code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A_ ( _snake_case ): """simple docstring""" __UpperCamelCase = """Speech2TextFeatureExtractor""" __UpperCamelCase = """Speech2TextTokenizer""" def __init__( self :List[str] , lowercase_ :Optional[Any] , lowercase_ :Tuple ) -> List[str]: super().__init__(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase = self.feature_extractor UpperCAmelCase = False def __call__( self :Union[str, Any] , *lowercase_ :str , **lowercase_ :Tuple ) -> Optional[int]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_lowerCamelCase , **_lowerCamelCase ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) UpperCAmelCase = kwargs.pop('raw_speech' ) else: UpperCAmelCase = kwargs.pop('audio' , _lowerCamelCase ) UpperCAmelCase = kwargs.pop('sampling_rate' , _lowerCamelCase ) UpperCAmelCase = kwargs.pop('text' , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: UpperCAmelCase = args[0] UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: UpperCAmelCase = self.feature_extractor(_lowerCamelCase , *_lowerCamelCase , sampling_rate=_lowerCamelCase , **_lowerCamelCase ) if text is not None: UpperCAmelCase = self.tokenizer(_lowerCamelCase , **_lowerCamelCase ) if text is None: return inputs elif audio is None: return encodings else: UpperCAmelCase = encodings['''input_ids'''] return inputs def UpperCAmelCase__ ( self :str , *lowercase_ :str , **lowercase_ :str ) -> List[Any]: return self.tokenizer.batch_decode(*_lowerCamelCase , **_lowerCamelCase ) def UpperCAmelCase__ ( self :Optional[Any] , *lowercase_ :Any , **lowercase_ :List[Any] ) -> int: return self.tokenizer.decode(*_lowerCamelCase , **_lowerCamelCase ) @contextmanager def UpperCAmelCase__ ( self :str ) -> Optional[Any]: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) UpperCAmelCase = True UpperCAmelCase = self.tokenizer yield UpperCAmelCase = self.feature_extractor UpperCAmelCase = False
78
from __future__ import annotations def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : list[str] | None = None , UpperCAmelCase_ : dict[str, float] | None = None , UpperCAmelCase_ : bool = False , ): """simple docstring""" a :str = cipher_alphabet or [chr(UpperCAmelCase_ ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) a :List[Any] = { '''a''': 0.08497, '''b''': 0.01492, '''c''': 0.02202, '''d''': 0.04253, '''e''': 0.11162, '''f''': 0.02228, '''g''': 0.02015, '''h''': 0.06094, '''i''': 0.07546, '''j''': 0.00153, '''k''': 0.01292, '''l''': 0.04025, '''m''': 0.02406, '''n''': 0.06749, '''o''': 0.07507, '''p''': 0.01929, '''q''': 0.00095, '''r''': 0.07587, '''s''': 0.06327, '''t''': 0.09356, '''u''': 0.02758, '''v''': 0.00978, '''w''': 0.02560, '''x''': 0.00150, '''y''': 0.01994, '''z''': 0.00077, } else: # Custom frequencies dictionary a :Dict = frequencies_dict if not case_sensitive: a :Union[str, Any] = ciphertext.lower() # Chi squared statistic values a :dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(UpperCAmelCase_ ) ): a :int = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet a :Dict = (alphabet_letters.index(letter.lower() ) - shift) % len( UpperCAmelCase_ ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter a :List[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: a :Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message a :List[Any] = decrypted_with_shift.lower().count(UpperCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a :Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula a :Any = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message a :int = decrypted_with_shift.count(UpperCAmelCase_ ) # Get the excepcted amount of times the letter should appear based # on letter frequencies a :Tuple = frequencies[letter] * occurrences # Complete the chi squared statistic formula a :Optional[Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary a :Optional[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(UpperCAmelCase_ : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] a :int = min( UpperCAmelCase_ , key=UpperCAmelCase_ , ) # Get all the data from the most likely cipher (key, decoded message) ( ( a ) , ( a ) , ) :Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
94
0
"""simple docstring""" import json import re from typing import TYPE_CHECKING, List, Optional, Tuple, Union import numpy as np from ...utils import is_tf_available, is_torch_available, logging if TYPE_CHECKING: if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_codegen import CodeGenTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} __lowercase = { """vocab_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/vocab.json""", }, """merges_file""": { """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/merges.txt""", }, """tokenizer_file""": { """Salesforce/codegen-350M-mono""": ( """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/tokenizer.json""" ), }, } __lowercase = { """Salesforce/codegen-350M-mono""": 2048, } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = VOCAB_FILES_NAMES UpperCAmelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : List[Any] = ["""input_ids""", """attention_mask"""] UpperCAmelCase : int = CodeGenTokenizer def __init__( self : List[Any] , __UpperCAmelCase : str=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : int="<|endoftext|>" , __UpperCAmelCase : Dict="<|endoftext|>" , __UpperCAmelCase : str="<|endoftext|>" , __UpperCAmelCase : List[str]=False , **__UpperCAmelCase : Union[str, Any] , ): super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) if kwargs.pop("add_bos_token" , __UpperCAmelCase): a : Union[str, Any] = kwargs.pop("name_or_path" , "") raise ValueError( "Currenty GPT2's fast tokenizer does NOT support adding a BOS token." "Instead you should use GPT2's slow tokenizer class `CodeGenTokenizer` as follows: \n" f'''`CodeGenTokenizer.from_pretrained(\'{model_id}\')`\nor\n''' f'''`AutoTokenizer.from_pretrained(\'{model_id}\', use_fast=False)`\n''' "This issue will be fixed soon, see: https://github.com/huggingface/tokenizers/pull/1005." " so that the fast tokenizer works correctly.") a : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase) != add_prefix_space: a : str = getattr(__UpperCAmelCase , pre_tok_state.pop("type")) a : Dict = add_prefix_space a : str = pre_tok_class(**__UpperCAmelCase) a : Optional[int] = add_prefix_space def __snake_case ( self : Optional[Any] , *__UpperCAmelCase : Any , **__UpperCAmelCase : Any): a : List[str] = kwargs.get("is_split_into_words" , __UpperCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Dict , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : List[str]): a : List[str] = kwargs.get("is_split_into_words" , __UpperCAmelCase) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None): a : Any = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase) return tuple(__UpperCAmelCase) def __snake_case ( self : Optional[Any] , __UpperCAmelCase : Union[int, List[int], "np.ndarray", "torch.Tensor", "tf.Tensor"] , __UpperCAmelCase : bool = False , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[List[str]] = None , **__UpperCAmelCase : Union[str, Any] , ): a : Optional[int] = super().decode( token_ids=__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , **__UpperCAmelCase , ) if truncate_before_pattern is not None and len(__UpperCAmelCase) > 0: a : Any = self.truncate(__UpperCAmelCase , __UpperCAmelCase) return decoded_text def __snake_case ( self : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Any): def find_re(__UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any]): a : int = pattern.search(__UpperCAmelCase , __UpperCAmelCase) return m.start() if m else -1 a : List[Any] = [re.compile(__UpperCAmelCase , re.MULTILINE) for pattern in truncate_before_pattern] a : List[Any] = list(re.finditer("^print" , __UpperCAmelCase , re.MULTILINE)) if len(__UpperCAmelCase) > 1: a : int = completion[: prints[1].start()] a : Optional[int] = list(re.finditer("^def" , __UpperCAmelCase , re.MULTILINE)) if len(__UpperCAmelCase) > 1: a : Optional[Any] = completion[: defs[1].start()] a : int = 0 a : List[Any] = [ pos for pos in [find_re(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) for terminal in terminals] if pos != -1 ] if len(__UpperCAmelCase) > 0: return completion[: min(__UpperCAmelCase)] else: return completion
226
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase = logging.get_logger(__name__) __lowercase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """longformer""" def __init__( self : List[Any] , __UpperCAmelCase : Union[List[int], int] = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 30522 , __UpperCAmelCase : int = 768 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 3072 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : float = 1e-12 , __UpperCAmelCase : bool = False , **__UpperCAmelCase : int , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : int = attention_window a : List[str] = sep_token_id a : List[Any] = bos_token_id a : int = eos_token_id a : Union[str, Any] = vocab_size a : Dict = hidden_size a : int = num_hidden_layers a : int = num_attention_heads a : Optional[int] = hidden_act a : Union[str, Any] = intermediate_size a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : str = max_position_embeddings a : Dict = type_vocab_size a : Optional[Any] = initializer_range a : List[Any] = layer_norm_eps a : List[str] = onnx_export class _A ( _a ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : "PretrainedConfig" , __UpperCAmelCase : str = "default" , __UpperCAmelCase : "List[PatchingSpec]" = None): super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = True @property def __snake_case ( self : int): if self.task == "multiple-choice": a : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ]) @property def __snake_case ( self : Union[str, Any]): a : str = super().outputs if self.task == "default": a : Tuple = {0: "batch"} return outputs @property def __snake_case ( self : Optional[int]): return 1e-4 @property def __snake_case ( self : str): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def __snake_case ( self : List[str] , __UpperCAmelCase : "PreTrainedTokenizerBase" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): a : str = super().generate_dummy_inputs( preprocessor=__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly a : Union[str, Any] = torch.zeros_like(inputs["input_ids"]) # make every second token global a : Dict = 1 return inputs
226
1
def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = "" for i in table: res += inp[i - 1] return res def _lowerCAmelCase (_lowerCAmelCase): return data[1:] + data[0] def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = "" for i in range(len(_lowerCAmelCase)): if a[i] == b[i]: res += "0" else: res += "1" return res def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = int("0b" + data[0] + data[-1] , 2) UpperCamelCase_ = int("0b" + data[1:3] , 2) return bin(s[row][col])[2:] def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = message[:4] UpperCamelCase_ = message[4:] UpperCamelCase_ = apply_table(_lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = xor(_lowerCAmelCase , _lowerCAmelCase) UpperCamelCase_ = apply_sbox(_lowerCAmelCase , temp[:4]) # noqa: E741 UpperCamelCase_ = apply_sbox(_lowerCAmelCase , temp[4:]) UpperCamelCase_ = "0" * (2 - len(_lowerCAmelCase)) + l # noqa: E741 UpperCamelCase_ = "0" * (2 - len(_lowerCAmelCase)) + r UpperCamelCase_ = apply_table(l + r , _lowerCAmelCase) UpperCamelCase_ = xor(_lowerCAmelCase , _lowerCAmelCase) return temp + right if __name__ == "__main__": UpperCAmelCase : int =input("""Enter 10 bit key: """) UpperCAmelCase : int =input("""Enter 8 bit message: """) UpperCAmelCase : Tuple =[6, 3, 7, 4, 8, 5, 10, 9] UpperCAmelCase : List[Any] =[3, 5, 2, 7, 4, 10, 1, 9, 8, 6] UpperCAmelCase : Optional[Any] =[2, 4, 3, 1] UpperCAmelCase : Optional[Any] =[2, 6, 3, 1, 4, 8, 5, 7] UpperCAmelCase : List[str] =[4, 1, 3, 5, 7, 2, 8, 6] UpperCAmelCase : str =[4, 1, 2, 3, 2, 3, 4, 1] UpperCAmelCase : int =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCAmelCase : Optional[int] =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCAmelCase : Tuple =apply_table(key, paa_table) UpperCAmelCase : Tuple =temp[:5] UpperCAmelCase : Optional[int] =temp[5:] UpperCAmelCase : Union[str, Any] =left_shift(left) UpperCAmelCase : str =left_shift(right) UpperCAmelCase : Dict =apply_table(left + right, pa_table) UpperCAmelCase : Optional[Any] =left_shift(left) UpperCAmelCase : Any =left_shift(right) UpperCAmelCase : int =left_shift(left) UpperCAmelCase : str =left_shift(right) UpperCAmelCase : Any =apply_table(left + right, pa_table) # encryption UpperCAmelCase : str =apply_table(message, IP) UpperCAmelCase : List[Any] =function(expansion, sa, sa, keya, temp) UpperCAmelCase : Tuple =temp[4:] + temp[:4] UpperCAmelCase : Optional[Any] =function(expansion, sa, sa, keya, temp) UpperCAmelCase : Union[str, Any] =apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption UpperCAmelCase : Dict =apply_table(CT, IP) UpperCAmelCase : Any =function(expansion, sa, sa, keya, temp) UpperCAmelCase : Optional[int] =temp[4:] + temp[:4] UpperCAmelCase : Optional[Any] =function(expansion, sa, sa, keya, temp) UpperCAmelCase : str =apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
128
from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCAmelCase : List[Any] =logging.get_logger(__name__) def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): return [ int(10_00 * (box[0] / width)), int(10_00 * (box[1] / height)), int(10_00 * (box[2] / width)), int(10_00 * (box[3] / height)), ] def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None): UpperCamelCase_ = tesseract_config if tesseract_config is not None else "" # apply OCR UpperCamelCase_ = to_pil_image(_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ = pil_image.size UpperCamelCase_ = pytesseract.image_to_data(_lowerCAmelCase , lang=_lowerCAmelCase , output_type="dict" , config=_lowerCAmelCase) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates UpperCamelCase_ = [idx for idx, word in enumerate(_lowerCAmelCase) if not word.strip()] UpperCamelCase_ = [word for idx, word in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] UpperCamelCase_ = [coord for idx, coord in enumerate(_lowerCAmelCase) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCamelCase_ = [] for x, y, w, h in zip(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase): UpperCamelCase_ = [x, y, x + w, y + h] actual_boxes.append(_lowerCAmelCase) # finally, normalize the bounding boxes UpperCamelCase_ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase)) assert len(_lowerCAmelCase) == len(_lowerCAmelCase), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowercase (a_ ): '''simple docstring''' lowercase__ = ["""pixel_values"""] def __init__( self , snake_case__ = True , snake_case__ = None , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = True , snake_case__ = None , snake_case__ = "" , **snake_case__ , ): '''simple docstring''' super().__init__(**snake_case__ ) UpperCamelCase_ = size if size is not None else {"height": 224, "width": 224} UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = do_resize UpperCamelCase_ = size UpperCamelCase_ = resample UpperCamelCase_ = apply_ocr UpperCamelCase_ = ocr_lang UpperCamelCase_ = tesseract_config def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ = PILImageResampling.BILINEAR , snake_case__ = None , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = get_size_dict(snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCamelCase_ = (size["height"], size["width"]) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _lowerCamelCase ( self , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = None , snake_case__ = ChannelDimension.FIRST , **snake_case__ , ): '''simple docstring''' UpperCamelCase_ = do_resize if do_resize is not None else self.do_resize UpperCamelCase_ = size if size is not None else self.size UpperCamelCase_ = get_size_dict(snake_case__ ) UpperCamelCase_ = resample if resample is not None else self.resample UpperCamelCase_ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCamelCase_ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCamelCase_ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCamelCase_ = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) # All transformations expect numpy arrays. UpperCamelCase_ = [to_numpy_array(snake_case__ ) for image in images] if apply_ocr: requires_backends(self , "pytesseract" ) UpperCamelCase_ = [] UpperCamelCase_ = [] for image in images: UpperCamelCase_ , UpperCamelCase_ = apply_tesseract(snake_case__ , snake_case__ , snake_case__ ) words_batch.append(snake_case__ ) boxes_batch.append(snake_case__ ) if do_resize: UpperCamelCase_ = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) UpperCamelCase_ = [flip_channel_order(snake_case__ ) for image in images] UpperCamelCase_ = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] UpperCamelCase_ = BatchFeature(data={"pixel_values": images} , tensor_type=snake_case__ ) if apply_ocr: UpperCamelCase_ = words_batch UpperCamelCase_ = boxes_batch return data
128
1
'''simple docstring''' import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _lowerCamelCase ( lowerCamelCase_ : List[Any] ): """simple docstring""" UpperCAmelCase_ : List[str] = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCamelCase_ , lowerCamelCase_ ) def _lowerCamelCase ( lowerCamelCase_ : Optional[Any] ): """simple docstring""" UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = emb.weight.shape UpperCAmelCase_ : Dict = nn.Linear(lowerCamelCase_ , lowerCamelCase_ , bias=lowerCamelCase_ ) UpperCAmelCase_ : Any = emb.weight.data return lin_layer def _lowerCamelCase ( lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCAmelCase_ : List[Any] = torch.load(lowerCamelCase_ , map_location='cpu' ) UpperCAmelCase_ : List[str] = Namespace(**checkpoint['cfg']['model'] ) UpperCAmelCase_ : int = checkpoint['model'] remove_ignore_keys_(lowerCamelCase_ ) UpperCAmelCase_ : Optional[int] = state_dict['decoder.embed_tokens.weight'].shape[0] UpperCAmelCase_ : List[Any] = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()} UpperCAmelCase_ : str = XGLMConfig( vocab_size=lowerCamelCase_ , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) UpperCAmelCase_ : Dict = XGLMForCausalLM(lowerCamelCase_ ) UpperCAmelCase_ : int = model.load_state_dict(lowerCamelCase_ , strict=lowerCamelCase_ ) print(lowerCamelCase_ ) UpperCAmelCase_ : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": snake_case__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case__ : int = parser.parse_args() snake_case__ : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
274
'''simple docstring''' import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ = "cpu" , snake_case_ = "openai/clip-vit-large-patch14" ): '''simple docstring''' UpperCAmelCase_ : Any = device UpperCAmelCase_ : Tuple = CLIPTokenizerFast.from_pretrained(snake_case_ ) UpperCAmelCase_ : Optional[Any] = [0.48_14_54_66, 0.4_57_82_75, 0.40_82_10_73] UpperCAmelCase_ : Union[str, Any] = [0.26_86_29_54, 0.26_13_02_58, 0.27_57_77_11] UpperCAmelCase_ : Tuple = torchvision.transforms.Normalize(self.image_mean , self.image_std ) UpperCAmelCase_ : Optional[Any] = torchvision.transforms.Resize(2_2_4 ) UpperCAmelCase_ : Any = torchvision.transforms.CenterCrop(2_2_4 ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[int] = self.resize(snake_case_ ) UpperCAmelCase_ : Tuple = self.center_crop(snake_case_ ) UpperCAmelCase_ : Optional[Any] = self.normalize(snake_case_ ) return images def __call__( self , snake_case_=None , snake_case_=None , **snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = self.tokenizer(text=snake_case_ , **snake_case_ ) UpperCAmelCase_ : Optional[Any] = self.preprocess_img(snake_case_ ) UpperCAmelCase_ : Optional[int] = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class __SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' def __init__( self , snake_case_=1_0 , snake_case_=0.01 , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=False , snake_case_=True , snake_case_="image" , snake_case_=True , snake_case_=False , snake_case_=False , snake_case_=False , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = device if device else get_device() if vqgan: UpperCAmelCase_ : Any = vqgan else: UpperCAmelCase_ : Dict = load_vqgan(self.device , conf_path=snake_case_ , ckpt_path=snake_case_ ) self.vqgan.eval() if clip: UpperCAmelCase_ : List[str] = clip else: UpperCAmelCase_ : List[Any] = CLIPModel.from_pretrained('openai/clip-vit-base-patch32' ) self.clip.to(self.device ) UpperCAmelCase_ : Tuple = ProcessorGradientFlow(device=self.device ) UpperCAmelCase_ : Dict = iterations UpperCAmelCase_ : Dict = lr UpperCAmelCase_ : str = log UpperCAmelCase_ : Tuple = make_grid UpperCAmelCase_ : Union[str, Any] = return_val UpperCAmelCase_ : List[Any] = quantize UpperCAmelCase_ : int = self.vqgan.decoder.z_shape def _UpperCamelCase ( self , snake_case_=None , snake_case_=None , snake_case_=5 , snake_case_=True ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = [] if output_path is None: UpperCAmelCase_ : List[str] = './animation.gif' if input_path is None: UpperCAmelCase_ : List[str] = self.save_path UpperCAmelCase_ : List[str] = sorted(glob(input_path + '/*' ) ) if not len(snake_case_ ): raise ValueError( 'No images found in save path, aborting (did you pass save_intermediate=True to the generate' ' function?)' ) if len(snake_case_ ) == 1: print('Only one image found in save path, (did you pass save_intermediate=True to the generate function?)' ) UpperCAmelCase_ : Tuple = total_duration / len(snake_case_ ) UpperCAmelCase_ : str = [frame_duration] * len(snake_case_ ) if extend_frames: UpperCAmelCase_ : List[str] = 1.5 UpperCAmelCase_ : Any = 3 for file_name in paths: if file_name.endswith('.png' ): images.append(imageio.imread(snake_case_ ) ) imageio.mimsave(snake_case_ , snake_case_ , duration=snake_case_ ) print(F'''gif saved to {output_path}''' ) def _UpperCamelCase ( self , snake_case_=None , snake_case_=None ): '''simple docstring''' if not (path or img): raise ValueError('Input either path or tensor' ) if img is not None: raise NotImplementedError UpperCAmelCase_ : Optional[Any] = preprocess(Image.open(snake_case_ ) , target_image_size=2_5_6 ).to(self.device ) UpperCAmelCase_ : Dict = preprocess_vqgan(snake_case_ ) UpperCAmelCase_ , *UpperCAmelCase_ : Tuple = self.vqgan.encode(snake_case_ ) return z def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.latent.detach().requires_grad_() UpperCAmelCase_ : List[Any] = base_latent + transform_vector if self.quantize: UpperCAmelCase_ , *UpperCAmelCase_ : Tuple = self.vqgan.quantize(snake_case_ ) else: UpperCAmelCase_ : Optional[int] = trans_latent return self.vqgan.decode(snake_case_ ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_=None ): '''simple docstring''' UpperCAmelCase_ : int = self.clip_preprocessor(text=snake_case_ , images=snake_case_ , return_tensors='pt' , padding=snake_case_ ) UpperCAmelCase_ : Any = self.clip(**snake_case_ ) UpperCAmelCase_ : Dict = clip_outputs.logits_per_image if weights is not None: UpperCAmelCase_ : Union[str, Any] = similarity_logits * weights return similarity_logits.sum() def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self._get_clip_similarity(pos_prompts['prompts'] , snake_case_ , weights=(1 / pos_prompts['weights']) ) if neg_prompts: UpperCAmelCase_ : List[Any] = self._get_clip_similarity(neg_prompts['prompts'] , snake_case_ , weights=neg_prompts['weights'] ) else: UpperCAmelCase_ : Union[str, Any] = torch.tensor([1] , device=self.device ) UpperCAmelCase_ : Dict = -torch.log(snake_case_ ) + torch.log(snake_case_ ) return loss def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = torch.randn_like(self.latent , requires_grad=snake_case_ , device=self.device ) UpperCAmelCase_ : int = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() UpperCAmelCase_ : Dict = self._add_vector(snake_case_ ) UpperCAmelCase_ : List[Any] = loop_post_process(snake_case_ ) UpperCAmelCase_ : Union[str, Any] = self._get_CLIP_loss(snake_case_ , snake_case_ , snake_case_ ) print('CLIP loss' , snake_case_ ) if self.log: wandb.log({'CLIP Loss': clip_loss} ) clip_loss.backward(retain_graph=snake_case_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' wandb.init(reinit=snake_case_ , project='face-editor' ) wandb.config.update({'Positive Prompts': positive_prompts} ) wandb.config.update({'Negative Prompts': negative_prompts} ) wandb.config.update({'lr': self.lr, 'iterations': self.iterations} ) if image_path: UpperCAmelCase_ : str = Image.open(snake_case_ ) UpperCAmelCase_ : str = image.resize((2_5_6, 2_5_6) ) wandb.log('Original Image' , wandb.Image(snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if not prompts: return [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : Optional[int] = [] if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Union[str, Any] = [prompt.strip() for prompt in prompts.split('|' )] for prompt in prompts: if isinstance(snake_case_ , (tuple, list) ): UpperCAmelCase_ : Tuple = prompt[0] UpperCAmelCase_ : Optional[Any] = float(prompt[1] ) elif ":" in prompt: UpperCAmelCase_ , UpperCAmelCase_ : int = prompt.split(':' ) UpperCAmelCase_ : List[str] = float(snake_case_ ) else: UpperCAmelCase_ : Optional[int] = prompt UpperCAmelCase_ : List[str] = 1.0 processed_prompts.append(snake_case_ ) weights.append(snake_case_ ) return { "prompts": processed_prompts, "weights": torch.tensor(snake_case_ , device=self.device ), } def _UpperCamelCase ( self , snake_case_ , snake_case_=None , snake_case_=None , snake_case_=True , snake_case_=False , snake_case_=True , snake_case_=True , snake_case_=None , ): '''simple docstring''' if image_path: UpperCAmelCase_ : List[Any] = self._get_latent(snake_case_ ) else: UpperCAmelCase_ : Any = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(snake_case_ , snake_case_ , snake_case_ ) assert pos_prompts, "You must provide at least one positive prompt." UpperCAmelCase_ : Optional[int] = self.process_prompts(snake_case_ ) UpperCAmelCase_ : int = self.process_prompts(snake_case_ ) if save_final and save_path is None: UpperCAmelCase_ : Union[str, Any] = os.path.join('./outputs/' , '_'.join(pos_prompts['prompts'] ) ) if not os.path.exists(snake_case_ ): os.makedirs(snake_case_ ) else: UpperCAmelCase_ : Any = save_path + '_' + get_timestamp() os.makedirs(snake_case_ ) UpperCAmelCase_ : List[Any] = save_path UpperCAmelCase_ : Dict = self.vqgan.decode(self.latent )[0] if show_intermediate: print('Original Image' ) show_pil(custom_to_pil(snake_case_ ) ) UpperCAmelCase_ : Optional[int] = loop_post_process(snake_case_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(snake_case_ , snake_case_ , snake_case_ ) ): if show_intermediate: show_pil(snake_case_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({'Image': wandb.Image(snake_case_ )} ) if show_final: show_pil(snake_case_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
274
1
'''simple docstring''' # Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable __A : List[Any] = { 'configuration_gpt_neox_japanese': ['GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTNeoXJapaneseConfig'], 'tokenization_gpt_neox_japanese': ['GPTNeoXJapaneseTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = [ 'GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTNeoXJapaneseForCausalLM', 'GPTNeoXJapaneseLayer', 'GPTNeoXJapaneseModel', 'GPTNeoXJapanesePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys __A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): __UpperCAmelCase = 'pt' elif is_tf_available(): __UpperCAmelCase = 'tf' else: __UpperCAmelCase = 'jax' class lowerCamelCase (_snake_case , unittest.TestCase ): '''simple docstring''' _snake_case : str = PerceiverTokenizer _snake_case : List[Any] = False def __UpperCAmelCase ( self ) -> Optional[int]: super().setUp() UpperCAmelCase_ : int = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def __UpperCAmelCase ( self ) -> str: return PerceiverTokenizer.from_pretrained('deepmind/language-perceiver' ) def __UpperCAmelCase ( self , **_UpperCamelCase ) -> PerceiverTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **_UpperCamelCase ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase=False , _UpperCamelCase=2_0 , _UpperCamelCase=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. UpperCAmelCase_ : List[str] = [] for i in range(len(_UpperCamelCase ) ): try: UpperCAmelCase_ : Tuple = tokenizer.decode([i] , clean_up_tokenization_spaces=_UpperCamelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) UpperCAmelCase_ : str = list(filter(lambda _UpperCamelCase : re.match(r'^[ a-zA-Z]+$' , t[1] ) , _UpperCamelCase ) ) UpperCAmelCase_ : Optional[Any] = list(filter(lambda _UpperCamelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=_UpperCamelCase ) , _UpperCamelCase ) ) if max_length is not None and len(_UpperCamelCase ) > max_length: UpperCAmelCase_ : Optional[int] = toks[:max_length] if min_length is not None and len(_UpperCamelCase ) < min_length and len(_UpperCamelCase ) > 0: while len(_UpperCamelCase ) < min_length: UpperCAmelCase_ : Dict = toks + toks # toks_str = [t[1] for t in toks] UpperCAmelCase_ : List[Any] = [t[0] for t in toks] # Ensure consistency UpperCAmelCase_ : List[Any] = tokenizer.decode(_UpperCamelCase , clean_up_tokenization_spaces=_UpperCamelCase ) if " " not in output_txt and len(_UpperCamelCase ) > 1: UpperCAmelCase_ : List[str] = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=_UpperCamelCase ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=_UpperCamelCase ) ) if with_prefix_space: UpperCAmelCase_ : Any = ' ' + output_txt UpperCAmelCase_ : Union[str, Any] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) return output_txt, output_ids def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : List[str] = self.perceiver_tokenizer UpperCAmelCase_ : Union[str, Any] = 'Unicode €.' UpperCAmelCase_ : List[str] = tokenizer(_UpperCamelCase ) UpperCAmelCase_ : Optional[int] = [4, 9_1, 1_1_6, 1_1_1, 1_0_5, 1_1_7, 1_0_6, 1_0_7, 3_8, 2_3_2, 1_3_6, 1_7_8, 5_2, 5] self.assertEqual(encoded['input_ids'] , _UpperCamelCase ) # decoding UpperCAmelCase_ : Optional[Any] = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , '[CLS]Unicode €.[SEP]' ) UpperCAmelCase_ : int = tokenizer('e è é ê ë' ) UpperCAmelCase_ : Tuple = [4, 1_0_7, 3_8, 2_0_1, 1_7_4, 3_8, 2_0_1, 1_7_5, 3_8, 2_0_1, 1_7_6, 3_8, 2_0_1, 1_7_7, 5] self.assertEqual(encoded['input_ids'] , _UpperCamelCase ) # decoding UpperCAmelCase_ : List[str] = tokenizer.decode(_UpperCamelCase ) self.assertEqual(_UpperCamelCase , '[CLS]e è é ê ë[SEP]' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , '[CLS]e è é ê ë[SEP]' ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Dict = self.perceiver_tokenizer UpperCAmelCase_ : Dict = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off UpperCAmelCase_ : List[str] = [4, 7_1, 3_8, 1_1_4, 1_1_7, 1_1_6, 1_0_9, 3_8, 1_1_8, 1_0_3, 1_2_0, 1_0_3, 1_0_9, 1_2_0, 1_0_3, 1_1_8, 1_1_0, 3_8, 1_0_8, 1_1_7, 1_2_0, 3_8, 1_2_1, 1_2_3, 1_1_5, 1_1_5, 1_0_3, 1_2_0, 1_1_1, 1_2_8, 1_0_3, 1_2_2, 1_1_1, 1_1_7, 1_1_6, 5_2, 5, 0] # fmt: on UpperCAmelCase_ : Tuple = tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase ) if FRAMEWORK != "jax": UpperCAmelCase_ : Union[str, Any] = list(batch.input_ids.numpy()[0] ) else: UpperCAmelCase_ : Dict = list(batch.input_ids.tolist()[0] ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertEqual((2, 3_8) , batch.input_ids.shape ) self.assertEqual((2, 3_8) , batch.attention_mask.shape ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Optional[int] = self.perceiver_tokenizer UpperCAmelCase_ : Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] UpperCAmelCase_ : str = tokenizer(_UpperCamelCase , padding=_UpperCamelCase , return_tensors=_UpperCamelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , _UpperCamelCase ) self.assertIn('attention_mask' , _UpperCamelCase ) self.assertNotIn('decoder_input_ids' , _UpperCamelCase ) self.assertNotIn('decoder_attention_mask' , _UpperCamelCase ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase_ : Any = self.perceiver_tokenizer UpperCAmelCase_ : Tuple = [ 'Summary of the text.', 'Another summary.', ] UpperCAmelCase_ : str = tokenizer( text_target=_UpperCamelCase , max_length=3_2 , padding='max_length' , truncation=_UpperCamelCase , return_tensors=_UpperCamelCase ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def __UpperCAmelCase ( self ) -> List[str]: # safety check on max_len default value so we are sure the test works UpperCAmelCase_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test UpperCAmelCase_ : int = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ : Dict = tempfile.mkdtemp() UpperCAmelCase_ : Any = ' He is very happy, UNwant\u00E9d,running' UpperCAmelCase_ : Dict = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : Dict = tokenizer.__class__.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : List[str] = after_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) shutil.rmtree(_UpperCamelCase ) UpperCAmelCase_ : str = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): # Isolate this from the other tests because we save additional tokens/etc UpperCAmelCase_ : Dict = tempfile.mkdtemp() UpperCAmelCase_ : Any = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) UpperCAmelCase_ : Tuple = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) UpperCAmelCase_ : Optional[int] = tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) tokenizer.save_pretrained(_UpperCamelCase ) UpperCAmelCase_ : str = tokenizer.__class__.from_pretrained(_UpperCamelCase ) UpperCAmelCase_ : List[Any] = after_tokenizer.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , _UpperCamelCase ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) UpperCAmelCase_ : str = tokenizer.__class__.from_pretrained(_UpperCamelCase , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(_UpperCamelCase ) def __UpperCAmelCase ( self ) -> int: UpperCAmelCase_ : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: UpperCAmelCase_ : int = json.load(_UpperCamelCase ) with open(os.path.join(_UpperCamelCase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: UpperCAmelCase_ : Union[str, Any] = json.load(_UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = [f"<extra_id_{i}>" for i in range(1_2_5 )] UpperCAmelCase_ : List[str] = added_tokens_extra_ids + [ 'an_additional_special_token' ] UpperCAmelCase_ : Optional[int] = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(_UpperCamelCase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCamelCase , _UpperCamelCase ) with open(os.path.join(_UpperCamelCase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(_UpperCamelCase , _UpperCamelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files UpperCAmelCase_ : Union[str, Any] = tokenizer_class.from_pretrained( _UpperCamelCase , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained UpperCAmelCase_ : Tuple = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=_UpperCamelCase )] UpperCAmelCase_ : List[Any] = tokenizer_class.from_pretrained( _UpperCamelCase , additional_special_tokens=_UpperCamelCase , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def __UpperCAmelCase ( self ) -> Tuple: UpperCAmelCase_ : Dict = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_7_8] ) , '�' ) def __UpperCAmelCase ( self ) -> str: pass def __UpperCAmelCase ( self ) -> Dict: pass def __UpperCAmelCase ( self ) -> Dict: pass def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> List[str]: # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens UpperCAmelCase_ : Union[str, Any] = self.get_tokenizers(fast=_UpperCamelCase , do_lower_case=_UpperCamelCase ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): UpperCAmelCase_ : int = ['[CLS]', 't', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 's', 't', '[SEP]'] UpperCAmelCase_ : Dict = tokenizer.convert_tokens_to_string(_UpperCamelCase ) self.assertIsInstance(_UpperCamelCase , _UpperCamelCase )
351
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowerCamelCase (unittest.TestCase ): '''simple docstring''' _snake_case : List[str] = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Optional[Any]: UpperCAmelCase_ : List[str] = hf_hub_download( repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : str = VideoClassificationPipeline(model=_UpperCamelCase , image_processor=_UpperCamelCase , top_k=2 ) UpperCAmelCase_ : List[str] = [ example_video_filepath, 'https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4', ] return video_classifier, examples def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: for example in examples: UpperCAmelCase_ : str = video_classifier(_UpperCamelCase ) self.assertEqual( _UpperCamelCase , [ {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, {'score': ANY(_UpperCamelCase ), 'label': ANY(_UpperCamelCase )}, ] , ) @require_torch def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase_ : str = 'hf-internal-testing/tiny-random-VideoMAEForVideoClassification' UpperCAmelCase_ : Optional[Any] = VideoMAEFeatureExtractor( size={'shortest_edge': 1_0} , crop_size={'height': 1_0, 'width': 1_0} ) UpperCAmelCase_ : str = pipeline( 'video-classification' , model=_UpperCamelCase , feature_extractor=_UpperCamelCase , frame_sampling_rate=4 ) UpperCAmelCase_ : Any = hf_hub_download(repo_id='nateraw/video-demo' , filename='archery.mp4' , repo_type='dataset' ) UpperCAmelCase_ : List[str] = video_classifier(_UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}] , ) UpperCAmelCase_ : Tuple = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(_UpperCamelCase , decimals=4 ) , [ [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], [{'score': 0.51_99, 'label': 'LABEL_0'}, {'score': 0.48_01, 'label': 'LABEL_1'}], ] , ) @require_tf def __UpperCAmelCase ( self ) -> Dict: pass
145
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller __lowerCAmelCase : Union[str, Any] = 3 def __magic_name__ ( A : int ): '''simple docstring''' print("Generating primitive root of p" ) while True: a = random.randrange(3, A ) if pow(A, 2, A ) == 1: continue if pow(A, A, A ) == 1: continue return g def __magic_name__ ( A : int ): '''simple docstring''' print("Generating prime p..." ) a = rabin_miller.generate_large_prime(A ) # select large prime number. a = primitive_root(A ) # one primitive root on modulo p. a = random.randrange(3, A ) # private_key -> have to be greater than 2 for safety. a = cryptomath.find_mod_inverse(pow(A, A, A ), A ) a = (key_size, e_a, e_a, p) a = (key_size, d) return public_key, private_key def __magic_name__ ( A : str, A : int ): '''simple docstring''' if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print("\nWARNING:" ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" "Use a different name or delete these files and re-run this program." ) sys.exit() a , a = generate_key(A ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""", "w" ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""", "w" ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def __magic_name__ ( ): '''simple docstring''' print("Making key files..." ) make_key_files("elgamal", 2048 ) print("Key files generation successful" ) if __name__ == "__main__": main()
107
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __magic_name__ ( A : NDArray[floataa], A : NDArray[floataa], A : list[int], A : int, ): '''simple docstring''' a , a = coefficient_matrix.shape a , a = constant_matrix.shape if rowsa != colsa: a = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(A ) if colsa != 1: a = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(A ) if rowsa != rowsa: a = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(A ) if len(A ) != rowsa: a = ( "Number of initial values must be equal to number of rows in coefficient " F"""matrix but received {len(A )} and {rowsa}""" ) raise ValueError(A ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) a = np.concatenate( (coefficient_matrix, constant_matrix), axis=1 ) a , a = table.shape strictly_diagonally_dominant(A ) # Iterates the whole matrix for given number of times for _ in range(A ): a = [] for row in range(A ): a = 0 for col in range(A ): if col == row: a = table[row][col] elif col == cols - 1: a = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] a = (temp + val) / denom new_val.append(A ) a = new_val return [float(A ) for i in new_val] def __magic_name__ ( A : NDArray[floataa] ): '''simple docstring''' a , a = table.shape a = True for i in range(0, A ): a = 0 for j in range(0, cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
107
1
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } SCREAMING_SNAKE_CASE_ = { 'vocab_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'}, 'merges_file': {'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'}, 'tokenizer_config_file': { 'facebook/blenderbot-3B': 'https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json' }, } SCREAMING_SNAKE_CASE_ = {'facebook/blenderbot-3B': 128} class a ( UpperCAmelCase ): _lowercase = VOCAB_FILES_NAMES _lowercase = PRETRAINED_VOCAB_FILES_MAP _lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase = ["input_ids", "attention_mask"] _lowercase = BlenderbotTokenizer def __init__( self , A_=None , A_=None , A_=None , A_="replace" , A_="<s>" , A_="</s>" , A_="</s>" , A_="<s>" , A_="<unk>" , A_="<pad>" , A_="<mask>" , A_=False , A_=True , **A_ , ): '''simple docstring''' super().__init__( A_ , A_ , tokenizer_file=A_ , errors=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , cls_token=A_ , unk_token=A_ , pad_token=A_ , mask_token=A_ , add_prefix_space=A_ , trim_offsets=A_ , **A_ , ) _UpperCAmelCase : List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , A_ ) != add_prefix_space: _UpperCAmelCase : List[str] = getattr(A_ , pre_tok_state.pop("type" ) ) _UpperCAmelCase : List[Any] = add_prefix_space _UpperCAmelCase : str = pre_tok_class(**A_ ) _UpperCAmelCase : Optional[Any] = add_prefix_space _UpperCAmelCase : Tuple = "post_processor" _UpperCAmelCase : Any = getattr(self.backend_tokenizer , A_ , A_ ) if tokenizer_component_instance: _UpperCAmelCase : Dict = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _UpperCAmelCase : Union[str, Any] = tuple(state["sep"] ) if "cls" in state: _UpperCAmelCase : Union[str, Any] = tuple(state["cls"] ) _UpperCAmelCase : str = False if state.get("add_prefix_space" , A_ ) != add_prefix_space: _UpperCAmelCase : List[Any] = add_prefix_space _UpperCAmelCase : Optional[Any] = True if state.get("trim_offsets" , A_ ) != trim_offsets: _UpperCAmelCase : List[Any] = trim_offsets _UpperCAmelCase : Optional[int] = True if changes_to_apply: _UpperCAmelCase : Tuple = getattr(A_ , state.pop("type" ) ) _UpperCAmelCase : str = component_class(**A_ ) setattr(self.backend_tokenizer , A_ , A_ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def _UpperCAmelCase ( self ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : str = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else value _UpperCAmelCase : Union[str, Any] = value def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' _UpperCAmelCase : Optional[int] = kwargs.get("is_split_into_words" , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*A_ , **A_ ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = kwargs.get("is_split_into_words" , A_ ) assert self.add_prefix_space or not is_split_into_words, ( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*A_ , **A_ ) def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ ) def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' _UpperCAmelCase : Optional[int] = [self.sep_token_id] _UpperCAmelCase : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , A_ , A_ = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def _UpperCAmelCase ( self , A_ ): '''simple docstring''' _UpperCAmelCase : Dict = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(A_ ) _UpperCAmelCase : List[str] = " ".join(A_ ) _UpperCAmelCase : List[Any] = self.encode(A_ ) if len(A_ ) > self.model_max_length: _UpperCAmelCase : int = input_ids[-self.model_max_length :] logger.warning(f'Trimmed input from conversation as it was longer than {self.model_max_length} tokens.' ) return input_ids
189
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class a ( UpperCAmelCase ): def __get__( self , A_ , A_=None ): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError("unreadable attribute" ) _UpperCAmelCase : Optional[int] = "__cached_" + self.fget.__name__ _UpperCAmelCase : Union[str, Any] = getattr(A_ , A_ , A_ ) if cached is None: _UpperCAmelCase : Dict = self.fget(A_ ) setattr(A_ , A_ , A_ ) return cached def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> int: _UpperCAmelCase : str = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> int: if is_torch_fx_proxy(lowerCAmelCase ): return True if is_torch_available(): import torch if isinstance(lowerCAmelCase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(lowerCAmelCase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(lowerCAmelCase , (jnp.ndarray, Tracer) ): return True return isinstance(lowerCAmelCase , np.ndarray ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Dict: return isinstance(lowerCAmelCase , np.ndarray ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> Any: return _is_numpy(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Optional[int]: import torch return isinstance(lowerCAmelCase , torch.Tensor ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> Optional[int]: return False if not is_torch_available() else _is_torch(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> List[Any]: import torch return isinstance(lowerCAmelCase , torch.device ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Tuple: return False if not is_torch_available() else _is_torch_device(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> Tuple: import torch if isinstance(lowerCAmelCase , lowerCAmelCase ): if hasattr(lowerCAmelCase , lowerCAmelCase ): _UpperCAmelCase : Any = getattr(lowerCAmelCase , lowerCAmelCase ) else: return False return isinstance(lowerCAmelCase , torch.dtype ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> int: return False if not is_torch_available() else _is_torch_dtype(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> Optional[Any]: import tensorflow as tf return isinstance(lowerCAmelCase , tf.Tensor ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Optional[Any]: return False if not is_tf_available() else _is_tensorflow(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[int] ) -> Any: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(lowerCAmelCase , "is_symbolic_tensor" ): return tf.is_symbolic_tensor(lowerCAmelCase ) return type(lowerCAmelCase ) == tf.Tensor def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple ) -> Optional[Any]: return False if not is_tf_available() else _is_tf_symbolic_tensor(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[str]: import jax.numpy as jnp # noqa: F811 return isinstance(lowerCAmelCase , jnp.ndarray ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> str: return False if not is_flax_available() else _is_jax(lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str ) -> Tuple: if isinstance(lowerCAmelCase , (dict, UserDict) ): return {k: to_py_obj(lowerCAmelCase ) for k, v in obj.items()} elif isinstance(lowerCAmelCase , (list, tuple) ): return [to_py_obj(lowerCAmelCase ) for o in obj] elif is_tf_tensor(lowerCAmelCase ): return obj.numpy().tolist() elif is_torch_tensor(lowerCAmelCase ): return obj.detach().cpu().tolist() elif is_jax_tensor(lowerCAmelCase ): return np.asarray(lowerCAmelCase ).tolist() elif isinstance(lowerCAmelCase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[Any]: if isinstance(lowerCAmelCase , (dict, UserDict) ): return {k: to_numpy(lowerCAmelCase ) for k, v in obj.items()} elif isinstance(lowerCAmelCase , (list, tuple) ): return np.array(lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): return obj.numpy() elif is_torch_tensor(lowerCAmelCase ): return obj.detach().cpu().numpy() elif is_jax_tensor(lowerCAmelCase ): return np.asarray(lowerCAmelCase ) else: return obj class a ( UpperCAmelCase ): def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = fields(self ) # Safety and consistency checks if not len(A_ ): raise ValueError(f'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(f'{self.__class__.__name__} should not have more than one required field.' ) _UpperCAmelCase : Any = getattr(self , class_fields[0].name ) _UpperCAmelCase : List[str] = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(A_ ): if isinstance(A_ , A_ ): _UpperCAmelCase : Union[str, Any] = first_field.items() _UpperCAmelCase : Optional[int] = True else: try: _UpperCAmelCase : Tuple = iter(A_ ) _UpperCAmelCase : Any = True except TypeError: _UpperCAmelCase : str = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(A_ ): if ( not isinstance(A_ , (list, tuple) ) or not len(A_ ) == 2 or not isinstance(element[0] , A_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _UpperCAmelCase : str = first_field else: # If we have a mixed iterator, raise an error raise ValueError( f'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _UpperCAmelCase : List[str] = element[1] elif first_field is not None: _UpperCAmelCase : Tuple = first_field else: for field in class_fields: _UpperCAmelCase : int = getattr(self , field.name ) if v is not None: _UpperCAmelCase : Union[str, Any] = v def __delitem__( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def _UpperCAmelCase ( self , *A_ , **A_ ): '''simple docstring''' raise Exception(f'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , A_ ): '''simple docstring''' if isinstance(A_ , A_ ): _UpperCAmelCase : Optional[int] = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , A_ , A_ ): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(A_ , A_ ) super().__setattr__(A_ , A_ ) def __setitem__( self , A_ , A_ ): '''simple docstring''' super().__setitem__(A_ , A_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(A_ , A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' return tuple(self[k] for k in self.keys() ) class a ( UpperCAmelCase , UpperCAmelCase ): @classmethod def _UpperCAmelCase ( cls , A_ ): '''simple docstring''' raise ValueError( f'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class a ( UpperCAmelCase ): _lowercase = "longest" _lowercase = "max_length" _lowercase = "do_not_pad" class a ( UpperCAmelCase ): _lowercase = "pt" _lowercase = "tf" _lowercase = "np" _lowercase = "jax" class a : def __init__( self , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = context_managers _UpperCAmelCase : Dict = ExitStack() def __enter__( self ): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(A_ ) def __exit__( self , *A_ , **A_ ): '''simple docstring''' self.stack.__exit__(*A_ , **A_ ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = infer_framework(lowerCAmelCase ) if framework == "tf": _UpperCAmelCase : Union[str, Any] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Optional[int] = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Dict = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] ) -> List[str]: _UpperCAmelCase : List[Any] = model_class.__name__ _UpperCAmelCase : Dict = infer_framework(lowerCAmelCase ) if framework == "tf": _UpperCAmelCase : Dict = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _UpperCAmelCase : Dict = inspect.signature(model_class.forward ) # PyTorch models else: _UpperCAmelCase : Tuple = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: MutableMapping , lowerCAmelCase: str = "" , lowerCAmelCase: str = "." ) -> List[Any]: def _flatten_dict(lowerCAmelCase: int , lowerCAmelCase: Tuple="" , lowerCAmelCase: List[str]="." ): for k, v in d.items(): _UpperCAmelCase : Optional[int] = str(lowerCAmelCase ) + delimiter + str(lowerCAmelCase ) if parent_key else k if v and isinstance(lowerCAmelCase , lowerCAmelCase ): yield from flatten_dict(lowerCAmelCase , lowerCAmelCase , delimiter=lowerCAmelCase ).items() else: yield key, v return dict(_flatten_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) ) @contextmanager def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] , lowerCAmelCase: bool = False ) -> List[Any]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Tuple=None ) -> List[str]: if is_numpy_array(lowerCAmelCase ): return np.transpose(lowerCAmelCase , axes=lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.T if axes is None else array.permute(*lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.transpose(lowerCAmelCase , perm=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.transpose(lowerCAmelCase , axes=lowerCAmelCase ) else: raise ValueError(F'Type not supported for transpose: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: Any ) -> int: if is_numpy_array(lowerCAmelCase ): return np.reshape(lowerCAmelCase , lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.reshape(*lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.reshape(lowerCAmelCase , lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.reshape(lowerCAmelCase , lowerCAmelCase ) else: raise ValueError(F'Type not supported for reshape: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: Union[str, Any]=None ) -> Union[str, Any]: if is_numpy_array(lowerCAmelCase ): return np.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.squeeze() if axis is None else array.squeeze(dim=lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.squeeze(lowerCAmelCase , axis=lowerCAmelCase ) else: raise ValueError(F'Type not supported for squeeze: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: List[str] ) -> Union[str, Any]: if is_numpy_array(lowerCAmelCase ): return np.expand_dims(lowerCAmelCase , lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.unsqueeze(dim=lowerCAmelCase ) elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.expand_dims(lowerCAmelCase , axis=lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return jnp.expand_dims(lowerCAmelCase , axis=lowerCAmelCase ) else: raise ValueError(F'Type not supported for expand_dims: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] ) -> int: if is_numpy_array(lowerCAmelCase ): return np.size(lowerCAmelCase ) elif is_torch_tensor(lowerCAmelCase ): return array.numel() elif is_tf_tensor(lowerCAmelCase ): import tensorflow as tf return tf.size(lowerCAmelCase ) elif is_jax_tensor(lowerCAmelCase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(lowerCAmelCase )}.' ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[str] , lowerCAmelCase: List[Any] ) -> List[Any]: for key, value in auto_map.items(): if isinstance(lowerCAmelCase , (tuple, list) ): _UpperCAmelCase : List[Any] = [F'{repo_id}--{v}' if (v is not None and "--" not in v) else v for v in value] elif value is not None and "--" not in value: _UpperCAmelCase : Tuple = F'{repo_id}--{value}' return auto_map def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> List[Any]: for base_class in inspect.getmro(lowerCAmelCase ): _UpperCAmelCase : int = base_class.__module__ _UpperCAmelCase : Dict = base_class.__name__ if module.startswith("tensorflow" ) or module.startswith("keras" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("torch" ) or name == "PreTrainedModel": return "pt" elif module.startswith("flax" ) or module.startswith("jax" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
189
1
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def a ( _UpperCAmelCase : Namespace ): '''simple docstring''' return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __A ="\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class UpperCAmelCase__ ( __UpperCamelCase ): '''simple docstring''' @staticmethod def snake_case__ ( a_ : ArgumentParser ): '''simple docstring''' __UpperCAmelCase : str = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=a_ , required=a_ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=a_ , required=a_ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=a_ , required=a_ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=a_ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=a_ , default=a_ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=a_ ) def __init__( self : Union[str, Any] , a_ : str , a_ : str , a_ : str , a_ : str , a_ : str , *a_ : Tuple , ): '''simple docstring''' __UpperCAmelCase : Union[str, Any] = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F'Loading model {model_type}' ) __UpperCAmelCase : List[str] = model_type __UpperCAmelCase : Tuple = tf_checkpoint __UpperCAmelCase : Tuple = pytorch_dump_output __UpperCAmelCase : Optional[Any] = config __UpperCAmelCase : int = finetuning_task_name def snake_case__ ( self : List[Any] ): '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(a_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) if "ckpt" in self._tf_checkpoint.lower(): __UpperCAmelCase : Any = self._tf_checkpoint __UpperCAmelCase : Dict = '''''' else: __UpperCAmelCase : str = self._tf_checkpoint __UpperCAmelCase : Tuple = '''''' convert_transfo_xl_checkpoint_to_pytorch( a_ , self._config , self._pytorch_dump_output , a_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(a_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
226
import qiskit def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCAmelCase : str = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": __A =half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
226
1
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys __snake_case :Any = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') __snake_case :List[str] = ( subprocess.check_output(f'git diff --diff-filter=d --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() ) __snake_case :Optional[Any] = '''|'''.join(sys.argv[1:]) __snake_case :str = re.compile(rf'^({joined_dirs}).*?\.py$') __snake_case :Union[str, Any] = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
350
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __snake_case :Dict = logging.get_logger() @dataclass class _A : UpperCamelCase__ : nn.Module UpperCamelCase__ : List[nn.Module] = field(default_factory=__UpperCAmelCase ) UpperCamelCase__ : list = field(default_factory=__UpperCAmelCase ) def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tensor , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = len(list(m.modules())) == 1 or isinstance(__SCREAMING_SNAKE_CASE , nn.Convad) or isinstance(__SCREAMING_SNAKE_CASE , nn.BatchNormad) if has_not_submodules: self.traced.append(__SCREAMING_SNAKE_CASE) def __call__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(__SCREAMING_SNAKE_CASE) [x.remove() for x in self.handles] return self @property def _lowerCamelCase ( self : List[Any]): '''simple docstring''' return list(filter(lambda __SCREAMING_SNAKE_CASE: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class _A : UpperCamelCase__ : nn.Module UpperCamelCase__ : nn.Module UpperCamelCase__ : int = 1 UpperCamelCase__ : List = field(default_factory=__UpperCAmelCase ) UpperCamelCase__ : List = field(default_factory=__UpperCAmelCase ) UpperCamelCase__ : bool = True def __call__( self : Any , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' __a = Tracker(self.dest)(__SCREAMING_SNAKE_CASE).parametrized __a = Tracker(self.src)(__SCREAMING_SNAKE_CASE).parametrized __a = list(filter(lambda __SCREAMING_SNAKE_CASE: type(__SCREAMING_SNAKE_CASE) not in self.src_skip , __SCREAMING_SNAKE_CASE)) __a = list(filter(lambda __SCREAMING_SNAKE_CASE: type(__SCREAMING_SNAKE_CASE) not in self.dest_skip , __SCREAMING_SNAKE_CASE)) if len(__SCREAMING_SNAKE_CASE) != len(__SCREAMING_SNAKE_CASE) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(__SCREAMING_SNAKE_CASE)} operations while' F' destination module has {len(__SCREAMING_SNAKE_CASE)}.') for dest_m, src_m in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}') class _A ( nn.Module ): def __init__( self : Optional[int] , __SCREAMING_SNAKE_CASE : nn.Module): '''simple docstring''' super().__init__() __a = [] # - get the stem feature_blocks.append(('''conv1''', model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('''block'''), F'Unexpected layer name {k}' __a = len(__SCREAMING_SNAKE_CASE) + 1 feature_blocks.append((F'res{block_index}', v)) __a = nn.ModuleDict(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Tensor): '''simple docstring''' return get_trunk_forward_outputs( __SCREAMING_SNAKE_CASE , out_feat_keys=__SCREAMING_SNAKE_CASE , feature_blocks=self._feature_blocks , ) class _A ( __UpperCAmelCase ): def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' __a = x.split('''-''') return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self : List[Any] , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' if x not in self: __a = self.convert_name_to_timm(__SCREAMING_SNAKE_CASE) __a = partial(lambda: (timm.create_model(__SCREAMING_SNAKE_CASE , pretrained=__SCREAMING_SNAKE_CASE).eval(), None)) else: __a = super().__getitem__(__SCREAMING_SNAKE_CASE) return val class _A ( __UpperCAmelCase ): def __getitem__( self : Tuple , __SCREAMING_SNAKE_CASE : str): '''simple docstring''' if "seer" in x and "in1k" not in x: __a = RegNetModel else: __a = RegNetForImageClassification return val def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for from_key, to_key in keys: __a = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}' ) return to_state_dict def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): print(f'Converting {name}...' ) with torch.no_grad(): __a , __a = from_model_func() __a = our_model_func(_UpperCAmelCase ).eval() __a = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase , raise_if_mismatch=_UpperCAmelCase ) __a = torch.randn((1, 3, 224, 224) ) module_transfer(_UpperCAmelCase ) if from_state_dict is not None: __a = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: __a = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] __a = manually_copy_vissl_head(_UpperCAmelCase , our_model.state_dict() , _UpperCAmelCase ) our_model.load_state_dict(_UpperCAmelCase ) __a = our_model(_UpperCAmelCase , output_hidden_states=_UpperCAmelCase ) __a = ( our_outputs.logits if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else our_outputs.last_hidden_state ) __a = from_model(_UpperCAmelCase ) __a = from_output[-1] if type(_UpperCAmelCase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: __a = our_outputs.hidden_states[-1] assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=_UpperCAmelCase , ) __a = 224 if '''seer''' not in name else 384 # we can use the convnext one __a = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=_UpperCAmelCase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=_UpperCAmelCase , ) print(f'Pushed {name}' ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True ): __a = '''imagenet-1k-id2label.json''' __a = 1000 __a = (1, num_labels) __a = '''huggingface/label-files''' __a = num_labels __a = json.load(open(cached_download(hf_hub_url(_UpperCAmelCase , _UpperCAmelCase , repo_type='''dataset''' ) ) , '''r''' ) ) __a = {int(_UpperCAmelCase ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} __a = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase ) __a = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='''x''' ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='''x''' ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='''x''' ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='''x''' ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='''x''' ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='''x''' ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='''x''' ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='''x''' ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='''x''' ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='''x''' ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='''x''' ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='''x''' ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } __a = NameToOurModelFuncMap() __a = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_UpperCAmelCase , _UpperCAmelCase ) -> Tuple[nn.Module, Dict]: __a = torch.hub.load_state_dict_from_url(_UpperCAmelCase , model_dir=str(_UpperCAmelCase ) , map_location='''cpu''' ) __a = model_func() # check if we have a head, if yes add it __a = files['''classy_state_dict''']['''base_model''']['''model'''] __a = model_state_dict['''trunk'''] model.load_state_dict(_UpperCAmelCase ) return model.eval(), model_state_dict["heads"] # pretrained __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) __a = partial( _UpperCAmelCase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=6_20.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( _UpperCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( _UpperCAmelCase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return config, expected_shape if __name__ == "__main__": __snake_case :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default=None, type=str, help=( '''The name of the model you wish to convert, it must be one of the supported regnet* architecture,''' ''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=Path, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', default=True, type=bool, required=False, help='''If True, push model and image processor to the hub.''', ) __snake_case :Tuple = parser.parse_args() __snake_case :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
