuple = FrozenDict(__lowerCamelCase ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" """ that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered""" """ results in services or applications open to the public. Both the diffusers team and Hugging Face""" """ strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling""" """ it only for use-cases that involve analyzing network behavior or auditing its results. For more""" """ information, please have a look at https://github.com/huggingface/diffusers/pull/254 .""" ) self.register_modules( segmentation_model=__lowerCamelCase , segmentation_processor=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=__lowerCamelCase , ) def _A ( self : List[str] , __lowerCamelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase :Union[str, Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__lowerCamelCase ) def _A ( self : List[str] ): self.enable_attention_slicing(__lowerCamelCase ) def _A ( self : Dict ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCamelCase :Tuple = torch.device("""cuda""" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(__lowerCamelCase , __lowerCamelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _A ( self : Tuple ): if self.device != torch.device("""meta""" ) or not hasattr(self.unet , """_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__lowerCamelCase , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Union[str, Any] , __lowerCamelCase : Union[str, List[str]] , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] , __lowerCamelCase : str , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 512 , __lowerCamelCase : int = 50 , __lowerCamelCase : float = 7.5 , __lowerCamelCase : Optional[Union[str, List[str]]] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : float = 0.0 , __lowerCamelCase : Optional[torch.Generator] = None , __lowerCamelCase : Optional[torch.FloatTensor] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , __lowerCamelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __lowerCamelCase : int = 1 , **__lowerCamelCase : Tuple , ): UpperCamelCase :Optional[int] = self.segmentation_processor( text=[text] , images=[image] , padding="""max_length""" , return_tensors="""pt""" ).to(self.device ) UpperCamelCase :int = self.segmentation_model(**__lowerCamelCase ) UpperCamelCase :Dict = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCamelCase :List[Any] = self.numpy_to_pil(__lowerCamelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCamelCase :int = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=__lowerCamelCase , image=__lowerCamelCase , mask_image=__lowerCamelCase , height=__lowerCamelCase , width=__lowerCamelCase , num_inference_steps=__lowerCamelCase , guidance_scale=__lowerCamelCase , negative_prompt=__lowerCamelCase , num_images_per_prompt=__lowerCamelCase , eta=__lowerCamelCase , generator=__lowerCamelCase , latents=__lowerCamelCase , output_type=__lowerCamelCase , return_dict=__lowerCamelCase , callback=__lowerCamelCase , callback_steps=__lowerCamelCase , )
38
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case_ : Union[str, Any] = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[Any] = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Union[str, Any] = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["__file__"], _import_structure)
125
0
import os import sys import unittest lowercase : Tuple = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase : Optional[Any] = os.path.join(git_repo_path, 'src', 'diffusers') class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self :int ) -> Union[str, Any]: __UpperCamelCase : Dict = find_backend(" if not is_torch_available():" ) self.assertEqual(a , "torch" ) # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") __UpperCamelCase : Optional[Any] = find_backend(" if not (is_torch_available() and is_transformers_available()):" ) self.assertEqual(a , "torch_and_transformers" ) # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") __UpperCamelCase : Optional[Any] = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(a , "torch_and_transformers_and_onnx" ) def _lowerCamelCase ( self :Optional[int] ) -> Tuple: __UpperCamelCase : Dict = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , a ) self.assertIn("torch_and_transformers" , a ) self.assertIn("flax_and_transformers" , a ) self.assertIn("torch_and_transformers_and_onnx" , a ) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel" , objects["torch"] ) self.assertIn("FlaxUNet2DConditionModel" , objects["flax"] ) self.assertIn("StableDiffusionPipeline" , objects["torch_and_transformers"] ) self.assertIn("FlaxStableDiffusionPipeline" , objects["flax_and_transformers"] ) self.assertIn("LMSDiscreteScheduler" , objects["torch_and_scipy"] ) self.assertIn("OnnxStableDiffusionPipeline" , objects["torch_and_transformers_and_onnx"] ) def _lowerCamelCase ( self :Union[str, Any] ) -> Tuple: __UpperCamelCase : int = create_dummy_object("CONSTANT" , "'torch'" ) self.assertEqual(a , "\nCONSTANT = None\n" ) __UpperCamelCase : Optional[Any] = create_dummy_object("function" , "'torch'" ) self.assertEqual( a , "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) __UpperCamelCase : Union[str, Any] = "\nclass FakeClass(metaclass=DummyObject):\n _backends = 'torch'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, 'torch')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, 'torch')\n" __UpperCamelCase : int = create_dummy_object("FakeClass" , "'torch'" ) self.assertEqual(a , a ) def _lowerCamelCase ( self :Tuple ) -> Union[str, Any]: __UpperCamelCase : str = "# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, [\"torch\"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = [\"torch\"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, [\"torch\"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, [\"torch\"])\n" __UpperCamelCase : Optional[Any] = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , a )
151
import qiskit def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 2) -> qiskit.result.counts.Counts: '''simple docstring''' __UpperCamelCase : List[str] = qubits # Using Aer's simulator __UpperCamelCase : int = qiskit.Aer.get_backend("aer_simulator") # Creating a Quantum Circuit acting on the q register __UpperCamelCase : List[str] = qiskit.QuantumCircuit(_lowerCamelCase , _lowerCamelCase) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0) for i in range(1 , _lowerCamelCase): # Adding CX (CNOT) gate circuit.cx(i - 1 , _lowerCamelCase) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(_lowerCamelCase)) , list(range(_lowerCamelCase))) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator __UpperCamelCase : Any = qiskit.execute(_lowerCamelCase , _lowerCamelCase , shots=1_000) return job.result().get_counts(_lowerCamelCase) if __name__ == "__main__": print(f"Total count for various states are: {quantum_entanglement(3)}")
151
1
"""simple docstring""" from abc import ABC, abstractmethod from typing import List, Optional class __snake_case ( _lowercase): def __init__( self : str ): """simple docstring""" self.test() def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = 0 _lowerCamelCase : Optional[int] = False while not completed: if counter == 1: self.reset() _lowerCamelCase : Optional[int] = self.advance() if not self.does_advance(__lowerCAmelCase ): raise Exception( '''Custom Constraint is not defined correctly. self.does_advance(self.advance()) must be true.''' ) _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : int = self.update(__lowerCAmelCase ) counter += 1 if counter > 1_0_0_0_0: raise Exception('''update() does not fulfill the constraint.''' ) if self.remaining() != 0: raise Exception('''Custom Constraint is not defined correctly.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self : Tuple , __lowerCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : int ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) @abstractmethod def SCREAMING_SNAKE_CASE ( self : Optional[Any] , __lowerCAmelCase : Tuple=False ): """simple docstring""" raise NotImplementedError( f'''{self.__class__} is an abstract class. Only classes inheriting this class can be called.''' ) class __snake_case ( _lowercase): def __init__( self : Optional[int] , __lowerCAmelCase : List[int] ): """simple docstring""" super(__lowerCAmelCase , self ).__init__() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or len(__lowerCAmelCase ) == 0: raise ValueError(f'''`token_ids` has to be a non-empty list, but is {token_ids}.''' ) if any((not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or token_id < 0) for token_id in token_ids ): raise ValueError(f'''Each list in `token_ids` has to be a list of positive integers, but is {token_ids}.''' ) _lowerCamelCase : Union[str, Any] = token_ids _lowerCamelCase : Dict = len(self.token_ids ) _lowerCamelCase : List[str] = -1 # the index of the currently fulfilled step _lowerCamelCase : List[Any] = False def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" if self.completed: return None return self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) if self.completed: return False return token_id == self.token_ids[self.fulfilled_idx + 1] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __lowerCAmelCase : int ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` has to be an `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) _lowerCamelCase : List[str] = False _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Optional[int] = False if self.does_advance(__lowerCAmelCase ): self.fulfilled_idx += 1 _lowerCamelCase : List[Any] = True if self.fulfilled_idx == (self.seqlen - 1): _lowerCamelCase : int = True _lowerCamelCase : Optional[Any] = completed else: # failed to make progress. _lowerCamelCase : str = True self.reset() return stepped, completed, reset def SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" _lowerCamelCase : str = False _lowerCamelCase : Tuple = 0 def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" return self.seqlen - (self.fulfilled_idx + 1) def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Dict=False ): """simple docstring""" _lowerCamelCase : Optional[int] = PhrasalConstraint(self.token_ids ) if stateful: _lowerCamelCase : Any = self.seqlen _lowerCamelCase : List[Any] = self.fulfilled_idx _lowerCamelCase : Dict = self.completed return new_constraint class __snake_case : def __init__( self : Dict , __lowerCAmelCase : List[List[int]] , __lowerCAmelCase : Dict=True ): """simple docstring""" _lowerCamelCase : Any = max([len(__lowerCAmelCase ) for one in nested_token_ids] ) _lowerCamelCase : Any = {} for token_ids in nested_token_ids: _lowerCamelCase : Dict = root for tidx, token_id in enumerate(__lowerCAmelCase ): if token_id not in level: _lowerCamelCase : List[Any] = {} _lowerCamelCase : Union[str, Any] = level[token_id] if no_subsets and self.has_subsets(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError( '''Each list in `nested_token_ids` can\'t be a complete subset of another list, but is''' f''' {nested_token_ids}.''' ) _lowerCamelCase : Dict = root def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : List[Any] = self.trie for current_token in current_seq: _lowerCamelCase : str = start[current_token] _lowerCamelCase : Any = list(start.keys() ) return next_tokens def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = self.next_tokens(__lowerCAmelCase ) return len(__lowerCAmelCase ) == 0 def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int ): """simple docstring""" _lowerCamelCase : Dict = list(root.values() ) if len(__lowerCAmelCase ) == 0: return 1 else: return sum([self.count_leaves(__lowerCAmelCase ) for nn in next_nodes] ) def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : int , __lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Optional[Any] = self.count_leaves(__lowerCAmelCase ) return len(__lowerCAmelCase ) != leaf_count class __snake_case ( _lowercase): def __init__( self : Dict , __lowerCAmelCase : List[List[int]] ): """simple docstring""" super(__lowerCAmelCase , self ).__init__() if not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or len(__lowerCAmelCase ) == 0: raise ValueError(f'''`nested_token_ids` has to be a non-empty list, but is {nested_token_ids}.''' ) if any(not isinstance(__lowerCAmelCase , __lowerCAmelCase ) for token_ids in nested_token_ids ): raise ValueError(f'''`nested_token_ids` has to be a list of lists, but is {nested_token_ids}.''' ) if any( any((not isinstance(__lowerCAmelCase , __lowerCAmelCase ) or token_id < 0) for token_id in token_ids ) for token_ids in nested_token_ids ): raise ValueError( f'''Each list in `nested_token_ids` has to be a list of positive integers, but is {nested_token_ids}.''' ) _lowerCamelCase : str = DisjunctiveTrie(__lowerCAmelCase ) _lowerCamelCase : Any = nested_token_ids _lowerCamelCase : List[Any] = self.trie.max_height _lowerCamelCase : Optional[int] = [] _lowerCamelCase : List[str] = False def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Any = self.trie.next_tokens(self.current_seq ) if len(__lowerCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE ( self : List[Any] , __lowerCAmelCase : int ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) _lowerCamelCase : int = self.trie.next_tokens(self.current_seq ) return token_id in next_tokens def SCREAMING_SNAKE_CASE ( self : int , __lowerCAmelCase : int ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` is supposed to be type `int`, but is {token_id} of type {type(__lowerCAmelCase )}''' ) _lowerCamelCase : int = False _lowerCamelCase : str = False _lowerCamelCase : Optional[Any] = False if self.does_advance(__lowerCAmelCase ): self.current_seq.append(__lowerCAmelCase ) _lowerCamelCase : List[str] = True else: _lowerCamelCase : List[Any] = True self.reset() _lowerCamelCase : List[str] = self.trie.reached_leaf(self.current_seq ) _lowerCamelCase : int = completed return stepped, completed, reset def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" _lowerCamelCase : Dict = False _lowerCamelCase : List[str] = [] def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" if self.completed: # since this can be completed without reaching max height return 0 else: return self.seqlen - len(self.current_seq ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : str=False ): """simple docstring""" _lowerCamelCase : Optional[Any] = DisjunctiveConstraint(self.token_ids ) if stateful: _lowerCamelCase : int = self.seqlen _lowerCamelCase : List[str] = self.current_seq _lowerCamelCase : Union[str, Any] = self.completed return new_constraint class __snake_case : def __init__( self : str , __lowerCAmelCase : List[Constraint] ): """simple docstring""" _lowerCamelCase : Any = constraints # max # of steps required to fulfill a given constraint _lowerCamelCase : str = max([c.seqlen for c in constraints] ) _lowerCamelCase : List[Any] = len(__lowerCAmelCase ) _lowerCamelCase : str = False self.init_state() def SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [] _lowerCamelCase : List[str] = None _lowerCamelCase : Any = [constraint.copy(stateful=__lowerCAmelCase ) for constraint in self.constraints] def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : str = 0 if self.inprogress_constraint: # extra points for having a constraint mid-fulfilled add += self.max_seqlen - self.inprogress_constraint.remaining() return (len(self.complete_constraints ) * self.max_seqlen) + add def SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" _lowerCamelCase : Union[str, Any] = [] if self.inprogress_constraint is None: for constraint in self.pending_constraints: # "pending" == "unfulfilled yet" _lowerCamelCase : Union[str, Any] = constraint.advance() if isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.append(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.extend(__lowerCAmelCase ) else: _lowerCamelCase : Any = self.inprogress_constraint.advance() if isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.append(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): token_list.extend(__lowerCAmelCase ) if len(__lowerCAmelCase ) == 0: return None else: return token_list def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Optional[List[int]] ): """simple docstring""" self.init_state() if token_ids is not None: for token in token_ids: # completes or steps **one** constraint _lowerCamelCase , _lowerCamelCase : str = self.add(__lowerCAmelCase ) # the entire list of constraints are fulfilled if self.completed: break def SCREAMING_SNAKE_CASE ( self : List[str] , __lowerCAmelCase : int ): """simple docstring""" if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError(f'''`token_id` should be an `int`, but is `{token_id}`.''' ) _lowerCamelCase , _lowerCamelCase : List[str] = False, False if self.completed: _lowerCamelCase : int = True _lowerCamelCase : Optional[Any] = False return complete, stepped if self.inprogress_constraint is not None: # In the middle of fulfilling a constraint. If the `token_id` *does* makes an incremental progress to current # job, simply update the state _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Tuple = self.inprogress_constraint.update(__lowerCAmelCase ) if reset: # 1. If the next token breaks the progress, then we must restart. # e.g. constraint = "I love pies" and sequence so far is "I love" but `token_id` == "books". # But that doesn't mean we self.init_state(), since we only reset the state for this particular # constraint, not the full list of constraints. self.pending_constraints.append(self.inprogress_constraint.copy(stateful=__lowerCAmelCase ) ) _lowerCamelCase : List[str] = None if complete: # 2. If the next token completes the constraint, move it to completed list, set # inprogress to None. If there are no pending constraints either, then this full list of constraints # is complete. self.complete_constraints.append(self.inprogress_constraint ) _lowerCamelCase : str = None if len(self.pending_constraints ) == 0: # we're done! _lowerCamelCase : Any = True else: # Not in the middle of fulfilling a constraint. So does this `token_id` helps us step towards any of our list # of constraints? for cidx, pending_constraint in enumerate(self.pending_constraints ): if pending_constraint.does_advance(__lowerCAmelCase ): _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : Any = pending_constraint.update(__lowerCAmelCase ) if not stepped: raise Exception( '''`constraint.update(token_id)` is not yielding incremental progress, ''' '''even though `constraint.does_advance(token_id)` is true.''' ) if complete: self.complete_constraints.append(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = None if not complete and stepped: _lowerCamelCase : Union[str, Any] = pending_constraint if complete or stepped: # If we made any progress at all, then it's at least not a "pending constraint". _lowerCamelCase : Union[str, Any] = ( self.pending_constraints[:cidx] + self.pending_constraints[cidx + 1 :] ) if len(self.pending_constraints ) == 0 and self.inprogress_constraint is None: # If there's no longer any pending after this and no inprogress either, then we must be # complete. _lowerCamelCase : List[Any] = True break # prevent accidentally stepping through multiple constraints with just one token. return complete, stepped def SCREAMING_SNAKE_CASE ( self : Dict , __lowerCAmelCase : Dict=True ): """simple docstring""" _lowerCamelCase : Union[str, Any] = ConstraintListState(self.constraints ) # we actually never though self.constraints objects # throughout this process. So it's at initialization state. if stateful: _lowerCamelCase : Optional[Any] = [ constraint.copy(stateful=__lowerCAmelCase ) for constraint in self.complete_constraints ] if self.inprogress_constraint is not None: _lowerCamelCase : List[str] = self.inprogress_constraint.copy(stateful=__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [constraint.copy() for constraint in self.pending_constraints] return new_state
72
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging lowerCAmelCase__ = logging.get_logger(__name__) # TODO: upload to AWS lowerCAmelCase__ = { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class __snake_case ( _lowercase): snake_case__ : int = "retribert" def __init__( self : Optional[int] , __lowerCAmelCase : str=3_0_5_2_2 , __lowerCAmelCase : Tuple=7_6_8 , __lowerCAmelCase : Union[str, Any]=8 , __lowerCAmelCase : Any=1_2 , __lowerCAmelCase : Optional[int]=3_0_7_2 , __lowerCAmelCase : List[str]="gelu" , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : Tuple=5_1_2 , __lowerCAmelCase : List[str]=2 , __lowerCAmelCase : Tuple=0.02 , __lowerCAmelCase : Optional[Any]=1E-12 , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Any=1_2_8 , __lowerCAmelCase : Optional[int]=0 , **__lowerCAmelCase : str , ): """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , **__lowerCAmelCase ) _lowerCamelCase : Dict = vocab_size _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : Dict = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : int = hidden_act _lowerCamelCase : str = intermediate_size _lowerCamelCase : Union[str, Any] = hidden_dropout_prob _lowerCamelCase : List[Any] = attention_probs_dropout_prob _lowerCamelCase : Optional[int] = max_position_embeddings _lowerCamelCase : List[Any] = type_vocab_size _lowerCamelCase : Any = initializer_range _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : int = share_encoders _lowerCamelCase : Optional[Any] = projection_dim
72
1
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( a ) -> int: _A: Any = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] _A: Dict = True if '''large''' in model_name or '''huge''' in model_name else False _A: Tuple = True if '''large''' in model_name or '''huge''' in model_name else False _A: Any = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _A: Tuple = [3, 3, 3, 3] _A: List[Any] = [5, 5, 5, 5] elif "fl4" in model_name: _A: Tuple = [4, 4, 4, 4] _A: List[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _A: Union[str, Any] = [3, 3, 3, 3] if "lrf" in model_name: _A: List[str] = [3, 3, 3, 3] else: _A: List[str] = [2, 2, 2, 2] if "tiny" in model_name: _A: Optional[Any] = 96 elif "small" in model_name: _A: Optional[int] = 96 elif "base" in model_name: _A: int = 1_28 elif "large" in model_name: _A: List[Any] = 1_92 elif "xlarge" in model_name: _A: int = 2_56 elif "huge" in model_name: _A: Dict = 3_52 # set label information _A: str = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: _A: List[Any] = '''imagenet-22k-id2label.json''' else: _A: Any = '''imagenet-1k-id2label.json''' _A: List[Any] = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) _A: int = {int(a ): v for k, v in idalabel.items()} _A: int = {v: k for k, v in idalabel.items()} _A: Dict = FocalNetConfig( embed_dim=a , depths=a , focal_levels=a , focal_windows=a , use_conv_embed=a , idalabel=a , labelaid=a , use_post_layernorm=a , use_layerscale=a , ) return config def lowerCamelCase__ ( a ) -> Optional[int]: if "patch_embed.proj" in name: _A: Union[str, Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: _A: List[Any] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: _A: Optional[int] = '''encoder.''' + name if "encoder.layers" in name: _A: Optional[Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: _A: Any = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: _A: Tuple = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _A: List[Any] = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _A: Dict = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _A: Union[str, Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": _A: Tuple = '''layernorm.weight''' if name == "norm.bias": _A: int = '''layernorm.bias''' if "head" in name: _A: Optional[int] = name.replace('''head''' , '''classifier''' ) else: _A: Optional[Any] = '''focalnet.''' + name return name def lowerCamelCase__ ( a , a , a=False ) -> str: # fmt: off _A: int = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on _A: Union[str, Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , a ) _A: Any = torch.hub.load_state_dict_from_url(a , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): _A: int = state_dict.pop(a ) _A: Any = val _A: Any = get_focalnet_config(a ) _A: str = FocalNetForImageClassification(a ) model.eval() # load state dict model.load_state_dict(a ) # verify conversion _A: List[str] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' _A: Any = BitImageProcessor( do_resize=a , size={'''shortest_edge''': 2_56} , resample=PILImageResampling.BILINEAR , do_center_crop=a , crop_size=2_24 , do_normalize=a , image_mean=a , image_std=a , ) _A: Union[str, Any] = Image.open(requests.get(a , stream=a ).raw ) _A: Optional[Any] = processor(images=a , return_tensors='''pt''' ) _A: Union[str, Any] = transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) _A: Any = image_transforms(a ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , a , atol=1E-4 ) _A: Tuple = model(**a ) _A: Optional[Any] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _A: Union[str, Any] = torch.tensor([0.2166, -0.4368, 0.2191] ) elif model_name == "focalnet-tiny-lrf": _A: str = torch.tensor([1.1669, 0.0125, -0.1695] ) elif model_name == "focalnet-small": _A: Dict = torch.tensor([0.4917, -0.0430, 0.1341] ) elif model_name == "focalnet-small-lrf": _A: List[str] = torch.tensor([-0.2588, -0.5342, -0.2331] ) elif model_name == "focalnet-base": _A: Union[str, Any] = torch.tensor([-0.1655, -0.4090, -0.1730] ) elif model_name == "focalnet-base-lrf": _A: List[Any] = torch.tensor([0.5306, -0.0483, -0.3928] ) assert torch.allclose(outputs.logits[0, :3] , a , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) processor.save_pretrained(a ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": UpperCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) UpperCAmelCase__ : Dict = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
301
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> int: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: Dict = [] for i in range(a ): _A: Optional[int] = i / num_diffusion_timesteps _A: Optional[int] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(a ) / alpha_bar_fn(a ) , a ) ) return torch.tensor(a , dtype=torch.floataa ) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : Optional[int] = [e.name for e in KarrasDiffusionSchedulers] __UpperCamelCase : Tuple = 2 @register_to_config def __init__( self : str , lowerCAmelCase_ : int = 1_0_0_0 , lowerCAmelCase_ : float = 0.00085 , lowerCAmelCase_ : float = 0.012 , lowerCAmelCase_ : str = "linear" , lowerCAmelCase_ : Optional[Union[np.ndarray, List[float]]] = None , lowerCAmelCase_ : str = "epsilon" , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : Optional[bool] = False , lowerCAmelCase_ : float = 1.0 , lowerCAmelCase_ : str = "linspace" , lowerCAmelCase_ : int = 0 , ): """simple docstring""" if trained_betas is not None: _A: Optional[Any] = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: List[str] = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Tuple = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''cosine''' ) elif beta_schedule == "exp": _A: int = betas_for_alpha_bar(lowerCAmelCase_ , alpha_transform_type='''exp''' ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Union[str, Any] = 1.0 - self.betas _A: Dict = torch.cumprod(self.alphas , dim=0 ) # set all values self.set_timesteps(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _A: str = use_karras_sigmas def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int]=None ): """simple docstring""" if schedule_timesteps is None: _A: List[str] = self.timesteps _A: int = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: _A: Optional[int] = 1 if len(lowerCAmelCase_ ) > 1 else 0 else: _A: int = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep _A: List[str] = self._index_counter[timestep_int] return indices[pos].item() @property def __magic_name__ ( self : int ): """simple docstring""" # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def __magic_name__ ( self : List[str] , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Union[float, torch.FloatTensor] , ): """simple docstring""" _A: List[str] = self.index_for_timestep(lowerCAmelCase_ ) _A: str = self.sigmas[step_index] _A: str = sample / ((sigma**2 + 1) ** 0.5) return sample def __magic_name__ ( self : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, torch.device] = None , lowerCAmelCase_ : Optional[int] = None , ): """simple docstring""" _A: Union[str, Any] = num_inference_steps _A: str = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": _A: Optional[Any] = np.linspace(0 , num_train_timesteps - 1 , lowerCAmelCase_ , dtype=lowerCAmelCase_ )[::-1].copy() elif self.config.timestep_spacing == "leading": _A: List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Dict = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round()[::-1].copy().astype(lowerCAmelCase_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": _A: Union[str, Any] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: List[Any] = (np.arange(lowerCAmelCase_ , 0 , -step_ratio )).round().copy().astype(lowerCAmelCase_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) _A: Optional[int] = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) _A: str = np.log(lowerCAmelCase_ ) _A: int = np.interp(lowerCAmelCase_ , np.arange(0 , len(lowerCAmelCase_ ) ) , lowerCAmelCase_ ) if self.config.use_karras_sigmas: _A: Optional[int] = self._convert_to_karras(in_sigmas=lowerCAmelCase_ , num_inference_steps=self.num_inference_steps ) _A: List[str] = np.array([self._sigma_to_t(lowerCAmelCase_ , lowerCAmelCase_ ) for sigma in sigmas] ) _A: Optional[int] = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) _A: Optional[Any] = torch.from_numpy(lowerCAmelCase_ ).to(device=lowerCAmelCase_ ) _A: Tuple = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] ) _A: str = torch.from_numpy(lowerCAmelCase_ ) _A: str = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] ) if str(lowerCAmelCase_ ).startswith('''mps''' ): # mps does not support float64 _A: List[Any] = timesteps.to(lowerCAmelCase_ , dtype=torch.floataa ) else: _A: Optional[int] = timesteps.to(device=lowerCAmelCase_ ) # empty dt and derivative _A: Dict = None _A: List[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter _A: Dict = defaultdict(lowerCAmelCase_ ) def __magic_name__ ( self : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" # get log sigma _A: Tuple = np.log(lowerCAmelCase_ ) # get distribution _A: List[str] = log_sigma - log_sigmas[:, np.newaxis] # get sigmas range _A: Dict = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 ) _A: int = low_idx + 1 _A: Optional[int] = log_sigmas[low_idx] _A: Dict = log_sigmas[high_idx] # interpolate sigmas _A: Union[str, Any] = (low - log_sigma) / (low - high) _A: Optional[Any] = np.clip(lowerCAmelCase_ , 0 , 1 ) # transform interpolation to time range _A: Any = (1 - w) * low_idx + w * high_idx _A: List[Any] = t.reshape(sigma.shape ) return t def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : Optional[Any] ): """simple docstring""" _A: float = in_sigmas[-1].item() _A: float = in_sigmas[0].item() _A: Union[str, Any] = 7.0 # 7.0 is the value used in the paper _A: Optional[Any] = np.linspace(0 , 1 , lowerCAmelCase_ ) _A: Tuple = sigma_min ** (1 / rho) _A: Optional[Any] = sigma_max ** (1 / rho) _A: List[str] = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho return sigmas @property def __magic_name__ ( self : Optional[Any] ): """simple docstring""" return self.dt is None def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : Union[float, torch.FloatTensor] , lowerCAmelCase_ : Union[torch.FloatTensor, np.ndarray] , lowerCAmelCase_ : bool = True , ): """simple docstring""" _A: Optional[int] = self.index_for_timestep(lowerCAmelCase_ ) # advance index counter by 1 _A: Union[str, Any] = timestep.cpu().item() if torch.is_tensor(lowerCAmelCase_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: _A: Optional[int] = self.sigmas[step_index] _A: Union[str, Any] = self.sigmas[step_index + 1] else: # 2nd order / Heun's method _A: Union[str, Any] = self.sigmas[step_index - 1] _A: Optional[int] = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API _A: List[Any] = 0 _A: Tuple = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": _A: Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": _A: int = sigma_hat if self.state_in_first_order else sigma_next _A: List[str] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": _A: Optional[int] = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order _A: Optional[int] = (sample - pred_original_sample) / sigma_hat # 3. delta timestep _A: List[Any] = sigma_next - sigma_hat # store for 2nd order step _A: str = derivative _A: Any = dt _A: Dict = sample else: # 2. 2nd order / Heun's method _A: List[str] = (sample - pred_original_sample) / sigma_next _A: str = (self.prev_derivative + derivative) / 2 # 3. take prev timestep & sample _A: Dict = self.dt _A: int = self.sample # free dt and derivative # Note, this puts the scheduler in "first order mode" _A: int = None _A: int = None _A: Optional[Any] = None _A: Optional[Any] = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=lowerCAmelCase_ ) def __magic_name__ ( self : Any , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , lowerCAmelCase_ : torch.FloatTensor , ): """simple docstring""" # Make sure sigmas and timesteps have the same device and dtype as original_samples _A: str = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(lowerCAmelCase_ ): # mps does not support float64 _A: Optional[int] = self.timesteps.to(original_samples.device , dtype=torch.floataa ) _A: Any = timesteps.to(original_samples.device , dtype=torch.floataa ) else: _A: Union[str, Any] = self.timesteps.to(original_samples.device ) _A: int = timesteps.to(original_samples.device ) _A: str = [self.index_for_timestep(lowerCAmelCase_ , lowerCAmelCase_ ) for t in timesteps] _A: Optional[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): _A: List[str] = sigma.unsqueeze(-1 ) _A: Any = original_samples + noise * sigma return noisy_samples def __len__( self : Dict ): """simple docstring""" return self.config.num_train_timesteps
301
1
from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig _snake_case = logging.get_logger(__name__) # General docstring _snake_case = "MobileNetV1Config" # Base docstring _snake_case = "google/mobilenet_v1_1.0_224" _snake_case = [1, 10_24, 7, 7] # Image classification docstring _snake_case = "google/mobilenet_v1_1.0_224" _snake_case = "tabby, tabby cat" _snake_case = [ "google/mobilenet_v1_1.0_224", "google/mobilenet_v1_0.75_192", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): '''simple docstring''' lowerCamelCase : Union[str, Any] = {} if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase : Dict = model.mobilenet_va else: lowerCamelCase : Dict = model lowerCamelCase : Optional[int] = 'MobilenetV1/Conv2d_0/' lowerCamelCase : Dict = backbone.conv_stem.convolution.weight lowerCamelCase : str = backbone.conv_stem.normalization.bias lowerCamelCase : Any = backbone.conv_stem.normalization.weight lowerCamelCase : List[Any] = backbone.conv_stem.normalization.running_mean lowerCamelCase : List[Any] = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCamelCase : Optional[int] = i + 1 lowerCamelCase : Optional[int] = i * 2 lowerCamelCase : Optional[Any] = backbone.layer[pt_index] lowerCamelCase : Optional[int] = f"""MobilenetV1/Conv2d_{tf_index}_depthwise/""" lowerCamelCase : Dict = pointer.convolution.weight lowerCamelCase : List[str] = pointer.normalization.bias lowerCamelCase : str = pointer.normalization.weight lowerCamelCase : List[Any] = pointer.normalization.running_mean lowerCamelCase : List[Any] = pointer.normalization.running_var lowerCamelCase : str = backbone.layer[pt_index + 1] lowerCamelCase : Optional[int] = f"""MobilenetV1/Conv2d_{tf_index}_pointwise/""" lowerCamelCase : int = pointer.convolution.weight lowerCamelCase : Optional[Any] = pointer.normalization.bias lowerCamelCase : int = pointer.normalization.weight lowerCamelCase : Tuple = pointer.normalization.running_mean lowerCamelCase : List[Any] = pointer.normalization.running_var if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): lowerCamelCase : Tuple = 'MobilenetV1/Logits/Conv2d_1c_1x1/' lowerCamelCase : Any = model.classifier.weight lowerCamelCase : List[Any] = model.classifier.bias return tf_to_pt_map def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' try: import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise # Load weights from TF model lowerCamelCase : Optional[Any] = tf.train.list_variables(UpperCAmelCase_ ) lowerCamelCase : Dict = {} for name, shape in init_vars: logger.info(f"""Loading TF weight {name} with shape {shape}""" ) lowerCamelCase : List[str] = tf.train.load_variable(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Any = array # Build TF to PyTorch weights loading map lowerCamelCase : Dict = _build_tf_to_pytorch_map(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) for name, pointer in tf_to_pt_map.items(): logger.info(f"""Importing {name}""" ) if name not in tf_weights: logger.info(f"""{name} not in tf pre-trained weights, skipping""" ) continue lowerCamelCase : Dict = tf_weights[name] if "depthwise_weights" in name: logger.info("Transposing depthwise" ) lowerCamelCase : Optional[Any] = np.transpose(UpperCAmelCase_ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("Transposing" ) if len(pointer.shape ) == 2: # copying into linear layer lowerCamelCase : Any = array.squeeze().transpose() else: lowerCamelCase : Any = np.transpose(UpperCAmelCase_ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(f"""Pointer shape {pointer.shape} and array shape {array.shape} mismatched""" ) logger.info(f"""Initialize PyTorch weight {name} {array.shape}""" ) lowerCamelCase : List[str] = torch.from_numpy(UpperCAmelCase_ ) tf_weights.pop(UpperCAmelCase_ , UpperCAmelCase_ ) tf_weights.pop(name + "/RMSProp" , UpperCAmelCase_ ) tf_weights.pop(name + "/RMSProp_1" , UpperCAmelCase_ ) tf_weights.pop(name + "/ExponentialMovingAverage" , UpperCAmelCase_ ) logger.info(f"""Weights not copied to PyTorch model: {', '.join(tf_weights.keys() )}""" ) return model def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : List[str] = features.shape[-2:] lowerCamelCase : Optional[int] = conv_layer.stride lowerCamelCase : List[str] = conv_layer.kernel_size if in_height % stride_height == 0: lowerCamelCase : Union[str, Any] = max(kernel_height - stride_height , 0 ) else: lowerCamelCase : Optional[Any] = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCamelCase : Dict = max(kernel_width - stride_width , 0 ) else: lowerCamelCase : Optional[int] = max(kernel_width - (in_width % stride_width) , 0 ) lowerCamelCase : Optional[Any] = pad_along_width // 2 lowerCamelCase : Optional[Any] = pad_along_width - pad_left lowerCamelCase : Tuple = pad_along_height // 2 lowerCamelCase : int = pad_along_height - pad_top lowerCamelCase : List[str] = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(UpperCAmelCase_ , UpperCAmelCase_ , "constant" , 0.0 ) class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self , __A , __A , __A , __A , __A = 1 , __A = 1 , __A = False , __A = True , __A = True , ): """simple docstring""" super().__init__() lowerCamelCase : List[str] = config if in_channels % groups != 0: raise ValueError(F"""Input channels ({in_channels}) are not divisible by {groups} groups.""" ) if out_channels % groups != 0: raise ValueError(F"""Output channels ({out_channels}) are not divisible by {groups} groups.""" ) lowerCamelCase : Tuple = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCamelCase : Tuple = nn.Convad( in_channels=_A , out_channels=_A , kernel_size=_A , stride=_A , padding=_A , groups=_A , bias=_A , padding_mode="zeros" , ) if use_normalization: lowerCamelCase : List[Any] = nn.BatchNormad( num_features=_A , eps=config.layer_norm_eps , momentum=0.9997 , affine=_A , track_running_stats=_A , ) else: lowerCamelCase : Any = None if use_activation: if isinstance(_A , _A ): lowerCamelCase : Optional[Any] = ACTaFN[use_activation] elif isinstance(config.hidden_act , _A ): lowerCamelCase : Tuple = ACTaFN[config.hidden_act] else: lowerCamelCase : List[Any] = config.hidden_act else: lowerCamelCase : int = None def _snake_case ( self , __A ): """simple docstring""" if self.config.tf_padding: lowerCamelCase : List[str] = apply_tf_padding(_A , self.convolution ) lowerCamelCase : List[str] = self.convolution(_A ) if self.normalization is not None: lowerCamelCase : int = self.normalization(_A ) if self.activation is not None: lowerCamelCase : Tuple = self.activation(_A ) return features class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Optional[int] = MobileNetVaConfig __A : int = load_tf_weights_in_mobilenet_va __A : Any = """mobilenet_v1""" __A : int = """pixel_values""" __A : List[str] = False def _snake_case ( self , __A ): """simple docstring""" if isinstance(_A , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_A , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) _snake_case = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _snake_case = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , UpperCamelCase , ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A = True ): """simple docstring""" super().__init__(_A ) lowerCamelCase : Dict = config lowerCamelCase : Any = 32 lowerCamelCase : int = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCamelCase : Tuple = MobileNetVaConvLayer( _A , in_channels=config.num_channels , out_channels=_A , kernel_size=3 , stride=2 , ) lowerCamelCase : Dict = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCamelCase : Tuple = nn.ModuleList() for i in range(13 ): lowerCamelCase : Dict = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCamelCase : Optional[int] = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _A , in_channels=_A , out_channels=_A , kernel_size=3 , stride=strides[i] , groups=_A , ) ) self.layer.append( MobileNetVaConvLayer( _A , in_channels=_A , out_channels=_A , kernel_size=1 , ) ) lowerCamelCase : Dict = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _snake_case ( self , __A ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_A , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _snake_case ( self , __A = None , __A = None , __A = None , ): """simple docstring""" lowerCamelCase : List[Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase : Optional[Any] = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values" ) lowerCamelCase : List[Any] = self.conv_stem(_A ) lowerCamelCase : Optional[int] = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCamelCase : Dict = layer_module(_A ) if output_hidden_states: lowerCamelCase : Dict = all_hidden_states + (hidden_states,) lowerCamelCase : Union[str, Any] = hidden_states if self.pooler is not None: lowerCamelCase : Union[str, Any] = torch.flatten(self.pooler(_A ) , start_dim=1 ) else: lowerCamelCase : Optional[int] = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_A , pooler_output=_A , hidden_states=_A , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCamelCase , ) class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A ): """simple docstring""" super().__init__(_A ) lowerCamelCase : Any = config.num_labels lowerCamelCase : List[str] = MobileNetVaModel(_A ) lowerCamelCase : int = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCamelCase : List[str] = nn.Dropout(config.classifier_dropout_prob , inplace=_A ) lowerCamelCase : Optional[Any] = nn.Linear(_A , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_A ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_A , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _snake_case ( self , __A = None , __A = None , __A = None , __A = None , ): """simple docstring""" lowerCamelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase : Union[str, Any] = self.mobilenet_va(_A , output_hidden_states=_A , return_dict=_A ) lowerCamelCase : Dict = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase : List[str] = self.classifier(self.dropout(_A ) ) lowerCamelCase : Union[str, Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase : str = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase : Optional[int] = 'single_label_classification' else: lowerCamelCase : Tuple = 'multi_label_classification' if self.config.problem_type == "regression": lowerCamelCase : Any = MSELoss() if self.num_labels == 1: lowerCamelCase : Tuple = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase : Dict = loss_fct(_A , _A ) elif self.config.problem_type == "single_label_classification": lowerCamelCase : str = CrossEntropyLoss() lowerCamelCase : str = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase : Any = BCEWithLogitsLoss() lowerCamelCase : Any = loss_fct(_A , _A ) if not return_dict: lowerCamelCase : Tuple = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_A , logits=_A , hidden_states=outputs.hidden_states , )
283
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ : Dict = logging.get_logger(__name__) UpperCamelCase_ : Union[str, Any] = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class _a ( __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : int = """ibert""" def __init__( self ,_SCREAMING_SNAKE_CASE=30_522 ,_SCREAMING_SNAKE_CASE=768 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=12 ,_SCREAMING_SNAKE_CASE=3_072 ,_SCREAMING_SNAKE_CASE="gelu" ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=0.1 ,_SCREAMING_SNAKE_CASE=512 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE=0.0_2 ,_SCREAMING_SNAKE_CASE=1e-12 ,_SCREAMING_SNAKE_CASE=1 ,_SCREAMING_SNAKE_CASE=0 ,_SCREAMING_SNAKE_CASE=2 ,_SCREAMING_SNAKE_CASE="absolute" ,_SCREAMING_SNAKE_CASE=False ,_SCREAMING_SNAKE_CASE="none" ,**_SCREAMING_SNAKE_CASE ,) -> str: super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE ,bos_token_id=_SCREAMING_SNAKE_CASE ,eos_token_id=_SCREAMING_SNAKE_CASE ,**_SCREAMING_SNAKE_CASE ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = quant_mode _snake_case = force_dequant class _a ( __lowerCAmelCase ): @property def _lowercase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _snake_case = {0: "batch", 1: "choice", 2: "sequence"} else: _snake_case = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
142
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ : List[Any] = { '''configuration_convbert''': ['''CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ConvBertConfig''', '''ConvBertOnnxConfig'''], '''tokenization_convbert''': ['''ConvBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[Any] = ['''ConvBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Optional[int] = [ '''CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ConvBertForMaskedLM''', '''ConvBertForMultipleChoice''', '''ConvBertForQuestionAnswering''', '''ConvBertForSequenceClassification''', '''ConvBertForTokenClassification''', '''ConvBertLayer''', '''ConvBertModel''', '''ConvBertPreTrainedModel''', '''load_tf_weights_in_convbert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ : Tuple = [ '''TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFConvBertForMaskedLM''', '''TFConvBertForMultipleChoice''', '''TFConvBertForQuestionAnswering''', '''TFConvBertForSequenceClassification''', '''TFConvBertForTokenClassification''', '''TFConvBertLayer''', '''TFConvBertModel''', '''TFConvBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys UpperCamelCase_ : Tuple = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
142
1
import os import sys import unittest lowercase : Any = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path lowercase : List[Any] = os.path.join(git_repo_path, """src""", """transformers""") lowercase : List[Any] = """ {0} = None """ lowercase : Tuple = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ lowercase : Optional[Any] = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class __snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = find_backend(""" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")""" ) self.assertIsNone(snake_case ) lowercase : List[str] = find_backend(""" if not is_tokenizers_available():""" ) self.assertEqual(snake_case ,"""tokenizers""" ) lowercase : List[Any] = find_backend(""" if not is_tensorflow_text_available():""" ) self.assertEqual(snake_case ,"""tensorflow_text""" ) lowercase : Any = find_backend(""" if not (is_sentencepiece_available() and is_tokenizers_available()):""" ) self.assertEqual(snake_case ,"""sentencepiece_and_tokenizers""" ) lowercase : Tuple = find_backend( """ if not (is_sentencepiece_available() and is_tensorflow_text_available()):""" ) self.assertEqual(snake_case ,"""sentencepiece_and_tensorflow_text""" ) lowercase : Union[str, Any] = find_backend( """ if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):""" ) self.assertEqual(snake_case ,"""sentencepiece_and_tokenizers_and_vision""" ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("""torch""" ,snake_case ) self.assertIn("""tensorflow_text""" ,snake_case ) self.assertIn("""sentencepiece_and_tokenizers""" ,snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn("""BertModel""" ,objects["""torch"""] ) self.assertIn("""TFBertModel""" ,objects["""tf"""] ) self.assertIn("""FlaxBertModel""" ,objects["""flax"""] ) self.assertIn("""BertModel""" ,objects["""torch"""] ) self.assertIn("""TFBertTokenizer""" ,objects["""tensorflow_text"""] ) self.assertIn("""convert_slow_tokenizer""" ,objects["""sentencepiece_and_tokenizers"""] ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = create_dummy_object("""CONSTANT""" ,"""'torch'""" ) self.assertEqual(snake_case ,"""\nCONSTANT = None\n""" ) lowercase : Any = create_dummy_object("""function""" ,"""'torch'""" ) self.assertEqual( snake_case ,"""\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n""" ) lowercase : Any = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') """ lowercase : int = create_dummy_object("""FakeClass""" ,"""'torch'""" ) self.assertEqual(snake_case ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = """# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, [\"torch\"]) class FakeClass(metaclass=DummyObject): _backends = [\"torch\"] def __init__(self, *args, **kwargs): requires_backends(self, [\"torch\"]) """ lowercase : Union[str, Any] = create_dummy_files({"""torch""": ["""CONSTANT""", """function""", """FakeClass"""]} ) self.assertEqual(dummy_files["""torch"""] ,snake_case )
20
import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize("""keep_in_memory""" , [False, True] ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : Optional[Any] = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase : Any = SqlDatasetReader( """dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ , keep_in_memory=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @require_sqlalchemy @pytest.mark.parametrize( """features""" , [ None, {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""}, {"""col_1""": """string""", """col_2""": """string""", """col_3""": """string"""}, {"""col_1""": """int32""", """col_2""": """int32""", """col_3""": """int32"""}, {"""col_1""": """float32""", """col_2""": """float32""", """col_3""": """float32"""}, ] , ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowercase : Union[str, Any] = tmp_path / """cache""" lowercase : int = {"""col_1""": """string""", """col_2""": """int64""", """col_3""": """float64"""} lowercase : str = features.copy() if features else default_expected_features lowercase : Optional[Any] = ( Features({feature: Value(SCREAMING_SNAKE_CASE__ ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase : Optional[int] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , features=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ ).read() _check_sql_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ ) -> List[Any]: with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE__ ) ) as con: lowercase : Optional[int] = con.cursor() cur.execute("""SELECT * FROM dataset""" ) for row in cur: yield row @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Any = tmp_path / """cache""" lowercase : int = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=1 ).write() lowercase : List[str] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : Tuple = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase : Dict = tmp_path / """cache""" lowercase : List[str] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : List[str] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=2 ).write() lowercase : Optional[int] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = iter_sql_file(SCREAMING_SNAKE_CASE__ ) for rowa, rowa in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert rowa == rowa @require_sqlalchemy def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[str]: lowercase : str = tmp_path / """cache""" lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , """tmp.sql""" ) lowercase : Optional[Any] = SqlDatasetReader("""dataset""" , """sqlite:///""" + sqlite_path , cache_dir=SCREAMING_SNAKE_CASE__ ).read() with pytest.raises(SCREAMING_SNAKE_CASE__ ): SqlDatasetWriter(SCREAMING_SNAKE_CASE__ , """dataset""" , """sqlite:///""" + output_sqlite_path , num_proc=0 ).write()
20
1
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a__ ( ): SCREAMING_SNAKE_CASE_ : Dict = ArgumentParser( description=( 'PyTorch TPU distributed training launch ' 'helper utility that will spawn up ' 'multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores', type=lowercase_, default=1, help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script', type=lowercase_, help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ), ) # rest from the training program parser.add_argument('training_script_args', nargs=lowercase_ ) return parser.parse_args() def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = parse_args() # Import training_script as a module. SCREAMING_SNAKE_CASE_ : str = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) SCREAMING_SNAKE_CASE_ : Any = script_fpath.stem SCREAMING_SNAKE_CASE_ : Optional[Any] = importlib.import_module(lowercase_ ) # Patch sys.argv SCREAMING_SNAKE_CASE_ : List[str] = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn, args=(), nprocs=args.num_cores ) if __name__ == "__main__": main()
362
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None def a__ ( ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(1 ) SCREAMING_SNAKE_CASE_ : Any = Node(2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(3 ) SCREAMING_SNAKE_CASE_ : int = Node(4 ) SCREAMING_SNAKE_CASE_ : List[str] = Node(5 ) return tree def a__ ( A__ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a__ ( A__ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a__ ( A__ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a__ ( A__ ): return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] if root is None: return output SCREAMING_SNAKE_CASE_ : int = deque([root] ) while process_queue: SCREAMING_SNAKE_CASE_ : List[str] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] def populate_output(A__, A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(A__, A__ ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] def populate_output(A__, A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(A__, A__ ) return output def a__ ( A__ ): if root is None: return [] SCREAMING_SNAKE_CASE_ : list[Sequence[Node | None]] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = height(A__ ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 return output def a__ ( ): # Main function for testing. SCREAMING_SNAKE_CASE_ : Optional[int] = make_tree() print(F'''In-order Traversal: {inorder(A__ )}''' ) print(F'''Pre-order Traversal: {preorder(A__ )}''' ) print(F'''Post-order Traversal: {postorder(A__ )}''', '\n' ) print(F'''Height of Tree: {height(A__ )}''', '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A__ ), '\n' ) print('Level-wise order Traversal: ' ) for level in range(1, height(A__ ) + 1 ): print(F'''Level {level}:''', get_nodes_from_left_to_right(A__, level=A__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
162
0
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( 'split_dict' , [ SplitDict(), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 , dataset_name='my_dataset' )} ), SplitDict({'train': SplitInfo(name='train' , num_bytes=13_37 , num_examples=42 )} ), SplitDict({'train': SplitInfo()} ), ] , ) def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase : Tuple = split_dict._to_yaml_list() assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) UpperCAmelCase : Dict = SplitDict._from_yaml_list(UpperCAmelCase_ ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCAmelCase : Dict = None # the split name of split_dict takes over the name of the split info object UpperCAmelCase : List[Any] = split_name assert split_dict == reloaded @pytest.mark.parametrize( 'split_info' , [SplitInfo(), SplitInfo(dataset_name=UpperCAmelCase_ ), SplitInfo(dataset_name='my_dataset' )] ) def UpperCamelCase( UpperCAmelCase_ ): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCAmelCase : Union[str, Any] = asdict(SplitDict({'train': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
151
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class A_ : '''simple docstring''' def __init__( self : Any , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=2 , lowercase_ : str=True , lowercase_ : Optional[int]=False , lowercase_ : List[str]=10 , lowercase_ : Optional[Any]=3 , lowercase_ : List[str]=32 * 4 , lowercase_ : str=32 * 6 , lowercase_ : List[Any]=4 , lowercase_ : List[Any]=32 , ) -> Optional[int]: UpperCAmelCase : List[str] = parent UpperCAmelCase : int = batch_size UpperCAmelCase : int = is_training UpperCAmelCase : int = use_auxiliary_loss UpperCAmelCase : List[Any] = num_queries UpperCAmelCase : List[str] = num_channels UpperCAmelCase : List[str] = min_size UpperCAmelCase : Dict = max_size UpperCAmelCase : Tuple = num_labels UpperCAmelCase : str = mask_feature_size def UpperCAmelCase_ ( self : int ) -> int: UpperCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( lowercase_ ) UpperCAmelCase : Tuple = torch.ones([self.batch_size, self.min_size, self.max_size] , device=lowercase_ ) UpperCAmelCase : str = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=lowercase_ ) > 0.5 ).float() UpperCAmelCase : Optional[Any] = (torch.rand((self.batch_size, self.num_labels) , device=lowercase_ ) > 0.5).long() UpperCAmelCase : Optional[int] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def UpperCAmelCase_ ( self : Dict ) -> Dict: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = self.prepare_config_and_inputs() UpperCAmelCase : Optional[Any] = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def UpperCAmelCase_ ( self : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Tuple ) -> int: UpperCAmelCase : int = output.encoder_hidden_states UpperCAmelCase : Any = output.pixel_decoder_hidden_states UpperCAmelCase : int = output.transformer_decoder_hidden_states self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(lowercase_ ) , config.decoder_config.decoder_layers ) def UpperCAmelCase_ ( self : List[str] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict=False ) -> Tuple: with torch.no_grad(): UpperCAmelCase : str = MaskFormerModel(config=lowercase_ ) model.to(lowercase_ ) model.eval() UpperCAmelCase : List[str] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Union[str, Any] = model(lowercase_ , output_hidden_states=lowercase_ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(lowercase_ , lowercase_ ) def UpperCAmelCase_ ( self : Dict , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : Dict , lowercase_ : Dict , lowercase_ : str ) -> Union[str, Any]: UpperCAmelCase : Union[str, Any] = MaskFormerForInstanceSegmentation(config=lowercase_ ) model.to(lowercase_ ) model.eval() def comm_check_on_output(lowercase_ : Union[str, Any] ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase : Optional[Any] = model(pixel_values=lowercase_ , pixel_mask=lowercase_ ) UpperCAmelCase : Dict = model(lowercase_ ) comm_check_on_output(lowercase_ ) UpperCAmelCase : Any = model( pixel_values=lowercase_ , pixel_mask=lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) comm_check_on_output(lowercase_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class A_ ( _snake_case , _snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ : str = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase_ : Optional[Any] = ( {"""feature-extraction""": MaskFormerModel, """image-segmentation""": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase_ : int = False UpperCAmelCase_ : List[Any] = False UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : Tuple = False def UpperCAmelCase_ ( self : Any ) -> int: UpperCAmelCase : Optional[Any] = MaskFormerModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ ) def UpperCAmelCase_ ( self : str ) -> Union[str, Any]: self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Any ) -> Any: UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*lowercase_ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def UpperCAmelCase_ ( self : Optional[int] ) -> str: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def UpperCAmelCase_ ( self : str ) -> List[str]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def UpperCAmelCase_ ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase_ ( self : int ) -> List[Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: pass def UpperCAmelCase_ ( self : Dict ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : Tuple = model_class(lowercase_ ) UpperCAmelCase : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()] UpperCAmelCase : str = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase_ ) @slow def UpperCAmelCase_ ( self : Any ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: UpperCAmelCase : Tuple = MaskFormerModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase : Optional[Any] = (self.model_tester.min_size,) * 2 UpperCAmelCase : str = { 'pixel_values': torch.randn((2, 3, *size) , device=lowercase_ ), 'mask_labels': torch.randn((2, 10, *size) , device=lowercase_ ), 'class_labels': torch.zeros(2 , 10 , device=lowercase_ ).long(), } UpperCAmelCase : List[str] = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(lowercase_ ) UpperCAmelCase : Optional[int] = model(**lowercase_ ) self.assertTrue(outputs.loss is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(lowercase_ , **lowercase_ , output_hidden_states=lowercase_ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : List[Any] = model_class(lowercase_ ).to(lowercase_ ) UpperCAmelCase : List[Any] = model(**lowercase_ , output_attentions=lowercase_ ) self.assertTrue(outputs.attentions is not None ) def UpperCAmelCase_ ( self : Dict ) -> str: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Dict = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : Any = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : Tuple = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ).loss loss.backward() def UpperCAmelCase_ ( self : List[str] ) -> str: # only MaskFormerForInstanceSegmentation has the loss UpperCAmelCase : Optional[int] = self.all_model_classes[1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() UpperCAmelCase : List[str] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[Any] = model_class(lowercase_ ) model.to(lowercase_ ) model.train() UpperCAmelCase : List[str] = model(lowercase_ , mask_labels=lowercase_ , class_labels=lowercase_ ) UpperCAmelCase : Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase : Optional[int] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't UpperCAmelCase : Any = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase : Tuple = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=lowercase_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowercase__ = 1e-4 def UpperCamelCase( ): UpperCAmelCase : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class A_ ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def UpperCAmelCase_ ( self : List[Any] ) -> Tuple: UpperCAmelCase : List[Any] = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(lowercase_ ) UpperCAmelCase : Dict = self.default_image_processor UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Optional[Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : List[Any] = model(**lowercase_ ) UpperCAmelCase : str = torch.tensor( [[-0.0482, 0.9228, 0.4951], [-0.2547, 0.8017, 0.8527], [-0.0069, 0.3385, -0.0089]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[-0.8422, -0.8434, -0.9718], [-1.0144, -0.5565, -0.4195], [-1.0038, -0.4484, -0.1961]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) UpperCAmelCase : Tuple = torch.tensor( [[0.2852, -0.0159, 0.9735], [0.6254, 0.1858, 0.8529], [-0.0680, -0.4116, 1.8413]] ).to(lowercase_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : List[str] ) -> int: UpperCAmelCase : Optional[int] = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : int = self.default_image_processor UpperCAmelCase : Any = prepare_img() UpperCAmelCase : List[Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : Union[str, Any] = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : Tuple = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : Optional[int] = [ [-1.373_7124, -1.772_4937, -1.936_4233], [-1.597_7281, -1.986_7939, -2.152_3695], [-1.579_5398, -1.926_9832, -2.09_3942], ] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Tuple = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Optional[Any] = torch.tensor( [ [1.6512E00, -5.2572E00, -3.3519E00], [3.6169E-02, -5.9025E00, -2.9313E00], [1.0766E-04, -7.7630E00, -5.1263E00], ] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : int ) -> Union[str, Any]: UpperCAmelCase : str = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : str = self.default_image_processor UpperCAmelCase : str = prepare_img() UpperCAmelCase : Union[str, Any] = image_processor(lowercase_ , return_tensors='pt' ).to(lowercase_ ) UpperCAmelCase : str = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(lowercase_ , (1, 3, 800, 1_088) ) with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) # masks_queries_logits UpperCAmelCase : int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) UpperCAmelCase : int = [[-0.9046, -2.6366, -4.6062], [-3.4179, -5.7890, -8.8057], [-4.9179, -7.6560, -10.7711]] UpperCAmelCase : str = torch.tensor(lowercase_ ).to(lowercase_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , lowercase_ , atol=lowercase_ ) ) # class_queries_logits UpperCAmelCase : Union[str, Any] = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase : Dict = torch.tensor( [[4.7188, -3.2585, -2.8857], [6.6871, -2.9181, -1.2487], [7.2449, -2.2764, -2.1874]] ).to(lowercase_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , lowercase_ , atol=lowercase_ ) ) def UpperCAmelCase_ ( self : Any ) -> Dict: UpperCAmelCase : Any = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(lowercase_ ) .eval() ) UpperCAmelCase : Union[str, Any] = self.default_image_processor UpperCAmelCase : Optional[int] = image_processor( [np.zeros((3, 800, 1_333) ), np.zeros((3, 800, 1_333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors='pt' , ) UpperCAmelCase : Optional[int] = inputs['pixel_values'].to(lowercase_ ) UpperCAmelCase : Optional[Any] = [el.to(lowercase_ ) for el in inputs['mask_labels']] UpperCAmelCase : List[str] = [el.to(lowercase_ ) for el in inputs['class_labels']] with torch.no_grad(): UpperCAmelCase : Tuple = model(**lowercase_ ) self.assertTrue(outputs.loss is not None )
151
1
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase ( a__ , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = TextToVideoSDPipeline A_ : List[Any] = TEXT_TO_IMAGE_PARAMS A_ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. A_ : List[Any] = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'return_dict', 'callback', 'callback_steps', ] ) def _UpperCAmelCase ( self ) -> Union[str, Any]: torch.manual_seed(0 ) _a = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=32 , attention_head_dim=4 , ) _a = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , ) torch.manual_seed(0 ) _a = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) _a = CLIPTextModel(__UpperCAmelCase ) _a = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _a = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ) -> Dict: if str(__UpperCAmelCase ).startswith('''mps''' ): _a = torch.manual_seed(__UpperCAmelCase ) else: _a = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) _a = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def _UpperCAmelCase ( self ) -> List[str]: _a = '''cpu''' # ensure determinism for the device-dependent torch.Generator _a = self.get_dummy_components() _a = TextToVideoSDPipeline(**__UpperCAmelCase ) _a = sd_pipe.to(__UpperCAmelCase ) sd_pipe.set_progress_bar_config(disable=__UpperCAmelCase ) _a = self.get_dummy_inputs(__UpperCAmelCase ) _a = '''np''' _a = sd_pipe(**__UpperCAmelCase ).frames _a = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _a = np.array([158.0, 160.0, 153.0, 125.0, 100.0, 121.0, 111.0, 93.0, 113.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _UpperCAmelCase ( self ) -> List[str]: self._test_attention_slicing_forward_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=3e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _UpperCAmelCase ( self ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=__UpperCAmelCase , expected_max_diff=1e-2 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase ( self ) -> str: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase ( self ) -> int: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def _UpperCAmelCase ( self ) -> Tuple: pass def _UpperCAmelCase ( self ) -> Optional[Any]: return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCAmelCase ( self ) -> List[Any]: _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy''' ) _a = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) _a = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _a = pipe.to('''cuda''' ) _a = '''Spiderman is surfing''' _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=25 , output_type='''pt''' ).frames _a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2 def _UpperCAmelCase ( self ) -> str: _a = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy''' ) _a = TextToVideoSDPipeline.from_pretrained('''damo-vilab/text-to-video-ms-1.7b''' ) _a = pipe.to('''cuda''' ) _a = '''Spiderman is surfing''' _a = torch.Generator(device='''cpu''' ).manual_seed(0 ) _a = pipe(__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=2 , output_type='''pt''' ).frames _a = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5e-2
353
"""simple docstring""" from pathlib import Path import fire from tqdm import tqdm def A_ ( _lowerCAmelCase : str="ro", _lowerCAmelCase : Optional[Any]="en", _lowerCAmelCase : Union[str, Any]="wmt16", _lowerCAmelCase : int=None ): """simple docstring""" try: import datasets except (ModuleNotFoundError, ImportError): raise ImportError('''run pip install datasets''' ) _a = f'{src_lang}-{tgt_lang}' print(f'Converting {dataset}-{pair}' ) _a = datasets.load_dataset(_lowerCAmelCase, _lowerCAmelCase ) if save_dir is None: _a = f'{dataset}-{pair}' _a = Path(_lowerCAmelCase ) save_dir.mkdir(exist_ok=_lowerCAmelCase ) for split in ds.keys(): print(f'Splitting {split} with {ds[split].num_rows} records' ) # to save to val.source, val.target like summary datasets _a = '''val''' if split == '''validation''' else split _a = save_dir.joinpath(f'{fn}.source' ) _a = save_dir.joinpath(f'{fn}.target' ) _a = src_path.open('''w+''' ) _a = tgt_path.open('''w+''' ) # reader is the bottleneck so writing one record at a time doesn't slow things down for x in tqdm(ds[split] ): _a = x['''translation'''] src_fp.write(ex[src_lang] + '''\n''' ) tgt_fp.write(ex[tgt_lang] + '''\n''' ) print(f'Saved {dataset} dataset to {save_dir}' ) if __name__ == "__main__": fire.Fire(download_wmt_dataset)
153
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { '''configuration_speecht5''': [ '''SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP''', '''SpeechT5Config''', '''SpeechT5HifiGanConfig''', ], '''feature_extraction_speecht5''': ['''SpeechT5FeatureExtractor'''], '''processing_speecht5''': ['''SpeechT5Processor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ['''SpeechT5Tokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ '''SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SpeechT5ForSpeechToText''', '''SpeechT5ForSpeechToSpeech''', '''SpeechT5ForTextToSpeech''', '''SpeechT5Model''', '''SpeechT5PreTrainedModel''', '''SpeechT5HifiGan''', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
301
"""simple docstring""" def lowercase (_lowerCAmelCase ): __lowerCAmelCase = [[0 for _ in range(_lowerCAmelCase )] for _ in range(m + 1 )] for i in range(m + 1 ): __lowerCAmelCase = 1 for n in range(m + 1 ): for k in range(1 , _lowerCAmelCase ): memo[n][k] += memo[n][k - 1] if n - k > 0: memo[n][k] += memo[n - k - 1][k] return memo[m][m - 1] if __name__ == "__main__": import sys if len(sys.argv) == 1: try: SCREAMING_SNAKE_CASE_ = int(input('''Enter a number: ''').strip()) print(partition(n)) except ValueError: print('''Please enter a number.''') else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(partition(n)) except ValueError: print('''Please pass a number.''')
301
1
from __future__ import annotations import bisect def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: lowerCAmelCase : str = len(_UpperCAmelCase ) while lo < hi: lowerCAmelCase : int = lo + (hi - lo) // 2 if sorted_collection[mid] < item: lowerCAmelCase : int = mid + 1 else: lowerCAmelCase : int = mid return lo def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> int: '''simple docstring''' if hi < 0: lowerCAmelCase : str = len(_UpperCAmelCase ) while lo < hi: lowerCAmelCase : Any = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: lowerCAmelCase : Optional[Any] = mid + 1 else: lowerCAmelCase : Optional[Any] = mid return lo def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase = 0, _UpperCAmelCase = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ), _UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int | None: '''simple docstring''' lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : List[Any] = len(_UpperCAmelCase ) - 1 while left <= right: lowerCAmelCase : Tuple = left + (right - left) // 2 lowerCAmelCase : str = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: lowerCAmelCase : Tuple = midpoint - 1 else: lowerCAmelCase : Optional[Any] = midpoint + 1 return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> int | None: '''simple docstring''' lowerCAmelCase : Dict = bisect.bisect_left(_UpperCAmelCase, _UpperCAmelCase ) if index != len(_UpperCAmelCase ) and sorted_collection[index] == item: return index return None def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> int | None: '''simple docstring''' if right < left: return None lowerCAmelCase : Tuple = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, midpoint - 1 ) else: return binary_search_by_recursion(_UpperCAmelCase, _UpperCAmelCase, midpoint + 1, _UpperCAmelCase ) if __name__ == "__main__": __A : Union[str, Any] = input('''Enter numbers separated by comma:\n''').strip() __A : Dict = sorted(int(item) for item in user_input.split(''',''')) __A : List[str] = int(input('''Enter a single number to be found in the list:\n''')) __A : List[str] = binary_search(collection, target) if result is None: print(F'{target} was not found in {collection}.') else: print(F'{target} was found at position {result} in {collection}.')