131
0
import argparse from collections import defaultdict import yaml A : str = '''docs/source/en/_toctree.yml''' def __lowerCamelCase ( __a :str ) -> List[Any]: """simple docstring""" A__ = defaultdict(__a ) A__ = [] A__ = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({"""local""": doc["""local"""], """title""": doc["""title"""]} ) else: new_doc_list.append(__a ) A__ = new_doc_list A__ = [key for key, value in counts.items() if value > 1] A__ = [] for duplicate_key in duplicates: A__ = list({doc["""title"""] for doc in doc_list if doc["""local"""] == duplicate_key} ) if len(__a ) > 1: raise ValueError( F'{duplicate_key} is present several times in the documentation table of content at ' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if """local""" not in counts or counts[doc["""local"""]] == 1] ) A__ = sorted(__a , key=lambda __a : s["title"].lower() ) # "overview" gets special treatment and is always first if len(__a ) > 1: raise ValueError("""{doc_list} has two 'overview' docs which is not allowed.""" ) overview_doc.extend(__a ) # Sort return overview_doc def __lowerCamelCase ( __a :Any=False ) -> List[str]: """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["""sections"""] # Then to the model doc A__ = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 A__ = api_doc[scheduler_idx]["""sections"""] A__ = clean_doc_toc(__a ) A__ = False if new_scheduler_doc != scheduler_doc: A__ = True if overwrite: A__ = new_scheduler_doc if diff: if overwrite: A__ = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) def __lowerCamelCase ( __a :Optional[int]=False ) -> Dict: """simple docstring""" with open(__a , encoding="""utf-8""" ) as f: A__ = yaml.safe_load(f.read() ) # Get to the API doc A__ = 0 while content[api_idx]["title"] != "API": api_idx += 1 A__ = content[api_idx]["""sections"""] # Then to the model doc A__ = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 A__ = False A__ = api_doc[pipeline_idx]["""sections"""] A__ = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: A__ = pipeline_doc["""section"""] A__ = clean_doc_toc(__a ) if overwrite: A__ = new_sub_pipeline_doc new_pipeline_docs.append(__a ) # sort overall pipeline doc A__ = clean_doc_toc(__a ) if new_pipeline_docs != pipeline_docs: A__ = True if overwrite: A__ = new_pipeline_docs if diff: if overwrite: A__ = api_doc with open(__a , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__a , allow_unicode=__a ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A : Optional[Any] = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
274
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def __lowerCamelCase ( __a :List[str] , __a :List[Any] , __a :Union[str, Any] , __a :List[Any] ) -> Dict: """simple docstring""" A__ = multiprocessing.Manager() A__ = manager.list() A__ = multiprocessing.Process(target=__a , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("""timed out""" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def __lowerCamelCase ( __a :Optional[Any] , __a :Any , __a :List[Any] ) -> Union[str, Any]: """simple docstring""" with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A__ = shutil.rmtree A__ = os.rmdir A__ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A__ = {} with swallow_io(): with time_limit(__a ): exec(__a , __a ) result.append("""passed""" ) except TimeoutException: result.append("""timed out""" ) except BaseException as e: result.append(F'failed: {e}' ) # Needed for cleaning up. A__ = rmtree A__ = rmdir A__ = chdir @contextlib.contextmanager def __lowerCamelCase ( __a :List[str] ) -> Dict: """simple docstring""" def signal_handler(__a :List[Any] , __a :Optional[Any] ): raise TimeoutException("""Timed out!""" ) signal.setitimer(signal.ITIMER_REAL , __a ) signal.signal(signal.SIGALRM , __a ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = WriteOnlyStringIO() with contextlib.redirect_stdout(__a ): with contextlib.redirect_stderr(__a ): with redirect_stdin(__a ): yield @contextlib.contextmanager def __lowerCamelCase ( ) -> Dict: """simple docstring""" with tempfile.TemporaryDirectory() as dirname: with chdir(__a ): yield dirname class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' pass class A (io.StringIO ): '''simple docstring''' def a_ ( self : Any , *__lowerCAmelCase : List[str] , **__lowerCAmelCase : str ) -> Dict: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" raise OSError def a_ ( self : Optional[Any] , *__lowerCAmelCase : Any , **__lowerCAmelCase : Any ) -> int: """simple docstring""" raise OSError def a_ ( self : str , *__lowerCAmelCase : Any , **__lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" return False class A (contextlib._RedirectStream ): # type: ignore '''simple docstring''' __lowerCamelCase : Union[str, Any] = '''stdin''' @contextlib.contextmanager def __lowerCamelCase ( __a :Union[str, Any] ) -> List[str]: """simple docstring""" if root == ".": yield return A__ = os.getcwd() os.chdir(__a ) try: yield except BaseException as exc: raise exc finally: os.chdir(__a ) def __lowerCamelCase ( __a :Union[str, Any]=None ) -> Dict: """simple docstring""" if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A__ = None A__ = None import os A__ = """1""" A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None A__ = None import shutil A__ = None A__ = None A__ = None import subprocess A__ = None # type: ignore A__ = None import sys A__ = None A__ = None A__ = None A__ = None A__ = None
274
1
'''simple docstring''' def __magic_name__( lowerCamelCase, lowerCamelCase = " "): __lowerCAmelCase = [] __lowerCAmelCase = 0 for index, char in enumerate(lowerCamelCase): if char == separator: split_words.append(string[last_index:index]) __lowerCAmelCase = index + 1 elif index + 1 == len(lowerCamelCase): split_words.append(string[last_index : index + 1]) return split_words if __name__ == "__main__": from doctest import testmod testmod()
9
'''simple docstring''' from ..utils import DummyObject, requires_backends class a__ ( metaclass=__A ): """simple docstring""" __UpperCamelCase : int = ['torch', 'scipy'] def __init__(self , *__lowercase , **__lowercase ): requires_backends(self , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] ) @classmethod def _snake_case (cls , *__lowercase , **__lowercase ): requires_backends(cls , ['''torch''', '''scipy'''] )
9
1
"""simple docstring""" lowerCAmelCase__ = { "joule": 1.0, "kilojoule": 1_000, "megajoule": 1_000_000, "gigajoule": 1_000_000_000, "wattsecond": 1.0, "watthour": 3_600, "kilowatthour": 3_600_000, "newtonmeter": 1.0, "calorie_nutr": 4_186.8, "kilocalorie_nutr": 4_186_800.00, "electronvolt": 1.6_0_2_1_7_6_6_3_4e-1_9, "britishthermalunit_it": 1_055.05_585, "footpound": 1.355818, } def a__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : float ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowerCAmelCase : List[str] = ( f"""Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n""" f"""Valid values are: {", ".join(SCREAMING_SNAKE_CASE )}""" ) raise ValueError(SCREAMING_SNAKE_CASE ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
108
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { 'Salesforce/instruct-blip-flan-t5': 'https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json', } class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Tuple = '''instructblip_vision_model''' def __init__( self : str , lowerCAmelCase__ : Dict=1_4_0_8 , lowerCAmelCase__ : int=6_1_4_4 , lowerCAmelCase__ : List[str]=3_9 , lowerCAmelCase__ : int=1_6 , lowerCAmelCase__ : Tuple=2_2_4 , lowerCAmelCase__ : Tuple=1_4 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : Union[str, Any]=1e-6 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : Optional[int]=1e-10 , lowerCAmelCase__ : Dict=True , **lowerCAmelCase__ : str , ) -> Optional[int]: """simple docstring""" super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase : List[str] = hidden_size _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Optional[int] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : str = patch_size _UpperCAmelCase : List[Any] = image_size _UpperCAmelCase : Union[str, Any] = initializer_range _UpperCAmelCase : int = attention_dropout _UpperCAmelCase : Optional[int] = layer_norm_eps _UpperCAmelCase : Any = hidden_act _UpperCAmelCase : Tuple = qkv_bias @classmethod def _lowerCAmelCase ( cls : Optional[int] , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Any ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : int = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : Optional[int] = '''instructblip_qformer''' def __init__( self : List[str] , lowerCAmelCase__ : Union[str, Any]=3_0_5_2_2 , lowerCAmelCase__ : Dict=7_6_8 , lowerCAmelCase__ : Tuple=1_2 , lowerCAmelCase__ : Optional[Any]=1_2 , lowerCAmelCase__ : Union[str, Any]=3_0_7_2 , lowerCAmelCase__ : Dict="gelu" , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : str=0.1 , lowerCAmelCase__ : Dict=5_1_2 , lowerCAmelCase__ : Tuple=0.02 , lowerCAmelCase__ : Optional[int]=1e-12 , lowerCAmelCase__ : Dict=0 , lowerCAmelCase__ : Union[str, Any]="absolute" , lowerCAmelCase__ : Optional[int]=2 , lowerCAmelCase__ : int=1_4_0_8 , **lowerCAmelCase__ : List[str] , ) -> Dict: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : Dict = num_hidden_layers _UpperCAmelCase : List[Any] = num_attention_heads _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : List[Any] = intermediate_size _UpperCAmelCase : Tuple = hidden_dropout_prob _UpperCAmelCase : List[Any] = attention_probs_dropout_prob _UpperCAmelCase : Any = max_position_embeddings _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[str] = layer_norm_eps _UpperCAmelCase : Tuple = position_embedding_type _UpperCAmelCase : Tuple = cross_attention_frequency _UpperCAmelCase : Any = encoder_hidden_size @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : Union[str, os.PathLike] , **lowerCAmelCase__ : Optional[int] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(lowerCAmelCase__ ) _UpperCAmelCase , _UpperCAmelCase : List[str] = cls.get_config_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get("model_type" ) == "instructblip": _UpperCAmelCase : Tuple = config_dict["qformer_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ F"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(lowerCAmelCase__ , **lowerCAmelCase__ ) class A__ ( UpperCamelCase ): """simple docstring""" UpperCamelCase_ : List[str] = '''instructblip''' UpperCamelCase_ : Dict = True def __init__( self : Tuple , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : Union[str, Any]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Union[str, Any]=3_2 , **lowerCAmelCase__ : Dict ) -> Any: """simple docstring""" super().__init__(**lowerCAmelCase__ ) if vision_config is None: _UpperCAmelCase : List[str] = {} logger.info("vision_config is None. initializing the InstructBlipVisionConfig with default values." ) if qformer_config is None: _UpperCAmelCase : Tuple = {} logger.info("qformer_config is None. Initializing the InstructBlipQFormerConfig with default values." ) if text_config is None: _UpperCAmelCase : int = {} logger.info("text_config is None. Initializing the text config with default values (`OPTConfig`)." ) _UpperCAmelCase : List[str] = InstructBlipVisionConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = InstructBlipQFormerConfig(**lowerCAmelCase__ ) _UpperCAmelCase : Optional[Any] = text_config["model_type"] if "model_type" in text_config else "opt" _UpperCAmelCase : Optional[int] = CONFIG_MAPPING[text_model_type](**lowerCAmelCase__ ) _UpperCAmelCase : Dict = self.text_config.tie_word_embeddings _UpperCAmelCase : List[Any] = self.text_config.is_encoder_decoder _UpperCAmelCase : List[str] = num_query_tokens _UpperCAmelCase : int = self.vision_config.hidden_size _UpperCAmelCase : Tuple = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES _UpperCAmelCase : int = 1.0 _UpperCAmelCase : Dict = 0.02 @classmethod def _lowerCAmelCase ( cls : Dict , lowerCAmelCase__ : InstructBlipVisionConfig , lowerCAmelCase__ : InstructBlipQFormerConfig , lowerCAmelCase__ : PretrainedConfig , **lowerCAmelCase__ : Union[str, Any] , ) -> Tuple: """simple docstring""" return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **lowerCAmelCase__ , ) def _lowerCAmelCase ( self : int ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : Any = copy.deepcopy(self.__dict__ ) _UpperCAmelCase : Optional[int] = self.vision_config.to_dict() _UpperCAmelCase : List[Any] = self.qformer_config.to_dict() _UpperCAmelCase : List[Any] = self.text_config.to_dict() _UpperCAmelCase : Dict = self.__class__.model_type return output
145
0
import warnings from ...utils import logging from .image_processing_perceiver import PerceiverImageProcessor SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,*A : List[str] ,**A : str ): warnings.warn( "The class PerceiverFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use PerceiverImageProcessor instead." ,A ,) super().__init__(*A ,**A )
124
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = "facebook/bart-large-mnli" snake_case_ = ( "This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which " "should be the text to classify, and `labels`, which should be the list of labels to use for classification. " "It returns the most likely label in the list of provided `labels` for the input text." ) snake_case_ = "text_classifier" snake_case_ = AutoTokenizer snake_case_ = AutoModelForSequenceClassification snake_case_ = ["text", ["text"]] snake_case_ = ["text"] def UpperCamelCase_ ( self : str ): super().setup() __A = self.model.config __A = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): __A = int(A ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def UpperCamelCase_ ( self : int ,A : Optional[Any] ,A : Dict ): __A = labels return self.pre_processor( [text] * len(A ) ,[f'''This example is {label}''' for label in labels] ,return_tensors="pt" ,padding="max_length" ,) def UpperCamelCase_ ( self : Union[str, Any] ,A : Tuple ): __A = outputs.logits __A = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
124
1
lowerCamelCase : dict[str, float] ={ "joule": 1.0, "kilojoule": 1000, "megajoule": 1000000, "gigajoule": 1000000000, "wattsecond": 1.0, "watthour": 3600, "kilowatthour": 3600000, "newtonmeter": 1.0, "calorie_nutr": 4186.8, "kilocalorie_nutr": 4186800.00, "electronvolt": 1.6_0217_6634E-19, "britishthermalunit_it": 1055.05585, "footpound": 1.35_5818, } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: UpperCamelCase__ : Union[str, Any] = ( f'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' f'Valid values are: {", ".join(__lowerCAmelCase )}' ) raise ValueError(__lowerCAmelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
189
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available lowerCamelCase : int ={ '''configuration_audio_spectrogram_transformer''': [ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ASTConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Union[str, Any] =[ '''AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ASTForAudioClassification''', '''ASTModel''', '''ASTPreTrainedModel''', ] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[int] =['''ASTFeatureExtractor'''] if TYPE_CHECKING: from .configuration_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ASTConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ASTForAudioClassification, ASTModel, ASTPreTrainedModel, ) try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor else: import sys lowerCamelCase : Optional[int] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
189
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ): """simple docstring""" lowercase : Union[str, Any] = ['image_processor', 'tokenizer'] lowercase : Union[str, Any] = 'LayoutLMv3ImageProcessor' lowercase : Union[str, Any] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , **__UpperCamelCase ) -> Tuple: '''simple docstring''' __UpperCamelCase : List[str] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __UpperCamelCase , ) __UpperCamelCase : int = kwargs.pop("feature_extractor" ) __UpperCamelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__UpperCamelCase , __UpperCamelCase ) def __call__( self , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = True , __UpperCamelCase = False , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = 0 , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = None , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = False , __UpperCamelCase = True , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: '''simple docstring''' if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) # first, apply the image processor __UpperCamelCase : Any = self.image_processor(images=__UpperCamelCase , return_tensors=__UpperCamelCase ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__UpperCamelCase , __UpperCamelCase ): __UpperCamelCase : Optional[int] = [text] # add batch dimension (as the image processor always adds a batch dimension) __UpperCamelCase : str = features["words"] __UpperCamelCase : Optional[int] = self.tokenizer( text=text if text is not None else features["words"] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["boxes"] , word_labels=__UpperCamelCase , add_special_tokens=__UpperCamelCase , padding=__UpperCamelCase , truncation=__UpperCamelCase , max_length=__UpperCamelCase , stride=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_token_type_ids=__UpperCamelCase , return_attention_mask=__UpperCamelCase , return_overflowing_tokens=__UpperCamelCase , return_special_tokens_mask=__UpperCamelCase , return_offsets_mapping=__UpperCamelCase , return_length=__UpperCamelCase , verbose=__UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # add pixel values __UpperCamelCase : List[Any] = features.pop("pixel_values" ) if return_overflowing_tokens is True: __UpperCamelCase : Tuple = self.get_overflowing_images(__UpperCamelCase , encoded_inputs["overflow_to_sample_mapping"] ) __UpperCamelCase : List[Any] = images return encoded_inputs def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase : Tuple = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__UpperCamelCase ) != len(__UpperCamelCase ): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f''' {len(__UpperCamelCase )} and {len(__UpperCamelCase )}''' ) return images_with_overflow def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCamelCase , **__UpperCamelCase ) def __lowerCamelCase ( self , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: '''simple docstring''' return self.tokenizer.decode(*__UpperCamelCase , **__UpperCamelCase ) @property def __lowerCamelCase ( self ) -> Union[str, Any]: '''simple docstring''' return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __UpperCamelCase , ) return self.image_processor_class @property def __lowerCamelCase ( self ) -> Tuple: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , __UpperCamelCase , ) return self.image_processor
171
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase : Union[str, Any] = { "configuration_mctct": ["MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MCTCTConfig"], "feature_extraction_mctct": ["MCTCTFeatureExtractor"], "processing_mctct": ["MCTCTProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Tuple = [ "MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST", "MCTCTForCTC", "MCTCTModel", "MCTCTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys lowercase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
171
1
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class _snake_case ( lowercase_ ): def __init__( self ) -> List[Any]: '''simple docstring''' snake_case_ = [] def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> List[str]: '''simple docstring''' self.events.append("on_init_end" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> List[str]: '''simple docstring''' self.events.append("on_train_begin" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> int: '''simple docstring''' self.events.append("on_train_end" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> Any: '''simple docstring''' self.events.append("on_epoch_begin" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' self.events.append("on_epoch_end" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' self.events.append("on_step_begin" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> Optional[Any]: '''simple docstring''' self.events.append("on_step_end" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> Optional[int]: '''simple docstring''' self.events.append("on_evaluate" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' self.events.append("on_predict" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> str: '''simple docstring''' self.events.append("on_save" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> Tuple: '''simple docstring''' self.events.append("on_log" ) def lowerCAmelCase__ ( self , a__ , a__ , a__ , **a__ ) -> str: '''simple docstring''' self.events.append("on_prediction_step" ) @require_torch class _snake_case ( unittest.TestCase ): def lowerCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' snake_case_ = tempfile.mkdtemp() def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' shutil.rmtree(self.output_dir ) def lowerCAmelCase__ ( self , a__=0 , a__=0 , a__=64 , a__=64 , a__=None , a__=False , **a__ ) -> int: '''simple docstring''' snake_case_ = RegressionDataset(length=a__ ) snake_case_ = RegressionDataset(length=a__ ) snake_case_ = RegressionModelConfig(a=a__ , b=a__ ) snake_case_ = RegressionPreTrainedModel(a__ ) snake_case_ = TrainingArguments(self.output_dir , disable_tqdm=a__ , report_to=[] , **a__ ) return Trainer( a__ , a__ , train_dataset=a__ , eval_dataset=a__ , callbacks=a__ , ) def lowerCAmelCase__ ( self , a__ , a__ ) -> Optional[int]: '''simple docstring''' self.assertEqual(len(a__ ) , len(a__ ) ) # Order doesn't matter snake_case_ = sorted(a__ , key=lambda a__ : cb.__name__ if isinstance(a__ , a__ ) else cb.__class__.__name__ ) snake_case_ = sorted(a__ , key=lambda a__ : cb.__name__ if isinstance(a__ , a__ ) else cb.__class__.__name__ ) for cba, cba in zip(a__ , a__ ): if isinstance(a__ , a__ ) and isinstance(a__ , a__ ): self.assertEqual(a__ , a__ ) elif isinstance(a__ , a__ ) and not isinstance(a__ , a__ ): self.assertEqual(a__ , cba.__class__ ) elif not isinstance(a__ , a__ ) and isinstance(a__ , a__ ): self.assertEqual(cba.__class__ , a__ ) else: self.assertEqual(a__ , a__ ) def lowerCAmelCase__ ( self , a__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ = ["on_init_end", "on_train_begin"] snake_case_ = 0 snake_case_ = len(trainer.get_eval_dataloader() ) snake_case_ = ["on_prediction_step"] * len(trainer.get_eval_dataloader() ) + ["on_log", "on_evaluate"] for _ in range(trainer.state.num_train_epochs ): expected_events.append("on_epoch_begin" ) for _ in range(a__ ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append("on_log" ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append("on_save" ) expected_events.append("on_epoch_end" ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' snake_case_ = self.get_trainer() snake_case_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) # Callbacks passed at init are added to the default callbacks snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback snake_case_ = self.get_trainer(disable_tqdm=a__ ) snake_case_ = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) def lowerCAmelCase__ ( self ) -> str: '''simple docstring''' snake_case_ = DEFAULT_CALLBACKS.copy() + [ProgressCallback] snake_case_ = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a__ ) expected_callbacks.remove(a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) snake_case_ = self.get_trainer() snake_case_ = trainer.pop_callback(a__ ) self.assertEqual(cb.__class__ , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) trainer.add_callback(a__ ) expected_callbacks.insert(0 , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) # We can also add, pop, or remove by instance snake_case_ = self.get_trainer() snake_case_ = trainer.callback_handler.callbacks[0] trainer.remove_callback(a__ ) expected_callbacks.remove(a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) snake_case_ = self.get_trainer() snake_case_ = trainer.callback_handler.callbacks[0] snake_case_ = trainer.pop_callback(a__ ) self.assertEqual(a__ , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) trainer.add_callback(a__ ) expected_callbacks.insert(0 , a__ ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a__ ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action="ignore" , category=a__ ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) # Independent log/save/eval snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy="steps" ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) snake_case_ = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy="epoch" ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) # A bit of everything snake_case_ = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy="steps" , ) trainer.train() snake_case_ = trainer.callback_handler.callbacks[-2].events self.assertEqual(a__ , self.get_expected_events(a__ ) ) # warning should be emitted for duplicated callbacks with patch("transformers.trainer_callback.logger.warning" ) as warn_mock: snake_case_ = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a__ ) in warn_mock.call_args[0][0]
85
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class _a : _a : Dict = None def UpperCAmelCase__( self : Union[str, Any] )-> int: lowerCAmelCase__ : str = self.feature_extraction_class(**self.feat_extract_dict ) lowerCAmelCase__ : List[str] = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__( self : Optional[Any] )-> Dict: lowerCAmelCase__ : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Optional[Any] = os.path.join(_SCREAMING_SNAKE_CASE , '''feat_extract.json''' ) feat_extract_first.to_json_file(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : List[Any] = self.feature_extraction_class.from_json_file(_SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase__( self : Optional[int] )-> Union[str, Any]: lowerCAmelCase__ : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase__ : Union[str, Any] = feat_extract_first.save_pretrained(_SCREAMING_SNAKE_CASE )[0] check_json_file_has_correct_format(_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ : Union[str, Any] = self.feature_extraction_class.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def UpperCAmelCase__( self : int )-> str: lowerCAmelCase__ : Optional[Any] = self.feature_extraction_class() self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
131
0
from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: str , lowerCAmelCase: float | Decimal , lowerCAmelCase: float = 10**-10 ) -> float: _UpperCAmelCase : Optional[int] = a while True: _UpperCAmelCase : Tuple = Decimal(lowerCAmelCase ) - ( Decimal(eval(lowerCAmelCase ) ) / Decimal(eval(str(diff(lowerCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(lowerCAmelCase ) ) < precision: # noqa: S307 return float(lowerCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}''')
189
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) # pylint: disable=invalid-name SCREAMING_SNAKE_CASE_ = '\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)["depth"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline("depth-estimation")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to("cuda")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-controlnet-depth", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to("cuda")\n\n\n >>> img = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/cat.png"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to("cuda")\n\n >>> prompt = "A robot, 4k photo"\n >>> negative_prior_prompt = "lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature"\n\n >>> generator = torch.Generator(device="cuda").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save("robot_cat.png")\n ```\n' def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: List[str] , lowerCAmelCase: int=8 ) -> int: _UpperCAmelCase : int = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _UpperCAmelCase : List[str] = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class a ( UpperCAmelCase ): def __init__( self , A_ , A_ , A_ , ): '''simple docstring''' super().__init__() self.register_modules( unet=A_ , scheduler=A_ , movq=A_ , ) _UpperCAmelCase : Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' if latents is None: _UpperCAmelCase : Any = randn_tensor(A_ , generator=A_ , device=A_ , dtype=A_ ) else: if latents.shape != shape: raise ValueError(f'Unexpected latents shape, got {latents.shape}, expected {shape}' ) _UpperCAmelCase : Optional[int] = latents.to(A_ ) _UpperCAmelCase : Tuple = latents * scheduler.init_noise_sigma return latents def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) _UpperCAmelCase : Union[str, Any] = torch.device(f'cuda:{gpu_id}' ) _UpperCAmelCase : Any = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A_ , A_ ) def _UpperCAmelCase ( self , A_=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) _UpperCAmelCase : str = torch.device(f'cuda:{gpu_id}' ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=A_ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _UpperCAmelCase : Optional[int] = None for cpu_offloaded_model in [self.unet, self.movq]: _UpperCAmelCase , _UpperCAmelCase : Dict = cpu_offload_with_hook(A_ , A_ , prev_module_hook=A_ ) # We'll offload the last model manually. _UpperCAmelCase : Optional[Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _UpperCAmelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(A_ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(A_ ) def __call__( self , A_ , A_ , A_ , A_ = 512 , A_ = 512 , A_ = 100 , A_ = 4.0 , A_ = 1 , A_ = None , A_ = None , A_ = "pil" , A_ = True , ): '''simple docstring''' _UpperCAmelCase : str = self._execution_device _UpperCAmelCase : Tuple = guidance_scale > 1.0 if isinstance(A_ , A_ ): _UpperCAmelCase : Union[str, Any] = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Dict = torch.cat(A_ , dim=0 ) if isinstance(A_ , A_ ): _UpperCAmelCase : Any = torch.cat(A_ , dim=0 ) _UpperCAmelCase : Optional[Any] = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _UpperCAmelCase : Optional[int] = image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Union[str, Any] = negative_image_embeds.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : Tuple = hint.repeat_interleave(A_ , dim=0 ) _UpperCAmelCase : List[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) _UpperCAmelCase : List[Any] = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=A_ ) self.scheduler.set_timesteps(A_ , device=A_ ) _UpperCAmelCase : Dict = self.scheduler.timesteps _UpperCAmelCase : Union[str, Any] = self.movq.config.latent_channels _UpperCAmelCase , _UpperCAmelCase : Optional[int] = downscale_height_and_width(A_ , A_ , self.movq_scale_factor ) # create initial latent _UpperCAmelCase : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , A_ , A_ , A_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(A_ ) ): # expand the latents if we are doing classifier free guidance _UpperCAmelCase : List[str] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _UpperCAmelCase : Optional[Any] = {"image_embeds": image_embeds, "hint": hint} _UpperCAmelCase : Optional[int] = self.unet( sample=A_ , timestep=A_ , encoder_hidden_states=A_ , added_cond_kwargs=A_ , return_dict=A_ , )[0] if do_classifier_free_guidance: _UpperCAmelCase , _UpperCAmelCase : Any = noise_pred.split(latents.shape[1] , dim=1 ) _UpperCAmelCase , _UpperCAmelCase : Tuple = noise_pred.chunk(2 ) _UpperCAmelCase , _UpperCAmelCase : List[Any] = variance_pred.chunk(2 ) _UpperCAmelCase : Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _UpperCAmelCase : int = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _UpperCAmelCase : int = self.scheduler.step( A_ , A_ , A_ , generator=A_ , )[0] # post-processing _UpperCAmelCase : Optional[Any] = self.movq.decode(A_ , force_not_quantize=A_ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' ) if output_type in ["np", "pil"]: _UpperCAmelCase : Union[str, Any] = image * 0.5 + 0.5 _UpperCAmelCase : Dict = image.clamp(0 , 1 ) _UpperCAmelCase : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _UpperCAmelCase : str = self.numpy_to_pil(A_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=A_ )
189
1
def _UpperCamelCase ( lowercase__ , lowercase__ = " " ): __SCREAMING_SNAKE_CASE : Tuple = [] __SCREAMING_SNAKE_CASE : Tuple = 0 for index, char in enumerate(lowercase__ ): if char == separator: split_words.append(string[last_index:index] ) __SCREAMING_SNAKE_CASE : str = index + 1 elif index + 1 == len(lowercase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
9
import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :Union[str, Any] ) -> Tuple: __SCREAMING_SNAKE_CASE : str = '''ylacombe/bark-small''' __SCREAMING_SNAKE_CASE : Optional[int] = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE : str = '''en_speaker_1''' __SCREAMING_SNAKE_CASE : Any = '''This is a test string''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings_path.json''' __SCREAMING_SNAKE_CASE : int = '''speaker_embeddings''' def __magic_name__( self :List[str] , **lowerCAmelCase__ :Union[str, Any] ) -> Any: return AutoTokenizer.from_pretrained(self.checkpoint , **lowerCAmelCase__ ) def __magic_name__( self :List[str] ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__( self :Dict ) -> str: __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Tuple = BarkProcessor(tokenizer=lowerCAmelCase__ ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def __magic_name__( self :Tuple ) -> List[Any]: __SCREAMING_SNAKE_CASE : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __SCREAMING_SNAKE_CASE : Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='''(BOS)''' , eos_token='''(EOS)''' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def __magic_name__( self :List[str] ) -> Tuple: __SCREAMING_SNAKE_CASE : List[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __SCREAMING_SNAKE_CASE : str = 35 __SCREAMING_SNAKE_CASE : str = 2 __SCREAMING_SNAKE_CASE : List[Any] = 8 __SCREAMING_SNAKE_CASE : Union[str, Any] = { '''semantic_prompt''': np.ones(lowerCAmelCase__ ), '''coarse_prompt''': np.ones((nb_codebooks_coarse, seq_len) ), '''fine_prompt''': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from npz file __SCREAMING_SNAKE_CASE : str = os.path.join(self.tmpdirname , '''file.npz''' ) np.savez(lowerCAmelCase__ , **lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string , voice_preset=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs['''history_prompt'''] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowerCAmelCase__ , np.array([] ) ).tolist() ) # test loading voice preset from the hub __SCREAMING_SNAKE_CASE : Union[str, Any] = processor(text=self.input_string , voice_preset=self.voice_preset ) def __magic_name__( self :Tuple ) -> Optional[Any]: __SCREAMING_SNAKE_CASE : Tuple = self.get_tokenizer() __SCREAMING_SNAKE_CASE : Any = BarkProcessor(tokenizer=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[Any] = processor(text=self.input_string ) __SCREAMING_SNAKE_CASE : List[Any] = tokenizer( self.input_string , padding='''max_length''' , max_length=256 , add_special_tokens=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
9
1
"""simple docstring""" import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class __a ( __lowercase ): def A ( self : Union[str, Any] ): lowerCAmelCase_ : Tuple = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = 5 # Realm tok lowerCAmelCase_ : Optional[int] = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''test''', '''question''', '''this''', '''is''', '''the''', '''first''', '''second''', '''third''', '''fourth''', '''fifth''', '''record''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , """realm_tokenizer""" ) os.makedirs(_a , exist_ok=_a ) lowerCAmelCase_ : str = os.path.join(_a , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase_ : List[str] = os.path.join(self.tmpdirname , """realm_block_records""" ) os.makedirs(_a , exist_ok=_a ) def A ( self : int ): return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , """realm_tokenizer""" ) ) def A ( self : Dict ): shutil.rmtree(self.tmpdirname ) def A ( self : Optional[Any] ): lowerCAmelCase_ : int = RealmConfig(num_block_records=self.num_block_records ) return config def A ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] = Dataset.from_dict( { """id""": ["""0""", """1"""], """question""": ["""foo""", """bar"""], """answers""": [["""Foo""", """Bar"""], ["""Bar"""]], } ) return dataset def A ( self : List[Any] ): lowerCAmelCase_ : Any = np.array( [ b"""This is the first record""", b"""This is the second record""", b"""This is the third record""", b"""This is the fourth record""", b"""This is the fifth record""", b"""This is a longer longer longer record""", ] , dtype=_a , ) return block_records def A ( self : str ): lowerCAmelCase_ : List[str] = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def A ( self : List[str] ): lowerCAmelCase_ : Dict = self.get_config() lowerCAmelCase_ : Tuple = self.get_dummy_retriever() lowerCAmelCase_ : Dict = retriever.tokenizer lowerCAmelCase_ : Union[str, Any] = np.array([0, 3] , dtype="""long""" ) lowerCAmelCase_ : Any = tokenizer(["""Test question"""] ).input_ids lowerCAmelCase_ : int = tokenizer( ["""the fourth"""] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids lowerCAmelCase_ : str = config.reader_seq_len lowerCAmelCase_ : Any = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors="""np""" ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """first""", """record""", """[SEP]"""] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ["""[CLS]""", """test""", """question""", """[SEP]""", """this""", """is""", """the""", """fourth""", """record""", """[SEP]"""] , ) def A ( self : List[Any] ): lowerCAmelCase_ : Optional[int] = self.get_config() lowerCAmelCase_ : Union[str, Any] = self.get_dummy_retriever() lowerCAmelCase_ : Tuple = retriever.tokenizer lowerCAmelCase_ : List[str] = np.array([0, 3, 5] , dtype="""long""" ) lowerCAmelCase_ : int = tokenizer(["""Test question"""] ).input_ids lowerCAmelCase_ : List[str] = tokenizer( ["""the fourth""", """longer longer"""] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids lowerCAmelCase_ : Union[str, Any] = config.reader_seq_len lowerCAmelCase_ : List[Any] = retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors="""np""" ) self.assertEqual([False, True, True] , _a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a ) def A ( self : str ): lowerCAmelCase_ : Any = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) # Test local path lowerCAmelCase_ : str = retriever.from_pretrained(os.path.join(self.tmpdirname , """realm_block_records""" ) ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" ) # Test mocked remote path with patch("""transformers.models.realm.retrieval_realm.hf_hub_download""" ) as mock_hf_hub_download: lowerCAmelCase_ : Tuple = os.path.join( os.path.join(self.tmpdirname , """realm_block_records""" ) , _REALM_BLOCK_RECORDS_FILENAME ) lowerCAmelCase_ : str = RealmRetriever.from_pretrained("""google/realm-cc-news-pretrained-openqa""" ) self.assertEqual(retriever.block_records[0] , b"""This is the first record""" )
365
def __UpperCamelCase ( lowercase__ : str ) -> bool: '''simple docstring''' lowerCAmelCase_ : Any = 0 for ch in input_str: lowerCAmelCase_ : Any = ord(lowercase__ ) lowerCAmelCase_ : Dict = pow(2 , lowercase__ ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
28
0
import math from collections.abc import Iterator from itertools import takewhile def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(lowercase ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE__ ( ) -> Iterator[int]: snake_case : List[str] = 2 while True: if is_prime(lowercase ): yield num num += 1 def SCREAMING_SNAKE_CASE__ ( lowercase = 2000000 ) -> int: return sum(takewhile(lambda lowercase : x < n ,prime_generator() ) ) if __name__ == "__main__": print(f"""{solution() = }""")
124
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> float: if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) snake_case : Optional[Any] = sum(lowercase ) / len(lowercase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
124
1
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_=0 ): # Format the message. if name is None: _A : Union[str, Any] = None else: _A : Dict = """.""" * max(0,spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" _A : Tuple = fmt.format(snake_case_ ) # Print and recurse (if needed). if isinstance(snake_case_,snake_case_ ): if msg is not None: print(snake_case_ ) for k in val.keys(): recursive_print(snake_case_,val[k],spaces + 2 ) elif isinstance(snake_case_,torch.Tensor ): print(snake_case_,""":""",val.size() ) else: print(snake_case_,""":""",snake_case_ ) def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_ ): # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. _A : str = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] _A : Union[str, Any] = (num_heads, hidden_size, num_splits) + input_shape[1:] _A : Tuple = param.view(*snake_case_ ) _A : Any = param.transpose(0,2 ) _A : int = param.transpose(1,2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] _A : Optional[Any] = (num_heads, num_splits, hidden_size) + input_shape[1:] _A : int = param.view(*snake_case_ ) _A : Any = param.transpose(0,1 ).contiguous() _A : Optional[int] = param.view(*snake_case_ ) return param def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): # The converted output model. _A : Any = {} # old versions did not store training args _A : str = input_state_dict.get("""args""",snake_case_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) _A : Union[str, Any] = ds_args.padded_vocab_size _A : List[Any] = ds_args.max_position_embeddings _A : Optional[int] = ds_args.hidden_size _A : List[Any] = ds_args.num_layers _A : List[str] = ds_args.num_attention_heads _A : int = ds_args.ffn_hidden_size # pprint(config) # The number of heads. _A : Union[str, Any] = config.n_head # The hidden_size per head. _A : List[Any] = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): _A : Tuple = input_state_dict["""checkpoint_version"""] else: _A : Any = 0.0 # The model. _A : Any = input_state_dict["""model"""] # The language model. _A : Tuple = model["""language_model"""] # The embeddings. _A : Any = lm["""embedding"""] # The word embeddings. _A : Dict = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. _A : Union[str, Any] = word_embeddings[: config.vocab_size, :] _A : Tuple = word_embeddings # The position embeddings. _A : Tuple = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] _A : Any = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f'''pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don\'t match''' ) # Store the position embeddings. _A : Optional[int] = pos_embeddings # The transformer. _A : Any = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. _A : Optional[int] = re.compile(r"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. _A : Union[str, Any] = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. _A : List[str] = layer_re.match(snake_case_ ) # Stop if that's not a layer if m is None: break # The index of the layer. _A : Tuple = int(m.group(1 ) ) # The name of the operation. _A : Optional[Any] = m.group(2 ) # Is it a weight or a bias? _A : Dict = m.group(3 ) # The name of the layer. _A : Optional[Any] = f'''transformer.h.{layer_idx}''' # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): _A : Union[str, Any] = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" _A : List[str] = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. _A : List[str] = torch.tril(torch.ones((n_positions, n_positions),dtype=torch.floataa ) ).view( 1,1,snake_case_,snake_case_ ) _A : Any = causal_mask # Insert a "dummy" tensor for masked_bias. _A : List[str] = torch.tensor(-1e4,dtype=torch.floataa ) _A : Tuple = masked_bias _A : Tuple = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. _A : Tuple = out_val.transpose(0,1 ).contiguous() # Store. _A : Any = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": _A : List[str] = fix_query_key_value_ordering(snake_case_,snake_case_,3,snake_case_,snake_case_ ) # Store. No change of shape. _A : Tuple = out_val # Transpose the weights. elif weight_or_bias == "weight": _A : List[str] = megatron_to_transformers[op_name] _A : Any = val.transpose(0,1 ) # Copy the bias. elif weight_or_bias == "bias": _A : Dict = megatron_to_transformers[op_name] _A : List[Any] = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. _A : Optional[Any] = transformer["""final_layernorm.weight"""] _A : Dict = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. _A : List[str] = word_embeddings # It should be done! return output_state_dict def lowerCAmelCase_ ( ): # Create the argument parser. _A : Any = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""",action="""store_true""" ) parser.add_argument( """path_to_checkpoint""",type=snake_case_,help="""Path to the checkpoint file (.zip archive or direct .pt file)""",) parser.add_argument( """--config_file""",default="""""",type=snake_case_,help="""An optional config json file describing the pre-trained model.""",) _A : Optional[int] = parser.parse_args() # Extract the basename. _A : Any = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f'''Extracting PyTorch state dictionary from {args.path_to_checkpoint}''' ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint,"""r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: _A : Tuple = torch.load(snake_case_,map_location="""cpu""" ) else: _A : Tuple = torch.load(args.path_to_checkpoint,map_location="""cpu""" ) _A : Optional[Any] = input_state_dict.get("""args""",snake_case_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: _A : Union[str, Any] = """gelu_fast""" elif ds_args.openai_gelu: _A : int = """gelu_new""" else: _A : Optional[Any] = """gelu""" else: # in the very early days this used to be "gelu_new" _A : Any = """gelu_new""" # Spell out all parameters in case the defaults change. _A : Any = GPTaConfig( vocab_size=50257,n_positions=1024,n_embd=1024,n_layer=24,n_head=16,n_inner=4096,activation_function=snake_case_,resid_pdrop=0.1,embd_pdrop=0.1,attn_pdrop=0.1,layer_norm_epsilon=1e-5,initializer_range=0.02,summary_type="""cls_index""",summary_use_proj=snake_case_,summary_activation=snake_case_,summary_proj_to_labels=snake_case_,summary_first_dropout=0.1,scale_attn_weights=snake_case_,use_cache=snake_case_,bos_token_id=50256,eos_token_id=50256,) else: _A : Union[str, Any] = GPTaConfig.from_json_file(args.config_file ) _A : List[str] = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) _A : Optional[Any] = convert_megatron_checkpoint(snake_case_,snake_case_,snake_case_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(snake_case_,snake_case_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: _A : int = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": _A : Any = """gpt2""" elif tokenizer_type == "PretrainedFromHF": _A : List[Any] = ds_args.tokenizer_name_or_path else: raise ValueError(f'''Unrecognized tokenizer_type {tokenizer_type}''' ) else: _A : Optional[Any] = """gpt2""" _A : List[str] = AutoTokenizer.from_pretrained(snake_case_ ) _A : Tuple = type(snake_case_ ).__name__ _A : Union[str, Any] = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(snake_case_ ) # Save tokenizer based on args print(f'''Adding {tokenizer_class} tokenizer files''' ) tokenizer.save_pretrained(snake_case_ ) # Store the state_dict to file. _A : Union[str, Any] = os.path.join(snake_case_,"""pytorch_model.bin""" ) print(f'''Saving checkpoint to "{output_checkpoint_file}"''' ) torch.save(snake_case_,snake_case_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
from random import randint from tempfile import TemporaryFile import numpy as np def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : Tuple = 0 if start < end: _A : Tuple = randint(snake_case_,snake_case_ ) _A : Any = a[end] _A : int = a[pivot] _A : int = temp _A , _A : List[Any] = _in_place_partition(snake_case_,snake_case_,snake_case_ ) count += _in_place_quick_sort(snake_case_,snake_case_,p - 1 ) count += _in_place_quick_sort(snake_case_,p + 1,snake_case_ ) return count def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_ ): _A : str = 0 _A : List[str] = randint(snake_case_,snake_case_ ) _A : Union[str, Any] = a[end] _A : List[str] = a[pivot] _A : List[Any] = temp _A : List[str] = start - 1 for index in range(snake_case_,snake_case_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value _A : Union[str, Any] = new_pivot_index + 1 _A : List[Any] = a[new_pivot_index] _A : Optional[int] = a[index] _A : List[Any] = temp _A : Optional[Any] = a[new_pivot_index + 1] _A : Any = a[end] _A : Dict = temp return new_pivot_index + 1, count _snake_case = TemporaryFile() _snake_case = 100 # 1000 elements are to be sorted _snake_case , _snake_case = 0, 1 # mean and standard deviation _snake_case = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _snake_case = np.load(outfile) _snake_case = len(M) - 1 _snake_case = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
343
1
"""simple docstring""" import os def a__ ( lowerCAmelCase = "input.txt" ) -> int: with open(os.path.join(os.path.dirname(lowerCAmelCase ) , lowerCAmelCase ) ) as input_file: UpperCAmelCase__ : int = [ [int(lowerCAmelCase ) for element in line.split(""",""" )] for line in input_file.readlines() ] UpperCAmelCase__ : List[Any] = len(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = len(matrix[0] ) UpperCAmelCase__ : int = [[-1 for _ in range(lowerCAmelCase )] for _ in range(lowerCAmelCase )] for i in range(lowerCAmelCase ): UpperCAmelCase__ : Union[str, Any] = matrix[i][0] for j in range(1 , lowerCAmelCase ): for i in range(lowerCAmelCase ): UpperCAmelCase__ : Tuple = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase ): UpperCAmelCase__ : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): UpperCAmelCase__ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'''{solution() = }''')
171
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _A = { """configuration_owlvit""": [ """OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OwlViTConfig""", """OwlViTOnnxConfig""", """OwlViTTextConfig""", """OwlViTVisionConfig""", ], """processing_owlvit""": ["""OwlViTProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["""OwlViTFeatureExtractor"""] _A = ["""OwlViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ """OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OwlViTModel""", """OwlViTPreTrainedModel""", """OwlViTTextModel""", """OwlViTVisionModel""", """OwlViTForObjectDetection""", ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
171
1
"""simple docstring""" import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class a ( a__ ): snake_case__ = (IPNDMScheduler,) snake_case__ = (('''num_inference_steps''', 5_0),) def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = {'num_train_timesteps': 10_00} config.update(**_snake_case ) return config def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] if time_step is None: lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self ): """simple docstring""" pass def UpperCamelCase__ ( self , _snake_case=0 , **_snake_case ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) scheduler.set_timesteps(_snake_case ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] if time_step is None: lowerCAmelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(_snake_case ) lowerCAmelCase = scheduler_class.from_pretrained(_snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(_snake_case ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = new_scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def UpperCamelCase__ ( self , **_snake_case ): """simple docstring""" lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(**_snake_case ) lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = 10 lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter scheduler.set_timesteps(_snake_case ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = model(_snake_case , _snake_case ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case ).prev_sample return sample def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = dict(self.forward_default_kwargs ) lowerCAmelCase = kwargs.pop('num_inference_steps' , _snake_case ) for scheduler_class in self.scheduler_classes: lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**_snake_case ) lowerCAmelCase = self.dummy_sample lowerCAmelCase = 0.1 * sample if num_inference_steps is not None and hasattr(_snake_case , 'set_timesteps' ): scheduler.set_timesteps(_snake_case ) elif num_inference_steps is not None and not hasattr(_snake_case , 'set_timesteps' ): lowerCAmelCase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase = dummy_past_residuals[:] lowerCAmelCase = scheduler.timesteps[5] lowerCAmelCase = scheduler.timesteps[6] lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample lowerCAmelCase = scheduler.step(_snake_case , _snake_case , _snake_case , **_snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase__ ( self ): """simple docstring""" for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=_snake_case , time_step=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=_snake_case , time_step=_snake_case ) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.full_loop() lowerCAmelCase = torch.mean(torch.abs(_snake_case ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
309
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. __UpperCamelCase : str = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. __UpperCamelCase : Optional[Any] = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. __UpperCamelCase : Dict = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1000)) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = len([g for position, g in enumerate(_UpperCAmelCase ) if g == main_target[position]] ) return (item, float(_UpperCAmelCase )) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : str ): lowerCAmelCase = random.randint(0 , len(_UpperCAmelCase ) - 1 ) lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] lowerCAmelCase = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] ): lowerCAmelCase = list(_UpperCAmelCase ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: lowerCAmelCase = random.choice(_UpperCAmelCase ) return "".join(_UpperCAmelCase ) def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : tuple[str, float] , _UpperCAmelCase : list[tuple[str, float]] , _UpperCAmelCase : list[str] , ): lowerCAmelCase = [] # Generate more children proportionally to the fitness score. lowerCAmelCase = int(parent_a[1] * 100 ) + 1 lowerCAmelCase = 10 if child_n >= 10 else child_n for _ in range(_UpperCAmelCase ): lowerCAmelCase = population_score[random.randint(0 , _UpperCAmelCase )][0] lowerCAmelCase ,lowerCAmelCase = crossover(parent_a[0] , _UpperCAmelCase ) # Append new string to the population list. pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) pop.append(mutate(_UpperCAmelCase , _UpperCAmelCase ) ) return pop def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] , _UpperCAmelCase : bool = True ): # Verify if N_POPULATION is bigger than N_SELECTED if N_POPULATION < N_SELECTED: lowerCAmelCase = F'{N_POPULATION} must be bigger than {N_SELECTED}' raise ValueError(_UpperCAmelCase ) # Verify that the target contains no genes besides the ones inside genes variable. lowerCAmelCase = sorted({c for c in target if c not in genes} ) if not_in_genes_list: lowerCAmelCase = F'{not_in_genes_list} is not in genes list, evolution cannot converge' raise ValueError(_UpperCAmelCase ) # Generate random starting population. lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): population.append(''.join([random.choice(_UpperCAmelCase ) for i in range(len(_UpperCAmelCase ) )] ) ) # Just some logs to know what the algorithms is doing. lowerCAmelCase ,lowerCAmelCase = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_UpperCAmelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. lowerCAmelCase = [evaluate(_UpperCAmelCase , _UpperCAmelCase ) for item in population] # Check if there is a matching evolution. lowerCAmelCase = sorted(_UpperCAmelCase , key=lambda _UpperCAmelCase : x[1] , reverse=_UpperCAmelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'\nGeneration: {generation}' F'\nTotal Population:{total_population}' F'\nBest score: {population_score[0][1]}' F'\nBest string: {population_score[0][0]}' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. lowerCAmelCase = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_UpperCAmelCase ) # Normalize population score to be between 0 and 1. lowerCAmelCase = [ (item, score / len(_UpperCAmelCase )) for item, score in population_score ] # This is selection for i in range(_UpperCAmelCase ): population.extend(select(population_score[int(_UpperCAmelCase )] , _UpperCAmelCase , _UpperCAmelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_UpperCAmelCase ) > N_POPULATION: break if __name__ == "__main__": __UpperCamelCase : Tuple = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) __UpperCamelCase : str = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase : Dict = basic(target_str, genes_list) print( f'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
309
1
import os import time import pytest from datasets.utils.filelock import FileLock, Timeout def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> int: UpperCamelCase__ : Optional[int] = FileLock(str(tmpdir / "foo.lock" ) ) UpperCamelCase__ : Any = FileLock(str(tmpdir / "foo.lock" ) ) UpperCamelCase__ : Dict = 0.0_1 with locka.acquire(): with pytest.raises(__lowerCAmelCase ): UpperCamelCase__ : int = time.time() locka.acquire(__lowerCAmelCase ) assert time.time() - _start > timeout def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: UpperCamelCase__ : Dict = "a" * 1000 + ".lock" UpperCamelCase__ : List[str] = FileLock(str(tmpdir / filename ) ) assert locka._lock_file.endswith(".lock" ) assert not locka._lock_file.endswith(__lowerCAmelCase ) assert len(os.path.basename(locka._lock_file ) ) <= 255 UpperCamelCase__ : str = FileLock(tmpdir / filename ) with locka.acquire(): with pytest.raises(__lowerCAmelCase ): locka.acquire(0 )
189
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys lowerCamelCase : Optional[Any] =subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') lowerCamelCase : str =subprocess.check_output(F"""git diff --name-only {fork_point_sha}""".split()).decode('''utf-8''').split() lowerCamelCase : List[Any] ='''|'''.join(sys.argv[1:]) lowerCamelCase : str =re.compile(RF"""^({joined_dirs}).*?\.py$""") lowerCamelCase : Optional[int] =[x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
189
1
"""simple docstring""" from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_mobilenet_va import MobileNetVaConfig lowerCAmelCase : List[str] = logging.get_logger(__name__) # General docstring lowerCAmelCase : Union[str, Any] = """MobileNetV1Config""" # Base docstring lowerCAmelCase : str = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : Dict = [1, 1024, 7, 7] # Image classification docstring lowerCAmelCase : int = """google/mobilenet_v1_1.0_224""" lowerCAmelCase : List[str] = """tabby, tabby cat""" lowerCAmelCase : Any = [ """google/mobilenet_v1_1.0_224""", """google/mobilenet_v1_0.75_192""", # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 ] def a__ ( snake_case__ , snake_case__ , snake_case__=None ) -> Union[str, Any]: lowerCamelCase = {} if isinstance(snake_case__ , snake_case__ ): lowerCamelCase = model.mobilenet_va else: lowerCamelCase = model lowerCamelCase = """MobilenetV1/Conv2d_0/""" lowerCamelCase = backbone.conv_stem.convolution.weight lowerCamelCase = backbone.conv_stem.normalization.bias lowerCamelCase = backbone.conv_stem.normalization.weight lowerCamelCase = backbone.conv_stem.normalization.running_mean lowerCamelCase = backbone.conv_stem.normalization.running_var for i in range(13 ): lowerCamelCase = i + 1 lowerCamelCase = i * 2 lowerCamelCase = backbone.layer[pt_index] lowerCamelCase = F'MobilenetV1/Conv2d_{tf_index}_depthwise/' lowerCamelCase = pointer.convolution.weight lowerCamelCase = pointer.normalization.bias lowerCamelCase = pointer.normalization.weight lowerCamelCase = pointer.normalization.running_mean lowerCamelCase = pointer.normalization.running_var lowerCamelCase = backbone.layer[pt_index + 1] lowerCamelCase = F'MobilenetV1/Conv2d_{tf_index}_pointwise/' lowerCamelCase = pointer.convolution.weight lowerCamelCase = pointer.normalization.bias lowerCamelCase = pointer.normalization.weight lowerCamelCase = pointer.normalization.running_mean lowerCamelCase = pointer.normalization.running_var if isinstance(snake_case__ , snake_case__ ): lowerCamelCase = """MobilenetV1/Logits/Conv2d_1c_1x1/""" lowerCamelCase = model.classifier.weight lowerCamelCase = model.classifier.bias return tf_to_pt_map def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> int: try: import numpy as np import tensorflow as tf except ImportError: logger.error( """Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see """ """https://www.tensorflow.org/install/ for installation instructions.""" ) raise # Load weights from TF model lowerCamelCase = tf.train.list_variables(snake_case__ ) lowerCamelCase = {} for name, shape in init_vars: logger.info(F'Loading TF weight {name} with shape {shape}' ) lowerCamelCase = tf.train.load_variable(snake_case__ , snake_case__ ) lowerCamelCase = array # Build TF to PyTorch weights loading map lowerCamelCase = _build_tf_to_pytorch_map(snake_case__ , snake_case__ , snake_case__ ) for name, pointer in tf_to_pt_map.items(): logger.info(F'Importing {name}' ) if name not in tf_weights: logger.info(F'{name} not in tf pre-trained weights, skipping' ) continue lowerCamelCase = tf_weights[name] if "depthwise_weights" in name: logger.info("""Transposing depthwise""" ) lowerCamelCase = np.transpose(snake_case__ , (2, 3, 0, 1) ) elif "weights" in name: logger.info("""Transposing""" ) if len(pointer.shape ) == 2: # copying into linear layer lowerCamelCase = array.squeeze().transpose() else: lowerCamelCase = np.transpose(snake_case__ , (3, 2, 0, 1) ) if pointer.shape != array.shape: raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' ) logger.info(F'Initialize PyTorch weight {name} {array.shape}' ) lowerCamelCase = torch.from_numpy(snake_case__ ) tf_weights.pop(snake_case__ , snake_case__ ) tf_weights.pop(name + """/RMSProp""" , snake_case__ ) tf_weights.pop(name + """/RMSProp_1""" , snake_case__ ) tf_weights.pop(name + """/ExponentialMovingAverage""" , snake_case__ ) logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' ) return model def a__ ( snake_case__ , snake_case__ ) -> torch.Tensor: lowerCamelCase , lowerCamelCase = features.shape[-2:] lowerCamelCase , lowerCamelCase = conv_layer.stride lowerCamelCase , lowerCamelCase = conv_layer.kernel_size if in_height % stride_height == 0: lowerCamelCase = max(kernel_height - stride_height , 0 ) else: lowerCamelCase = max(kernel_height - (in_height % stride_height) , 0 ) if in_width % stride_width == 0: lowerCamelCase = max(kernel_width - stride_width , 0 ) else: lowerCamelCase = max(kernel_width - (in_width % stride_width) , 0 ) lowerCamelCase = pad_along_width // 2 lowerCamelCase = pad_along_width - pad_left lowerCamelCase = pad_along_height // 2 lowerCamelCase = pad_along_height - pad_top lowerCamelCase = (pad_left, pad_right, pad_top, pad_bottom) return nn.functional.pad(snake_case__ , snake_case__ , """constant""" , 0.0 ) class __magic_name__ ( nn.Module ): '''simple docstring''' def __init__( self , _a , _a , _a , _a , _a = 1 , _a = 1 , _a = False , _a = True , _a = True , ): """simple docstring""" super().__init__() lowerCamelCase = config if in_channels % groups != 0: raise ValueError(f'Input channels ({in_channels}) are not divisible by {groups} groups.' ) if out_channels % groups != 0: raise ValueError(f'Output channels ({out_channels}) are not divisible by {groups} groups.' ) lowerCamelCase = 0 if config.tf_padding else int((kernel_size - 1) / 2 ) lowerCamelCase = nn.Convad( in_channels=_a , out_channels=_a , kernel_size=_a , stride=_a , padding=_a , groups=_a , bias=_a , padding_mode="""zeros""" , ) if use_normalization: lowerCamelCase = nn.BatchNormad( num_features=_a , eps=config.layer_norm_eps , momentum=0.9_997 , affine=_a , track_running_stats=_a , ) else: lowerCamelCase = None if use_activation: if isinstance(_a , _a ): lowerCamelCase = ACTaFN[use_activation] elif isinstance(config.hidden_act , _a ): lowerCamelCase = ACTaFN[config.hidden_act] else: lowerCamelCase = config.hidden_act else: lowerCamelCase = None def _lowerCAmelCase ( self , _a ): """simple docstring""" if self.config.tf_padding: lowerCamelCase = apply_tf_padding(_a , self.convolution ) lowerCamelCase = self.convolution(_a ) if self.normalization is not None: lowerCamelCase = self.normalization(_a ) if self.activation is not None: lowerCamelCase = self.activation(_a ) return features class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = MobileNetVaConfig __UpperCamelCase = load_tf_weights_in_mobilenet_va __UpperCamelCase = "mobilenet_v1" __UpperCamelCase = "pixel_values" __UpperCamelCase = False def _lowerCAmelCase ( self , _a ): """simple docstring""" if isinstance(_a , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(_a , nn.BatchNormad ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) lowerCAmelCase : Union[str, Any] = r""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ lowerCAmelCase : Tuple = r""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`MobileNetV1ImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , UpperCAmelCase__ , ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a = True ): """simple docstring""" super().__init__(_a ) lowerCamelCase = config lowerCamelCase = 32 lowerCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) lowerCamelCase = MobileNetVaConvLayer( _a , in_channels=config.num_channels , out_channels=_a , kernel_size=3 , stride=2 , ) lowerCamelCase = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1] lowerCamelCase = nn.ModuleList() for i in range(13 ): lowerCamelCase = out_channels if strides[i] == 2 or i == 0: depth *= 2 lowerCamelCase = max(int(depth * config.depth_multiplier ) , config.min_depth ) self.layer.append( MobileNetVaConvLayer( _a , in_channels=_a , out_channels=_a , kernel_size=3 , stride=strides[i] , groups=_a , ) ) self.layer.append( MobileNetVaConvLayer( _a , in_channels=_a , out_channels=_a , kernel_size=1 , ) ) lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None # Initialize weights and apply final processing self.post_init() def _lowerCAmelCase ( self , _a ): """simple docstring""" raise NotImplementedError @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_a , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCAmelCase ( self , _a = None , _a = None , _a = None , ): """simple docstring""" lowerCamelCase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowerCamelCase = self.conv_stem(_a ) lowerCamelCase = () if output_hidden_states else None for i, layer_module in enumerate(self.layer ): lowerCamelCase = layer_module(_a ) if output_hidden_states: lowerCamelCase = all_hidden_states + (hidden_states,) lowerCamelCase = hidden_states if self.pooler is not None: lowerCamelCase = torch.flatten(self.pooler(_a ) , start_dim=1 ) else: lowerCamelCase = None if not return_dict: return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None ) return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_a , pooler_output=_a , hidden_states=_a , ) @add_start_docstrings( "\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , UpperCAmelCase__ , ) class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a ): """simple docstring""" super().__init__(_a ) lowerCamelCase = config.num_labels lowerCamelCase = MobileNetVaModel(_a ) lowerCamelCase = self.mobilenet_va.layer[-1].convolution.out_channels # Classifier head lowerCamelCase = nn.Dropout(config.classifier_dropout_prob , inplace=_a ) lowerCamelCase = nn.Linear(_a , config.num_labels ) if config.num_labels > 0 else nn.Identity() # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_a ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCAmelCase ( self , _a = None , _a = None , _a = None , _a = None , ): """simple docstring""" lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict lowerCamelCase = self.mobilenet_va(_a , output_hidden_states=_a , return_dict=_a ) lowerCamelCase = outputs.pooler_output if return_dict else outputs[1] lowerCamelCase = self.classifier(self.dropout(_a ) ) lowerCamelCase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowerCamelCase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowerCamelCase = """single_label_classification""" else: lowerCamelCase = """multi_label_classification""" if self.config.problem_type == "regression": lowerCamelCase = MSELoss() if self.num_labels == 1: lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowerCamelCase = loss_fct(_a , _a ) elif self.config.problem_type == "single_label_classification": lowerCamelCase = CrossEntropyLoss() lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowerCamelCase = BCEWithLogitsLoss() lowerCamelCase = loss_fct(_a , _a ) if not return_dict: lowerCamelCase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention( loss=_a , logits=_a , hidden_states=outputs.hidden_states , )
354
"""simple docstring""" from __future__ import annotations class __magic_name__ : '''simple docstring''' def __init__( self , _a ): """simple docstring""" lowerCamelCase = TypeError( """Matrices must be formed from a list of zero or more lists containing at """ """least one and the same number of values, each of which must be of type """ """int or float.""" ) if len(_a ) != 0: lowerCamelCase = len(rows[0] ) if cols == 0: raise error for row in rows: if len(_a ) != cols: raise error for value in row: if not isinstance(_a , (int, float) ): raise error lowerCamelCase = rows else: lowerCamelCase = [] def _lowerCAmelCase ( self ): """simple docstring""" return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.rows ) @property def _lowerCAmelCase ( self ): """simple docstring""" return len(self.rows[0] ) @property def _lowerCAmelCase ( self ): """simple docstring""" return (self.num_rows, self.num_columns) @property def _lowerCAmelCase ( self ): """simple docstring""" return self.order[0] == self.order[1] def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(_a ) def _lowerCAmelCase ( self ): """simple docstring""" if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def _lowerCAmelCase ( self ): """simple docstring""" return bool(self.determinant() ) def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" lowerCamelCase = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(_a ).determinant() def _lowerCAmelCase ( self , _a , _a ): """simple docstring""" if (row + column) % 2 == 0: return self.get_minor(_a , _a ) return -1 * self.get_minor(_a , _a ) def _lowerCAmelCase ( self ): """simple docstring""" return Matrix( [ [self.get_minor(_a , _a ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def _lowerCAmelCase ( self ): """simple docstring""" return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(_a ) def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.determinant() if not determinant: raise TypeError("""Only matrices with a non-zero determinant have an inverse""" ) return self.adjugate() * (1 / determinant) def __repr__( self ): """simple docstring""" return str(self.rows ) def __str__( self ): """simple docstring""" if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ """[""" + """. """.join([str(_a ) for value in row] ) + """.]""" for row in self.rows ] ) + "]" ) def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = TypeError("""Row must be a list containing all ints and/or floats""" ) if not isinstance(_a , _a ): raise type_error for value in row: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_columns: raise ValueError( """Row must be equal in length to the other rows in the matrix""" ) if position is None: self.rows.append(_a ) else: lowerCamelCase = self.rows[0:position] + [row] + self.rows[position:] def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = TypeError( """Column must be a list containing all ints and/or floats""" ) if not isinstance(_a , _a ): raise type_error for value in column: if not isinstance(_a , (int, float) ): raise type_error if len(_a ) != self.num_rows: raise ValueError( """Column must be equal in length to the other columns in the matrix""" ) if position is None: lowerCamelCase = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: lowerCamelCase = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , _a ): """simple docstring""" if not isinstance(_a , _a ): return NotImplemented return self.rows == other.rows def __ne__( self , _a ): """simple docstring""" return not self == other def __neg__( self ): """simple docstring""" return self * -1 def __add__( self , _a ): """simple docstring""" if self.order != other.order: raise ValueError("""Addition requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , _a ): """simple docstring""" if self.order != other.order: raise ValueError("""Subtraction requires matrices of the same order""" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , _a ): """simple docstring""" if isinstance(_a , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(_a , _a ): if self.num_columns != other.num_rows: raise ValueError( """The number of columns in the first matrix must """ """be equal to the number of rows in the second""" ) return Matrix( [ [Matrix.dot_product(_a , _a ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( """A Matrix can only be multiplied by an int, float, or another matrix""" ) def __pow__( self , _a ): """simple docstring""" if not isinstance(_a , _a ): raise TypeError("""A Matrix can only be raised to the power of an int""" ) if not self.is_square: raise ValueError("""Only square matrices can be raised to a power""" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( """Only invertable matrices can be raised to a negative power""" ) lowerCamelCase = self for _ in range(other - 1 ): result *= self return result @classmethod def _lowerCAmelCase ( cls , _a , _a ): """simple docstring""" return sum(row[i] * column[i] for i in range(len(_a ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
168
0
import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : Union[str, Any] = { """facebook/mask2former-swin-small-coco-instance""": ( """https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json""" ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _lowerCamelCase : str = logging.get_logger(__name__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''mask2former''' UpperCAmelCase__ = ['''swin'''] UpperCAmelCase__ = {'''hidden_size''': '''hidden_dim'''} def __init__( self : Union[str, Any] , UpperCAmelCase__ : Optional[Dict] = None , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 256 , UpperCAmelCase__ : int = 1_024 , UpperCAmelCase__ : str = "relu" , UpperCAmelCase__ : int = 6 , UpperCAmelCase__ : int = 10 , UpperCAmelCase__ : int = 8 , UpperCAmelCase__ : float = 0.0 , UpperCAmelCase__ : int = 2_048 , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : bool = False , UpperCAmelCase__ : int = 4 , UpperCAmelCase__ : int = 255 , UpperCAmelCase__ : int = 100 , UpperCAmelCase__ : float = 0.1 , UpperCAmelCase__ : float = 2.0 , UpperCAmelCase__ : float = 5.0 , UpperCAmelCase__ : float = 5.0 , UpperCAmelCase__ : int = 12_544 , UpperCAmelCase__ : float = 3.0 , UpperCAmelCase__ : float = 0.75 , UpperCAmelCase__ : float = 0.02 , UpperCAmelCase__ : float = 1.0 , UpperCAmelCase__ : bool = True , UpperCAmelCase__ : List[int] = [4, 8, 16, 32] , UpperCAmelCase__ : bool = None , **UpperCAmelCase__ : Union[str, Any] , ) ->Optional[Any]: '''simple docstring''' if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.''') A__ = CONFIG_MAPPING['''swin''']( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCAmelCase__ , out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4'''] , ) if isinstance(UpperCAmelCase__ , UpperCAmelCase__): A__ = backbone_config.pop('''model_type''') A__ = CONFIG_MAPPING[backbone_model_type] A__ = config_class.from_dict(UpperCAmelCase__) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. """ f"""Supported model types: {",".join(self.backbones_supported)}""") A__ = backbone_config A__ = feature_size A__ = mask_feature_size A__ = hidden_dim A__ = encoder_feedforward_dim A__ = activation_function A__ = encoder_layers A__ = decoder_layers A__ = num_attention_heads A__ = dropout A__ = dim_feedforward A__ = pre_norm A__ = enforce_input_projection A__ = common_stride A__ = ignore_value A__ = num_queries A__ = no_object_weight A__ = class_weight A__ = mask_weight A__ = dice_weight A__ = train_num_points A__ = oversample_ratio A__ = importance_sample_ratio A__ = init_std A__ = init_xavier_std A__ = use_auxiliary_loss A__ = feature_strides A__ = output_auxiliary_logits A__ = decoder_layers super().__init__(**UpperCAmelCase__) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : List[Any]) ->str: '''simple docstring''' return cls( backbone_config=UpperCAmelCase__ , **UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Dict[str, any]: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.backbone_config.to_dict() A__ = self.__class__.model_type return output
14
'''simple docstring''' import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _lowerCamelCase : str = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" def __init__( self : Dict , *UpperCamelCase__ : List[Any] , **UpperCamelCase__ : List[Any] ): """simple docstring""" warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , UpperCamelCase__ , ) super().__init__(*UpperCamelCase__ , **UpperCamelCase__ )
28
0
'''simple docstring''' def lowerCAmelCase_ ( snake_case__ = 50 ): '''simple docstring''' A : Any = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f'''{solution() = }''')
369
'''simple docstring''' from __future__ import annotations from random import random class A : def __init__( self , SCREAMING_SNAKE_CASE = None ) -> Tuple: """simple docstring""" A : Optional[Any] = value A : Any = random() A : Node | None = None A : Node | None = None def __repr__( self ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return F'\'{self.value}: {self.prior:.5}\'' else: return pformat( {F'{self.value}: {self.prior:.5}': (self.left, self.right)} , indent=1 ) def __str__( self ) -> str: """simple docstring""" A : Optional[Any] = str(self.value ) + ''' ''' A : Union[str, Any] = str(self.left or '''''' ) A : Any = str(self.right or '''''' ) return value + left + right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: A, A : Any = split(root.left , snake_case__ ) return left, root else: A, A : Optional[int] = split(root.right , snake_case__ ) return root, right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: A : List[str] = merge(left.right , snake_case__ ) return left else: A : Tuple = merge(snake_case__ , right.left ) return right def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : List[Any] = Node(snake_case__ ) A, A : Tuple = split(snake_case__ , snake_case__ ) return merge(merge(snake_case__ , snake_case__ ) , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A, A : Dict = split(snake_case__ , value - 1 ) A, A : Any = split(snake_case__ , snake_case__ ) return merge(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' if not root: # None return else: inorder(root.left ) print(root.value , end=''',''' ) inorder(root.right ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' for arg in args.split(): if arg[0] == "+": A : int = insert(snake_case__ , int(arg[1:] ) ) elif arg[0] == "-": A : int = erase(snake_case__ , int(arg[1:] ) ) else: print('''Unknown command''' ) return root def lowerCAmelCase_ ( ): '''simple docstring''' A : Union[str, Any] = None print( '''enter numbers to create a tree, + value to add value into treap, ''' '''- value to erase all nodes with value. \'q\' to quit. ''' ) A : Optional[int] = input() while args != "q": A : str = interact_treap(snake_case__ , snake_case__ ) print(snake_case__ ) A : Union[str, Any] = input() print('''good by!''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
311
0
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. #################################################################################################### # # Note: If when running this conversion script you're getting an exception: # ModuleNotFoundError: No module named 'megatron.model.enums' # you need to tell python where to find the clone of Megatron-LM, e.g.: # # cd /tmp # git clone https://github.com/NVIDIA/Megatron-LM # PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ... # # if you already have it cloned elsewhere, simply adjust the path to the existing path # # If the training was done using a Megatron-LM fork, e.g., # https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one # in your path, i.e., /path/to/Megatron-DeepSpeed/ # import argparse import os import re import zipfile import torch from transformers import AutoTokenizer, GPTaConfig def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=0 ) -> Any: '''simple docstring''' # Format the message. if name is None: UpperCamelCase = None else: UpperCamelCase = """.""" * max(0 , spaces - 2 ) + """# {:""" + str(50 - spaces ) + """s}""" UpperCamelCase = fmt.format(UpperCamelCase_ ) # Print and recurse (if needed). if isinstance(UpperCamelCase_ , UpperCamelCase_ ): if msg is not None: print(UpperCamelCase_ ) for k in val.keys(): recursive_print(UpperCamelCase_ , val[k] , spaces + 2 ) elif isinstance(UpperCamelCase_ , torch.Tensor ): print(UpperCamelCase_ , """:""" , val.size() ) else: print(UpperCamelCase_ , """:""" , UpperCamelCase_ ) def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> List[str]: '''simple docstring''' # Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :] # for compatibility with later versions of NVIDIA Megatron-LM. # The inverse operation is performed inside Megatron-LM to read checkpoints: # https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209 # If param is the weight tensor of the self-attention block, the returned tensor # will have to be transposed one more time to be read by HuggingFace GPT2. UpperCamelCase = param.size() if checkpoint_version == 1.0: # version 1.0 stores [num_heads * hidden_size * num_splits, :] UpperCamelCase = (num_heads, hidden_size, num_splits) + input_shape[1:] UpperCamelCase = param.view(*UpperCamelCase_ ) UpperCamelCase = param.transpose(0 , 2 ) UpperCamelCase = param.transpose(1 , 2 ).contiguous() elif checkpoint_version >= 2.0: # other versions store [num_heads * num_splits * hidden_size, :] UpperCamelCase = (num_heads, num_splits, hidden_size) + input_shape[1:] UpperCamelCase = param.view(*UpperCamelCase_ ) UpperCamelCase = param.transpose(0 , 1 ).contiguous() UpperCamelCase = param.view(*UpperCamelCase_ ) return param def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) -> Tuple: '''simple docstring''' # The converted output model. UpperCamelCase = {} # old versions did not store training args UpperCamelCase = input_state_dict.get("""args""" , UpperCamelCase_ ) if ds_args is not None: # do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint # from pprint import pprint # pprint(vars(ds_args)) UpperCamelCase = ds_args.padded_vocab_size UpperCamelCase = ds_args.max_position_embeddings UpperCamelCase = ds_args.hidden_size UpperCamelCase = ds_args.num_layers UpperCamelCase = ds_args.num_attention_heads UpperCamelCase = ds_args.ffn_hidden_size # pprint(config) # The number of heads. UpperCamelCase = config.n_head # The hidden_size per head. UpperCamelCase = config.n_embd // config.n_head # Megatron-LM checkpoint version if "checkpoint_version" in input_state_dict.keys(): UpperCamelCase = input_state_dict["""checkpoint_version"""] else: UpperCamelCase = 0.0 # The model. UpperCamelCase = input_state_dict["""model"""] # The language model. UpperCamelCase = model["""language_model"""] # The embeddings. UpperCamelCase = lm["""embedding"""] # The word embeddings. UpperCamelCase = embeddings["""word_embeddings"""]["""weight"""] # Truncate the embedding table to vocab_size rows. UpperCamelCase = word_embeddings[: config.vocab_size, :] UpperCamelCase = word_embeddings # The position embeddings. UpperCamelCase = embeddings["""position_embeddings"""]["""weight"""] # Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size] UpperCamelCase = pos_embeddings.size(0 ) if n_positions != config.n_positions: raise ValueError( f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" ) # Store the position embeddings. UpperCamelCase = pos_embeddings # The transformer. UpperCamelCase = lm["""transformer"""] if """transformer""" in lm.keys() else lm["""encoder"""] # The regex to extract layer names. UpperCamelCase = re.compile(R"""layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)""" ) # The simple map of names for "automated" rules. UpperCamelCase = { """attention.dense""": """.attn.c_proj.""", """self_attention.dense""": """.attn.c_proj.""", """mlp.dense_h_to_4h""": """.mlp.c_fc.""", """mlp.dense_4h_to_h""": """.mlp.c_proj.""", } # Extract the layers. for key, val in transformer.items(): # Match the name. UpperCamelCase = layer_re.match(UpperCamelCase_ ) # Stop if that's not a layer if m is None: break # The index of the layer. UpperCamelCase = int(m.group(1 ) ) # The name of the operation. UpperCamelCase = m.group(2 ) # Is it a weight or a bias? UpperCamelCase = m.group(3 ) # The name of the layer. UpperCamelCase = f"""transformer.h.{layer_idx}""" # For layernorm(s), simply store the layer norm. if op_name.endswith("""layernorm""" ): UpperCamelCase = """ln_1""" if op_name.startswith("""input""" ) else """ln_2""" UpperCamelCase = val # Transpose the QKV matrix. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "weight": # Insert a tensor of 1x1xDxD bias. UpperCamelCase = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view( 1 , 1 , UpperCamelCase_ , UpperCamelCase_ ) UpperCamelCase = causal_mask # Insert a "dummy" tensor for masked_bias. UpperCamelCase = torch.tensor(-1E4 , dtype=torch.floataa ) UpperCamelCase = masked_bias UpperCamelCase = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D. UpperCamelCase = out_val.transpose(0 , 1 ).contiguous() # Store. UpperCamelCase = out_val # Transpose the bias. elif ( op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value" ) and weight_or_bias == "bias": UpperCamelCase = fix_query_key_value_ordering(UpperCamelCase_ , UpperCamelCase_ , 3 , UpperCamelCase_ , UpperCamelCase_ ) # Store. No change of shape. UpperCamelCase = out_val # Transpose the weights. elif weight_or_bias == "weight": UpperCamelCase = megatron_to_transformers[op_name] UpperCamelCase = val.transpose(0 , 1 ) # Copy the bias. elif weight_or_bias == "bias": UpperCamelCase = megatron_to_transformers[op_name] UpperCamelCase = val # DEBUG. assert config.n_layer == layer_idx + 1 # The final layernorm. UpperCamelCase = transformer["""final_layernorm.weight"""] UpperCamelCase = transformer["""final_layernorm.bias"""] # For LM head, transformers' wants the matrix to weight embeddings. UpperCamelCase = word_embeddings # It should be done! return output_state_dict def lowercase( ) -> str: '''simple docstring''' # Create the argument parser. UpperCamelCase = argparse.ArgumentParser() parser.add_argument("""--print-checkpoint-structure""" , action="""store_true""" ) parser.add_argument( """path_to_checkpoint""" , type=UpperCamelCase_ , help="""Path to the checkpoint file (.zip archive or direct .pt file)""" , ) parser.add_argument( """--config_file""" , default="""""" , type=UpperCamelCase_ , help="""An optional config json file describing the pre-trained model.""" , ) UpperCamelCase = parser.parse_args() # Extract the basename. UpperCamelCase = os.path.dirname(args.path_to_checkpoint ) # Load the model. # the .zip is very optional, let's keep it for backward compatibility print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" ) if args.path_to_checkpoint.endswith(""".zip""" ): with zipfile.ZipFile(args.path_to_checkpoint , """r""" ) as checkpoint: with checkpoint.open("""release/mp_rank_00/model_optim_rng.pt""" ) as pytorch_dict: UpperCamelCase = torch.load(UpperCamelCase_ , map_location="""cpu""" ) else: UpperCamelCase = torch.load(args.path_to_checkpoint , map_location="""cpu""" ) UpperCamelCase = input_state_dict.get("""args""" , UpperCamelCase_ ) # Read the config, or default to the model released by NVIDIA. if args.config_file == "": if ds_args is not None: if ds_args.bias_gelu_fusion: UpperCamelCase = """gelu_fast""" elif ds_args.openai_gelu: UpperCamelCase = """gelu_new""" else: UpperCamelCase = """gelu""" else: # in the very early days this used to be "gelu_new" UpperCamelCase = """gelu_new""" # Spell out all parameters in case the defaults change. UpperCamelCase = GPTaConfig( vocab_size=50257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=UpperCamelCase_ , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.0_2 , summary_type="""cls_index""" , summary_use_proj=UpperCamelCase_ , summary_activation=UpperCamelCase_ , summary_proj_to_labels=UpperCamelCase_ , summary_first_dropout=0.1 , scale_attn_weights=UpperCamelCase_ , use_cache=UpperCamelCase_ , bos_token_id=50256 , eos_token_id=50256 , ) else: UpperCamelCase = GPTaConfig.from_json_file(args.config_file ) UpperCamelCase = ["""GPT2LMHeadModel"""] # Convert. print("""Converting""" ) UpperCamelCase = convert_megatron_checkpoint(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Print the structure of converted state dict. if args.print_checkpoint_structure: recursive_print(UpperCamelCase_ , UpperCamelCase_ ) # Add tokenizer class info to config # see https://github.com/huggingface/transformers/issues/13906) if ds_args is not None: UpperCamelCase = ds_args.tokenizer_type if tokenizer_type == "GPT2BPETokenizer": UpperCamelCase = """gpt2""" elif tokenizer_type == "PretrainedFromHF": UpperCamelCase = ds_args.tokenizer_name_or_path else: raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" ) else: UpperCamelCase = """gpt2""" UpperCamelCase = AutoTokenizer.from_pretrained(UpperCamelCase_ ) UpperCamelCase = type(UpperCamelCase_ ).__name__ UpperCamelCase = tokenizer_class # Store the config to file. print("""Saving config""" ) config.save_pretrained(UpperCamelCase_ ) # Save tokenizer based on args print(f"""Adding {tokenizer_class} tokenizer files""" ) tokenizer.save_pretrained(UpperCamelCase_ ) # Store the state_dict to file. UpperCamelCase = os.path.join(UpperCamelCase_ , """pytorch_model.bin""" ) print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) #################################################################################################### if __name__ == "__main__": main() ####################################################################################################
343
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=32 , lowerCamelCase_ : Tuple=3 , lowerCamelCase_ : int=10 , lowerCamelCase_ : Optional[int]=[8, 16, 32, 64] , lowerCamelCase_ : List[str]=[1, 1, 2, 1] , lowerCamelCase_ : Optional[int]=True , lowerCamelCase_ : Any=True , lowerCamelCase_ : List[Any]="relu" , lowerCamelCase_ : List[Any]=3 , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[Any]=["stage2", "stage3", "stage4"] , lowerCamelCase_ : Optional[Any]=[2, 3, 4] , lowerCamelCase_ : List[Any]=1 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = num_channels UpperCamelCase = embeddings_size UpperCamelCase = hidden_sizes UpperCamelCase = depths UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_act UpperCamelCase = num_labels UpperCamelCase = scope UpperCamelCase = len(lowerCamelCase_ ) UpperCamelCase = out_features UpperCamelCase = out_indices UpperCamelCase = num_groups def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] ): """simple docstring""" UpperCamelCase = BitModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = BitForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : int ): """simple docstring""" UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None UpperCamelCase = None UpperCamelCase = BitBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCamelCase = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __lowerCAmelCase = ( {"""feature-extraction""": BitModel, """image-classification""": BitForImageClassification} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" return @unittest.skip(reason="""Bit does not output attentions""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""Bit does not use inputs_embeds""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @unittest.skip(reason="""Bit does not support input and output embeddings""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(config=lowerCamelCase_ ) for name, module in model.named_modules(): if isinstance(lowerCamelCase_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def lowerCamelCase_ ( self : int ): """simple docstring""" def check_hidden_states_output(lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : Any ): UpperCamelCase = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states UpperCamelCase = self.model_tester.num_stages self.assertEqual(len(lowerCamelCase_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = ["""preactivation""", """bottleneck"""] for model_class in self.all_model_classes: for layer_type in layers_type: UpperCamelCase = layer_type UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip(reason="""Bit does not use feedforward chunking""" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = BitModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> Any: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**lowerCamelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = torch.tensor([[-0.6_5_2_6, -0.5_2_6_3, -1.4_3_9_8]] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) @require_torch class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (BitBackbone,) if is_torch_available() else () __lowerCAmelCase = BitConfig __lowerCAmelCase = False def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = BitModelTester(self )
343
1
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase ( lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = GPTaTokenizer SCREAMING_SNAKE_CASE = GPTaTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = {'add_prefix_space': True} SCREAMING_SNAKE_CASE = False def _a (self ): """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase__ : Any = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", """<|endoftext|>""", ] UpperCAmelCase__ : str = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) UpperCAmelCase__ : Any = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCAmelCase__ : Union[str, Any] = {"""unk_token""": """<unk>"""} UpperCAmelCase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(_lowerCamelCase ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(_lowerCamelCase ) ) def _a (self , **_lowerCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a (self , **_lowerCamelCase ): """simple docstring""" kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def _a (self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Tuple = """lower newer""" UpperCAmelCase__ : Any = """lower newer""" return input_text, output_text def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCAmelCase__ : Dict = """lower newer""" UpperCAmelCase__ : int = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCAmelCase__ : Tuple = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Any = tokens + [tokenizer.unk_token] UpperCAmelCase__ : List[str] = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a (self ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase__ : Optional[int] = self.get_tokenizer() UpperCAmelCase__ : Dict = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) UpperCAmelCase__ : int = """lower newer""" # Testing tokenization UpperCAmelCase__ : List[Any] = tokenizer.tokenize(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCAmelCase__ : Tuple = rust_tokenizer.tokenize(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids without special tokens UpperCAmelCase__ : Any = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCAmelCase__ : Dict = rust_tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing conversion to ids with special tokens UpperCAmelCase__ : Dict = self.get_rust_tokenizer(add_prefix_space=_lowerCamelCase ) UpperCAmelCase__ : int = tokenizer.encode(_lowerCamelCase , add_prefix_space=_lowerCamelCase ) UpperCAmelCase__ : Tuple = rust_tokenizer.encode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) # Testing the unknown token UpperCAmelCase__ : Optional[Any] = tokens + [rust_tokenizer.unk_token] UpperCAmelCase__ : int = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , _lowerCamelCase ) def _a (self , *_lowerCamelCase , **_lowerCamelCase ): """simple docstring""" pass def _a (self , _lowerCamelCase=15 ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCAmelCase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) # Simple input UpperCAmelCase__ : Union[str, Any] = """This is a simple input""" UpperCAmelCase__ : List[str] = ["""This is a simple input 1""", """This is a simple input 2"""] UpperCAmelCase__ : List[str] = ("""This is a simple input""", """This is a pair""") UpperCAmelCase__ : Any = [ ("""This is a simple input 1""", """This is a simple input 2"""), ("""This is a simple pair 1""", """This is a simple pair 2"""), ] # Simple input tests self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Simple input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises(_lowerCamelCase , tokenizer_r.encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" ) # Pair input self.assertRaises( _lowerCamelCase , tokenizer_r.batch_encode_plus , _lowerCamelCase , max_length=_lowerCamelCase , padding="""max_length""" , ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Any = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""" ) # Simple input UpperCAmelCase__ : int = """This is a simple input""" UpperCAmelCase__ : Optional[Any] = ["""This is a simple input looooooooong""", """This is a simple input"""] UpperCAmelCase__ : Tuple = ("""This is a simple input""", """This is a pair""") UpperCAmelCase__ : Any = [ ("""This is a simple input loooooong""", """This is a simple input"""), ("""This is a simple pair loooooong""", """This is a simple pair"""), ] UpperCAmelCase__ : Optional[Any] = tokenizer.pad_token_id UpperCAmelCase__ : List[Any] = tokenizer(_lowerCamelCase , padding="""max_length""" , max_length=30 , return_tensors="""np""" ) UpperCAmelCase__ : int = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors="""np""" ) UpperCAmelCase__ : List[str] = tokenizer(*_lowerCamelCase , padding="""max_length""" , max_length=60 , return_tensors="""np""" ) UpperCAmelCase__ : Tuple = tokenizer(_lowerCamelCase , padding=_lowerCamelCase , truncate=_lowerCamelCase , return_tensors="""np""" ) # s # test single string max_length padding self.assertEqual(out_s["""input_ids"""].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["""input_ids"""] ) self.assertTrue(0 in out_s["""attention_mask"""] ) # s2 # test automatic padding self.assertEqual(out_sa["""input_ids"""].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["""input_ids"""][0] ) self.assertFalse(0 in out_sa["""attention_mask"""][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["""input_ids"""][1] ) self.assertTrue(0 in out_sa["""attention_mask"""][1] ) # p # test single pair max_length padding self.assertEqual(out_p["""input_ids"""].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["""input_ids"""] ) self.assertTrue(0 in out_p["""attention_mask"""] ) # p2 # test automatic padding pair self.assertEqual(out_pa["""input_ids"""].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["""input_ids"""][0] ) self.assertFalse(0 in out_pa["""attention_mask"""][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["""input_ids"""][1] ) self.assertTrue(0 in out_pa["""attention_mask"""][1] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[Any] = """$$$""" UpperCAmelCase__ : int = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=_lowerCamelCase , add_bos_token=_lowerCamelCase ) UpperCAmelCase__ : Union[str, Any] = """This is a simple input""" UpperCAmelCase__ : int = ["""This is a simple input 1""", """This is a simple input 2"""] UpperCAmelCase__ : Union[str, Any] = tokenizer.bos_token_id UpperCAmelCase__ : Optional[int] = tokenizer(_lowerCamelCase ) UpperCAmelCase__ : List[Any] = tokenizer(_lowerCamelCase ) self.assertEqual(out_s.input_ids[0] , _lowerCamelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCAmelCase__ : Dict = tokenizer.decode(out_s.input_ids ) UpperCAmelCase__ : List[str] = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , _lowerCamelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def _a (self ): """simple docstring""" pass def _a (self ): """simple docstring""" UpperCAmelCase__ : List[Any] = [self.get_tokenizer(do_lower_case=_lowerCamelCase , add_bos_token=_lowerCamelCase )] for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): UpperCAmelCase__ : str = """Encode this.""" UpperCAmelCase__ : Optional[int] = """This one too please.""" UpperCAmelCase__ : List[Any] = tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) encoded_sequence += tokenizer.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) UpperCAmelCase__ : str = tokenizer.encode_plus( _lowerCamelCase , _lowerCamelCase , add_special_tokens=_lowerCamelCase , return_special_tokens_mask=_lowerCamelCase , ) UpperCAmelCase__ : Dict = encoded_sequence_dict["""input_ids"""] UpperCAmelCase__ : Union[str, Any] = encoded_sequence_dict["""special_tokens_mask"""] self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) UpperCAmelCase__ : int = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(_lowerCamelCase ) ] UpperCAmelCase__ : int = [x for x in filtered_sequence if x is not None] self.assertEqual(_lowerCamelCase , _lowerCamelCase ) @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def _a (self ): """simple docstring""" UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=_lowerCamelCase ) UpperCAmelCase__ : Any = """A photo of a cat""" UpperCAmelCase__ : Any = tokenizer.encode( _lowerCamelCase , ) self.assertEqual(_lowerCamelCase , [2, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""test_opt""" ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained("""./test_opt""" ) UpperCAmelCase__ : int = tokenizer.encode( _lowerCamelCase , ) self.assertEqual(_lowerCamelCase , [2, 250, 1345, 9, 10, 4758] ) def _a (self ): """simple docstring""" UpperCAmelCase__ : str = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=_lowerCamelCase ) UpperCAmelCase__ : str = """A photo of a cat""" UpperCAmelCase__ : Dict = tokenizer.encode( _lowerCamelCase , ) # Same as above self.assertEqual(_lowerCamelCase , [2, 250, 1345, 9, 10, 4758] ) @unittest.skip("""This test is failing because of a bug in the fast tokenizer""" ) def _a (self ): """simple docstring""" UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=_lowerCamelCase ) UpperCAmelCase__ : Dict = """bos""" UpperCAmelCase__ : int = tokenizer.get_vocab()["""bos"""] UpperCAmelCase__ : List[str] = """A photo of a cat""" UpperCAmelCase__ : List[Any] = tokenizer.encode( _lowerCamelCase , ) # We changed the bos token self.assertEqual(_lowerCamelCase , [31957, 250, 1345, 9, 10, 4758] ) tokenizer.save_pretrained("""./tok""" ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained("""./tok""" ) self.assertTrue(tokenizer.is_fast ) UpperCAmelCase__ : int = tokenizer.encode( _lowerCamelCase , ) self.assertEqual(_lowerCamelCase , [31957, 250, 1345, 9, 10, 4758] )
166
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase ( lowerCAmelCase__ ): '''simple docstring''' def __init__(self , *_lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , **_lowerCamelCase ): """simple docstring""" super().__init__(*_lowerCamelCase , **_lowerCamelCase ) UpperCAmelCase__ : List[str] = eval_examples UpperCAmelCase__ : List[Any] = post_process_function def _a (self , _lowerCamelCase = None , _lowerCamelCase=None , _lowerCamelCase = None , _lowerCamelCase = "eval" , **_lowerCamelCase , ): """simple docstring""" UpperCAmelCase__ : Tuple = gen_kwargs.copy() UpperCAmelCase__ : Optional[Any] = ( gen_kwargs["""max_length"""] if gen_kwargs.get("""max_length""" ) is not None else self.args.generation_max_length ) UpperCAmelCase__ : int = ( gen_kwargs["""num_beams"""] if gen_kwargs.get("""num_beams""" ) is not None else self.args.generation_num_beams ) UpperCAmelCase__ : int = gen_kwargs UpperCAmelCase__ : Optional[int] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase__ : Tuple = self.get_eval_dataloader(_lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : List[str] = self.compute_metrics UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : Optional[int] = time.time() UpperCAmelCase__ : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : int = eval_loop( _lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: UpperCAmelCase__ : Any = compute_metrics UpperCAmelCase__ : Union[str, Any] = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase__ : List[str] = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Optional[Any] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase__ : Tuple = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) else: UpperCAmelCase__ : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase__ : List[str] = self.callback_handler.on_evaluate(self.args , self.state , self.control , _lowerCamelCase ) return metrics def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase = "test" , **_lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : Optional[int] = gen_kwargs.copy() UpperCAmelCase__ : List[Any] = self.get_test_dataloader(_lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase__ : Any = self.compute_metrics UpperCAmelCase__ : List[Any] = None UpperCAmelCase__ : str = time.time() UpperCAmelCase__ : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: UpperCAmelCase__ : List[str] = eval_loop( _lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_lowerCamelCase , metric_key_prefix=_lowerCamelCase , ) finally: UpperCAmelCase__ : int = compute_metrics UpperCAmelCase__ : Any = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( _lowerCamelCase , _lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase__ : Optional[Any] = self.post_process_function(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , """predict""" ) UpperCAmelCase__ : List[str] = self.compute_metrics(_lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase__ : str = metrics.pop(_lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_lowerCamelCase )
166
1
'''simple docstring''' from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
'''simple docstring''' from collections.abc import Callable import numpy as np def _UpperCAmelCase ( _lowerCamelCase : Callable , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> np.ndarray: _lowerCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) _lowerCAmelCase : Tuple = np.zeros((n + 1,) ) _lowerCAmelCase : List[Any] = ya _lowerCAmelCase : int = xa for k in range(_lowerCamelCase ): _lowerCAmelCase : Optional[Any] = y[k] + step_size * ode_func(_lowerCamelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
309
1
from ...processing_utils import ProcessorMixin class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = ['''image_processor''', '''feature_extractor'''] _A : List[Any] = '''TvltImageProcessor''' _A : Optional[int] = '''TvltFeatureExtractor''' def __init__( self : str , __a : List[Any] , __a : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(image_processor=__a , feature_extractor=__a ) __lowercase : Union[str, Any] = image_processor __lowercase : Tuple = feature_extractor def __call__( self : Tuple , __a : Optional[int]=None , __a : Dict=None , __a : Union[str, Any]=None , __a : Tuple=None , __a : Optional[Any]=False , __a : List[Any]=False , *__a : List[str] , **__a : List[Any] , ) -> Dict: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""" ) __lowercase : Tuple = None if images is not None: __lowercase : Any = self.image_processor(__a , mask_pixel=__a , *__a , **__a ) if images_mixed is not None: __lowercase : Union[str, Any] = self.image_processor(__a , is_mixed=__a , *__a , **__a ) if audio is not None: __lowercase : Optional[Any] = self.feature_extractor( __a , *__a , sampling_rate=__a , mask_audio=__a , **__a ) __lowercase : Tuple = {} if audio is not None: output_dict.update(__a ) if images is not None: output_dict.update(__a ) if images_mixed_dict is not None: output_dict.update(__a ) return output_dict @property def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __lowercase : int = self.image_processor.model_input_names __lowercase : Union[str, Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
306
def snake_case_ ( lowerCAmelCase_ : str , lowerCAmelCase_ : str ): if len(lowerCAmelCase_ ) != len(lowerCAmelCase_ ): raise ValueError("""String lengths must match!""" ) __lowercase : str = 0 for chara, chara in zip(lowerCAmelCase_ , lowerCAmelCase_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
306
1
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Union[str, Any] ) -> List[str]: '''simple docstring''' lowercase = """""" for i in table: res += inp[i - 1] return res def UpperCAmelCase__ ( lowerCAmelCase__ :Optional[Any] ) -> List[str]: '''simple docstring''' return data[1:] + data[0] def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] ) -> Tuple: '''simple docstring''' lowercase = """""" for i in range(len(lowerCAmelCase__ ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def UpperCAmelCase__ ( lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict ) -> int: '''simple docstring''' lowercase = int("""0b""" + data[0] + data[-1] , 2 ) lowercase = int("""0b""" + data[1:3] , 2 ) return bin(s[row][col] )[2:] def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :int ) -> Optional[Any]: '''simple docstring''' lowercase = message[:4] lowercase = message[4:] lowercase = apply_table(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = xor(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase = apply_sbox(lowerCAmelCase__ , temp[:4] ) # noqa: E741 lowercase = apply_sbox(lowerCAmelCase__ , temp[4:] ) lowercase = """0""" * (2 - len(lowerCAmelCase__ )) + l # noqa: E741 lowercase = """0""" * (2 - len(lowerCAmelCase__ )) + r lowercase = apply_table(l + r , lowerCAmelCase__ ) lowercase = xor(lowerCAmelCase__ , lowerCAmelCase__ ) return temp + right if __name__ == "__main__": __lowerCAmelCase : Optional[int] =input("""Enter 10 bit key: """) __lowerCAmelCase : List[Any] =input("""Enter 8 bit message: """) __lowerCAmelCase : Union[str, Any] =[6, 3, 7, 4, 8, 5, 1_0, 9] __lowerCAmelCase : Any =[3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] __lowerCAmelCase : Optional[int] =[2, 4, 3, 1] __lowerCAmelCase : List[str] =[2, 6, 3, 1, 4, 8, 5, 7] __lowerCAmelCase : Optional[int] =[4, 1, 3, 5, 7, 2, 8, 6] __lowerCAmelCase : List[Any] =[4, 1, 2, 3, 2, 3, 4, 1] __lowerCAmelCase : Optional[Any] =[[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] __lowerCAmelCase : List[Any] =[[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation __lowerCAmelCase : List[str] =apply_table(key, paa_table) __lowerCAmelCase : Union[str, Any] =temp[:5] __lowerCAmelCase : Any =temp[5:] __lowerCAmelCase : int =left_shift(left) __lowerCAmelCase : Any =left_shift(right) __lowerCAmelCase : Dict =apply_table(left + right, pa_table) __lowerCAmelCase : Union[str, Any] =left_shift(left) __lowerCAmelCase : Union[str, Any] =left_shift(right) __lowerCAmelCase : Optional[int] =left_shift(left) __lowerCAmelCase : str =left_shift(right) __lowerCAmelCase : int =apply_table(left + right, pa_table) # encryption __lowerCAmelCase : int =apply_table(message, IP) __lowerCAmelCase : Optional[int] =function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Any =temp[4:] + temp[:4] __lowerCAmelCase : List[str] =function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Tuple =apply_table(temp, IP_inv) print("""Cipher text is:""", CT) # decryption __lowerCAmelCase : List[str] =apply_table(CT, IP) __lowerCAmelCase : Dict =function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Optional[int] =temp[4:] + temp[:4] __lowerCAmelCase : Optional[Any] =function(expansion, sa, sa, keya, temp) __lowerCAmelCase : Optional[int] =apply_table(temp, IP_inv) print("""Plain text after decypting is:""", PT)
197
'''simple docstring''' from __future__ import annotations from collections.abc import Generator def _A () -> Generator[int, None, None]: '''simple docstring''' _a = {} _a = 2 while True: _a = factor_map.pop(lowerCAmelCase__ , lowerCAmelCase__ ) if factor: _a = factor + prime while x in factor_map: x += factor _a = factor else: _a = prime yield prime prime += 1 def _A (lowerCAmelCase__ :float = 1E10 ) -> int: '''simple docstring''' _a = sieve() _a = 1 while True: _a = next(lowerCAmelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(lowerCAmelCase__ ) n += 2 if __name__ == "__main__": print(solution())
168
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def A_ ( snake_case_ : Dataset ,snake_case_ : Dict[str, str] ): '''simple docstring''' UpperCamelCase : List[str] = args.log_outputs UpperCamelCase : Tuple = """_""".join(args.dataset.split("""/""" ) + [args.config, args.split] ) # load metric UpperCamelCase : List[Any] = load_metric("""wer""" ) UpperCamelCase : Any = load_metric("""cer""" ) # compute metrics UpperCamelCase : str = wer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) UpperCamelCase : Dict = cer.compute(references=result["""target"""] ,predictions=result["""prediction"""] ) # print & log results UpperCamelCase : Optional[int] = f'WER: {wer_result}\nCER: {cer_result}' print(snake_case_ ) with open(f'{dataset_id}_eval_results.txt' ,"""w""" ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCamelCase : Optional[Any] = f'log_{dataset_id}_predictions.txt' UpperCamelCase : str = f'log_{dataset_id}_targets.txt' with open(snake_case_ ,"""w""" ) as p, open(snake_case_ ,"""w""" ) as t: # mapping function to write output def write_to_file(snake_case_ : Union[str, Any] ,snake_case_ : Tuple ): p.write(f'{i}' + """\n""" ) p.write(batch["""prediction"""] + """\n""" ) t.write(f'{i}' + """\n""" ) t.write(batch["""target"""] + """\n""" ) result.map(snake_case_ ,with_indices=snake_case_ ) def A_ ( snake_case_ : str ): '''simple docstring''' UpperCamelCase : Dict = """[,?.!\-\;\:\"“%‘”�—’…–]""" # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCamelCase : str = re.sub(snake_case_ ,"""""" ,text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCamelCase : List[str] = ["""\n\n""", """\n""", """ """, """ """] for t in token_sequences_to_ignore: UpperCamelCase : Tuple = """ """.join(text.split(snake_case_ ) ) return text def A_ ( snake_case_ : str ): '''simple docstring''' # load dataset UpperCamelCase : Union[str, Any] = load_dataset(args.dataset ,args.config ,split=args.split ,use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCamelCase : List[Any] = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCamelCase : Dict = feature_extractor.sampling_rate # resample audio UpperCamelCase : Optional[Any] = dataset.cast_column("""audio""" ,Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: UpperCamelCase : int = 0 if torch.cuda.is_available() else -1 UpperCamelCase : Union[str, Any] = pipeline("""automatic-speech-recognition""" ,model=args.model_id ,device=args.device ) # map function to decode audio def map_to_pred(snake_case_ : Union[str, Any] ): UpperCamelCase : List[Any] = asr( batch["""audio"""]["""array"""] ,chunk_length_s=args.chunk_length_s ,stride_length_s=args.stride_length_s ) UpperCamelCase : Union[str, Any] = prediction["""text"""] UpperCamelCase : Optional[Any] = normalize_text(batch["""sentence"""] ) return batch # run inference on all examples UpperCamelCase : Any = dataset.map(snake_case_ ,remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ ,snake_case_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_id''', type=str, required=True, help='''Model identifier. Should be loadable with 🤗 Transformers''' ) parser.add_argument( '''--dataset''', type=str, required=True, help='''Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets''', ) parser.add_argument( '''--config''', type=str, required=True, help='''Config of the dataset. *E.g.* `\'en\'` for Common Voice''' ) parser.add_argument('''--split''', type=str, required=True, help='''Split of the dataset. *E.g.* `\'test\'`''') parser.add_argument( '''--chunk_length_s''', type=float, default=None, help='''Chunk length in seconds. Defaults to 5 seconds.''' ) parser.add_argument( '''--stride_length_s''', type=float, default=None, help='''Stride of the audio chunks. Defaults to 1 second.''' ) parser.add_argument( '''--log_outputs''', action='''store_true''', help='''If defined, write outputs to log file for analysis.''' ) parser.add_argument( '''--device''', type=int, default=None, help='''The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.''', ) __A : Optional[Any] = parser.parse_args() main(args)
27
"""simple docstring""" from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer __A : Any = logging.get_logger(__name__) __A : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} __A : Optional[Any] = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } __A : Any = {'''allegro/herbert-base-cased''': 514} __A : Optional[Any] = {} class lowerCamelCase ( _UpperCAmelCase ): lowercase : Dict = VOCAB_FILES_NAMES lowercase : Any = PRETRAINED_VOCAB_FILES_MAP lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase : Union[str, Any] = HerbertTokenizer def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="<mask>" , SCREAMING_SNAKE_CASE_="</s>" , **SCREAMING_SNAKE_CASE_ , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Dict = [self.cls_token_id] UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Tuple = [self.sep_token_id] UpperCamelCase : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a_ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None ): UpperCamelCase : Optional[int] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ )
27
1
'''simple docstring''' import numpy as np def __snake_case ( UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : float = 1E-1_2 , UpperCAmelCase_ : int = 100 , ): assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[1] # Ensure proper dimensionality. assert np.shape(UpperCAmelCase_ )[0] == np.shape(UpperCAmelCase_ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(UpperCAmelCase_ ) == np.iscomplexobj(UpperCAmelCase_ ) lowerCamelCase_ = np.iscomplexobj(UpperCAmelCase_ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(UpperCAmelCase_ , input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. lowerCamelCase_ = False lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = 1E1_2 while not convergence: # Multiple matrix by the vector. lowerCamelCase_ = np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) # Normalize the resulting output vector. lowerCamelCase_ = w / np.linalg.norm(UpperCAmelCase_ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) lowerCamelCase_ = vector.conj().T if is_complex else vector.T lowerCamelCase_ = np.dot(UpperCAmelCase_ , np.dot(UpperCAmelCase_ , UpperCAmelCase_ ) ) # Check convergence. lowerCamelCase_ = np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: lowerCamelCase_ = True lowerCamelCase_ = lambda_ if is_complex: lowerCamelCase_ = np.real(lambda_ ) return lambda_, vector def __snake_case ( ): lowerCamelCase_ = np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) lowerCamelCase_ = np.array([41, 4, 20] ) lowerCamelCase_ = real_input_matrix.astype(np.complexaaa ) lowerCamelCase_ = np.triu(1J * complex_input_matrix , 1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T lowerCamelCase_ = np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": lowerCamelCase_ = real_input_matrix lowerCamelCase_ = real_vector elif problem_type == "complex": lowerCamelCase_ = complex_input_matrix lowerCamelCase_ = complex_vector # Our implementation. lowerCamelCase_ ,lowerCamelCase_ = power_iteration(UpperCAmelCase_ , UpperCAmelCase_ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). lowerCamelCase_ ,lowerCamelCase_ = np.linalg.eigh(UpperCAmelCase_ ) # Last eigenvalue is the maximum one. lowerCamelCase_ = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. lowerCamelCase_ = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(UpperCAmelCase_ ) - np.abs(UpperCAmelCase_ ) ) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
55
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) a : Union[str, Any] = { "configuration_encodec": [ "ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP", "EncodecConfig", ], "feature_extraction_encodec": ["EncodecFeatureExtractor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Optional[int] = [ "ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST", "EncodecModel", "EncodecPreTrainedModel", ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys a : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
311
0
'''simple docstring''' from collections import namedtuple import requests from lxml import html # type: ignore __snake_case = namedtuple('''covid_data''', '''cases deaths recovered''') def a ( __a = "https://www.worldometers.info/coronavirus/" ) -> covid_data: '''simple docstring''' UpperCamelCase__ :Tuple = '''//div[@class = "maincounter-number"]/span/text()''' return covid_data(*html.fromstring(requests.get(__a ).content ).xpath(__a ) ) __snake_case = '''Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}''' print(fmt.format(*covid_stats()))
219
'''simple docstring''' from math import ceil def a ( __a , __a ) -> Any: '''simple docstring''' UpperCamelCase__ :str = list(range(0 , __a ) ) UpperCamelCase__ :Optional[int] = [item for sublist in list(device_map.values() ) for item in sublist] # Duplicate check UpperCamelCase__ :Optional[int] = [] for i in device_map_blocks: if device_map_blocks.count(__a ) > 1 and i not in duplicate_blocks: duplicate_blocks.append(__a ) # Missing blocks UpperCamelCase__ :List[str] = [i for i in blocks if i not in device_map_blocks] UpperCamelCase__ :Optional[Any] = [i for i in device_map_blocks if i not in blocks] if len(__a ) != 0: raise ValueError( '''Duplicate attention blocks specified in device_map. Attention blocks must be specified to one device.''' ''' These attention blocks were specified more than once: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''There are attention blocks for this model that are not specified in the device_map. Add these attention ''' '''blocks to a device on the device_map: ''' + str(__a ) ) if len(__a ) != 0: raise ValueError( '''The device_map contains more attention blocks than this model has. Remove these from the device_map:''' + str(__a ) ) def a ( __a , __a ) -> Tuple: '''simple docstring''' UpperCamelCase__ :Optional[Any] = list(range(__a ) ) UpperCamelCase__ :Any = int(ceil(n_layers / len(__a ) ) ) UpperCamelCase__ :List[Any] = [layers[i : i + n_blocks] for i in range(0 , __a , __a )] return dict(zip(__a , __a ) )
219
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _A ( *_lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase=True , _lowerCAmelCase=2 ): """simple docstring""" from .. import __version__ __lowercase =take_from __lowercase =() if not isinstance(args[0] , _lowerCAmelCase ): __lowercase =(args,) for attribute, version_name, message in args: if version.parse(version.parse(_lowerCAmelCase ).base_version ) >= version.parse(_lowerCAmelCase ): raise ValueError( f"""The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers'""" f""" version {__version__} is >= {version_name}""" ) __lowercase =None if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(_lowerCAmelCase ),) __lowercase =f"""The `{attribute}` argument is deprecated and will be removed in version {version_name}.""" elif hasattr(_lowerCAmelCase , _lowerCAmelCase ): values += (getattr(_lowerCAmelCase , _lowerCAmelCase ),) __lowercase =f"""The `{attribute}` attribute is deprecated and will be removed in version {version_name}.""" elif deprecated_kwargs is None: __lowercase =f"""`{attribute}` is deprecated and will be removed in version {version_name}.""" if warning is not None: __lowercase =warning + ' ' if standard_warn else '' warnings.warn(warning + message , _lowerCAmelCase , stacklevel=_lowerCAmelCase ) if isinstance(_lowerCAmelCase , _lowerCAmelCase ) and len(_lowerCAmelCase ) > 0: __lowercase =inspect.getouterframes(inspect.currentframe() )[1] __lowercase =call_frame.filename __lowercase =call_frame.lineno __lowercase =call_frame.function __lowercase , __lowercase =next(iter(deprecated_kwargs.items() ) ) raise TypeError(f"""{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`""" ) if len(_lowerCAmelCase ) == 0: return elif len(_lowerCAmelCase ) == 1: return values[0] return values
166
'''simple docstring''' from datetime import datetime import requests def _A ( _lowerCAmelCase ): """simple docstring""" __lowercase ='https://downloadgram.net/wp-json/wppress/video-downloader/video?url=' __lowercase =requests.get(base_url + url ).json()[0]['urls'][0]['src'] return requests.get(_lowerCAmelCase ).content if __name__ == "__main__": lowerCamelCase = input("""Enter Video/IGTV url: """).strip() lowerCamelCase = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, """wb""") as fp: fp.write(download_video(url)) print(f"Done. Video saved to disk as {file_name}.")