323
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A : List[Any] = { '''configuration_xlm_roberta''': [ '''XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaConfig''', '''XLMRobertaOnnxConfig''', ], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ['''XLMRobertaTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : int = ['''XLMRobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ '''XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaForCausalLM''', '''XLMRobertaForMaskedLM''', '''XLMRobertaForMultipleChoice''', '''XLMRobertaForQuestionAnswering''', '''XLMRobertaForSequenceClassification''', '''XLMRobertaForTokenClassification''', '''XLMRobertaModel''', '''XLMRobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = [ '''TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMRobertaForCausalLM''', '''TFXLMRobertaForMaskedLM''', '''TFXLMRobertaForMultipleChoice''', '''TFXLMRobertaForQuestionAnswering''', '''TFXLMRobertaForSequenceClassification''', '''TFXLMRobertaForTokenClassification''', '''TFXLMRobertaModel''', '''TFXLMRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ '''FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FlaxXLMRobertaForMaskedLM''', '''FlaxXLMRobertaForCausalLM''', '''FlaxXLMRobertaForMultipleChoice''', '''FlaxXLMRobertaForQuestionAnswering''', '''FlaxXLMRobertaForSequenceClassification''', '''FlaxXLMRobertaForTokenClassification''', '''FlaxXLMRobertaModel''', '''FlaxXLMRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaConfig, XLMRobertaOnnxConfig, ) try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta import XLMRobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlm_roberta_fast import XLMRobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta import ( XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaForCausalLM, XLMRobertaForMaskedLM, XLMRobertaForMultipleChoice, XLMRobertaForQuestionAnswering, XLMRobertaForSequenceClassification, XLMRobertaForTokenClassification, XLMRobertaModel, XLMRobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm_roberta import ( TF_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMRobertaForCausalLM, TFXLMRobertaForMaskedLM, TFXLMRobertaForMultipleChoice, TFXLMRobertaForQuestionAnswering, TFXLMRobertaForSequenceClassification, TFXLMRobertaForTokenClassification, TFXLMRobertaModel, TFXLMRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xlm_roberta import ( FLAX_XLM_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxXLMRobertaForCausalLM, FlaxXLMRobertaForMaskedLM, FlaxXLMRobertaForMultipleChoice, FlaxXLMRobertaForQuestionAnswering, FlaxXLMRobertaForSequenceClassification, FlaxXLMRobertaForTokenClassification, FlaxXLMRobertaModel, FlaxXLMRobertaPreTrainedModel, ) else: import sys __A : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
323
1
_A : Optional[Any] = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} _A : List[Any] = ['a', 'b', 'c', 'd', 'e'] def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : List[Any] = start # add current to visited visited.append(UpperCAmelCase ) lowerCamelCase__ : Any = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: lowerCamelCase__ : Optional[int] = topological_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # if all neighbors visited add current to sort sort.append(UpperCAmelCase ) # if all vertices haven't been visited select a new one to visit if len(UpperCAmelCase ) != len(UpperCAmelCase ): for vertice in vertices: if vertice not in visited: lowerCamelCase__ : Optional[int] = topological_sort(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # return sort return sort if __name__ == "__main__": _A : Any = topological_sort('a', [], []) print(sort)
142
from __future__ import annotations from typing import Any class __SCREAMING_SNAKE_CASE : def __init__( self : Tuple , A : int = 6 ) ->None: lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None self.create_linked_list(A ) def __lowerCamelCase ( self : Optional[int] , A : int ) ->None: lowerCamelCase__ : Optional[int] = Node() lowerCamelCase__ : List[str] = current_node lowerCamelCase__ : Union[str, Any] = current_node lowerCamelCase__ : List[str] = current_node for _ in range(1 , A ): lowerCamelCase__ : List[str] = Node() lowerCamelCase__ : List[Any] = current_node lowerCamelCase__ : Optional[Any] = previous_node lowerCamelCase__ : Dict = current_node lowerCamelCase__ : Union[str, Any] = self.front lowerCamelCase__ : int = previous_node def __lowerCamelCase ( self : Optional[int] ) ->bool: return ( self.front == self.rear and self.front is not None and self.front.data is None ) def __lowerCamelCase ( self : Optional[int] ) ->Any | None: self.check_can_perform_operation() return self.front.data if self.front else None def __lowerCamelCase ( self : Optional[int] , A : Any ) ->None: if self.rear is None: return self.check_is_full() if not self.is_empty(): lowerCamelCase__ : List[str] = self.rear.next if self.rear: lowerCamelCase__ : Optional[Any] = data def __lowerCamelCase ( self : str ) ->Any: self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowerCamelCase__ : List[Any] = self.front.data lowerCamelCase__ : Optional[Any] = None return data lowerCamelCase__ : Optional[int] = self.front lowerCamelCase__ : Optional[int] = old_front.next lowerCamelCase__ : Any = old_front.data lowerCamelCase__ : List[str] = None return data def __lowerCamelCase ( self : Dict ) ->None: if self.is_empty(): raise Exception('''Empty Queue''' ) def __lowerCamelCase ( self : int ) ->None: if self.rear and self.rear.next == self.front: raise Exception('''Full Queue''' ) class __SCREAMING_SNAKE_CASE : def __init__( self : Optional[Any] ) ->None: lowerCamelCase__ : Any | None = None lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None if __name__ == "__main__": import doctest doctest.testmod()
142
1
'''simple docstring''' import unittest import numpy as np import requests from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: UpperCamelCase : Union[str, Any] = False if is_vision_available(): from PIL import Image from transformers import PixaStructImageProcessor class UpperCamelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : str=7 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Optional[Any]=1_8 , UpperCAmelCase_ : int=3_0 , UpperCAmelCase_ : int=4_0_0 , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : Union[str, Any]=None , ): """simple docstring""" a : Tuple = size if size is not None else {'''height''': 2_0, '''width''': 2_0} a : Optional[Any] = parent a : Optional[int] = batch_size a : List[Any] = num_channels a : List[Any] = image_size a : int = min_resolution a : Tuple = max_resolution a : Tuple = size a : Tuple = do_normalize a : Dict = do_convert_rgb a : List[str] = [5_1_2, 1_0_2_4, 2_0_4_8, 4_0_9_6] a : Any = patch_size if patch_size is not None else {'''height''': 1_6, '''width''': 1_6} def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" return {"do_normalize": self.do_normalize, "do_convert_rgb": self.do_convert_rgb} def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : List[Any] = '''https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/australia.jpg''' a : int = Image.open(requests.get(_a , stream=_a).raw).convert('RGB') return raw_image @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): """simple docstring""" A : List[Any] = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : List[Any]): """simple docstring""" a : Optional[int] = PixaStructImageProcessingTester(self) @property def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_a , 'do_normalize')) self.assertTrue(hasattr(_a , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : List[str] = self.image_processor_tester.prepare_dummy_image() a : Optional[int] = self.image_processing_class(**self.image_processor_dict) a : Any = 2_0_4_8 a : Dict = image_processor(_a , return_tensors='pt' , max_patches=_a) self.assertTrue(torch.allclose(inputs.flattened_patches.mean() , torch.tensor(0.06_06) , atol=1e-3 , rtol=1e-3)) def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : List[str] = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a) for image in image_inputs: self.assertIsInstance(_a , Image.Image) # Test not batched input a : Optional[Any] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a : str = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a : Union[str, Any] = image_processor( _a , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : Optional[int] = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a) for image in image_inputs: self.assertIsInstance(_a , Image.Image) # Test not batched input a : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 a : str = True for max_patch in self.image_processor_tester.max_patches: # Test not batched input with self.assertRaises(_a): a : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_a).flattened_patches a : Any = '''Hello''' a : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_a , header_text=_a).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a : int = image_processor( _a , return_tensors='pt' , max_patches=_a , header_text=_a).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" a : List[str] = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors a : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , numpify=_a) for image in image_inputs: self.assertIsInstance(_a , np.ndarray) a : str = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a : Optional[Any] = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a : List[Any] = image_processor( _a , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) def SCREAMING_SNAKE_CASE_ ( self : Any): """simple docstring""" a : int = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors a : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a , torchify=_a) for image in image_inputs: self.assertIsInstance(_a , torch.Tensor) # Test not batched input a : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * self.image_processor_tester.num_channels ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a : Any = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a : Any = image_processor( _a , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , ) @unittest.skipIf( not is_torch_greater_or_equal_than_1_11 , reason="`Pix2StructImageProcessor` requires `torch>=1.11.0`." , ) @require_torch @require_vision class UpperCamelCase ( __lowercase , unittest.TestCase ): """simple docstring""" A : List[str] = PixaStructImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self : int): """simple docstring""" a : Any = PixaStructImageProcessingTester(self , num_channels=4) a : Tuple = 3 @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any]): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self : Dict): """simple docstring""" a : List[Any] = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(_a , 'do_normalize')) self.assertTrue(hasattr(_a , 'do_convert_rgb')) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any]): """simple docstring""" a : List[Any] = self.image_processing_class(**self.image_processor_dict) # create random PIL images a : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=_a) for image in image_inputs: self.assertIsInstance(_a , Image.Image) # Test not batched input a : List[str] = ( (self.image_processor_tester.patch_size['''height'''] * self.image_processor_tester.patch_size['''width''']) * (self.image_processor_tester.num_channels - 1) ) + 2 for max_patch in self.image_processor_tester.max_patches: # Test not batched input a : Dict = image_processor( image_inputs[0] , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (1, max_patch, expected_hidden_dim) , ) # Test batched a : str = image_processor( _a , return_tensors='pt' , max_patches=_a).flattened_patches self.assertEqual( encoded_images.shape , (self.image_processor_tester.batch_size, max_patch, expected_hidden_dim) , )
365
'''simple docstring''' import copy import random from transformers import CLIPTokenizer class UpperCamelCase ( a_ ): """simple docstring""" def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Any): """simple docstring""" super().__init__(*UpperCAmelCase_ , **UpperCAmelCase_) a : str = {} def SCREAMING_SNAKE_CASE_ ( self : int , UpperCAmelCase_ : Tuple , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : int): """simple docstring""" a : Dict = super().add_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) if num_added_tokens == 0: raise ValueError( f"""The tokenizer already contains the token {placeholder_token}. Please pass a different""" ' `placeholder_token` that is not already in the tokenizer.') def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str]=1 , **UpperCAmelCase_ : Optional[int]): """simple docstring""" a : Any = [] if num_vec_per_token == 1: self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) else: a : int = [] for i in range(UpperCAmelCase_): a : Union[str, Any] = placeholder_token + f"""_{i}""" self.try_adding_tokens(UpperCAmelCase_ , *UpperCAmelCase_ , **UpperCAmelCase_) output.append(UpperCAmelCase_) # handle cases where there is a new placeholder token that contains the current placeholder token but is larger for token in self.token_map: if token in placeholder_token: raise ValueError( f"""The tokenizer already has placeholder token {token} that can get confused with""" f""" {placeholder_token}keep placeholder tokens independent""") a : Any = output def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : str=1.0): """simple docstring""" if isinstance(UpperCAmelCase_ , UpperCAmelCase_): a : Any = [] for i in range(len(UpperCAmelCase_)): output.append(self.replace_placeholder_tokens_in_text(text[i] , vector_shuffle=UpperCAmelCase_)) return output for placeholder_token in self.token_map: if placeholder_token in text: a : List[Any] = self.token_map[placeholder_token] a : int = tokens[: 1 + int(len(UpperCAmelCase_) * prop_tokens_to_load)] if vector_shuffle: a : List[Any] = copy.copy(UpperCAmelCase_) random.shuffle(UpperCAmelCase_) a : List[str] = text.replace(UpperCAmelCase_ , ' '.join(UpperCAmelCase_)) return text def __call__( self : Optional[int] , UpperCAmelCase_ : Any , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Optional[int]=1.0 , **UpperCAmelCase_ : str): """simple docstring""" return super().__call__( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ ( self : Dict , UpperCAmelCase_ : Optional[int] , *UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any=False , UpperCAmelCase_ : Optional[Any]=1.0 , **UpperCAmelCase_ : Dict): """simple docstring""" return super().encode( self.replace_placeholder_tokens_in_text( UpperCAmelCase_ , vector_shuffle=UpperCAmelCase_ , prop_tokens_to_load=UpperCAmelCase_) , *UpperCAmelCase_ , **UpperCAmelCase_ , )
345
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' @property def _A ( self : List[str] ): torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _A ( self : int ): _UpperCAmelCase : Optional[Any] = self.dummy_uncond_unet _UpperCAmelCase : Any = ScoreSdeVeScheduler() _UpperCAmelCase : str = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) _UpperCAmelCase : List[str] = torch.manual_seed(0 ) _UpperCAmelCase : List[str] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=A ).images _UpperCAmelCase : Optional[int] = torch.manual_seed(0 ) _UpperCAmelCase : List[Any] = sde_ve(num_inference_steps=2 , output_type="numpy" , generator=A , return_dict=A )[ 0 ] _UpperCAmelCase : Tuple = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCAmelCase : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class lowerCamelCase_ (unittest.TestCase ): '''simple docstring''' def _A ( self : int ): _UpperCAmelCase : int = "google/ncsnpp-church-256" _UpperCAmelCase : Any = UNetaDModel.from_pretrained(A ) _UpperCAmelCase : List[Any] = ScoreSdeVeScheduler.from_pretrained(A ) _UpperCAmelCase : Union[str, Any] = ScoreSdeVePipeline(unet=A , scheduler=A ) sde_ve.to(A ) sde_ve.set_progress_bar_config(disable=A ) _UpperCAmelCase : int = torch.manual_seed(0 ) _UpperCAmelCase : Tuple = sde_ve(num_inference_steps=10 , output_type="numpy" , generator=A ).images _UpperCAmelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCAmelCase : int = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
31
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A__ : lowercase = 42 lowercase = None lowercase = None def UpperCAmelCase__ ( ) -> Node | None: A_ = Node(1 ) A_ = Node(2 ) A_ = Node(3 ) A_ = Node(4 ) A_ = Node(5 ) return tree def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Sequence[Node | None]: A_ = [] if root is None: return output A_ = deque([root] ) while process_queue: A_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Sequence[Node | None]: A_ = [] def populate_output(UpperCAmelCase__, UpperCAmelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(UpperCAmelCase__, UpperCAmelCase__ ) return output def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Sequence[Node | None]: A_ = [] def populate_output(UpperCAmelCase__, UpperCAmelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(UpperCAmelCase__, UpperCAmelCase__ ) return output def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Sequence[Node | None] | list[Any]: if root is None: return [] A_ = [] A_ = 0 A_ = height(UpperCAmelCase__ ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCAmelCase__, UpperCAmelCase__ ) ) A_ = 1 else: output.append(get_nodes_from_right_to_left(UpperCAmelCase__, UpperCAmelCase__ ) ) A_ = 0 return output def UpperCAmelCase__ ( ) -> None: # Main function for testing. A_ = make_tree() print(F'''In-order Traversal: {inorder(UpperCAmelCase__ )}''' ) print(F'''Pre-order Traversal: {preorder(UpperCAmelCase__ )}''' ) print(F'''Post-order Traversal: {postorder(UpperCAmelCase__ )}''', """\n""" ) print(F'''Height of Tree: {height(UpperCAmelCase__ )}''', """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(UpperCAmelCase__ ), """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1, height(UpperCAmelCase__ ) + 1 ): print(F'''Level {level}:''', get_nodes_from_left_to_right(UpperCAmelCase__, level=UpperCAmelCase__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
162
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [ [ 8.2220991, # 3rd highest value; idx. 0 -0.5620044, 5.23229752, 4.0386393, -6.8798378, -0.54785802, -3.2012153, 2.92777176, 1.88171953, 7.35341276, # 5th highest value; idx. 9 8.43207833, # 2nd highest value; idx. 10 -9.85711836, -5.96209236, -1.13039161, -7.1115294, -0.8369633, -5.3186408, 7.06427407, 0.81369344, -0.82023817, -5.9179796, 0.58813443, -6.99778438, 4.71551189, -0.18771637, 7.44020759, # 4th highest value; idx. 25 9.38450987, # 1st highest value; idx. 26 2.12662941, -9.32562038, 2.35652522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.58425518, 4.53139238, -5.57510464, -6.28030699, -7.19529503, -4.02122551, 1.39337037, -6.06707057, 1.59480517, -9.643119, 0.03907799, 0.67231762, -8.88206726, 6.27115922, # 4th highest value; idx. 13 2.28520723, 4.82767506, 4.30421368, 8.8275313, # 2nd highest value; idx. 17 5.44029958, # 5th highest value; idx. 18 -4.4735794, 7.38579536, # 3rd highest value; idx. 20 -2.91051663, 2.61946077, -2.5674762, -9.48959302, -4.02922645, -1.35416918, 9.67702323, # 1st highest value; idx. 27 -5.89478553, 1.85370467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __SCREAMING_SNAKE_CASE = tf.convert_to_tensor( [8.222099, 7.3534126, 8.432078, 7.4402075, 9.38451, 6.271159, 8.827531, 5.4402995, 7.3857956, 9.677023] , dtype=tf.floataa , ) # expected non filtered values as noted above __SCREAMING_SNAKE_CASE = tf_top_k_top_p_filtering(__SCREAMING_SNAKE_CASE , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __SCREAMING_SNAKE_CASE = output[output != -float("""inf""" )] __SCREAMING_SNAKE_CASE = tf.cast( tf.where(tf.not_equal(__SCREAMING_SNAKE_CASE , tf.constant(-float("""inf""" ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , rtol=1E-12 ) tf.debugging.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_tf class lowerCAmelCase__ ( unittest.TestCase , a ): """simple docstring""" if is_tf_available(): lowerCAmelCase__ = { "AutoModelForCausalLM": TFAutoModelForCausalLM, "AutoModelForSpeechSeq2Seq": TFAutoModelForSpeechSeqaSeq, "AutoModelForSeq2SeqLM": TFAutoModelForSeqaSeqLM, "AutoModelForVision2Seq": TFAutoModelForVisionaSeq, "LogitsProcessorList": TFLogitsProcessorList, "MinLengthLogitsProcessor": TFMinLengthLogitsProcessor, "create_tensor_fn": tf.convert_to_tensor, "floats_tensor": floats_tensor, "return_tensors": "tf", } @slow def UpperCAmelCase__ ( self : List[str] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = 2 class lowerCAmelCase__ ( tf.Module ): """simple docstring""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple ) -> List[str]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() __SCREAMING_SNAKE_CASE = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((None, input_length) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ) return {"sequences": outputs["sequences"]} __SCREAMING_SNAKE_CASE = [[2, 0], [102, 103]] __SCREAMING_SNAKE_CASE = [[1, 0], [1, 1]] __SCREAMING_SNAKE_CASE = DummyModel(model=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , signatures={"""serving_default""": dummy_model.serving} ) __SCREAMING_SNAKE_CASE = tf.saved_model.load(__SCREAMING_SNAKE_CASE ).signatures["""serving_default"""] for batch_size in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 ): __SCREAMING_SNAKE_CASE = { """input_ids""": tf.constant(dummy_input_ids[:batch_size] ), """attention_mask""": tf.constant(dummy_attention_masks[:batch_size] ), } __SCREAMING_SNAKE_CASE = serving_func(**__SCREAMING_SNAKE_CASE )["""sequences"""] __SCREAMING_SNAKE_CASE = test_model.generate(**__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE ) tf.debugging.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 2 class lowerCAmelCase__ ( tf.Module ): """simple docstring""" def __init__( self : str , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" super(__SCREAMING_SNAKE_CASE , self ).__init__() __SCREAMING_SNAKE_CASE = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name="""input_ids""" ), tf.TensorSpec((batch_size, None) , tf.intaa , name="""attention_mask""" ), ) , jit_compile=__SCREAMING_SNAKE_CASE , ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model.generate( input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE , return_dict_in_generate=__SCREAMING_SNAKE_CASE , ) return {"sequences": outputs["sequences"]} __SCREAMING_SNAKE_CASE = [[2], [102, 103]] __SCREAMING_SNAKE_CASE = [[1], [1, 1]] __SCREAMING_SNAKE_CASE = DummyModel(model=__SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , signatures={"""serving_default""": dummy_model.serving} ) __SCREAMING_SNAKE_CASE = tf.saved_model.load(__SCREAMING_SNAKE_CASE ).signatures["""serving_default"""] for input_row in range(len(__SCREAMING_SNAKE_CASE ) ): __SCREAMING_SNAKE_CASE = { """input_ids""": tf.constant([dummy_input_ids[input_row]] ), """attention_mask""": tf.constant([dummy_attention_masks[input_row]] ), } __SCREAMING_SNAKE_CASE = serving_func(**__SCREAMING_SNAKE_CASE )["""sequences"""] __SCREAMING_SNAKE_CASE = test_model.generate(**__SCREAMING_SNAKE_CASE , max_new_tokens=__SCREAMING_SNAKE_CASE ) tf.debugging.assert_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow @require_tensorflow_text def UpperCAmelCase__ ( self : str ) -> Union[str, Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id="""google/flan-t5-small""" , filename="""spiece.model""" , local_dir=__SCREAMING_SNAKE_CASE ) class lowerCAmelCase__ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Dict ) -> List[Any]: """simple docstring""" super().__init__() __SCREAMING_SNAKE_CASE = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(__SCREAMING_SNAKE_CASE , """spiece.model""" ) , """rb""" ).read() ) __SCREAMING_SNAKE_CASE = TFAutoModelForSeqaSeqLM.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : Optional[Any] , *__SCREAMING_SNAKE_CASE : Tuple , **__SCREAMING_SNAKE_CASE : Union[str, Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text.pad_model_inputs( __SCREAMING_SNAKE_CASE , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __SCREAMING_SNAKE_CASE = self.model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ) return self.tokenizer.detokenize(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CompleteSentenceTransformer() __SCREAMING_SNAKE_CASE = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name="""inputs""" ) __SCREAMING_SNAKE_CASE = complete_model(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tf.keras.Model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) keras_model.save(__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = { """do_sample""": True, """num_beams""": 1, """top_p""": 0.7, """top_k""": 10, """temperature""": 0.7, } __SCREAMING_SNAKE_CASE = 14 __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __SCREAMING_SNAKE_CASE = """Hello, my dog is cute and""" __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ) __SCREAMING_SNAKE_CASE = TFAutoModelForCausalLM.from_pretrained("""hf-internal-testing/tiny-random-gpt2""" ) __SCREAMING_SNAKE_CASE = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __SCREAMING_SNAKE_CASE = [638, 198] with tf.device(""":/CPU:0""" ): tf.random.set_seed(0 ) __SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE , eos_token_id=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def UpperCAmelCase__ ( self : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __SCREAMING_SNAKE_CASE = """Hugging Face is a technology company based in New York and Paris.""" __SCREAMING_SNAKE_CASE = bart_tokenizer(__SCREAMING_SNAKE_CASE , return_tensors="""tf""" ).input_ids __SCREAMING_SNAKE_CASE = TFBartForConditionalGeneration.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __SCREAMING_SNAKE_CASE = bart_model.generate(__SCREAMING_SNAKE_CASE ).numpy() class lowerCAmelCase__ ( a ): """simple docstring""" def UpperCAmelCase__ ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict=None , **__SCREAMING_SNAKE_CASE : int ) -> int: """simple docstring""" return super().call(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FakeBart.from_pretrained("""hf-internal-testing/tiny-random-bart""" ) __SCREAMING_SNAKE_CASE = bart_model.generate(__SCREAMING_SNAKE_CASE , foo="""bar""" ).numpy() self.assertTrue(np.array_equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) class lowerCAmelCase__ ( bart_model.model.encoder.__class__ ): """simple docstring""" def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Dict , **__SCREAMING_SNAKE_CASE : List[Any] ) -> Optional[int]: """simple docstring""" return super().call(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = FakeEncoder(bart_model.config , bart_model.model.shared ) __SCREAMING_SNAKE_CASE = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __SCREAMING_SNAKE_CASE = bart_model.generate(__SCREAMING_SNAKE_CASE ).numpy() with self.assertRaises(__SCREAMING_SNAKE_CASE ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(__SCREAMING_SNAKE_CASE , foo="""bar""" )
331
'''simple docstring''' def a__ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = len(a__ ) while cur > 1: # Find the maximum number in arr __SCREAMING_SNAKE_CASE = arr.index(max(arr[0:cur] ) ) # Reverse from 0 to mi __SCREAMING_SNAKE_CASE = arr[mi::-1] + arr[mi + 1 : len(a__ )] # Reverse whole list __SCREAMING_SNAKE_CASE = arr[cur - 1 :: -1] + arr[cur : len(a__ )] cur -= 1 return arr if __name__ == "__main__": UpperCAmelCase : Tuple = input('Enter numbers separated by a comma:\n').strip() UpperCAmelCase : str = [int(item) for item in user_input.split(',')] print(pancake_sort(unsorted))
331
1
import re from filelock import FileLock try: import nltk __lowerCAmelCase : str = True except (ImportError, ModuleNotFoundError): __lowerCAmelCase : Tuple = False if NLTK_AVAILABLE: with FileLock('.lock') as lock: nltk.download('punkt', quiet=True) def a__ ( A_ ): '''simple docstring''' re.sub("""<n>""", """""", A_ ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(A_ ) )
88
"""simple docstring""" def a__ ( _SCREAMING_SNAKE_CASE = 1_000 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
153
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.speechta import SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaProcessor from ..utils import is_datasets_available from .base import PipelineTool if is_datasets_available(): from datasets import load_dataset class lowerCamelCase__ ( __lowerCAmelCase ): '''simple docstring''' lowerCamelCase = '''microsoft/speecht5_tts''' lowerCamelCase = ( '''This is a tool that reads an English text out loud. It takes an input named `text` which should contain the ''' '''text to read (in English) and returns a waveform object containing the sound.''' ) lowerCamelCase = '''text_reader''' lowerCamelCase = SpeechTaProcessor lowerCamelCase = SpeechTaForTextToSpeech lowerCamelCase = SpeechTaHifiGan lowerCamelCase = ['''text'''] lowerCamelCase = ['''audio'''] def _lowerCAmelCase ( self ) -> Optional[int]: if self.post_processor is None: _lowerCAmelCase ="""microsoft/speecht5_hifigan""" super().setup() def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: _lowerCAmelCase =self.pre_processor(text=lowerCAmelCase_ , return_tensors="""pt""" , truncation=lowerCAmelCase_ ) if speaker_embeddings is None: if not is_datasets_available(): raise ImportError("""Datasets needs to be installed if not passing speaker embeddings.""" ) _lowerCAmelCase =load_dataset("""Matthijs/cmu-arctic-xvectors""" , split="""validation""" ) _lowerCAmelCase =torch.tensor(embeddings_dataset[73_05]["""xvector"""] ).unsqueeze(0 ) return {"input_ids": inputs["input_ids"], "speaker_embeddings": speaker_embeddings} def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: with torch.no_grad(): return self.model.generate_speech(**lowerCAmelCase_ ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: with torch.no_grad(): return self.post_processor(lowerCAmelCase_ ).cpu().detach()
365
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging __A = logging.get_logger(__name__) __A = {'vocab_file': 'spiece.model'} __A = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } __A = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) __A = 0 __A = 1 __A = 2 __A = 3 __A = 4 class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = '''left''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<sep>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<cls>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<eop>", "<eod>"] , __UpperCAmelCase = None , **__UpperCAmelCase , ) -> None: # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase =AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token _lowerCAmelCase ={} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase , remove_space=__UpperCAmelCase , keep_accents=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , ) _lowerCAmelCase =3 _lowerCAmelCase =do_lower_case _lowerCAmelCase =remove_space _lowerCAmelCase =keep_accents _lowerCAmelCase =vocab_file _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) @property def _lowerCAmelCase ( self ) -> str: return len(self.sp_model ) def _lowerCAmelCase ( self ) -> int: _lowerCAmelCase ={self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _lowerCAmelCase =self.__dict__.copy() _lowerCAmelCase =None return state def __setstate__( self , __UpperCAmelCase ) -> Tuple: _lowerCAmelCase =d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _lowerCAmelCase ={} _lowerCAmelCase =spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if self.remove_space: _lowerCAmelCase =""" """.join(inputs.strip().split() ) else: _lowerCAmelCase =inputs _lowerCAmelCase =outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: _lowerCAmelCase =unicodedata.normalize("""NFKD""" , __UpperCAmelCase ) _lowerCAmelCase ="""""".join([c for c in outputs if not unicodedata.combining(__UpperCAmelCase )] ) if self.do_lower_case: _lowerCAmelCase =outputs.lower() return outputs def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: _lowerCAmelCase =self.preprocess_text(__UpperCAmelCase ) _lowerCAmelCase =self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase ) _lowerCAmelCase =[] for piece in pieces: if len(__UpperCAmelCase ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): _lowerCAmelCase =self.sp_model.EncodeAsPieces(piece[:-1].replace(__UpperCAmelCase , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _lowerCAmelCase =cur_pieces[1:] else: _lowerCAmelCase =cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__UpperCAmelCase ) else: new_pieces.append(__UpperCAmelCase ) return new_pieces def _lowerCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: return self.sp_model.PieceToId(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> List[str]: return self.sp_model.IdToPiece(__UpperCAmelCase ) def _lowerCAmelCase ( self , __UpperCAmelCase ) -> str: _lowerCAmelCase ="""""".join(__UpperCAmelCase ).replace(__UpperCAmelCase , """ """ ).strip() return out_string def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = True , **__UpperCAmelCase , ) -> str: _lowerCAmelCase =kwargs.pop("""use_source_tokenizer""" , __UpperCAmelCase ) _lowerCAmelCase =self.convert_ids_to_tokens(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 _lowerCAmelCase =[] _lowerCAmelCase =[] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) _lowerCAmelCase =[] sub_texts.append(__UpperCAmelCase ) else: current_sub_text.append(__UpperCAmelCase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__UpperCAmelCase ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens _lowerCAmelCase ="""""".join(__UpperCAmelCase ) _lowerCAmelCase =( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: _lowerCAmelCase =self.clean_up_tokenization(__UpperCAmelCase ) return clean_text else: return text def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is not None: return ([0] * len(__UpperCAmelCase )) + [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] return ([0] * len(__UpperCAmelCase )) + [1, 1] def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _lowerCAmelCase =[self.sep_token_id] _lowerCAmelCase =[2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowerCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase =os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCAmelCase , """wb""" ) as fi: _lowerCAmelCase =self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (out_vocab_file,)
341
0
'''simple docstring''' from __future__ import annotations import bisect def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ): """simple docstring""" if hi < 0: SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) while lo < hi: SCREAMING_SNAKE_CASE : int = lo + (hi - lo) // 2 if sorted_collection[mid] < item: SCREAMING_SNAKE_CASE : str = mid + 1 else: SCREAMING_SNAKE_CASE : List[str] = mid return lo def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ): """simple docstring""" if hi < 0: SCREAMING_SNAKE_CASE : Any = len(lowerCamelCase_ ) while lo < hi: SCREAMING_SNAKE_CASE : str = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: SCREAMING_SNAKE_CASE : Union[str, Any] = mid + 1 else: SCREAMING_SNAKE_CASE : str = mid return lo def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ): """simple docstring""" sorted_collection.insert(bisect_left(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = 0 , lowerCamelCase_ = -1 ): """simple docstring""" sorted_collection.insert(bisect_right(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) , lowerCamelCase_ ) def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : str = len(lowerCamelCase_ ) - 1 while left <= right: SCREAMING_SNAKE_CASE : str = left + (right - left) // 2 SCREAMING_SNAKE_CASE : str = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: SCREAMING_SNAKE_CASE : str = midpoint - 1 else: SCREAMING_SNAKE_CASE : Optional[int] = midpoint + 1 return None def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = bisect.bisect_left(lowerCamelCase_ , lowerCamelCase_ ) if index != len(lowerCamelCase_ ) and sorted_collection[index] == item: return index return None def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" if right < left: return None SCREAMING_SNAKE_CASE : List[str] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , midpoint - 1 ) else: return binary_search_by_recursion(lowerCamelCase_ , lowerCamelCase_ , midpoint + 1 , lowerCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase = input("""Enter numbers separated by comma:\n""").strip() __UpperCAmelCase = sorted(int(item) for item in user_input.split(""",""")) __UpperCAmelCase = int(input("""Enter a single number to be found in the list:\n""")) __UpperCAmelCase = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
323
'''simple docstring''' from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Dict , lowerCamelCase_ : NestedDataStructureLike[PathLike] , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Union[str, Any] , ): '''simple docstring''' super().__init__( lowerCamelCase_ , split=lowerCamelCase_ , features=lowerCamelCase_ , cache_dir=lowerCamelCase_ , keep_in_memory=lowerCamelCase_ , streaming=lowerCamelCase_ , num_proc=lowerCamelCase_ , **lowerCamelCase_ , ) SCREAMING_SNAKE_CASE : int = path_or_paths if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else {self.split: path_or_paths} SCREAMING_SNAKE_CASE : Optional[int] = Text( cache_dir=lowerCamelCase_ , data_files=lowerCamelCase_ , features=lowerCamelCase_ , **lowerCamelCase_ , ) def lowerCamelCase_ ( self : Dict ): '''simple docstring''' if self.streaming: SCREAMING_SNAKE_CASE : int = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : Union[str, Any] = None SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : List[str] = None self.builder.download_and_prepare( download_config=lowerCamelCase_ , download_mode=lowerCamelCase_ , verification_mode=lowerCamelCase_ , base_path=lowerCamelCase_ , num_proc=self.num_proc , ) SCREAMING_SNAKE_CASE : int = self.builder.as_dataset( split=self.split , verification_mode=lowerCamelCase_ , in_memory=self.keep_in_memory ) return dataset
323
1
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def a_ ( ): lowerCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png' lowerCAmelCase = Image.open(requests.get(lowerCamelCase , stream=lowerCamelCase ).raw ).convert('RGB' ) return image def a_ ( lowerCamelCase : Any ): lowerCAmelCase = [] # fmt: off # vision encoder rename_keys.append(('visual_encoder.cls_token', 'vision_model.embeddings.class_embedding') ) rename_keys.append(('visual_encoder.pos_embed', 'vision_model.embeddings.position_embedding') ) rename_keys.append(('visual_encoder.patch_embed.proj.weight', 'vision_model.embeddings.patch_embedding.weight') ) rename_keys.append(('visual_encoder.patch_embed.proj.bias', 'vision_model.embeddings.patch_embedding.bias') ) rename_keys.append(('ln_vision.weight', 'vision_model.post_layernorm.weight') ) rename_keys.append(('ln_vision.bias', 'vision_model.post_layernorm.bias') ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.weight''', f'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm1.bias''', f'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.weight''', f'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.norm2.bias''', f'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.qkv.weight''', f'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.weight''', f'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((f'''visual_encoder.blocks.{i}.attn.proj.bias''', f'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc1.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.weight''', f'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((f'''visual_encoder.blocks.{i}.mlp.fc2.bias''', f'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(('Qformer.bert.embeddings.LayerNorm.weight', 'qformer.layernorm.weight') ) rename_keys.append(('Qformer.bert.embeddings.LayerNorm.bias', 'qformer.layernorm.bias') ) # fmt: on return rename_keys def a_ ( lowerCamelCase : int , lowerCamelCase : Tuple , lowerCamelCase : Optional[int] ): lowerCAmelCase = dct.pop(lowerCamelCase ) lowerCAmelCase = val def a_ ( lowerCamelCase : Optional[Any] , lowerCamelCase : Union[str, Any] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowerCAmelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.q_bias''' ) lowerCAmelCase = state_dict.pop(f'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict lowerCAmelCase = torch.cat((q_bias, torch.zeros_like(lowerCamelCase , requires_grad=lowerCamelCase ), v_bias) ) lowerCAmelCase = qkv_bias def a_ ( lowerCamelCase : List[Any] , lowerCamelCase : Any ): lowerCAmelCase = 364 if 'coco' in model_name else 224 lowerCAmelCase = BlipaVisionConfig(image_size=lowerCamelCase ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: lowerCAmelCase = OPTConfig.from_pretrained('facebook/opt-2.7b' , eos_token_id=lowerCamelCase ).to_dict() elif "opt-6.7b" in model_name: lowerCAmelCase = OPTConfig.from_pretrained('facebook/opt-6.7b' , eos_token_id=lowerCamelCase ).to_dict() elif "t5-xl" in model_name: lowerCAmelCase = TaConfig.from_pretrained('google/flan-t5-xl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowerCAmelCase = TaConfig.from_pretrained('google/flan-t5-xxl' , dense_act_fn='gelu' , bos_token_id=1 ).to_dict() lowerCAmelCase = BlipaConfig(vision_config=lowerCamelCase , text_config=lowerCamelCase ) return config, image_size @torch.no_grad() def a_ ( lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[int]=None , lowerCamelCase : Tuple=False ): lowerCAmelCase = ( AutoTokenizer.from_pretrained('facebook/opt-2.7b' ) if 'opt' in model_name else AutoTokenizer.from_pretrained('google/flan-t5-xl' ) ) lowerCAmelCase = tokenizer('\n' , add_special_tokens=lowerCamelCase ).input_ids[0] lowerCAmelCase , lowerCAmelCase = get_blipa_config(lowerCamelCase , eos_token_id=lowerCamelCase ) lowerCAmelCase = BlipaForConditionalGeneration(lowerCamelCase ).eval() lowerCAmelCase = { 'blip2-opt-2.7b': ('blip2_opt', 'pretrain_opt2.7b'), 'blip2-opt-6.7b': ('blip2_opt', 'pretrain_opt6.7b'), 'blip2-opt-2.7b-coco': ('blip2_opt', 'caption_coco_opt2.7b'), 'blip2-opt-6.7b-coco': ('blip2_opt', 'caption_coco_opt6.7b'), 'blip2-flan-t5-xl': ('blip2_t5', 'pretrain_flant5xl'), 'blip2-flan-t5-xl-coco': ('blip2_t5', 'caption_coco_flant5xl'), 'blip2-flan-t5-xxl': ('blip2_t5', 'pretrain_flant5xxl'), } lowerCAmelCase , lowerCAmelCase = model_name_to_original[model_name] # load original model print('Loading original model...' ) lowerCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = load_model_and_preprocess( name=lowerCamelCase , model_type=lowerCamelCase , is_eval=lowerCamelCase , device=lowerCamelCase ) original_model.eval() print('Done!' ) # update state dict keys lowerCAmelCase = original_model.state_dict() lowerCAmelCase = create_rename_keys(lowerCamelCase ) for src, dest in rename_keys: rename_key(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowerCAmelCase = state_dict.pop(lowerCamelCase ) if key.startswith('Qformer.bert' ): lowerCAmelCase = key.replace('Qformer.bert' , 'qformer' ) if "attention.self" in key: lowerCAmelCase = key.replace('self' , 'attention' ) if "opt_proj" in key: lowerCAmelCase = key.replace('opt_proj' , 'language_projection' ) if "t5_proj" in key: lowerCAmelCase = key.replace('t5_proj' , 'language_projection' ) if key.startswith('opt' ): lowerCAmelCase = key.replace('opt' , 'language' ) if key.startswith('t5' ): lowerCAmelCase = key.replace('t5' , 'language' ) lowerCAmelCase = val # read in qv biases read_in_q_v_bias(lowerCamelCase , lowerCamelCase ) lowerCAmelCase , lowerCAmelCase = hf_model.load_state_dict(lowerCamelCase , strict=lowerCamelCase ) assert len(lowerCamelCase ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] lowerCAmelCase = load_demo_image() lowerCAmelCase = vis_processors['eval'](lowerCamelCase ).unsqueeze(0 ).to(lowerCamelCase ) lowerCAmelCase = tokenizer(['\n'] , return_tensors='pt' ).input_ids.to(lowerCamelCase ) # create processor lowerCAmelCase = BlipImageProcessor( size={'height': image_size, 'width': image_size} , image_mean=lowerCamelCase , image_std=lowerCamelCase ) lowerCAmelCase = BlipaProcessor(image_processor=lowerCamelCase , tokenizer=lowerCamelCase ) lowerCAmelCase = processor(images=lowerCamelCase , return_tensors='pt' ).pixel_values.to(lowerCamelCase ) # make sure processor creates exact same pixel values assert torch.allclose(lowerCamelCase , lowerCamelCase ) original_model.to(lowerCamelCase ) hf_model.to(lowerCamelCase ) with torch.no_grad(): if "opt" in model_name: lowerCAmelCase = original_model({'image': original_pixel_values, 'text_input': ['']} ).logits lowerCAmelCase = hf_model(lowerCamelCase , lowerCamelCase ).logits else: lowerCAmelCase = original_model( {'image': original_pixel_values, 'text_input': ['\n'], 'text_output': ['\n']} ).logits lowerCAmelCase = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) lowerCAmelCase = hf_model(lowerCamelCase , lowerCamelCase , labels=lowerCamelCase ).logits assert original_logits.shape == logits.shape print('First values of original logits:' , original_logits[0, :3, :3] ) print('First values of HF logits:' , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": lowerCAmelCase = torch.tensor( [[-41.5_850, -4.4_440, -8.9_922], [-47.4_322, -5.9_143, -1.7_340]] , device=lowerCamelCase ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": lowerCAmelCase = torch.tensor( [[-57.0_109, -9.8_967, -12.6_280], [-68.6_578, -12.7_191, -10.5_065]] , device=lowerCamelCase ) else: # cast to same type lowerCAmelCase = logits.dtype assert torch.allclose(original_logits.to(lowerCamelCase ) , lowerCamelCase , atol=1e-2 ) print('Looks ok!' ) print('Generating a caption...' ) lowerCAmelCase = '' lowerCAmelCase = tokenizer(lowerCamelCase , return_tensors='pt' ).input_ids.to(lowerCamelCase ) lowerCAmelCase = original_model.generate({'image': original_pixel_values} ) lowerCAmelCase = hf_model.generate( lowerCamelCase , lowerCamelCase , do_sample=lowerCamelCase , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print('Original generation:' , lowerCamelCase ) lowerCAmelCase = input_ids.shape[1] lowerCAmelCase = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=lowerCamelCase ) lowerCAmelCase = [text.strip() for text in output_text] print('HF generation:' , lowerCamelCase ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if push_to_hub: processor.push_to_hub(f'''nielsr/{model_name}''' ) hf_model.push_to_hub(f'''nielsr/{model_name}''' ) if __name__ == "__main__": __snake_case =argparse.ArgumentParser() __snake_case =[ """blip2-opt-2.7b""", """blip2-opt-6.7b""", """blip2-opt-2.7b-coco""", """blip2-opt-6.7b-coco""", """blip2-flan-t5-xl""", """blip2-flan-t5-xl-coco""", """blip2-flan-t5-xxl""", ] parser.add_argument( """--model_name""", default="""blip2-opt-2.7b""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) __snake_case =parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
55
'''simple docstring''' import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def a_ ( ): lowerCAmelCase = ArgumentParser( description=( 'PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes' ) ) # Optional arguments for the launch helper parser.add_argument('--num_cores' , type=lowerCamelCase , default=1 , help='Number of TPU cores to use (1 or 8).' ) # positional parser.add_argument( 'training_script' , type=lowerCamelCase , help=( 'The full path to the single TPU training ' 'program/script to be launched in parallel, ' 'followed by all the arguments for the ' 'training script' ) , ) # rest from the training program parser.add_argument('training_script_args' , nargs=lowerCamelCase ) return parser.parse_args() def a_ ( ): lowerCAmelCase = parse_args() # Import training_script as a module. lowerCAmelCase = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase = script_fpath.stem lowerCAmelCase = importlib.import_module(lowerCamelCase ) # Patch sys.argv lowerCAmelCase = [args.training_script] + args.training_script_args + ['--tpu_num_cores', str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
55
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :str = { 'huggingface/time-series-transformer-tourism-monthly': ( 'https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "time_series_transformer" snake_case_ = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self : Tuple ,A : Optional[int] = None ,A : Optional[int] = None ,A : str = "student_t" ,A : str = "nll" ,A : int = 1 ,A : List[int] = [1, 2, 3, 4, 5, 6, 7] ,A : Optional[Union[str, bool]] = "mean" ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : int = 0 ,A : Optional[List[int]] = None ,A : Optional[List[int]] = None ,A : int = 32 ,A : int = 32 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : int = 2 ,A : bool = True ,A : str = "gelu" ,A : int = 64 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : float = 0.1 ,A : int = 1_00 ,A : float = 0.02 ,A : Union[str, Any]=True ,**A : Optional[int] ,): # time series specific configuration __A = prediction_length __A = context_length or prediction_length __A = distribution_output __A = loss __A = input_size __A = num_time_features __A = lags_sequence __A = scaling __A = num_dynamic_real_features __A = num_static_real_features __A = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __A = cardinality else: __A = [0] if embedding_dimension and num_static_categorical_features > 0: if len(A ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __A = embedding_dimension else: __A = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] __A = num_parallel_samples # Transformer architecture configuration __A = input_size * len(A ) + self._number_of_features __A = d_model __A = encoder_attention_heads __A = decoder_attention_heads __A = encoder_ffn_dim __A = decoder_ffn_dim __A = encoder_layers __A = decoder_layers __A = dropout __A = attention_dropout __A = activation_dropout __A = encoder_layerdrop __A = decoder_layerdrop __A = activation_function __A = init_std __A = use_cache super().__init__(is_encoder_decoder=A ,**A ) @property def UpperCamelCase_ ( self : Optional[Any] ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
15
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig UpperCamelCase_ = { '''susnato/ernie-m-base_pytorch''': '''https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json''', '''susnato/ernie-m-large_pytorch''': '''https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json''', } class _snake_case ( __snake_case ): '''simple docstring''' A__ : Union[str, Any] = "ernie_m" A__ : Dict[str, str] = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: str ,lowerCamelCase_: int = 250002 ,lowerCamelCase_: int = 768 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 12 ,lowerCamelCase_: int = 3072 ,lowerCamelCase_: str = "gelu" ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: float = 0.1 ,lowerCamelCase_: int = 514 ,lowerCamelCase_: float = 0.0_2 ,lowerCamelCase_: int = 1 ,lowerCamelCase_: float = 1e-05 ,lowerCamelCase_: Any=None ,lowerCamelCase_: List[Any]=False ,lowerCamelCase_: Tuple=0.0 ,**lowerCamelCase_: Optional[int] ,) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase_ ,**lowerCamelCase_ ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : Any = hidden_size UpperCAmelCase_ : Optional[Any] = num_hidden_layers UpperCAmelCase_ : Union[str, Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : List[Any] = hidden_act UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : List[Any] = attention_probs_dropout_prob UpperCAmelCase_ : str = max_position_embeddings UpperCAmelCase_ : Union[str, Any] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : List[Any] = classifier_dropout UpperCAmelCase_ : str = is_decoder UpperCAmelCase_ : List[str] = act_dropout
345
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _snake_case ( UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any]=1024 , UpperCAmelCase_ : Dict=1024 , UpperCAmelCase_ : Tuple=False , **UpperCAmelCase_ : Union[str, Any] ): A__ = AutoTokenizer.from_pretrained(UpperCAmelCase_ ) A__ = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path="""train""" , **UpperCAmelCase_ ) A__ = tok.pad_token_id def get_lens(UpperCAmelCase_ : str ): A__ = tqdm( DataLoader(UpperCAmelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCAmelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) A__ = [] for batch in dl: A__ = batch["""input_ids"""].ne(UpperCAmelCase_ ).sum(1 ).tolist() A__ = batch["""labels"""].ne(UpperCAmelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCAmelCase_ , UpperCAmelCase_ ): max_lens.append(max(UpperCAmelCase_ , UpperCAmelCase_ ) ) else: max_lens.extend(UpperCAmelCase_ ) return max_lens A__ = get_lens(UpperCAmelCase_ ) A__ = SeqaSeqDataset(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , type_path="""val""" , **UpperCAmelCase_ ) A__ = get_lens(UpperCAmelCase_ ) pickle_save(UpperCAmelCase_ , train_ds.len_file ) pickle_save(UpperCAmelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
363
"""simple docstring""" from typing import Any class a : """simple docstring""" def __init__( self: List[Any] , UpperCamelCase: Any ): """simple docstring""" A__ = data A__ = None class a : """simple docstring""" def __init__( self: List[str] ): """simple docstring""" A__ = None def UpperCamelCase ( self: Optional[Any] ): """simple docstring""" A__ = self.head while temp is not None: print(temp.data , end=""" """ ) A__ = temp.next print() def UpperCamelCase ( self: str , UpperCamelCase: Any ): """simple docstring""" A__ = Node(UpperCamelCase ) A__ = self.head A__ = new_node def UpperCamelCase ( self: Optional[int] , UpperCamelCase: Optional[int] , UpperCamelCase: Union[str, Any] ): """simple docstring""" if node_data_a == node_data_a: return else: A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next A__ = self.head while node_a is not None and node_a.data != node_data_a: A__ = node_a.next if node_a is None or node_a is None: return A__ , A__ = node_a.data, node_a.data if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : Tuple = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print('After swapping') ll.print_list()
69
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import is_tensorflow_text_available, is_tf_available from transformers.testing_utils import require_tensorflow_text, require_tf, slow from ..test_modeling_tf_common import floats_tensor from .test_framework_agnostic import GenerationIntegrationTestsMixin if is_tf_available(): import tensorflow as tf from transformers import ( AutoTokenizer, TFAutoModelForCausalLM, TFAutoModelForSeqaSeqLM, TFAutoModelForSpeechSeqaSeq, TFAutoModelForVisionaSeq, TFBartForConditionalGeneration, TFLogitsProcessorList, TFMinLengthLogitsProcessor, tf_top_k_top_p_filtering, ) if is_tensorflow_text_available(): import tensorflow_text as text @require_tf class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __lowerCAmelCase ( self : Dict ) -> List[Any]: __magic_name__ : Optional[Any] = tf.convert_to_tensor( [ [ 8.222_0991, # 3rd highest value; idx. 0 -0.562_0044, 5.2322_9752, 4.038_6393, -6.879_8378, -0.5478_5802, -3.201_2153, 2.9277_7176, 1.8817_1953, 7.3534_1276, # 5th highest value; idx. 9 8.4320_7833, # 2nd highest value; idx. 10 -9.8571_1836, -5.9620_9236, -1.1303_9161, -7.111_5294, -0.836_9633, -5.318_6408, 7.0642_7407, 0.8136_9344, -0.8202_3817, -5.917_9796, 0.5881_3443, -6.9977_8438, 4.7155_1189, -0.1877_1637, 7.4402_0759, # 4th highest value; idx. 25 9.3845_0987, # 1st highest value; idx. 26 2.1266_2941, -9.3256_2038, 2.3565_2522, ], # cummulative prob of 5 highest values <= 0.6 [ 0.5842_5518, 4.5313_9238, -5.5751_0464, -6.2803_0699, -7.1952_9503, -4.0212_2551, 1.3933_7037, -6.0670_7057, 1.5948_0517, -9.64_3119, 0.0390_7799, 0.6723_1762, -8.8820_6726, 6.2711_5922, # 4th highest value; idx. 13 2.2852_0723, 4.8276_7506, 4.3042_1368, 8.827_5313, # 2nd highest value; idx. 17 5.4402_9958, # 5th highest value; idx. 18 -4.473_5794, 7.3857_9536, # 3rd highest value; idx. 20 -2.9105_1663, 2.6194_6077, -2.567_4762, -9.4895_9302, -4.0292_2645, -1.3541_6918, 9.6770_2323, # 1st highest value; idx. 27 -5.8947_8553, 1.8537_0467, ], # cummulative prob of 5 highest values <= 0.6 ] , dtype=tf.floataa , ) __magic_name__ : Union[str, Any] = tf.convert_to_tensor( [[0, 0], [0, 9], [0, 10], [0, 25], [0, 26], [1, 13], [1, 17], [1, 18], [1, 20], [1, 27]] , dtype=tf.intaa , ) # expected non filtered idx as noted above __magic_name__ : Tuple = tf.convert_to_tensor( [8.22_2099, 7.353_4126, 8.43_2078, 7.440_2075, 9.3_8451, 6.27_1159, 8.82_7531, 5.440_2995, 7.385_7956, 9.67_7023] , dtype=tf.floataa , ) # expected non filtered values as noted above __magic_name__ : Any = tf_top_k_top_p_filtering(_A , top_k=10 , top_p=0.6 , min_tokens_to_keep=4 ) __magic_name__ : List[Any] = output[output != -float('inf' )] __magic_name__ : Any = tf.cast( tf.where(tf.not_equal(_A , tf.constant(-float('inf' ) , dtype=tf.floataa ) ) ) , dtype=tf.intaa , ) tf.debugging.assert_near(_A , _A , rtol=1E-12 ) tf.debugging.assert_equal(_A , _A ) @require_tf class _lowerCamelCase ( unittest.TestCase , lowercase__ ): '''simple docstring''' if is_tf_available(): A_ : Optional[Any] = { """AutoModelForCausalLM""": TFAutoModelForCausalLM, """AutoModelForSpeechSeq2Seq""": TFAutoModelForSpeechSeqaSeq, """AutoModelForSeq2SeqLM""": TFAutoModelForSeqaSeqLM, """AutoModelForVision2Seq""": TFAutoModelForVisionaSeq, """LogitsProcessorList""": TFLogitsProcessorList, """MinLengthLogitsProcessor""": TFMinLengthLogitsProcessor, """create_tensor_fn""": tf.convert_to_tensor, """floats_tensor""": floats_tensor, """return_tensors""": """tf""", } @slow def __lowerCAmelCase ( self : Dict ) -> List[str]: # TF-only test: tf.saved_model export __magic_name__ : Any = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __magic_name__ : Tuple = 2 __magic_name__ : Tuple = 2 class _lowerCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : Optional[int] , _A : Optional[int] ) -> int: super(_A , self ).__init__() __magic_name__ : Any = model @tf.function( input_signature=( tf.TensorSpec((None, input_length) , tf.intaa , name='input_ids' ), tf.TensorSpec((None, input_length) , tf.intaa , name='attention_mask' ), ) , jit_compile=_A , ) def __lowerCAmelCase ( self : Optional[int] , _A : Union[str, Any] , _A : List[Any] ) -> Tuple: __magic_name__ : Optional[int] = self.model.generate( input_ids=_A , attention_mask=_A , max_new_tokens=_A , return_dict_in_generate=_A , ) return {"sequences": outputs["sequences"]} __magic_name__ : Optional[Any] = [[2, 0], [102, 103]] __magic_name__ : List[str] = [[1, 0], [1, 1]] __magic_name__ : int = DummyModel(model=_A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_A , _A , signatures={'serving_default': dummy_model.serving} ) __magic_name__ : Optional[Any] = tf.saved_model.load(_A ).signatures['serving_default'] for batch_size in range(1 , len(_A ) + 1 ): __magic_name__ : List[Any] = { 'input_ids': tf.constant(dummy_input_ids[:batch_size] ), 'attention_mask': tf.constant(dummy_attention_masks[:batch_size] ), } __magic_name__ : Optional[Any] = serving_func(**_A )['sequences'] __magic_name__ : List[Any] = test_model.generate(**_A , max_new_tokens=_A ) tf.debugging.assert_equal(_A , _A ) @slow def __lowerCAmelCase ( self : Tuple ) -> Tuple: # TF-only test: tf.saved_model export __magic_name__ : str = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __magic_name__ : Dict = 1 __magic_name__ : Optional[Any] = 2 class _lowerCamelCase ( tf.Module ): '''simple docstring''' def __init__( self : Any , _A : Tuple ) -> Tuple: super(_A , self ).__init__() __magic_name__ : Union[str, Any] = model @tf.function( input_signature=( tf.TensorSpec((batch_size, None) , tf.intaa , name='input_ids' ), tf.TensorSpec((batch_size, None) , tf.intaa , name='attention_mask' ), ) , jit_compile=_A , ) def __lowerCAmelCase ( self : Optional[Any] , _A : Optional[Any] , _A : Union[str, Any] ) -> List[Any]: __magic_name__ : List[Any] = self.model.generate( input_ids=_A , attention_mask=_A , max_new_tokens=_A , return_dict_in_generate=_A , ) return {"sequences": outputs["sequences"]} __magic_name__ : int = [[2], [102, 103]] __magic_name__ : List[str] = [[1], [1, 1]] __magic_name__ : List[str] = DummyModel(model=_A ) with tempfile.TemporaryDirectory() as tmp_dir: tf.saved_model.save(_A , _A , signatures={'serving_default': dummy_model.serving} ) __magic_name__ : Optional[int] = tf.saved_model.load(_A ).signatures['serving_default'] for input_row in range(len(_A ) ): __magic_name__ : List[Any] = { 'input_ids': tf.constant([dummy_input_ids[input_row]] ), 'attention_mask': tf.constant([dummy_attention_masks[input_row]] ), } __magic_name__ : Optional[int] = serving_func(**_A )['sequences'] __magic_name__ : Tuple = test_model.generate(**_A , max_new_tokens=_A ) tf.debugging.assert_equal(_A , _A ) @slow @require_tensorflow_text def __lowerCAmelCase ( self : int ) -> List[Any]: # TF-only test: tf.saved_model export with tempfile.TemporaryDirectory() as tmp_dir: # file needed to load the TF tokenizer hf_hub_download(repo_id='google/flan-t5-small' , filename='spiece.model' , local_dir=_A ) class _lowerCamelCase ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Union[str, Any] ) -> Dict: super().__init__() __magic_name__ : str = text.SentencepieceTokenizer( model=tf.io.gfile.GFile(os.path.join(_A , 'spiece.model' ) , 'rb' ).read() ) __magic_name__ : Any = TFAutoModelForSeqaSeqLM.from_pretrained('hf-internal-testing/tiny-random-t5' ) def __lowerCAmelCase ( self : Union[str, Any] , _A : Dict , *_A : Any , **_A : Tuple ) -> Any: __magic_name__ : Dict = self.tokenizer.tokenize(_A ) __magic_name__ , __magic_name__ : Dict = text.pad_model_inputs( _A , max_seq_length=64 , pad_value=self.model.config.pad_token_id ) __magic_name__ : str = self.model.generate(input_ids=_A , attention_mask=_A ) return self.tokenizer.detokenize(_A ) __magic_name__ : Union[str, Any] = CompleteSentenceTransformer() __magic_name__ : Any = tf.keras.layers.Input(shape=(1,) , dtype=tf.string , name='inputs' ) __magic_name__ : Union[str, Any] = complete_model(_A ) __magic_name__ : Dict = tf.keras.Model(_A , _A ) keras_model.save(_A ) def __lowerCAmelCase ( self : Optional[int] ) -> str: # Has PT equivalent: this test relies on random sampling __magic_name__ : List[str] = { 'do_sample': True, 'num_beams': 1, 'top_p': 0.7, 'top_k': 10, 'temperature': 0.7, } __magic_name__ : str = 14 __magic_name__ : Tuple = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __magic_name__ : List[str] = 'Hello, my dog is cute and' __magic_name__ : Optional[int] = tokenizer(_A , return_tensors='tf' ) __magic_name__ : List[str] = TFAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) __magic_name__ : Optional[int] = 638 # forces the generation to happen on CPU, to avoid GPU-related quirks with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __magic_name__ : Tuple = model.generate(**_A , eos_token_id=_A , **_A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) __magic_name__ : Optional[Any] = [638, 198] with tf.device(':/CPU:0' ): tf.random.set_seed(0 ) __magic_name__ : Optional[int] = model.generate(**_A , eos_token_id=_A , **_A ) self.assertTrue(expectation == len(generated_tokens[0] ) ) def __lowerCAmelCase ( self : Optional[Any] ) -> Tuple: # Has PT equivalent: ample use of framework-specific code __magic_name__ : List[str] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-bart' ) __magic_name__ : Dict = 'Hugging Face is a technology company based in New York and Paris.' __magic_name__ : Tuple = bart_tokenizer(_A , return_tensors='tf' ).input_ids __magic_name__ : int = TFBartForConditionalGeneration.from_pretrained('hf-internal-testing/tiny-random-bart' ) __magic_name__ : str = bart_model.generate(_A ).numpy() class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple , _A : Tuple , _A : Any=None , **_A : Tuple ) -> int: return super().call(_A , **_A ) __magic_name__ : str = FakeBart.from_pretrained('hf-internal-testing/tiny-random-bart' ) __magic_name__ : List[str] = bart_model.generate(_A , foo='bar' ).numpy() self.assertTrue(np.array_equal(_A , _A ) ) class _lowerCamelCase ( bart_model.model.encoder.__class__ ): '''simple docstring''' def __lowerCAmelCase ( self : int , _A : List[Any] , **_A : Any ) -> str: return super().call(_A , **_A ) __magic_name__ : Optional[int] = FakeEncoder(bart_model.config , bart_model.model.shared ) __magic_name__ : Tuple = fake_encoder # Normal generation still works (the output will be different because the encoder weights are different) __magic_name__ : Any = bart_model.generate(_A ).numpy() with self.assertRaises(_A ): # FakeEncoder.call() accepts **kwargs -> no filtering -> value error due to unexpected input "foo" bart_model.generate(_A , foo='bar' )
331
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase :Dict = pytest.mark.integration @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: __magic_name__ : str = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(_A ) for x in np.arange(30 ).tolist()]} ) return dset def __lowerCAmelCase ( self : List[str] ) -> Tuple: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() __magic_name__ : Union[str, Any] = dset.map( lambda _A , _A : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=_A , keep_in_memory=_A ) __magic_name__ : int = dset.add_faiss_index('vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) __magic_name__ , __magic_name__ : List[str] = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def __lowerCAmelCase ( self : Any ) -> str: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) __magic_name__ , __magic_name__ : Any = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Tuple ) -> int: import faiss __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ , __magic_name__ : Dict = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[int]: __magic_name__ : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(_A , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def __lowerCAmelCase ( self : List[Any] ) -> Tuple: from elasticsearch import Elasticsearch __magic_name__ : Dataset = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : int = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 30 ) __magic_name__ : List[Any] = {'hits': {'hits': [{'_score': 1, '_id': 29}]}} __magic_name__ : Union[str, Any] = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=_A ) __magic_name__ , __magic_name__ : Tuple = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> List[Any]: import faiss __magic_name__ : int = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query __magic_name__ : str = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Optional[int] = 1 __magic_name__ , __magic_name__ : str = index.search(_A ) self.assertRaises(_A , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries __magic_name__ : Optional[Any] = np.eye(5 , dtype=np.floataa )[::-1] __magic_name__ , __magic_name__ : str = index.search_batch(_A ) self.assertRaises(_A , index.search_batch , queries[0] ) __magic_name__ : List[Any] = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , _A ) def __lowerCAmelCase ( self : Dict ) -> Optional[Any]: import faiss __magic_name__ : str = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) __magic_name__ : str = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(_A ): __magic_name__ : Dict = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def __lowerCAmelCase ( self : Union[str, Any] ) -> Dict: import faiss __magic_name__ : Any = faiss.IndexFlat(5 ) __magic_name__ : Optional[Any] = FaissIndex(custom_index=_A ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def __lowerCAmelCase ( self : Dict ) -> Tuple: import faiss __magic_name__ : Optional[int] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=_A ) as tmp_file: index.save(tmp_file.name ) __magic_name__ : Optional[int] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) __magic_name__ : Dict = np.zeros(5 , dtype=np.floataa ) __magic_name__ : Tuple = 1 __magic_name__ , __magic_name__ : Optional[Any] = index.search(_A ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def lowerCamelCase ( lowerCAmelCase : Tuple ): """simple docstring""" import faiss __magic_name__ : Union[str, Any] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) __magic_name__ : Dict = 'index.faiss' __magic_name__ : Optional[Any] = f'mock://{index_name}' index.save(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Tuple = FaissIndex.load(lowerCAmelCase , storage_options=mockfs.storage_options ) __magic_name__ : Union[str, Any] = np.zeros(5 , dtype=np.floataa ) __magic_name__ : List[str] = 1 __magic_name__ , __magic_name__ : Dict = index.search(lowerCAmelCase ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class _lowerCamelCase ( lowercase__ ): '''simple docstring''' def __lowerCAmelCase ( self : Tuple ) -> Dict: from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: __magic_name__ : Any = Elasticsearch() __magic_name__ : Union[str, Any] = {'acknowledged': True} __magic_name__ : Tuple = ElasticSearchIndex(es_client=_A ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query __magic_name__ : str = 'foo' __magic_name__ : str = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout __magic_name__ : str = 'foo' __magic_name__ : Dict = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} __magic_name__ , __magic_name__ : Dict = index.search(_A , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries __magic_name__ : Optional[Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Optional[Any] = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Optional[Any] = index.search_batch(_A ) __magic_name__ : Tuple = [scores[0] for scores in total_scores] __magic_name__ : List[str] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A ) # batched queries with timeout __magic_name__ : Union[str, Any] = ['foo', 'bar', 'foobar'] __magic_name__ : Tuple = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} __magic_name__ , __magic_name__ : Dict = index.search_batch(_A , request_timeout=30 ) __magic_name__ : Optional[int] = [scores[0] for scores in total_scores] __magic_name__ : Union[str, Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(_A ) , 0 ) self.assertListEqual([1, 1, 1] , _A )
331
1
from unittest import TestCase from datasets import Dataset from minhash_deduplication import deduplicate_dataset, make_duplicate_clusters def UpperCamelCase ( ) -> Dict: '''simple docstring''' lowercase_ :str = { '''repo_name''': ['''test_repo1''', '''test_repo2''', '''test_repo3'''], '''path''': ['''test_1.py''', '''test_2.py''', '''unit_test.py'''], '''content''': ['''a ''' * 2_0, '''a ''' * 3_0, '''b ''' * 7], } lowercase_ :Any = Dataset.from_dict(a__ ) return dataset class UpperCamelCase ( lowercase__ ): '''simple docstring''' def UpperCamelCase ( self ): lowercase_ :int = get_dataset() lowercase_ :Union[str, Any] = make_duplicate_clusters(_snake_case , 0.85 ) self.assertEqual(len(duplicate_clusters[0] ) , 2 ) def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = get_dataset() lowercase_ , lowercase_ :Dict = deduplicate_dataset(_snake_case ) self.assertEqual(len(_snake_case ) , 2 ) print(_snake_case ) self.assertEqual(duplicate_clusters[0][0]['''copies'''] , 2 ) self.assertEqual(duplicate_clusters[0][0]['''is_extreme'''] , _snake_case )
361
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = True , UpperCamelCase_ = False ): lowercase_ :List[str] = scheduler lowercase_ :Optional[Any] = optimizers if isinstance(UpperCamelCase_ , (list, tuple) ) else [optimizers] lowercase_ :Tuple = split_batches lowercase_ :str = step_with_optimizer lowercase_ :int = GradientState() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step lowercase_ :Optional[Any] = AcceleratorState().num_processes for _ in range(UpperCamelCase_ ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) else: self.scheduler.step(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_last_lr() def UpperCamelCase ( self ): return self.scheduler.state_dict() def UpperCamelCase ( self , UpperCamelCase_ ): self.scheduler.load_state_dict(UpperCamelCase_ ) def UpperCamelCase ( self ): return self.scheduler.get_lr() def UpperCamelCase ( self , *UpperCamelCase_ , **UpperCamelCase_ ): return self.scheduler.print_lr(*UpperCamelCase_ , **UpperCamelCase_ )
252
0
"""simple docstring""" def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a =set() # Replace all the whitespace in our sentence a =input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(lowercase ) == 26 def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" a =[False] * 26 for char in input_str: if char.islower(): a =True elif char.isupper(): a =True return all(lowercase ) def _A ( lowercase = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _A ( ): """simple docstring""" from timeit import timeit a ='''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=lowercase ) ) print(timeit('''is_pangram_faster()''' , setup=lowercase ) ) print(timeit('''is_pangram_fastest()''' , setup=lowercase ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
81
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase=None ) -> int: if not conversation_id: _snake_case = uuid.uuida() if past_user_inputs is None: _snake_case = [] if generated_responses is None: _snake_case = [] _snake_case = conversation_id _snake_case = past_user_inputs _snake_case = generated_responses _snake_case = text def __eq__(self , UpperCAmelCase ) -> Dict: if not isinstance(UpperCAmelCase , UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowercase (self , UpperCAmelCase , UpperCAmelCase = False ) -> int: if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _snake_case = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _snake_case = text def lowercase (self ) -> int: if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _snake_case = None def lowercase (self , UpperCAmelCase ) -> Any: self.generated_responses.append(UpperCAmelCase ) def lowercase (self ) -> List[str]: for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__(self ) -> Optional[int]: _snake_case = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _snake_case = """user""" if is_user else """bot""" output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __snake_case , r"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> Union[str, Any]: super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _snake_case = self.tokenizer.eos_token def lowercase (self , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=None , **UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = {} if min_length_for_response is not None: _snake_case = min_length_for_response if minimum_tokens is not None: _snake_case = minimum_tokens if "max_length" in generate_kwargs: _snake_case = generate_kwargs["""max_length"""] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _snake_case = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__(self , UpperCAmelCase , UpperCAmelCase=0 , **UpperCAmelCase ) -> Union[str, Any]: _snake_case = super().__call__(UpperCAmelCase , num_workers=UpperCAmelCase , **UpperCAmelCase ) if isinstance(UpperCAmelCase , UpperCAmelCase ) and len(UpperCAmelCase ) == 1: return outputs[0] return outputs def lowercase (self , UpperCAmelCase , UpperCAmelCase=32 ) -> Dict[str, Any]: if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ """Add user inputs with the conversation's `add_user_input` method""" ) if hasattr(self.tokenizer , """_build_conversation_input_ids""" ): _snake_case = self.tokenizer._build_conversation_input_ids(UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _snake_case = self._legacy_parse_and_tokenize(UpperCAmelCase ) if self.framework == "pt": _snake_case = torch.LongTensor([input_ids] ) elif self.framework == "tf": _snake_case = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=10 , **UpperCAmelCase ) -> Optional[int]: _snake_case = generate_kwargs.get("""max_length""" , self.model.config.max_length ) _snake_case = model_inputs["""input_ids"""].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _snake_case = max_length - minimum_tokens _snake_case = model_inputs["""input_ids"""][:, -trim:] if "attention_mask" in model_inputs: _snake_case = model_inputs["""attention_mask"""][:, -trim:] _snake_case = model_inputs.pop("""conversation""" ) _snake_case = max_length _snake_case = self.model.generate(**UpperCAmelCase , **UpperCAmelCase ) if self.model.config.is_encoder_decoder: _snake_case = 1 else: _snake_case = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowercase (self , UpperCAmelCase , UpperCAmelCase=True ) -> List[str]: _snake_case = model_outputs["""output_ids"""] _snake_case = self.tokenizer.decode( output_ids[0] , skip_special_tokens=UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase , ) _snake_case = model_outputs["""conversation"""] conversation.mark_processed() conversation.append_response(UpperCAmelCase ) return conversation def lowercase (self , UpperCAmelCase ) -> Dict: _snake_case = self.tokenizer.eos_token_id _snake_case = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) ) if len(UpperCAmelCase ) > self.tokenizer.model_max_length: _snake_case = input_ids[-self.tokenizer.model_max_length :] return input_ids
341