166
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = 42 class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): """simple docstring""" @register_to_config def __init__( self , lowerCamelCase__ = 32 , lowerCamelCase__ = 64 , lowerCamelCase__ = 20 , lowerCamelCase__ = 768 , lowerCamelCase__=77 , lowerCamelCase__=4 , lowerCamelCase__ = 0.0 , lowerCamelCase__ = "silu" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = "linear" , lowerCamelCase__ = "prd" , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = None , ) -> Tuple: '''simple docstring''' super().__init__() __lowerCamelCase = num_attention_heads __lowerCamelCase = attention_head_dim __lowerCamelCase = num_attention_heads * attention_head_dim __lowerCamelCase = additional_embeddings __lowerCamelCase = time_embed_dim or inner_dim __lowerCamelCase = embedding_proj_dim or embedding_dim __lowerCamelCase = clip_embed_dim or embedding_dim __lowerCamelCase = Timesteps(lowerCamelCase__ , lowerCamelCase__ , 0 ) __lowerCamelCase = TimestepEmbedding(lowerCamelCase__ , lowerCamelCase__ , out_dim=lowerCamelCase__ , act_fn=lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if embedding_proj_norm_type is None: __lowerCamelCase = None elif embedding_proj_norm_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) else: raise ValueError(f"""unsupported embedding_proj_norm_type: {embedding_proj_norm_type}""" ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) if encoder_hid_proj_type is None: __lowerCamelCase = None elif encoder_hid_proj_type == "linear": __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) else: raise ValueError(f"""unsupported encoder_hid_proj_type: {encoder_hid_proj_type}""" ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , lowerCamelCase__ ) ) if added_emb_type == "prd": __lowerCamelCase = nn.Parameter(torch.zeros(1 , 1 , lowerCamelCase__ ) ) elif added_emb_type is None: __lowerCamelCase = None else: raise ValueError( f"""`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`.""" ) __lowerCamelCase = nn.ModuleList( [ BasicTransformerBlock( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , dropout=lowerCamelCase__ , activation_fn='gelu' , attention_bias=lowerCamelCase__ , ) for d in range(lowerCamelCase__ ) ] ) if norm_in_type == "layer": __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) elif norm_in_type is None: __lowerCamelCase = None else: raise ValueError(f"""Unsupported norm_in_type: {norm_in_type}.""" ) __lowerCamelCase = nn.LayerNorm(lowerCamelCase__ ) __lowerCamelCase = nn.Linear(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_00_00.0 ) causal_attention_mask.triu_(1 ) __lowerCamelCase = causal_attention_mask[None, ...] self.register_buffer('causal_attention_mask' , lowerCamelCase__ , persistent=lowerCamelCase__ ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) __lowerCamelCase = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowercase_ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' __lowerCamelCase = {} def fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): __lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return processors def lowercase_ ( self , lowerCamelCase__ ) -> Tuple: '''simple docstring''' __lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != count: raise ValueError( f"""A dict of processors was passed, but the number of processors {len(lowerCamelCase__ )} does not match the""" f""" number of attention layers: {count}. Please make sure to pass {count} processor classes.""" ) def fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if hasattr(lowerCamelCase__ , 'set_processor' ): if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): module.set_processor(lowerCamelCase__ ) else: module.set_processor(processor.pop(f"""{name}.processor""" ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"""{name}.{sub_name}""" , lowerCamelCase__ , lowerCamelCase__ ) for name, module in self.named_children(): fn_recursive_attn_processor(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = True , ) -> int: '''simple docstring''' __lowerCamelCase = hidden_states.shape[0] __lowerCamelCase = timestep if not torch.is_tensor(lowerCamelCase__ ): __lowerCamelCase = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(lowerCamelCase__ ) and len(timesteps.shape ) == 0: __lowerCamelCase = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML __lowerCamelCase = timesteps * torch.ones(lowerCamelCase__ , dtype=timesteps.dtype , device=timesteps.device ) __lowerCamelCase = self.time_proj(lowerCamelCase__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. __lowerCamelCase = timesteps_projected.to(dtype=self.dtype ) __lowerCamelCase = self.time_embedding(lowerCamelCase__ ) if self.embedding_proj_norm is not None: __lowerCamelCase = self.embedding_proj_norm(lowerCamelCase__ ) __lowerCamelCase = self.embedding_proj(lowerCamelCase__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: __lowerCamelCase = self.encoder_hidden_states_proj(lowerCamelCase__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set' ) __lowerCamelCase = self.proj_in(lowerCamelCase__ ) __lowerCamelCase = self.positional_embedding.to(hidden_states.dtype ) __lowerCamelCase = [] __lowerCamelCase = 0 if encoder_hidden_states is not None: additional_embeds.append(lowerCamelCase__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: __lowerCamelCase = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: __lowerCamelCase = hidden_states[:, None, :] __lowerCamelCase = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: __lowerCamelCase = self.prd_embedding.to(hidden_states.dtype ).expand(lowerCamelCase__ , -1 , -1 ) additional_embeds.append(lowerCamelCase__ ) __lowerCamelCase = torch.cat( lowerCamelCase__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens __lowerCamelCase = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: __lowerCamelCase = F.pad( lowerCamelCase__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) __lowerCamelCase = hidden_states + positional_embeddings if attention_mask is not None: __lowerCamelCase = (1 - attention_mask.to(hidden_states.dtype )) * -1_00_00.0 __lowerCamelCase = F.pad(lowerCamelCase__ , (0, self.additional_embeddings) , value=0.0 ) __lowerCamelCase = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) __lowerCamelCase = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: __lowerCamelCase = self.norm_in(lowerCamelCase__ ) for block in self.transformer_blocks: __lowerCamelCase = block(lowerCamelCase__ , attention_mask=lowerCamelCase__ ) __lowerCamelCase = self.norm_out(lowerCamelCase__ ) if self.prd_embedding is not None: __lowerCamelCase = hidden_states[:, -1] else: __lowerCamelCase = hidden_states[:, additional_embeddings_len:] __lowerCamelCase = self.proj_to_clip_embeddings(lowerCamelCase__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=5 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=4 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_token_type_ids __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_act __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = type_sequence_label_size __lowerCamelCase = initializer_range __lowerCamelCase = num_choices def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase = None if self.use_attention_mask: __lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase = None if self.use_token_type_ids: __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCamelCase__ , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = self.prepare_config_and_inputs() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = config_and_inputs __lowerCamelCase = True __lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = True snake_case_ = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase_ ( self ) -> Optional[int]: '''simple docstring''' for model_class_name in self.all_model_classes: __lowerCamelCase = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(lowerCamelCase__ ) @require_flax class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] __lowerCamelCase = [1, 11, 50_265] self.assertEqual(list(output.shape ) , lowerCamelCase__ ) # compare the actual values for a slice. __lowerCamelCase = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) ) @slow def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40' , from_pt=lowerCamelCase__ ) __lowerCamelCase = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) __lowerCamelCase = model(lowerCamelCase__ )[0] # compare the actual values for a slice. __lowerCamelCase = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , lowerCamelCase__ , atol=1e-4 ) )
348
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_wav2vec2''': ['''WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Wav2Vec2Config'''], '''feature_extraction_wav2vec2''': ['''Wav2Vec2FeatureExtractor'''], '''processing_wav2vec2''': ['''Wav2Vec2Processor'''], '''tokenization_wav2vec2''': ['''Wav2Vec2CTCTokenizer''', '''Wav2Vec2Tokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Wav2Vec2ForAudioFrameClassification''', '''Wav2Vec2ForCTC''', '''Wav2Vec2ForMaskedLM''', '''Wav2Vec2ForPreTraining''', '''Wav2Vec2ForSequenceClassification''', '''Wav2Vec2ForXVector''', '''Wav2Vec2Model''', '''Wav2Vec2PreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFWav2Vec2ForCTC''', '''TFWav2Vec2Model''', '''TFWav2Vec2PreTrainedModel''', '''TFWav2Vec2ForSequenceClassification''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FlaxWav2Vec2ForCTC''', '''FlaxWav2Vec2ForPreTraining''', '''FlaxWav2Vec2Model''', '''FlaxWav2Vec2PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
306
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def __lowerCamelCase ( snake_case__ ) -> Dict: """simple docstring""" return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def __lowerCamelCase ( snake_case__ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = gather(snake_case__ ) assert gathered_tensor.tolist() == list(range(1 ,state.num_processes**2 + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = [state.process_index] _SCREAMING_SNAKE_CASE = gather_object(snake_case__ ) assert len(snake_case__ ) == state.num_processes, F'{gathered_obj}, {len(snake_case__ )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), F'{gathered_obj} != {list(range(state.num_processes ) )}' def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = broadcast(snake_case__ ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 ,state.num_processes + 1 ) ) def __lowerCamelCase ( snake_case__ ) -> Tuple: """simple docstring""" if state.is_main_process: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes + 1 ).to(state.device ) else: _SCREAMING_SNAKE_CASE = torch.arange(state.num_processes ).to(state.device ) _SCREAMING_SNAKE_CASE = pad_across_processes(snake_case__ ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 ,state.num_processes ) ) + [0] def __lowerCamelCase ( snake_case__ ) -> Union[str, Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""sum""" ) _SCREAMING_SNAKE_CASE = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> List[Any]: """simple docstring""" if state.num_processes != 2: return _SCREAMING_SNAKE_CASE = create_tensor(snake_case__ ) _SCREAMING_SNAKE_CASE = reduce(snake_case__ ,"""mean""" ) _SCREAMING_SNAKE_CASE = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case__ ,snake_case__ ), F'{reduced_tensor} != {truth_tensor}' def __lowerCamelCase ( snake_case__ ) -> str: """simple docstring""" main() def __lowerCamelCase ( ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = PartialState() state.print(F'State: {state}' ) state.print("""testing gather""" ) test_gather(snake_case__ ) state.print("""testing gather_object""" ) test_gather_object(snake_case__ ) state.print("""testing broadcast""" ) test_broadcast(snake_case__ ) state.print("""testing pad_across_processes""" ) test_pad_across_processes(snake_case__ ) state.print("""testing reduce_sum""" ) test_reduce_sum(snake_case__ ) state.print("""testing reduce_mean""" ) test_reduce_mean(snake_case__ ) if __name__ == "__main__": main()
306
1
"""simple docstring""" import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class UpperCAmelCase_ ( A_, A_, unittest.TestCase ): lowercase__ = IFPipeline lowercase__ = TEXT_TO_IMAGE_PARAMS - {'''width''', '''height''', '''latents'''} lowercase__ = TEXT_TO_IMAGE_BATCH_PARAMS lowercase__ = PipelineTesterMixin.required_optional_params - {'''latents'''} def __magic_name__ ( self : Any ) -> Optional[Any]: '''simple docstring''' return self._get_dummy_components() def __magic_name__ ( self : Optional[Any] , snake_case_ : Optional[int] , snake_case_ : Dict=0 ) -> List[str]: '''simple docstring''' if str(snake_case_ ).startswith("mps" ): A__ = torch.manual_seed(snake_case_ ) else: A__ = torch.Generator(device=snake_case_ ).manual_seed(snake_case_ ) A__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def __magic_name__ ( self : Dict ) -> Optional[int]: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def __magic_name__ ( self : Optional[int] ) -> Tuple: '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1e-1 ) def __magic_name__ ( self : Any ) -> List[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __magic_name__ ( self : Tuple ) -> int: '''simple docstring''' self._test_save_load_local() def __magic_name__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def __magic_name__ ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' A__ = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0" , variant="fp16" , torch_dtype=torch.floataa ) A__ = IFSuperResolutionPipeline.from_pretrained( "DeepFloyd/IF-II-L-v1.0" , variant="fp16" , torch_dtype=torch.floataa , text_encoder=snake_case_ , tokenizer=snake_case_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to("cuda" ) A__, A__ = pipe_a.encode_prompt("anime turtle" , device="cuda" ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() A__ = None A__ = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img A__ = IFImgaImgPipeline(**pipe_a.components ) A__ = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting A__ = IFInpaintingPipeline(**pipe_a.components ) A__ = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def __magic_name__ ( self : Optional[Any] , snake_case_ : int , snake_case_ : Any , snake_case_ : str , snake_case_ : Union[str, Any] ) -> int: '''simple docstring''' _start_torch_memory_measurement() A__ = torch.Generator(device="cpu" ).manual_seed(0 ) A__ = pipe_a( prompt_embeds=snake_case_ , negative_prompt_embeds=snake_case_ , num_inference_steps=2 , generator=snake_case_ , output_type="np" , ) A__ = output.images[0] assert image.shape == (64, 64, 3) A__ = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" ) assert_mean_pixel_difference(snake_case_ , snake_case_ ) # pipeline 2 _start_torch_memory_measurement() A__ = torch.Generator(device="cpu" ).manual_seed(0 ) A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case_ ) A__ = pipe_a( prompt_embeds=snake_case_ , negative_prompt_embeds=snake_case_ , image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="np" , ) A__ = output.images[0] assert image.shape == (256, 256, 3) A__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case_ , snake_case_ ) def __magic_name__ ( self : Dict , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : int , snake_case_ : Optional[Any] ) -> Any: '''simple docstring''' _start_torch_memory_measurement() A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case_ ) A__ = torch.Generator(device="cpu" ).manual_seed(0 ) A__ = pipe_a( prompt_embeds=snake_case_ , negative_prompt_embeds=snake_case_ , image=snake_case_ , num_inference_steps=2 , generator=snake_case_ , output_type="np" , ) A__ = output.images[0] assert image.shape == (64, 64, 3) A__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" ) assert_mean_pixel_difference(snake_case_ , snake_case_ ) # pipeline 2 _start_torch_memory_measurement() A__ = torch.Generator(device="cpu" ).manual_seed(0 ) A__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case_ ) A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case_ ) A__ = pipe_a( prompt_embeds=snake_case_ , negative_prompt_embeds=snake_case_ , image=snake_case_ , original_image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="np" , ) A__ = output.images[0] assert image.shape == (256, 256, 3) A__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case_ , snake_case_ ) def __magic_name__ ( self : Dict , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Tuple , snake_case_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _start_torch_memory_measurement() A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case_ ) A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(1 ) ).to(snake_case_ ) A__ = torch.Generator(device="cpu" ).manual_seed(0 ) A__ = pipe_a( prompt_embeds=snake_case_ , negative_prompt_embeds=snake_case_ , image=snake_case_ , mask_image=snake_case_ , num_inference_steps=2 , generator=snake_case_ , output_type="np" , ) A__ = output.images[0] assert image.shape == (64, 64, 3) A__ = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" ) assert_mean_pixel_difference(snake_case_ , snake_case_ ) # pipeline 2 _start_torch_memory_measurement() A__ = torch.Generator(device="cpu" ).manual_seed(0 ) A__ = floats_tensor((1, 3, 64, 64) , rng=random.Random(0 ) ).to(snake_case_ ) A__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(0 ) ).to(snake_case_ ) A__ = floats_tensor((1, 3, 256, 256) , rng=random.Random(1 ) ).to(snake_case_ ) A__ = pipe_a( prompt_embeds=snake_case_ , negative_prompt_embeds=snake_case_ , image=snake_case_ , mask_image=snake_case_ , original_image=snake_case_ , generator=snake_case_ , num_inference_steps=2 , output_type="np" , ) A__ = output.images[0] assert image.shape == (256, 256, 3) A__ = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 A__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" ) assert_mean_pixel_difference(snake_case_ , snake_case_ ) def _SCREAMING_SNAKE_CASE ( ) -> str: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
230
"""simple docstring""" from __future__ import annotations SCREAMING_SNAKE_CASE = "#" class UpperCAmelCase_ : def __init__( self : Dict ) -> None: '''simple docstring''' A__ = {} def __magic_name__ ( self : Optional[Any] , snake_case_ : str ) -> None: '''simple docstring''' A__ = self._trie for char in text: if char not in trie: A__ = {} A__ = trie[char] A__ = True def __magic_name__ ( self : List[Any] , snake_case_ : str ) -> tuple | list: '''simple docstring''' A__ = self._trie for char in prefix: if char in trie: A__ = trie[char] else: return [] return self._elements(snake_case_ ) def __magic_name__ ( self : Union[str, Any] , snake_case_ : dict ) -> tuple: '''simple docstring''' A__ = [] for c, v in d.items(): A__ = [" "] if c == END else [(c + s) for s in self._elements(snake_case_ )] result.extend(snake_case_ ) return tuple(snake_case_ ) SCREAMING_SNAKE_CASE = Trie() SCREAMING_SNAKE_CASE = ("depart", "detergent", "daring", "dog", "deer", "deal") for word in words: trie.insert_word(word) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> tuple: A__ = trie.find_word(lowercase_ ) return tuple(string + word for word in suffixes ) def _SCREAMING_SNAKE_CASE ( ) -> None: print(autocomplete_using_trie("de" ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
230
1
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class __UpperCamelCase ( unittest.TestCase ): def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = tempfile.mkdtemp() # fmt: off __a : Tuple = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __a : List[Any] = dict(zip(__a , range(len(__a ) ) ) ) __a : List[Any] = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __a : Dict = {'unk_token': '<unk>'} __a : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __a : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__a ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__a ) ) __a : List[str] = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } __a : Optional[Any] = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(__a , __a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self , **__a ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def __UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Union[str, Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __a : str = [Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) for x in image_inputs] return image_inputs def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_tokenizer() __a : Optional[Any] = self.get_rust_tokenizer() __a : Dict = self.get_image_processor() __a : Any = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) processor_slow.save_pretrained(self.tmpdirname ) __a : Union[str, Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) __a : Union[str, Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) processor_fast.save_pretrained(self.tmpdirname ) __a : Optional[Any] = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __a ) self.assertIsInstance(processor_fast.tokenizer , __a ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __a ) self.assertIsInstance(processor_fast.image_processor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Dict = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __a : Any = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __a : int = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __a : Union[str, Any] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_image_processor() __a : Optional[int] = self.get_tokenizer() __a : str = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : Dict = self.prepare_image_inputs() __a : Tuple = image_processor(__a , return_tensors='np' ) __a : List[Any] = processor(images=__a , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : str = self.get_image_processor() __a : List[str] = self.get_tokenizer() __a : Optional[Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : Optional[Any] = 'lower newer' __a : Union[str, Any] = processor(text=__a ) __a : str = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCAmelCase ( self ): '''simple docstring''' __a : Optional[int] = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : List[Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : List[str] = 'lower newer' __a : Optional[int] = self.prepare_image_inputs() __a : Tuple = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def __UpperCAmelCase ( self ): '''simple docstring''' __a : List[str] = self.get_image_processor() __a : Dict = self.get_tokenizer() __a : Tuple = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : Dict = self.prepare_image_inputs() __a : List[str] = self.prepare_image_inputs() __a : int = processor(images=__a , visual_prompt=__a ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'conditional_pixel_values'] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def __UpperCAmelCase ( self ): '''simple docstring''' __a : Tuple = self.get_image_processor() __a : Union[str, Any] = self.get_tokenizer() __a : Union[str, Any] = CLIPSegProcessor(tokenizer=__a , image_processor=__a ) __a : str = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __a : Any = processor.batch_decode(__a ) __a : Optional[Any] = tokenizer.batch_decode(__a ) self.assertListEqual(__a , __a )
27
'''simple docstring''' import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowercase : List[Any] = 'bart' __lowercase : Union[str, Any] = True @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : List[Any] = AutoTokenizer.from_pretrained('yjernite/retribert-base-uncased' ) __a : Dict = AutoModel.from_pretrained('yjernite/retribert-base-uncased' ).to('cuda:0' ) __a : Optional[int] = qar_model.eval() else: __a , __a : str = (None, None) if MODEL_TYPE == "bart": __a : Union[str, Any] = AutoTokenizer.from_pretrained('yjernite/bart_eli5' ) __a : int = AutoModelForSeqaSeqLM.from_pretrained('yjernite/bart_eli5' ).to('cuda:0' ) __a : Optional[Any] = torch.load('seq2seq_models/eli5_bart_model_blm_2.pth' ) sas_model.load_state_dict(save_dict['model'] ) __a : str = sas_model.eval() else: __a , __a : Tuple = make_qa_sas_model( model_name='t5-small' , from_file='seq2seq_models/eli5_t5_model_1024_4.pth' , device='cuda:0' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): if LOAD_DENSE_INDEX: __a : Optional[Any] = faiss.StandardGpuResources() __a : Dict = datasets.load_dataset(path='wiki_snippets' , name='wiki40b_en_100_0' )['train'] __a : int = np.memmap( 'wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat' , dtype='float32' , mode='r' , shape=(wikiaab_passages.num_rows, 128) , ) __a : int = faiss.IndexFlatIP(128 ) __a : Any = faiss.index_cpu_to_gpu(_SCREAMING_SNAKE_CASE , 1 , _SCREAMING_SNAKE_CASE ) wikiaab_gpu_index_flat.add(_SCREAMING_SNAKE_CASE ) # TODO fix for larger GPU else: __a , __a : str = (None, None) __a : Optional[int] = Elasticsearch([{'host': 'localhost', 'port': '9200'}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_SCREAMING_SNAKE_CASE ) def lowerCamelCase (): __a : Dict = datasets.load_dataset('eli5' , name='LFQA_reddit' ) __a : Dict = elia['train_eli5'] __a : Optional[int] = np.memmap( 'eli5_questions_reps.dat' , dtype='float32' , mode='r' , shape=(elia_train.num_rows, 128) ) __a : str = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_SCREAMING_SNAKE_CASE ) return (elia_train, eli5_train_q_index) __lowercase , __lowercase , __lowercase : Any = load_indexes() __lowercase , __lowercase , __lowercase , __lowercase : Dict = load_models() __lowercase , __lowercase : int = load_train_data() def lowerCamelCase (_SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : List[str]=10 ): __a : Optional[int] = embed_questions_for_retrieval([question] , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a , __a : Union[str, Any] = eli5_train_q_index.search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Any = [elia_train[int(_SCREAMING_SNAKE_CASE )] for i in I[0]] return nn_examples def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : str="wiki40b" , _SCREAMING_SNAKE_CASE : List[str]="dense" , _SCREAMING_SNAKE_CASE : Any=10 ): if source == "none": __a , __a : Any = (' <P> '.join(['' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a : str = query_qa_dense_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: __a , __a : Union[str, Any] = query_es_index( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , index_name='english_wiki40b_snippets_100w' , n_results=_SCREAMING_SNAKE_CASE , ) __a : Dict = [ (res['article_title'], res['section_title'].strip(), res['score'], res['passage_text']) for res in hit_lst ] __a : Any = 'question: {} context: {}'.format(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _SCREAMING_SNAKE_CASE : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _SCREAMING_SNAKE_CASE : None), } ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Dict=64 , _SCREAMING_SNAKE_CASE : Dict=256 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Tuple=2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.9_5 , _SCREAMING_SNAKE_CASE : str=0.8 ): with torch.no_grad(): __a : Union[str, Any] = qa_sas_generate( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , num_answers=1 , num_beams=_SCREAMING_SNAKE_CASE , min_len=_SCREAMING_SNAKE_CASE , max_len=_SCREAMING_SNAKE_CASE , do_sample=_SCREAMING_SNAKE_CASE , temp=_SCREAMING_SNAKE_CASE , top_p=_SCREAMING_SNAKE_CASE , top_k=_SCREAMING_SNAKE_CASE , max_input_length=1_024 , device='cuda:0' , )[0] return (answer, support_list) st.title('Long Form Question Answering with ELI5') # Start sidebar __lowercase : Optional[Any] = '<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>' __lowercase : str = '\n<html>\n <head>\n <style>\n .img-container {\n padding-left: 90px;\n padding-right: 90px;\n padding-top: 50px;\n padding-bottom: 50px;\n background-color: #f0f3f9;\n }\n </style>\n </head>\n <body>\n <span class="img-container"> <!-- Inline parent element -->\n %s\n </span>\n </body>\n</html>\n' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowercase : str = '\nThis demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html).\nFirst, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset,\na pre-processed fixed snapshot of Wikipedia.\n' st.sidebar.markdown(description, unsafe_allow_html=True) __lowercase : Dict = [ 'Answer the question', 'View the retrieved document only', 'View the most similar ELI5 question and answer', 'Show me everything, please!', ] __lowercase : Union[str, Any] = st.sidebar.checkbox('Demo options') if demo_options: __lowercase : Any = st.sidebar.selectbox( '', action_list, index=3, ) __lowercase : Tuple = action_list.index(action_st) __lowercase : Tuple = st.sidebar.selectbox( '', ['Show full text of passages', 'Show passage section titles'], index=0, ) __lowercase : List[Any] = show_type == 'Show full text of passages' else: __lowercase : int = 3 __lowercase : str = True __lowercase : Tuple = st.sidebar.checkbox('Retrieval options') if retrieval_options: __lowercase : List[Any] = '\n ### Information retriever options\n\n The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding\n trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs.\n The answer is then generated by sequence to sequence model which takes the question and retrieved document as input.\n ' st.sidebar.markdown(retriever_info) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia format should the model use?', ['wiki40b', 'none']) __lowercase : Union[str, Any] = st.sidebar.selectbox('Which Wikipedia indexer should the model use?', ['dense', 'sparse', 'mixed']) else: __lowercase : str = 'wiki40b' __lowercase : List[Any] = 'dense' __lowercase : Dict = 'beam' __lowercase : Optional[int] = 2 __lowercase : List[str] = 64 __lowercase : Tuple = 2_56 __lowercase : List[str] = None __lowercase : Tuple = None __lowercase : List[Any] = st.sidebar.checkbox('Generation options') if generate_options: __lowercase : Optional[Any] = '\n ### Answer generation options\n\n The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large)\n weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with\n **beam** search, or **sample** from the decoder\'s output probabilities.\n ' st.sidebar.markdown(generate_info) __lowercase : List[Any] = st.sidebar.selectbox('Would you like to use beam search or sample an answer?', ['beam', 'sampled']) __lowercase : Tuple = st.sidebar.slider( 'Minimum generation length', min_value=8, max_value=2_56, value=64, step=8, format=None, key=None ) __lowercase : int = st.sidebar.slider( 'Maximum generation length', min_value=64, max_value=5_12, value=2_56, step=16, format=None, key=None ) if sampled == "beam": __lowercase : Any = st.sidebar.slider('Beam size', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowercase : Dict = st.sidebar.slider( 'Nucleus sampling p', min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowercase : Union[str, Any] = st.sidebar.slider( 'Temperature', min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowercase : List[str] = None # start main text __lowercase : int = [ '<MY QUESTION>', 'How do people make chocolate?', 'Why do we get a fever when we are sick?', 'How can different animals perceive different colors?', 'What is natural language processing?', 'What\'s the best way to treat a sunburn?', 'What exactly are vitamins ?', 'How does nuclear energy provide electricity?', 'What\'s the difference between viruses and bacteria?', 'Why are flutes classified as woodwinds when most of them are made out of metal ?', 'Why do people like drinking coffee even though it tastes so bad?', 'What happens when wine ages? How does it make the wine taste better?', 'If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?', 'How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?', 'How does New Zealand have so many large bird predators?', ] __lowercase : Optional[int] = st.selectbox( 'What would you like to ask? ---- select <MY QUESTION> to enter a new query', questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowercase : Any = st.text_input('Enter your question here:', '') else: __lowercase : Any = question_s if st.button('Show me!'): if action in [0, 1, 3]: if index_type == "mixed": __lowercase , __lowercase : Optional[int] = make_support(question, source=wiki_source, method='dense', n_results=10) __lowercase , __lowercase : List[Any] = make_support(question, source=wiki_source, method='sparse', n_results=10) __lowercase : Optional[int] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowercase : str = support_list[:10] __lowercase : Optional[int] = '<P> ' + ' <P> '.join([res[-1] for res in support_list]) else: __lowercase , __lowercase : Optional[Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowercase , __lowercase : int = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == 'sampled'), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('### The model generated answer is:') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('--- \n ### The model is drawing information from the following Wikipedia passages:') for i, res in enumerate(support_list): __lowercase : str = 'https://en.wikipedia.org/wiki/{}'.format(res[0].replace(' ', '_')) __lowercase : Any = res[1].strip() if sec_titles == "": __lowercase : List[str] = '[{}]({})'.format(res[0], wiki_url) else: __lowercase : Union[str, Any] = sec_titles.split(' & ') __lowercase : str = ' & '.join( ['[{}]({}#{})'.format(sec.strip(), wiki_url, sec.strip().replace(' ', '_')) for sec in sec_list] ) st.markdown( '{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '> <span style="font-family:arial; font-size:10pt;">' + res[-1] + '</span>', unsafe_allow_html=True ) if action in [2, 3]: __lowercase : str = find_nearest_training(question) __lowercase : Optional[int] = nn_train_list[0] st.markdown( '--- \n ### The most similar question in the ELI5 training set was: \n\n {}'.format(train_exple['title']) ) __lowercase : Any = [ '{}. {}'.format(i + 1, ' \n'.join([line.strip() for line in ans.split('\n') if line.strip() != ''])) for i, (ans, sc) in enumerate(zip(train_exple['answers']['text'], train_exple['answers']['score'])) if i == 0 or sc > 2 ] st.markdown('##### Its answers were: \n\n {}'.format('\n'.join(answers_st))) __lowercase : List[Any] = '\n---\n\n**Disclaimer**\n\n*The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system.\nEvaluating biases of such a model and ensuring factual generations are still very much open research problems.\nTherefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.*\n' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
27
1
import logging import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import librosa import torch from datasets import DatasetDict, load_dataset from packaging import version from torch import nn from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForPreTraining, is_apex_available, trainer_utils, ) from transformers.models.wavaveca.modeling_wavaveca import _compute_mask_indices if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse("""1.6"""): _UpperCAmelCase = True from torch.cuda.amp import autocast _UpperCAmelCase = logging.getLogger(__name__) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Whether to log verbose messages or not.'''} , ) lowerCamelCase_ = field( default=2.0 , metadata={'''help''': '''Maximum temperature for gumbel softmax.'''} ) lowerCamelCase_ = field( default=0.5 , metadata={'''help''': '''Minimum temperature for gumbel softmax.'''} ) lowerCamelCase_ = field( default=0.999_995 , metadata={'''help''': '''Decay of gumbel temperature during training.'''} ) def UpperCamelCase ( __lowercase : ModelArguments ,__lowercase : TrainingArguments ): '''simple docstring''' logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,handlers=[logging.StreamHandler(sys.stdout )] ,) A_ : Union[str, Any] = logging.WARNING if model_args.verbose_logging: A_ : int = logging.DEBUG elif trainer_utils.is_main_process(training_args.local_rank ): A_ : Tuple = logging.INFO logger.setLevel(__lowercase ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = field( default=__A , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) lowerCamelCase_ = field( default='''train''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) lowerCamelCase_ = field( default='''validation''' , metadata={ '''help''': ( '''The name of the validation data set split to use (via the datasets library). Defaults to \'validation\'''' ) } , ) lowerCamelCase_ = field( default='''file''' , metadata={'''help''': '''Column in the dataset that contains speech file path. Defaults to \'file\''''} , ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) lowerCamelCase_ = field( default=1 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) lowerCamelCase_ = field( default=__A , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) lowerCamelCase_ = field( default=20.0 , metadata={'''help''': '''Filter audio files that are longer than `max_duration_in_seconds` seconds'''} ) @dataclass class UpperCAmelCase : '''simple docstring''' lowerCamelCase_ = 42 lowerCamelCase_ = 42 lowerCamelCase_ = "longest" lowerCamelCase_ = None lowerCamelCase_ = None def __call__( self , lowercase ): """simple docstring""" A_ : str = self.feature_extractor.pad( lowercase , max_length=self.max_length , padding=self.padding , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors='pt' , ) A_ : Union[str, Any] = self.model._get_feat_extract_output_lengths(batch['input_values'].shape[-1] ) A_ : int = batch['input_values'].shape[0] # make sure that no loss is computed on padded inputs if batch["attention_mask"] is not None: # compute real output lengths according to convolution formula A_ : Any = self.model._get_feat_extract_output_lengths(batch['attention_mask'].sum(-1 ) ).to( torch.long ) A_ : Any = torch.zeros( (batch_size, mask_indices_seq_length) , dtype=torch.long , device=batch['input_values'].device ) # these two operations makes sure that all values # before the output lengths indices are attended to A_ : int = 1 A_ : Optional[int] = attention_mask.flip([-1] ).cumsum(-1 ).flip([-1] ).bool() # sample randomly masked indices A_ : Dict = _compute_mask_indices( (batch_size, mask_indices_seq_length) , self.model.config.mask_time_prob , self.model.config.mask_time_length , attention_mask=lowercase , min_masks=2 , ) return batch class UpperCAmelCase ( __A ): '''simple docstring''' def __init__( self , *lowercase , lowercase=1 , lowercase=0 , lowercase=1.0 , **lowercase ): """simple docstring""" super().__init__(*lowercase , **lowercase ) A_ : List[str] = 0 A_ : str = max_gumbel_temp A_ : Optional[Any] = min_gumbel_temp A_ : Any = gumbel_temp_decay def lowerCAmelCase_ ( self , lowercase , lowercase ): """simple docstring""" model.train() A_ : str = self._prepare_inputs(lowercase ) if self.use_amp: with autocast(): A_ : Optional[int] = self.compute_loss(lowercase , lowercase ) else: A_ : int = self.compute_loss(lowercase , lowercase ) if self.args.n_gpu > 1 or self.deepspeed: if model.module.config.ctc_loss_reduction == "mean": A_ : Optional[Any] = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": A_ : List[Any] = loss.sum() / (inputs['mask_time_indices']).sum() else: raise ValueError(F'''{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']''' ) if self.args.gradient_accumulation_steps > 1: A_ : Any = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(lowercase ).backward() elif self.use_apex: with amp.scale_loss(lowercase , self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(lowercase ) else: loss.backward() self.num_update_step += 1 # make sure gumbel softmax temperature is decayed if self.args.n_gpu > 1 or self.deepspeed: model.module.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) else: model.set_gumbel_temperature( max(self.max_gumbel_temp * self.gumbel_temp_decay**self.num_update_step , self.min_gumbel_temp ) ) return loss.detach() def UpperCamelCase ( ): '''simple docstring''' A_ : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) A_ , A_ , A_ : List[str] = parser.parse_args_into_dataclasses() configure_logger(__lowercase ,__lowercase ) # Downloading and loading a dataset from the hub. A_ : int = load_dataset(data_args.dataset_name ,data_args.dataset_config_name ,cache_dir=model_args.cache_dir ) if "validation" not in datasets.keys(): # make sure only "validation" and "train" keys remain" A_ : Any = DatasetDict() A_ : Dict = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f'''{data_args.train_split_name}[:{data_args.validation_split_percentage}%]''' ,cache_dir=model_args.cache_dir ,) A_ : Tuple = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f'''{data_args.train_split_name}[{data_args.validation_split_percentage}%:]''' ,cache_dir=model_args.cache_dir ,) else: # make sure only "validation" and "train" keys remain" A_ : Tuple = DatasetDict() A_ : Dict = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split='validation' ,cache_dir=model_args.cache_dir ,) A_ : Union[str, Any] = load_dataset( data_args.dataset_name ,data_args.dataset_config_name ,split=f'''{data_args.train_split_name}''' ,cache_dir=model_args.cache_dir ,) # only normalized-inputs-training is supported A_ : Dict = WavaVecaFeatureExtractor.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,do_normalize=__lowercase ) def prepare_dataset(__lowercase : Optional[int] ): # check that all files have the correct sampling rate A_ , A_ : str = librosa.load(batch[data_args.speech_file_column] ,sr=feature_extractor.sampling_rate ) return batch # load audio files into numpy arrays A_ : List[Any] = datasets.map( __lowercase ,num_proc=data_args.preprocessing_num_workers ,remove_columns=datasets['train'].column_names ) # filter audio files that are too long A_ : Tuple = vectorized_datasets.filter( lambda __lowercase : len(data['speech'] ) < int(data_args.max_duration_in_seconds * feature_extractor.sampling_rate ) ) def normalize(__lowercase : Any ): return feature_extractor(batch['speech'] ,sampling_rate=feature_extractor.sampling_rate ) # normalize and transform to `BatchFeatures` A_ : Optional[int] = vectorized_datasets.map( __lowercase ,batched=__lowercase ,num_proc=data_args.preprocessing_num_workers ,load_from_cache_file=not data_args.overwrite_cache ,remove_columns=vectorized_datasets['train'].column_names ,) # pretraining is only supported for "newer" stable layer norm architecture # apply_spec_augment has to be True, mask_feature_prob has to be 0.0 A_ : int = WavaVecaConfig.from_pretrained( model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,gradient_checkpointing=training_args.gradient_checkpointing ,) if not config.do_stable_layer_norm or config.feat_extract_norm != "layer": raise ValueError( 'PreTraining is only supported for ``config.do_stable_layer_norm=True`` and' ' ``config.feat_extract_norm=\'layer\'' ) A_ : int = WavaVecaForPreTraining(__lowercase ) A_ : Union[str, Any] = DataCollatorForWavaVecaPretraining(model=__lowercase ,feature_extractor=__lowercase ) A_ : Union[str, Any] = WavaVecaPreTrainer( model=__lowercase ,data_collator=__lowercase ,args=__lowercase ,train_dataset=vectorized_datasets['train'] ,eval_dataset=vectorized_datasets['validation'] ,tokenizer=__lowercase ,max_gumbel_temp=model_args.max_gumbel_temperature ,min_gumbel_temp=model_args.min_gumbel_temperature ,gumbel_temp_decay=model_args.gumbel_temperature_decay ,) trainer.train() if __name__ == "__main__": main()
192
import math def UpperCamelCase ( __lowercase : int = 1_00 ): '''simple docstring''' A_ : List[Any] = sum(i * i for i in range(1 ,n + 1 ) ) A_ : int = int(math.pow(sum(range(1 ,n + 1 ) ) ,2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(F"""{solution() = }""")
192
1
from __future__ import annotations def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float ) -> float: """simple docstring""" if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ) -> float: """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float , __UpperCamelCase : float , ) -> float: """simple docstring""" if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( __UpperCamelCase , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
219
import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = ComputeEnvironment.AMAZON_SAGEMAKER lowerCAmelCase_ = True lowerCAmelCase_ = "ml.p3.2xlarge" lowerCAmelCase_ = "accelerate_sagemaker_execution_role" lowerCAmelCase_ = "hf-sm" lowerCAmelCase_ = "us-east-1" lowerCAmelCase_ = 1 lowerCAmelCase_ = "accelerate-sagemaker-1" lowerCAmelCase_ = "1.6" lowerCAmelCase_ = "4.4" lowerCAmelCase_ = "train.py" lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "False", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] lowerCAmelCase_ = [ "--model_name_or_path", "bert", "--do_train", "--do_test", "False", "--do_predict", "--epochs", "3", "--learning_rate", "5e-5", "--max_steps", "50.5", ] class __snake_case ( unittest.TestCase ): def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args["""model_name_or_path"""] , _lowercase ) assert isinstance(converted_args["""do_train"""] , _lowercase ) assert isinstance(converted_args["""epochs"""] , _lowercase ) assert isinstance(converted_args["""learning_rate"""] , _lowercase ) assert isinstance(converted_args["""max_steps"""] , _lowercase ) with pytest.raises(_lowercase ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
219
1
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __snake_case = logging.get_logger(__name__) def lowerCAmelCase_ ( __lowerCAmelCase )-> List[int]: '''simple docstring''' if isinstance(__lowerCAmelCase , np.ndarray ): return list(tensor.shape ) UpperCAmelCase : int =tf.shape(__lowerCAmelCase ) if tensor.shape == tf.TensorShape(__lowerCAmelCase ): return dynamic UpperCAmelCase : Optional[Any] =tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCAmelCase )] def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None )-> tf.Tensor: '''simple docstring''' return tf.nn.softmax(logits=logits + 1e-9 , axis=__lowerCAmelCase , name=__lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1e-5 , __lowerCAmelCase=-1 )-> Union[str, Any]: '''simple docstring''' if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise NotImplementedError('''Only 1D weight and bias tensors are supported for now, with only a single axis.''' ) # Get mean and variance on the axis to be normalized UpperCAmelCase , UpperCAmelCase : Optional[Any] =tf.nn.moments(__lowerCAmelCase , axes=[axis] , keepdims=__lowerCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis UpperCAmelCase : Dict =[1] * inputs.shape.rank UpperCAmelCase : Optional[int] =shape_list(__lowerCAmelCase )[axis] UpperCAmelCase : List[str] =tf.reshape(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Tuple =tf.reshape(__lowerCAmelCase , __lowerCAmelCase ) # Compute layer normalization using the batch_normalization # function. UpperCAmelCase : Dict =tf.nn.batch_normalization( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , offset=__lowerCAmelCase , scale=__lowerCAmelCase , variance_epsilon=__lowerCAmelCase , ) return outputs def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase=0 , __lowerCAmelCase=-1 )-> List[Any]: '''simple docstring''' if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input UpperCAmelCase : Optional[Any] =tf.shape(__lowerCAmelCase ) UpperCAmelCase : Union[str, Any] =tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) UpperCAmelCase : List[Any] =tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowerCAmelCase , __lowerCAmelCase ) def lowerCAmelCase_ ( __lowerCAmelCase )-> tf.Tensor: '''simple docstring''' if not isinstance(__lowerCAmelCase , tf.Tensor ): UpperCAmelCase : List[Any] =tf.convert_to_tensor(__lowerCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: UpperCAmelCase : List[Any] =encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: UpperCAmelCase : Dict =encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) UpperCAmelCase : List[str] =( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = "input_ids" )-> None: '''simple docstring''' tf.debugging.assert_less( __lowerCAmelCase , tf.cast(__lowerCAmelCase , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCAmelCase )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : str =6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. UpperCAmelCase : List[str] =[x for x in data if len(__lowerCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( '''The following attributes cannot be saved to HDF5 file because ''' f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) UpperCAmelCase : Optional[int] =np.asarray(__lowerCAmelCase ) UpperCAmelCase : List[str] =1 UpperCAmelCase : List[Any] =np.array_split(__lowerCAmelCase , __lowerCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 UpperCAmelCase : Any =np.array_split(__lowerCAmelCase , __lowerCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCAmelCase ): UpperCAmelCase : int =chunk_data else: UpperCAmelCase : Any =data def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase )-> Dict: '''simple docstring''' if name in group.attrs: UpperCAmelCase : str =[n.decode('''utf8''' ) if hasattr(__lowerCAmelCase , '''decode''' ) else n for n in group.attrs[name]] else: UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : str =0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('''utf8''' ) if hasattr(__lowerCAmelCase , '''decode''' ) else n for n in group.attrs['''%s%d''' % (name, chunk_id)]] ) chunk_id += 1 return data def lowerCAmelCase_ ( __lowerCAmelCase )-> Optional[int]: '''simple docstring''' def _expand_single_ad_tensor(__lowerCAmelCase ): if isinstance(__lowerCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowerCAmelCase )
78
import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __snake_case = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. __snake_case = direct_transformers_import(PATH_TO_TRANSFORMERS) __snake_case = transformers.models.auto.configuration_auto.CONFIG_MAPPING __snake_case = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> Any: '''simple docstring''' UpperCAmelCase : Tuple =False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f'''config.{attribute}''' in modeling_source or f'''getattr(config, "{attribute}"''' in modeling_source or f'''getattr(self.config, "{attribute}"''' in modeling_source ): UpperCAmelCase : Optional[Any] =True # Deal with multi-line cases elif ( re.search( Rf'''getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*"{attribute}"''' , __lowerCAmelCase , ) is not None ): UpperCAmelCase : List[Any] =True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCAmelCase : Optional[Any] =True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCAmelCase : List[str] =[ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCAmelCase : Optional[int] =['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCAmelCase : Tuple =True if not attribute_used: UpperCAmelCase : Optional[Any] =False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCAmelCase : Any =True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCAmelCase : Optional[int] =True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCAmelCase : List[str] =True elif attribute.endswith('''_token_id''' ): UpperCAmelCase : Dict =True # configuration class specific cases if not case_allowed: UpperCAmelCase : Tuple =SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCAmelCase : Optional[Any] =allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def lowerCAmelCase_ ( __lowerCAmelCase )-> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] =dict(inspect.signature(config_class.__init__ ).parameters ) UpperCAmelCase : Optional[int] =[x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCAmelCase : List[Any] =[signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCAmelCase : Tuple ={} if len(config_class.attribute_map ) > 0: UpperCAmelCase : List[Any] ={v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCAmelCase : Dict =inspect.getsourcefile(__lowerCAmelCase ) UpperCAmelCase : int =os.path.dirname(__lowerCAmelCase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCAmelCase : List[str] =[os.path.join(__lowerCAmelCase , __lowerCAmelCase ) for fn in os.listdir(__lowerCAmelCase ) if fn.startswith('''modeling_''' )] # Get the source code strings UpperCAmelCase : List[Any] =[] for path in modeling_paths: if os.path.isfile(__lowerCAmelCase ): with open(__lowerCAmelCase ) as fp: modeling_sources.append(fp.read() ) UpperCAmelCase : int =[] for config_param, default_value in zip(__lowerCAmelCase , __lowerCAmelCase ): # `attributes` here is all the variant names for `config_param` UpperCAmelCase : Tuple =[config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): unused_attributes.append(attributes[0] ) return sorted(__lowerCAmelCase ) def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] ={} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCAmelCase : Tuple =[ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda __lowerCAmelCase : inspect.isclass(__lowerCAmelCase ) and issubclass(__lowerCAmelCase , __lowerCAmelCase ) and inspect.getmodule(__lowerCAmelCase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCAmelCase : Dict =check_config_attributes_being_used(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: UpperCAmelCase : List[str] =unused_attributes if len(__lowerCAmelCase ) > 0: UpperCAmelCase : Union[str, Any] ='''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += f'''{name}: {attributes}\n''' raise ValueError(__lowerCAmelCase ) if __name__ == "__main__": check_config_attributes()
78
1
from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __snake_case ( lowerCamelCase__ ): __lowerCamelCase : torch.FloatTensor class __snake_case ( lowerCamelCase__ , lowerCamelCase__ ): @register_to_config def __init__( self , snake_case__ = 32 , snake_case__ = 64 , snake_case__ = 20 , snake_case__ = 768 , snake_case__=77 , snake_case__=4 , snake_case__ = 0.0 , snake_case__ = "silu" , snake_case__ = None , snake_case__ = None , snake_case__ = "linear" , snake_case__ = "prd" , snake_case__ = None , snake_case__ = None , snake_case__ = None , ) -> Tuple: '''simple docstring''' super().__init__() UpperCAmelCase : List[Any] =num_attention_heads UpperCAmelCase : Tuple =attention_head_dim UpperCAmelCase : Union[str, Any] =num_attention_heads * attention_head_dim UpperCAmelCase : int =additional_embeddings UpperCAmelCase : List[str] =time_embed_dim or inner_dim UpperCAmelCase : List[str] =embedding_proj_dim or embedding_dim UpperCAmelCase : Any =clip_embed_dim or embedding_dim UpperCAmelCase : Dict =Timesteps(snake_case__ , snake_case__ , 0 ) UpperCAmelCase : Tuple =TimestepEmbedding(snake_case__ , snake_case__ , out_dim=snake_case__ , act_fn=snake_case__ ) UpperCAmelCase : Union[str, Any] =nn.Linear(snake_case__ , snake_case__ ) if embedding_proj_norm_type is None: UpperCAmelCase : Dict =None elif embedding_proj_norm_type == "layer": UpperCAmelCase : int =nn.LayerNorm(snake_case__ ) else: raise ValueError(f'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) UpperCAmelCase : Optional[Any] =nn.Linear(snake_case__ , snake_case__ ) if encoder_hid_proj_type is None: UpperCAmelCase : Optional[int] =None elif encoder_hid_proj_type == "linear": UpperCAmelCase : Any =nn.Linear(snake_case__ , snake_case__ ) else: raise ValueError(f'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) UpperCAmelCase : Dict =nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , snake_case__ ) ) if added_emb_type == "prd": UpperCAmelCase : Dict =nn.Parameter(torch.zeros(1 , 1 , snake_case__ ) ) elif added_emb_type is None: UpperCAmelCase : int =None else: raise ValueError( f'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) UpperCAmelCase : List[str] =nn.ModuleList( [ BasicTransformerBlock( snake_case__ , snake_case__ , snake_case__ , dropout=snake_case__ , activation_fn='''gelu''' , attention_bias=snake_case__ , ) for d in range(snake_case__ ) ] ) if norm_in_type == "layer": UpperCAmelCase : Optional[Any] =nn.LayerNorm(snake_case__ ) elif norm_in_type is None: UpperCAmelCase : Union[str, Any] =None else: raise ValueError(f'''Unsupported norm_in_type: {norm_in_type}.''' ) UpperCAmelCase : str =nn.LayerNorm(snake_case__ ) UpperCAmelCase : List[str] =nn.Linear(snake_case__ , snake_case__ ) UpperCAmelCase : Union[str, Any] =torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0000.0 ) causal_attention_mask.triu_(1 ) UpperCAmelCase : Optional[Any] =causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , snake_case__ , persistent=snake_case__ ) UpperCAmelCase : int =nn.Parameter(torch.zeros(1 , snake_case__ ) ) UpperCAmelCase : Union[str, Any] =nn.Parameter(torch.zeros(1 , snake_case__ ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def UpperCAmelCase__ ( self ) -> Dict[str, AttentionProcessor]: '''simple docstring''' UpperCAmelCase : Dict ={} def fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ): if hasattr(snake_case__ , '''set_processor''' ): UpperCAmelCase : Tuple =module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'''{name}.{sub_name}''' , snake_case__ , snake_case__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case__ , snake_case__ , snake_case__ ) return processors def UpperCAmelCase__ ( self , snake_case__ ) -> Dict: '''simple docstring''' UpperCAmelCase : int =len(self.attn_processors.keys() ) if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != count: raise ValueError( f'''A dict of processors was passed, but the number of processors {len(snake_case__ )} does not match the''' f''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ): if hasattr(snake_case__ , '''set_processor''' ): if not isinstance(snake_case__ , snake_case__ ): module.set_processor(snake_case__ ) else: module.set_processor(processor.pop(f'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'''{name}.{sub_name}''' , snake_case__ , snake_case__ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case__ , snake_case__ , snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.set_attn_processor(AttnProcessor() ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = True , ) -> Any: '''simple docstring''' UpperCAmelCase : List[str] =hidden_states.shape[0] UpperCAmelCase : int =timestep if not torch.is_tensor(snake_case__ ): UpperCAmelCase : Dict =torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(snake_case__ ) and len(timesteps.shape ) == 0: UpperCAmelCase : Optional[int] =timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase : Tuple =timesteps * torch.ones(snake_case__ , dtype=timesteps.dtype , device=timesteps.device ) UpperCAmelCase : Union[str, Any] =self.time_proj(snake_case__ ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. UpperCAmelCase : Any =timesteps_projected.to(dtype=self.dtype ) UpperCAmelCase : Any =self.time_embedding(snake_case__ ) if self.embedding_proj_norm is not None: UpperCAmelCase : Any =self.embedding_proj_norm(snake_case__ ) UpperCAmelCase : Dict =self.embedding_proj(snake_case__ ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: UpperCAmelCase : Tuple =self.encoder_hidden_states_proj(snake_case__ ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) UpperCAmelCase : int =self.proj_in(snake_case__ ) UpperCAmelCase : Dict =self.positional_embedding.to(hidden_states.dtype ) UpperCAmelCase : List[Any] =[] UpperCAmelCase : List[Any] =0 if encoder_hidden_states is not None: additional_embeds.append(snake_case__ ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: UpperCAmelCase : List[str] =proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: UpperCAmelCase : Dict =hidden_states[:, None, :] UpperCAmelCase : int =additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: UpperCAmelCase : Optional[Any] =self.prd_embedding.to(hidden_states.dtype ).expand(snake_case__ , -1 , -1 ) additional_embeds.append(snake_case__ ) UpperCAmelCase : int =torch.cat( snake_case__ , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens UpperCAmelCase : Any =additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: UpperCAmelCase : List[Any] =F.pad( snake_case__ , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) UpperCAmelCase : Tuple =hidden_states + positional_embeddings if attention_mask is not None: UpperCAmelCase : List[str] =(1 - attention_mask.to(hidden_states.dtype )) * -1_0000.0 UpperCAmelCase : Tuple =F.pad(snake_case__ , (0, self.additional_embeddings) , value=0.0 ) UpperCAmelCase : Dict =(attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) UpperCAmelCase : Optional[int] =attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: UpperCAmelCase : Optional[Any] =self.norm_in(snake_case__ ) for block in self.transformer_blocks: UpperCAmelCase : Optional[int] =block(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Optional[int] =self.norm_out(snake_case__ ) if self.prd_embedding is not None: UpperCAmelCase : List[Any] =hidden_states[:, -1] else: UpperCAmelCase : Dict =hidden_states[:, additional_embeddings_len:] UpperCAmelCase : List[str] =self.proj_to_clip_embeddings(snake_case__ ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=snake_case__ ) def UpperCAmelCase__ ( self , snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str =(prior_latents * self.clip_std) + self.clip_mean return prior_latents
348
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : Any =FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : Tuple =AutoTokenizer.from_pretrained('''google/mt5-small''' ) UpperCAmelCase : List[str] =tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids UpperCAmelCase : List[Any] =tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids UpperCAmelCase : Union[str, Any] =shift_tokens_right(snake_case__ , model.config.pad_token_id , model.config.decoder_start_token_id ) UpperCAmelCase : List[str] =model(snake_case__ , decoder_input_ids=snake_case__ ).logits UpperCAmelCase : Any =optax.softmax_cross_entropy(snake_case__ , onehot(snake_case__ , logits.shape[-1] ) ).mean() UpperCAmelCase : Union[str, Any] =-(labels.shape[-1] * loss.item()) UpperCAmelCase : List[str] =-84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