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def SCREAMING_SNAKE_CASE_ (UpperCamelCase ): @wraps(UpperCamelCase ) def _inner_fn(*UpperCamelCase , **UpperCamelCase ): warnings.warn( (f'''\'{fn.__name__}\' is experimental and might be subject to breaking changes in the future.''') , UpperCamelCase , ) return fn(*UpperCamelCase , **UpperCamelCase ) return _inner_fn
351
'''simple docstring''' from collections import deque class _lowercase : def __init__( self: int , UpperCamelCase__: str , UpperCamelCase__: int , UpperCamelCase__: int ): lowerCamelCase__ : int = process_name # process name lowerCamelCase__ : int = arrival_time # arrival time of the process # completion time of finished process or last interrupted time lowerCamelCase__ : List[str] = arrival_time lowerCamelCase__ : Tuple = burst_time # remaining burst time lowerCamelCase__ : str = 0 # total time of the process wait in ready queue lowerCamelCase__ : Optional[Any] = 0 # time from arrival time to completion time class _lowercase : def __init__( self: Any , UpperCamelCase__: int , UpperCamelCase__: list[int] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int , ): # total number of mlfq's queues lowerCamelCase__ : Tuple = number_of_queues # time slice of queues that round robin algorithm applied lowerCamelCase__ : List[Any] = time_slices # unfinished process is in this ready_queue lowerCamelCase__ : int = queue # current time lowerCamelCase__ : Optional[int] = current_time # finished process is in this sequence queue lowerCamelCase__ : deque[Process] = deque() def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : Union[str, Any] = [] for i in range(len(self.finish_queue ) ): sequence.append(self.finish_queue[i].process_name ) return sequence def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : int = [] for i in range(len(UpperCamelCase__ ) ): waiting_times.append(queue[i].waiting_time ) return waiting_times def lowerCamelCase_ ( self: Any , UpperCamelCase__: list[Process] ): lowerCamelCase__ : Optional[int] = [] for i in range(len(UpperCamelCase__ ) ): turnaround_times.append(queue[i].turnaround_time ) return turnaround_times def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: list[Process] ): lowerCamelCase__ : List[Any] = [] for i in range(len(UpperCamelCase__ ) ): completion_times.append(queue[i].stop_time ) return completion_times def lowerCamelCase_ ( self: int , UpperCamelCase__: deque[Process] ): return [q.burst_time for q in queue] def lowerCamelCase_ ( self: List[str] , UpperCamelCase__: Process ): process.waiting_time += self.current_time - process.stop_time return process.waiting_time def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: deque[Process] ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of finished process while len(UpperCamelCase__ ) != 0: lowerCamelCase__ : List[Any] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of current process self.update_waiting_time(UpperCamelCase__ ) # update current time self.current_time += cp.burst_time # finish the process and set the process's burst-time 0 lowerCamelCase__ : Dict = 0 # set the process's turnaround time because it is finished lowerCamelCase__ : List[str] = self.current_time - cp.arrival_time # set the completion time lowerCamelCase__ : int = self.current_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # FCFS will finish all remaining processes return finished def lowerCamelCase_ ( self: Union[str, Any] , UpperCamelCase__: deque[Process] , UpperCamelCase__: int ): lowerCamelCase__ : deque[Process] = deque() # sequence deque of terminated process # just for 1 cycle and unfinished processes will go back to queue for _ in range(len(UpperCamelCase__ ) ): lowerCamelCase__ : Optional[int] = ready_queue.popleft() # current process # if process's arrival time is later than current time, update current time if self.current_time < cp.arrival_time: self.current_time += cp.arrival_time # update waiting time of unfinished processes self.update_waiting_time(UpperCamelCase__ ) # if the burst time of process is bigger than time-slice if cp.burst_time > time_slice: # use CPU for only time-slice self.current_time += time_slice # update remaining burst time cp.burst_time -= time_slice # update end point time lowerCamelCase__ : Dict = self.current_time # locate the process behind the queue because it is not finished ready_queue.append(UpperCamelCase__ ) else: # use CPU for remaining burst time self.current_time += cp.burst_time # set burst time 0 because the process is finished lowerCamelCase__ : Any = 0 # set the finish time lowerCamelCase__ : List[Any] = self.current_time # update the process' turnaround time because it is finished lowerCamelCase__ : Any = self.current_time - cp.arrival_time # add the process to queue that has finished queue finished.append(UpperCamelCase__ ) self.finish_queue.extend(UpperCamelCase__ ) # add finished process to finish queue # return finished processes queue and remaining processes queue return finished, ready_queue def lowerCamelCase_ ( self: Tuple ): # all queues except last one have round_robin algorithm for i in range(self.number_of_queues - 1 ): lowerCamelCase__ , lowerCamelCase__ : str = self.round_robin( self.ready_queue , self.time_slices[i] ) # the last queue has first_come_first_served algorithm self.first_come_first_served(self.ready_queue ) return self.finish_queue if __name__ == "__main__": import doctest _A : Optional[Any] =Process('''P1''', 0, 53) _A : List[Any] =Process('''P2''', 0, 17) _A : Any =Process('''P3''', 0, 68) _A : Tuple =Process('''P4''', 0, 24) _A : int =3 _A : Tuple =[17, 25] _A : List[Any] =deque([Pa, Pa, Pa, Pa]) if len(time_slices) != number_of_queues - 1: raise SystemExit(0) doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])}) _A : Dict =Process('''P1''', 0, 53) _A : Union[str, Any] =Process('''P2''', 0, 17) _A : int =Process('''P3''', 0, 68) _A : Dict =Process('''P4''', 0, 24) _A : List[str] =3 _A : List[Any] =[17, 25] _A : Any =deque([Pa, Pa, Pa, Pa]) _A : List[str] =MLFQ(number_of_queues, time_slices, queue, 0) _A : Union[str, Any] =mlfq.multi_level_feedback_queue() # print total waiting times of processes(P1, P2, P3, P4) print( F'waiting time:\ \t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print completion times of processes(P1, P2, P3, P4) print( F'completion time:\ \t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print total turnaround times of processes(P1, P2, P3, P4) print( F'turnaround time:\ \t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}' ) # print sequence of finished processes print( F'sequence of finished processes:\ {mlfq.calculate_sequence_of_finish_queue()}' )
129
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer a_ : Optional[Any] = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} a_ : Optional[int] = { """vocab_file""": { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt""", }, """tokenizer_file""": { """unc-nlp/lxmert-base-uncased""": ( """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json""" ), }, } a_ : Dict = { """unc-nlp/lxmert-base-uncased""": 512, } a_ : Optional[int] = { """unc-nlp/lxmert-base-uncased""": {"""do_lower_case""": True}, } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = VOCAB_FILES_NAMES _lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase = PRETRAINED_INIT_CONFIGURATION _lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase = LxmertTokenizer def __init__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True , UpperCamelCase="[UNK]" , UpperCamelCase="[SEP]" , UpperCamelCase="[PAD]" , UpperCamelCase="[CLS]" , UpperCamelCase="[MASK]" , UpperCamelCase=True , UpperCamelCase=None , **UpperCamelCase , ): """simple docstring""" super().__init__( UpperCamelCase , tokenizer_file=UpperCamelCase , do_lower_case=UpperCamelCase , unk_token=UpperCamelCase , sep_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , tokenize_chinese_chars=UpperCamelCase , strip_accents=UpperCamelCase , **UpperCamelCase , ) lowerCamelCase_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase ) != tokenize_chinese_chars ): lowerCamelCase_ = getattr(UpperCamelCase , normalizer_state.pop("type" ) ) lowerCamelCase_ = do_lower_case lowerCamelCase_ = strip_accents lowerCamelCase_ = tokenize_chinese_chars lowerCamelCase_ = normalizer_class(**UpperCamelCase ) lowerCamelCase_ = do_lower_case def snake_case ( self , UpperCamelCase , UpperCamelCase=None ): """simple docstring""" lowerCamelCase_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self , UpperCamelCase , UpperCamelCase = None ): """simple docstring""" lowerCamelCase_ = self._tokenizer.model.save(UpperCamelCase , name=UpperCamelCase ) return tuple(UpperCamelCase )
55
'''simple docstring''' from __future__ import annotations from fractions import Fraction def __snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __snake_case ( UpperCAmelCase_ : int ): lowerCamelCase_ = [] lowerCamelCase_ = 11 lowerCamelCase_ = int("1" + "0" * digit_len ) for num in range(UpperCAmelCase_ , UpperCAmelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCAmelCase_ , UpperCAmelCase_ ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 lowerCamelCase_ = 10 return solutions def __snake_case ( UpperCAmelCase_ : int = 2 ): lowerCamelCase_ = 1.0 for fraction in fraction_list(UpperCAmelCase_ ): lowerCamelCase_ = Fraction(UpperCAmelCase_ ) result *= frac.denominator / frac.numerator return int(UpperCAmelCase_ ) if __name__ == "__main__": print(solution())
55
1
def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" a__ : Any =(1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def _A ( SCREAMING_SNAKE_CASE : int = 5_000 ): """simple docstring""" a__ : Optional[int] =[(i * (3 * i - 1)) // 2 for i in range(1 , SCREAMING_SNAKE_CASE )] for i, pentagonal_i in enumerate(SCREAMING_SNAKE_CASE ): for j in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): a__ : List[Any] =pentagonal_nums[j] a__ : Optional[Any] =pentagonal_i + pentagonal_j a__ : Optional[Any] =pentagonal_j - pentagonal_i if is_pentagonal(SCREAMING_SNAKE_CASE ) and is_pentagonal(SCREAMING_SNAKE_CASE ): return b return -1 if __name__ == "__main__": print(F"""{solution() = }""")
148
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __lowerCAmelCase ( UpperCamelCase__): _lowercase : str = ["""vqvae"""] def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , mel=lowerCAmelCase__ , vqvae=lowerCAmelCase__ ) def _lowercase ( self ) -> int: '''simple docstring''' return 5_0 if isinstance(self.scheduler , lowerCAmelCase__ ) else 1_0_0_0 @torch.no_grad() def __call__( self , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=True , ) -> Union[ Union[AudioPipelineOutput, ImagePipelineOutput], Tuple[List[Image.Image], Tuple[int, List[np.ndarray]]], ]: '''simple docstring''' a__ : List[Any] =steps or self.get_default_steps() self.scheduler.set_timesteps(lowerCAmelCase__ ) a__ : Tuple =step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size ) == int: a__ : List[str] =(self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a__ : Optional[Any] =randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=lowerCAmelCase__ , device=self.device , ) a__ : List[str] =noise a__ : Optional[Any] =None if audio_file is not None or raw_audio is not None: self.mel.load_audio(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Tuple =self.mel.audio_slice_to_image(lowerCAmelCase__ ) a__ : List[Any] =np.frombuffer(input_image.tobytes() , dtype="uint8" ).reshape( (input_image.height, input_image.width) ) a__ : Optional[Any] =(input_image / 2_5_5) * 2 - 1 a__ : Dict =torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device ) if self.vqvae is not None: a__ : str =self.vqvae.encode(torch.unsqueeze(lowerCAmelCase__ , 0 ) ).latent_dist.sample( generator=lowerCAmelCase__ )[0] a__ : Any =self.vqvae.config.scaling_factor * input_images if start_step > 0: a__ : Optional[int] =self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , self.scheduler.timesteps[start_step - 1] ) a__ : Tuple =( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a__ : Union[str, Any] =int(mask_start_secs * pixels_per_second ) a__ : List[str] =int(mask_end_secs * pixels_per_second ) a__ : Optional[Any] =self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , torch.tensor(self.scheduler.timesteps[start_step:] ) ) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ): if isinstance(self.unet , lowerCAmelCase__ ): a__ : List[str] =self.unet(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )["sample"] else: a__ : Optional[Any] =self.unet(lowerCAmelCase__ , lowerCAmelCase__ )["sample"] if isinstance(self.scheduler , lowerCAmelCase__ ): a__ : int =self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , eta=lowerCAmelCase__ , generator=lowerCAmelCase__ , )["prev_sample"] else: a__ : str =self.scheduler.step( model_output=lowerCAmelCase__ , timestep=lowerCAmelCase__ , sample=lowerCAmelCase__ , generator=lowerCAmelCase__ , )["prev_sample"] if mask is not None: if mask_start > 0: a__ : List[Any] =mask[:, step, :, :mask_start] if mask_end > 0: a__ : Union[str, Any] =mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a__ : Any =1 / self.vqvae.config.scaling_factor * images a__ : str =self.vqvae.decode(lowerCAmelCase__ )["sample"] a__ : str =(images / 2 + 0.5).clamp(0 , 1 ) a__ : int =images.cpu().permute(0 , 2 , 3 , 1 ).numpy() a__ : List[Any] =(images * 2_5_5).round().astype("uint8" ) a__ : Dict =list( (Image.fromarray(_[:, :, 0] ) for _ in images) if images.shape[3] == 1 else (Image.fromarray(lowerCAmelCase__ , mode="RGB" ).convert("L" ) for _ in images) ) a__ : str =[self.mel.image_to_audio(lowerCAmelCase__ ) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(lowerCAmelCase__ )[:, np.newaxis, :] ) , **ImagePipelineOutput(lowerCAmelCase__ ) ) @torch.no_grad() def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = 5_0 ) -> np.ndarray: '''simple docstring''' assert isinstance(self.scheduler , lowerCAmelCase__ ) self.scheduler.set_timesteps(lowerCAmelCase__ ) a__ : Union[str, Any] =np.array( [np.frombuffer(image.tobytes() , dtype="uint8" ).reshape((1, image.height, image.width) ) for image in images] ) a__ : Tuple =(sample / 2_5_5) * 2 - 1 a__ : List[Any] =torch.Tensor(lowerCAmelCase__ ).to(self.device ) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ): a__ : str =t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a__ : Dict =self.scheduler.alphas_cumprod[t] a__ : Optional[Any] =( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a__ : Optional[Any] =1 - alpha_prod_t a__ : str =self.unet(lowerCAmelCase__ , lowerCAmelCase__ )["sample"] a__ : Optional[Any] =(1 - alpha_prod_t_prev) ** 0.5 * model_output a__ : List[str] =(sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a__ : Optional[Any] =sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def _lowercase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> torch.Tensor: '''simple docstring''' a__ : Any =acos(torch.dot(torch.flatten(lowerCAmelCase__ ) , torch.flatten(lowerCAmelCase__ ) ) / torch.norm(lowerCAmelCase__ ) / torch.norm(lowerCAmelCase__ ) ) return sin((1 - alpha) * theta ) * xa / sin(lowerCAmelCase__ ) + sin(alpha * theta ) * xa / sin(lowerCAmelCase__ )
148
1
"""simple docstring""" from .dependency_versions_table import deps from .utils.versions import require_version, require_version_core # define which module versions we always want to check at run time # (usually the ones defined in `install_requires` in setup.py) # # order specific notes: # - tqdm must be checked before tokenizers snake_case_ = [ """python""", """tqdm""", """regex""", """requests""", """packaging""", """filelock""", """numpy""", """tokenizers""", """huggingface-hub""", """safetensors""", """accelerate""", """pyyaml""", ] for pkg in pkgs_to_check_at_runtime: if pkg in deps: if pkg == "tokenizers": # must be loaded here, or else tqdm check may fail from .utils import is_tokenizers_available if not is_tokenizers_available(): continue # not required, check version only if installed elif pkg == "accelerate": # must be loaded here, or else tqdm check may fail from .utils import is_accelerate_available # Maybe switch to is_torch_available in the future here so that Accelerate is hard dep of # Transformers with PyTorch if not is_accelerate_available(): continue # not required, check version only if installed require_version_core(deps[pkg]) else: raise ValueError(f'''can\'t find {pkg} in {deps.keys()}, check dependency_versions_table.py''') def _lowerCAmelCase ( lowercase_ , lowercase_=None ): require_version(deps[pkg] , lowercase_ )
78
"""simple docstring""" import inspect import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __UpperCamelCase = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __UpperCamelCase = direct_transformers_import(PATH_TO_TRANSFORMERS) __UpperCamelCase = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __UpperCamelCase = re.compile(r'''\[(.+?)\]\((https://huggingface\.co/.+?)\)''') __UpperCamelCase = { '''DecisionTransformerConfig''', '''EncoderDecoderConfig''', '''MusicgenConfig''', '''RagConfig''', '''SpeechEncoderDecoderConfig''', '''TimmBackboneConfig''', '''VisionEncoderDecoderConfig''', '''VisionTextDualEncoderConfig''', '''LlamaConfig''', } def UpperCAmelCase ( UpperCAmelCase ) -> List[Any]: snake_case_ = None # source code of `config_class` snake_case_ = inspect.getsource(UpperCAmelCase ) snake_case_ = _re_checkpoint.findall(UpperCAmelCase ) # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` for ckpt_name, ckpt_link in checkpoints: # allow the link to end with `/` if ckpt_link.endswith('/' ): snake_case_ = ckpt_link[:-1] # verify the checkpoint name corresponds to the checkpoint link snake_case_ = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: snake_case_ = ckpt_name break return checkpoint def UpperCAmelCase ( ) -> Union[str, Any]: snake_case_ = [] for config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in config_class.__module__: continue snake_case_ = get_checkpoint_from_config_class(UpperCAmelCase ) snake_case_ = config_class.__name__ if checkpoint is None and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = '\n'.join(sorted(UpperCAmelCase ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
69
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import ( BaseOutput, OptionalDependencyNotAvailable, is_flax_available, is_k_diffusion_available, is_k_diffusion_version, is_onnx_available, is_torch_available, is_transformers_available, is_transformers_version, ) @dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : Union[List[PIL.Image.Image], np.ndarray] __snake_case : Optional[List[bool]] try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_cycle_diffusion import CycleDiffusionPipeline from .pipeline_stable_diffusion import StableDiffusionPipeline from .pipeline_stable_diffusion_attend_and_excite import StableDiffusionAttendAndExcitePipeline from .pipeline_stable_diffusion_imgaimg import StableDiffusionImgaImgPipeline from .pipeline_stable_diffusion_inpaint import StableDiffusionInpaintPipeline from .pipeline_stable_diffusion_inpaint_legacy import StableDiffusionInpaintPipelineLegacy from .pipeline_stable_diffusion_instruct_pixapix import StableDiffusionInstructPixaPixPipeline from .pipeline_stable_diffusion_latent_upscale import StableDiffusionLatentUpscalePipeline from .pipeline_stable_diffusion_ldmad import StableDiffusionLDMaDPipeline from .pipeline_stable_diffusion_model_editing import StableDiffusionModelEditingPipeline from .pipeline_stable_diffusion_panorama import StableDiffusionPanoramaPipeline from .pipeline_stable_diffusion_paradigms import StableDiffusionParadigmsPipeline from .pipeline_stable_diffusion_sag import StableDiffusionSAGPipeline from .pipeline_stable_diffusion_upscale import StableDiffusionUpscalePipeline from .pipeline_stable_unclip import StableUnCLIPPipeline from .pipeline_stable_unclip_imgaimg import StableUnCLIPImgaImgPipeline from .safety_checker import StableDiffusionSafetyChecker from .stable_unclip_image_normalizer import StableUnCLIPImageNormalizer try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.25.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import StableDiffusionImageVariationPipeline else: from .pipeline_stable_diffusion_image_variation import StableDiffusionImageVariationPipeline try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(""">=""", """4.26.0""")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionPixaPixZeroPipeline, ) else: from .pipeline_stable_diffusion_depthaimg import StableDiffusionDepthaImgPipeline from .pipeline_stable_diffusion_diffedit import StableDiffusionDiffEditPipeline from .pipeline_stable_diffusion_pixapix_zero import StableDiffusionPixaPixZeroPipeline try: if not ( is_torch_available() and is_transformers_available() and is_k_diffusion_available() and is_k_diffusion_version(""">=""", """0.0.12""") ): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipeline_stable_diffusion_k_diffusion import StableDiffusionKDiffusionPipeline try: if not (is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_onnx_objects import * # noqa F403 else: from .pipeline_onnx_stable_diffusion import OnnxStableDiffusionPipeline, StableDiffusionOnnxPipeline from .pipeline_onnx_stable_diffusion_imgaimg import OnnxStableDiffusionImgaImgPipeline from .pipeline_onnx_stable_diffusion_inpaint import OnnxStableDiffusionInpaintPipeline from .pipeline_onnx_stable_diffusion_inpaint_legacy import OnnxStableDiffusionInpaintPipelineLegacy from .pipeline_onnx_stable_diffusion_upscale import OnnxStableDiffusionUpscalePipeline if is_transformers_available() and is_flax_available(): import flax @flax.struct.dataclass class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' __snake_case : np.ndarray __snake_case : List[bool] from ...schedulers.scheduling_pndm_flax import PNDMSchedulerState from .pipeline_flax_stable_diffusion import FlaxStableDiffusionPipeline from .pipeline_flax_stable_diffusion_imgaimg import FlaxStableDiffusionImgaImgPipeline from .pipeline_flax_stable_diffusion_inpaint import FlaxStableDiffusionInpaintPipeline from .safety_checker_flax import FlaxStableDiffusionSafetyChecker
193
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Any = BertTokenizer __snake_case : Dict = BertTokenizerFast __snake_case : Tuple = True __snake_case : List[Any] = True __snake_case : Optional[Any] = filter_non_english def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def SCREAMING_SNAKE_CASE__ ( self : str ,lowerCamelCase__ : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = """unwanted, running""" return input_text, output_text def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(lowerCamelCase__ ,["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,[9, 6, 7, 12, 10, 11] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) # With lower casing SCREAMING_SNAKE_CASE = self.get_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer(do_lower_case=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """UNwant\u00E9d,running""" SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) ,["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""h\u00E9llo"""] ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) ,["""hello"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,strip_accents=lowerCamelCase__ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) ,["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer(do_lower_case=lowerCamelCase__ ,never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) ,["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = BasicTokenizer() SCREAMING_SNAKE_CASE = """a\n'll !!to?'d of, can't.""" SCREAMING_SNAKE_CASE = ["""a""", """'""", """ll""", """!""", """!""", """to""", """?""", """'""", """d""", """of""", """,""", """can""", """'""", """t""", """."""] self.assertListEqual(tokenizer.tokenize(lowerCamelCase__ ) ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCamelCase__ ): SCREAMING_SNAKE_CASE = i SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCamelCase__ ,unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) ,[] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) ,["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) ,["""[UNK]""", """runn""", """##ing"""] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(lowerCamelCase__ ) for t in ["""Test""", """\xad""", """test"""]] ,[["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""bert-base-uncased""" ) SCREAMING_SNAKE_CASE = tokenizer.encode("""sequence builders""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode("""multi-sequence build""" ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCamelCase__ ,lowerCamelCase__ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus( lowerCamelCase__ ,return_attention_mask=lowerCamelCase__ ,return_token_type_ids=lowerCamelCase__ ,return_offsets_mapping=lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,) SCREAMING_SNAKE_CASE = tokenizer_r.do_lower_case if hasattr(lowerCamelCase__ ,"""do_lower_case""" ) else False SCREAMING_SNAKE_CASE = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] ,tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] ,tokens["""offset_mapping"""] ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ["""的""", """人""", """有"""] SCREAMING_SNAKE_CASE = """""".join(lowerCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCamelCase__ ,**lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(lowerCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". SCREAMING_SNAKE_CASE = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(lowerCamelCase__ ) ] self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ )
193
1
'''simple docstring''' import qiskit def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int ): __a : Any = qiskit.Aer.get_backend('aer_simulator' ) __a : int = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __a : Any = qiskit.execute(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase : Optional[int] = half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
27
def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] ): '''simple docstring''' return (pointa[0] - pointa[0]) ** 2 + (pointa[1] - pointa[1]) ** 2 def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : List[str]=0 ): '''simple docstring''' return sorted(lowerCamelCase__ , key=lambda lowerCamelCase__ : x[column] ) def __lowerCamelCase ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str , lowerCamelCase__ : List[str]=float("""inf""" ) ): '''simple docstring''' for i in range(points_counts - 1 ): for j in range(i + 1 , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : List[Any] , lowerCamelCase__ : Optional[Any]=float("""inf""" ) ): '''simple docstring''' for i in range(min(6 , points_counts - 1 ) , lowerCamelCase__ ): for j in range(max(0 , i - 6 ) , lowerCamelCase__ ): lowerCamelCase = euclidean_distance_sqr(points[i] , points[j] ) if current_dis < min_dis: lowerCamelCase = current_dis return min_dis def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : List[str] ): '''simple docstring''' if points_counts <= 3: return dis_between_closest_pair(lowerCamelCase__ , lowerCamelCase__ ) # recursion lowerCamelCase = points_counts // 2 lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[:mid] , lowerCamelCase__ ) lowerCamelCase = closest_pair_of_points_sqr( lowerCamelCase__ , points_sorted_on_y[mid:] , points_counts - mid ) lowerCamelCase = min(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase = [] for point in points_sorted_on_x: if abs(point[0] - points_sorted_on_x[mid][0] ) < closest_pair_dis: cross_strip.append(lowerCamelCase__ ) lowerCamelCase = dis_between_closest_in_strip( lowerCamelCase__ , len(lowerCamelCase__ ) , lowerCamelCase__ ) return min(lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = column_based_sort(lowerCamelCase__ , column=0 ) lowerCamelCase = column_based_sort(lowerCamelCase__ , column=1 ) return ( closest_pair_of_points_sqr( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) ) ** 0.5 if __name__ == "__main__": UpperCAmelCase : Dict = [(2, 3), (12, 30), (40, 50), (5, 1), (12, 10), (3, 4)] print("Distance:", closest_pair_of_points(points, len(points)))
252
0
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class _A ( _a ): """simple docstring""" def __init__( self : str , *__UpperCAmelCase : int , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : List[Any]): super().__init__(*__UpperCAmelCase , **__UpperCAmelCase) a : Dict = eval_examples a : int = post_process_function def __snake_case ( self : Optional[int] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : str = "eval"): a : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset a : Dict = self.get_eval_dataloader(__UpperCAmelCase) a : int = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. a : Union[str, Any] = self.compute_metrics a : List[str] = None a : Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a : List[str] = time.time() try: a : Tuple = eval_loop( __UpperCAmelCase , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: a : Union[str, Any] = compute_metrics a : Optional[Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default a : Dict = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions) a : List[str] = self.compute_metrics(__UpperCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): a : Dict = metrics.pop(__UpperCAmelCase) metrics.update(output.metrics) else: a : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__UpperCAmelCase) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report()) a : Optional[Any] = self.callback_handler.on_evaluate(self.args , self.state , self.control , __UpperCAmelCase) return metrics def __snake_case ( self : Union[str, Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : str = "test"): a : int = self.get_test_dataloader(__UpperCAmelCase) # Temporarily disable metric computation, we will do it in the loop here. a : Optional[Any] = self.compute_metrics a : Any = None a : Union[str, Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop a : Union[str, Any] = time.time() try: a : Dict = eval_loop( __UpperCAmelCase , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__UpperCAmelCase , metric_key_prefix=__UpperCAmelCase , ) finally: a : Dict = compute_metrics a : List[str] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( __UpperCAmelCase , __UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size) , )) if self.post_process_function is None or self.compute_metrics is None: return output a : Any = self.post_process_function(__UpperCAmelCase , __UpperCAmelCase , output.predictions , "predict") a : int = self.compute_metrics(__UpperCAmelCase) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys()): if not key.startswith(f'''{metric_key_prefix}_'''): a : Any = metrics.pop(__UpperCAmelCase) metrics.update(output.metrics) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__UpperCAmelCase)
226
"""simple docstring""" import sys import turtle def lowercase ( A_ , A_ )-> tuple[float, float]: '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase ( A_ , A_ , A_ , A_ , )-> None: '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) my_pen.goto(vertexa[0] , vertexa[1] ) if depth == 0: return triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) triangle(A_ , get_mid(A_ , A_ ) , get_mid(A_ , A_ ) , depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) __lowercase = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") __lowercase = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
226
1
import numpy as np from nltk.translate import meteor_score import datasets from datasets.config import importlib_metadata, version lowerCAmelCase__ :Union[str, Any] = version.parse(importlib_metadata.version('''nltk''')) if NLTK_VERSION >= version.Version('''3.6.4'''): from nltk import word_tokenize lowerCAmelCase__ :Tuple = '\\n@inproceedings{banarjee2005,\n title = {{METEOR}: An Automatic Metric for {MT} Evaluation with Improved Correlation with Human Judgments},\n author = {Banerjee, Satanjeev and Lavie, Alon},\n booktitle = {Proceedings of the {ACL} Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine Translation and/or Summarization},\n month = jun,\n year = {2005},\n address = {Ann Arbor, Michigan},\n publisher = {Association for Computational Linguistics},\n url = {https://www.aclweb.org/anthology/W05-0909},\n pages = {65--72},\n}\n' lowerCAmelCase__ :Optional[int] = '\\nMETEOR, an automatic metric for machine translation evaluation\nthat is based on a generalized concept of unigram matching between the\nmachine-produced translation and human-produced reference translations.\nUnigrams can be matched based on their surface forms, stemmed forms,\nand meanings; furthermore, METEOR can be easily extended to include more\nadvanced matching strategies. Once all generalized unigram matches\nbetween the two strings have been found, METEOR computes a score for\nthis matching using a combination of unigram-precision, unigram-recall, and\na measure of fragmentation that is designed to directly capture how\nwell-ordered the matched words in the machine translation are in relation\nto the reference.\n\nMETEOR gets an R correlation value of 0.347 with human evaluation on the Arabic\ndata and 0.331 on the Chinese data. This is shown to be an improvement on\nusing simply unigram-precision, unigram-recall and their harmonic F1\ncombination.\n' lowerCAmelCase__ :int = '\nComputes METEOR score of translated segments against one or more references.\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n alpha: Parameter for controlling relative weights of precision and recall. default: 0.9\n beta: Parameter for controlling shape of penalty as a function of fragmentation. default: 3\n gamma: Relative weight assigned to fragmentation penalty. default: 0.5\nReturns:\n \'meteor\': meteor score.\nExamples:\n\n >>> meteor = datasets.load_metric(\'meteor\')\n >>> predictions = ["It is a guide to action which ensures that the military always obeys the commands of the party"]\n >>> references = ["It is a guide to action that ensures that the military will forever heed Party commands"]\n >>> results = meteor.compute(predictions=predictions, references=references)\n >>> print(round(results["meteor"], 4))\n 0.6944\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def UpperCAmelCase__ ( self ) -> int: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/nltk/nltk/blob/develop/nltk/translate/meteor_score.py'] , reference_urls=[ 'https://www.nltk.org/api/nltk.translate.html#module-nltk.translate.meteor_score', 'https://en.wikipedia.org/wiki/METEOR', ] , ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" import nltk nltk.download('wordnet' ) if NLTK_VERSION >= version.Version('3.6.5' ): nltk.download('punkt' ) if NLTK_VERSION >= version.Version('3.6.6' ): nltk.download('omw-1.4' ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0.9 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=0.5 ) -> Dict: """simple docstring""" if NLTK_VERSION >= version.Version('3.6.5' ): _UpperCAmelCase = [ meteor_score.single_meteor_score( word_tokenize(__lowerCamelCase ) , word_tokenize(__lowerCamelCase ) , alpha=__lowerCamelCase , beta=__lowerCamelCase , gamma=__lowerCamelCase ) for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ) ] else: _UpperCAmelCase = [ meteor_score.single_meteor_score(__lowerCamelCase , __lowerCamelCase , alpha=__lowerCamelCase , beta=__lowerCamelCase , gamma=__lowerCamelCase ) for ref, pred in zip(__lowerCamelCase , __lowerCamelCase ) ] return {"meteor": np.mean(__lowerCamelCase )}
329
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ ="""Speech2TextFeatureExtractor""" snake_case_ ="""Speech2TextTokenizer""" def __init__(self ,__lowerCamelCase ,__lowerCamelCase ) -> str: """simple docstring""" super().__init__(__lowerCamelCase ,__lowerCamelCase ) lowerCAmelCase__ : int = self.feature_extractor lowerCAmelCase__ : List[str] = False def __call__(self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Dict: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*__lowerCamelCase ,**__lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('''Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.''' ) lowerCAmelCase__ : Optional[Any] = kwargs.pop('''raw_speech''' ) else: lowerCAmelCase__ : str = kwargs.pop('''audio''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''sampling_rate''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = kwargs.pop('''text''' ,__lowerCamelCase ) if len(__lowerCamelCase ) > 0: lowerCAmelCase__ : Union[str, Any] = args[0] lowerCAmelCase__ : str = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''' ) if audio is not None: lowerCAmelCase__ : str = self.feature_extractor(__lowerCamelCase ,*__lowerCamelCase ,sampling_rate=__lowerCamelCase ,**__lowerCamelCase ) if text is not None: lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,**__lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: lowerCAmelCase__ : str = encodings['''input_ids'''] return inputs def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> List[str]: """simple docstring""" return self.tokenizer.batch_decode(*__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,*__lowerCamelCase ,**__lowerCamelCase ) -> Tuple: """simple docstring""" return self.tokenizer.decode(*__lowerCamelCase ,**__lowerCamelCase ) @contextmanager def lowerCAmelCase__ (self ) -> Any: """simple docstring""" warnings.warn( '''`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ''' '''labels by using the argument `text` of the regular `__call__` method (either in the same call as ''' '''your audio inputs, or in a separate call.''' ) lowerCAmelCase__ : int = True lowerCAmelCase__ : Union[str, Any] = self.tokenizer yield lowerCAmelCase__ : List[str] = self.feature_extractor lowerCAmelCase__ : Any = False
129
0
'''simple docstring''' from math import sqrt def UpperCAmelCase ( lowerCamelCase_ :Optional[int] ): '''simple docstring''' snake_case_ : Any = 0 for i in range(1 , int(sqrt(lowercase__ ) + 1 ) ): if n % i == 0 and i != sqrt(lowercase__ ): total += i + n // i elif i == sqrt(lowercase__ ): total += i return total - n def UpperCAmelCase ( lowerCamelCase_ :List[Any] = 1_00_00 ): '''simple docstring''' snake_case_ : int = sum( i for i in range(1 , lowercase__ ) if sum_of_divisors(sum_of_divisors(lowercase__ ) ) == i and sum_of_divisors(lowercase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
362
'''simple docstring''' def UpperCAmelCase ( lowerCamelCase_ :list ): '''simple docstring''' if len(lowerCamelCase_ ) <= 1: return lst snake_case_ : Union[str, Any] = 1 while i < len(lowerCamelCase_ ): if lst[i - 1] <= lst[i]: i += 1 else: snake_case_ , snake_case_ : Union[str, Any] = lst[i], lst[i - 1] i -= 1 if i == 0: snake_case_ : int = 1 return lst if __name__ == "__main__": __A : Optional[int] = input('Enter numbers separated by a comma:\n').strip() __A : int = [int(item) for item in user_input.split(',')] print(gnome_sort(unsorted))
8
0
"""simple docstring""" def UpperCamelCase__ ( lowercase__ : str ): snake_case : Dict = 0 for ch in input_str: snake_case : List[str] = ord(lowercase__ ) snake_case : Tuple = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
148
"""simple docstring""" import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = { "facebook/mask2former-swin-small-coco-instance": ( "https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } __A = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCamelCase_ ): a__ : Optional[Any] = """mask2former""" a__ : Union[str, Any] = ["""swin"""] a__ : Dict = {"""hidden_size""": """hidden_dim"""} def __init__( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 256 , SCREAMING_SNAKE_CASE = 1_024 , SCREAMING_SNAKE_CASE = "relu" , SCREAMING_SNAKE_CASE = 6 , SCREAMING_SNAKE_CASE = 10 , SCREAMING_SNAKE_CASE = 8 , SCREAMING_SNAKE_CASE = 0.0 , SCREAMING_SNAKE_CASE = 2_048 , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = False , SCREAMING_SNAKE_CASE = 4 , SCREAMING_SNAKE_CASE = 255 , SCREAMING_SNAKE_CASE = 100 , SCREAMING_SNAKE_CASE = 0.1 , SCREAMING_SNAKE_CASE = 2.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 5.0 , SCREAMING_SNAKE_CASE = 12_544 , SCREAMING_SNAKE_CASE = 3.0 , SCREAMING_SNAKE_CASE = 0.75 , SCREAMING_SNAKE_CASE = 0.02 , SCREAMING_SNAKE_CASE = 1.0 , SCREAMING_SNAKE_CASE = True , SCREAMING_SNAKE_CASE = [4, 8, 16, 32] , SCREAMING_SNAKE_CASE = None , **SCREAMING_SNAKE_CASE , ): """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `Swin` backbone." ) snake_case : List[str] = CONFIG_MAPPING["swin"]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=SCREAMING_SNAKE_CASE , out_features=["stage1", "stage2", "stage3", "stage4"] , ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): snake_case : Tuple = backbone_config.pop("model_type" ) snake_case : Dict = CONFIG_MAPPING[backbone_model_type] snake_case : Optional[int] = config_class.from_dict(SCREAMING_SNAKE_CASE ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) snake_case : List[str] = backbone_config snake_case : Optional[int] = feature_size snake_case : Optional[int] = mask_feature_size snake_case : Optional[int] = hidden_dim snake_case : List[str] = encoder_feedforward_dim snake_case : Dict = activation_function snake_case : Optional[Any] = encoder_layers snake_case : Any = decoder_layers snake_case : Optional[int] = num_attention_heads snake_case : List[str] = dropout snake_case : List[Any] = dim_feedforward snake_case : Tuple = pre_norm snake_case : int = enforce_input_projection snake_case : str = common_stride snake_case : List[Any] = ignore_value snake_case : Optional[int] = num_queries snake_case : Optional[int] = no_object_weight snake_case : Dict = class_weight snake_case : Tuple = mask_weight snake_case : Tuple = dice_weight snake_case : Tuple = train_num_points snake_case : int = oversample_ratio snake_case : Dict = importance_sample_ratio snake_case : Tuple = init_std snake_case : Dict = init_xavier_std snake_case : List[Any] = use_auxiliary_loss snake_case : Dict = feature_strides snake_case : List[Any] = output_auxiliary_logits snake_case : Union[str, Any] = decoder_layers super().__init__(**SCREAMING_SNAKE_CASE ) @classmethod def lowerCamelCase_ ( cls , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): """simple docstring""" return cls( backbone_config=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : int = copy.deepcopy(self.__dict__ ) snake_case : str = self.backbone_config.to_dict() snake_case : Optional[int] = self.__class__.model_type return output
148
1
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowercase__ = random.Random() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None ) -> Any: '''simple docstring''' if rng is None: snake_case : Tuple = global_rng snake_case : Tuple = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str=7 , UpperCamelCase__ : Optional[Any]=400 , UpperCamelCase__ : List[str]=2000 , UpperCamelCase__ : int=1 , UpperCamelCase__ : str=0.0 , UpperCamelCase__ : Optional[Any]=1_6000 , UpperCamelCase__ : List[str]=True , UpperCamelCase__ : Optional[Any]=True , ) -> Dict: """simple docstring""" snake_case : Optional[int] = parent snake_case : List[str] = batch_size snake_case : Tuple = min_seq_length snake_case : Dict = max_seq_length snake_case : Tuple = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) snake_case : Union[str, Any] = feature_size snake_case : List[str] = padding_value snake_case : List[str] = sampling_rate snake_case : int = return_attention_mask snake_case : Dict = do_normalize def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : Dict=False , UpperCamelCase__ : Any=False ) -> int: """simple docstring""" def _flatten(UpperCamelCase__ : Tuple ): return list(itertools.chain(*UpperCamelCase__ ) ) if equal_length: snake_case : Optional[int] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size snake_case : Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: snake_case : Dict = [np.asarray(UpperCamelCase__ ) for x in speech_inputs] return speech_inputs class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = WavaVecaFeatureExtractor def lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" snake_case : Dict = WavaVecaFeatureExtractionTester(self ) def lowerCAmelCase ( self : Optional[Any] , UpperCamelCase__ : int ) -> Optional[Any]: """simple docstring""" self.assertTrue(np.all(np.mean(UpperCamelCase__ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(UpperCamelCase__ , axis=0 ) - 1 ) < 1e-3 ) ) def lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 snake_case : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case : Optional[Any] = [np.asarray(UpperCamelCase__ ) for speech_input in speech_inputs] # Test not batched input snake_case : List[Any] = feat_extract(speech_inputs[0] , return_tensors='''np''' ).input_values snake_case : Any = feat_extract(np_speech_inputs[0] , return_tensors='''np''' ).input_values self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test batched snake_case : Tuple = feat_extract(UpperCamelCase__ , return_tensors='''np''' ).input_values snake_case : Dict = feat_extract(UpperCamelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in (800, 800, 800)] snake_case : Any = np.asarray(UpperCamelCase__ ) snake_case : Union[str, Any] = feat_extract(UpperCamelCase__ , return_tensors='''np''' ).input_values snake_case : Any = feat_extract(UpperCamelCase__ , return_tensors='''np''' ).input_values for enc_seq_a, enc_seq_a in zip(UpperCamelCase__ , UpperCamelCase__ ): self.assertTrue(np.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-3 ) ) def lowerCAmelCase ( self : Tuple ) -> List[str]: """simple docstring""" snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Dict = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case : List[str] = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case : int = [None, 1600, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): snake_case : List[str] = feat_extract(UpperCamelCase__ , padding=UpperCamelCase__ , max_length=UpperCamelCase__ , return_tensors='''np''' ) snake_case : List[str] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self.assertTrue(input_values[0][1000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase ( self : List[str] ) -> Optional[int]: """simple docstring""" snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Dict = range(800 , 1400 , 200 ) snake_case : Union[str, Any] = [floats_list((1, x) )[0] for x in lengths] snake_case : Union[str, Any] = ['''longest''', '''max_length''', '''do_not_pad'''] snake_case : int = [None, 1600, None] for max_length, padding in zip(UpperCamelCase__ , UpperCamelCase__ ): snake_case : Any = feat_extract(UpperCamelCase__ , max_length=UpperCamelCase__ , padding=UpperCamelCase__ ) snake_case : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1000] ) self._check_zero_mean_unit_variance(input_values[2][:1200] ) def lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : str = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case : Union[str, Any] = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=1000 , padding='''max_length''' , return_tensors='''np''' ) snake_case : str = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def lowerCAmelCase ( self : Dict ) -> Union[str, Any]: """simple docstring""" snake_case : Dict = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case : Tuple = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=1000 , padding='''longest''' , return_tensors='''np''' ) snake_case : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1000) ) snake_case : Any = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] snake_case : Dict = feat_extract( UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=2000 , padding='''longest''' , return_tensors='''np''' ) snake_case : List[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1200) ) @require_torch def lowerCAmelCase ( self : Dict ) -> Dict: """simple docstring""" import torch snake_case : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) snake_case : Union[str, Any] = np.random.rand(100 ).astype(np.floataa ) snake_case : List[str] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: snake_case : Dict = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''' ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) snake_case : Union[str, Any] = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''' ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: snake_case : Union[str, Any] = WavaVecaConfig.from_pretrained(UpperCamelCase__ ) snake_case : Optional[Any] = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase__ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == '''layer''' )
360
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: '''simple docstring''' with open(SCREAMING_SNAKE_CASE__ ) as metadata_file: snake_case : int = json.load(SCREAMING_SNAKE_CASE__ ) snake_case : Any = LukeConfig(use_entity_aware_attention=SCREAMING_SNAKE_CASE__ , **metadata['''model_config'''] ) # Load in the weights from the checkpoint_path snake_case : Any = torch.load(SCREAMING_SNAKE_CASE__ , map_location='''cpu''' )['''module'''] # Load the entity vocab file snake_case : Dict = load_original_entity_vocab(SCREAMING_SNAKE_CASE__ ) # add an entry for [MASK2] snake_case : List[str] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 snake_case : int = XLMRobertaTokenizer.from_pretrained(metadata['''model_config''']['''bert_model_name'''] ) # Add special tokens to the token vocabulary for downstream tasks snake_case : Union[str, Any] = AddedToken('''<ent>''' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) snake_case : Optional[int] = AddedToken('''<ent2>''' , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) tokenizer.add_special_tokens({'''additional_special_tokens''': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , '''tokenizer_config.json''' ) , '''r''' ) as f: snake_case : Tuple = json.load(SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = '''MLukeTokenizer''' with open(os.path.join(SCREAMING_SNAKE_CASE__ , '''tokenizer_config.json''' ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) with open(os.path.join(SCREAMING_SNAKE_CASE__ , MLukeTokenizer.vocab_files_names['''entity_vocab_file'''] ) , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Initialize the embeddings of the special tokens snake_case : List[str] = tokenizer.convert_tokens_to_ids(['''@'''] )[0] snake_case : List[str] = tokenizer.convert_tokens_to_ids(['''#'''] )[0] snake_case : List[str] = state_dict['''embeddings.word_embeddings.weight'''] snake_case : int = word_emb[ent_init_index].unsqueeze(0 ) snake_case : Union[str, Any] = word_emb[enta_init_index].unsqueeze(0 ) snake_case : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: snake_case : Dict = state_dict[bias_name] snake_case : Any = decoder_bias[ent_init_index].unsqueeze(0 ) snake_case : str = decoder_bias[enta_init_index].unsqueeze(0 ) snake_case : Any = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: snake_case : Optional[Any] = F'encoder.layer.{layer_index}.attention.self.' snake_case : int = state_dict[prefix + matrix_name] snake_case : Union[str, Any] = state_dict[prefix + matrix_name] snake_case : int = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks snake_case : List[Any] = state_dict['''entity_embeddings.entity_embeddings.weight'''] snake_case : Dict = entity_emb[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case : List[Any] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' snake_case : Optional[Any] = state_dict['''entity_predictions.bias'''] snake_case : Optional[int] = entity_prediction_bias[entity_vocab['''[MASK]''']].unsqueeze(0 ) snake_case : List[Any] = torch.cat([entity_prediction_bias, entity_mask_bias] ) snake_case : str = LukeForMaskedLM(config=SCREAMING_SNAKE_CASE__ ).eval() state_dict.pop('''entity_predictions.decoder.weight''' ) state_dict.pop('''lm_head.decoder.weight''' ) state_dict.pop('''lm_head.decoder.bias''' ) snake_case : Optional[Any] = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('''lm_head''' ) or key.startswith('''entity_predictions''' )): snake_case : int = state_dict[key] else: snake_case : List[str] = state_dict[key] snake_case ,snake_case : int = model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) if set(SCREAMING_SNAKE_CASE__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F'Unexpected unexpected_keys: {unexpected_keys}' ) if set(SCREAMING_SNAKE_CASE__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs snake_case : Optional[int] = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ , task='''entity_classification''' ) snake_case : Tuple = '''ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).''' snake_case : int = (0, 9) snake_case : str = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors='''pt''' ) snake_case : Union[str, Any] = model(**SCREAMING_SNAKE_CASE__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : Dict = torch.Size((1, 33, 768) ) snake_case : int = torch.tensor([[0.0892, 0.0596, -0.2819], [0.0134, 0.1199, 0.0573], [-0.0169, 0.0927, 0.0644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base snake_case : str = torch.Size((1, 1, 768) ) snake_case : Tuple = torch.tensor([[-0.1482, 0.0609, 0.0322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' F' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction snake_case : str = MLukeTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = '''Tokyo is the capital of <mask>.''' snake_case : Union[str, Any] = (24, 30) snake_case : Tuple = tokenizer(SCREAMING_SNAKE_CASE__ , entity_spans=[span] , return_tensors='''pt''' ) snake_case : int = model(**SCREAMING_SNAKE_CASE__ ) snake_case : List[str] = encoding['''input_ids'''][0].tolist() snake_case : Union[str, Any] = input_ids.index(tokenizer.convert_tokens_to_ids('''<mask>''' ) ) snake_case : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(SCREAMING_SNAKE_CASE__ ) snake_case : List[Any] = outputs.entity_logits[0][0].argmax().item() snake_case : Dict = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('''en:''' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('''Saving PyTorch model to {}'''.format(SCREAMING_SNAKE_CASE__ ) ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> List[str]: '''simple docstring''' snake_case : Dict = ['''[MASK]''', '''[PAD]''', '''[UNK]'''] snake_case : List[Any] = [json.loads(SCREAMING_SNAKE_CASE__ ) for line in open(SCREAMING_SNAKE_CASE__ )] snake_case : Optional[int] = {} for entry in data: snake_case : Optional[Any] = entry['''id'''] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: snake_case : List[str] = entity_id break snake_case : Any = F'{language}:{entity_name}' snake_case : List[str] = entity_id return new_mapping if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) lowercase__ = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
83
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) a__: str = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: int = ['OwlViTFeatureExtractor'] a__: Optional[int] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__: Optional[int] = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys a__: Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
193
class SCREAMING_SNAKE_CASE__ : def __init__( self,__lowerCamelCase ): A__ = set_counts A__ = max(__lowerCamelCase ) A__ = len(__lowerCamelCase ) A__ = [1] * num_sets A__ = list(range(__lowerCamelCase ) ) def UpperCamelCase ( self,__lowerCamelCase,__lowerCamelCase ): A__ = self.get_parent(__lowerCamelCase ) A__ = self.get_parent(__lowerCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A__ = 0 A__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A__ = 0 A__ = src_parent A__ = self.set_counts[src_parent] A__ = max(self.max_set,__lowerCamelCase ) return True def UpperCamelCase ( self,__lowerCamelCase ): if self.parents[disj_set] == disj_set: return disj_set A__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
193
1
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''facebook/encodec_24khz''': '''https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json''', '''facebook/encodec_48khz''': '''https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json''', } class lowerCamelCase__ ( __lowercase ): _lowerCAmelCase = '''encodec''' def __init__( self : Optional[int] , _a : int=[1.5, 3.0, 6.0, 1_2.0, 2_4.0] , _a : str=2_4_0_0_0 , _a : List[Any]=1 , _a : Optional[int]=False , _a : Union[str, Any]=None , _a : Optional[Any]=None , _a : Dict=1_2_8 , _a : Union[str, Any]=3_2 , _a : Any=1 , _a : List[Any]=[8, 5, 4, 2] , _a : List[Any]="weight_norm" , _a : List[str]=7 , _a : Optional[Any]=7 , _a : Optional[Any]=3 , _a : Any=2 , _a : Tuple=True , _a : Union[str, Any]="reflect" , _a : Dict=2 , _a : Optional[int]=2 , _a : List[Any]=1.0 , _a : str=1_0_2_4 , _a : Dict=None , _a : str=True , **_a : Dict , ): a__: int =target_bandwidths a__: Any =sampling_rate a__: List[Any] =audio_channels a__: Any =normalize a__: List[Any] =chunk_length_s a__: List[Any] =overlap a__: Optional[Any] =hidden_size a__: Union[str, Any] =num_filters a__: int =num_residual_layers a__: Any =upsampling_ratios a__: Tuple =norm_type a__: Tuple =kernel_size a__: Any =last_kernel_size a__: List[Any] =residual_kernel_size a__: str =dilation_growth_rate a__: Union[str, Any] =use_causal_conv a__: Any =pad_mode a__: Union[str, Any] =compress a__: Any =num_lstm_layers a__: List[str] =trim_right_ratio a__: int =codebook_size a__: str =codebook_dim if codebook_dim is not None else hidden_size a__: List[str] =use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( F"self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}" ) super().__init__(**_a ) @property def _lowerCamelCase ( self : List[Any] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _lowerCamelCase ( self : int ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _lowerCamelCase ( self : Dict ): a__: List[Any] =np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _lowerCamelCase ( self : Optional[Any] ): return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
350
import os def __lowerCamelCase ( __magic_name__ : str = "input.txt" ): with open(os.path.join(os.path.dirname(__magic_name__ ) , __magic_name__ ) ) as input_file: a__: str =[ [int(__magic_name__ ) for element in line.split("," )] for line in input_file.readlines() ] a__: int =len(__magic_name__ ) a__: int =len(matrix[0] ) a__: Optional[Any] =[[-1 for _ in range(__magic_name__ )] for _ in range(__magic_name__ )] for i in range(__magic_name__ ): a__: Dict =matrix[i][0] for j in range(1 , __magic_name__ ): for i in range(__magic_name__ ): a__: int =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , __magic_name__ ): a__: Tuple =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): a__: Tuple =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"""{solution() = }""")
42
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __A ={ "configuration_blip": [ "BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlipConfig", "BlipTextConfig", "BlipVisionConfig", ], "processing_blip": ["BlipProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =["BlipImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ "BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "BlipModel", "BlipPreTrainedModel", "BlipForConditionalGeneration", "BlipForQuestionAnswering", "BlipVisionModel", "BlipTextModel", "BlipForImageTextRetrieval", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ "TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFBlipModel", "TFBlipPreTrainedModel", "TFBlipForConditionalGeneration", "TFBlipForQuestionAnswering", "TFBlipVisionModel", "TFBlipTextModel", "TFBlipForImageTextRetrieval", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys __A =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
226
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values __A =argparse.ArgumentParser() parser.add_argument("--user", type=str, default="ubuntu") parser.add_argument("--host", type=str, default="localhost") parser.add_argument("--key_path", type=str, default=None) parser.add_argument("--instance", type=str, default="V100:1") parser.add_argument("--provider", type=str, default="cheapest") parser.add_argument("--use_spot", type=bool, default=False) parser.add_argument("--example", type=str, default="pytorch/text-generation/run_generation.py") __A , __A =parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("Cannot specify both BYO and on-demand cluster args") __A =rh.cluster( name="rh-cluster", ips=[args.host], ssh_creds={"ssh_user": args.user, "ssh_private_key": args.key_path} ) else: __A =rh.cluster( name="rh-cluster", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) __A =args.example.rsplit("/", 1)[0] # Set up remote environment cluster.install_packages(["pip:./"]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(["pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
226
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { 'google/vivit-b-16x2-kinetics400': ( 'https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json' ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _SCREAMING_SNAKE_CASE ( lowerCamelCase__ ): __SCREAMING_SNAKE_CASE :Tuple = """vivit""" def __init__( self : str , a__ : Union[str, Any]=224 , a__ : Optional[int]=32 , a__ : Optional[Any]=[2, 16, 16] , a__ : Tuple=3 , a__ : Tuple=768 , a__ : List[Any]=12 , a__ : Dict=12 , a__ : List[Any]=3072 , a__ : Union[str, Any]="gelu_fast" , a__ : Any=0.0 , a__ : Optional[Any]=0.0 , a__ : List[str]=0.02 , a__ : List[str]=1E-06 , a__ : List[Any]=True , **a__ : Any , ): __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_act __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = initializer_range __magic_name__ = layer_norm_eps __magic_name__ = image_size __magic_name__ = num_frames __magic_name__ = tubelet_size __magic_name__ = num_channels __magic_name__ = qkv_bias super().__init__(**__lowerCamelCase )
356
'''simple docstring''' from __future__ import annotations from fractions import Fraction def UpperCamelCase ( a , a ) -> bool: '''simple docstring''' return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def UpperCamelCase ( a ) -> list[str]: '''simple docstring''' __magic_name__ = [] __magic_name__ = 11 __magic_name__ = int('''1''' + '''0''' * digit_len ) for num in range(a , a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(a , a ): solutions.append(F'''{num}/{den}''' ) den += 1 num += 1 __magic_name__ = 10 return solutions def UpperCamelCase ( a = 2 ) -> int: '''simple docstring''' __magic_name__ = 1.0 for fraction in fraction_list(a ): __magic_name__ = Fraction(a ) result *= frac.denominator / frac.numerator return int(a ) if __name__ == "__main__": print(solution())
98
0
"""simple docstring""" import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) A : List[str] = { "sample_size": 3_2, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_0_0_0, "block_out_channels": [3_2, 6_4], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } A : Tuple = { "sample_size": 6_4, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_0_0_0, "block_out_channels": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } A : Dict = { "sample_size": 2_5_6, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } A : Optional[Any] = { "num_train_timesteps": 4_0, "sigma_min": 0.002, "sigma_max": 80.0, } A : List[str] = { "num_train_timesteps": 2_0_1, "sigma_min": 0.002, "sigma_max": 80.0, } A : Optional[Any] = { "num_train_timesteps": 1_5_1, "sigma_min": 0.002, "sigma_max": 80.0, } def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=False ): '''simple docstring''' __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.0.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.0.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.2.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.in_layers.2.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.emb_layers.1.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.emb_layers.1.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.0.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.0.bias"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.3.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: __lowerCAmelCase = checkpoint[f"{old_prefix}.skip_connection.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ): '''simple docstring''' __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 , dim=0 ) __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 , dim=0 ) __lowerCAmelCase = checkpoint[f"{old_prefix}.norm.weight"] __lowerCAmelCase = checkpoint[f"{old_prefix}.norm.bias"] __lowerCAmelCase = weight_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = bias_q.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = weight_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = bias_k.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = weight_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = bias_v.squeeze(-1 ).squeeze(-1 ) __lowerCAmelCase = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) __lowerCAmelCase = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = torch.load(_UpperCamelCase , map_location="cpu" ) __lowerCAmelCase = {} __lowerCAmelCase = checkpoint["time_embed.0.weight"] __lowerCAmelCase = checkpoint["time_embed.0.bias"] __lowerCAmelCase = checkpoint["time_embed.2.weight"] __lowerCAmelCase = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: __lowerCAmelCase = checkpoint["label_emb.weight"] __lowerCAmelCase = checkpoint["input_blocks.0.0.weight"] __lowerCAmelCase = checkpoint["input_blocks.0.0.bias"] __lowerCAmelCase = unet_config["down_block_types"] __lowerCAmelCase = unet_config["layers_per_block"] __lowerCAmelCase = unet_config["attention_head_dim"] __lowerCAmelCase = unet_config["block_out_channels"] __lowerCAmelCase = 1 __lowerCAmelCase = channels_list[0] for i, layer_type in enumerate(_UpperCamelCase ): __lowerCAmelCase = channels_list[i] __lowerCAmelCase = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(_UpperCamelCase ): __lowerCAmelCase = f"down_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"input_blocks.{current_layer}.0" __lowerCAmelCase = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(_UpperCamelCase ): __lowerCAmelCase = f"down_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"input_blocks.{current_layer}.0" __lowerCAmelCase = True if j == 0 and downsample_block_has_skip else False __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) __lowerCAmelCase = f"down_blocks.{i}.attentions.{j}" __lowerCAmelCase = f"input_blocks.{current_layer}.1" __lowerCAmelCase = convert_attention( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __lowerCAmelCase = f"down_blocks.{i}.downsamplers.0" __lowerCAmelCase = f"input_blocks.{current_layer}.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 __lowerCAmelCase = current_channels # hardcoded the mid-block for now __lowerCAmelCase = "mid_block.resnets.0" __lowerCAmelCase = "middle_block.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = "mid_block.attentions.0" __lowerCAmelCase = "middle_block.1" __lowerCAmelCase = convert_attention(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = "mid_block.resnets.1" __lowerCAmelCase = "middle_block.2" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = 0 __lowerCAmelCase = unet_config["up_block_types"] for i, layer_type in enumerate(_UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase = f"up_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"output_blocks.{current_layer}.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __lowerCAmelCase = f"up_blocks.{i}.upsamplers.0" __lowerCAmelCase = f"output_blocks.{current_layer-1}.1" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): __lowerCAmelCase = f"up_blocks.{i}.resnets.{j}" __lowerCAmelCase = f"output_blocks.{current_layer}.0" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , has_skip=_UpperCamelCase ) __lowerCAmelCase = f"up_blocks.{i}.attentions.{j}" __lowerCAmelCase = f"output_blocks.{current_layer}.1" __lowerCAmelCase = convert_attention( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) current_layer += 1 if i != len(_UpperCamelCase ) - 1: __lowerCAmelCase = f"up_blocks.{i}.upsamplers.0" __lowerCAmelCase = f"output_blocks.{current_layer-1}.2" __lowerCAmelCase = convert_resnet(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = checkpoint["out.0.weight"] __lowerCAmelCase = checkpoint["out.0.bias"] __lowerCAmelCase = checkpoint["out.2.weight"] __lowerCAmelCase = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": A : Dict = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") A : Optional[Any] = parser.parse_args() A : int = strabool(args.class_cond) A : Dict = os.path.basename(args.unet_path) print(f'''Checkpoint: {ckpt_name}''') # Get U-Net config if "imagenet64" in ckpt_name: A : Union[str, Any] = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A : Any = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: A : Union[str, Any] = TEST_UNET_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') if not args.class_cond: A : Union[str, Any] = None A : int = con_pt_to_diffuser(args.unet_path, unet_config) A : Tuple = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: A : Union[str, Any] = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: A : Any = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): A : Any = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''') A : Optional[int] = CMStochasticIterativeScheduler(**scheduler_config) A : Optional[Any] = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
57
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Any , _UpperCamelCase : Any , _UpperCamelCase : Tuple ) ->List[Any]: return f'''gaussian_noise_s={seed}_shape={'_'.join([str(_UpperCamelCase ) for s in shape] )}.npy''' def snake_case__( self : Any ) ->List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case__( self : int , _UpperCamelCase : Union[str, Any]=0 , _UpperCamelCase : int=(4, 4, 6_4, 6_4) , _UpperCamelCase : Optional[int]=False ) ->Tuple: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return image def snake_case__( self : List[Any] , _UpperCamelCase : Optional[Any]=False , _UpperCamelCase : Optional[int]="CompVis/stable-diffusion-v1-4" ) ->Optional[Any]: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = '''bf16''' if fpaa else None snake_case_, snake_case_ = FlaxUNetaDConditionModel.from_pretrained( _UpperCamelCase , subfolder='''unet''' , dtype=_UpperCamelCase , revision=_UpperCamelCase ) return model, params def snake_case__( self : Dict , _UpperCamelCase : List[Any]=0 , _UpperCamelCase : Tuple=(4, 7_7, 7_6_8) , _UpperCamelCase : List[Any]=False ) ->int: snake_case_ = jnp.bfloataa if fpaa else jnp.floataa snake_case_ = jnp.array(load_hf_numpy(self.get_file_format(_UpperCamelCase , _UpperCamelCase ) ) , dtype=_UpperCamelCase ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def snake_case__( self : Optional[Any] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[int] ) ->Union[str, Any]: snake_case_, snake_case_ = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def snake_case__( self : Optional[int] , _UpperCamelCase : Optional[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : str ) ->Dict: snake_case_, snake_case_ = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=_UpperCamelCase ) snake_case_ = self.get_latents(_UpperCamelCase , shape=(4, 4, 9_6, 9_6) , fpaa=_UpperCamelCase ) snake_case_ = self.get_encoder_hidden_states(_UpperCamelCase , shape=(4, 7_7, 1_0_2_4) , fpaa=_UpperCamelCase ) snake_case_ = model.apply( {'''params''': params} , _UpperCamelCase , jnp.array(_UpperCamelCase , dtype=jnp.intaa ) , encoder_hidden_states=_UpperCamelCase , ).sample assert sample.shape == latents.shape snake_case_ = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) snake_case_ = jnp.array(_UpperCamelCase , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_UpperCamelCase , _UpperCamelCase , atol=1e-2 )
8
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: lowerCamelCase__ : str = None lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase__ : List[str] = { """vocab_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/spiece.model""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/spiece.model""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/spiece.model""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/spiece.model""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model""", }, """tokenizer_file""": { """albert-base-v1""": """https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json""", """albert-large-v1""": """https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json""", """albert-xlarge-v1""": """https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json""", """albert-xxlarge-v1""": """https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json""", """albert-base-v2""": """https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json""", """albert-large-v2""": """https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json""", """albert-xlarge-v2""": """https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json""", """albert-xxlarge-v2""": """https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json""", }, } lowerCamelCase__ : Any = { """albert-base-v1""": 512, """albert-large-v1""": 512, """albert-xlarge-v1""": 512, """albert-xxlarge-v1""": 512, """albert-base-v2""": 512, """albert-large-v2""": 512, """albert-xlarge-v2""": 512, """albert-xxlarge-v2""": 512, } lowerCamelCase__ : List[Any] = """▁""" class UpperCAmelCase_ ( __UpperCamelCase ): '''simple docstring''' lowercase_ = VOCAB_FILES_NAMES lowercase_ = PRETRAINED_VOCAB_FILES_MAP lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ = AlbertTokenizer def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Any]=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Union[str, Any]=False , _lowerCAmelCase : Dict="[CLS]" , _lowerCAmelCase : List[Any]="[SEP]" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : Any="[SEP]" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Union[str, Any]="[CLS]" , _lowerCAmelCase : int="[MASK]" , **_lowerCAmelCase : Tuple , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ = ( AddedToken(_lowerCAmelCase , lstrip=_lowerCAmelCase , rstrip=_lowerCAmelCase , normalized=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) else mask_token ) super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , remove_space=_lowerCAmelCase , keep_accents=_lowerCAmelCase , bos_token=_lowerCAmelCase , eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , **_lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ = do_lower_case SCREAMING_SNAKE_CASE_ = remove_space SCREAMING_SNAKE_CASE_ = keep_accents SCREAMING_SNAKE_CASE_ = vocab_file SCREAMING_SNAKE_CASE_ = False if not self.vocab_file else True def lowerCAmelCase_ ( self : List[str] , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : List[int] , _lowerCAmelCase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE_ = [self.sep_token_id] SCREAMING_SNAKE_CASE_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : str , _lowerCAmelCase : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(_lowerCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return SCREAMING_SNAKE_CASE_ = os.path.join( _lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ): copyfile(self.vocab_file , _lowerCAmelCase ) return (out_vocab_file,)
351
from json import JSONDecodeError # Workaround for requests.exceptions.JSONDecodeError import requests def UpperCAmelCase_ ( __UpperCAmelCase : str = "isbn/0140328726" ) -> dict: SCREAMING_SNAKE_CASE_ = olid.strip().strip('/' ) # Remove leading/trailing whitespace & slashes if new_olid.count('/' ) != 1: SCREAMING_SNAKE_CASE_ = f"{olid} is not a valid Open Library olid" raise ValueError(__UpperCAmelCase ) return requests.get(f"https://openlibrary.org/{new_olid}.json" ).json() def UpperCAmelCase_ ( __UpperCAmelCase : dict ) -> dict: SCREAMING_SNAKE_CASE_ = { 'title': 'Title', 'publish_date': 'Publish date', 'authors': 'Authors', 'number_of_pages': 'Number of pages:', 'first_sentence': 'First sentence', 'isbn_10': 'ISBN (10)', 'isbn_13': 'ISBN (13)', } SCREAMING_SNAKE_CASE_ = {better_key: ol_book_data[key] for key, better_key in desired_keys.items()} SCREAMING_SNAKE_CASE_ = [ get_openlibrary_data(author['key'] )['name'] for author in data['Authors'] ] SCREAMING_SNAKE_CASE_ = data['First sentence']['value'] for key, value in data.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = ', '.join(__UpperCAmelCase ) return data if __name__ == "__main__": import doctest doctest.testmod() while True: lowerCamelCase__ : Optional[Any] = input('\nEnter the ISBN code to search (or \'quit\' to stop): ').strip() if isbn.lower() in ("", "q", "quit", "exit", "stop"): break if len(isbn) not in (10, 13) or not isbn.isdigit(): print(f'''Sorry, {isbn} is not a valid ISBN. Please, input a valid ISBN.''') continue print(f'''\nSearching Open Library for ISBN: {isbn}...\n''') try: lowerCamelCase__ : Union[str, Any] = summarize_book(get_openlibrary_data(f'''isbn/{isbn}''')) print('\n'.join(f'''{key}: {value}''' for key, value in book_summary.items())) except JSONDecodeError: # Workaround for requests.exceptions.RequestException: print(f'''Sorry, there are no results for ISBN: {isbn}.''')