348
1
import datasets from .evaluate import evaluate _UpperCAmelCase : int = "\\n@inproceedings{Rajpurkar2016SQuAD10,\n title={SQuAD: 100, 000+ Questions for Machine Comprehension of Text},\n author={Pranav Rajpurkar and Jian Zhang and Konstantin Lopyrev and Percy Liang},\n booktitle={EMNLP},\n year={2016}\n}\n" _UpperCAmelCase : Optional[Any] = "\nThis metric wrap the official scoring script for version 1 of the Stanford Question Answering Dataset (SQuAD).\n\nStanford Question Answering Dataset (SQuAD) is a reading comprehension dataset, consisting of questions posed by\ncrowdworkers on a set of Wikipedia articles, where the answer to every question is a segment of text, or span,\nfrom the corresponding reading passage, or the question might be unanswerable.\n" _UpperCAmelCase : Any = "\nComputes SQuAD scores (F1 and EM).\nArgs:\n predictions: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair as given in the references (see below)\n - 'prediction_text': the text of the answer\n references: List of question-answers dictionaries with the following key-values:\n - 'id': id of the question-answer pair (see above),\n - 'answers': a Dict in the SQuAD dataset format\n {\n 'text': list of possible texts for the answer, as a list of strings\n 'answer_start': list of start positions for the answer, as a list of ints\n }\n Note that answer_start values are not taken into account to compute the metric.\nReturns:\n 'exact_match': Exact match (the normalized answer exactly match the gold answer)\n 'f1': The F-score of predicted tokens versus the gold answer\nExamples:\n\n >>> predictions = [{'prediction_text': '1976', 'id': '56e10a3be3433e1400422b22'}]\n >>> references = [{'answers': {'answer_start': [97], 'text': ['1976']}, 'id': '56e10a3be3433e1400422b22'}]\n >>> squad_metric = datasets.load_metric(\"squad\")\n >>> results = squad_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 100.0, 'f1': 100.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class __lowerCAmelCase ( datasets.Metric): def SCREAMING_SNAKE_CASE ( self: int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": {"id": datasets.Value("string" ), "prediction_text": datasets.Value("string" )}, "references": { "id": datasets.Value("string" ), "answers": datasets.features.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), }, } ) , codebase_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , reference_urls=["https://rajpurkar.github.io/SQuAD-explorer/"] , ) def SCREAMING_SNAKE_CASE ( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: Optional[Any] ): lowercase :Tuple = {prediction["id"]: prediction["prediction_text"] for prediction in predictions} lowercase :Optional[Any] = [ { "paragraphs": [ { "qas": [ { "answers": [{"text": answer_text} for answer_text in ref["answers"]["text"]], "id": ref["id"], } for ref in references ] } ] } ] lowercase :List[Any] = evaluate(dataset=_lowerCAmelCase , predictions=_lowerCAmelCase ) return score
158
import logging import os import threading import time try: import warnings except ImportError: _UpperCAmelCase : List[str] = None try: import msvcrt except ImportError: _UpperCAmelCase : Tuple = None try: import fcntl except ImportError: _UpperCAmelCase : Optional[Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: _UpperCAmelCase : Tuple = OSError # Data # ------------------------------------------------ _UpperCAmelCase : Optional[int] = [ "Timeout", "BaseFileLock", "WindowsFileLock", "UnixFileLock", "SoftFileLock", "FileLock", ] _UpperCAmelCase : Optional[Any] = "3.0.12" _UpperCAmelCase : int = None def UpperCAmelCase__ ( ): global _logger lowercase :List[str] = _logger or logging.getLogger(__name__ ) return _logger class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: Dict ): lowercase :Any = lock_file return None def __str__( self: Dict ): lowercase :str = F"The file lock '{self.lock_file}' could not be acquired." return temp class __lowerCAmelCase : def __init__( self: Tuple , _lowerCAmelCase: Any ): lowercase :Optional[Any] = lock return None def __enter__( self: List[Any] ): return self.lock def __exit__( self: Dict , _lowerCAmelCase: Optional[Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: Optional[int] ): self.lock.release() return None class __lowerCAmelCase : def __init__( self: Optional[Any] , _lowerCAmelCase: Union[str, Any] , _lowerCAmelCase: Tuple=-1 , _lowerCAmelCase: int=None ): lowercase :Any = max_filename_length if max_filename_length is not None else 2_55 # Hash the filename if it's too long lowercase :int = self.hash_filename_if_too_long(_lowerCAmelCase , _lowerCAmelCase ) # The path to the lock file. lowercase :List[Any] = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. lowercase :Any = None # The default timeout value. lowercase :Any = timeout # We use this lock primarily for the lock counter. lowercase :Optional[int] = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. lowercase :Optional[int] = 0 return None @property def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): return self._lock_file @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._timeout @timeout.setter def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: List[str] ): lowercase :Tuple = float(_lowerCAmelCase ) return None def SCREAMING_SNAKE_CASE ( self: int ): raise NotImplementedError() def SCREAMING_SNAKE_CASE ( self: int ): raise NotImplementedError() @property def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): return self._lock_file_fd is not None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: Union[str, Any]=0.05 ): # Use the default timeout, if no timeout is provided. if timeout is None: lowercase :List[str] = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 lowercase :Any = id(self ) lowercase :Optional[int] = self._lock_file lowercase :Optional[Any] = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F"Attempting to acquire lock {lock_id} on {lock_filename}" ) self._acquire() if self.is_locked: logger().debug(F"Lock {lock_id} acquired on {lock_filename}" ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F"Timeout on acquiring lock {lock_id} on {lock_filename}" ) raise Timeout(self._lock_file ) else: logger().debug( F"Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ..." ) time.sleep(_lowerCAmelCase ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: lowercase :Union[str, Any] = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def SCREAMING_SNAKE_CASE ( self: Tuple , _lowerCAmelCase: Tuple=False ): with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: lowercase :Union[str, Any] = id(self ) lowercase :str = self._lock_file logger().debug(F"Attempting to release lock {lock_id} on {lock_filename}" ) self._release() lowercase :List[str] = 0 logger().debug(F"Lock {lock_id} released on {lock_filename}" ) return None def __enter__( self: Tuple ): self.acquire() return self def __exit__( self: Union[str, Any] , _lowerCAmelCase: List[Any] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Dict ): self.release() return None def __del__( self: Optional[Any] ): self.release(force=_lowerCAmelCase ) return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] , _lowerCAmelCase: str , _lowerCAmelCase: int ): lowercase :Union[str, Any] = os.path.basename(_lowerCAmelCase ) if len(_lowerCAmelCase ) > max_length and max_length > 0: lowercase :Dict = os.path.dirname(_lowerCAmelCase ) lowercase :Any = str(hash(_lowerCAmelCase ) ) lowercase :Union[str, Any] = filename[: max_length - len(_lowerCAmelCase ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(_lowerCAmelCase , _lowerCAmelCase ) else: return path class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: int , _lowerCAmelCase: int , _lowerCAmelCase: Optional[Any]=-1 , _lowerCAmelCase: List[Any]=None ): from .file_utils import relative_to_absolute_path super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) lowercase :Optional[int] = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def SCREAMING_SNAKE_CASE ( self: Any ): lowercase :int = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: lowercase :Tuple = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: try: msvcrt.locking(_lowerCAmelCase , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(_lowerCAmelCase ) else: lowercase :Any = fd return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): lowercase :Any = self._lock_file_fd lowercase :Tuple = None msvcrt.locking(_lowerCAmelCase , msvcrt.LK_UNLCK , 1 ) os.close(_lowerCAmelCase ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class __lowerCAmelCase ( lowerCAmelCase): def __init__( self: str , _lowerCAmelCase: Tuple , _lowerCAmelCase: Dict=-1 , _lowerCAmelCase: Tuple=None ): lowercase :List[str] = os.statvfs(os.path.dirname(_lowerCAmelCase ) ).f_namemax super().__init__(_lowerCAmelCase , timeout=_lowerCAmelCase , max_filename_length=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: int ): lowercase :Any = os.O_RDWR | os.O_CREAT | os.O_TRUNC lowercase :Optional[int] = os.open(self._lock_file , _lowerCAmelCase ) try: fcntl.flock(_lowerCAmelCase , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(_lowerCAmelCase ) else: lowercase :Optional[Any] = fd return None def SCREAMING_SNAKE_CASE ( self: Union[str, Any] ): # Do not remove the lockfile: # # https://github.com/benediktschmitt/py-filelock/issues/31 # https://stackoverflow.com/questions/17708885/flock-removing-locked-file-without-race-condition lowercase :Dict = self._lock_file_fd lowercase :Union[str, Any] = None fcntl.flock(_lowerCAmelCase , fcntl.LOCK_UN ) os.close(_lowerCAmelCase ) return None class __lowerCAmelCase ( lowerCAmelCase): def SCREAMING_SNAKE_CASE ( self: List[Any] ): lowercase :str = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: lowercase :List[Any] = os.open(self._lock_file , _lowerCAmelCase ) except OSError: pass else: lowercase :int = fd return None def SCREAMING_SNAKE_CASE ( self: Optional[Any] ): os.close(self._lock_file_fd ) lowercase :int = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None _UpperCAmelCase : Tuple = None if msvcrt: _UpperCAmelCase : str = WindowsFileLock elif fcntl: _UpperCAmelCase : List[Any] = UnixFileLock else: _UpperCAmelCase : Optional[int] = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
158
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A__ = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''MobileViTFeatureExtractor'''] A__ = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a : def __init__( self :List[Any] ,__lowercase :List[Any] ,__lowercase :Union[str, Any]=1_3 ,__lowercase :str=3_0 ,__lowercase :Optional[Any]=2 ,__lowercase :int=3 ,__lowercase :List[Any]=True ,__lowercase :Tuple=True ,__lowercase :List[Any]=3_2 ,__lowercase :str=2 ,__lowercase :Union[str, Any]=4 ,__lowercase :Dict=3_7 ,__lowercase :List[Any]="gelu" ,__lowercase :Optional[int]=0.1 ,__lowercase :str=0.1 ,__lowercase :Union[str, Any]=1_0 ,__lowercase :Optional[Any]=0.02 ,__lowercase :Union[str, Any]=3 ,__lowercase :Any=0.6 ,__lowercase :List[str]=None ,): snake_case__ : str = parent snake_case__ : int = batch_size snake_case__ : Dict = image_size snake_case__ : List[str] = patch_size snake_case__ : str = num_channels snake_case__ : int = is_training snake_case__ : List[str] = use_labels snake_case__ : List[str] = hidden_size snake_case__ : List[Any] = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Any = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : List[str] = hidden_dropout_prob snake_case__ : Union[str, Any] = attention_probs_dropout_prob snake_case__ : Optional[Any] = type_sequence_label_size snake_case__ : List[str] = initializer_range snake_case__ : Optional[Any] = mask_ratio snake_case__ : List[str] = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) snake_case__ : str = (image_size // patch_size) ** 2 snake_case__ : List[str] = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def __lowerCamelCase ( self :int ): snake_case__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ : Any = None if self.use_labels: snake_case__ : Tuple = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : List[Any] = self.get_config() return config, pixel_values, labels def __lowerCamelCase ( self :List[Any] ): return ViTMAEConfig( image_size=self.image_size ,patch_size=self.patch_size ,num_channels=self.num_channels ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,decoder_hidden_size=self.hidden_size ,decoder_num_hidden_layers=self.num_hidden_layers ,decoder_num_attention_heads=self.num_attention_heads ,decoder_intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,mask_ratio=self.mask_ratio ,) def __lowerCamelCase ( self :List[str] ,__lowercase :Union[str, Any] ,__lowercase :Dict ,__lowercase :List[str] ): snake_case__ : Optional[int] = TFViTMAEModel(config=__lowercase ) snake_case__ : int = model(__lowercase ,training=__lowercase ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :List[str] ,__lowercase :Optional[int] ,__lowercase :int ): snake_case__ : Dict = TFViTMAEForPreTraining(__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,training=__lowercase ) # expected sequence length = num_patches snake_case__ : Optional[Any] = (self.image_size // self.patch_size) ** 2 snake_case__ : int = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) # test greyscale images snake_case__ : Tuple = 1 snake_case__ : List[Any] = TFViTMAEForPreTraining(__lowercase ) snake_case__ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) snake_case__ : Any = model(__lowercase ,training=__lowercase ) snake_case__ : Any = self.patch_size**2 self.parent.assertEqual(result.logits.shape ,(self.batch_size, num_patches, expected_num_channels) ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = self.prepare_config_and_inputs() ((snake_case__) , (snake_case__) , (snake_case__)) : Optional[Any] = config_and_inputs snake_case__ : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase : Union[str, Any] = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase : Tuple = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : Dict = False __lowerCAmelCase : List[str] = False def __lowerCamelCase ( self :Any ): snake_case__ : Union[str, Any] = TFViTMAEModelTester(self ) snake_case__ : Dict = ConfigTester(self ,config_class=__lowercase ,has_text_modality=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :Optional[int] ): self.config_tester.run_common_tests() @unittest.skip(reason='''ViTMAE does not use inputs_embeds''' ) def __lowerCamelCase ( self :Dict ): pass def __lowerCamelCase ( self :Tuple ): snake_case__ , snake_case__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : Union[str, Any] = model_class(__lowercase ) self.assertIsInstance(model.get_input_embeddings() ,(tf.keras.layers.Layer) ) snake_case__ : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowercase ,tf.keras.layers.Layer ) ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ , snake_case__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case__ : str = model_class(__lowercase ) snake_case__ : Any = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case__ : Tuple = [*signature.parameters.keys()] snake_case__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def __lowerCamelCase ( self :List[Any] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__lowercase ) def __lowerCamelCase ( self :int ): # make the mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Any = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : Optional[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case__ : List[str] = model_class(__lowercase ) snake_case__ : Union[str, Any] = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : Any = model(__lowercase ,noise=__lowercase ) snake_case__ : Optional[int] = copy.deepcopy(self._prepare_for_class(__lowercase ,__lowercase ) ) snake_case__ : List[Any] = model(**__lowercase ,noise=__lowercase ) snake_case__ : Optional[Any] = outputs_dict[0].numpy() snake_case__ : Optional[Any] = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) ,1e-6 ) def __lowerCamelCase ( self :Optional[Any] ): # make the mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(__lowercase :Dict ): snake_case__ : Any = {} for k, v in inputs_dict.items(): if tf.is_tensor(__lowercase ): snake_case__ : Dict = v.numpy() else: snake_case__ : str = np.array(__lowercase ) return inputs_np_dict for model_class in self.all_model_classes: snake_case__ : str = model_class(__lowercase ) snake_case__ : List[Any] = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : Dict = prepare_numpy_arrays(__lowercase ) snake_case__ : Tuple = model(__lowercase ,noise=__lowercase ) snake_case__ : Dict = model(**__lowercase ,noise=__lowercase ) self.assert_outputs_same(__lowercase ,__lowercase ) def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ,__lowercase :Optional[Any] ,__lowercase :List[str] ): # make masks reproducible np.random.seed(2 ) snake_case__ : Union[str, Any] = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) snake_case__ : int = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case__ : Any = tf.constant(__lowercase ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument snake_case__ : Optional[Any] = tf_noise super().check_pt_tf_models(__lowercase ,__lowercase ,__lowercase ) def __lowerCamelCase ( self :Dict ): # make mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : List[str] = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(__lowercase ) if module_member_name.endswith('''MainLayer''' ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len('''MainLayer''' )] == model_class.__name__[: -len('''Model''' )] for module_member in (getattr(__lowercase ,__lowercase ),) if isinstance(__lowercase ,__lowercase ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(__lowercase ,'''_keras_serializable''' ,__lowercase ) } snake_case__ : Optional[Any] = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : List[Any] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) snake_case__ : Any = tf.convert_to_tensor(__lowercase ) inputs_dict.update({'''noise''': noise} ) for main_layer_class in tf_main_layer_classes: snake_case__ : List[Any] = main_layer_class(__lowercase ) snake_case__ : Union[str, Any] = { name: tf.keras.Input(tensor.shape[1:] ,dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } snake_case__ : Optional[Any] = tf.keras.Model(__lowercase ,outputs=main_layer(__lowercase ) ) snake_case__ : List[str] = model(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: snake_case__ : List[str] = os.path.join(__lowercase ,'''keras_model.h5''' ) model.save(__lowercase ) snake_case__ : List[str] = tf.keras.models.load_model( __lowercase ,custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(__lowercase ,tf.keras.Model ) snake_case__ : Union[str, Any] = model(__lowercase ) self.assert_outputs_same(__lowercase ,__lowercase ) @slow def __lowerCamelCase ( self :Any ): # make mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : str = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : Tuple = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case__ : Optional[int] = model_class(__lowercase ) snake_case__ : str = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : List[Any] = model(__lowercase ,noise=__lowercase ) if model_class.__name__ == "TFViTMAEModel": snake_case__ : List[Any] = outputs.last_hidden_state.numpy() snake_case__ : List[Any] = 0 else: snake_case__ : Any = outputs.logits.numpy() snake_case__ : Tuple = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowercase ,saved_model=__lowercase ) snake_case__ : Optional[Any] = model_class.from_pretrained(__lowercase ) snake_case__ : Any = model(__lowercase ,noise=__lowercase ) if model_class.__name__ == "TFViTMAEModel": snake_case__ : Dict = after_outputs['''last_hidden_state'''].numpy() snake_case__ : List[Any] = 0 else: snake_case__ : Any = after_outputs['''logits'''].numpy() snake_case__ : Optional[Any] = 0 snake_case__ : int = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(__lowercase ,1e-5 ) def __lowerCamelCase ( self :int ): # make mask reproducible np.random.seed(2 ) snake_case__ , snake_case__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() snake_case__ : Dict = int((config.image_size // config.patch_size) ** 2 ) snake_case__ : List[str] = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: snake_case__ : int = model_class(__lowercase ) snake_case__ : int = self._prepare_for_class(__lowercase ,__lowercase ) snake_case__ : List[Any] = model(__lowercase ,noise=__lowercase ) snake_case__ : int = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(__lowercase ) snake_case__ : Any = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config snake_case__ : Optional[int] = model_class.from_config(model.config ) snake_case__ : Tuple = new_model(__lowercase ) # Build model new_model.set_weights(model.get_weights() ) snake_case__ : List[Any] = new_model(__lowercase ,noise=__lowercase ) self.assert_outputs_same(__lowercase ,__lowercase ) @unittest.skip( reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.''' ) def __lowerCamelCase ( self :List[Any] ): pass @unittest.skip(reason='''ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load''' ) def __lowerCamelCase ( self :Tuple ): pass @slow def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : List[Any] = TFViTMAEModel.from_pretrained('''google/vit-base-patch16-224''' ) self.assertIsNotNone(__lowercase ) def _lowerCAmelCase ( ) -> Dict: """simple docstring""" snake_case__ : str = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_tf @require_vision class a ( unittest.TestCase ): @cached_property def __lowerCamelCase ( self :List[str] ): return ViTImageProcessor.from_pretrained('''facebook/vit-mae-base''' ) if is_vision_available() else None @slow def __lowerCamelCase ( self :Any ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) snake_case__ : Tuple = TFViTMAEForPreTraining.from_pretrained('''facebook/vit-mae-base''' ) snake_case__ : int = self.default_image_processor snake_case__ : int = prepare_img() snake_case__ : Tuple = image_processor(images=__lowercase ,return_tensors='''tf''' ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) snake_case__ : str = ViTMAEConfig() snake_case__ : List[str] = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) snake_case__ : Dict = np.random.uniform(size=(1, num_patches) ) # forward pass snake_case__ : List[str] = model(**__lowercase ,noise=__lowercase ) # verify the logits snake_case__ : Optional[Any] = tf.convert_to_tensor([1, 1_9_6, 7_6_8] ) self.assertEqual(outputs.logits.shape ,__lowercase ) snake_case__ : Tuple = tf.convert_to_tensor( [[-0.0548, -1.7023, -0.9325], [0.3721, -0.5670, -0.2233], [0.8235, -1.3878, -0.3524]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] ,__lowercase ,atol=1e-4 )
230
1
"""simple docstring""" from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings( _lowerCAmelCase , R'''\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ''' , ) class __magic_name__ (_lowerCAmelCase ): def __a ( self , _a ) -> Optional[Any]: if self.framework == "tf": lowerCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": lowerCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ) else: raise ValueError("Unsupported framework" ) return masked_index def __a ( self , _a ) -> Any: lowerCAmelCase_ = self.get_masked_index(_lowercase ) lowerCAmelCase_ = np.prod(masked_index.shape ) if numel < 1: raise PipelineException( "fill-mask" , self.model.base_model_prefix , f"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def __a ( self , _a ) -> Optional[Any]: if isinstance(_lowercase , _lowercase ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["input_ids"][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_lowercase ) def __a ( self , _a , _a=None , **_a ) -> Optional[int]: if return_tensors is None: lowerCAmelCase_ = self.framework lowerCAmelCase_ = self.tokenizer(_lowercase , return_tensors=_lowercase ) self.ensure_exactly_one_mask_token(_lowercase ) return model_inputs def __a ( self , _a ) -> List[str]: lowerCAmelCase_ = self.model(**_lowercase ) lowerCAmelCase_ = model_inputs["input_ids"] return model_outputs def __a ( self , _a , _a=5 , _a=None ) -> int: # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: lowerCAmelCase_ = target_ids.shape[0] lowerCAmelCase_ = model_outputs["input_ids"][0] lowerCAmelCase_ = model_outputs["logits"] if self.framework == "tf": lowerCAmelCase_ = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] lowerCAmelCase_ = outputs.numpy() lowerCAmelCase_ = outputs[0, masked_index, :] lowerCAmelCase_ = stable_softmax(_lowercase , axis=-1 ) if target_ids is not None: lowerCAmelCase_ = tf.gather_nd(tf.squeeze(_lowercase , 0 ) , target_ids.reshape(-1 , 1 ) ) lowerCAmelCase_ = tf.expand_dims(_lowercase , 0 ) lowerCAmelCase_ = tf.math.top_k(_lowercase , k=_lowercase ) lowerCAmelCase_ , lowerCAmelCase_ = topk.values.numpy(), topk.indices.numpy() else: lowerCAmelCase_ = torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_lowercase ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample lowerCAmelCase_ = outputs[0, masked_index, :] lowerCAmelCase_ = logits.softmax(dim=-1 ) if target_ids is not None: lowerCAmelCase_ = probs[..., target_ids] lowerCAmelCase_ , lowerCAmelCase_ = probs.topk(_lowercase ) lowerCAmelCase_ = [] lowerCAmelCase_ = values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): lowerCAmelCase_ = [] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place lowerCAmelCase_ = input_ids.numpy().copy() if target_ids is not None: lowerCAmelCase_ = target_ids[p].tolist() lowerCAmelCase_ = p # Filter padding out: lowerCAmelCase_ = tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back lowerCAmelCase_ = self.tokenizer.decode(_lowercase , skip_special_tokens=_lowercase ) lowerCAmelCase_ = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence} row.append(_lowercase ) result.append(_lowercase ) if single_mask: return result[0] return result def __a ( self , _a , _a=None ) -> List[Any]: if isinstance(_lowercase , _lowercase ): lowerCAmelCase_ = [targets] try: lowerCAmelCase_ = self.tokenizer.get_vocab() except Exception: lowerCAmelCase_ = {} lowerCAmelCase_ = [] for target in targets: lowerCAmelCase_ = vocab.get(_lowercase , _lowercase ) if id_ is None: lowerCAmelCase_ = self.tokenizer( _lowercase , add_special_tokens=_lowercase , return_attention_mask=_lowercase , return_token_type_ids=_lowercase , max_length=1 , truncation=_lowercase , )["input_ids"] if len(_lowercase ) == 0: logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " "We cannot replace it with anything meaningful, ignoring it" ) continue lowerCAmelCase_ = input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f"The specified target token `{target}` does not exist in the model vocabulary. " f"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) lowerCAmelCase_ = list(set(_lowercase ) ) if len(_lowercase ) == 0: raise ValueError("At least one target must be provided when passed." ) lowerCAmelCase_ = np.array(_lowercase ) return target_ids def __a ( self , _a=None , _a=None ) -> Optional[int]: lowerCAmelCase_ = {} if targets is not None: lowerCAmelCase_ = self.get_target_ids(_lowercase , _lowercase ) lowerCAmelCase_ = target_ids if top_k is not None: lowerCAmelCase_ = top_k if self.tokenizer.mask_token_id is None: raise PipelineException( "fill-mask" , self.model.base_model_prefix , "The tokenizer does not define a `mask_token`." ) return {}, {}, postprocess_params def __call__( self , _a , *_a , **_a ) -> int: lowerCAmelCase_ = super().__call__(_lowercase , **_lowercase ) if isinstance(_lowercase , _lowercase ) and len(_lowercase ) == 1: return outputs[0] return outputs
369
import math from collections.abc import Iterator from itertools import takewhile def A(__a: int ): if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__a ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A(): lowerCAmelCase_ = 2 while True: if is_prime(__a ): yield num num += 1 def A(__a: int = 200_0000 ): return sum(takewhile(lambda __a : x < n , prime_generator() ) ) if __name__ == "__main__": print(F'''{solution() = }''')
22
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ : str = {'configuration_swin': ['SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwinConfig', 'SwinOnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = [ 'SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwinForImageClassification', 'SwinForMaskedImageModeling', 'SwinModel', 'SwinPreTrainedModel', 'SwinBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[int] = [ 'TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSwinForImageClassification', 'TFSwinForMaskedImageModeling', 'TFSwinModel', 'TFSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swin import SWIN_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinConfig, SwinOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swin import ( SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, SwinBackbone, SwinForImageClassification, SwinForMaskedImageModeling, SwinModel, SwinPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_swin import ( TF_SWIN_PRETRAINED_MODEL_ARCHIVE_LIST, TFSwinForImageClassification, TFSwinForMaskedImageModeling, TFSwinModel, TFSwinPreTrainedModel, ) else: import sys A_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
192
import json from typing import List, Optional, Tuple from tokenizers import normalizers from tokenizers.pre_tokenizers import BertPreTokenizer, PreTokenizer from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roformer import RoFormerTokenizer from .tokenization_utils import JiebaPreTokenizer A_ : List[str] = logging.get_logger(__name__) A_ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A_ : List[Any] = { 'vocab_file': { 'junnyu/roformer_chinese_small': 'https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/vocab.txt', 'junnyu/roformer_chinese_base': 'https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/vocab.txt', 'junnyu/roformer_chinese_char_small': ( 'https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/vocab.txt' ), 'junnyu/roformer_chinese_char_base': ( 'https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/vocab.txt' ), 'junnyu/roformer_small_discriminator': ( 'https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/vocab.txt' ), 'junnyu/roformer_small_generator': ( 'https://huggingface.co/junnyu/roformer_small_generator/resolve/main/vocab.txt' ), } } A_ : Tuple = { 'junnyu/roformer_chinese_small': 1536, 'junnyu/roformer_chinese_base': 1536, 'junnyu/roformer_chinese_char_small': 512, 'junnyu/roformer_chinese_char_base': 512, 'junnyu/roformer_small_discriminator': 128, 'junnyu/roformer_small_generator': 128, } A_ : Union[str, Any] = { 'junnyu/roformer_chinese_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_base': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_small': {'do_lower_case': True}, 'junnyu/roformer_chinese_char_base': {'do_lower_case': True}, 'junnyu/roformer_small_discriminator': {'do_lower_case': True}, 'junnyu/roformer_small_generator': {'do_lower_case': True}, } class _a (__magic_name__ ): '''simple docstring''' UpperCAmelCase__: Dict = VOCAB_FILES_NAMES UpperCAmelCase__: Tuple = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__: List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__: List[Any] = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__: Optional[int] = RoFormerTokenizer def __init__( self , A__=None , A__=None , A__=True , A__="[UNK]" , A__="[SEP]" , A__="[PAD]" , A__="[CLS]" , A__="[MASK]" , A__=True , A__=None , **A__ , ): super().__init__( A__ , tokenizer_file=A__ , do_lower_case=A__ , unk_token=A__ , sep_token=A__ , pad_token=A__ , cls_token=A__ , mask_token=A__ , tokenize_chinese_chars=A__ , strip_accents=A__ , **A__ , ) A__ : Tuple = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( pre_tok_state.get("""lowercase""" , A__ ) != do_lower_case or pre_tok_state.get("""strip_accents""" , A__ ) != strip_accents ): A__ : List[Any] = getattr(A__ , pre_tok_state.pop("""type""" ) ) A__ : Optional[int] = do_lower_case A__ : int = strip_accents A__ : str = pre_tok_class(**A__ ) A__ : Any = do_lower_case def __getstate__( self ): A__ : int = self.__dict__.copy() A__ : Union[str, Any] = BertPreTokenizer() return state def __setstate__( self , A__ ): A__ : Union[str, Any] = d A__ : Union[str, Any] = self.__dict__["""_tokenizer"""].get_vocab() A__ : Dict = PreTokenizer.custom(JiebaPreTokenizer(A__ ) ) def __A ( self , A__ , A__=None ): A__ : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __A ( self , A__ , A__ = None ): A__ : Tuple = [self.sep_token_id] A__ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , A__ , A__ = None ): A__ : Any = self._tokenizer.model.save(A__ , name=A__ ) return tuple(A__ ) def __A ( self , A__ , A__=None , A__=None , A__=False , **A__ , ): A__ : str = BertPreTokenizer() return super().save_pretrained(A__ , A__ , A__ , A__ , **A__ )
192
1
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() __magic_name__ : List[str] = logging.get_logger() @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : List[nn.Module] = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : list = field(default_factory=lowercase_ ) def a ( self , snake_case , snake_case , snake_case ): snake_case_ = len(list(m.modules() ) ) == 1 or isinstance(snake_case , nn.Convad ) or isinstance(snake_case , nn.BatchNormad ) if has_not_submodules: self.traced.append(snake_case ) def __call__( self , snake_case ): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook ) ) self.module(snake_case ) [x.remove() for x in self.handles] return self @property def a ( self ): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda snake_case : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) ) @dataclass class lowercase : __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : nn.Module __SCREAMING_SNAKE_CASE : int = 1 __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : List = field(default_factory=lowercase_ ) __SCREAMING_SNAKE_CASE : bool = True def __call__( self , snake_case ): snake_case_ = Tracker(self.dest )(snake_case ).parametrized snake_case_ = Tracker(self.src )(snake_case ).parametrized snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.src_skip , snake_case ) ) snake_case_ = list(filter(lambda snake_case : type(snake_case ) not in self.dest_skip , snake_case ) ) if len(snake_case ) != len(snake_case ) and self.raise_if_mismatch: raise Exception( F'''Numbers of operations are different. Source module has {len(snake_case )} operations while''' F''' destination module has {len(snake_case )}.''' ) for dest_m, src_m in zip(snake_case , snake_case ): dest_m.load_state_dict(src_m.state_dict() ) if self.verbose == 1: print(F'''Transfered from={src_m} to={dest_m}''' ) class lowercase ( nn.Module ): def __init__( self , snake_case ): super().__init__() snake_case_ = [] # - get the stem feature_blocks.append(('conv1', model.stem) ) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block' ), F'''Unexpected layer name {k}''' snake_case_ = len(snake_case ) + 1 feature_blocks.append((F'''res{block_index}''', v) ) snake_case_ = nn.ModuleDict(snake_case ) def a ( self , snake_case ): return get_trunk_forward_outputs( snake_case , out_feat_keys=snake_case , feature_blocks=self._feature_blocks , ) class lowercase ( lowercase_ ): def a ( self , snake_case ): snake_case_ = x.split('-' ) return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] ) def __getitem__( self , snake_case ): # default to timm! if x not in self: snake_case_ = self.convert_name_to_timm(snake_case ) snake_case_ = partial(lambda: (timm.create_model(snake_case , pretrained=snake_case ).eval(), None) ) else: snake_case_ = super().__getitem__(snake_case ) return val class lowercase ( lowercase_ ): def __getitem__( self , snake_case ): if "seer" in x and "in1k" not in x: snake_case_ = RegNetModel else: snake_case_ = RegNetForImageClassification return val def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' for from_key, to_key in keys: snake_case_ = from_state_dict[from_key].clone() print(F'''Copied key={from_key} to={to_key}''' ) return to_state_dict def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = True , ): '''simple docstring''' print(F'''Converting {name}...''' ) with torch.no_grad(): snake_case_ , snake_case_ = from_model_func() snake_case_ = our_model_func(UpperCamelCase__ ).eval() snake_case_ = ModuleTransfer(src=UpperCamelCase__ , dest=UpperCamelCase__ , raise_if_mismatch=UpperCamelCase__ ) snake_case_ = torch.randn((1, 3, 224, 224) ) module_transfer(UpperCamelCase__ ) if from_state_dict is not None: snake_case_ = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: snake_case_ = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] snake_case_ = manually_copy_vissl_head(UpperCamelCase__ , our_model.state_dict() , UpperCamelCase__ ) our_model.load_state_dict(UpperCamelCase__ ) snake_case_ = our_model(UpperCamelCase__ , output_hidden_states=UpperCamelCase__ ) snake_case_ = ( our_outputs.logits if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else our_outputs.last_hidden_state ) snake_case_ = from_model(UpperCamelCase__ ) snake_case_ = from_output[-1] if type(UpperCamelCase__ ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: snake_case_ = our_outputs.hidden_states[-1] assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=UpperCamelCase__ , ) snake_case_ = 224 if 'seer' not in name else 384 # we can use the convnext one snake_case_ = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=UpperCamelCase__ ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=UpperCamelCase__ , ) print(F'''Pushed {name}''' ) def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = True ): '''simple docstring''' snake_case_ = 'imagenet-1k-id2label.json' snake_case_ = 1000 snake_case_ = (1, num_labels) snake_case_ = 'huggingface/label-files' snake_case_ = num_labels snake_case_ = json.load(open(cached_download(hf_hub_url(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) ) , 'r' ) ) snake_case_ = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} snake_case_ = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) snake_case_ = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x' ), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x' ), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x' ), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x' ), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x' ), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1008] , groups_width=48 , layer_type='x' ), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1360] , groups_width=40 , layer_type='x' ), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1624] , groups_width=56 , layer_type='x' ), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1920] , groups_width=120 , layer_type='x' ), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 , layer_type='x' ), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2048] , groups_width=128 , layer_type='x' ), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1344, 2520] , groups_width=168 , layer_type='x' ), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 ), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8 ), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16 ), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16 ), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24 ), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1512] , groups_width=24 ), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1088] , groups_width=64 ), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1296] , groups_width=72 ), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2016] , groups_width=56 ), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2240] , groups_width=112 ), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1232, 3024] , groups_width=112 ), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1392, 3712] , groups_width=232 ), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1968, 4920] , groups_width=328 ), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1056, 2904, 7392] , groups_width=264 ), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1696, 2544, 5088] , groups_width=640 ), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2020, 4040, 11110, 28280] , groups_width=1010 ), } snake_case_ = NameToOurModelFuncMap() snake_case_ = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(UpperCamelCase__ , UpperCamelCase__ ) -> Tuple[nn.Module, Dict]: snake_case_ = torch.hub.load_state_dict_from_url(UpperCamelCase__ , model_dir=str(UpperCamelCase__ ) , map_location='cpu' ) snake_case_ = model_func() # check if we have a head, if yes add it snake_case_ = files['classy_state_dict']['base_model']['model'] snake_case_ = model_state_dict['trunk'] model.load_state_dict(UpperCamelCase__ ) return model.eval(), model_state_dict["heads"] # pretrained snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) # IN1K finetuned snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) snake_case_ = partial( UpperCamelCase__ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1010 , w_a=1744 , w_a=620.83 , w_m=2.52 ) ) ) , ) if model_name: convert_weight_and_push( UpperCamelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( UpperCamelCase__ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) return config, expected_shape if __name__ == "__main__": __magic_name__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) __magic_name__ : str = parser.parse_args() __magic_name__ : Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
367
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase : def __init__( self , snake_case , snake_case=13 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=False , snake_case=False , snake_case=False , snake_case=2 , snake_case=99 , snake_case=0 , snake_case=32 , snake_case=5 , snake_case=4 , snake_case=0.1 , snake_case=0.1 , snake_case=512 , snake_case=2 , snake_case=0.02 , snake_case=2 , snake_case=4 , snake_case="last" , snake_case=True , snake_case=None , snake_case=0 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_lengths snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = gelu_activation snake_case_ = sinusoidal_embeddings snake_case_ = causal snake_case_ = asm snake_case_ = n_langs snake_case_ = vocab_size snake_case_ = n_special snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_sequence_label_size snake_case_ = initializer_range snake_case_ = num_labels snake_case_ = num_choices snake_case_ = summary_type snake_case_ = use_proj snake_case_ = scope snake_case_ = bos_token_id def a ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = None if self.use_input_lengths: snake_case_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case_ = None if self.use_token_type_ids: snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case_ = None snake_case_ = None snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case_ = ids_tensor([self.batch_size] , 2 ).float() snake_case_ = ids_tensor([self.batch_size] , self.num_choices ) snake_case_ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a ( self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMModel(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , lengths=snake_case , langs=snake_case ) snake_case_ = model(snake_case , langs=snake_case ) snake_case_ = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMWithLMHeadModel(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnsweringSimple(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) snake_case_ = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForQuestionAnswering(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , p_mask=snake_case , ) snake_case_ = model( snake_case , start_positions=snake_case , end_positions=snake_case , cls_index=snake_case , is_impossible=snake_case , ) ((snake_case_) , ) = result_with_labels.to_tuple() snake_case_ = model(snake_case , start_positions=snake_case , end_positions=snake_case ) ((snake_case_) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = XLMForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case ) snake_case_ = model(snake_case , labels=snake_case ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_labels snake_case_ = XLMForTokenClassification(snake_case ) model.to(snake_case ) model.eval() snake_case_ = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , ): snake_case_ = self.num_choices snake_case_ = XLMForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() snake_case_ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case_ = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a ( self ): snake_case_ = self.prepare_config_and_inputs() ( ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ( snake_case_ ) , ) = config_and_inputs snake_case_ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class lowercase ( lowercase_ , lowercase_ , lowercase_ , unittest.TestCase ): __SCREAMING_SNAKE_CASE : List[Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : Tuple = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable __SCREAMING_SNAKE_CASE : int = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a ( self , snake_case , snake_case , snake_case=False ): snake_case_ = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) snake_case_ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case ) return inputs_dict def a ( self ): snake_case_ = XLMModelTester(self ) snake_case_ = ConfigTester(self , config_class=snake_case , emb_dim=37 ) def a ( self ): self.config_tester.run_common_tests() def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*snake_case ) def a ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*snake_case ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_attentions in attentions] , [True] * len(snake_case ) ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = min_length + idx + 1 snake_case_ = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(snake_case ) ) def a ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case=False , snake_case=1 ): self.assertIsInstance(snake_case , snake_case ) self.assertListEqual( [isinstance(snake_case , snake_case ) for iter_hidden_states in hidden_states] , [True] * len(snake_case ) , ) self.assertEqual(len(snake_case ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(snake_case ): # adds PAD dummy token snake_case_ = min_length + idx + 1 snake_case_ = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(snake_case ) , ) pass @slow def a ( self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = XLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class lowercase ( unittest.TestCase ): @slow def a ( self ): snake_case_ = XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(snake_case ) snake_case_ = torch.tensor([[14, 447]] , dtype=torch.long , device=snake_case ) # the president snake_case_ = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference snake_case_ = model.generate(snake_case , do_sample=snake_case ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , snake_case )
200
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , ): if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif electron_conc < 0: raise ValueError('Electron concentration cannot be negative in a semiconductor' ) elif hole_conc < 0: raise ValueError('Hole concentration cannot be negative in a semiconductor' ) elif intrinsic_conc < 0: raise ValueError( 'Intrinsic concentration cannot be negative in a semiconductor' ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def _lowerCAmelCase ( lowercase_ = 8 ): UpperCAmelCase = ascii_letters + digits + punctuation return "".join(secrets.choice(lowercase_ ) for _ in range(lowercase_ ) ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(lowercase_ ) UpperCAmelCase = i // 3 UpperCAmelCase = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) UpperCAmelCase = ( chars_incl + random(lowercase_ , quotient + remainder ) + random(lowercase_ , lowercase_ ) + random(lowercase_ , lowercase_ ) ) UpperCAmelCase = list(lowercase_ ) shuffle(lowercase_ ) return "".join(lowercase_ ) # random is a generalised function for letters, characters and numbers def _lowerCAmelCase ( lowercase_ , lowercase_ ): return "".join(secrets.choice(lowercase_ ) for _ in range(lowercase_ ) ) def _lowerCAmelCase ( lowercase_ , lowercase_ ): pass # Put your code here... def _lowerCAmelCase ( lowercase_ , lowercase_ ): pass # Put your code here... def _lowerCAmelCase ( lowercase_ , lowercase_ ): pass # Put your code here... def _lowerCAmelCase ( lowercase_ , lowercase_ = 8 ): if len(lowercase_ ) < min_length: # Your Password must be at least 8 characters long return False UpperCAmelCase = any(char in ascii_uppercase for char in password ) UpperCAmelCase = any(char in ascii_lowercase for char in password ) UpperCAmelCase = any(char in digits for char in password ) UpperCAmelCase = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def _lowerCAmelCase ( ): UpperCAmelCase = int(input('Please indicate the max length of your password: ' ).strip() ) UpperCAmelCase = input( 'Please indicate the characters that must be in your password: ' ).strip() print('Password generated:' , password_generator(lowercase_ ) ) print( 'Alternative Password generated:' , alternative_password_generator(lowercase_ , lowercase_ ) , ) print('[If you are thinking of using this passsword, You better save it.]' ) if __name__ == "__main__": main()
78
1
"""simple docstring""" import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCamelCase = """\ Text data. Second line of data.""" _UpperCamelCase = """file""" @pytest.fixture(scope="""session""" ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / (FILE_PATH + """.zstd""") UpperCAmelCase = bytes(_snake_case , """utf-8""" ) with zstd.open(_snake_case , """wb""" ) as f: f.write(_snake_case ) return path @pytest.fixture def _a ( _snake_case ): """simple docstring""" with open(os.path.join(tmpfs.local_root_dir , _snake_case ) , """w""" ) as f: f.write(_snake_case ) return FILE_PATH @pytest.mark.parametrize("""compression_format""" , ["""gzip""", """xz""", """zstd"""] ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = {"""gzip""": gz_file, """xz""": xz_file, """zstd""": zstd_path} UpperCAmelCase = input_paths[compression_format] UpperCAmelCase = tmp_path / """cache""" UpperCAmelCase = DownloadConfig(cache_dir=_snake_case , extract_compressed_file=_snake_case ) UpperCAmelCase = cached_path(_snake_case , download_config=_snake_case ) with open(_snake_case ) as f: UpperCAmelCase = f.read() with open(_snake_case ) as f: UpperCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("""default_extracted""" , [True, False] ) @pytest.mark.parametrize("""default_cache_dir""" , [True, False] ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = """custom_cache""" UpperCAmelCase = """custom_extracted_dir""" UpperCAmelCase = tmp_path / """custom_extracted_path""" if default_extracted: UpperCAmelCase = ("""downloads""" if default_cache_dir else custom_cache_dir, """extracted""") else: monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_DIR""" , _snake_case ) monkeypatch.setattr("""datasets.config.EXTRACTED_DATASETS_PATH""" , str(_snake_case ) ) UpperCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) UpperCAmelCase = xz_file UpperCAmelCase = ( DownloadConfig(extract_compressed_file=_snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=_snake_case ) ) UpperCAmelCase = cached_path(_snake_case , download_config=_snake_case ) assert Path(_snake_case ).parent.parts[-2:] == expected def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = str(Path(_snake_case ).resolve() ) assert cached_path(_snake_case ) == text_file # relative path UpperCAmelCase = str(Path(_snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(_snake_case ) == text_file def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = str(tmp_path.resolve() / """__missing_file__.txt""" ) with pytest.raises(_snake_case ): cached_path(_snake_case ) # relative path UpperCAmelCase = """./__missing_file__.txt""" with pytest.raises(_snake_case ): cached_path(_snake_case ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(_snake_case ) as f: UpperCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _snake_case ) def _a ( ): """simple docstring""" with pytest.raises(_snake_case ): cached_path("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _snake_case ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_snake_case ): http_get("""https://huggingface.co""" , temp_file=_snake_case ) with pytest.raises(_snake_case ): http_head("""https://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _snake_case ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_snake_case ): ftp_get("""ftp://huggingface.co""" , temp_file=_snake_case ) with pytest.raises(_snake_case ): ftp_head("""ftp://huggingface.co""" ) @patch("""datasets.config.HF_DATASETS_OFFLINE""" , _snake_case ) def _a ( _snake_case ): """simple docstring""" UpperCAmelCase = tmp_path_factory.mktemp("""data""" ) / """file.html""" with pytest.raises(_snake_case ): fsspec_get("""s3://huggingface.co""" , temp_file=_snake_case ) with pytest.raises(_snake_case ): fsspec_head("""s3://huggingface.co""" )
234
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = """▁""" _UpperCamelCase = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""} _UpperCamelCase = { """vocab_file""": {"""google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"""}, """tokenizer_file""": { """google/pegasus-xsum""": """https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json""" }, } _UpperCamelCase = { """google/pegasus-xsum""": 512, } class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask'''] def __init__( self ,A=None ,A=None ,A="<pad>" ,A="</s>" ,A="<unk>" ,A="<mask_2>" ,A="<mask_1>" ,A=None ,A=103 ,**A ,): UpperCAmelCase = offset if additional_special_tokens is not None: if not isinstance(A ,A ): raise TypeError( F'''additional_special_tokens should be of type {type(A )}, but is''' F''' {type(A )}''' ) UpperCAmelCase = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'''<unk_{i}>''' for i in range(len(A ) ,self.offset - 1 ) ] if len(set(A ) ) != len(A ): raise ValueError( """Please make sure that the provided additional_special_tokens do not contain an incorrectly""" F''' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.''' ) UpperCAmelCase = additional_special_tokens_extended else: UpperCAmelCase = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'''<unk_{i}>''' for i in range(2 ,self.offset )] super().__init__( A ,tokenizer_file=A ,pad_token=A ,eos_token=A ,unk_token=A ,mask_token=A ,mask_token_sent=A ,offset=A ,additional_special_tokens=A ,**A ,) UpperCAmelCase = vocab_file UpperCAmelCase = False if not self.vocab_file else True def _UpperCamelCase ( self ,A ): UpperCAmelCase = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( """There should be 3 special tokens: mask_token, pad_token, and eos_token +""" F''' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}''' ) return [1 if x in all_special_ids else 0 for x in seq] def _UpperCamelCase ( self ,A ,A = None ,A = False ): if already_has_special_tokens: return self._special_token_mask(A ) elif token_ids_a is None: return self._special_token_mask(A ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _UpperCamelCase ( self ,A ,A=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _UpperCamelCase ( self ,A ,A = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(A ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( A ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file ,A ) return (out_vocab_file,)
234
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"vocab_file": "spiece.model"} _SCREAMING_SNAKE_CASE = { "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", } } # TODO(PVP) - this should be removed in Transformers v5 _SCREAMING_SNAKE_CASE = { "t5-small": 5_12, "t5-base": 5_12, "t5-large": 5_12, "t5-3b": 5_12, "t5-11b": 5_12, } _SCREAMING_SNAKE_CASE = "▁" class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Optional[Any] = VOCAB_FILES_NAMES __lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , _lowerCAmelCase , _lowerCAmelCase="</s>" , _lowerCAmelCase="<unk>" , _lowerCAmelCase="<pad>" , _lowerCAmelCase=100 , _lowerCAmelCase=None , _lowerCAmelCase = None , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: _lowerCAmelCase = [f'''<extra_id_{i}>''' for i in range(_lowerCAmelCase )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens _lowerCAmelCase = len(set(filter(lambda _lowerCAmelCase : bool("extra_id" in str(_lowerCAmelCase ) ) , _lowerCAmelCase ) ) ) if extra_tokens != extra_ids: raise ValueError( f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) if legacy: logger.warning_once( f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to''' " read the related pull request available at https://github.com/huggingface/transformers/pull/24565" ) _lowerCAmelCase = legacy _lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_lowerCAmelCase , unk_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , extra_ids=_lowerCAmelCase , additional_special_tokens=_lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_lowerCAmelCase , **_lowerCAmelCase , ) _lowerCAmelCase = vocab_file _lowerCAmelCase = extra_ids _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_lowerCAmelCase ) @staticmethod def _snake_case ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: _lowerCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f''' {pretrained_model_name_or_path} automatically truncating your input to''' f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , _lowerCAmelCase , ) return max_model_length @property def _snake_case ( self ) -> Tuple: return self.sp_model.get_piece_size() + self._extra_ids def _snake_case ( self ) -> List[str]: _lowerCAmelCase = {self.convert_ids_to_tokens(_lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowerCAmelCase , token_ids_a=_lowerCAmelCase , already_has_special_tokens=_lowerCAmelCase ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_lowerCAmelCase )) + [1] return ([0] * len(_lowerCAmelCase )) + [1] + ([0] * len(_lowerCAmelCase )) + [1] def _snake_case ( self ) -> Union[str, Any]: return list( set(filter(lambda _lowerCAmelCase : bool(re.search(r"<extra_id_\d+>" , _lowerCAmelCase ) ) is not None , self.additional_special_tokens ) ) ) def _snake_case ( self ) -> List[Any]: return [self._convert_token_to_id(_lowerCAmelCase ) for token in self.get_sentinel_tokens()] def _snake_case ( self , _lowerCAmelCase ) -> List[int]: if len(_lowerCAmelCase ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> List[int]: _lowerCAmelCase = self._add_eos_if_not_present(_lowerCAmelCase ) if token_ids_a is None: return token_ids_a else: _lowerCAmelCase = self._add_eos_if_not_present(_lowerCAmelCase ) return token_ids_a + token_ids_a def __getstate__( self ) -> Tuple: _lowerCAmelCase = self.__dict__.copy() _lowerCAmelCase = None return state def __setstate__( self , _lowerCAmelCase ) -> str: _lowerCAmelCase = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): _lowerCAmelCase = {} _lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _snake_case ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> List[str]: # Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at # the beginning of the text if not self.legacy: _lowerCAmelCase = SPIECE_UNDERLINE + text.replace(_lowerCAmelCase , " " ) return super().tokenize(_lowerCAmelCase , **_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase , **_lowerCAmelCase ) -> Optional[Any]: if not self.legacy: _lowerCAmelCase = text.startswith(_lowerCAmelCase ) if is_first: _lowerCAmelCase = text[1:] _lowerCAmelCase = self.sp_model.encode(_lowerCAmelCase , out_type=_lowerCAmelCase ) if not self.legacy and not is_first and not text.startswith(" " ) and tokens[0].startswith(_lowerCAmelCase ): _lowerCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def _snake_case ( self , _lowerCAmelCase ) -> Dict: if token.startswith("<extra_id_" ): _lowerCAmelCase = re.match(r"<extra_id_(\d+)>" , _lowerCAmelCase ) _lowerCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(_lowerCAmelCase ) def _snake_case ( self , _lowerCAmelCase ) -> int: if index < self.sp_model.get_piece_size(): _lowerCAmelCase = self.sp_model.IdToPiece(_lowerCAmelCase ) else: _lowerCAmelCase = f'''<extra_id_{self.vocab_size - 1 - index}>''' return token def _snake_case ( self , _lowerCAmelCase ) -> int: _lowerCAmelCase = [] _lowerCAmelCase = "" _lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_lowerCAmelCase ) + token _lowerCAmelCase = True _lowerCAmelCase = [] else: current_sub_tokens.append(_lowerCAmelCase ) _lowerCAmelCase = False out_string += self.sp_model.decode(_lowerCAmelCase ) return out_string.strip() def _snake_case ( self , _lowerCAmelCase , _lowerCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(_lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _lowerCAmelCase = os.path.join( _lowerCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_lowerCAmelCase , "wb" ) as fi: _lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(_lowerCAmelCase ) return (out_vocab_file,)
158
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def __a(SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = FunnelConfig.from_json_file(SCREAMING_SNAKE_CASE_ ) print(F'''Building PyTorch model from configuration: {config}''' ) _lowerCAmelCase = FunnelBaseModel(SCREAMING_SNAKE_CASE_ ) if base_model else FunnelModel(SCREAMING_SNAKE_CASE_ ) # Load weights from tf checkpoint load_tf_weights_in_funnel(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
158
1