210
0
'''simple docstring''' import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 650, '''eval_accuracy''': 0.6, '''eval_loss''': 0.9}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.g4dn.xlarge''', '''results''': {'''train_runtime''': 600, '''eval_accuracy''': 0.3, '''eval_loss''': 0.9}, }, ] ) class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' if self.framework == "pytorch": subprocess.run( F"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split(), encoding='utf-8', check=lowerCamelCase__, ) assert hasattr(self, 'env' ) def UpperCamelCase_ ( self, A=1 ): '''simple docstring''' return HuggingFace( entry_point=self.script, source_dir=self.env.test_path, role=self.env.role, image_uri=self.env.image_uri, base_job_name=F"{self.env.base_job_name}-single", instance_count=lowerCamelCase__, instance_type=self.instance_type, debugger_hook_config=lowerCamelCase__, hyperparameters={**self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path}, metric_definitions=self.env.metric_definitions, py_version='py36', ) def UpperCamelCase_ ( self, A ): '''simple docstring''' TrainingJobAnalytics(lowerCamelCase__ ).export_csv(F"{self.env.test_path}/{job_name}_metrics.csv" ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.create_estimator() # run training estimator.fit() # result dataframe SCREAMING_SNAKE_CASE : List[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis SCREAMING_SNAKE_CASE : str = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value'] ) SCREAMING_SNAKE_CASE : Optional[int] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value'] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping SCREAMING_SNAKE_CASE : List[Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get('TrainingTimeInSeconds', 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy ) assert all(t <= self.results['eval_loss'] for t in eval_loss ) # dump tests result into json file to share in PR with open(F"{estimator.latest_training_job.name}.json", 'w' ) as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss}, lowerCamelCase__ )
251
'''simple docstring''' import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : Optional[Any] = { 'RUCAIBox/mvp': 'https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json', } class lowercase__ ( lowercase ): lowercase__ = """mvp""" lowercase__ = ["""past_key_values"""] lowercase__ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[Any] ,lowerCamelCase__ : Any=50267 ,lowerCamelCase__ : Optional[int]=1024 ,lowerCamelCase__ : int=12 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : Union[str, Any]=16 ,lowerCamelCase__ : List[Any]=12 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : Any=16 ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : Optional[int]=0.0 ,lowerCamelCase__ : str="gelu" ,lowerCamelCase__ : Optional[int]=1024 ,lowerCamelCase__ : Tuple=0.1 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : Union[str, Any]=0.0_2 ,lowerCamelCase__ : Union[str, Any]=0.0 ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Union[str, Any]=True ,lowerCamelCase__ : str=1 ,lowerCamelCase__ : Any=0 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : Dict=2 ,lowerCamelCase__ : Optional[int]=2 ,lowerCamelCase__ : Optional[int]=False ,lowerCamelCase__ : Tuple=100 ,lowerCamelCase__ : Optional[int]=800 ,**lowerCamelCase__ : int ,): '''simple docstring''' _UpperCamelCase : Optional[int] = vocab_size _UpperCamelCase : Union[str, Any] = max_position_embeddings _UpperCamelCase : Dict = d_model _UpperCamelCase : Any = encoder_ffn_dim _UpperCamelCase : Dict = encoder_layers _UpperCamelCase : Optional[Any] = encoder_attention_heads _UpperCamelCase : Optional[int] = decoder_ffn_dim _UpperCamelCase : str = decoder_layers _UpperCamelCase : int = decoder_attention_heads _UpperCamelCase : str = dropout _UpperCamelCase : str = attention_dropout _UpperCamelCase : List[Any] = activation_dropout _UpperCamelCase : Dict = activation_function _UpperCamelCase : List[str] = init_std _UpperCamelCase : Dict = encoder_layerdrop _UpperCamelCase : Tuple = decoder_layerdrop _UpperCamelCase : Optional[int] = classifier_dropout _UpperCamelCase : str = use_cache _UpperCamelCase : Union[str, Any] = encoder_layers _UpperCamelCase : Any = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCamelCase : Any = use_prompt _UpperCamelCase : Optional[int] = prompt_length _UpperCamelCase : Any = prompt_mid_dim super().__init__( pad_token_id=lowerCamelCase__ ,bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,is_encoder_decoder=lowerCamelCase__ ,decoder_start_token_id=lowerCamelCase__ ,forced_eos_token_id=lowerCamelCase__ ,**lowerCamelCase__ ,) if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' )
83
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_lxmert import LxmertTokenizer a__ : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Any = { '''vocab_file''': { '''unc-nlp/lxmert-base-uncased''': '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''unc-nlp/lxmert-base-uncased''': ( '''https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/tokenizer.json''' ), }, } a__ : List[Any] = { '''unc-nlp/lxmert-base-uncased''': 512, } a__ : List[str] = { '''unc-nlp/lxmert-base-uncased''': {'''do_lower_case''': True}, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Tuple = LxmertTokenizer def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase="[UNK]" , _lowerCamelCase="[SEP]" , _lowerCamelCase="[PAD]" , _lowerCamelCase="[CLS]" , _lowerCamelCase="[MASK]" , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ) ->int: super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): SCREAMING_SNAKE_CASE : List[Any] = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = do_lower_case SCREAMING_SNAKE_CASE : str = strip_accents SCREAMING_SNAKE_CASE : Tuple = tokenize_chinese_chars SCREAMING_SNAKE_CASE : List[Any] = normalizer_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = do_lower_case def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->List[Any]: SCREAMING_SNAKE_CASE : Tuple = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
19
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class a_ ( a__ , unittest.TestCase ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = DDIMPipeline __SCREAMING_SNAKE_CASE : Tuple = UNCONDITIONAL_IMAGE_GENERATION_PARAMS __SCREAMING_SNAKE_CASE : Tuple = PipelineTesterMixin.required_optional_params - { 'num_images_per_prompt', 'latents', 'callback', 'callback_steps', } __SCREAMING_SNAKE_CASE : str = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS __SCREAMING_SNAKE_CASE : List[Any] = False def __lowerCAmelCase ( self ) ->int: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[Any] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) SCREAMING_SNAKE_CASE : Optional[int] = DDIMScheduler() SCREAMING_SNAKE_CASE : Dict = {'''unet''': unet, '''scheduler''': scheduler} return components def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=0 ) ->int: if str(_lowerCamelCase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE : List[str] = torch.manual_seed(_lowerCamelCase ) else: SCREAMING_SNAKE_CASE : int = torch.Generator(device=_lowerCamelCase ).manual_seed(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def __lowerCAmelCase ( self ) ->Dict: SCREAMING_SNAKE_CASE : Optional[int] = '''cpu''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Optional[Any] = self.pipeline_class(**_lowerCamelCase ) pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = self.get_dummy_inputs(_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[str] = pipe(**_lowerCamelCase ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) SCREAMING_SNAKE_CASE : int = np.array( [1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04] ) SCREAMING_SNAKE_CASE : str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowerCamelCase , 1e-3 ) def __lowerCAmelCase ( self ) ->Optional[int]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_save_load_local(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Union[str, Any]: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def __lowerCAmelCase ( self ) ->Any: super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class a_ ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self ) ->List[Any]: SCREAMING_SNAKE_CASE : Optional[int] = '''google/ddpm-cifar10-32''' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = DDIMScheduler() SCREAMING_SNAKE_CASE : Optional[int] = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddim.to(_lowerCamelCase ) ddim.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Tuple = ddim(generator=_lowerCamelCase , eta=0.0 , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.1_7_2_3, 0.1_6_1_7, 0.1_6_0_0, 0.1_6_2_6, 0.1_4_9_7, 0.1_5_1_3, 0.1_5_0_5, 0.1_4_4_2, 0.1_4_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self ) ->Optional[int]: SCREAMING_SNAKE_CASE : List[Any] = '''google/ddpm-ema-bedroom-256''' SCREAMING_SNAKE_CASE : List[str] = UNetaDModel.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : int = DDIMScheduler.from_pretrained(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = DDIMPipeline(unet=_lowerCamelCase , scheduler=_lowerCamelCase ) ddpm.to(_lowerCamelCase ) ddpm.set_progress_bar_config(disable=_lowerCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = ddpm(generator=_lowerCamelCase , output_type='''numpy''' ).images SCREAMING_SNAKE_CASE : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.0_0_6_0, 0.0_2_0_1, 0.0_3_4_4, 0.0_0_2_4, 0.0_0_1_8, 0.0_0_0_2, 0.0_0_2_2, 0.0_0_0_0, 0.0_0_6_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
19
1
from __future__ import annotations class _lowerCamelCase: def __init__( self, lowerCamelCase=None) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = data _lowercase : List[str] = None def __repr__( self) -> Optional[int]: """simple docstring""" _lowercase : Tuple = [] _lowercase : Dict = self while temp: string_rep.append(F'''{temp.data}''') _lowercase : int = temp.next return "->".join(lowerCamelCase) def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: if not elements_list: raise Exception('The Elements List is empty' ) _lowercase : List[str] = Node(elements_list[0] ) for i in range(1 , len(lowerCamelCase_ ) ): _lowercase : Optional[int] = Node(elements_list[i] ) _lowercase : str = current.next return head def UpperCamelCase_( lowerCamelCase_ ) -> None: if head_node is not None and isinstance(lowerCamelCase_ , lowerCamelCase_ ): print_reverse(head_node.next ) print(head_node.data ) def UpperCamelCase_( ) -> Dict: from doctest import testmod testmod() _lowercase : str = make_linked_list([14, 52, 14, 12, 43] ) print('Linked List:' ) print(lowerCamelCase_ ) print('Elements in Reverse:' ) print_reverse(lowerCamelCase_ ) if __name__ == "__main__": main()
21
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _snake_case = AutoTokenizer.from_pretrained('google/mt5-small' ) _snake_case = tokenizer('Hello there' , return_tensors='pt' ).input_ids _snake_case = tokenizer('Hi I am' , return_tensors='pt' ).input_ids _snake_case = model(input_ids.to(lowerCAmelCase_ ) , labels=labels.to(lowerCAmelCase_ ) ).loss _snake_case = -(labels.shape[-1] * loss.item()) _snake_case = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
42
0
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase : List[Any] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowerCamelCase : List[str] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowerCamelCase : Dict = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return float((preds == labels).mean() ) def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =float(pearsonr(_UpperCamelCase , _UpperCamelCase )[0] ) _SCREAMING_SNAKE_CASE =float(spearmanr(_UpperCamelCase , _UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Optional[int] ) -> Any: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : str , _a : str , _a : List[Any] ) -> str: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "stsb": return pearson_and_spearman(_a , _a ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_a , _a ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
371
'''simple docstring''' from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets lowerCamelCase : List[Any] = "\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n" lowerCamelCase : List[str] = "\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n" lowerCamelCase : Dict = "\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n \"accuracy\": Accuracy\n \"f1\": F1 score\n \"pearson\": Pearson Correlation\n \"spearmanr\": Spearman Correlation\n \"matthews_correlation\": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric('glue', 'sst2') # 'sst2' or any of [\"mnli\", \"mnli_mismatched\", \"mnli_matched\", \"qnli\", \"rte\", \"wnli\", \"hans\"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'mrpc') # 'mrpc' or 'qqp'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'stsb')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({\"pearson\": round(results[\"pearson\"], 2), \"spearmanr\": round(results[\"spearmanr\"], 2)})\n {'pearson': 1.0, 'spearmanr': 1.0}\n\n >>> glue_metric = datasets.load_metric('glue', 'cola')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def _lowerCAmelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict ) -> List[str]: """simple docstring""" return float((preds == labels).mean() ) def _lowerCAmelCase ( _UpperCamelCase : Dict , _UpperCamelCase : Any ) -> Tuple: """simple docstring""" _SCREAMING_SNAKE_CASE =simple_accuracy(_UpperCamelCase , _UpperCamelCase ) _SCREAMING_SNAKE_CASE =float(fa_score(y_true=_UpperCamelCase , y_pred=_UpperCamelCase ) ) return { "accuracy": acc, "f1": fa, } def _lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Optional[int] ) -> Dict: """simple docstring""" _SCREAMING_SNAKE_CASE =float(pearsonr(_UpperCamelCase , _UpperCamelCase )[0] ) _SCREAMING_SNAKE_CASE =float(spearmanr(_UpperCamelCase , _UpperCamelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): def A ( self : Optional[int] ) -> Any: '''simple docstring''' if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), 'references': datasets.Value('int64' if self.config_name != 'stsb' else 'float32' ), } ) , codebase_urls=[] , reference_urls=[] , format='numpy' , ) def A ( self : str , _a : str , _a : List[Any] ) -> str: '''simple docstring''' if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(_a , _a )} elif self.config_name == "stsb": return pearson_and_spearman(_a , _a ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(_a , _a ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(_a , _a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["sst2", "mnli", "mnli_mismatched", "mnli_matched", ' '"cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans"]' )
114
0
def _a ( SCREAMING_SNAKE_CASE_ : List[str] ): __lowerCAmelCase , __lowerCAmelCase = [], [] while len(SCREAMING_SNAKE_CASE_ ) > 1: __lowerCAmelCase , __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ ), max(SCREAMING_SNAKE_CASE_ ) start.append(SCREAMING_SNAKE_CASE_ ) end.append(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) collection.remove(SCREAMING_SNAKE_CASE_ ) end.reverse() return start + collection + end if __name__ == "__main__": UpperCamelCase__ = input("""Enter numbers separated by a comma:\n""").strip() UpperCamelCase__ = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
92
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Optional[int] = logging.get_logger(__name__) class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Optional[int] ,lowerCamelCase__ : int="</s>" ,lowerCamelCase__ : str="<unk>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : int=125 ,lowerCamelCase__ : str=None ,**lowerCamelCase__ : Union[str, Any] ,): # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: UpperCAmelCase__ = [f'''<extra_id_{i}>''' for i in range(lowerCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens UpperCAmelCase__ = len(set(filter(lambda lowerCamelCase__ : bool('extra_id' in str(lowerCamelCase__ ) ) ,lowerCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else pad_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else eos_token UpperCAmelCase__ = AddedToken(lowerCamelCase__ ,lstrip=lowerCamelCase__ ,rstrip=lowerCamelCase__ ) if isinstance(lowerCamelCase__ ,lowerCamelCase__ ) else unk_token super().__init__( eos_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,extra_ids=lowerCamelCase__ ,additional_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ,) UpperCAmelCase__ = extra_ids UpperCAmelCase__ = 2**8 # utf is 8 bits # define special tokens dict UpperCAmelCase__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } UpperCAmelCase__ = len(self.special_tokens_encoder ) UpperCAmelCase__ = len(lowerCamelCase__ ) for i, token in enumerate(lowerCamelCase__ ): UpperCAmelCase__ = self.vocab_size + i - n UpperCAmelCase__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def __lowerCAmelCase ( self : Union[str, Any] ): return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(lowerCamelCase__ )) + [1] return ([0] * len(lowerCamelCase__ )) + [1] + ([0] * len(lowerCamelCase__ )) + [1] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ): if len(lowerCamelCase__ ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def __lowerCAmelCase ( self : str ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) if token_ids_a is None: return token_ids_a else: UpperCAmelCase__ = self._add_eos_if_not_present(lowerCamelCase__ ) return token_ids_a + token_ids_a def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : str ): UpperCAmelCase__ = [chr(lowerCamelCase__ ) for i in text.encode('utf-8' )] return tokens def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : str ): if token in self.special_tokens_encoder: UpperCAmelCase__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: UpperCAmelCase__ = self.added_tokens_encoder[token] elif len(lowerCamelCase__ ) != 1: UpperCAmelCase__ = self.unk_token_id else: UpperCAmelCase__ = ord(lowerCamelCase__ ) + self._num_special_tokens return token_id def __lowerCAmelCase ( self : Union[str, Any] ,lowerCamelCase__ : Any ): if index in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[index] else: UpperCAmelCase__ = chr(index - self._num_special_tokens ) return token def __lowerCAmelCase ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ): UpperCAmelCase__ = b'' for token in tokens: if token in self.special_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: UpperCAmelCase__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) elif token in self.added_tokens_encoder: UpperCAmelCase__ = token.encode('utf-8' ) else: UpperCAmelCase__ = bytes([ord(lowerCamelCase__ )] ) bstring += tok_string UpperCAmelCase__ = bstring.decode('utf-8' ,errors='ignore' ) return string def __lowerCAmelCase ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): return ()
98
0
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness lowerCAmelCase__ : Tuple ="\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" lowerCAmelCase__ : List[str] ="\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" lowerCAmelCase__ : Optional[int] ="\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" lowerCAmelCase__ : List[str] ="\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" lowerCAmelCase__ : Tuple ="The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase (datasets.Metric ): """simple docstring""" def UpperCamelCase__ ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=[1, 1_0, 1_0_0] , lowerCAmelCase__=4 , lowerCAmelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCAmelCase__ ) as executor: SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = Counter() SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : int = defaultdict(lowerCAmelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCAmelCase__ , lowerCAmelCase__ ) ): for candidate in candidates: SCREAMING_SNAKE_CASE_ : Optional[Any] = candidate + '\n' + test_case SCREAMING_SNAKE_CASE_ : List[Any] = (test_program, timeout, task_id, completion_id[task_id]) SCREAMING_SNAKE_CASE_ : List[Any] = executor.submit(lowerCAmelCase__ , *lowerCAmelCase__ ) futures.append(lowerCAmelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ : int = future.result() results[result["task_id"]].append((result['completion_id'], result) ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = [], [] for result in results.values(): result.sort() SCREAMING_SNAKE_CASE_ : Tuple = [r[1]['passed'] for r in result] total.append(len(lowerCAmelCase__ ) ) correct.append(sum(lowerCAmelCase__ ) ) SCREAMING_SNAKE_CASE_ : Dict = np.array(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : Tuple = np.array(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = k SCREAMING_SNAKE_CASE_ : Any = {F'''pass@{k}''': estimate_pass_at_k(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def a__ ( A__, A__, A__ ): def estimator(A__, A__, A__ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) ) if isinstance(lowerCamelCase__, lowerCamelCase__ ): SCREAMING_SNAKE_CASE_ : List[str] = itertools.repeat(lowerCamelCase__, len(lowerCamelCase__ ) ) else: assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = iter(lowerCamelCase__ ) return np.array([estimator(int(lowerCamelCase__ ), int(lowerCamelCase__ ), lowerCamelCase__ ) for n, c in zip(lowerCamelCase__, lowerCamelCase__ )] )
350
def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(A__ ) for i in range(n - 1 ): for j in range(i + 1, A__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a__ ( A__ ): if len(A__ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ ) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = arr[0:mid] SCREAMING_SNAKE_CASE_ : List[str] = arr[mid:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _count_cross_inversions(A__, A__ ) SCREAMING_SNAKE_CASE_ : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while i < len(A__ ) and j < len(A__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_ : Optional[int] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ', A__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_ : int = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : List[str] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) if __name__ == "__main__": main()
162
0
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : List[Any]): a : str = { "task_specific_params": { "summarization": {"length_penalty": 1.0, "max_length": 128, "min_length": 12, "num_beams": 4}, "summarization_cnn": {"length_penalty": 2.0, "max_length": 142, "min_length": 56, "num_beams": 4}, "summarization_xsum": {"length_penalty": 1.0, "max_length": 62, "min_length": 11, "num_beams": 6}, } } a : List[str] = { "task_specific_params.summarization.length_penalty": 1.0, "task_specific_params.summarization.max_length": 128, "task_specific_params.summarization.min_length": 12, "task_specific_params.summarization.num_beams": 4, "task_specific_params.summarization_cnn.length_penalty": 2.0, "task_specific_params.summarization_cnn.max_length": 142, "task_specific_params.summarization_cnn.min_length": 56, "task_specific_params.summarization_cnn.num_beams": 4, "task_specific_params.summarization_xsum.length_penalty": 1.0, "task_specific_params.summarization_xsum.max_length": 62, "task_specific_params.summarization_xsum.min_length": 11, "task_specific_params.summarization_xsum.num_beams": 6, } self.assertEqual(flatten_dict(__UpperCAmelCase) , __UpperCAmelCase) def __snake_case ( self : List[Any]): a : Dict = np.random.randn(3 , 4) self.assertTrue(np.allclose(transpose(__UpperCAmelCase) , x.transpose())) a : str = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0)) , x.transpose((1, 2, 0)))) @require_torch def __snake_case ( self : Tuple): a : Union[str, Any] = np.random.randn(3 , 4) a : Union[str, Any] = torch.tensor(__UpperCAmelCase) self.assertTrue(np.allclose(transpose(__UpperCAmelCase) , transpose(__UpperCAmelCase).numpy())) a : Tuple = np.random.randn(3 , 4 , 5) a : Optional[int] = torch.tensor(__UpperCAmelCase) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0)) , transpose(__UpperCAmelCase , axes=(1, 2, 0)).numpy())) @require_tf def __snake_case ( self : List[str]): a : int = np.random.randn(3 , 4) a : Optional[int] = tf.constant(__UpperCAmelCase) self.assertTrue(np.allclose(transpose(__UpperCAmelCase) , transpose(__UpperCAmelCase).numpy())) a : Optional[Any] = np.random.randn(3 , 4 , 5) a : List[str] = tf.constant(__UpperCAmelCase) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0)) , transpose(__UpperCAmelCase , axes=(1, 2, 0)).numpy())) @require_flax def __snake_case ( self : str): a : Union[str, Any] = np.random.randn(3 , 4) a : Dict = jnp.array(__UpperCAmelCase) self.assertTrue(np.allclose(transpose(__UpperCAmelCase) , np.asarray(transpose(__UpperCAmelCase)))) a : str = np.random.randn(3 , 4 , 5) a : List[str] = jnp.array(__UpperCAmelCase) self.assertTrue(np.allclose(transpose(__UpperCAmelCase , axes=(1, 2, 0)) , np.asarray(transpose(__UpperCAmelCase , axes=(1, 2, 0))))) def __snake_case ( self : Optional[int]): a : Union[str, Any] = np.random.randn(3 , 4) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3)) , np.reshape(__UpperCAmelCase , (4, 3)))) a : Dict = np.random.randn(3 , 4 , 5) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5)) , np.reshape(__UpperCAmelCase , (12, 5)))) @require_torch def __snake_case ( self : Tuple): a : List[Any] = np.random.randn(3 , 4) a : Tuple = torch.tensor(__UpperCAmelCase) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3)) , reshape(__UpperCAmelCase , (4, 3)).numpy())) a : List[str] = np.random.randn(3 , 4 , 5) a : Union[str, Any] = torch.tensor(__UpperCAmelCase) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5)) , reshape(__UpperCAmelCase , (12, 5)).numpy())) @require_tf def __snake_case ( self : Optional[int]): a : List[Any] = np.random.randn(3 , 4) a : Dict = tf.constant(__UpperCAmelCase) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3)) , reshape(__UpperCAmelCase , (4, 3)).numpy())) a : Union[str, Any] = np.random.randn(3 , 4 , 5) a : Union[str, Any] = tf.constant(__UpperCAmelCase) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5)) , reshape(__UpperCAmelCase , (12, 5)).numpy())) @require_flax def __snake_case ( self : Union[str, Any]): a : Optional[Any] = np.random.randn(3 , 4) a : Any = jnp.array(__UpperCAmelCase) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (4, 3)) , np.asarray(reshape(__UpperCAmelCase , (4, 3))))) a : List[str] = np.random.randn(3 , 4 , 5) a : Union[str, Any] = jnp.array(__UpperCAmelCase) self.assertTrue(np.allclose(reshape(__UpperCAmelCase , (12, 5)) , np.asarray(reshape(__UpperCAmelCase , (12, 5))))) def __snake_case ( self : Optional[int]): a : Tuple = np.random.randn(1 , 3 , 4) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase) , np.squeeze(__UpperCAmelCase))) a : List[str] = np.random.randn(1 , 4 , 1 , 5) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2) , np.squeeze(__UpperCAmelCase , axis=2))) @require_torch def __snake_case ( self : Tuple): a : Dict = np.random.randn(1 , 3 , 4) a : Any = torch.tensor(__UpperCAmelCase) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase) , squeeze(__UpperCAmelCase).numpy())) a : Any = np.random.randn(1 , 4 , 1 , 5) a : str = torch.tensor(__UpperCAmelCase) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2) , squeeze(__UpperCAmelCase , axis=2).numpy())) @require_tf def __snake_case ( self : Tuple): a : int = np.random.randn(1 , 3 , 4) a : List[str] = tf.constant(__UpperCAmelCase) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase) , squeeze(__UpperCAmelCase).numpy())) a : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5) a : int = tf.constant(__UpperCAmelCase) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2) , squeeze(__UpperCAmelCase , axis=2).numpy())) @require_flax def __snake_case ( self : Dict): a : Tuple = np.random.randn(1 , 3 , 4) a : List[Any] = jnp.array(__UpperCAmelCase) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase) , np.asarray(squeeze(__UpperCAmelCase)))) a : Union[str, Any] = np.random.randn(1 , 4 , 1 , 5) a : Tuple = jnp.array(__UpperCAmelCase) self.assertTrue(np.allclose(squeeze(__UpperCAmelCase , axis=2) , np.asarray(squeeze(__UpperCAmelCase , axis=2)))) def __snake_case ( self : List[Any]): a : Optional[int] = np.random.randn(3 , 4) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1) , np.expand_dims(__UpperCAmelCase , axis=1))) @require_torch def __snake_case ( self : Optional[Any]): a : Any = np.random.randn(3 , 4) a : Optional[Any] = torch.tensor(__UpperCAmelCase) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1) , expand_dims(__UpperCAmelCase , axis=1).numpy())) @require_tf def __snake_case ( self : str): a : int = np.random.randn(3 , 4) a : int = tf.constant(__UpperCAmelCase) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1) , expand_dims(__UpperCAmelCase , axis=1).numpy())) @require_flax def __snake_case ( self : List[Any]): a : Optional[int] = np.random.randn(3 , 4) a : Any = jnp.array(__UpperCAmelCase) self.assertTrue(np.allclose(expand_dims(__UpperCAmelCase , axis=1) , np.asarray(expand_dims(__UpperCAmelCase , axis=1))))
40
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __a : Tuple = """pt""" elif is_tf_available(): __a : int = """tf""" else: __a : Tuple = """jax""" class _UpperCamelCase ( _UpperCAmelCase ,unittest.TestCase ): """simple docstring""" __a : List[Any] = ByTaTokenizer __a : str = False def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' super().setUp() __lowercase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' return ByTaTokenizer.from_pretrained('''google/byt5-small''' ) def _SCREAMING_SNAKE_CASE ( self , **lowerCAmelCase__ ) -> ByTaTokenizer: '''simple docstring''' return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=False , lowerCAmelCase__=20 , lowerCAmelCase__=5 ) -> Tuple[str, list]: '''simple docstring''' __lowercase = [] for i in range(len(lowerCAmelCase__ ) ): try: __lowercase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase__ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowercase = list(filter(lambda lowerCAmelCase__ : re.match(R'''^[ a-zA-Z]+$''' , t[1] ) , lowerCAmelCase__ ) ) __lowercase = list(filter(lambda lowerCAmelCase__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase__ ) , lowerCAmelCase__ ) ) if max_length is not None and len(lowerCAmelCase__ ) > max_length: __lowercase = toks[:max_length] if min_length is not None and len(lowerCAmelCase__ ) < min_length and len(lowerCAmelCase__ ) > 0: while len(lowerCAmelCase__ ) < min_length: __lowercase = toks + toks # toks_str = [t[1] for t in toks] __lowercase = [t[0] for t in toks] # Ensure consistency __lowercase = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) if " " not in output_txt and len(lowerCAmelCase__ ) > 1: __lowercase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase__ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase__ ) ) if with_prefix_space: __lowercase = ''' ''' + output_txt __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) return output_txt, output_ids def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = tokenizer(['''hi</s>''', '''I went to the gym</s>''', '''</s>'''] ) __lowercase = tokenizer(['''hi''', '''I went to the gym''', ''''''] ) self.assertListEqual(batch_with_eos_added['''input_ids'''] , batch_without_eos_added['''input_ids'''] ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = '''Unicode €.''' __lowercase = tokenizer(lowerCAmelCase__ ) __lowercase = [88, 1_13, 1_08, 1_02, 1_14, 1_03, 1_04, 35, 2_29, 1_33, 1_75, 49, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''Unicode €.</s>''' ) __lowercase = tokenizer('''e è é ê ë''' ) __lowercase = [1_04, 35, 1_98, 1_71, 35, 1_98, 1_72, 35, 1_98, 1_73, 35, 1_98, 1_74, 1] self.assertEqual(encoded['''input_ids'''] , lowerCAmelCase__ ) # decoding __lowercase = tokenizer.decode(lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , '''e è é ê ë</s>''' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('''e è é ê ë''' ) ) , '''e è é ê ë</s>''' ) def _SCREAMING_SNAKE_CASE ( self ) -> List[Any]: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 1, 0] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) if FRAMEWORK != "jax": __lowercase = list(batch.input_ids.numpy()[0] ) else: __lowercase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 37) , batch.input_ids.shape ) self.assertEqual((2, 37) , batch.attention_mask.shape ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] __lowercase = tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('''input_ids''' , lowerCAmelCase__ ) self.assertIn('''attention_mask''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_input_ids''' , lowerCAmelCase__ ) self.assertNotIn('''decoder_attention_mask''' , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = [ '''Summary of the text.''', '''Another summary.''', ] __lowercase = tokenizer( text_target=lowerCAmelCase__ , max_length=32 , padding='''max_length''' , truncation=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) self.assertEqual(32 , targets['''input_ids'''].shape[1] ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.ta_base_tokenizer __lowercase = ['''A long paragraph for summarization. </s>'''] __lowercase = ['''Summary of the text. </s>'''] # fmt: off __lowercase = [68, 35, 1_11, 1_14, 1_13, 1_06, 35, 1_15, 1_00, 1_17, 1_00, 1_06, 1_17, 1_00, 1_15, 1_07, 35, 1_05, 1_14, 1_17, 35, 1_18, 1_20, 1_12, 1_12, 1_00, 1_17, 1_08, 1_25, 1_00, 1_19, 1_08, 1_14, 1_13, 49, 35, 1] __lowercase = [86, 1_20, 1_12, 1_12, 1_00, 1_17, 1_24, 35, 1_14, 1_05, 35, 1_19, 1_07, 1_04, 35, 1_19, 1_04, 1_23, 1_19, 49, 35, 1] # fmt: on __lowercase = tokenizer(lowerCAmelCase__ , text_target=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , batch['''input_ids'''][0] ) self.assertEqual(lowerCAmelCase__ , batch['''labels'''][0] ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) shutil.rmtree(lowerCAmelCase__ ) __lowercase = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc __lowercase = tempfile.mkdtemp() __lowercase = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(['''bim''', '''bambam'''] ) __lowercase = tokenizer.additional_special_tokens additional_special_tokens.append('''new_additional_special_token''' ) tokenizer.add_special_tokens({'''additional_special_tokens''': additional_special_tokens} ) __lowercase = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) tokenizer.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ ) __lowercase = after_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertIn('''new_additional_special_token''' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) __lowercase = tokenizer.__class__.from_pretrained(lowerCAmelCase__ , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , encoding='''utf-8''' ) as json_file: __lowercase = json.load(lowerCAmelCase__ ) __lowercase = [F"<extra_id_{i}>" for i in range(1_25 )] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] __lowercase = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(lowerCAmelCase__ , '''special_tokens_map.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , '''tokenizer_config.json''' ) , '''w''' , encoding='''utf-8''' ) as outfile: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , ) self.assertIn( '''an_additional_special_token''' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['''an_additional_special_token'''] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['''an_additional_special_token'''] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowercase = added_tokens_extra_ids + [AddedToken('''a_new_additional_special_token''' , lstrip=lowerCAmelCase__ )] __lowercase = tokenizer_class.from_pretrained( lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , ) self.assertIn('''a_new_additional_special_token''' , tokenizer.additional_special_tokens ) self.assertEqual( ['''a_new_additional_special_token'''] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['''a_new_additional_special_token'''] ) ) , ) def _SCREAMING_SNAKE_CASE ( self ) -> List[str]: '''simple docstring''' __lowercase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase__ ) __lowercase = tokenizer_class.from_pretrained(lowerCAmelCase__ ) self.assertTrue(tokenizer.decode([2_55] ) == '''''' ) def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' __lowercase = self.get_tokenizers(fast=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] __lowercase = tokenizer.convert_tokens_to_string(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' __lowercase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): __lowercase = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] __lowercase = 0 __lowercase = tokenizer.convert_ids_to_tokens( lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) for attr in attributes_list: setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , attr + '''_id''' , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(getattr(lowerCAmelCase__ , attr + '''_id''' ) , lowerCAmelCase__ ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [] ) setattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens''' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase__ , '''additional_special_tokens_ids''' ) , [token_id_to_test_setters] )
210
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss _lowerCamelCase : Optional[Any] = pytest.mark.integration @require_faiss class SCREAMING_SNAKE_CASE ( _snake_case ): """simple docstring""" def A ( self : int ): """simple docstring""" UpperCamelCase = Dataset.from_dict({'filename': ['my_name-train' + '_' + str(UpperCamelCase__ ) for x in np.arange(3_0 ).tolist()]} ) return dset def A ( self : Dict ): """simple docstring""" import faiss UpperCamelCase = self._create_dummy_dataset() UpperCamelCase = dset.map( lambda UpperCamelCase__ , UpperCamelCase__ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ) UpperCamelCase = dset.add_faiss_index('vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase , UpperCamelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) dset.drop_index('vecs' ) def A ( self : Dict ): """simple docstring""" import faiss UpperCamelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , batch_size=1_0_0 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCamelCase , UpperCamelCase = dset.get_nearest_examples('vecs' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A ( self : int ): """simple docstring""" import faiss UpperCamelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase__ ) as tmp_file: dset.save_faiss_index('vecs' , tmp_file.name ) dset.load_faiss_index('vecs2' , tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase , UpperCamelCase = dset.get_nearest_examples('vecs2' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) def A ( self : int ): """simple docstring""" UpperCamelCase = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((3_0, 5) ) * np.arange(3_0 ).reshape(-1 , 1 ) , index_name='vecs' ) dset.drop_index('vecs' ) self.assertRaises(UpperCamelCase__ , partial(dset.get_nearest_examples , 'vecs2' , np.ones(5 , dtype=np.floataa ) ) ) def A ( self : Any ): """simple docstring""" from elasticsearch import Elasticsearch UpperCamelCase = self._create_dummy_dataset() with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCamelCase = {'acknowledged': True} mocked_bulk.return_value([(True, None)] * 3_0 ) UpperCamelCase = {'hits': {'hits': [{'_score': 1, '_id': 2_9}]}} UpperCamelCase = Elasticsearch() dset.add_elasticsearch_index('filename' , es_client=UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = dset.get_nearest_examples('filename' , 'my_name-train_29' ) self.assertEqual(examples['filename'][0] , 'my_name-train_29' ) @require_faiss class SCREAMING_SNAKE_CASE ( _snake_case ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" import faiss UpperCamelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 1_0 ) # single query UpperCamelCase = np.zeros(5 , dtype=np.floataa ) UpperCamelCase = 1 UpperCamelCase , UpperCamelCase = index.search(UpperCamelCase__ ) self.assertRaises(UpperCamelCase__ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCamelCase = np.eye(5 , dtype=np.floataa )[::-1] UpperCamelCase , UpperCamelCase = index.search_batch(UpperCamelCase__ ) self.assertRaises(UpperCamelCase__ , index.search_batch , queries[0] ) UpperCamelCase = [scores[0] for scores in total_scores] UpperCamelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase__ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCamelCase__ ) def A ( self : Tuple ): """simple docstring""" import faiss UpperCamelCase = FaissIndex(string_factory='Flat' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCamelCase = FaissIndex(string_factory='LSH' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = FaissIndex(string_factory='Flat' , custom_index=faiss.IndexFlat(5 ) ) def A ( self : int ): """simple docstring""" import faiss UpperCamelCase = faiss.IndexFlat(5 ) UpperCamelCase = FaissIndex(custom_index=UpperCamelCase__ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def A ( self : Dict ): """simple docstring""" import faiss UpperCamelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase__ ) as tmp_file: index.save(tmp_file.name ) UpperCamelCase = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase = np.zeros(5 , dtype=np.floataa ) UpperCamelCase = 1 UpperCamelCase , UpperCamelCase = index.search(UpperCamelCase__ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" import faiss UpperCamelCase = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCamelCase = 'index.faiss' UpperCamelCase = F"""mock://{index_name}""" index.save(UpperCAmelCase__ , storage_options=mockfs.storage_options ) UpperCamelCase = FaissIndex.load(UpperCAmelCase__ , storage_options=mockfs.storage_options ) UpperCamelCase = np.zeros(5 , dtype=np.floataa ) UpperCamelCase = 1 UpperCamelCase , UpperCamelCase = index.search(UpperCAmelCase__ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class SCREAMING_SNAKE_CASE ( _snake_case ): """simple docstring""" def A ( self : Union[str, Any] ): """simple docstring""" from elasticsearch import Elasticsearch with patch('elasticsearch.Elasticsearch.search' ) as mocked_search, patch( 'elasticsearch.client.IndicesClient.create' ) as mocked_index_create, patch('elasticsearch.helpers.streaming_bulk' ) as mocked_bulk: UpperCamelCase = Elasticsearch() UpperCamelCase = {'acknowledged': True} UpperCamelCase = ElasticSearchIndex(es_client=UpperCamelCase__ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['foo', 'bar', 'foobar'] ) # single query UpperCamelCase = 'foo' UpperCamelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCamelCase , UpperCamelCase = index.search(UpperCamelCase__ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCamelCase = 'foo' UpperCamelCase = {'hits': {'hits': [{'_score': 1, '_id': 0}]}} UpperCamelCase , UpperCamelCase = index.search(UpperCamelCase__ , request_timeout=3_0 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCamelCase = ['foo', 'bar', 'foobar'] UpperCamelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCamelCase , UpperCamelCase = index.search_batch(UpperCamelCase__ ) UpperCamelCase = [scores[0] for scores in total_scores] UpperCamelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase__ ) # batched queries with timeout UpperCamelCase = ['foo', 'bar', 'foobar'] UpperCamelCase = {'hits': {'hits': [{'_score': 1, '_id': 1}]}} UpperCamelCase , UpperCamelCase = index.search_batch(UpperCamelCase__ , request_timeout=3_0 ) UpperCamelCase = [scores[0] for scores in total_scores] UpperCamelCase = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase__ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase__ )
363