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def __A ( a_ :Dict , a_ :Optional[int] , a_ :Tuple=None , a_ :Dict=None , a_ :Tuple=None , a_ :List[str]=None , a_ :Optional[int]=None , a_ :int=None , ) -> Any: if attention_mask is None: __a : str = np.where(input_ids != config.pad_token_id , 1 , 0) if decoder_attention_mask is None: __a : int = np.where(decoder_input_ids != config.pad_token_id , 1 , 0) if head_mask is None: __a : int = np.ones((config.encoder_layers, config.encoder_attention_heads)) if decoder_head_mask is None: __a : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads)) if cross_attn_head_mask is None: __a : List[str] = np.ones((config.decoder_layers, config.decoder_attention_heads)) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __lowercase : '''simple docstring''' def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase=99 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=4 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=32 , _UpperCAmelCase=2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=0.0_2 , ): __a : Dict = parent __a : Optional[int] = batch_size __a : str = seq_length __a : int = is_training __a : Optional[int] = use_labels __a : Any = vocab_size __a : str = hidden_size __a : Any = num_hidden_layers __a : Any = num_attention_heads __a : Union[str, Any] = intermediate_size __a : List[str] = hidden_act __a : Any = hidden_dropout_prob __a : Optional[int] = attention_probs_dropout_prob __a : Dict = max_position_embeddings __a : str = eos_token_id __a : Optional[int] = pad_token_id __a : List[Any] = bos_token_id __a : Tuple = initializer_range def _lowerCamelCase ( self ): __a : Tuple = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __a : int = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __a : int = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) __a : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , ) __a : str = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def _lowerCamelCase ( self ): __a , __a : Any = self.prepare_config_and_inputs() return config, inputs_dict def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Dict = 20 __a : List[Any] = model_class_name(_UpperCAmelCase ) __a : Any = model.encode(inputs_dict['''input_ids'''] ) __a , __a : List[Any] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __a : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) __a : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a : Dict = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __a : Optional[int] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a : str = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , ) __a : Union[str, Any] = model.decode(_UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a : Optional[Any] = 20 __a : Optional[Any] = model_class_name(_UpperCAmelCase ) __a : Optional[int] = model.encode(inputs_dict['''input_ids'''] ) __a , __a : Tuple = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) __a : Optional[Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __a : Any = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) __a : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __a : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __a : Any = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) __a : Optional[int] = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) __a : int = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase ) __a : Optional[Any] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class __lowercase ( unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = 99 def _lowerCamelCase ( self ): __a : List[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __a : Dict = input_ids.shape[0] __a : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def _lowerCamelCase ( self ): __a , __a , __a : Tuple = self._get_config_and_data() __a : List[Any] = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) __a : Tuple = lm_model(input_ids=_UpperCAmelCase ) __a : List[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : str = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __a : Optional[Any] = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) __a : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __a : Optional[Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __a : Optional[int] = lm_model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) __a : str = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a : List[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __a : Union[str, Any] = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) __a : Any = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() __a : Tuple = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __lowercase ( _UpperCamelCase , unittest.TestCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = True __lowerCAmelCase = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __lowerCAmelCase = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def _lowerCamelCase ( self ): __a : Any = FlaxBlenderbotSmallModelTester(self ) def _lowerCamelCase ( self ): __a , __a : str = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def _lowerCamelCase ( self ): __a , __a : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a : Optional[int] = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __a : Union[str, Any] = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(_UpperCAmelCase , _UpperCAmelCase=None , **_UpperCAmelCase ): return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) with self.subTest('''JIT Enabled''' ): __a : List[Any] = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __a : str = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def _lowerCamelCase ( self ): __a , __a : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __a : Dict = model_class(_UpperCAmelCase ) __a : int = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) __a : List[str] = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return model.decode( decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , ) with self.subTest('''JIT Enabled''' ): __a : Tuple = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): __a : Any = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _lowerCamelCase ( self ): for model_class_name in self.all_model_classes: __a : Tuple = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __a : Dict = np.ones((1, 1) ) * model.config.eos_token_id __a : Union[str, Any] = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
188
"""simple docstring""" import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = '''hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline''' def _lowerCamelCase ( self , _UpperCAmelCase=0 ): __a : Tuple = floats_tensor((1, 3, 128, 128) , rng=random.Random(_UpperCAmelCase ) ) __a : Any = np.random.RandomState(_UpperCAmelCase ) __a : Any = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 3, '''strength''': 0.7_5, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Dict = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : Optional[int] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) __a : List[Any] = np.array([0.6_9_6_4_3, 0.5_8_4_8_4, 0.5_0_3_1_4, 0.5_8_7_6_0, 0.5_5_3_6_8, 0.5_9_6_4_3, 0.5_1_5_2_9, 0.4_1_2_1_7, 0.4_9_0_8_7] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Tuple = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.6_1_7_3_7, 0.5_4_6_4_2, 0.5_3_1_8_3, 0.5_4_4_6_5, 0.5_2_7_4_2, 0.6_0_5_2_5, 0.4_9_9_6_9, 0.4_0_6_5_5, 0.4_8_1_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) # warmup pass to apply optimizations __a : Any = pipe(**self.get_dummy_inputs() ) __a : List[str] = self.get_dummy_inputs() __a : Tuple = pipe(**_UpperCAmelCase ).images __a : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : int = np.array([0.5_2_7_6_1, 0.5_9_9_7_7, 0.4_9_0_3_3, 0.4_9_6_1_9, 0.5_4_2_8_2, 0.5_0_3_1_1, 0.4_7_6_0_0, 0.4_0_9_1_8, 0.4_5_2_0_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs() __a : Any = pipe(**_UpperCAmelCase ).images __a : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : Any = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Union[str, Any] = self.get_dummy_inputs() __a : str = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[int] = np.array([0.5_2_9_1_1, 0.6_0_0_0_4, 0.4_9_2_2_9, 0.4_9_8_0_5, 0.5_4_5_0_2, 0.5_0_6_8_0, 0.4_7_7_7_7, 0.4_1_0_2_8, 0.4_5_3_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def _lowerCamelCase ( self ): __a : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider='''CPUExecutionProvider''' ) __a : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs() __a : Optional[Any] = pipe(**_UpperCAmelCase ).images __a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __a : Optional[Any] = np.array([0.6_5_3_3_1, 0.5_8_2_7_7, 0.4_8_2_0_4, 0.5_6_0_5_9, 0.5_3_6_6_5, 0.5_6_2_3_5, 0.5_0_9_6_9, 0.4_0_0_0_9, 0.4_6_5_5_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class __lowercase ( unittest.TestCase ): '''simple docstring''' @property def _lowerCamelCase ( self ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _lowerCamelCase ( self ): __a : Optional[Any] = ort.SessionOptions() __a : Any = False return options def _lowerCamelCase ( self ): __a : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) # using the PNDM scheduler by default __a : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : Tuple = '''A fantasy landscape, trending on artstation''' __a : Tuple = np.random.RandomState(0 ) __a : int = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=10 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : List[Any] = output.images __a : int = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Any = np.array([0.4_9_0_9, 0.5_0_5_9, 0.5_3_7_2, 0.4_6_2_3, 0.4_8_7_6, 0.5_0_4_9, 0.4_8_2_0, 0.4_9_5_6, 0.5_0_1_9] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def _lowerCamelCase ( self ): __a : List[str] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/img2img/sketch-mountains-input.jpg''' ) __a : Tuple = init_image.resize((768, 512) ) __a : str = LMSDiscreteScheduler.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , subfolder='''scheduler''' , revision='''onnx''' ) __a : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , revision='''onnx''' , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) __a : List[str] = '''A fantasy landscape, trending on artstation''' __a : str = np.random.RandomState(0 ) __a : str = pipe( prompt=_UpperCAmelCase , image=_UpperCAmelCase , strength=0.7_5 , guidance_scale=7.5 , num_inference_steps=20 , generator=_UpperCAmelCase , output_type='''np''' , ) __a : Dict = output.images __a : List[Any] = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) __a : Dict = np.array([0.8_0_4_3, 0.9_2_6, 0.9_5_8_1, 0.8_1_1_9, 0.8_9_5_4, 0.9_1_3, 0.7_2_0_9, 0.7_4_6_3, 0.7_4_3_1] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
188
1
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _SCREAMING_SNAKE_CASE : List[str] = TypeVar("T") class _snake_case ( Generic[T] ): def __init__( self , a__ = True ) -> None: '''simple docstring''' snake_case_ = {} # dictionary of lists snake_case_ = directed def lowerCAmelCase__ ( self , a__ , a__ ) -> GraphAdjacencyList[T]: '''simple docstring''' if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) self.adj_list[destination_vertex].append(a__ ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) snake_case_ = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(a__ ) snake_case_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: snake_case_ = [destination_vertex] snake_case_ = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(a__ ) snake_case_ = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: snake_case_ = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: snake_case_ = [destination_vertex] snake_case_ = [] return self def __repr__( self ) -> str: '''simple docstring''' return pformat(self.adj_list )
85
'''simple docstring''' import re from filelock import FileLock try: import nltk __SCREAMING_SNAKE_CASE :Optional[int] = True except (ImportError, ModuleNotFoundError): __SCREAMING_SNAKE_CASE :str = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def UpperCAmelCase_ ( __lowercase : str ) -> str: '''simple docstring''' re.sub("<n>" , "" , __lowercase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(__lowercase ) )
22
0
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class A ( __snake_case ): __magic_name__ = '''facebook/bart-large-mnli''' __magic_name__ = ( '''This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ''' '''should be the text to classify, and `labels`, which should be the list of labels to use for classification. ''' '''It returns the most likely label in the list of provided `labels` for the input text.''' ) __magic_name__ = '''text_classifier''' __magic_name__ = AutoTokenizer __magic_name__ = AutoModelForSequenceClassification __magic_name__ = ['''text''', ['''text''']] __magic_name__ = ['''text'''] def __lowerCAmelCase ( self ) -> int: """simple docstring""" super().setup() A : Optional[int] = self.model.config A : str = -1 for idx, label in config.idalabel.items(): if label.lower().startswith('''entail''' ): A : Tuple = int(SCREAMING_SNAKE_CASE ) if self.entailment_id == -1: raise ValueError('''Could not determine the entailment ID from the model config, please pass it at init.''' ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : List[str] = labels return self.pre_processor( [text] * len(SCREAMING_SNAKE_CASE ) , [F'This example is {label}' for label in labels] , return_tensors='''pt''' , padding='''max_length''' , ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : str = outputs.logits A : str = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
311
'''simple docstring''' from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def lowerCAmelCase_ ( snake_case__ = "laptop" ): '''simple docstring''' A : Tuple = F'https://www.amazon.in/laptop/s?k={product}' A : Optional[int] = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } A : Any = BeautifulSoup(requests.get(snake_case__ , headers=snake_case__ ).text ) # Initialize a Pandas dataframe with the column titles A : List[str] = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: A : Optional[Any] = item.ha.text A : Union[str, Any] = '''https://www.amazon.in/''' + item.ha.a['''href'''] A : Tuple = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: A : int = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: A : Optional[int] = '''Not available''' try: A : str = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: A : List[Any] = '''''' try: A : Dict = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: A : str = float('''nan''' ) except AttributeError: pass A : Union[str, Any] = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A : List[str] = ''' ''' A : Optional[Any] = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowercase : Union[str, Any] = 'headphones' get_amazon_product_data(product).to_csv(f'''Amazon Product Data for {product}.csv''')
311
1
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging a : Union[str, Any] = logging.get_logger(__name__) a : Dict = {'vocab_file': 'spiece.model'} a : List[Any] = { 'vocab_file': { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model', } } a : Optional[Any] = { 'xlnet-base-cased': None, 'xlnet-large-cased': None, } # Segments (not really needed) a : Dict = 0 a : Dict = 1 a : str = 2 a : str = 3 a : int = 4 class UpperCamelCase_ ( _snake_case ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = """left""" def __init__( self , A , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , A = None , **A , ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase : Union[str, Any] = AddedToken(__snake_case , lstrip=__snake_case , rstrip=__snake_case ) if isinstance(__snake_case , __snake_case ) else mask_token UpperCAmelCase : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__snake_case , remove_space=__snake_case , keep_accents=__snake_case , bos_token=__snake_case , eos_token=__snake_case , unk_token=__snake_case , sep_token=__snake_case , pad_token=__snake_case , cls_token=__snake_case , mask_token=__snake_case , additional_special_tokens=__snake_case , sp_model_kwargs=self.sp_model_kwargs , **__snake_case , ) UpperCAmelCase : Union[str, Any] = 3 UpperCAmelCase : Dict = do_lower_case UpperCAmelCase : Tuple = remove_space UpperCAmelCase : List[str] = keep_accents UpperCAmelCase : int = vocab_file UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__snake_case ) @property def _lowercase( self ) -> Optional[int]: return len(self.sp_model ) def _lowercase( self ) -> str: UpperCAmelCase : Optional[int] = {self.convert_ids_to_tokens(__snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> int: UpperCAmelCase : str = self.__dict__.copy() UpperCAmelCase : Union[str, Any] = None return state def __setstate__( self , A ) -> List[str]: UpperCAmelCase : List[Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase : str = {} UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowercase( self , A ) -> Any: if self.remove_space: UpperCAmelCase : int = """ """.join(inputs.strip().split() ) else: UpperCAmelCase : Optional[Any] = inputs UpperCAmelCase : List[Any] = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: UpperCAmelCase : Any = unicodedata.normalize("""NFKD""" , __snake_case ) UpperCAmelCase : Tuple = """""".join([c for c in outputs if not unicodedata.combining(__snake_case )] ) if self.do_lower_case: UpperCAmelCase : Dict = outputs.lower() return outputs def _lowercase( self , A ) -> Union[str, Any]: UpperCAmelCase : Optional[Any] = self.preprocess_text(__snake_case ) UpperCAmelCase : str = self.sp_model.encode(__snake_case , out_type=__snake_case ) UpperCAmelCase : Optional[Any] = [] for piece in pieces: if len(__snake_case ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): UpperCAmelCase : Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(__snake_case , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: UpperCAmelCase : Dict = cur_pieces[1:] else: UpperCAmelCase : int = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__snake_case ) else: new_pieces.append(__snake_case ) return new_pieces def _lowercase( self , A ) -> Optional[Any]: return self.sp_model.PieceToId(__snake_case ) def _lowercase( self , A ) -> int: return self.sp_model.IdToPiece(__snake_case ) def _lowercase( self , A ) -> List[Any]: UpperCAmelCase : Optional[int] = """""".join(__snake_case ).replace(__snake_case , """ """ ).strip() return out_string def _lowercase( self , A , A = False , A = None , A = True , **A , ) -> List[str]: UpperCAmelCase : List[str] = kwargs.pop("""use_source_tokenizer""" , __snake_case ) UpperCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(__snake_case , skip_special_tokens=__snake_case ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase : Union[str, Any] = [] UpperCAmelCase : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case ) ) UpperCAmelCase : List[Any] = [] sub_texts.append(__snake_case ) else: current_sub_text.append(__snake_case ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(__snake_case ) ) # Mimic the behavior of the Rust tokenizer: # By default, there are no spaces between special tokens UpperCAmelCase : Dict = """""".join(__snake_case ) UpperCAmelCase : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase : Any = self.clean_up_tokenization(__snake_case ) return clean_text else: return text def _lowercase( self , A , A = None ) -> Tuple: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Any = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def _lowercase( self , A , A = None , A = False ) -> int: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__snake_case , token_ids_a=__snake_case , already_has_special_tokens=__snake_case ) if token_ids_a is not None: return ([0] * len(__snake_case )) + [1] + ([0] * len(__snake_case )) + [1, 1] return ([0] * len(__snake_case )) + [1, 1] def _lowercase( self , A , A = None ) -> Tuple: UpperCAmelCase : str = [self.sep_token_id] UpperCAmelCase : Any = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def _lowercase( self , A , A = None ) -> Dict: if not os.path.isdir(__snake_case ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase : int = os.path.join( __snake_case , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __snake_case ) elif not os.path.isfile(self.vocab_file ): with open(__snake_case , """wb""" ) as fi: UpperCAmelCase : int = self.sp_model.serialized_model_proto() fi.write(__snake_case ) return (out_vocab_file,)
265
'''simple docstring''' from pickle import UnpicklingError import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict from ..utils import logging UpperCAmelCase_ : List[Any] = logging.get_logger(__name__) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: with open(SCREAMING_SNAKE_CASE__ , """rb""" ) as flax_state_f: _SCREAMING_SNAKE_CASE : Dict = from_bytes(SCREAMING_SNAKE_CASE__ , flax_state_f.read() ) except UnpicklingError as e: try: with open(SCREAMING_SNAKE_CASE__ ) as f: if f.read().startswith("""version""" ): raise OSError( """You seem to have cloned a repository without having git-lfs installed. Please""" """ install git-lfs and run `git lfs install` followed by `git lfs pull` in the""" """ folder you cloned.""" ) else: raise ValueError from e except (UnicodeDecodeError, ValueError): raise EnvironmentError(f"""Unable to convert {model_file} to Flax deserializable object. """ ) return load_flax_weights_in_pytorch_model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" try: import torch # noqa: F401 except ImportError: logger.error( """Loading Flax weights in PyTorch requires both PyTorch and Flax to be installed. Please see""" """ https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation""" """ instructions.""" ) raise # check if we have bf16 weights _SCREAMING_SNAKE_CASE : List[Any] = flatten_dict(jax.tree_util.tree_map(lambda SCREAMING_SNAKE_CASE__ : x.dtype == jnp.bfloataa , SCREAMING_SNAKE_CASE__ ) ).values() if any(SCREAMING_SNAKE_CASE__ ): # convert all weights to fp32 if they are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( """Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` """ """before loading those in PyTorch model.""" ) _SCREAMING_SNAKE_CASE : Dict = jax.tree_util.tree_map( lambda SCREAMING_SNAKE_CASE__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , SCREAMING_SNAKE_CASE__ ) _SCREAMING_SNAKE_CASE : Optional[Any] = """""" _SCREAMING_SNAKE_CASE : str = flatten_dict(SCREAMING_SNAKE_CASE__ , sep=""".""" ) _SCREAMING_SNAKE_CASE : str = pt_model.state_dict() # keep track of unexpected & missing keys _SCREAMING_SNAKE_CASE : Tuple = [] _SCREAMING_SNAKE_CASE : int = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): _SCREAMING_SNAKE_CASE : Any = flax_key_tuple.split(""".""" ) if flax_key_tuple_array[-1] == "kernel" and flax_tensor.ndim == 4: _SCREAMING_SNAKE_CASE : Optional[Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(SCREAMING_SNAKE_CASE__ , (3, 2, 0, 1) ) elif flax_key_tuple_array[-1] == "kernel": _SCREAMING_SNAKE_CASE : Union[str, Any] = flax_key_tuple_array[:-1] + ["""weight"""] _SCREAMING_SNAKE_CASE : Any = flax_tensor.T elif flax_key_tuple_array[-1] == "scale": _SCREAMING_SNAKE_CASE : Optional[int] = flax_key_tuple_array[:-1] + ["""weight"""] if "time_embedding" not in flax_key_tuple_array: for i, flax_key_tuple_string in enumerate(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : Optional[int] = ( flax_key_tuple_string.replace("""_0""" , """.0""" ) .replace("""_1""" , """.1""" ) .replace("""_2""" , """.2""" ) .replace("""_3""" , """.3""" ) .replace("""_4""" , """.4""" ) .replace("""_5""" , """.5""" ) .replace("""_6""" , """.6""" ) .replace("""_7""" , """.7""" ) .replace("""_8""" , """.8""" ) .replace("""_9""" , """.9""" ) ) _SCREAMING_SNAKE_CASE : Tuple = """.""".join(SCREAMING_SNAKE_CASE__ ) if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( f"""Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected """ f"""to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.""" ) else: # add weight to pytorch dict _SCREAMING_SNAKE_CASE : Union[str, Any] = np.asarray(SCREAMING_SNAKE_CASE__ ) if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) else flax_tensor _SCREAMING_SNAKE_CASE : int = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) # remove from missing keys missing_keys.remove(SCREAMING_SNAKE_CASE__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(SCREAMING_SNAKE_CASE__ ) pt_model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # re-transform missing_keys to list _SCREAMING_SNAKE_CASE : Optional[Any] = list(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( """Some weights of the Flax model were not used when initializing the PyTorch model""" f""" {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing""" f""" {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture""" """ (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This""" f""" IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect""" """ to be exactly identical (e.g. initializing a BertForSequenceClassification model from a""" """ FlaxBertForSequenceClassification model).""" ) if len(SCREAMING_SNAKE_CASE__ ) > 0: logger.warning( f"""Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly""" f""" initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to""" """ use it for predictions and inference.""" ) return pt_model
200
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : List[str] , __UpperCamelCase : str ) -> str: UpperCAmelCase_ = AutoConfig.from_pretrained(__UpperCamelCase ) UpperCAmelCase_ = FlaxAutoModelForSeqaSeqLM.from_config(config=__UpperCamelCase ) UpperCAmelCase_ = checkpoints.load_tax_checkpoint(__UpperCamelCase ) UpperCAmelCase_ = '''wi_0''' in tax_model['''target''']['''encoder''']['''layers_0''']['''mlp'''] if config.model_type == "t5": UpperCAmelCase_ = '''SelfAttention''' if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCAmelCase_ = '''LocalSelfAttention''' elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = '''TransientGlobalSelfAttention''' else: raise ValueError( '''Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`''' ''' attribute with a value from [\'local\', \'transient-global].''' ) # Encoder for layer_index in range(config.num_layers ): UpperCAmelCase_ = f'layers_{str(__UpperCamelCase )}' # Self-Attention UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''key''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''out''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''query''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''value''']['''kernel'''] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''attention''']['''T5LayerNorm_0''']['''scale'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_attention_layer_norm''']['''scale'''] if split_mlp_wi: UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''encoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCAmelCase_ = flax_model.params['''encoder''']['''block'''][str(__UpperCamelCase )]['''layer'''] UpperCAmelCase_ = tax_attention_key UpperCAmelCase_ = tax_attention_out UpperCAmelCase_ = tax_attention_query UpperCAmelCase_ = tax_attention_value UpperCAmelCase_ = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_global_layer_norm if split_mlp_wi: UpperCAmelCase_ = tax_mlp_wi_a UpperCAmelCase_ = tax_mlp_wi_a else: UpperCAmelCase_ = tax_mlp_wi UpperCAmelCase_ = tax_mlp_wo UpperCAmelCase_ = tax_mlp_layer_norm UpperCAmelCase_ = flax_model_encoder_layer_block # Only for layer 0: UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''side_relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_encoder_global_rel_embedding # Assigning UpperCAmelCase_ = tax_model['''target''']['''encoder''']['''encoder_norm''']['''scale'''] UpperCAmelCase_ = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCAmelCase_ = f'layers_{str(__UpperCamelCase )}' # Self-Attention UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''key''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''out''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''query''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''self_attention''']['''value''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_self_attention_layer_norm'''][ '''scale''' ] # Encoder-Decoder-Attention UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''encoder_decoder_attention'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''key''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''out''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''query''']['''kernel'''] UpperCAmelCase_ = tax_enc_dec_attention_module['''value''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_cross_attention_layer_norm''']['''scale'''] # MLP if split_mlp_wi: UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_0''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi_1''']['''kernel'''] else: UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wi''']['''kernel'''] UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''mlp''']['''wo''']['''kernel'''] # Layer Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder'''][layer_name]['''pre_mlp_layer_norm''']['''scale'''] # Assigning UpperCAmelCase_ = flax_model.params['''decoder''']['''block'''][str(__UpperCamelCase )]['''layer'''] UpperCAmelCase_ = tax_attention_key UpperCAmelCase_ = tax_attention_out UpperCAmelCase_ = tax_attention_query UpperCAmelCase_ = tax_attention_value UpperCAmelCase_ = tax_pre_attention_layer_norm UpperCAmelCase_ = tax_enc_dec_attention_key UpperCAmelCase_ = tax_enc_dec_attention_out UpperCAmelCase_ = tax_enc_dec_attention_query UpperCAmelCase_ = tax_enc_dec_attention_value UpperCAmelCase_ = tax_cross_layer_norm if split_mlp_wi: UpperCAmelCase_ = tax_mlp_wi_a UpperCAmelCase_ = tax_mlp_wi_a else: UpperCAmelCase_ = tax_mlp_wi UpperCAmelCase_ = tax_mlp_wo UpperCAmelCase_ = txa_mlp_layer_norm UpperCAmelCase_ = flax_model_decoder_layer_block # Decoder Normalization UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''decoder_norm''']['''scale'''] UpperCAmelCase_ = txa_decoder_norm # Only for layer 0: UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''relpos_bias''']['''rel_embedding'''].T UpperCAmelCase_ = tax_decoder_rel_embedding # Token Embeddings UpperCAmelCase_ = tax_model['''target''']['''token_embedder''']['''embedding'''] UpperCAmelCase_ = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCAmelCase_ = tax_model['''target''']['''decoder''']['''logits_dense''']['''kernel'''] flax_model.save_pretrained(__UpperCamelCase ) print('''T5X Model was sucessfully converted!''' ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--t5x_checkpoint_path', default=None, type=str, required=True, help='Path the T5X checkpoint.' ) parser.add_argument('--config_name', default=None, type=str, required=True, help='Config name of LongT5/T5 model.') parser.add_argument( '--flax_dump_folder_path', default=None, type=str, required=True, help='Path to the output FLAX model.' ) _lowerCamelCase = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
177
import numpy as np def SCREAMING_SNAKE_CASE ( __UpperCamelCase : np.array ) -> np.array: return (2 / (1 + np.exp(-2 * vector ))) - 1 if __name__ == "__main__": import doctest doctest.testmod()
177
1
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Union[str, Any] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Union[str, Any] ) ->Optional[int]: '''simple docstring''' super().__init__() self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self : Optional[int] , lowerCamelCase__ : int = 1 , lowerCamelCase__ : int = 1_00 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[float] = None , lowerCamelCase__ : bool = True , ) ->Union[AudioPipelineOutput, Tuple]: '''simple docstring''' if audio_length_in_s is None: _UpperCAmelCase : int = self.unet.config.sample_size / self.unet.config.sample_rate _UpperCAmelCase : int = audio_length_in_s * self.unet.config.sample_rate _UpperCAmelCase : List[Any] = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F"""{audio_length_in_s} is too small. Make sure it's bigger or equal to""" F""" {3 * down_scale_factor / self.unet.config.sample_rate}.""" ) _UpperCAmelCase : Union[str, Any] = int(lowerCamelCase__ ) if sample_size % down_scale_factor != 0: _UpperCAmelCase : Union[str, Any] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F"""{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled""" F""" by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising""" " process." ) _UpperCAmelCase : List[str] = int(lowerCamelCase__ ) _UpperCAmelCase : str = next(iter(self.unet.parameters() ) ).dtype _UpperCAmelCase : List[Any] = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and len(lowerCamelCase__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(lowerCamelCase__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _UpperCAmelCase : Any = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=self.device , dtype=lowerCamelCase__ ) # set step values self.scheduler.set_timesteps(lowerCamelCase__ , device=audio.device ) _UpperCAmelCase : Tuple = self.scheduler.timesteps.to(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _UpperCAmelCase : int = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # 2. compute previous image: x_t -> t_t-1 _UpperCAmelCase : Optional[int] = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample _UpperCAmelCase : Optional[int] = audio.clamp(-1 , 1 ).float().cpu().numpy() _UpperCAmelCase : List[Any] = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=lowerCamelCase__ )
234
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCamelCase__ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } lowerCamelCase__ = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } lowerCamelCase__ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( UpperCAmelCase__ ): lowerCAmelCase : Union[str, Any] = VOCAB_FILES_NAMES lowerCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : Tuple = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : Any = BertTokenizer def __init__( self : int , lowerCamelCase__ : Optional[Any]=None , lowerCamelCase__ : Optional[int]=None , lowerCamelCase__ : str=True , lowerCamelCase__ : Tuple="[UNK]" , lowerCamelCase__ : str="[SEP]" , lowerCamelCase__ : Optional[Any]="[PAD]" , lowerCamelCase__ : List[str]="[CLS]" , lowerCamelCase__ : Union[str, Any]="[MASK]" , lowerCamelCase__ : str=True , lowerCamelCase__ : Dict=None , **lowerCamelCase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' super().__init__( lowerCamelCase__ , tokenizer_file=lowerCamelCase__ , do_lower_case=lowerCamelCase__ , unk_token=lowerCamelCase__ , sep_token=lowerCamelCase__ , pad_token=lowerCamelCase__ , cls_token=lowerCamelCase__ , mask_token=lowerCamelCase__ , tokenize_chinese_chars=lowerCamelCase__ , strip_accents=lowerCamelCase__ , **lowerCamelCase__ , ) _UpperCAmelCase : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , lowerCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , lowerCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , lowerCamelCase__ ) != tokenize_chinese_chars ): _UpperCAmelCase : str = getattr(lowerCamelCase__ , normalizer_state.pop("type" ) ) _UpperCAmelCase : Optional[Any] = do_lower_case _UpperCAmelCase : Any = strip_accents _UpperCAmelCase : List[Any] = tokenize_chinese_chars _UpperCAmelCase : int = normalizer_class(**lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = do_lower_case def lowerCAmelCase__ ( self : List[str] , lowerCamelCase__ : List[str] , lowerCamelCase__ : str=None ) ->List[Any]: '''simple docstring''' _UpperCAmelCase : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) ->List[int]: '''simple docstring''' _UpperCAmelCase : Tuple = [self.sep_token_id] _UpperCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase__ ( self : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) ->Tuple[str]: '''simple docstring''' _UpperCAmelCase : List[str] = self._tokenizer.model.save(lowerCamelCase__ , name=lowerCamelCase__ ) return tuple(lowerCamelCase__ )
234
1
'''simple docstring''' from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ): UpperCAmelCase , UpperCAmelCase : List[str] = coefficient_matrix.shape UpperCAmelCase , UpperCAmelCase : Optional[int] = constant_matrix.shape if rowsa != colsa: UpperCAmelCase : int = F"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(UpperCAmelCase_ ) if colsa != 1: UpperCAmelCase : Any = F"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(UpperCAmelCase_ ) if rowsa != rowsa: UpperCAmelCase : Optional[int] = ( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(UpperCAmelCase_ ) if len(UpperCAmelCase_ ) != rowsa: UpperCAmelCase : Union[str, Any] = ( 'Number of initial values must be equal to number of rows in coefficient ' F"""matrix but received {len(UpperCAmelCase_ )} and {rowsa}""" ) raise ValueError(UpperCAmelCase_ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) UpperCAmelCase : NDArray[floataa] = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) UpperCAmelCase , UpperCAmelCase : Dict = table.shape strictly_diagonally_dominant(UpperCAmelCase_ ) # Iterates the whole matrix for given number of times for _ in range(UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = [] for row in range(UpperCAmelCase_ ): UpperCAmelCase : Tuple = 0 for col in range(UpperCAmelCase_ ): if col == row: UpperCAmelCase : int = table[row][col] elif col == cols - 1: UpperCAmelCase : Any = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] UpperCAmelCase : Optional[Any] = (temp + val) / denom new_val.append(UpperCAmelCase_ ) UpperCAmelCase : Optional[int] = new_val return [float(UpperCAmelCase_ ) for i in new_val] def UpperCamelCase( UpperCAmelCase_ ): UpperCAmelCase , UpperCAmelCase : List[Any] = table.shape UpperCAmelCase : int = True for i in range(0 , UpperCAmelCase_ ): UpperCAmelCase : List[Any] = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
280
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowercase__ = 3 def UpperCamelCase( UpperCAmelCase_ ): print('Generating primitive root of p' ) while True: UpperCAmelCase : Union[str, Any] = random.randrange(3 , UpperCAmelCase_ ) if pow(UpperCAmelCase_ , 2 , UpperCAmelCase_ ) == 1: continue if pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) == 1: continue return g def UpperCamelCase( UpperCAmelCase_ ): print('Generating prime p...' ) UpperCAmelCase : str = rabin_miller.generate_large_prime(UpperCAmelCase_ ) # select large prime number. UpperCAmelCase : List[str] = primitive_root(UpperCAmelCase_ ) # one primitive root on modulo p. UpperCAmelCase : List[Any] = random.randrange(3 , UpperCAmelCase_ ) # private_key -> have to be greater than 2 for safety. UpperCAmelCase : List[Any] = cryptomath.find_mod_inverse(pow(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) , UpperCAmelCase_ ) UpperCAmelCase : Tuple = (key_size, e_a, e_a, p) UpperCAmelCase : Optional[int] = (key_size, d) return public_key, private_key def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): if os.path.exists(F"""{name}_pubkey.txt""" ) or os.path.exists(F"""{name}_privkey.txt""" ): print('\nWARNING:' ) print( F"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" 'Use a different name or delete these files and re-run this program.' ) sys.exit() UpperCAmelCase , UpperCAmelCase : Dict = generate_key(UpperCAmelCase_ ) print(F"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(F"""{name}_pubkey.txt""" , 'w' ) as fo: fo.write(F"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(F"""Writing private key to file {name}_privkey.txt...""" ) with open(F"""{name}_privkey.txt""" , 'w' ) as fo: fo.write(F"""{private_key[0]},{private_key[1]}""" ) def UpperCamelCase( ): print('Making key files...' ) make_key_files('elgamal' , 20_48 ) print('Key files generation successful' ) if __name__ == "__main__": main()
280
1
from .imports import is_rich_available if is_rich_available(): from rich.traceback import install install(show_locals=False) else: raise ModuleNotFoundError('''To use the rich extension, install rich with `pip install rich`''')
188
from ..utils import DummyObject, requires_backends class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[Any] , **_A : Optional[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : List[Any] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Union[str, Any] , **_A : Tuple ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : List[str] ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Dict , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : List[str] , **_A : str ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) def UpperCAmelCase__ ( *_A : Optional[int] , **_A : Dict ): '''simple docstring''' requires_backends(_A , ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[str] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Tuple = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : str = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> List[str]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : List[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Dict = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Any = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Dict: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Union[str, Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> int: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Any: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Optional[int] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[Any]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Optional[int]: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> List[Any]: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] ) class __magic_name__ ( metaclass=lowerCamelCase__ ): '''simple docstring''' lowerCamelCase__ : int = ['torch'] def __init__( self, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(self, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" requires_backends(cls, ['''torch'''] ) @classmethod def _UpperCAmelCase ( cls, *lowercase_, **lowercase_ ) -> str: """simple docstring""" requires_backends(cls, ['''torch'''] )
188
1
from pathlib import Path import numpy as np from PIL import Image def lowerCamelCase ( a_ ) -> np.ndarray: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_989 * r + 0.5_870 * g + 0.1_140 * b def lowerCamelCase ( a_ ) -> np.ndarray: return (gray > 127) & (gray <= 255) def lowerCamelCase ( a_ , a_ ) -> np.ndarray: lowerCAmelCase_ = np.zeros_like(a_ ) lowerCAmelCase_ = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowerCAmelCase_ = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowerCAmelCase_ = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowerCAmelCase_ = int(summation > 0 ) return output if __name__ == "__main__": # read original image lowerCamelCase_ = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" lowerCamelCase_ = np.array(Image.open(lena_path)) # kernel to be applied lowerCamelCase_ = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) lowerCamelCase_ = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image lowerCamelCase_ = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
14
def lowerCamelCase ( a_ , a_ ) -> List[Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def lowerCamelCase ( a_ , a_ , a_ ) -> Union[str, Any]: lowerCAmelCase_ = 0 while b > 0: if b & 1: lowerCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
14
1
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , snake_case , snake_case=1_3 , snake_case=7 , snake_case=True , snake_case=True , snake_case=True , snake_case=True , snake_case=9_9 , snake_case=3_2 , snake_case=2 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=5_1_2 , snake_case=1_6 , snake_case=2 , snake_case=0.02 , snake_case=3 , snake_case=4 , snake_case=None , ): '''simple docstring''' UpperCAmelCase : Dict = parent UpperCAmelCase : Optional[int] = 1_3 UpperCAmelCase : Any = 7 UpperCAmelCase : Any = True UpperCAmelCase : List[Any] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : str = 9_9 UpperCAmelCase : List[Any] = 3_8_4 UpperCAmelCase : Union[str, Any] = 2 UpperCAmelCase : Optional[Any] = 4 UpperCAmelCase : str = 3_7 UpperCAmelCase : int = "gelu" UpperCAmelCase : Any = 0.1 UpperCAmelCase : Any = 0.1 UpperCAmelCase : List[str] = 5_1_2 UpperCAmelCase : Dict = 1_6 UpperCAmelCase : Any = 2 UpperCAmelCase : Any = 0.02 UpperCAmelCase : Optional[int] = 3 UpperCAmelCase : Dict = 4 UpperCAmelCase : Any = 1_2_8 UpperCAmelCase : Optional[Any] = 2 UpperCAmelCase : int = 9 UpperCAmelCase : int = 1 UpperCAmelCase : Tuple = None def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : Optional[int] = None if self.use_input_mask: UpperCAmelCase : Dict = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : str = None UpperCAmelCase : List[Any] = None UpperCAmelCase : Optional[Any] = None if self.use_labels: UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : Dict = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=snake_case , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Tuple = TFConvBertModel(config=snake_case ) UpperCAmelCase : str = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCAmelCase : Union[str, Any] = [input_ids, input_mask] UpperCAmelCase : Optional[Any] = model(snake_case ) UpperCAmelCase : Union[str, Any] = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = TFConvBertForMaskedLM(config=snake_case ) UpperCAmelCase : str = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase : Optional[int] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.num_labels UpperCAmelCase : List[Any] = TFConvBertForSequenceClassification(config=snake_case ) UpperCAmelCase : Union[str, Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase : Any = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : List[str] = self.num_choices UpperCAmelCase : int = TFConvBertForMultipleChoice(config=snake_case ) UpperCAmelCase : List[Any] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : str = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : Any = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase : Tuple = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCAmelCase : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = self.num_labels UpperCAmelCase : Any = TFConvBertForTokenClassification(config=snake_case ) UpperCAmelCase : int = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A_ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ): '''simple docstring''' UpperCAmelCase : Dict = TFConvBertForQuestionAnswering(config=snake_case ) UpperCAmelCase : Optional[int] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCAmelCase : str = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[int] = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : str = config_and_inputs UpperCAmelCase : Optional[int] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE__ : Tuple = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE__ : Optional[Any] = False SCREAMING_SNAKE_CASE__ : Any = False SCREAMING_SNAKE_CASE__ : List[Any] = False def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[Any] = TFConvBertModelTester(self ) UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=snake_case , hidden_size=3_7 ) def A_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : int = True UpperCAmelCase : Tuple = True if hasattr(snake_case , "use_cache" ): UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Union[str, Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase : Optional[Any] = getattr(self.model_tester , "key_length" , snake_case ) for model_class in self.all_model_classes: UpperCAmelCase : Optional[Any] = self._prepare_for_class(snake_case , snake_case ) UpperCAmelCase : List[str] = model_class(snake_case ) UpperCAmelCase : Dict = len(model(snake_case ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(snake_case , saved_model=snake_case ) UpperCAmelCase : List[Any] = os.path.join(snake_case , "saved_model" , "1" ) UpperCAmelCase : int = tf.keras.models.load_model(snake_case ) UpperCAmelCase : Optional[int] = model(snake_case ) if self.is_encoder_decoder: UpperCAmelCase : str = outputs["encoder_hidden_states"] UpperCAmelCase : str = outputs["encoder_attentions"] else: UpperCAmelCase : Dict = outputs["hidden_states"] UpperCAmelCase : str = outputs["attentions"] self.assertEqual(len(snake_case ) , snake_case ) UpperCAmelCase : List[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(snake_case ) , snake_case ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(snake_case ) def A_ ( self ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str = True UpperCAmelCase : Optional[int] = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCAmelCase : int = getattr(self.model_tester , "key_length" , snake_case ) UpperCAmelCase : int = getattr(self.model_tester , "key_length" , snake_case ) def check_decoder_attentions_output(snake_case ): UpperCAmelCase : Any = len(snake_case ) self.assertEqual(out_len % 2 , 0 ) UpperCAmelCase : List[str] = outputs.decoder_attentions self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(snake_case ): UpperCAmelCase : Any = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(snake_case ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCAmelCase : List[str] = True UpperCAmelCase : Tuple = False UpperCAmelCase : Optional[Any] = model_class(snake_case ) UpperCAmelCase : int = model(self._prepare_for_class(snake_case , snake_case ) ) UpperCAmelCase : Optional[Any] = len(snake_case ) self.assertEqual(config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) if self.is_encoder_decoder: UpperCAmelCase : int = model_class(snake_case ) UpperCAmelCase : Tuple = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(config.output_hidden_states , snake_case ) check_decoder_attentions_output(snake_case ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCAmelCase : Tuple = True UpperCAmelCase : Optional[Any] = model_class(snake_case ) UpperCAmelCase : Union[str, Any] = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) # Check attention is always last and order is fine UpperCAmelCase : Any = True UpperCAmelCase : Optional[Any] = True UpperCAmelCase : List[str] = model_class(snake_case ) UpperCAmelCase : Tuple = model(self._prepare_for_class(snake_case , snake_case ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(snake_case ) ) self.assertEqual(model.config.output_hidden_states , snake_case ) check_encoder_attentions_output(snake_case ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def A_ ( self ): '''simple docstring''' UpperCAmelCase : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCAmelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase : int = model(snake_case )[0] UpperCAmelCase : Tuple = [1, 6, 7_6_8] self.assertEqual(output.shape , snake_case ) UpperCAmelCase : Optional[Any] = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 )
311
'''simple docstring''' import argparse from pathlib import Path from typing import Dict, OrderedDict, Tuple import torch from audiocraft.models import MusicGen from transformers import ( AutoFeatureExtractor, AutoTokenizer, EncodecModel, MusicgenDecoderConfig, MusicgenForConditionalGeneration, MusicgenProcessor, TaEncoderModel, ) from transformers.models.musicgen.modeling_musicgen import MusicgenForCausalLM from transformers.utils import logging logging.set_verbosity_info() a : List[str] = logging.get_logger(__name__) a : Optional[Any] = ["model.decoder.embed_positions.weights"] def lowercase ( __magic_name__ ): '''simple docstring''' if "emb" in name: UpperCAmelCase : str = name.replace("emb" , "model.decoder.embed_tokens" ) if "transformer" in name: UpperCAmelCase : List[str] = name.replace("transformer" , "model.decoder" ) if "cross_attention" in name: UpperCAmelCase : int = name.replace("cross_attention" , "encoder_attn" ) if "linear1" in name: UpperCAmelCase : List[Any] = name.replace("linear1" , "fc1" ) if "linear2" in name: UpperCAmelCase : int = name.replace("linear2" , "fc2" ) if "norm1" in name: UpperCAmelCase : Dict = name.replace("norm1" , "self_attn_layer_norm" ) if "norm_cross" in name: UpperCAmelCase : Any = name.replace("norm_cross" , "encoder_attn_layer_norm" ) if "norm2" in name: UpperCAmelCase : Union[str, Any] = name.replace("norm2" , "final_layer_norm" ) if "out_norm" in name: UpperCAmelCase : Dict = name.replace("out_norm" , "model.decoder.layer_norm" ) if "linears" in name: UpperCAmelCase : List[Any] = name.replace("linears" , "lm_heads" ) if "condition_provider.conditioners.description.output_proj" in name: UpperCAmelCase : Any = name.replace("condition_provider.conditioners.description.output_proj" , "enc_to_dec_proj" ) return name def lowercase ( __magic_name__ , __magic_name__ ): '''simple docstring''' UpperCAmelCase : Any = list(state_dict.keys() ) UpperCAmelCase : List[Any] = {} for key in keys: UpperCAmelCase : Any = state_dict.pop(__magic_name__ ) UpperCAmelCase : str = rename_keys(__magic_name__ ) if "in_proj_weight" in key: # split fused qkv proj UpperCAmelCase : Optional[int] = val[:hidden_size, :] UpperCAmelCase : Optional[Any] = val[hidden_size : 2 * hidden_size, :] UpperCAmelCase : Optional[Any] = val[-hidden_size:, :] elif "enc_to_dec_proj" in key: UpperCAmelCase : str = val else: UpperCAmelCase : int = val return state_dict, enc_dec_proj_state_dict def lowercase ( __magic_name__ ): '''simple docstring''' if checkpoint == "small": # default config values UpperCAmelCase : List[Any] = 1024 UpperCAmelCase : Tuple = 24 UpperCAmelCase : Union[str, Any] = 16 elif checkpoint == "medium": UpperCAmelCase : List[Any] = 1536 UpperCAmelCase : Optional[Any] = 48 UpperCAmelCase : List[str] = 24 elif checkpoint == "large": UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : str = 48 UpperCAmelCase : Optional[Any] = 32 else: raise ValueError(F"Checkpoint should be one of `['small', 'medium', 'large']`, got {checkpoint}." ) UpperCAmelCase : Tuple = MusicgenDecoderConfig( hidden_size=__magic_name__ , ffn_dim=hidden_size * 4 , num_hidden_layers=__magic_name__ , num_attention_heads=__magic_name__ , ) return config @torch.no_grad() def lowercase ( __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__="cpu" ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = MusicGen.get_pretrained(__magic_name__ , device=__magic_name__ ) UpperCAmelCase : List[str] = decoder_config_from_checkpoint(__magic_name__ ) UpperCAmelCase : Dict = fairseq_model.lm.state_dict() UpperCAmelCase , UpperCAmelCase : List[str] = rename_state_dict( __magic_name__ , hidden_size=decoder_config.hidden_size ) UpperCAmelCase : Any = TaEncoderModel.from_pretrained("t5-base" ) UpperCAmelCase : Any = EncodecModel.from_pretrained("facebook/encodec_32khz" ) UpperCAmelCase : int = MusicgenForCausalLM(__magic_name__ ).eval() # load all decoder weights - expect that we'll be missing embeddings and enc-dec projection UpperCAmelCase , UpperCAmelCase : Optional[int] = decoder.load_state_dict(__magic_name__ , strict=__magic_name__ ) for key in missing_keys.copy(): if key.startswith(("text_encoder", "audio_encoder") ) or key in EXPECTED_MISSING_KEYS: missing_keys.remove(__magic_name__ ) if len(__magic_name__ ) > 0: raise ValueError(F"Missing key(s) in state_dict: {missing_keys}" ) if len(__magic_name__ ) > 0: raise ValueError(F"Unexpected key(s) in state_dict: {unexpected_keys}" ) # init the composite model UpperCAmelCase : List[Any] = MusicgenForConditionalGeneration(text_encoder=__magic_name__ , audio_encoder=__magic_name__ , decoder=__magic_name__ ) # load the pre-trained enc-dec projection (from the decoder state dict) model.enc_to_dec_proj.load_state_dict(__magic_name__ ) # check we can do a forward pass UpperCAmelCase : Union[str, Any] = torch.arange(0 , 8 , dtype=torch.long ).reshape(2 , -1 ) UpperCAmelCase : Optional[Any] = input_ids.reshape(2 * 4 , -1 ) with torch.no_grad(): UpperCAmelCase : str = model(input_ids=__magic_name__ , decoder_input_ids=__magic_name__ ).logits if logits.shape != (8, 1, 2048): raise ValueError("Incorrect shape for logits" ) # now construct the processor UpperCAmelCase : Dict = AutoTokenizer.from_pretrained("t5-base" ) UpperCAmelCase : List[str] = AutoFeatureExtractor.from_pretrained("facebook/encodec_32khz" , padding_side="left" ) UpperCAmelCase : Dict = MusicgenProcessor(feature_extractor=__magic_name__ , tokenizer=__magic_name__ ) # set the appropriate bos/pad token ids UpperCAmelCase : List[Any] = 2048 UpperCAmelCase : Tuple = 2048 # set other default generation config params UpperCAmelCase : Tuple = int(30 * audio_encoder.config.frame_rate ) UpperCAmelCase : str = True UpperCAmelCase : Tuple = 3.0 if pytorch_dump_folder is not None: Path(__magic_name__ ).mkdir(exist_ok=__magic_name__ ) logger.info(F"Saving model {checkpoint} to {pytorch_dump_folder}" ) model.save_pretrained(__magic_name__ ) processor.save_pretrained(__magic_name__ ) if repo_id: logger.info(F"Pushing model {checkpoint} to {repo_id}" ) model.push_to_hub(__magic_name__ ) processor.push_to_hub(__magic_name__ ) if __name__ == "__main__": a : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint", default="small", type=str, help="Checkpoint size of the MusicGen model you'd like to convert. Can be one of: `['small', 'medium', 'large']`.", ) parser.add_argument( "--pytorch_dump_folder", required=True, default=None, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", default=None, type=str, help="Where to upload the converted model on the 🤗 hub." ) parser.add_argument( "--device", default="cpu", type=str, help="Torch device to run the conversion, either cpu or cuda." ) a : int = parser.parse_args() convert_musicgen_checkpoint(args.checkpoint, args.pytorch_dump_folder, args.push_to_hub)
311
1
def lowerCAmelCase( __lowerCamelCase ): __a = current_set.copy() for row_index, row in enumerate(__lowerCamelCase ): __a = row[0] for column_index, column in enumerate(__lowerCamelCase ): if magnitude == 0: __a = column continue __a = column / magnitude # Subtract to cancel term __a = current_set[0] __a = [first_row] __a = current_set[1::] for row in current_set: __a = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(__lowerCamelCase ) continue for column_index in range(len(__lowerCamelCase ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(__lowerCamelCase ) # Create next recursion iteration set if len(final_set[0] ) != 3: __a = final_set[0] __a = [] __a = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) __a = simplify(__lowerCamelCase ) for i in range(len(__lowerCamelCase ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , __lowerCamelCase ) __a = resultant return final_set def lowerCAmelCase( __lowerCamelCase ): if len(__lowerCamelCase ) == 0: raise IndexError('solve_simultaneous() requires n lists of length n+1' ) __a = len(__lowerCamelCase ) + 1 if any(len(__lowerCamelCase ) != _length for item in equations ): raise IndexError('solve_simultaneous() requires n lists of length n+1' ) for row in equations: if any(not isinstance(__lowerCamelCase , (int, float) ) for column in row ): raise ValueError('solve_simultaneous() requires lists of integers' ) if len(__lowerCamelCase ) == 1: return [equations[0][-1] / equations[0][0]] __a = equations.copy() if any(0 in row for row in data_set ): __a = data_set.copy() __a = [] for row_index, row in enumerate(__lowerCamelCase ): if 0 not in row: __a = data_set.pop(__lowerCamelCase ) break if not full_row: raise ValueError('solve_simultaneous() requires at least 1 full equation' ) data_set.insert(0 , __lowerCamelCase ) __a = data_set.copy() __a = simplify(__lowerCamelCase ) __a = simplified[::-1] __a = [] for row in simplified: __a = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue __a = row.copy()[: len(__lowerCamelCase ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(__lowerCamelCase ) == 0: solutions.append(0 ) continue __a = temp_row[1::] __a = temp_row[::-1] for column_index, column in enumerate(__lowerCamelCase ): current_solution -= column * solutions[column_index] solutions.append(__lowerCamelCase ) __a = [] for item in solutions: final.append(float(round(__lowerCamelCase , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : List[Any] = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
355
from math import sqrt def lowerCAmelCase( __lowerCamelCase ): __a = 0 for i in range(1 , int(sqrt(__lowerCamelCase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowerCamelCase ): total += i + n // i elif i == sqrt(__lowerCamelCase ): total += i return total - n def lowerCAmelCase( __lowerCamelCase = 1_0000 ): __a = sum( i for i in range(1 , __lowerCamelCase ) if sum_of_divisors(sum_of_divisors(__lowerCamelCase ) ) == i and sum_of_divisors(__lowerCamelCase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
197
0
"""simple docstring""" import argparse import collections import json import os import re import string import sys import numpy as np __A = re.compile(R"\b(a|an|the)\b", re.UNICODE) __A = None def SCREAMING_SNAKE_CASE__ ( ) -> int: lowercase__: Dict = argparse.ArgumentParser('''Official evaluation script for SQuAD version 2.0.''' ) parser.add_argument('''data_file''' , metavar='''data.json''' , help='''Input data JSON file.''' ) parser.add_argument('''pred_file''' , metavar='''pred.json''' , help='''Model predictions.''' ) parser.add_argument( '''--out-file''' , '''-o''' , metavar='''eval.json''' , help='''Write accuracy metrics to file (default is stdout).''' ) parser.add_argument( '''--na-prob-file''' , '''-n''' , metavar='''na_prob.json''' , help='''Model estimates of probability of no answer.''' ) parser.add_argument( '''--na-prob-thresh''' , '''-t''' , type=__UpperCAmelCase , default=1.0 , help='''Predict "" if no-answer probability exceeds this (default = 1.0).''' , ) parser.add_argument( '''--out-image-dir''' , '''-p''' , metavar='''out_images''' , default=__UpperCAmelCase , help='''Save precision-recall curves to directory.''' ) parser.add_argument('''--verbose''' , '''-v''' , action='''store_true''' ) if len(sys.argv ) == 1: parser.print_help() sys.exit(1 ) return parser.parse_args() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: lowercase__: int = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__: Union[str, Any] = bool(qa['''answers''']['''text'''] ) return qid_to_has_ans def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Dict: def remove_articles(__UpperCAmelCase ): return ARTICLES_REGEX.sub(''' ''' , __UpperCAmelCase ) def white_space_fix(__UpperCAmelCase ): return " ".join(text.split() ) def remove_punc(__UpperCAmelCase ): lowercase__: int = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__UpperCAmelCase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__UpperCAmelCase ) ) ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[int]: if not s: return [] return normalize_answer(__UpperCAmelCase ).split() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: return int(normalize_answer(__UpperCAmelCase ) == normalize_answer(__UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: lowercase__: int = get_tokens(__UpperCAmelCase ) lowercase__: Any = get_tokens(__UpperCAmelCase ) lowercase__: Tuple = collections.Counter(__UpperCAmelCase ) & collections.Counter(__UpperCAmelCase ) lowercase__: Optional[int] = sum(common.values() ) if len(__UpperCAmelCase ) == 0 or len(__UpperCAmelCase ) == 0: # If either is no-answer, then F1 is 1 if they agree, 0 otherwise return int(gold_toks == pred_toks ) if num_same == 0: return 0 lowercase__: List[Any] = 1.0 * num_same / len(__UpperCAmelCase ) lowercase__: Union[str, Any] = 1.0 * num_same / len(__UpperCAmelCase ) lowercase__: List[str] = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase ) -> Any: lowercase__: str = {} lowercase__: str = {} for article in dataset: for p in article["paragraphs"]: for qa in p["qas"]: lowercase__: List[Any] = qa['''id'''] lowercase__: Union[str, Any] = [t for t in qa['''answers''']['''text'''] if normalize_answer(__UpperCAmelCase )] if not gold_answers: # For unanswerable questions, only correct answer is empty string lowercase__: str = [''''''] if qid not in preds: print(F"""Missing prediction for {qid}""" ) continue lowercase__: int = preds[qid] # Take max over all gold answers lowercase__: Union[str, Any] = max(compute_exact(__UpperCAmelCase , __UpperCAmelCase ) for a in gold_answers ) lowercase__: int = max(compute_fa(__UpperCAmelCase , __UpperCAmelCase ) for a in gold_answers ) return exact_scores, fa_scores def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowercase__: List[Any] = {} for qid, s in scores.items(): lowercase__: int = na_probs[qid] > na_prob_thresh if pred_na: lowercase__: Union[str, Any] = float(not qid_to_has_ans[qid] ) else: lowercase__: Optional[int] = s return new_scores def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> List[str]: if not qid_list: lowercase__: str = len(__UpperCAmelCase ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores.values() ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores.values() ) / total), ('''total''', total), ] ) else: lowercase__: Union[str, Any] = len(__UpperCAmelCase ) return collections.OrderedDict( [ ('''exact''', 1_0_0.0 * sum(exact_scores[k] for k in qid_list ) / total), ('''f1''', 1_0_0.0 * sum(fa_scores[k] for k in qid_list ) / total), ('''total''', total), ] ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Union[str, Any]: for k in new_eval: lowercase__: Tuple = new_eval[k] def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: plt.step(__UpperCAmelCase , __UpperCAmelCase , color='''b''' , alpha=0.2 , where='''post''' ) plt.fill_between(__UpperCAmelCase , __UpperCAmelCase , step='''post''' , alpha=0.2 , color='''b''' ) plt.xlabel('''Recall''' ) plt.ylabel('''Precision''' ) plt.xlim([0.0, 1.0_5] ) plt.ylim([0.0, 1.0_5] ) plt.title(__UpperCAmelCase ) plt.savefig(__UpperCAmelCase ) plt.clf() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ) -> Union[str, Any]: lowercase__: List[Any] = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : na_probs[k] ) lowercase__: List[Any] = 0.0 lowercase__: Optional[Any] = 1.0 lowercase__: Any = 0.0 lowercase__: Any = [1.0] lowercase__: Tuple = [0.0] lowercase__: Dict = 0.0 for i, qid in enumerate(__UpperCAmelCase ): if qid_to_has_ans[qid]: true_pos += scores[qid] lowercase__: Optional[Any] = true_pos / float(i + 1 ) lowercase__: List[Any] = true_pos / float(__UpperCAmelCase ) if i == len(__UpperCAmelCase ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]: # i.e., if we can put a threshold after this point avg_prec += cur_p * (cur_r - recalls[-1]) precisions.append(__UpperCAmelCase ) recalls.append(__UpperCAmelCase ) if out_image: plot_pr_curve(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return {"ap": 1_0_0.0 * avg_prec} def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if out_image_dir and not os.path.exists(__UpperCAmelCase ): os.makedirs(__UpperCAmelCase ) lowercase__: Union[str, Any] = sum(1 for v in qid_to_has_ans.values() if v ) if num_true_pos == 0: return lowercase__: List[str] = make_precision_recall_eval( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , out_image=os.path.join(__UpperCAmelCase , '''pr_exact.png''' ) , title='''Precision-Recall curve for Exact Match score''' , ) lowercase__: Dict = make_precision_recall_eval( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , out_image=os.path.join(__UpperCAmelCase , '''pr_f1.png''' ) , title='''Precision-Recall curve for F1 score''' , ) lowercase__: List[Any] = {k: float(__UpperCAmelCase ) for k, v in qid_to_has_ans.items()} lowercase__: int = make_precision_recall_eval( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , out_image=os.path.join(__UpperCAmelCase , '''pr_oracle.png''' ) , title='''Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)''' , ) merge_eval(__UpperCAmelCase , __UpperCAmelCase , '''pr_exact''' ) merge_eval(__UpperCAmelCase , __UpperCAmelCase , '''pr_f1''' ) merge_eval(__UpperCAmelCase , __UpperCAmelCase , '''pr_oracle''' ) def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: if not qid_list: return lowercase__: Dict = [na_probs[k] for k in qid_list] lowercase__: Union[str, Any] = np.ones_like(__UpperCAmelCase ) / float(len(__UpperCAmelCase ) ) plt.hist(__UpperCAmelCase , weights=__UpperCAmelCase , bins=2_0 , range=(0.0, 1.0) ) plt.xlabel('''Model probability of no-answer''' ) plt.ylabel('''Proportion of dataset''' ) plt.title(F"""Histogram of no-answer probability: {name}""" ) plt.savefig(os.path.join(__UpperCAmelCase , F"""na_prob_hist_{name}.png""" ) ) plt.clf() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: lowercase__: Union[str, Any] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] ) lowercase__: Optional[int] = num_no_ans lowercase__: List[Any] = cur_score lowercase__: Tuple = 0.0 lowercase__: Optional[int] = sorted(__UpperCAmelCase , key=lambda __UpperCAmelCase : na_probs[k] ) for i, qid in enumerate(__UpperCAmelCase ): if qid not in scores: continue if qid_to_has_ans[qid]: lowercase__: Tuple = scores[qid] else: if preds[qid]: lowercase__: Optional[int] = -1 else: lowercase__: Optional[int] = 0 cur_score += diff if cur_score > best_score: lowercase__: int = cur_score lowercase__: Optional[Any] = na_probs[qid] return 1_0_0.0 * best_score / len(__UpperCAmelCase ), best_thresh def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: lowercase__, lowercase__: str = find_best_thresh(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__, lowercase__: Optional[int] = find_best_thresh(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowercase__: Optional[int] = best_exact lowercase__: Tuple = exact_thresh lowercase__: Optional[int] = best_fa lowercase__: str = fa_thresh def SCREAMING_SNAKE_CASE__ ( ) -> Tuple: with open(OPTS.data_file ) as f: lowercase__: Union[str, Any] = json.load(__UpperCAmelCase ) lowercase__: Tuple = dataset_json['''data'''] with open(OPTS.pred_file ) as f: lowercase__: List[str] = json.load(__UpperCAmelCase ) if OPTS.na_prob_file: with open(OPTS.na_prob_file ) as f: lowercase__: List[Any] = json.load(__UpperCAmelCase ) else: lowercase__: List[Any] = {k: 0.0 for k in preds} lowercase__: Any = make_qid_to_has_ans(__UpperCAmelCase ) # maps qid to True/False lowercase__: Dict = [k for k, v in qid_to_has_ans.items() if v] lowercase__: Tuple = [k for k, v in qid_to_has_ans.items() if not v] lowercase__, lowercase__: Union[str, Any] = get_raw_scores(__UpperCAmelCase , __UpperCAmelCase ) lowercase__: Union[str, Any] = apply_no_ans_threshold(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , OPTS.na_prob_thresh ) lowercase__: List[str] = apply_no_ans_threshold(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , OPTS.na_prob_thresh ) lowercase__: Tuple = make_eval_dict(__UpperCAmelCase , __UpperCAmelCase ) if has_ans_qids: lowercase__: Any = make_eval_dict(__UpperCAmelCase , __UpperCAmelCase , qid_list=__UpperCAmelCase ) merge_eval(__UpperCAmelCase , __UpperCAmelCase , '''HasAns''' ) if no_ans_qids: lowercase__: Optional[Any] = make_eval_dict(__UpperCAmelCase , __UpperCAmelCase , qid_list=__UpperCAmelCase ) merge_eval(__UpperCAmelCase , __UpperCAmelCase , '''NoAns''' ) if OPTS.na_prob_file: find_all_best_thresh(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if OPTS.na_prob_file and OPTS.out_image_dir: run_precision_recall_analysis(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , OPTS.out_image_dir ) histogram_na_prob(__UpperCAmelCase , __UpperCAmelCase , OPTS.out_image_dir , '''hasAns''' ) histogram_na_prob(__UpperCAmelCase , __UpperCAmelCase , OPTS.out_image_dir , '''noAns''' ) if OPTS.out_file: with open(OPTS.out_file , '''w''' ) as f: json.dump(__UpperCAmelCase , __UpperCAmelCase ) else: print(json.dumps(__UpperCAmelCase , indent=2 ) ) if __name__ == "__main__": __A = parse_args() if OPTS.out_image_dir: import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt main()
177
"""simple docstring""" import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: # Initialise PyTorch model lowercase__: Optional[Any] = FunnelConfig.from_json_file(__UpperCAmelCase ) print(F"""Building PyTorch model from configuration: {config}""" ) lowercase__: List[Any] = FunnelBaseModel(__UpperCAmelCase ) if base_model else FunnelModel(__UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __UpperCAmelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--base_model", action="store_true", help="Whether you want just the base model (no decoder) or not." ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
177
1
'''simple docstring''' import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline __snake_case =argparse.ArgumentParser("""Stable Diffusion script with intel optimization""", add_help=False) parser.add_argument("""--dpm""", action="""store_true""", help="""Enable DPMSolver or not""") parser.add_argument("""--steps""", default=None, type=int, help="""Num inference steps""") __snake_case =parser.parse_args() __snake_case ="""cpu""" __snake_case ="""a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings""" __snake_case ="""path-to-your-trained-model""" __snake_case =StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: __snake_case =DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) __snake_case =pipe.to(device) # to channels last __snake_case =pipe.unet.to(memory_format=torch.channels_last) __snake_case =pipe.vae.to(memory_format=torch.channels_last) __snake_case =pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: __snake_case =pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex __snake_case =torch.randn(2, 4, 64, 64) __snake_case =torch.rand(1) * 999 __snake_case =torch.randn(2, 77, 768) __snake_case =(sample, timestep, encoder_hidden_status) try: __snake_case =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: __snake_case =ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) __snake_case =ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) __snake_case =ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: __snake_case =ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute __snake_case =666 __snake_case =torch.Generator(device).manual_seed(seed) __snake_case ={"""generator""": generator} if args.steps is not None: __snake_case =args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): __snake_case =pipe(prompt, **generate_kwargs).images[0] # save image image.save("""generated.png""")
55
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase_ : def __init__( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : Optional[Any]=7 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Tuple=False , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=9_9 , UpperCAmelCase__ : Tuple=3_2 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : Any=3_7 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : List[Any]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : Dict=1_6 , UpperCAmelCase__ : Optional[Any]=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : Union[str, Any]=3 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : List[str]=None , ) -> str: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __UpperCAmelCase ( self : Any ) -> List[str]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : str , UpperCAmelCase__ : str ) -> int: lowerCAmelCase = FalconModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[Any] , ) -> Tuple: lowerCAmelCase = True lowerCAmelCase = FalconModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , ) -> List[str]: lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[Any] , ) -> List[str]: lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : Tuple = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : Dict = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase : int = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : int = False lowerCamelCase : Union[str, Any] = False def __UpperCAmelCase ( self : Any ) -> Optional[Any]: lowerCAmelCase = FalconModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : str ) -> Tuple: lowerCAmelCase , *lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Any ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = FalconForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__ ) for layer in range(len(UpperCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __UpperCAmelCase ( self : Any ) -> List[Any]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , 'use_cache' ): return lowerCAmelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if "use_cache" not in inputs: lowerCAmelCase = True lowerCAmelCase = model(**UpperCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase = ( getattr(UpperCAmelCase__ , 'decoder_layers' , UpperCAmelCase__ ) or getattr(UpperCAmelCase__ , 'num_decoder_layers' , UpperCAmelCase__ ) or config.num_hidden_layers ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'num_kv_heads' , config.num_attention_heads ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'd_model' , config.hidden_size ) lowerCAmelCase = embed_dim // num_attention_heads lowerCAmelCase = outputs['past_key_values'] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase = inputs['input_ids'].shape for i in range(UpperCAmelCase__ ): if config.new_decoder_architecture: lowerCAmelCase = config.num_attention_heads elif config.multi_query: lowerCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : List[str] ) -> Dict: lowerCAmelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCAmelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) lowerCAmelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=1_9 ) lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Dict: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Dict: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(device=UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # Test results are the same with and without cache lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
55
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase : Optional[int] = {'''configuration_vit_mae''': ['''VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ViTMAEConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Optional[int] = [ '''VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ViTMAEForPreTraining''', '''ViTMAELayer''', '''ViTMAEModel''', '''ViTMAEPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ '''TFViTMAEForPreTraining''', '''TFViTMAEModel''', '''TFViTMAEPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys UpperCAmelCase : str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
280
def _SCREAMING_SNAKE_CASE ( a , a ) -> list[int]: __A : Optional[int] = int(a ) # Initialize Result __A : Optional[int] = [] # Traverse through all denomination for denomination in reversed(a ): # Find denominations while int(a ) >= int(a ): total_value -= int(a ) answer.append(a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": UpperCAmelCase : List[str] = [] UpperCAmelCase : Optional[int] = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): UpperCAmelCase : List[Any] = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F"""Denomination {i}: """).strip())) UpperCAmelCase : int = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter UpperCAmelCase : Optional[int] = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] UpperCAmelCase : Tuple = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F"""Following is minimal change for {value}: """) UpperCAmelCase : Optional[int] = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
280
1
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def _lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: # Initialise PyTorch model. # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of # TapasConfig to False. # initialize configuration from json file lowerCamelCase =TapasConfig.from_json_file(_UpperCAmelCase ) # set absolute/relative position embeddings parameter lowerCamelCase =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": lowerCamelCase =TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "WTQ": # run_task_main.py hparams lowerCamelCase =4 lowerCamelCase =True # hparam_utils.py hparams lowerCamelCase =0.6_6_4_6_9_4 lowerCamelCase =0.2_0_7_9_5_1 lowerCamelCase =0.1_2_1_1_9_4 lowerCamelCase =True lowerCamelCase =True lowerCamelCase =False lowerCamelCase =0.0_3_5_2_5_1_3 lowerCamelCase =TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams lowerCamelCase =4 lowerCamelCase =False # hparam_utils.py hparams lowerCamelCase =3_6.4_5_1_9 lowerCamelCase =0.9_0_3_4_2_1 lowerCamelCase =2_2_2.0_8_8 lowerCamelCase =True lowerCamelCase =True lowerCamelCase =True lowerCamelCase =0.7_6_3_1_4_1 lowerCamelCase =TapasForQuestionAnswering(config=_UpperCAmelCase ) elif task == "TABFACT": lowerCamelCase =TapasForSequenceClassification(config=_UpperCAmelCase ) elif task == "MLM": lowerCamelCase =TapasForMaskedLM(config=_UpperCAmelCase ) elif task == "INTERMEDIATE_PRETRAINING": lowerCamelCase =TapasModel(config=_UpperCAmelCase ) else: raise ValueError(F"""Task {task} not supported.""" ) print(F"""Building PyTorch model from configuration: {config}""" ) # Load weights from tf checkpoint load_tf_weights_in_tapas(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model (weights and configuration) print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(_UpperCAmelCase ) # Save tokenizer files print(F"""Save tokenizer files to {pytorch_dump_path}""" ) lowerCamelCase =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + """vocab.txt""" , model_max_length=5_12 ) tokenizer.save_pretrained(_UpperCAmelCase ) print("""Used relative position embeddings:""" , model.config.reset_position_index_per_cell ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''SQA''', type=str, help='''Model task for which to convert a checkpoint. Defaults to SQA.''' ) parser.add_argument( '''--reset_position_index_per_cell''', default=False, action='''store_true''', help='''Whether to use relative position embeddings or not. Defaults to True.''', ) parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--tapas_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained TAPAS model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) UpperCAmelCase__ : Optional[int] =parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
262
import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __A ( a , a , unittest.TestCase ): __A = IFInpaintingSuperResolutionPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"""width""", """height"""} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"""original_image"""} ) __A = PipelineTesterMixin.required_optional_params - {"""latents"""} def _snake_case ( self ): return self._get_superresolution_dummy_components() def _snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ): if str(UpperCAmelCase_ ).startswith("""mps""" ): lowerCamelCase =torch.manual_seed(UpperCAmelCase_ ) else: lowerCamelCase =torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 16, 16) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase =floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) lowerCamelCase ={ """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """original_image""": original_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def _snake_case ( self ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" ) def _snake_case ( self ): # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def _snake_case ( self ): self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def _snake_case ( self ): self._test_save_load_local() def _snake_case ( self ): self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
262
1
from pathlib import Path import numpy as np from PIL import Image def SCREAMING_SNAKE_CASE ( lowercase_ ) -> np.ndarray: """simple docstring""" A__ , A__ , A__ = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.29_89 * r + 0.58_70 * g + 0.11_40 * b def SCREAMING_SNAKE_CASE ( lowercase_ ) -> np.ndarray: """simple docstring""" return (gray > 127) & (gray <= 255) def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> np.ndarray: """simple docstring""" A__ = np.zeros_like(lowercase_ ) A__ = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image A__ = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): A__ = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() A__ = int(summation > 0 ) return output if __name__ == "__main__": # read original image _lowerCamelCase : Tuple = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" _lowerCamelCase : Any = np.array(Image.open(lena_path)) # kernel to be applied _lowerCamelCase : int = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) _lowerCamelCase : List[str] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image _lowerCamelCase : Dict = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
14
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : List[str] = {"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[Any] = [ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) @dataclass class _snake_case ( lowercase_ ): lowerCAmelCase_ : List[str] = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **a__ ) -> Tuple: '''simple docstring''' for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: snake_case_ = deprecated_arg[3:] snake_case_ = not kwargs.pop(a__ ) logger.warning( F'{deprecated_arg} is depreciated. Please use --no-{positive_arg} or' F' {positive_arg}={kwargs[positive_arg]}' ) snake_case_ = kwargs.pop("tpu_name" , self.tpu_name ) snake_case_ = kwargs.pop("device_idx" , self.device_idx ) snake_case_ = kwargs.pop("eager_mode" , self.eager_mode ) snake_case_ = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**a__ ) lowerCAmelCase_ : str = field( default=lowercase_ , metadata={"help": "Name of TPU"} , ) lowerCAmelCase_ : int = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) lowerCAmelCase_ : bool = field(default=lowercase_ , metadata={"help": "Benchmark models in eager model."} ) lowerCAmelCase_ : bool = field( default=lowercase_ , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def lowerCAmelCase__ ( self ) -> Tuple["tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["tf"] ) snake_case_ = None if self.tpu: try: if self.tpu_name: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: snake_case_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: snake_case_ = None return tpu @cached_property def lowerCAmelCase__ ( self ) -> Tuple["tf.distribute.Strategy", "tf.distribute.cluster_resolver.TPUClusterResolver"]: '''simple docstring''' requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) snake_case_ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) snake_case_ = tf.distribute.OneDeviceStrategy(device=F'/gpu:{self.device_idx}' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU snake_case_ = tf.distribute.OneDeviceStrategy(device=F'/cpu:{self.device_idx}' ) return strategy @property def lowerCAmelCase__ ( self ) -> bool: '''simple docstring''' requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def lowerCAmelCase__ ( self ) -> "tf.distribute.Strategy": '''simple docstring''' requires_backends(self , ["tf"] ) return self._setup_strategy @property def lowerCAmelCase__ ( self ) -> List[str]: '''simple docstring''' requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def lowerCAmelCase__ ( self ) -> bool: '''simple docstring''' return self.n_gpu > 0
92
'''simple docstring''' from ..utils import DummyObject, requires_backends class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : int = ["flax"] def __init__( self , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Optional[Any] = ["flax"] def __init__( self , *a__ , **a__ ) -> Any: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Dict = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : List[str] = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : int = ["flax"] def __init__( self , *a__ , **a__ ) -> Dict: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Any = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> str: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : str = ["flax"] def __init__( self , *a__ , **a__ ) -> List[str]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ["flax"] ) class _snake_case ( metaclass=lowercase_ ): lowerCAmelCase_ : Tuple = ["flax"] def __init__( self , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> int: '''simple docstring''' requires_backends(cls , ["flax"] ) @classmethod def lowerCAmelCase__ ( cls , *a__ , **a__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ["flax"] )
92
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCAmelCase = { '''configuration_roc_bert''': ['''ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RoCBertConfig'''], '''tokenization_roc_bert''': ['''RoCBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ '''ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RoCBertForCausalLM''', '''RoCBertForMaskedLM''', '''RoCBertForMultipleChoice''', '''RoCBertForPreTraining''', '''RoCBertForQuestionAnswering''', '''RoCBertForSequenceClassification''', '''RoCBertForTokenClassification''', '''RoCBertLayer''', '''RoCBertModel''', '''RoCBertPreTrainedModel''', '''load_tf_weights_in_roc_bert''', ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
89
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class _A : def A__ ( self , __lowerCAmelCase ): """simple docstring""" raise NotImplementedError() def A__ ( self ): """simple docstring""" raise NotImplementedError() class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , **__lowerCAmelCase ): """simple docstring""" lowercase = tokenizer lowercase = skip_prompt lowercase = decode_kwargs # variables used in the streaming process lowercase = [] lowercase = 0 lowercase = True def A__ ( self , __lowerCAmelCase ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowercase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowercase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowercase = text[self.print_len :] lowercase = [] lowercase = 0 # If the last token is a CJK character, we print the characters. elif len(__lowerCAmelCase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowercase = text[self.print_len :] self.print_len += len(__lowerCAmelCase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowercase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(__lowerCAmelCase ) self.on_finalized_text(__lowerCAmelCase ) def A__ ( self ): """simple docstring""" if len(self.token_cache ) > 0: lowercase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowercase = text[self.print_len :] lowercase = [] lowercase = 0 else: lowercase = """""" lowercase = True self.on_finalized_text(__lowerCAmelCase , stream_end=__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" print(__lowerCAmelCase , flush=__lowerCAmelCase , end="""""" if not stream_end else None ) def A__ ( self , __lowerCAmelCase ): """simple docstring""" if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False class _A ( lowerCAmelCase ): def __init__( self , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , **__lowerCAmelCase ): """simple docstring""" super().__init__(__lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) lowercase = Queue() lowercase = None lowercase = timeout def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" self.text_queue.put(__lowerCAmelCase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def A__ ( self ): """simple docstring""" lowercase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
197
0
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> List[str]: lowercase__: int = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 1_8, 2] lowercase__: Any = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__: Dict = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__: Tuple = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__: Any = [3, 3, 3, 3] lowercase__: Any = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__: Optional[int] = [4, 4, 4, 4] lowercase__: Dict = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__: Tuple = [3, 3, 3, 3] if "lrf" in model_name: lowercase__: Dict = [3, 3, 3, 3] else: lowercase__: List[Any] = [2, 2, 2, 2] if "tiny" in model_name: lowercase__: Any = 9_6 elif "small" in model_name: lowercase__: Optional[int] = 9_6 elif "base" in model_name: lowercase__: Optional[Any] = 1_2_8 elif "large" in model_name: lowercase__: List[str] = 1_9_2 elif "xlarge" in model_name: lowercase__: str = 2_5_6 elif "huge" in model_name: lowercase__: Dict = 3_5_2 # set label information lowercase__: Tuple = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__: Any = '''imagenet-22k-id2label.json''' else: lowercase__: Dict = '''imagenet-1k-id2label.json''' lowercase__: Dict = json.load(open(hf_hub_download(__UpperCAmelCase , __UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) lowercase__: int = {int(__UpperCAmelCase ): v for k, v in idalabel.items()} lowercase__: Union[str, Any] = {v: k for k, v in idalabel.items()} lowercase__: Any = FocalNetConfig( embed_dim=__UpperCAmelCase , depths=__UpperCAmelCase , focal_levels=__UpperCAmelCase , focal_windows=__UpperCAmelCase , use_conv_embed=__UpperCAmelCase , idalabel=__UpperCAmelCase , labelaid=__UpperCAmelCase , use_post_layernorm=__UpperCAmelCase , use_layerscale=__UpperCAmelCase , ) return config def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ) -> Optional[Any]: if "patch_embed.proj" in name: lowercase__: Dict = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__: Any = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__: Union[str, Any] = '''encoder.''' + name if "encoder.layers" in name: lowercase__: List[Any] = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__: List[str] = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__: Dict = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__: Any = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__: Any = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__: Optional[Any] = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__: Dict = '''layernorm.weight''' if name == "norm.bias": lowercase__: str = '''layernorm.bias''' if "head" in name: lowercase__: Dict = name.replace('''head''' , '''classifier''' ) else: lowercase__: int = '''focalnet.''' + name return name def SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[int]: # fmt: off lowercase__: Any = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__: Union[str, Any] = model_name_to_url[model_name] print('''Checkpoint URL: ''' , __UpperCAmelCase ) lowercase__: Tuple = torch.hub.load_state_dict_from_url(__UpperCAmelCase , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__: Optional[Any] = state_dict.pop(__UpperCAmelCase ) lowercase__: str = val lowercase__: Optional[int] = get_focalnet_config(__UpperCAmelCase ) lowercase__: Union[str, Any] = FocalNetForImageClassification(__UpperCAmelCase ) model.eval() # load state dict model.load_state_dict(__UpperCAmelCase ) # verify conversion lowercase__: Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__: Optional[Any] = BitImageProcessor( do_resize=__UpperCAmelCase , size={'''shortest_edge''': 2_5_6} , resample=PILImageResampling.BILINEAR , do_center_crop=__UpperCAmelCase , crop_size=2_2_4 , do_normalize=__UpperCAmelCase , image_mean=__UpperCAmelCase , image_std=__UpperCAmelCase , ) lowercase__: List[str] = Image.open(requests.get(__UpperCAmelCase , stream=__UpperCAmelCase ).raw ) lowercase__: Optional[int] = processor(images=__UpperCAmelCase , return_tensors='''pt''' ) lowercase__: Optional[int] = transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) lowercase__: str = image_transforms(__UpperCAmelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __UpperCAmelCase , atol=1e-4 ) lowercase__: str = model(**__UpperCAmelCase ) lowercase__: Union[str, Any] = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__: Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": lowercase__: Union[str, Any] = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": lowercase__: List[Any] = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": lowercase__: List[Any] = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": lowercase__: Union[str, Any] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": lowercase__: Any = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1e-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__UpperCAmelCase ) processor.save_pretrained(__UpperCAmelCase ) if push_to_hub: print(F"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(F"""{model_name}""" ) processor.push_to_hub(F"""{model_name}""" ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) __A = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
2
"""simple docstring""" import unittest from transformers import DonutProcessor __A = "naver-clova-ix/donut-base" class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: int = DonutProcessor.from_pretrained(_UpperCAmelCase ) def _snake_case ( self ): lowercase__: Tuple = { '''name''': '''John Doe''', '''age''': '''99''', '''city''': '''Atlanta''', '''state''': '''GA''', '''zip''': '''30301''', '''phone''': '''123-4567''', '''nicknames''': [{'''nickname''': '''Johnny'''}, {'''nickname''': '''JD'''}], } lowercase__: Union[str, Any] = ( '''<s_name>John Doe</s_name><s_age>99</s_age><s_city>Atlanta</s_city>''' '''<s_state>GA</s_state><s_zip>30301</s_zip><s_phone>123-4567</s_phone>''' '''<s_nicknames><s_nickname>Johnny</s_nickname>''' '''<sep/><s_nickname>JD</s_nickname></s_nicknames>''' ) lowercase__: str = self.processor.tokenajson(_UpperCAmelCase ) self.assertDictEqual(_UpperCAmelCase , _UpperCAmelCase )
2
1
'''simple docstring''' class snake_case : """simple docstring""" def __init__( self ): """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = 0 lowerCamelCase_ = {} def snake_case ( self , UpperCamelCase ): """simple docstring""" if vertex not in self.adjacency: lowerCamelCase_ = {} self.num_vertices += 1 def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" self.add_vertex(UpperCamelCase ) self.add_vertex(UpperCamelCase ) if head == tail: return lowerCamelCase_ = weight lowerCamelCase_ = weight def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.get_edges() for edge in edges: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for i in range(len(UpperCamelCase ) ): lowerCamelCase_ = list(edges[i] ) edges.sort(key=lambda UpperCamelCase : e[2] ) for i in range(len(UpperCamelCase ) - 1 ): if edges[i][2] >= edges[i + 1][2]: lowerCamelCase_ = edges[i][2] + 1 for edge in edges: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edge lowerCamelCase_ = weight lowerCamelCase_ = weight def __str__( self ): """simple docstring""" lowerCamelCase_ = "" for tail in self.adjacency: for head in self.adjacency[tail]: lowerCamelCase_ = self.adjacency[head][tail] string += f'''{head} -> {tail} == {weight}\n''' return string.rstrip("\n" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def snake_case ( self ): """simple docstring""" return self.adjacency.keys() @staticmethod def snake_case ( UpperCamelCase=None , UpperCamelCase=None ): """simple docstring""" lowerCamelCase_ = Graph() if vertices is None: lowerCamelCase_ = [] if edges is None: lowerCamelCase_ = [] for vertex in vertices: g.add_vertex(UpperCamelCase ) for edge in edges: g.add_edge(*UpperCamelCase ) return g class snake_case : """simple docstring""" def __init__( self ): """simple docstring""" lowerCamelCase_ = {} lowerCamelCase_ = {} def __len__( self ): """simple docstring""" return len(self.parent ) def snake_case ( self , UpperCamelCase ): """simple docstring""" if item in self.parent: return self.find(UpperCamelCase ) lowerCamelCase_ = item lowerCamelCase_ = 0 return item def snake_case ( self , UpperCamelCase ): """simple docstring""" if item not in self.parent: return self.make_set(UpperCamelCase ) if item != self.parent[item]: lowerCamelCase_ = self.find(self.parent[item] ) return self.parent[item] def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.find(UpperCamelCase ) lowerCamelCase_ = self.find(UpperCamelCase ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] < self.rank[roota]: lowerCamelCase_ = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 lowerCamelCase_ = roota return roota return None @staticmethod def snake_case ( UpperCamelCase ): """simple docstring""" lowerCamelCase_ = graph.num_vertices lowerCamelCase_ = Graph.UnionFind() lowerCamelCase_ = [] while num_components > 1: lowerCamelCase_ = {} for vertex in graph.get_vertices(): lowerCamelCase_ = -1 lowerCamelCase_ = graph.get_edges() for edge in edges: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edge edges.remove((tail, head, weight) ) for edge in edges: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = edge lowerCamelCase_ = union_find.find(UpperCamelCase ) lowerCamelCase_ = union_find.find(UpperCamelCase ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: lowerCamelCase_ = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = cheap_edge[vertex] if union_find.find(UpperCamelCase ) != union_find.find(UpperCamelCase ): union_find.union(UpperCamelCase , UpperCamelCase ) mst_edges.append(cheap_edge[vertex] ) lowerCamelCase_ = num_components - 1 lowerCamelCase_ = Graph.build(edges=UpperCamelCase ) return mst
55
'''simple docstring''' import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class snake_case : """simple docstring""" def __init__( self , UpperCamelCase , UpperCamelCase = 13 , UpperCamelCase = 64 , UpperCamelCase = 2 , UpperCamelCase = 3 , UpperCamelCase = 3 , UpperCamelCase = True , UpperCamelCase = True , UpperCamelCase = 128 , UpperCamelCase=[16, 32, 64, 128] , UpperCamelCase = 7 , UpperCamelCase = 4 , UpperCamelCase = 37 , UpperCamelCase = "gelu" , UpperCamelCase = 0.1 , UpperCamelCase = 0.1 , UpperCamelCase = 10 , UpperCamelCase = 0.02 , UpperCamelCase = 2 , UpperCamelCase = 1 , UpperCamelCase = 128 , UpperCamelCase = [2, 2, 2, 2] , UpperCamelCase = 2 , UpperCamelCase = 2 , ): """simple docstring""" lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = type_sequence_label_size lowerCamelCase_ = initializer_range lowerCamelCase_ = encoder_stride lowerCamelCase_ = num_attention_outputs lowerCamelCase_ = embed_dim lowerCamelCase_ = embed_dim + 1 lowerCamelCase_ = resolution lowerCamelCase_ = depths lowerCamelCase_ = hidden_sizes lowerCamelCase_ = dim lowerCamelCase_ = mlp_expansion_ratio def snake_case ( self ): """simple docstring""" lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModel(config=UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self.type_sequence_label_size lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase , training=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase_ = 1 lowerCamelCase_ = TFEfficientFormerForImageClassification(UpperCamelCase ) lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase_ = model(UpperCamelCase , labels=UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class snake_case ( lowercase , lowercase , unittest.TestCase ): """simple docstring""" _lowerCamelCase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) _lowerCamelCase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False _lowerCamelCase = False def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerModelTester(self ) lowerCamelCase_ = ConfigTester( self , config_class=UpperCamelCase , has_text_modality=UpperCamelCase , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="EfficientFormer does not use inputs_embeds" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="EfficientFormer does not support input and output embeddings" ) def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowerCamelCase_ = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) if hasattr(self.model_tester , "encoder_seq_length" ): lowerCamelCase_ = self.model_tester.encoder_seq_length if hasattr(self.model_tester , "chunk_length" ) and self.model_tester.chunk_length > 1: lowerCamelCase_ = seq_length * self.model_tester.chunk_length else: lowerCamelCase_ = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: lowerCamelCase_ = outputs.decoder_hidden_states self.asseretIsInstance(UpperCamelCase , (list, tuple) ) self.assertEqual(len(UpperCamelCase ) , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "decoder_seq_length" , UpperCamelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(UpperCamelCase , UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCamelCase_ = super()._prepare_for_class(UpperCamelCase , UpperCamelCase , return_labels=UpperCamelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase ) @unittest.skip(reason="EfficientFormer does not implement masked image modeling yet" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = TFEfficientFormerModel.from_pretrained(UpperCamelCase ) self.assertIsNotNone(UpperCamelCase ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True lowerCamelCase_ = getattr(self.model_tester , "seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "encoder_seq_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "key_length" , UpperCamelCase ) lowerCamelCase_ = getattr(self.model_tester , "chunk_length" , UpperCamelCase ) if chunk_length is not None and hasattr(self.model_tester , "num_hashes" ): lowerCamelCase_ = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(UpperCamelCase ) lowerCamelCase_ = model(**self._prepare_for_class(UpperCamelCase , UpperCamelCase ) , training=UpperCamelCase ) lowerCamelCase_ = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(UpperCamelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def snake_case ( self ): """simple docstring""" # We use a simplified version of this test for EfficientFormer because it requires training=False # and Keras refuses to let us force that during functional construction lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model lowerCamelCase_ = model_class(UpperCamelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes lowerCamelCase_ = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=UpperCamelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } lowerCamelCase_ = model(UpperCamelCase ) self.assertTrue(outputs_dict is not None ) def __snake_case ( ): lowerCamelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class snake_case ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self ): """simple docstring""" return ( EfficientFormerImageProcessor.from_pretrained("snap-research/efficientformer-l1-300" ) if is_vision_available() else None ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassification.from_pretrained("snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.0_555, 0.4_825, -0.0_852] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) ) @slow def snake_case ( self ): """simple docstring""" lowerCamelCase_ = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( "snap-research/efficientformer-l1-300" ) lowerCamelCase_ = self.default_image_processor lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=UpperCamelCase , return_tensors="tf" ) # forward pass lowerCamelCase_ = model(**UpperCamelCase , training=UpperCamelCase ) # verify the logits lowerCamelCase_ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , UpperCamelCase ) lowerCamelCase_ = tf.constant([-0.1_312, 0.4_353, -1.0_499] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , UpperCamelCase , atol=1e-4 ) )
55
1
'''simple docstring''' class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = "" , _UpperCAmelCase = False): '''simple docstring''' __A : dict[str, RadixNode] = {} # A node will be a leaf if the tree contains its word __A : Dict = is_leaf __A : Optional[int] = prefix def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = 0 for q, w in zip(self.prefix , _UpperCAmelCase): if q != w: break x += 1 return self.prefix[:x], self.prefix[x:], word[x:] def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' for word in words: self.insert(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.prefix == word: __A : Optional[int] = True # Case 2: The node has no edges that have a prefix to the word # Solution: We create an edge from the current node to a new one # containing the word elif word[0] not in self.nodes: __A : int = RadixNode(prefix=_UpperCAmelCase , is_leaf=_UpperCAmelCase) else: __A : List[Any] = self.nodes[word[0]] __A ,__A ,__A : Union[str, Any] = incoming_node.match( _UpperCAmelCase) # Case 3: The node prefix is equal to the matching # Solution: We insert remaining word on the next node if remaining_prefix == "": self.nodes[matching_string[0]].insert(_UpperCAmelCase) # Case 4: The word is greater equal to the matching # Solution: Create a node in between both nodes, change # prefixes and add the new node for the remaining word else: __A : Union[str, Any] = remaining_prefix __A : Union[str, Any] = self.nodes[matching_string[0]] __A : Dict = RadixNode(_UpperCAmelCase , _UpperCAmelCase) __A : str = aux_node if remaining_word == "": __A : Dict = True else: self.nodes[matching_string[0]].insert(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : List[Any] = self.nodes.get(word[0] , _UpperCAmelCase) if not incoming_node: return False else: __A ,__A ,__A : Dict = incoming_node.match( _UpperCAmelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # This applies when the word and the prefix are equal elif remaining_word == "": return incoming_node.is_leaf # We have word remaining so we check the next node else: return incoming_node.find(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Any = self.nodes.get(word[0] , _UpperCAmelCase) if not incoming_node: return False else: __A ,__A ,__A : Tuple = incoming_node.match( _UpperCAmelCase) # If there is remaining prefix, the word can't be on the tree if remaining_prefix != "": return False # We have word remaining so we check the next node elif remaining_word != "": return incoming_node.delete(_UpperCAmelCase) else: # If it is not a leaf, we don't have to delete if not incoming_node.is_leaf: return False else: # We delete the nodes if no edges go from it if len(incoming_node.nodes) == 0: del self.nodes[word[0]] # We merge the current node with its only child if len(self.nodes) == 1 and not self.is_leaf: __A : int = list(self.nodes.values())[0] __A : int = merging_node.is_leaf self.prefix += merging_node.prefix __A : Tuple = merging_node.nodes # If there is more than 1 edge, we just mark it as non-leaf elif len(incoming_node.nodes) > 1: __A : Optional[Any] = False # If there is 1 edge, we merge it with its child else: __A : List[Any] = list(incoming_node.nodes.values())[0] __A : Optional[Any] = merging_node.is_leaf incoming_node.prefix += merging_node.prefix __A : Union[str, Any] = merging_node.nodes return True def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = 0): '''simple docstring''' if self.prefix != "": print('-' * height , self.prefix , ' (leaf)' if self.is_leaf else '') for value in self.nodes.values(): value.print_tree(height + 1) def _lowerCAmelCase ( ) -> bool: __A : Tuple = 'banana bananas bandana band apple all beast'.split() __A : int = RadixNode() root.insert_many(__snake_case ) assert all(root.find(__snake_case ) for word in words ) assert not root.find('bandanas' ) assert not root.find('apps' ) root.delete('all' ) assert not root.find('all' ) root.delete('banana' ) assert not root.find('banana' ) assert root.find('bananas' ) return True def _lowerCAmelCase ( ) -> None: assert test_trie() def _lowerCAmelCase ( ) -> None: __A : List[str] = RadixNode() __A : Dict = 'banana bananas bandanas bandana band apple all beast'.split() root.insert_many(__snake_case ) print('Words:' , __snake_case ) print('Tree:' ) root.print_tree() if __name__ == "__main__": main()
190
'''simple docstring''' import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowercase__ : List[Any] = '''bert-base-cased''' lowercase__ : Union[str, Any] = '''google/pegasus-xsum''' lowercase__ : str = [''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowercase__ : Optional[Any] = ['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowercase__ : str = '''patrickvonplaten/t5-tiny-random''' lowercase__ : List[str] = '''sshleifer/bart-tiny-random''' lowercase__ : List[str] = '''sshleifer/tiny-mbart''' lowercase__ : str = '''sshleifer/tiny-marian-en-de''' def _lowerCAmelCase ( __snake_case : Path , __snake_case : list ) -> str: __A : Any = '\n'.join(__snake_case ) Path(__snake_case ).open('w' ).writelines(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Tuple: for split in ["train", "val", "test"]: _dump_articles(os.path.join(__snake_case , f'{split}.source' ) , __snake_case ) _dump_articles(os.path.join(__snake_case , f'{split}.target' ) , __snake_case ) return tmp_dir class SCREAMING_SNAKE_CASE (a__ ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : int = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : int = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : str = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Dict = 4 __A : Optional[Any] = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __A ,__A : Any = 'ro_RO', 'de_DE' # ignored for all but mbart, but never causes error. __A : List[str] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , ) __A : Any = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert isinstance(_UpperCAmelCase , _UpperCAmelCase) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __A : Optional[Any] = shift_tokens_right(batch['labels'] , tokenizer.pad_token_id) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) __A : Tuple = max(len(tokenizer.encode(_UpperCAmelCase)) for a in ARTICLES) __A : Any = max(len(tokenizer.encode(_UpperCAmelCase)) for a in SUMMARIES) __A : Optional[int] = 4 __A : Any = LegacySeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=20 , max_target_length=_UpperCAmelCase , ) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=2 , collate_fn=train_dataset.collate_fn) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = AutoTokenizer.from_pretrained('facebook/mbart-large-cc25') __A : int = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) __A : List[str] = tmp_dir.joinpath('train.source').open().readlines() __A : Optional[Any] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir())) pack_data_dir(_UpperCAmelCase , _UpperCAmelCase , 128 , _UpperCAmelCase) __A : Dict = {x.name for x in tmp_dir.iterdir()} __A : Dict = {x.name for x in save_dir.iterdir()} __A : str = save_dir.joinpath('train.source').open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_UpperCAmelCase) < len(_UpperCAmelCase) assert len(_UpperCAmelCase) == 1 assert len(packed_examples[0]) == sum(len(_UpperCAmelCase) for x in orig_examples) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason='This test requires fairseq') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if not FAIRSEQ_AVAILABLE: return __A ,__A ,__A : List[Any] = self._get_dataset(max_len=64) __A : Union[str, Any] = 64 __A : List[Any] = ds.make_dynamic_sampler(_UpperCAmelCase , required_batch_size_multiple=_UpperCAmelCase) __A : Union[str, Any] = [len(_UpperCAmelCase) for x in batch_sampler] assert len(set(_UpperCAmelCase)) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_UpperCAmelCase) == len(_UpperCAmelCase) # no dropped or added examples __A : List[Any] = DataLoader(_UpperCAmelCase , batch_sampler=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Optional[int] = [] __A : Tuple = [] for batch in data_loader: __A : Optional[int] = batch['input_ids'].shape __A : Any = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __A : Tuple = np.product(batch['input_ids'].shape) num_src_per_batch.append(_UpperCAmelCase) if num_src_tokens > (max_tokens * 1.1): failures.append(_UpperCAmelCase) assert num_src_per_batch[0] == max(_UpperCAmelCase) if failures: raise AssertionError(F'too many tokens in {len(_UpperCAmelCase)} batches') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Optional[int] = self._get_dataset(max_len=512) __A : Optional[int] = 2 __A : Dict = ds.make_sortish_sampler(_UpperCAmelCase , shuffle=_UpperCAmelCase) __A : Tuple = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2) __A : Union[str, Any] = DataLoader(_UpperCAmelCase , batch_size=_UpperCAmelCase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_UpperCAmelCase) __A : str = tokenizer.pad_token_id def count_pad_tokens(_UpperCAmelCase , _UpperCAmelCase="input_ids"): return [batch[k].eq(_UpperCAmelCase).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_UpperCAmelCase , k='labels')) < sum(count_pad_tokens(_UpperCAmelCase , k='labels')) assert sum(count_pad_tokens(_UpperCAmelCase)) < sum(count_pad_tokens(_UpperCAmelCase)) assert len(_UpperCAmelCase) == len(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=1000 , _UpperCAmelCase=128): '''simple docstring''' if os.getenv('USE_REAL_DATA' , _UpperCAmelCase): __A : Dict = 'examples/seq2seq/wmt_en_ro' __A : Any = max_len * 2 * 64 if not Path(_UpperCAmelCase).joinpath('train.len').exists(): save_len_file(_UpperCAmelCase , _UpperCAmelCase) else: __A : int = 'examples/seq2seq/test_data/wmt_en_ro' __A : Any = max_len * 4 save_len_file(_UpperCAmelCase , _UpperCAmelCase) __A : Tuple = AutoTokenizer.from_pretrained(_UpperCAmelCase) __A : Optional[int] = SeqaSeqDataset( _UpperCAmelCase , data_dir=_UpperCAmelCase , type_path='train' , max_source_length=_UpperCAmelCase , max_target_length=_UpperCAmelCase , n_obs=_UpperCAmelCase , ) return ds, max_tokens, tokenizer def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A : Tuple = self._get_dataset() __A : Optional[int] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=0 , add_extra_examples=_UpperCAmelCase)) __A : List[str] = set(DistributedSortishSampler(_UpperCAmelCase , 256 , num_replicas=2 , rank=1 , add_extra_examples=_UpperCAmelCase)) assert idsa.intersection(_UpperCAmelCase) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = AutoTokenizer.from_pretrained(_UpperCAmelCase , use_fast=_UpperCAmelCase) if tok_name == MBART_TINY: __A : Dict = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , src_lang='EN' , tgt_lang='FR' , ) __A : List[Any] = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __A : Any = SeqaSeqDataset( _UpperCAmelCase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir()) , type_path='train' , max_source_length=4 , max_target_length=8 , ) __A : List[str] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_UpperCAmelCase) == 1 if tok_name == BART_TINY else len(_UpperCAmelCase) == 0
190
1
from __future__ import annotations import math class snake_case__: '''simple docstring''' def __init__( self , __lowercase ) -> None: lowerCAmelCase_ : str = size # approximate the overall size of segment tree with given value lowerCAmelCase_ : Dict = [0 for i in range(0 , 4 * size )] # create array to store lazy update lowerCAmelCase_ : Dict = [0 for i in range(0 , 4 * size )] lowerCAmelCase_ : Optional[int] = [0 for i in range(0 , 4 * size )] # flag for lazy update def lowercase_ ( self , __lowercase ) -> int: return idx * 2 def lowercase_ ( self , __lowercase ) -> int: return idx * 2 + 1 def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase ) -> None: if left_element == right_element: lowerCAmelCase_ : Tuple = a[left_element - 1] else: lowerCAmelCase_ : int = (left_element + right_element) // 2 self.build(self.left(__lowercase ) , __lowercase , __lowercase , __lowercase ) self.build(self.right(__lowercase ) , mid + 1 , __lowercase , __lowercase ) lowerCAmelCase_ : Any = max( self.segment_tree[self.left(__lowercase )] , self.segment_tree[self.right(__lowercase )] ) def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> bool: if self.flag[idx] is True: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Union[str, Any] = False if left_element != right_element: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Any = self.lazy[idx] lowerCAmelCase_ : List[str] = True lowerCAmelCase_ : Optional[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: lowerCAmelCase_ : Dict = val if left_element != right_element: lowerCAmelCase_ : Union[str, Any] = val lowerCAmelCase_ : List[Any] = val lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : List[str] = True return True lowerCAmelCase_ : Optional[Any] = (left_element + right_element) // 2 self.update(self.left(__lowercase ) , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) self.update(self.right(__lowercase ) , mid + 1 , __lowercase , __lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : int = max( self.segment_tree[self.left(__lowercase )] , self.segment_tree[self.right(__lowercase )] ) return True def lowercase_ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> int | float: if self.flag[idx] is True: lowerCAmelCase_ : Union[str, Any] = self.lazy[idx] lowerCAmelCase_ : Optional[Any] = False if left_element != right_element: lowerCAmelCase_ : List[Any] = self.lazy[idx] lowerCAmelCase_ : Dict = self.lazy[idx] lowerCAmelCase_ : Optional[int] = True lowerCAmelCase_ : Optional[int] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] lowerCAmelCase_ : List[Any] = (left_element + right_element) // 2 lowerCAmelCase_ : Tuple = self.query(self.left(__lowercase ) , __lowercase , __lowercase , __lowercase , __lowercase ) lowerCAmelCase_ : List[Any] = self.query(self.right(__lowercase ) , mid + 1 , __lowercase , __lowercase , __lowercase ) return max(__lowercase , __lowercase ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , __lowercase , __lowercase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _UpperCAmelCase : str =[1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _UpperCAmelCase : List[str] =15 _UpperCAmelCase : Any =SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
262