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" # Load configuration defined in the metadata file with open(A__ ) as metadata_file: UpperCamelCase = json.load(A__ ) UpperCamelCase = LukeConfig(use_entity_aware_attention=A__ , **metadata['model_config'] ) # Load in the weights from the checkpoint_path UpperCamelCase = torch.load(A__ , map_location='cpu' )['module'] # Load the entity vocab file UpperCamelCase = load_original_entity_vocab(A__ ) # add an entry for [MASK2] UpperCamelCase = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 UpperCamelCase = XLMRobertaTokenizer.from_pretrained(metadata['model_config']['bert_model_name'] ) # Add special tokens to the token vocabulary for downstream tasks UpperCamelCase = AddedToken('<ent>' , lstrip=A__ , rstrip=A__ ) UpperCamelCase = AddedToken('<ent2>' , lstrip=A__ , rstrip=A__ ) tokenizer.add_special_tokens({'additional_special_tokens': [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(F"""Saving tokenizer to {pytorch_dump_folder_path}""" ) tokenizer.save_pretrained(A__ ) with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'r' ) as f: UpperCamelCase = json.load(A__ ) UpperCamelCase = 'MLukeTokenizer' with open(os.path.join(A__ , 'tokenizer_config.json' ) , 'w' ) as f: json.dump(A__ , A__ ) with open(os.path.join(A__ , MLukeTokenizer.vocab_files_names['entity_vocab_file'] ) , 'w' ) as f: json.dump(A__ , A__ ) UpperCamelCase = MLukeTokenizer.from_pretrained(A__ ) # Initialize the embeddings of the special tokens UpperCamelCase = tokenizer.convert_tokens_to_ids(['@'] )[0] UpperCamelCase = tokenizer.convert_tokens_to_ids(['#'] )[0] UpperCamelCase = state_dict['embeddings.word_embeddings.weight'] UpperCamelCase = word_emb[ent_init_index].unsqueeze(0 ) UpperCamelCase = word_emb[enta_init_index].unsqueeze(0 ) UpperCamelCase = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: UpperCamelCase = state_dict[bias_name] UpperCamelCase = decoder_bias[ent_init_index].unsqueeze(0 ) UpperCamelCase = decoder_bias[enta_init_index].unsqueeze(0 ) UpperCamelCase = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: UpperCamelCase = F"""encoder.layer.{layer_index}.attention.self.""" UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] UpperCamelCase = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks UpperCamelCase = state_dict['entity_embeddings.entity_embeddings.weight'] UpperCamelCase = entity_emb[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' UpperCamelCase = state_dict['entity_predictions.bias'] UpperCamelCase = entity_prediction_bias[entity_vocab['[MASK]']].unsqueeze(0 ) UpperCamelCase = torch.cat([entity_prediction_bias, entity_mask_bias] ) UpperCamelCase = LukeForMaskedLM(config=A__ ).eval() state_dict.pop('entity_predictions.decoder.weight' ) state_dict.pop('lm_head.decoder.weight' ) state_dict.pop('lm_head.decoder.bias' ) UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if not (key.startswith('lm_head' ) or key.startswith('entity_predictions' )): UpperCamelCase = state_dict[key] else: UpperCamelCase = state_dict[key] UpperCamelCase , UpperCamelCase = model.load_state_dict(A__ , strict=A__ ) if set(A__ ) != {"luke.embeddings.position_ids"}: raise ValueError(F"""Unexpected unexpected_keys: {unexpected_keys}""" ) if set(A__ ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(F"""Unexpected missing_keys: {missing_keys}""" ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs UpperCamelCase = MLukeTokenizer.from_pretrained(A__ , task='entity_classification' ) UpperCamelCase = 'ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).' UpperCamelCase = (0, 9) UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase = model(**A__ ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase = torch.Size((1, 33, 768) ) UpperCamelCase = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}""" ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base UpperCamelCase = torch.Size((1, 1, 768) ) UpperCamelCase = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( F"""Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is""" F""" {expected_shape}""" ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , A__ , atol=1e-4 ): raise ValueError # Verify masked word/entity prediction UpperCamelCase = MLukeTokenizer.from_pretrained(A__ ) UpperCamelCase = 'Tokyo is the capital of <mask>.' UpperCamelCase = (24, 30) UpperCamelCase = tokenizer(A__ , entity_spans=[span] , return_tensors='pt' ) UpperCamelCase = model(**A__ ) UpperCamelCase = encoding['input_ids'][0].tolist() UpperCamelCase = input_ids.index(tokenizer.convert_tokens_to_ids('<mask>' ) ) UpperCamelCase = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(A__ ) UpperCamelCase = outputs.entity_logits[0][0].argmax().item() UpperCamelCase = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith('en:' )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print('Saving PyTorch model to {}'.format(A__ ) ) model.save_pretrained(A__ ) def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = ['[MASK]', '[PAD]', '[UNK]'] UpperCamelCase = [json.loads(A__ ) for line in open(A__ )] UpperCamelCase = {} for entry in data: UpperCamelCase = entry['id'] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: UpperCamelCase = entity_id break UpperCamelCase = F"""{language}:{entity_name}""" UpperCamelCase = entity_id return new_mapping if __name__ == "__main__": _lowerCamelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--checkpoint_path", type=str, help="Path to a pytorch_model.bin file.") parser.add_argument( "--metadata_path", default=None, type=str, help="Path to a metadata.json file, defining the configuration." ) parser.add_argument( "--entity_vocab_path", default=None, type=str, help="Path to an entity_vocab.tsv file, containing the entity vocabulary.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to where to dump the output PyTorch model." ) parser.add_argument( "--model_size", default="base", type=str, choices=["base", "large"], help="Size of the model to be converted." ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
249
0
import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __A =logging.get_logger(__name__) __A ={'''vocab_file''': '''spiece.model'''} __A ={ '''vocab_file''': { '''google/bigbird-roberta-base''': '''https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model''', '''google/bigbird-roberta-large''': ( '''https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model''' ), '''google/bigbird-base-trivia-itc''': ( '''https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model''' ), } } __A ={ '''google/bigbird-roberta-base''': 4_0_9_6, '''google/bigbird-roberta-large''': 4_0_9_6, '''google/bigbird-base-trivia-itc''': 4_0_9_6, } class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = [] def __init__( self , lowercase , lowercase="<unk>" , lowercase="<s>" , lowercase="</s>" , lowercase="<pad>" , lowercase="[SEP]" , lowercase="[MASK]" , lowercase="[CLS]" , lowercase = None , **lowercase , ) -> None: lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else bos_token lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else eos_token lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else unk_token lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else pad_token lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else cls_token lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else sep_token # Mask token behave like a normal word, i.e. include the space before it lowerCamelCase_ = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else mask_token lowerCamelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , sep_token=lowercase , mask_token=lowercase , cls_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) @property def SCREAMING_SNAKE_CASE_( self ) -> Dict: return self.sp_model.get_piece_size() def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Tuple: lowerCamelCase_ = self.__dict__.copy() lowerCamelCase_ = None return state def __setstate__( self , lowercase ) -> Tuple: lowerCamelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): lowerCamelCase_ = {} lowerCamelCase_ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> List[str]: return self.sp_model.encode(lowercase , out_type=lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: return self.sp_model.piece_to_id(lowercase ) def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Union[str, Any]: lowerCamelCase_ = self.sp_model.IdToPiece(lowercase ) return token def SCREAMING_SNAKE_CASE_( self , lowercase ) -> Any: lowerCamelCase_ = [] lowerCamelCase_ = "" lowerCamelCase_ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token lowerCamelCase_ = True lowerCamelCase_ = [] else: current_sub_tokens.append(lowercase ) lowerCamelCase_ = False out_string += self.sp_model.decode(lowercase ) return out_string.strip() def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = False , lowercase = None , lowercase = True , **lowercase , ) -> str: lowerCamelCase_ = kwargs.pop("use_source_tokenizer" , lowercase ) lowerCamelCase_ = self.convert_ids_to_tokens(lowercase , skip_special_tokens=lowercase ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 lowerCamelCase_ = [] lowerCamelCase_ = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase ) ) lowerCamelCase_ = [] sub_texts.append(lowercase ) else: current_sub_text.append(lowercase ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(lowercase ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: lowerCamelCase_ = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(lowercase ) ) else: lowerCamelCase_ = "".join(lowercase ) lowerCamelCase_ = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: lowerCamelCase_ = self.clean_up_tokenization(lowercase ) return clean_text else: return text def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Tuple[str]: if not os.path.isdir(lowercase ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: lowerCamelCase_ = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] lowerCamelCase_ = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None , lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase , token_ids_a=lowercase , already_has_special_tokens=lowercase ) if token_ids_a is None: return [1] + ([0] * len(lowercase )) + [1] return [1] + ([0] * len(lowercase )) + [1] + ([0] * len(lowercase )) + [1] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> List[int]: lowerCamelCase_ = [self.sep_token_id] lowerCamelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
19
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __A ={'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A =[ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __A =_LazyModule(__name__, globals()['''__file__'''], _import_structure)
19
1
"""simple docstring""" from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class _A : snake_case__ : int snake_case__ : Node | None = None snake_case__ : Node | None = None def UpperCAmelCase__ ( ) -> Node | None: '''simple docstring''' lowercase = Node(1 ) lowercase = Node(2 ) lowercase = Node(3 ) lowercase = Node(4 ) lowercase = Node(5 ) return tree def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None ) -> Sequence[Node | None]: '''simple docstring''' lowercase = [] if root is None: return output lowercase = deque([root] ) while process_queue: lowercase = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None , lowerCAmelCase__ :int ) -> Sequence[Node | None]: '''simple docstring''' lowercase = [] def populate_output(lowerCAmelCase__ :Node | None , lowerCAmelCase__ :int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowerCAmelCase__ , lowerCAmelCase__ ) return output def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None , lowerCAmelCase__ :int ) -> Sequence[Node | None]: '''simple docstring''' lowercase = [] def populate_output(lowerCAmelCase__ :Node | None , lowerCAmelCase__ :int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowerCAmelCase__ , lowerCAmelCase__ ) return output def UpperCAmelCase__ ( lowerCAmelCase__ :Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] lowercase = [] lowercase = 0 lowercase = height(lowerCAmelCase__ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase = 1 else: output.append(get_nodes_from_right_to_left(lowerCAmelCase__ , lowerCAmelCase__ ) ) lowercase = 0 return output def UpperCAmelCase__ ( ) -> None: # Main function for testing. '''simple docstring''' lowercase = make_tree() print(f'In-order Traversal: {inorder(lowerCAmelCase__ )}' ) print(f'Pre-order Traversal: {preorder(lowerCAmelCase__ )}' ) print(f'Post-order Traversal: {postorder(lowerCAmelCase__ )}' , """\n""" ) print(f'Height of Tree: {height(lowerCAmelCase__ )}' , """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(lowerCAmelCase__ ) , """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1 , height(lowerCAmelCase__ ) + 1 ): print(f'Level {level}:' , get_nodes_from_left_to_right(lowerCAmelCase__ , level=lowerCAmelCase__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(lowerCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
32
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> bool: '''simple docstring''' lowercase = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(2_7)) print(perfect_cube(4))
32
1
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __A : Optional[Any] = logging.get_logger(__name__) __A : Tuple = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} __A : List[str] = { "vocab_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json", }, "merges_file": { "Salesforce/codegen-350M-mono": "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt", }, "tokenizer_file": { "Salesforce/codegen-350M-mono": ( "https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json" ), }, } __A : str = { "Salesforce/codegen-350M-mono": 2_048, } class _UpperCAmelCase ( lowercase__ ): SCREAMING_SNAKE_CASE_ : List[str] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE_ : List[str] = CodeGenTokenizer def __init__( self : Dict , A : Union[str, Any]=None , A : str=None , A : Dict=None , A : Tuple="<|endoftext|>" , A : Dict="<|endoftext|>" , A : List[str]="<|endoftext|>" , A : Optional[int]=False , **A : Any , ) -> Union[str, Any]: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) if kwargs.pop('''add_bos_token''' , __lowercase ): lowercase_ : List[Any] = kwargs.pop('''name_or_path''' , '''''' ) raise ValueError( '''Currenty GPT2\'s fast tokenizer does NOT support adding a BOS token.''' '''Instead you should use GPT2\'s slow tokenizer class `CodeGenTokenizer` as follows: \n''' F'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' F'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' '''This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005.''' ''' so that the fast tokenizer works correctly.''' ) lowercase_ : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __lowercase ) != add_prefix_space: lowercase_ : Any = getattr(__lowercase , pre_tok_state.pop('''type''' ) ) lowercase_ : Optional[int] = add_prefix_space lowercase_ : Tuple = pre_tok_class(**__lowercase ) lowercase_ : str = add_prefix_space def A ( self : str , *A : Optional[Any] , **A : str ) -> BatchEncoding: lowercase_ : str = kwargs.get('''is_split_into_words''' , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def A ( self : Dict , *A : Any , **A : Any ) -> BatchEncoding: lowercase_ : List[str] = kwargs.get('''is_split_into_words''' , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase , **__lowercase ) def A ( self : Tuple , A : str , A : Optional[str] = None ) -> Tuple[str]: lowercase_ : List[str] = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def A ( self : List[Any] , A : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , A : bool = False , A : bool = None , A : Optional[List[str]] = None , **A : Union[str, Any] , ) -> str: lowercase_ : Any = super().decode( token_ids=__lowercase , skip_special_tokens=__lowercase , clean_up_tokenization_spaces=__lowercase , **__lowercase , ) if truncate_before_pattern is not None and len(__lowercase ) > 0: lowercase_ : List[str] = self.truncate(__lowercase , __lowercase ) return decoded_text def A ( self : int , A : List[Any] , A : Tuple ) -> List[Any]: def find_re(A : Optional[int] , A : int , A : Optional[Any] ): lowercase_ : str = pattern.search(__lowercase , __lowercase ) return m.start() if m else -1 lowercase_ : Dict = [re.compile(__lowercase , re.MULTILINE ) for pattern in truncate_before_pattern] lowercase_ : List[Any] = list(re.finditer('''^print''' , __lowercase , re.MULTILINE ) ) if len(__lowercase ) > 1: lowercase_ : Tuple = completion[: prints[1].start()] lowercase_ : Union[str, Any] = list(re.finditer('''^def''' , __lowercase , re.MULTILINE ) ) if len(__lowercase ) > 1: lowercase_ : Any = completion[: defs[1].start()] lowercase_ : Optional[int] = 0 lowercase_ : Any = [ pos for pos in [find_re(__lowercase , __lowercase , __lowercase ) for terminal in terminals] if pos != -1 ] if len(__lowercase ) > 0: return completion[: min(__lowercase )] else: return completion
33
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL a : Union[str, Any] = logging.get_logger(__name__) class a ( lowercase__ ): """simple docstring""" a : Any = ['pixel_values'] def __init__( self : Optional[int] , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : int = 0.9 , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : bool = True , __lowercase : Dict[str, int] = None , __lowercase : Union[int, float] = 1 / 255 , __lowercase : bool = True , __lowercase : bool = True , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , **__lowercase : Any , ) -> None: super().__init__(**__lowercase ) __UpperCAmelCase : Tuple = size if size is not None else {"""shortest_edge""": 224} __UpperCAmelCase : Union[str, Any] = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __UpperCAmelCase : Any = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = do_resize __UpperCAmelCase : Dict = size __UpperCAmelCase : Tuple = crop_pct __UpperCAmelCase : List[Any] = resample __UpperCAmelCase : List[Any] = do_center_crop __UpperCAmelCase : List[Any] = crop_size __UpperCAmelCase : Any = do_rescale __UpperCAmelCase : Tuple = rescale_factor __UpperCAmelCase : int = do_normalize __UpperCAmelCase : List[Any] = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN __UpperCAmelCase : List[str] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def UpperCAmelCase ( self : Tuple , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[float] = None , __lowercase : PILImageResampling = PILImageResampling.BICUBIC , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Optional[int] , ) -> np.ndarray: __UpperCAmelCase : Tuple = get_size_dict(__lowercase , default_to_square=__lowercase ) if "shortest_edge" not in size and ("height" not in size or "width" not in size): raise ValueError(f"""size must contain 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}""" ) if crop_pct is not None: if "shortest_edge" in size: __UpperCAmelCase : Union[str, Any] = int(size["""shortest_edge"""] / crop_pct ) elif "height" in size and "width" in size: if size["height"] == size["width"]: __UpperCAmelCase : Tuple = int(size["""height"""] / crop_pct ) else: __UpperCAmelCase : str = (int(size["""height"""] / crop_pct ), int(size["""width"""] / crop_pct )) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) __UpperCAmelCase : str = get_resize_output_image_size(__lowercase , size=__lowercase , default_to_square=__lowercase ) else: if "shortest_edge" in size: __UpperCAmelCase : List[str] = get_resize_output_image_size(__lowercase , size=size["""shortest_edge"""] , default_to_square=__lowercase ) elif "height" in size and "width" in size: __UpperCAmelCase : int = (size["""height"""], size["""width"""]) else: raise ValueError("""Invalid size for resize: {}""".format(__lowercase ) ) return resize(__lowercase , size=__lowercase , resample=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Dict , __lowercase : np.ndarray , __lowercase : Dict[str, int] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : Union[str, Any] , ) -> np.ndarray: __UpperCAmelCase : Optional[Any] = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""size must contain 'height' and 'width' as keys. Got {size.keys()}""" ) return center_crop(__lowercase , size=(size["""height"""], size["""width"""]) , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[str] , __lowercase : np.ndarray , __lowercase : Union[int, float] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : int , ) -> int: return rescale(__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : List[Any] , __lowercase : np.ndarray , __lowercase : Union[float, List[float]] , __lowercase : Union[float, List[float]] , __lowercase : Optional[Union[str, ChannelDimension]] = None , **__lowercase : List[Any] , ) -> np.ndarray: return normalize(__lowercase , mean=__lowercase , std=__lowercase , data_format=__lowercase , **__lowercase ) def UpperCAmelCase ( self : Any , __lowercase : ImageInput , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : int = None , __lowercase : PILImageResampling = None , __lowercase : bool = None , __lowercase : Dict[str, int] = None , __lowercase : bool = None , __lowercase : float = None , __lowercase : bool = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[float, List[float]]] = None , __lowercase : Optional[Union[str, TensorType]] = None , __lowercase : ChannelDimension = ChannelDimension.FIRST , **__lowercase : List[str] , ) -> PIL.Image.Image: __UpperCAmelCase : Any = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase : Optional[int] = crop_pct if crop_pct is not None else self.crop_pct __UpperCAmelCase : Optional[Any] = resample if resample is not None else self.resample __UpperCAmelCase : List[Any] = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase : Dict = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase : Tuple = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase : Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase : Tuple = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase : Any = image_std if image_std is not None else self.image_std __UpperCAmelCase : Optional[int] = size if size is not None else self.size __UpperCAmelCase : Dict = get_size_dict(__lowercase , default_to_square=__lowercase ) __UpperCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase : Tuple = get_size_dict(__lowercase , param_name="""crop_size""" ) __UpperCAmelCase : Dict = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_pct is None: raise ValueError("""Crop_pct must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __UpperCAmelCase : str = [to_numpy_array(__lowercase ) for image in images] if do_resize: __UpperCAmelCase : str = [self.resize(image=__lowercase , size=__lowercase , crop_pct=__lowercase , resample=__lowercase ) for image in images] if do_center_crop: __UpperCAmelCase : Any = [self.center_crop(image=__lowercase , size=__lowercase ) for image in images] if do_rescale: __UpperCAmelCase : List[str] = [self.rescale(image=__lowercase , scale=__lowercase ) for image in images] if do_normalize: __UpperCAmelCase : str = [self.normalize(image=__lowercase , mean=__lowercase , std=__lowercase ) for image in images] __UpperCAmelCase : List[str] = [to_channel_dimension_format(__lowercase , __lowercase ) for image in images] __UpperCAmelCase : Any = {"""pixel_values""": images} return BatchFeature(data=__lowercase , tensor_type=__lowercase )
114
0
def _SCREAMING_SNAKE_CASE ( lowercase : float , lowercase : float , lowercase : int ): '''simple docstring''' if principal <= 0: raise Exception('Principal borrowed must be > 0' ) if rate_per_annum < 0: raise Exception('Rate of interest must be >= 0' ) if years_to_repay <= 0 or not isinstance(lowercase , lowercase ): raise Exception('Years to repay must be an integer > 0' ) # Yearly rate is divided by 12 to get monthly rate lowerCamelCase_ = rate_per_annum / 12 # Years to repay is multiplied by 12 to get number of payments as payment is monthly lowerCamelCase_ = years_to_repay * 12 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
370
import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowerCamelCase : Tuple = "sshleifer/mar_enro_6_3_student" class A( UpperCamelCase ): '''simple docstring''' def a__ ( self : Union[str, Any] ) -> str: """simple docstring""" super().setUp() lowerCamelCase_ = cached_path( 'https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz' , extract_compressed_file=A_ , ) lowerCamelCase_ = f"""{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k""" @slow @require_torch_gpu def a__ ( self : List[str] ) -> int: """simple docstring""" MarianMTModel.from_pretrained(A_ ) @slow @require_torch_gpu def a__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ = { '$MAX_LEN': 64, '$BS': 64, '$GAS': 1, '$ENRO_DIR': self.data_dir, 'facebook/mbart-large-cc25': MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", '--learning_rate=3e-5': '--learning_rate 3e-4', '--num_train_epochs 6': '--num_train_epochs 1', } # Clean up bash script lowerCamelCase_ = (self.test_file_dir / 'train_mbart_cc25_enro.sh').open().read().split('finetune.py' )[1].strip() lowerCamelCase_ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) for k, v in env_vars_to_replace.items(): lowerCamelCase_ = bash_script.replace(A_ , str(A_ ) ) lowerCamelCase_ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCamelCase_ = f""" --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 """.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCamelCase_ = ['finetune.py'] + bash_script.split() + args with patch.object(A_ , 'argv' , A_ ): lowerCamelCase_ = argparse.ArgumentParser() lowerCamelCase_ = pl.Trainer.add_argparse_args(A_ ) lowerCamelCase_ = SummarizationModule.add_model_specific_args(A_ , os.getcwd() ) lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = main(A_ ) # Check metrics lowerCamelCase_ = load_json(model.metrics_save_path ) lowerCamelCase_ = metrics['val'][0] lowerCamelCase_ = metrics['val'][-1] self.assertEqual(len(metrics['val'] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , A_ ) self.assertGreater(last_step_stats['val_avg_gen_time'] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats['val_avg_gen_time'] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats['val_avg_bleu'] - first_step_stats['val_avg_bleu'] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats['val_avg_bleu'] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics['val'][-1]['val_avg_bleu'] - metrics['test'][-1]['test_avg_bleu'] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCamelCase_ = os.listdir(A_ ) lowerCamelCase_ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCamelCase_ = os.path.join(args.output_dir , A_ ) lowerCamelCase_ = torch.load(A_ , map_location='cpu' ) lowerCamelCase_ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCamelCase_ = {os.path.basename(A_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1 class A( UpperCamelCase ): '''simple docstring''' @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def a__ ( self : List[str] ) -> Any: """simple docstring""" lowerCamelCase_ = f"""{self.test_file_dir_str}/test_data/wmt_en_ro""" lowerCamelCase_ = { '--fp16_opt_level=O1': '', '$MAX_LEN': 128, '$BS': 16, '$GAS': 1, '$ENRO_DIR': data_dir, '$m': 'sshleifer/student_marian_en_ro_6_1', 'val_check_interval=0.25': 'val_check_interval=1.0', } # Clean up bash script lowerCamelCase_ = ( (self.test_file_dir / 'distil_marian_no_teacher.sh').open().read().split('distillation.py' )[1].strip() ) lowerCamelCase_ = bash_script.replace('\\\n' , '' ).strip().replace('"$@"' , '' ) lowerCamelCase_ = bash_script.replace('--fp16 ' , ' ' ) for k, v in env_vars_to_replace.items(): lowerCamelCase_ = bash_script.replace(A_ , str(A_ ) ) lowerCamelCase_ = self.get_auto_remove_tmp_dir() lowerCamelCase_ = bash_script.replace('--fp16' , '' ) lowerCamelCase_ = 6 lowerCamelCase_ = ( ['distillation.py'] + bash_script.split() + [ f"""--output_dir={output_dir}""", '--gpus=1', '--learning_rate=1e-3', f"""--num_train_epochs={epochs}""", '--warmup_steps=10', '--val_check_interval=1.0', '--do_predict', ] ) with patch.object(A_ , 'argv' , A_ ): lowerCamelCase_ = argparse.ArgumentParser() lowerCamelCase_ = pl.Trainer.add_argparse_args(A_ ) lowerCamelCase_ = SummarizationDistiller.add_model_specific_args(A_ , os.getcwd() ) lowerCamelCase_ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCamelCase_ = distill_main(A_ ) # Check metrics lowerCamelCase_ = load_json(model.metrics_save_path ) lowerCamelCase_ = metrics['val'][0] lowerCamelCase_ = metrics['val'][-1] assert len(metrics['val'] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[f"""val_avg_{model.val_metric}"""] , A_ ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCamelCase_ = os.listdir(A_ ) lowerCamelCase_ = [x for x in contents if x.endswith('.ckpt' )][0] lowerCamelCase_ = os.path.join(args.output_dir , A_ ) lowerCamelCase_ = torch.load(A_ , map_location='cpu' ) lowerCamelCase_ = 'model.model.decoder.layers.0.encoder_attn_layer_norm.weight' assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCamelCase_ = {os.path.basename(A_ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics['test'] ) == 1
208
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING import numpy as np import pyarrow as pa from .. import config from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import torch class __SCREAMING_SNAKE_CASE (TensorFormatter[Mapping, 'torch.Tensor', Mapping] ): """simple docstring""" def __init__( self : Any , __a : Tuple=None , **__a : Tuple ): super().__init__(features=__a ) _a = torch_tensor_kwargs import torch # noqa import torch at initialization def UpperCamelCase__ ( self : Optional[Any] , __a : Any ): import torch if isinstance(__a , __a ) and column: if all( isinstance(__a , torch.Tensor ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return torch.stack(__a ) return column def UpperCamelCase__ ( self : Optional[int] , __a : Tuple ): import torch if isinstance(__a , (str, bytes, type(__a )) ): return value elif isinstance(__a , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() _a = {} if isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): _a = {"dtype": torch.intaa} elif isinstance(__a , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): _a = {"dtype": torch.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(__a , PIL.Image.Image ): _a = np.asarray(__a ) return torch.tensor(__a , **{**default_dtype, **self.torch_tensor_kwargs} ) def UpperCamelCase__ ( self : Optional[int] , __a : List[Any] ): import torch # support for torch, tf, jax etc. if hasattr(__a , "__array__" ) and not isinstance(__a , torch.Tensor ): _a = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(__a , np.ndarray ): if data_struct.dtype == object: # torch tensors cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) elif isinstance(__a , (list, tuple) ): return self._consolidate([self.recursive_tensorize(__a ) for substruct in data_struct] ) return self._tensorize(__a ) def UpperCamelCase__ ( self : int , __a : dict ): return map_nested(self._recursive_tensorize , __a , map_list=__a ) def UpperCamelCase__ ( self : Any , __a : pa.Table ): _a = self.numpy_arrow_extractor().extract_row(__a ) _a = self.python_features_decoder.decode_row(__a ) return self.recursive_tensorize(__a ) def UpperCamelCase__ ( self : List[Any] , __a : pa.Table ): _a = self.numpy_arrow_extractor().extract_column(__a ) _a = self.python_features_decoder.decode_column(__a , pa_table.column_names[0] ) _a = self.recursive_tensorize(__a ) _a = self._consolidate(__a ) return column def UpperCamelCase__ ( self : Optional[Any] , __a : pa.Table ): _a = self.numpy_arrow_extractor().extract_batch(__a ) _a = self.python_features_decoder.decode_batch(__a ) _a = self.recursive_tensorize(__a ) for column_name in batch: _a = self._consolidate(batch[column_name] ) return batch
63
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[list[float]]: A_ = [] for data in source_data: for i, el in enumerate(UpperCAmelCase__ ): if len(UpperCAmelCase__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(UpperCAmelCase__ ) ) return data_lists def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[list[float]]: A_ = [] for dlist, weight in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = min(UpperCAmelCase__ ) A_ = max(UpperCAmelCase__ ) A_ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A_ = F'''Invalid weight of {weight:f} provided''' raise ValueError(UpperCAmelCase__ ) score_lists.append(UpperCAmelCase__ ) return score_lists def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[float]: A_ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(UpperCAmelCase__ ): A_ = final_scores[j] + ele return final_scores def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[list[float]]: A_ = get_data(UpperCAmelCase__ ) A_ = calculate_each_score(UpperCAmelCase__, UpperCAmelCase__ ) A_ = generate_final_scores(UpperCAmelCase__ ) # append scores to source data for i, ele in enumerate(UpperCAmelCase__ ): source_data[i].append(UpperCAmelCase__ ) return source_data
162
0
import pprint import requests A : int = 'https://zenquotes.io/api' def UpperCamelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/today""" ).json() def UpperCamelCase ( ) -> list: """simple docstring""" return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": A : Dict = random_quotes() pprint.pprint(response)
353
A : Union[str, Any] = [ (1_0_0_0, 'M'), (9_0_0, 'CM'), (5_0_0, 'D'), (4_0_0, 'CD'), (1_0_0, 'C'), (9_0, 'XC'), (5_0, 'L'), (4_0, 'XL'), (1_0, 'X'), (9, 'IX'), (5, 'V'), (4, 'IV'), (1, 'I'), ] def UpperCamelCase ( __magic_name__ : str ) -> int: """simple docstring""" lowercase__ = {"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1000} lowercase__ = 0 lowercase__ = 0 while place < len(__magic_name__ ): if (place + 1 < len(__magic_name__ )) and (vals[roman[place]] < vals[roman[place + 1]]): total += vals[roman[place + 1]] - vals[roman[place]] place += 2 else: total += vals[roman[place]] place += 1 return total def UpperCamelCase ( __magic_name__ : int ) -> str: """simple docstring""" lowercase__ = [] for arabic, roman in ROMAN: ((lowercase__) , (lowercase__)) = divmod(__magic_name__ , __magic_name__ ) result.append(roman * factor ) if number == 0: break return "".join(__magic_name__ ) if __name__ == "__main__": import doctest doctest.testmod()
146
0
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __lowerCAmelCase : def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=1_3 , lowerCAmelCase__=3_0 , lowerCAmelCase__=2 , lowerCAmelCase__=3 , lowerCAmelCase__=True , lowerCAmelCase__=True , lowerCAmelCase__=3_2 , lowerCAmelCase__=5 , lowerCAmelCase__=4 , lowerCAmelCase__=3_7 , lowerCAmelCase__="gelu" , lowerCAmelCase__=0.1 , lowerCAmelCase__=0.1 , lowerCAmelCase__=1_0 , lowerCAmelCase__=0.02 , lowerCAmelCase__=None , ) -> List[str]: '''simple docstring''' a__ : int =parent a__ : Dict =batch_size a__ : Any =image_size a__ : int =patch_size a__ : Union[str, Any] =num_channels a__ : List[str] =is_training a__ : str =use_labels a__ : Tuple =hidden_size a__ : str =num_hidden_layers a__ : Dict =num_attention_heads a__ : Union[str, Any] =intermediate_size a__ : int =hidden_act a__ : str =hidden_dropout_prob a__ : Optional[int] =attention_probs_dropout_prob a__ : Any =type_sequence_label_size a__ : List[str] =initializer_range a__ : Tuple =scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Optional[int] =(image_size // patch_size) ** 2 a__ : Optional[Any] =num_patches + 1 def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Tuple =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : Any =None if self.use_labels: a__ : Optional[Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : Tuple =self.get_config() return config, pixel_values, labels def _lowercase ( self ) -> List[str]: '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: '''simple docstring''' a__ : Any =ViTMSNModel(config=lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Dict =model(lowerCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Optional[Any] =self.type_sequence_label_size a__ : Union[str, Any] =ViTMSNForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : Dict =model(lowerCAmelCase__ , labels=lowerCAmelCase__ ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : Tuple =1 a__ : str =ViTMSNForImageClassification(lowerCAmelCase__ ) model.to(lowerCAmelCase__ ) model.eval() a__ : List[Any] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : List[str] =model(lowerCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] =self.prepare_config_and_inputs() a__ , a__ , a__ : str =config_and_inputs a__ : Tuple ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[int] = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _lowercase : Optional[int] = ( {"""feature-extraction""": ViTMSNModel, """image-classification""": ViTMSNForImageClassification} if is_torch_available() else {} ) _lowercase : int = False _lowercase : Any = False _lowercase : Optional[int] = False _lowercase : List[Any] = False def _lowercase ( self ) -> str: '''simple docstring''' a__ : int =ViTMSNModelTester(self ) a__ : Optional[Any] =ConfigTester(self , config_class=lowerCAmelCase__ , has_text_modality=lowerCAmelCase__ , hidden_size=3_7 ) def _lowercase ( self ) -> str: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' pass def _lowercase ( self ) -> str: '''simple docstring''' a__ , a__ : Union[str, Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[Any] =model_class(lowerCAmelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : List[str] =model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCAmelCase__ , nn.Linear ) ) def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Optional[int] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int =model_class(lowerCAmelCase__ ) a__ : List[str] =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : int =[*signature.parameters.keys()] a__ : str =["pixel_values"] self.assertListEqual(arg_names[:1] , lowerCAmelCase__ ) def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : List[str] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase__ ) def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCAmelCase__ ) @slow def _lowercase ( self ) -> List[Any]: '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[int] =ViTMSNModel.from_pretrained(lowerCAmelCase__ ) self.assertIsNotNone(lowerCAmelCase__ ) def _A ( ): """simple docstring""" a__ : Tuple =Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase): @cached_property def _lowercase ( self ) -> Dict: '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(2 ) a__ : Tuple =ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(lowerCAmelCase__ ) a__ : Optional[int] =self.default_image_processor a__ : Tuple =prepare_img() a__ : Union[str, Any] =image_processor(images=lowerCAmelCase__ , return_tensors="pt" ).to(lowerCAmelCase__ ) # forward pass with torch.no_grad(): a__ : Tuple =model(**lowerCAmelCase__ ) # verify the logits a__ : Tuple =torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowerCAmelCase__ ) a__ : Tuple =torch.tensor([-0.08_03, -0.44_54, -0.23_75] ).to(lowerCAmelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCAmelCase__ , atol=1E-4 ) )
95
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
249
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class UpperCamelCase_ : """simple docstring""" def UpperCAmelCase_ ( self : Tuple , UpperCAmelCase__ : List[str] ) -> str: raise NotImplementedError() def UpperCAmelCase_ ( self : List[str] ) -> Dict: raise NotImplementedError() class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : Any , UpperCAmelCase__ : "AutoTokenizer" , UpperCAmelCase__ : bool = False , **UpperCAmelCase__ : Any ) -> Dict: __SCREAMING_SNAKE_CASE = tokenizer __SCREAMING_SNAKE_CASE = skip_prompt __SCREAMING_SNAKE_CASE = decode_kwargs # variables used in the streaming process __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = True def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : str ) -> List[str]: if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("TextStreamer only supports batch size 1" ) elif len(value.shape ) > 1: __SCREAMING_SNAKE_CASE = value[0] if self.skip_prompt and self.next_tokens_are_prompt: __SCREAMING_SNAKE_CASE = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) __SCREAMING_SNAKE_CASE = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("\n" ): __SCREAMING_SNAKE_CASE = text[self.print_len :] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 # If the last token is a CJK character, we print the characters. elif len(_A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): __SCREAMING_SNAKE_CASE = text[self.print_len :] self.print_len += len(_A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: __SCREAMING_SNAKE_CASE = text[self.print_len : text.rfind(" " ) + 1] self.print_len += len(_A ) self.on_finalized_text(_A ) def UpperCAmelCase_ ( self : Any ) -> List[str]: # Flush the cache, if it exists if len(self.token_cache ) > 0: __SCREAMING_SNAKE_CASE = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) __SCREAMING_SNAKE_CASE = text[self.print_len :] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 0 else: __SCREAMING_SNAKE_CASE = '' __SCREAMING_SNAKE_CASE = True self.on_finalized_text(_A , stream_end=_A ) def UpperCAmelCase_ ( self : Dict , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ) -> Dict: print(_A , flush=_A , end="" if not stream_end else None ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : List[Any] ) -> Tuple: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0x4_e_0_0 and cp <= 0x9_f_f_f) or (cp >= 0x3_4_0_0 and cp <= 0x4_d_b_f) # or (cp >= 0x2_0_0_0_0 and cp <= 0x2_a_6_d_f) # or (cp >= 0x2_a_7_0_0 and cp <= 0x2_b_7_3_f) # or (cp >= 0x2_b_7_4_0 and cp <= 0x2_b_8_1_f) # or (cp >= 0x2_b_8_2_0 and cp <= 0x2_c_e_a_f) # or (cp >= 0xf_9_0_0 and cp <= 0xf_a_f_f) or (cp >= 0x2_f_8_0_0 and cp <= 0x2_f_a_1_f) # ): # return True return False class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : int , UpperCAmelCase__ : "AutoTokenizer" , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : Optional[float] = None , **UpperCAmelCase__ : str ) -> str: super().__init__(_A , _A , **_A ) __SCREAMING_SNAKE_CASE = Queue() __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = timeout def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : bool = False ) -> List[str]: self.text_queue.put(_A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : Union[str, Any] ) -> Dict: return self def UpperCAmelCase_ ( self : Union[str, Any] ) -> str: __SCREAMING_SNAKE_CASE = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
357
"""simple docstring""" import inspect from typing import Callable, List, Optional, Union import torch from transformers import ( CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, WhisperForConditionalGeneration, WhisperProcessor, ) from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.utils import logging a__ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" def __init__( self : List[str] , UpperCAmelCase__ : WhisperForConditionalGeneration , UpperCAmelCase__ : WhisperProcessor , UpperCAmelCase__ : AutoencoderKL , UpperCAmelCase__ : CLIPTextModel , UpperCAmelCase__ : CLIPTokenizer , UpperCAmelCase__ : UNetaDConditionModel , UpperCAmelCase__ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase__ : StableDiffusionSafetyChecker , UpperCAmelCase__ : CLIPImageProcessor , ) -> Optional[int]: super().__init__() if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( speech_model=UpperCAmelCase__ , speech_processor=UpperCAmelCase__ , vae=UpperCAmelCase__ , text_encoder=UpperCAmelCase__ , tokenizer=UpperCAmelCase__ , unet=UpperCAmelCase__ , scheduler=UpperCAmelCase__ , feature_extractor=UpperCAmelCase__ , ) def UpperCAmelCase_ ( self : Optional[Any] , UpperCAmelCase__ : Optional[Union[str, int]] = "auto" ) -> str: if slice_size == "auto": __SCREAMING_SNAKE_CASE = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase__ ) def UpperCAmelCase_ ( self : Tuple ) -> List[Any]: self.enable_attention_slicing(UpperCAmelCase__ ) @torch.no_grad() def __call__( self : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str=1_6_0_0_0 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_1_2 , UpperCAmelCase__ : int = 5_0 , UpperCAmelCase__ : float = 7.5 , UpperCAmelCase__ : Optional[Union[str, List[str]]] = None , UpperCAmelCase__ : Optional[int] = 1 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : Optional[torch.Generator] = None , UpperCAmelCase__ : Optional[torch.FloatTensor] = None , UpperCAmelCase__ : Optional[str] = "pil" , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase__ : int = 1 , **UpperCAmelCase__ : Dict , ) -> Any: __SCREAMING_SNAKE_CASE = self.speech_processor.feature_extractor( UpperCAmelCase__ , return_tensors="pt" , sampling_rate=UpperCAmelCase__ ).input_features.to(self.device ) __SCREAMING_SNAKE_CASE = self.speech_model.generate(UpperCAmelCase__ , max_length=4_8_0_0_0_0 ) __SCREAMING_SNAKE_CASE = self.speech_processor.tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , normalize=UpperCAmelCase__ )[ 0 ] if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = 1 elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(UpperCAmelCase__ )}""" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"""`height` and `width` have to be divisible by 8 but are {height} and {width}.""" ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or callback_steps <= 0) ): raise ValueError( F"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" F""" {type(UpperCAmelCase__ )}.""" ) # get prompt text embeddings __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __SCREAMING_SNAKE_CASE = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) __SCREAMING_SNAKE_CASE = text_input_ids[:, : self.tokenizer.model_max_length] __SCREAMING_SNAKE_CASE = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = text_embeddings.shape __SCREAMING_SNAKE_CASE = text_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = text_embeddings.view(bs_embed * num_images_per_prompt , UpperCAmelCase__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. __SCREAMING_SNAKE_CASE = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE = 42 if negative_prompt is None: __SCREAMING_SNAKE_CASE = [""] * batch_size elif type(UpperCAmelCase__ ) is not type(UpperCAmelCase__ ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(UpperCAmelCase__ )} !=""" F""" {type(UpperCAmelCase__ )}.""" ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = [negative_prompt] elif batch_size != len(UpperCAmelCase__ ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(UpperCAmelCase__ )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" " the batch size of `prompt`." ) else: __SCREAMING_SNAKE_CASE = negative_prompt __SCREAMING_SNAKE_CASE = text_input_ids.shape[-1] __SCREAMING_SNAKE_CASE = self.tokenizer( UpperCAmelCase__ , padding="max_length" , max_length=UpperCAmelCase__ , truncation=UpperCAmelCase__ , return_tensors="pt" , ) __SCREAMING_SNAKE_CASE = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __SCREAMING_SNAKE_CASE = uncond_embeddings.shape[1] __SCREAMING_SNAKE_CASE = uncond_embeddings.repeat(1 , UpperCAmelCase__ , 1 ) __SCREAMING_SNAKE_CASE = uncond_embeddings.view(batch_size * num_images_per_prompt , UpperCAmelCase__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __SCREAMING_SNAKE_CASE = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. __SCREAMING_SNAKE_CASE = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) __SCREAMING_SNAKE_CASE = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device="cpu" , dtype=UpperCAmelCase__ ).to( self.device ) else: __SCREAMING_SNAKE_CASE = torch.randn(UpperCAmelCase__ , generator=UpperCAmelCase__ , device=self.device , dtype=UpperCAmelCase__ ) else: if latents.shape != latents_shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {latents_shape}""" ) __SCREAMING_SNAKE_CASE = latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(UpperCAmelCase__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand __SCREAMING_SNAKE_CASE = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler __SCREAMING_SNAKE_CASE = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __SCREAMING_SNAKE_CASE = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __SCREAMING_SNAKE_CASE = {} if accepts_eta: __SCREAMING_SNAKE_CASE = eta for i, t in enumerate(self.progress_bar(UpperCAmelCase__ ) ): # expand the latents if we are doing classifier free guidance __SCREAMING_SNAKE_CASE = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents __SCREAMING_SNAKE_CASE = self.scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) # predict the noise residual __SCREAMING_SNAKE_CASE = self.unet(UpperCAmelCase__ , UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ ).sample # perform guidance if do_classifier_free_guidance: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = noise_pred.chunk(2 ) __SCREAMING_SNAKE_CASE = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 __SCREAMING_SNAKE_CASE = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 / 0.18_215 * latents __SCREAMING_SNAKE_CASE = self.vae.decode(UpperCAmelCase__ ).sample __SCREAMING_SNAKE_CASE = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": __SCREAMING_SNAKE_CASE = self.numpy_to_pil(UpperCAmelCase__ ) if not return_dict: return image return StableDiffusionPipelineOutput(images=UpperCAmelCase__ , nsfw_content_detected=UpperCAmelCase__ )
195
0