from math import sqrt def lowerCAmelCase ( lowerCAmelCase_ )-> bool: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase_ : List[Any] = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(lowerCAmelCase_ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase_ : Tuple = False break # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'status' must been from type bool" return status def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase_ : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(lowerCAmelCase_ ) ): for j in range(i + 1 , len(lowerCAmelCase_ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase_ : str = 0 # filters actual prime numbers. lowerCAmelCase_ : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(lowerCAmelCase_ ): ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase_ : int = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase_ : List[Any] = 2 lowerCAmelCase_ : Optional[int] = number if number == 0 or number == 1: ans.append(lowerCAmelCase_ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(lowerCAmelCase_ ): while quotient != 1: if is_prime(lowerCAmelCase_ ) and (quotient % factor == 0): ans.append(lowerCAmelCase_ ) quotient /= factor else: factor += 1 else: ans.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type list" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[int]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : Dict = 0 # prime factorization of 'number' lowerCAmelCase_ : Any = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = max(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase_ : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase_ : Dict = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = min(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'ans' must been from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Optional[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 == 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "'number' must been an int" assert isinstance(number % 2 != 0 , lowerCAmelCase_ ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase ( lowerCAmelCase_ )-> List[str]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (number > 2) and is_even(lowerCAmelCase_ ) ), "'number' must been an int, even and > 2" lowerCAmelCase_ : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase_ : int = get_prime_numbers(lowerCAmelCase_ ) lowerCAmelCase_ : List[str] = len(lowerCAmelCase_ ) # run variable for while-loops. lowerCAmelCase_ : Union[str, Any] = 0 lowerCAmelCase_ : Tuple = None # exit variable. for break up the loops lowerCAmelCase_ : int = True while i < len_pn and loop: lowerCAmelCase_ : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase_ : Tuple = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (len(lowerCAmelCase_ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Dict: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : int = 0 while numbera != 0: lowerCAmelCase_ : str = numbera % numbera lowerCAmelCase_ : List[Any] = numbera lowerCAmelCase_ : Any = rest # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Optional[int]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase_ : List[Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) lowerCAmelCase_ : int = prime_factorization(lowerCAmelCase_ ) elif numbera == 1 or numbera == 1: lowerCAmelCase_ : Union[str, Any] = [] lowerCAmelCase_ : List[str] = [] lowerCAmelCase_ : Union[str, Any] = max(lowerCAmelCase_ , lowerCAmelCase_ ) lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) lowerCAmelCase_ : Tuple = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(max(lowerCAmelCase_ , lowerCAmelCase_ ) ): ans *= n else: lowerCAmelCase_ : List[str] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase_ : Optional[Any] = prime_fac_a.count(lowerCAmelCase_ ) for _ in range(lowerCAmelCase_ ): ans *= n done.append(lowerCAmelCase_ ) # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase_ : List[Any] = 0 lowerCAmelCase_ : Optional[int] = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(lowerCAmelCase_ ): ans += 1 # precondition assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and is_prime( lowerCAmelCase_ ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> List[Any]: assert ( is_prime(lowerCAmelCase_ ) and is_prime(lowerCAmelCase_ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase_ : Union[str, Any] = p_number_a + 1 # jump to the next number lowerCAmelCase_ : Optional[int] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 while number < p_number_a: ans.append(lowerCAmelCase_ ) number += 1 # fetch the next prime number. while not is_prime(lowerCAmelCase_ ): number += 1 # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ans[0] != p_number_a and ans[len(lowerCAmelCase_ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase_ : List[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(lowerCAmelCase_ ) # precondition assert ans[0] == 1 and ans[len(lowerCAmelCase_ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase ( lowerCAmelCase_ )-> List[Any]: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase_ : Union[str, Any] = get_divisors(lowerCAmelCase_ ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (divisors[0] == 1) and (divisors[len(lowerCAmelCase_ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase ( lowerCAmelCase_ , lowerCAmelCase_ )-> Union[str, Any]: assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase_ : Optional[Any] = gcd(abs(lowerCAmelCase_ ) , abs(lowerCAmelCase_ ) ) # precondition assert ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase ( lowerCAmelCase_ )-> Tuple: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase_ : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase ( lowerCAmelCase_ )-> int: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase_ : Any = 0 lowerCAmelCase_ : List[Any] = 1 lowerCAmelCase_ : Union[str, Any] = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase_ : Union[str, Any] = ans ans += fiba lowerCAmelCase_ : Optional[Any] = tmp return ans
262
1
import unittest from huggingface_hub import hf_hub_download from transformers import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEFeatureExtractor from transformers.pipelines import VideoClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_decord, require_tf, require_torch, require_torch_or_tf, require_vision, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf @require_vision @require_decord class lowercase_ ( unittest.TestCase ): '''simple docstring''' __snake_case = MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING def __lowerCAmelCase ( self : str , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = hf_hub_download( repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) a = VideoClassificationPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase , top_k=2 ) a = [ example_video_filepath, '''https://huggingface.co/datasets/nateraw/video-demo/resolve/main/archery.mp4''', ] return video_classifier, examples def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Dict ) ->int: """simple docstring""" for example in examples: a = video_classifier(__UpperCAmelCase ) self.assertEqual( __UpperCAmelCase , [ {'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )}, {'''score''': ANY(__UpperCAmelCase ), '''label''': ANY(__UpperCAmelCase )}, ] , ) @require_torch def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" a = '''hf-internal-testing/tiny-random-VideoMAEForVideoClassification''' a = VideoMAEFeatureExtractor( size={'''shortest_edge''': 10} , crop_size={'''height''': 10, '''width''': 10} ) a = pipeline( '''video-classification''' , model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , frame_sampling_rate=4 ) a = hf_hub_download(repo_id='''nateraw/video-demo''' , filename='''archery.mp4''' , repo_type='''dataset''' ) a = video_classifier(__UpperCAmelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}] , ) a = video_classifier( [ video_file_path, video_file_path, ] , top_k=2 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], [{'''score''': 0.5199, '''label''': '''LABEL_0'''}, {'''score''': 0.4801, '''label''': '''LABEL_1'''}], ] , ) @require_tf def __lowerCAmelCase ( self : Any ) ->str: """simple docstring""" pass
26
import math def _a ( a :int = 100 ) -> int: a = sum(i * i for i in range(1 , n + 1 ) ) a = int(math.pow(sum(range(1 , n + 1 ) ) , 2 ) ) return square_of_sum - sum_of_squares if __name__ == "__main__": print(f"""{solution() = }""")
26
1
import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format="""%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s""", datefmt="""%Y-%m-%d %H:%M:%S""", level=os.environ.get("""LOGLEVEL""", """INFO""").upper(), stream=sys.stdout, ) UpperCamelCase__ = logging.getLogger(__name__) UpperCamelCase__ = {"""facebook/bart-base""": BartForConditionalGeneration} UpperCamelCase__ = {"""facebook/bart-base""": BartTokenizer} def _a ( ): __lowerCAmelCase = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." ) parser.add_argument( "--validation_file" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="A csv or a json file containing the validation data." ) parser.add_argument( "--max_length" , type=SCREAMING_SNAKE_CASE_ , default=5 , help="The maximum total input sequence length after tokenization." , ) parser.add_argument( "--num_beams" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help=( "Number of beams to use for evaluation. This argument will be " "passed to ``model.generate``, which is used during ``evaluate`` and ``predict``." ) , ) parser.add_argument( "--model_name_or_path" , type=SCREAMING_SNAKE_CASE_ , help="Path to pretrained model or model identifier from huggingface.co/models." , required=SCREAMING_SNAKE_CASE_ , ) parser.add_argument( "--config_name" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="Pretrained config name or path if not the same as model_name" , ) parser.add_argument( "--device" , type=SCREAMING_SNAKE_CASE_ , default="cpu" , help="Device where the model will be run" , ) parser.add_argument("--output_file_path" , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help="Where to store the final ONNX file." ) __lowerCAmelCase = parser.parse_args() return args def _a ( SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int]="cpu" ): __lowerCAmelCase = model_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = tokenizer_dict[model_name].from_pretrained(SCREAMING_SNAKE_CASE_ ) if model_name in ["facebook/bart-base"]: __lowerCAmelCase = 0 __lowerCAmelCase = None __lowerCAmelCase = 0 return huggingface_model, tokenizer def _a ( SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] ): model.eval() __lowerCAmelCase = None __lowerCAmelCase = torch.jit.script(BARTBeamSearchGenerator(SCREAMING_SNAKE_CASE_ ) ) with torch.no_grad(): __lowerCAmelCase = "My friends are cool but they eat too many carbs." __lowerCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=10_24 , return_tensors="pt" ).to(model.device ) __lowerCAmelCase = model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , early_stopping=SCREAMING_SNAKE_CASE_ , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( SCREAMING_SNAKE_CASE_ , ( inputs["input_ids"], inputs["attention_mask"], num_beams, max_length, model.config.decoder_start_token_id, ) , SCREAMING_SNAKE_CASE_ , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={ "input_ids": {0: "batch", 1: "seq"}, "output_ids": {0: "batch", 1: "seq_out"}, } , example_outputs=SCREAMING_SNAKE_CASE_ , ) logger.info("Model exported to {}".format(SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = remove_dup_initializers(os.path.abspath(SCREAMING_SNAKE_CASE_ ) ) logger.info("Deduplicated and optimized model written to {}".format(SCREAMING_SNAKE_CASE_ ) ) __lowerCAmelCase = onnxruntime.InferenceSession(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = ort_sess.run( SCREAMING_SNAKE_CASE_ , { "input_ids": inputs["input_ids"].cpu().numpy(), "attention_mask": inputs["attention_mask"].cpu().numpy(), "num_beams": np.array(SCREAMING_SNAKE_CASE_ ), "max_length": np.array(SCREAMING_SNAKE_CASE_ ), "decoder_start_token_id": np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info("Model outputs from torch and ONNX Runtime are similar." ) logger.info("Success." ) def _a ( ): __lowerCAmelCase = parse_args() __lowerCAmelCase = 5 __lowerCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() __lowerCAmelCase = torch.device(args.device ) __lowerCAmelCase , __lowerCAmelCase = load_model_tokenizer(args.model_name_or_path , SCREAMING_SNAKE_CASE_ ) if model.config.decoder_start_token_id is None: raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" ) model.to(SCREAMING_SNAKE_CASE_ ) if args.max_length: __lowerCAmelCase = args.max_length if args.num_beams: __lowerCAmelCase = args.num_beams if args.output_file_path: __lowerCAmelCase = args.output_file_path else: __lowerCAmelCase = "BART.onnx" logger.info("Exporting model to ONNX" ) export_and_validate_model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
92
import argparse import os import re import packaging.version UpperCamelCase__ = """examples/""" UpperCamelCase__ = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } UpperCamelCase__ = { """init""": """src/transformers/__init__.py""", """setup""": """setup.py""", } UpperCamelCase__ = """README.md""" def _a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase , __lowerCAmelCase = REPLACE_PATTERNS[pattern] __lowerCAmelCase = replace.replace("VERSION" , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = re_pattern.sub(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): for folder, directories, fnames in os.walk(SCREAMING_SNAKE_CASE_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , pattern="examples" ) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int]=False ): for pattern, fname in REPLACE_FILES.items(): update_version_in_file(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not patch: update_version_in_examples(SCREAMING_SNAKE_CASE_ ) def _a ( ): __lowerCAmelCase = "🤗 Transformers currently provides the following architectures" __lowerCAmelCase = "1. Want to contribute a new model?" with open(SCREAMING_SNAKE_CASE_ , "r" , encoding="utf-8" , newline="\n" ) as f: __lowerCAmelCase = f.readlines() # Find the start of the list. __lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 __lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): __lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(SCREAMING_SNAKE_CASE_ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(SCREAMING_SNAKE_CASE_ ) def _a ( ): with open(REPLACE_FILES["init"] , "r" ) as f: __lowerCAmelCase = f.read() __lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(SCREAMING_SNAKE_CASE_ ).groups()[0] return packaging.version.parse(SCREAMING_SNAKE_CASE_ ) def _a ( SCREAMING_SNAKE_CASE_ : List[Any]=False ): __lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: __lowerCAmelCase = default_version.base_version elif patch: __lowerCAmelCase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: __lowerCAmelCase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. __lowerCAmelCase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: __lowerCAmelCase = default_version print(F"""Updating version to {version}.""" ) global_version_update(SCREAMING_SNAKE_CASE_ , patch=SCREAMING_SNAKE_CASE_ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def _a ( ): __lowerCAmelCase = get_version() __lowerCAmelCase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" __lowerCAmelCase = current_version.base_version # Check with the user we got that right. __lowerCAmelCase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(SCREAMING_SNAKE_CASE_ ) == 0: __lowerCAmelCase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(SCREAMING_SNAKE_CASE_ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") UpperCamelCase__ = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
92
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class lowerCAmelCase__( __lowercase , __lowercase ): '''simple docstring''' @register_to_config def __init__( self , __lowerCamelCase = 1_2_8 , __lowerCamelCase = 2_5_6 , __lowerCamelCase = 2000.0 , __lowerCamelCase = 7_6_8 , __lowerCamelCase = 1_2 , __lowerCamelCase = 1_2 , __lowerCamelCase = 6_4 , __lowerCamelCase = 2_0_4_8 , __lowerCamelCase = 0.1 , ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) _SCREAMING_SNAKE_CASE : str = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = False _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder _SCREAMING_SNAKE_CASE : Optional[int] = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = nn.Dropout(p=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: _SCREAMING_SNAKE_CASE : int = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. _SCREAMING_SNAKE_CASE : Tuple = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) _SCREAMING_SNAKE_CASE : Tuple = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. _SCREAMING_SNAKE_CASE : Optional[int] = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = self.position_encoding(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings _SCREAMING_SNAKE_CASE : Any = self.dropout(__lowerCamelCase ) # decoder: No padding present. _SCREAMING_SNAKE_CASE : Any = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. _SCREAMING_SNAKE_CASE : List[str] = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings _SCREAMING_SNAKE_CASE : Tuple = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) _SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: _SCREAMING_SNAKE_CASE : Optional[Any] = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] _SCREAMING_SNAKE_CASE : int = self.decoder_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self.post_dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = self.spec_out(__lowerCamelCase ) return spec_out class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> Dict: super().__init__() _SCREAMING_SNAKE_CASE : Optional[int] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE : int = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: _SCREAMING_SNAKE_CASE : str = torch.where(encoder_attention_mask > 0 , 0 , -1E10 ).to( encoder_hidden_states.dtype ) _SCREAMING_SNAKE_CASE : Tuple = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer _SCREAMING_SNAKE_CASE : Optional[Any] = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> Union[str, Any]: # pre_self_attention_layer_norm _SCREAMING_SNAKE_CASE : int = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Any = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block _SCREAMING_SNAKE_CASE : Optional[int] = self.attention(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[str]: super().__init__() _SCREAMING_SNAKE_CASE : Optional[Any] = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.layer_norm(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Tuple = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : str = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[Any] = nn.Dropout(__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase=None ) -> List[str]: _SCREAMING_SNAKE_CASE : Optional[int] = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = self.film(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Any = self.DenseReluDense(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Union[str, Any] = NewGELUActivation() def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: _SCREAMING_SNAKE_CASE : Dict = self.act(self.wi_a(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : Dict = self.wi_a(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : int = hidden_gelu * hidden_linear _SCREAMING_SNAKE_CASE : Optional[int] = self.dropout(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : Optional[int] = self.wo(__lowerCamelCase ) return hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1E-6 ) -> int: super().__init__() _SCREAMING_SNAKE_CASE : Dict = nn.Parameter(torch.ones(__lowerCamelCase ) ) _SCREAMING_SNAKE_CASE : str = eps def UpperCamelCase_ ( self , __lowerCamelCase ) -> Optional[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 _SCREAMING_SNAKE_CASE : Tuple = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[Any] = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: _SCREAMING_SNAKE_CASE : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class lowerCAmelCase__( nn.Module ): '''simple docstring''' def UpperCamelCase_ ( self , __lowerCamelCase ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(__lowerCamelCase , 3.0 )) )) class lowerCAmelCase__( nn.Module ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase ) -> Optional[Any]: super().__init__() _SCREAMING_SNAKE_CASE : Any = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Dict: _SCREAMING_SNAKE_CASE : List[Any] = self.scale_bias(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = torch.chunk(__lowerCamelCase , 2 , -1 ) _SCREAMING_SNAKE_CASE : Optional[int] = x * (1 + scale) + shift return x
325
from maths.prime_check import is_prime def lowerCamelCase__ (__lowerCamelCase ): if not isinstance(__lowerCamelCase, __lowerCamelCase ): _SCREAMING_SNAKE_CASE : List[str] = f"""Input value of [number={number}] must be an integer""" raise TypeError(__lowerCamelCase ) if is_prime(__lowerCamelCase ) and is_prime(number + 2 ): return number + 2 else: return -1 if __name__ == "__main__": import doctest doctest.testmod()
325
1
'''simple docstring''' import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE (A ) -> int: """simple docstring""" lowercase__ = [2, 2, 6, 2] if '''tiny''' in model_name else [2, 2, 18, 2] lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False lowercase__ = True if '''large''' in model_name or '''huge''' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: lowercase__ = [3, 3, 3, 3] lowercase__ = [5, 5, 5, 5] elif "fl4" in model_name: lowercase__ = [4, 4, 4, 4] lowercase__ = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: lowercase__ = [3, 3, 3, 3] if "lrf" in model_name: lowercase__ = [3, 3, 3, 3] else: lowercase__ = [2, 2, 2, 2] if "tiny" in model_name: lowercase__ = 96 elif "small" in model_name: lowercase__ = 96 elif "base" in model_name: lowercase__ = 128 elif "large" in model_name: lowercase__ = 192 elif "xlarge" in model_name: lowercase__ = 256 elif "huge" in model_name: lowercase__ = 352 # set label information lowercase__ = '''huggingface/label-files''' if "large" in model_name or "huge" in model_name: lowercase__ = '''imagenet-22k-id2label.json''' else: lowercase__ = '''imagenet-1k-id2label.json''' lowercase__ = json.load(open(hf_hub_download(A , A , repo_type='''dataset''' ) , '''r''' ) ) lowercase__ = {int(A ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = FocalNetConfig( embed_dim=A , depths=A , focal_levels=A , focal_windows=A , use_conv_embed=A , idalabel=A , labelaid=A , use_post_layernorm=A , use_layerscale=A , ) return config def _SCREAMING_SNAKE_CASE (A ) -> Dict: """simple docstring""" if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if "layers" in name: lowercase__ = '''encoder.''' + name if "encoder.layers" in name: lowercase__ = name.replace('''encoder.layers''' , '''encoder.stages''' ) if "downsample.proj" in name: lowercase__ = name.replace('''downsample.proj''' , '''downsample.projection''' ) if "blocks" in name: lowercase__ = name.replace('''blocks''' , '''layers''' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: lowercase__ = name.replace('''modulation.f''' , '''modulation.projection_in''' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: lowercase__ = name.replace('''modulation.h''' , '''modulation.projection_context''' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: lowercase__ = name.replace('''modulation.proj''' , '''modulation.projection_out''' ) if name == "norm.weight": lowercase__ = '''layernorm.weight''' if name == "norm.bias": lowercase__ = '''layernorm.bias''' if "head" in name: lowercase__ = name.replace('''head''' , '''classifier''' ) else: lowercase__ = '''focalnet.''' + name return name def _SCREAMING_SNAKE_CASE (A , A , A=False ) -> Any: """simple docstring""" lowercase__ = { '''focalnet-tiny''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth''', '''focalnet-tiny-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth''', '''focalnet-small''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth''', '''focalnet-small-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth''', '''focalnet-base''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth''', '''focalnet-base-lrf''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth''', '''focalnet-large-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth''', '''focalnet-large-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth''', '''focalnet-xlarge-lrf-fl3''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth''', '''focalnet-xlarge-lrf-fl4''': '''https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth''', } # fmt: on lowercase__ = model_name_to_url[model_name] print('''Checkpoint URL: ''' , A ) lowercase__ = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' )['''model'''] # rename keys for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(A ) lowercase__ = val lowercase__ = get_focalnet_config(A ) lowercase__ = FocalNetForImageClassification(A ) model.eval() # load state dict model.load_state_dict(A ) # verify conversion lowercase__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowercase__ = BitImageProcessor( do_resize=A , size={'''shortest_edge''': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=A , crop_size=224 , do_normalize=A , image_mean=A , image_std=A , ) lowercase__ = Image.open(requests.get(A , stream=A ).raw ) lowercase__ = processor(images=A , return_tensors='''pt''' ) lowercase__ = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ = image_transforms(A ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , A , atol=1E-4 ) lowercase__ = model(**A ) lowercase__ = outputs.logits.argmax(-1 ).item() print('''Predicted class:''' , model.config.idalabel[predicted_class_idx] ) print('''First values of logits:''' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": lowercase__ = torch.tensor([0.2_166, -0.4_368, 0.2_191] ) elif model_name == "focalnet-tiny-lrf": lowercase__ = torch.tensor([1.1_669, 0.0_125, -0.1_695] ) elif model_name == "focalnet-small": lowercase__ = torch.tensor([0.4_917, -0.0_430, 0.1_341] ) elif model_name == "focalnet-small-lrf": lowercase__ = torch.tensor([-0.2_588, -0.5_342, -0.2_331] ) elif model_name == "focalnet-base": lowercase__ = torch.tensor([-0.1_655, -0.4_090, -0.1_730] ) elif model_name == "focalnet-base-lrf": lowercase__ = torch.tensor([0.5_306, -0.0_483, -0.3_928] ) assert torch.allclose(outputs.logits[0, :3] , A , atol=1E-4 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor of {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A ) processor.save_pretrained(A ) if push_to_hub: print(f"Pushing model and processor of {model_name} to the hub..." ) model.push_to_hub(f"{model_name}" ) processor.push_to_hub(f"{model_name}" ) if __name__ == "__main__": lowerCamelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='focalnet-tiny', type=str, help='Name of the FocalNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub.', ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
2
'''simple docstring''' import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) lowerCamelCase : Any = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(32, (3, 3), input_shape=(64, 64, 3), activation='relu') ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(32, (3, 3), activation='relu')) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=128, activation='relu')) classifier.add(layers.Dense(units=1, activation='sigmoid')) # Compiling the CNN classifier.compile( optimizer='adam', loss='binary_crossentropy', metrics=['accuracy'] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') lowerCamelCase : Optional[Any] = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 255, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) lowerCamelCase : Any = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 255) lowerCamelCase : List[Any] = train_datagen.flow_from_directory( 'dataset/training_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) lowerCamelCase : List[str] = test_datagen.flow_from_directory( 'dataset/test_set', target_size=(64, 64), batch_size=32, class_mode='binary' ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=30, validation_data=test_set ) classifier.save('cnn.h5') # Part 3 - Making new predictions lowerCamelCase : List[str] = tf.keras.preprocessing.image.load_img( 'dataset/single_prediction/image.png', target_size=(64, 64) ) lowerCamelCase : Optional[int] = tf.keras.preprocessing.image.img_to_array(test_image) lowerCamelCase : str = np.expand_dims(test_image, axis=0) lowerCamelCase : List[str] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: lowerCamelCase : Any = 'Normal' if result[0][0] == 1: lowerCamelCase : Any = 'Abnormality detected'
2
1
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowercase__ :Union[str, Any] = ( "4S 3H 2C 7S 5H", "9D 8H 2C 6S 7H", "2D 6D 9D TH 7D", "TC 8C 2S JH 6C", "JH 8S TH AH QH", "TS KS 5S 9S AC", "KD 6S 9D TH AD", "KS 8D 4D 9S 4S", # pair "8C 4S KH JS 4D", # pair "QH 8H KD JH 8S", # pair "KC 4H KS 2H 8D", # pair "KD 4S KC 3H 8S", # pair "AH 8S AS KC JH", # pair "3H 4C 4H 3S 2H", # 2 pairs "5S 5D 2C KH KH", # 2 pairs "3C KH 5D 5S KH", # 2 pairs "AS 3C KH AD KH", # 2 pairs "7C 7S 3S 7H 5S", # 3 of a kind "7C 7S KH 2H 7H", # 3 of a kind "AC KH QH AH AS", # 3 of a kind "2H 4D 3C AS 5S", # straight (low ace) "3C 5C 4C 2C 6H", # straight "6S 8S 7S 5H 9H", # straight "JS QS 9H TS KH", # straight "QC KH TS JS AH", # straight (high ace) "8C 9C 5C 3C TC", # flush "3S 8S 9S 5S KS", # flush "4C 5C 9C 8C KC", # flush "JH 8H AH KH QH", # flush "3D 2H 3H 2C 2D", # full house "2H 2C 3S 3H 3D", # full house "KH KC 3S 3H 3D", # full house "JC 6H JS JD JH", # 4 of a kind "JC 7H JS JD JH", # 4 of a kind "JC KH JS JD JH", # 4 of a kind "2S AS 4S 5S 3S", # straight flush (low ace) "2D 6D 3D 4D 5D", # straight flush "5C 6C 3C 7C 4C", # straight flush "JH 9H TH KH QH", # straight flush "JH AH TH KH QH", # royal flush (high ace straight flush) ) lowercase__ :List[str] = ( ("2H 3H 4H 5H 6H", "KS AS TS QS JS", "Loss"), ("2H 3H 4H 5H 6H", "AS AD AC AH JD", "Win"), ("AS AH 2H AD AC", "JS JD JC JH 3D", "Win"), ("2S AH 2H AS AC", "JS JD JC JH AD", "Loss"), ("2S AH 2H AS AC", "2H 3H 5H 6H 7H", "Win"), ("AS 3S 4S 8S 2S", "2H 3H 5H 6H 7H", "Win"), ("2H 3H 5H 6H 7H", "2S 3H 4H 5S 6C", "Win"), ("2S 3H 4H 5S 6C", "3D 4C 5H 6H 2S", "Tie"), ("2S 3H 4H 5S 6C", "AH AC 5H 6H AS", "Win"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H AS", "Loss"), ("2S 2H 4H 5S 4C", "AH AC 5H 6H 7S", "Win"), ("6S AD 7H 4S AS", "AH AC 5H 6H 7S", "Loss"), ("2S AH 4H 5S KC", "AH AC 5H 6H 7S", "Loss"), ("2S 3H 6H 7S 9C", "7H 3C TH 6H 9S", "Loss"), ("4S 5H 6H TS AC", "3S 5H 6H TS AC", "Win"), ("2S AH 4H 5S 6C", "AD 4C 5H 6H 2C", "Tie"), ("AS AH 3H AD AC", "AS AH 2H AD AC", "Win"), ("AH AC 5H 5C QS", "AH AC 5H 5C KS", "Loss"), ("AH AC 5H 5C QS", "KH KC 5H 5C QS", "Win"), ("7C 7S KH 2H 7H", "3C 3S AH 2H 3H", "Win"), ("3C 3S AH 2H 3H", "7C 7S KH 2H 7H", "Loss"), ("6H 5H 4H 3H 2H", "5H 4H 3H 2H AH", "Win"), ("5H 4H 3H 2H AH", "5H 4H 3H 2H AH", "Tie"), ("5H 4H 3H 2H AH", "6H 5H 4H 3H 2H", "Loss"), ("AH AD KS KC AC", "AH KD KH AC KC", "Win"), ("2H 4D 3C AS 5S", "2H 4D 3C 6S 5S", "Loss"), ("2H 3S 3C 3H 2S", "3S 3C 2S 2H 2D", "Win"), ("4D 6D 5D 2D JH", "3S 8S 3H TC KH", "Loss"), ("4S 6C 8S 3S 7S", "AD KS 2D 7D 7C", "Loss"), ("6S 4C 7H 8C 3H", "5H JC AH 9D 9C", "Loss"), ("9D 9H JH TC QH", "3C 2S JS 5C 7H", "Win"), ("2H TC 8S AD 9S", "4H TS 7H 2C 5C", "Win"), ("9D 3S 2C 7S 7C", "JC TD 3C TC 9H", "Loss"), ) lowercase__ :Optional[Any] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", True), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", False), ("AS 3S 4S 8S 2S", True), ) lowercase__ :Optional[Any] = ( ("2H 3H 4H 5H 6H", True), ("AS AH 2H AD AC", False), ("2H 3H 5H 6H 7H", False), ("KS AS TS QS JS", True), ("8H 9H QS JS TH", True), ) lowercase__ :str = ( ("2H 4D 3C AS 5S", True, [5, 4, 3, 2, 14]), ("2H 5D 3C AS 5S", False, [14, 5, 5, 3, 2]), ("JH QD KC AS TS", False, [14, 13, 12, 11, 10]), ("9D 3S 2C 7S 7C", False, [9, 7, 7, 3, 2]), ) lowercase__ :int = ( ("JH AH TH KH QH", 0), ("JH 9H TH KH QH", 0), ("JC KH JS JD JH", 7), ("KH KC 3S 3H 3D", 6), ("8C 9C 5C 3C TC", 0), ("JS QS 9H TS KH", 0), ("7C 7S KH 2H 7H", 3), ("3C KH 5D 5S KH", 2), ("QH 8H KD JH 8S", 1), ("2D 6D 9D TH 7D", 0), ) lowercase__ :Optional[int] = ( ("JH AH TH KH QH", 23), ("JH 9H TH KH QH", 22), ("JC KH JS JD JH", 21), ("KH KC 3S 3H 3D", 20), ("8C 9C 5C 3C TC", 19), ("JS QS 9H TS KH", 18), ("7C 7S KH 2H 7H", 17), ("3C KH 5D 5S KH", 16), ("QH 8H KD JH 8S", 15), ("2D 6D 9D TH 7D", 14), ) def UpperCamelCase ( ): '''simple docstring''' lowercase , lowercase = randrange(len(lowerCAmelCase__ ) ), randrange(len(lowerCAmelCase__ ) ) lowercase = ['''Loss''', '''Tie''', '''Win'''][(play >= oppo) + (play > oppo)] lowercase , lowercase = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase ( lowerCAmelCase__ = 100 ): '''simple docstring''' return (generate_random_hand() for _ in range(lowerCAmelCase__ )) @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_flush() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_straight() == expected @pytest.mark.parametrize('''hand, expected, card_values''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = PokerHand(lowerCAmelCase__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._is_same_kind() == expected @pytest.mark.parametrize('''hand, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ )._hand_type == expected @pytest.mark.parametrize('''hand, other, expected''' , lowerCAmelCase__ ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ ).compare_with(PokerHand(lowerCAmelCase__ ) ) == expected @pytest.mark.parametrize('''hand, other, expected''' , generate_random_hands() ) def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' assert PokerHand(lowerCAmelCase__ ).compare_with(PokerHand(lowerCAmelCase__ ) ) == expected def UpperCamelCase ( ): '''simple docstring''' lowercase = [PokerHand(lowerCAmelCase__ ) for hand in SORTED_HANDS] lowercase = poker_hands.copy() shuffle(lowerCAmelCase__ ) lowercase = chain(sorted(lowerCAmelCase__ ) ) for index, hand in enumerate(lowerCAmelCase__ ): assert hand == poker_hands[index] def UpperCamelCase ( ): '''simple docstring''' # Test that five high straights are compared correctly. lowercase = [PokerHand('''2D AC 3H 4H 5S''' ), PokerHand('''2S 3H 4H 5S 6C''' )] pokerhands.sort(reverse=lowerCAmelCase__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase ( ): '''simple docstring''' # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. lowercase = PokerHand('''2C 4S AS 3D 5C''' ) lowercase = True lowercase = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase ( ): '''simple docstring''' # Problem number 54 from Project Euler # Testing from poker_hands.txt file lowercase = 0 lowercase = os.path.abspath(os.path.dirname(lowerCAmelCase__ ) ) lowercase = os.path.join(lowerCAmelCase__ , '''poker_hands.txt''' ) with open(lowerCAmelCase__ ) as file_hand: for line in file_hand: lowercase = line[:14].strip() lowercase = line[15:].strip() lowercase , lowercase = PokerHand(lowerCAmelCase__ ), PokerHand(lowerCAmelCase__ ) lowercase = player.compare_with(lowerCAmelCase__ ) if output == "Win": answer += 1 assert answer == 376
97
import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ :Dict = logging.get_logger(__name__) lowercase__ :Optional[Any] = "▁" lowercase__ :str = {"vocab_file": "prophetnet.tokenizer"} lowercase__ :List[str] = { "vocab_file": { "microsoft/xprophetnet-large-wiki100-cased": ( "https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer" ), } } lowercase__ :Optional[Any] = { "microsoft/xprophetnet-large-wiki100-cased": {"do_lower_case": False}, } lowercase__ :List[Any] = { "microsoft/xprophetnet-large-wiki100-cased": 512, } def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' lowercase = collections.OrderedDict() with open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as reader: lowercase = reader.readlines() for index, token in enumerate(lowerCAmelCase__ ): lowercase = token.rstrip('''\n''' ) lowercase = index return vocab class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : Optional[Any] =VOCAB_FILES_NAMES lowercase_ : Any =PRETRAINED_VOCAB_FILES_MAP lowercase_ : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : str =['''input_ids''', '''attention_mask'''] def __init__( self ,A__ ,A__="[SEP]" ,A__="[SEP]" ,A__="[SEP]" ,A__="[UNK]" ,A__="[PAD]" ,A__="[CLS]" ,A__="[MASK]" ,A__ = None ,**A__ ,): lowercase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A__ ,eos_token=A__ ,sep_token=A__ ,unk_token=A__ ,pad_token=A__ ,cls_token=A__ ,mask_token=A__ ,sp_model_kwargs=self.sp_model_kwargs ,**A__ ,) try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(str(A__)) lowercase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab lowercase = {'''[PAD]''': 0, '''[CLS]''': 1, '''[SEP]''': 2, '''[UNK]''': 3, '''[MASK]''': 4} for i in range(1_0): lowercase = f'[unused{i}]' lowercase = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab lowercase = 1_2 lowercase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(A__) def __getstate__( self): lowercase = self.__dict__.copy() lowercase = None return state def __setstate__( self ,A__): lowercase = d try: import sentencepiece as spm except ImportError: logger.warning( '''You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece''' ''' pip install sentencepiece''') raise # for backward compatibility if not hasattr(self ,'''sp_model_kwargs'''): lowercase = {} lowercase = spm.SentencePieceProcessor(**self.sp_model_kwargs) self.sp_model.Load(self.vocab_file) def A__ ( self ,A__ ,A__ = None ,A__ = False): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A__ ,token_ids_a=A__ ,already_has_special_tokens=A__) if token_ids_a is None: return ([0] * len(A__)) + [1] return ([0] * len(A__)) + [1] + ([0] * len(A__)) + [1] def A__ ( self ,A__ ,A__ = None): lowercase = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep) * [0] @property def A__ ( self): return len(self.sp_model) + self.fairseq_offset def A__ ( self): lowercase = {self.convert_ids_to_tokens(A__): i for i in range(self.vocab_size)} vocab.update(self.added_tokens_encoder) return vocab def A__ ( self ,A__): return self.sp_model.encode(A__ ,out_type=A__) def A__ ( self ,A__): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase = self.sp_model.PieceToId(A__) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self ,A__): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset) def A__ ( self ,A__): lowercase = ''''''.join(A__).replace(A__ ,''' ''').strip() return out_string def A__ ( self ,A__ ,A__ = None): if not os.path.isdir(A__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return lowercase = os.path.join( A__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file''']) if os.path.abspath(self.vocab_file) != os.path.abspath(A__) and os.path.isfile(self.vocab_file): copyfile(self.vocab_file ,A__) elif not os.path.isfile(self.vocab_file): with open(A__ ,'''wb''') as fi: lowercase = self.sp_model.serialized_model_proto() fi.write(A__) return (out_vocab_file,) def A__ ( self ,A__ ,A__ = None): if token_ids_a is None: return token_ids_a + [self.sep_token_id] lowercase = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
97
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ : int = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Any: __A : Union[str, Any] = DPTConfig(embedding_type='hybrid' ) if "large" in checkpoint_url: __A : Dict = 10_24 __A : Tuple = 40_96 __A : Dict = 24 __A : Dict = 16 __A : List[str] = [5, 11, 17, 23] __A : List[Any] = [2_56, 5_12, 10_24, 10_24] __A : Union[str, Any] = (1, 3_84, 3_84) if "nyu" or "midas" in checkpoint_url: __A : Optional[int] = 7_68 __A : str = [1, 1, 1, 0.5] __A : int = [2_56, 5_12, 7_68, 7_68] __A : List[Any] = 1_50 __A : Dict = 16 __A : List[Any] = (1, 3_84, 3_84) __A : Optional[Any] = False __A : Optional[Any] = 'project' if "ade" in checkpoint_url: __A : List[Any] = True __A : int = 7_68 __A : Any = [1, 1, 1, 0.5] __A : List[Any] = 1_50 __A : Union[str, Any] = 16 __A : Dict = 'huggingface/label-files' __A : Optional[int] = 'ade20k-id2label.json' __A : Union[str, Any] = json.load(open(cached_download(hf_hub_url(__snake_case , __snake_case , repo_type='dataset' ) ) , 'r' ) ) __A : Optional[Any] = {int(__snake_case ): v for k, v in idalabel.items()} __A : str = idalabel __A : Any = {v: k for k, v in idalabel.items()} __A : Optional[int] = [1, 1_50, 4_80, 4_80] return config, expected_shape def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Dict: __A : int = ['pretrained.model.head.weight', 'pretrained.model.head.bias'] for k in ignore_keys: state_dict.pop(__snake_case , __snake_case ) def _lowerCAmelCase ( __snake_case : Dict ) -> str: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __A : Optional[int] = name.replace('pretrained.model' , 'dpt.encoder' ) if "pretrained.model" in name: __A : List[Any] = name.replace('pretrained.model' , 'dpt.embeddings' ) if "patch_embed" in name: __A : Dict = name.replace('patch_embed' , '' ) if "pos_embed" in name: __A : int = name.replace('pos_embed' , 'position_embeddings' ) if "attn.proj" in name: __A : int = name.replace('attn.proj' , 'attention.output.dense' ) if "proj" in name and "project" not in name: __A : Any = name.replace('proj' , 'projection' ) if "blocks" in name: __A : Tuple = name.replace('blocks' , 'layer' ) if "mlp.fc1" in name: __A : List[str] = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __A : Dict = name.replace('mlp.fc2' , 'output.dense' ) if "norm1" in name and "backbone" not in name: __A : int = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name and "backbone" not in name: __A : str = name.replace('norm2' , 'layernorm_after' ) if "scratch.output_conv" in name: __A : Any = name.replace('scratch.output_conv' , 'head' ) if "scratch" in name: __A : List[str] = name.replace('scratch' , 'neck' ) if "layer1_rn" in name: __A : Any = name.replace('layer1_rn' , 'convs.0' ) if "layer2_rn" in name: __A : Any = name.replace('layer2_rn' , 'convs.1' ) if "layer3_rn" in name: __A : Dict = name.replace('layer3_rn' , 'convs.2' ) if "layer4_rn" in name: __A : Dict = name.replace('layer4_rn' , 'convs.3' ) if "refinenet" in name: __A : List[Any] = int(name[len('neck.refinenet' ) : len('neck.refinenet' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __A : int = name.replace(f'refinenet{layer_idx}' , f'fusion_stage.layers.{abs(layer_idx-4 )}' ) if "out_conv" in name: __A : str = name.replace('out_conv' , 'projection' ) if "resConfUnit1" in name: __A : str = name.replace('resConfUnit1' , 'residual_layer1' ) if "resConfUnit2" in name: __A : int = name.replace('resConfUnit2' , 'residual_layer2' ) if "conv1" in name: __A : Optional[int] = name.replace('conv1' , 'convolution1' ) if "conv2" in name: __A : Dict = name.replace('conv2' , 'convolution2' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __A : Dict = name.replace('pretrained.act_postprocess1.0.project.0' , 'neck.reassemble_stage.readout_projects.0.0' ) if "pretrained.act_postprocess2.0.project.0" in name: __A : int = name.replace('pretrained.act_postprocess2.0.project.0' , 'neck.reassemble_stage.readout_projects.1.0' ) if "pretrained.act_postprocess3.0.project.0" in name: __A : Optional[Any] = name.replace('pretrained.act_postprocess3.0.project.0' , 'neck.reassemble_stage.readout_projects.2.0' ) if "pretrained.act_postprocess4.0.project.0" in name: __A : List[Any] = name.replace('pretrained.act_postprocess4.0.project.0' , 'neck.reassemble_stage.readout_projects.3.0' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __A : List[Any] = name.replace('pretrained.act_postprocess1.3' , 'neck.reassemble_stage.layers.0.projection' ) if "pretrained.act_postprocess1.4" in name: __A : Dict = name.replace('pretrained.act_postprocess1.4' , 'neck.reassemble_stage.layers.0.resize' ) if "pretrained.act_postprocess2.3" in name: __A : List[Any] = name.replace('pretrained.act_postprocess2.3' , 'neck.reassemble_stage.layers.1.projection' ) if "pretrained.act_postprocess2.4" in name: __A : Dict = name.replace('pretrained.act_postprocess2.4' , 'neck.reassemble_stage.layers.1.resize' ) if "pretrained.act_postprocess3.3" in name: __A : Dict = name.replace('pretrained.act_postprocess3.3' , 'neck.reassemble_stage.layers.2.projection' ) if "pretrained.act_postprocess4.3" in name: __A : Dict = name.replace('pretrained.act_postprocess4.3' , 'neck.reassemble_stage.layers.3.projection' ) if "pretrained.act_postprocess4.4" in name: __A : Union[str, Any] = name.replace('pretrained.act_postprocess4.4' , 'neck.reassemble_stage.layers.3.resize' ) if "pretrained" in name: __A : int = name.replace('pretrained' , 'dpt' ) if "bn" in name: __A : Dict = name.replace('bn' , 'batch_norm' ) if "head" in name: __A : str = name.replace('head' , 'head.head' ) if "encoder.norm" in name: __A : Tuple = name.replace('encoder.norm' , 'layernorm' ) if "auxlayer" in name: __A : Any = name.replace('auxlayer' , 'auxiliary_head.head' ) if "backbone" in name: __A : Any = name.replace('backbone' , 'backbone.bit.encoder' ) if ".." in name: __A : List[str] = name.replace('..' , '.' ) if "stem.conv" in name: __A : Union[str, Any] = name.replace('stem.conv' , 'bit.embedder.convolution' ) if "blocks" in name: __A : int = name.replace('blocks' , 'layers' ) if "convolution" in name and "backbone" in name: __A : Union[str, Any] = name.replace('convolution' , 'conv' ) if "layer" in name and "backbone" in name: __A : Optional[Any] = name.replace('layer' , 'layers' ) if "backbone.bit.encoder.bit" in name: __A : Union[str, Any] = name.replace('backbone.bit.encoder.bit' , 'backbone.bit' ) if "embedder.conv" in name: __A : Union[str, Any] = name.replace('embedder.conv' , 'embedder.convolution' ) if "backbone.bit.encoder.stem.norm" in name: __A : Dict = name.replace('backbone.bit.encoder.stem.norm' , 'backbone.bit.embedder.norm' ) return name def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : List[str] ) -> Any: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A : Union[str, Any] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' ) __A : Union[str, Any] = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __A : Optional[int] = in_proj_weight[: config.hidden_size, :] __A : Union[str, Any] = in_proj_bias[: config.hidden_size] __A : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] __A : Union[str, Any] = in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( ) -> int: __A : List[str] = 'http://images.cocodataset.org/val2017/000000039769.jpg' __A : Optional[Any] = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : Optional[int] , __snake_case : Optional[Any] , __snake_case : Tuple , __snake_case : Optional[Any] ) -> Dict: __A ,__A : List[Any] = get_dpt_config(__snake_case ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") __A : Tuple = torch.load(__snake_case , map_location='cpu' ) # remove certain keys remove_ignore_keys_(__snake_case ) # rename keys for key in state_dict.copy().keys(): __A : Union[str, Any] = state_dict.pop(__snake_case ) __A : Any = val # read in qkv matrices read_in_q_k_v(__snake_case , __snake_case ) # load HuggingFace model __A : Tuple = DPTForSemanticSegmentation(__snake_case ) if 'ade' in checkpoint_url else DPTForDepthEstimation(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # Check outputs on an image __A : int = 4_80 if 'ade' in checkpoint_url else 3_84 __A : List[Any] = DPTImageProcessor(size=__snake_case ) __A : str = prepare_img() __A : Any = image_processor(__snake_case , return_tensors='pt' ) # forward pass __A : Optional[int] = model(**__snake_case ).logits if 'ade' in checkpoint_url else model(**__snake_case ).predicted_depth if show_prediction: __A : int = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode='bicubic' , align_corners=__snake_case , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 2_55 ).show() if pytorch_dump_folder_path is not None: Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(f'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(__snake_case ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(__snake_case ) if push_to_hub: model.push_to_hub('ybelkada/dpt-hybrid-midas' ) image_processor.push_to_hub('ybelkada/dpt-hybrid-midas' ) if __name__ == "__main__": lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=False, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) parser.add_argument( '''--show_prediction''', action='''store_true''', ) lowercase__ : Union[str, Any] = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
190
'''simple docstring''' import math def _lowerCAmelCase ( __snake_case : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _lowerCAmelCase ( __snake_case : float = 0.1 ) -> int: __A : Tuple = 3 __A : Optional[int] = 3 while primes / (2 * j - 1) >= ratio: for i in range(j * j + j + 1 , (j + 2) * (j + 2) , j + 1 ): primes += is_prime(__snake_case ) j += 2 return j if __name__ == "__main__": import doctest doctest.testmod()
190
1
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex __UpperCAmelCase = logging.getLogger(__name__) class lowerCamelCase : '''simple docstring''' def __init__( self ) -> str: UpperCAmelCase_ : List[Any] = False def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[str]: if not self.initialized: UpperCAmelCase_ : List[Any] = RagRetriever( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , index=UpperCamelCase__ , init_retrieval=UpperCamelCase__ , ) UpperCAmelCase_ : Any = True def __UpperCAmelCase ( self ) -> int: self.retriever.index.init_index() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: UpperCAmelCase_ : Tuple = self.retriever._main_retrieve(UpperCamelCase__ , UpperCamelCase__ ) return doc_ids, retrieved_doc_embeds class lowerCamelCase (__snake_case ): '''simple docstring''' def __init__( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None ) -> Optional[Any]: if index is not None and index.is_initialized() and len(UpperCamelCase__ ) > 0: raise ValueError( 'When using Ray for distributed fine-tuning, ' 'you\'ll need to provide the paths instead, ' 'as the dataset and the index are loaded ' 'separately. More info in examples/rag/use_own_knowledge_dataset.py ' ) super().__init__( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , index=UpperCamelCase__ , init_retrieval=UpperCamelCase__ , ) UpperCAmelCase_ : Dict = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) for worker in self.retrieval_workers ] ) def __UpperCAmelCase ( self ) -> Union[str, Any]: logger.info('initializing retrieval' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase ) -> Union[str, Any]: if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. UpperCAmelCase_ : Any = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] UpperCAmelCase_ : Optional[Any] = ray.get(random_worker.retrieve.remote(UpperCamelCase__ , UpperCamelCase__ ) ) else: UpperCAmelCase_ : Optional[int] = self._main_retrieve(UpperCamelCase__ , UpperCamelCase__ ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(UpperCamelCase__ ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ) -> Optional[int]: return super(UpperCamelCase__ , cls ).get_tokenizers(UpperCamelCase__ , UpperCamelCase__ , **UpperCamelCase__ ) @classmethod def __UpperCAmelCase ( cls , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase=None , **_UpperCamelCase ) -> Dict: UpperCAmelCase_ : Optional[Any] = kwargs.pop('config' , UpperCamelCase__ ) or RagConfig.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) UpperCAmelCase_ : Dict = RagTokenizer.from_pretrained(UpperCamelCase__ , config=UpperCamelCase__ ) UpperCAmelCase_ : Optional[Any] = rag_tokenizer.question_encoder UpperCAmelCase_ : List[Any] = rag_tokenizer.generator if indexed_dataset is not None: UpperCAmelCase_ : List[Any] = "custom" UpperCAmelCase_ : Any = CustomHFIndex(config.retrieval_vector_size , UpperCamelCase__ ) else: UpperCAmelCase_ : Tuple = cls._build_index(UpperCamelCase__ ) return cls( UpperCamelCase__ , question_encoder_tokenizer=UpperCamelCase__ , generator_tokenizer=UpperCamelCase__ , retrieval_workers=UpperCamelCase__ , index=UpperCamelCase__ , )
370
import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __UpperCAmelCase = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __UpperCAmelCase = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __UpperCAmelCase = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowercase__ ( __snake_case : Optional[int] ): '''simple docstring''' def remove_articles(__snake_case : Tuple ): UpperCAmelCase_ : Optional[int] = re.compile(R'\b(a|an|the)\b' , re.UNICODE ) return re.sub(__snake_case , ' ' , __snake_case ) def white_space_fix(__snake_case : int ): return " ".join(text.split() ) def remove_punc(__snake_case : int ): UpperCAmelCase_ : Optional[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(__snake_case : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(__snake_case ) ) ) ) def lowercase__ ( __snake_case : List[str] , __snake_case : List[Any] ): '''simple docstring''' return int(normalize_answer(__snake_case ) == normalize_answer(__snake_case ) ) def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Tuple ): '''simple docstring''' UpperCAmelCase_ : Tuple = [any(compute_exact(__snake_case , __snake_case ) for ref in refs ) for pred, refs in zip(__snake_case , __snake_case )] return (sum(__snake_case ) / len(__snake_case )) * 100 def lowercase__ ( __snake_case : Optional[Any] , __snake_case : Any , __snake_case : Optional[int] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : str = [rgram for rgrams in rgramslist for rgram in rgrams] UpperCAmelCase_ : str = Counter(__snake_case ) UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : int = Counter() for sgram, scount in sgramcounter.items(): UpperCAmelCase_ : Any = scount * numref UpperCAmelCase_ : List[Any] = Counter(__snake_case ) UpperCAmelCase_ : Dict = Counter() for cgram, ccount in cgramcounter.items(): UpperCAmelCase_ : int = ccount * numref # KEEP UpperCAmelCase_ : Optional[Any] = sgramcounter_rep & cgramcounter_rep UpperCAmelCase_ : Any = keepgramcounter_rep & rgramcounter UpperCAmelCase_ : Union[str, Any] = sgramcounter_rep & rgramcounter UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : Optional[Any] = 1 UpperCAmelCase_ : Optional[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : List[str] = keeptmpscorea / len(__snake_case ) if len(__snake_case ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) UpperCAmelCase_ : List[Any] = keeptmpscorea / sum(keepgramcounterall_rep.values() ) UpperCAmelCase_ : List[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: UpperCAmelCase_ : List[Any] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION UpperCAmelCase_ : Optional[int] = sgramcounter_rep - cgramcounter_rep UpperCAmelCase_ : Dict = delgramcounter_rep - rgramcounter UpperCAmelCase_ : Optional[Any] = sgramcounter_rep - rgramcounter UpperCAmelCase_ : str = 0 UpperCAmelCase_ : str = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[Any] = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = deltmpscorea / len(__snake_case ) # ADDITION UpperCAmelCase_ : Tuple = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : Union[str, Any] = set(__snake_case ) & set(__snake_case ) UpperCAmelCase_ : Dict = set(__snake_case ) - set(__snake_case ) UpperCAmelCase_ : List[str] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. UpperCAmelCase_ : List[str] = 1 UpperCAmelCase_ : Any = 1 if len(__snake_case ) > 0: UpperCAmelCase_ : Dict = addtmpscore / len(__snake_case ) if len(__snake_case ) > 0: UpperCAmelCase_ : Optional[int] = addtmpscore / len(__snake_case ) UpperCAmelCase_ : Optional[Any] = 0 if addscore_precision > 0 or addscore_recall > 0: UpperCAmelCase_ : List[str] = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowercase__ ( __snake_case : str , __snake_case : Any , __snake_case : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ : int = len(__snake_case ) UpperCAmelCase_ : List[str] = ssent.split(' ' ) UpperCAmelCase_ : Union[str, Any] = csent.split(' ' ) UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : int = [] UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Tuple = [] for rsent in rsents: UpperCAmelCase_ : List[Any] = rsent.split(' ' ) UpperCAmelCase_ : Any = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : str = [] ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Tuple = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) ragramslist.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : str = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : List[str] = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(__snake_case ) for i in range(0 , len(__snake_case ) - 1 ): if i < len(__snake_case ) - 1: UpperCAmelCase_ : Optional[int] = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(__snake_case ) if i < len(__snake_case ) - 2: UpperCAmelCase_ : Tuple = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(__snake_case ) if i < len(__snake_case ) - 3: UpperCAmelCase_ : Union[str, Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(__snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : str = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : Tuple = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) ((UpperCAmelCase_) , (UpperCAmelCase_) , (UpperCAmelCase_)) : int = SARIngram(__snake_case , __snake_case , __snake_case , __snake_case ) UpperCAmelCase_ : List[str] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 UpperCAmelCase_ : Optional[Any] = sum([delascore, delascore, delascore, delascore] ) / 4 UpperCAmelCase_ : List[str] = sum([addascore, addascore, addascore, addascore] ) / 4 UpperCAmelCase_ : Dict = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowercase__ ( __snake_case : List[Any] , __snake_case : bool = True , __snake_case : str = "13a" , __snake_case : bool = True ): '''simple docstring''' if lowercase: UpperCAmelCase_ : Optional[Any] = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: UpperCAmelCase_ : Union[str, Any] = sacrebleu.metrics.bleu._get_tokenizer(__snake_case )()(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = sacrebleu.TOKENIZERS[tokenizer]()(__snake_case ) elif tokenizer == "moses": UpperCAmelCase_ : Optional[Any] = sacremoses.MosesTokenizer().tokenize(__snake_case , return_str=__snake_case , escape=__snake_case ) elif tokenizer == "penn": UpperCAmelCase_ : Dict = sacremoses.MosesTokenizer().penn_tokenize(__snake_case , return_str=__snake_case ) else: UpperCAmelCase_ : int = sentence if not return_str: UpperCAmelCase_ : Any = normalized_sent.split() return normalized_sent def lowercase__ ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Dict ): '''simple docstring''' if not (len(__snake_case ) == len(__snake_case ) == len(__snake_case )): raise ValueError('Sources length must match predictions and references lengths.' ) UpperCAmelCase_ : Tuple = 0 for src, pred, refs in zip(__snake_case , __snake_case , __snake_case ): sari_score += SARIsent(normalize(__snake_case ) , normalize(__snake_case ) , [normalize(__snake_case ) for sent in refs] ) UpperCAmelCase_ : Any = sari_score / len(__snake_case ) return 100 * sari_score def lowercase__ ( __snake_case : int , __snake_case : Union[str, Any] , __snake_case : str="exp" , __snake_case : Any=None , __snake_case : Union[str, Any]=False , __snake_case : Union[str, Any]=False , __snake_case : List[str]=False , ): '''simple docstring''' UpperCAmelCase_ : int = len(references[0] ) if any(len(__snake_case ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) UpperCAmelCase_ : Dict = [[refs[i] for refs in references] for i in range(__snake_case )] UpperCAmelCase_ : str = sacrebleu.corpus_bleu( __snake_case , __snake_case , smooth_method=__snake_case , smooth_value=__snake_case , force=__snake_case , lowercase=__snake_case , use_effective_order=__snake_case , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCamelCase (datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ) -> Any: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str: UpperCAmelCase_ : List[Any] = {} result.update({'sari': compute_sari(sources=_UpperCamelCase , predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) result.update({'exact': compute_em(predictions=_UpperCamelCase , references=_UpperCamelCase )} ) return result
145
0
from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance _snake_case = 6_3_7_8_1_3_7.0 _snake_case = 6_3_5_6_7_5_2.3_1_4_2_4_5 _snake_case = 6378137 def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_ ): _A : str = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude _A : Union[str, Any] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) _A : Optional[int] = atan((1 - flattening) * tan(radians(snake_case_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius _A : List[Any] = haversine_distance(snake_case_,snake_case_,snake_case_,snake_case_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values _A : Dict = (b_lata + b_lata) / 2 _A : int = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) _A : Union[str, Any] = (sin(snake_case_ ) ** 2) * (cos(snake_case_ ) ** 2) _A : str = cos(sigma / 2 ) ** 2 _A : List[str] = (sigma - sin(snake_case_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) _A : List[str] = (cos(snake_case_ ) ** 2) * (sin(snake_case_ ) ** 2) _A : Optional[Any] = sin(sigma / 2 ) ** 2 _A : int = (sigma + sin(snake_case_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
26
import torch from diffusers import DPMSolverSDEScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import require_torchsde from .test_schedulers import SchedulerCommonTest @require_torchsde class lowercase ( UpperCamelCase__ ): _a = (DPMSolverSDEScheduler,) _a = 1_0 def a__ ( self , **_a ) -> Optional[Any]: _A : str = { """num_train_timesteps""": 1100, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """noise_sampler_seed""": 0, } config.update(**_a ) return config def a__ ( self ) -> Tuple: for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=_a ) def a__ ( self ) -> Optional[int]: for beta_start, beta_end in zip([0.00001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=_a , beta_end=_a ) def a__ ( self ) -> Any: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=_a ) def a__ ( self ) -> Optional[int]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=_a ) def a__ ( self ) -> Optional[int]: _A : Any = self.scheduler_classes[0] _A : List[str] = self.get_scheduler_config() _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Dict = self.dummy_model() _A : Any = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Dict = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : str = model(_a , _a ) _A : List[Any] = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Dict = torch.sum(torch.abs(_a ) ) _A : Dict = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.47821044921875 ) < 1e-2 assert abs(result_mean.item() - 0.2178705964565277 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59352111816406 ) < 1e-2 assert abs(result_mean.item() - 0.22342906892299652 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Optional[Any]: _A : Dict = self.scheduler_classes[0] _A : Optional[int] = self.get_scheduler_config(prediction_type="""v_prediction""" ) _A : Optional[Any] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps ) _A : Tuple = self.dummy_model() _A : int = self.dummy_sample_deter * scheduler.init_noise_sigma _A : Tuple = sample.to(_a ) for i, t in enumerate(scheduler.timesteps ): _A : int = scheduler.scale_model_input(_a , _a ) _A : Tuple = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Optional[int] = output.prev_sample _A : Optional[Any] = torch.sum(torch.abs(_a ) ) _A : List[Any] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 124.77149200439453 ) < 1e-2 assert abs(result_mean.item() - 0.16226289014816284 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 128.1663360595703 ) < 1e-2 assert abs(result_mean.item() - 0.16688326001167297 ) < 1e-3 else: assert abs(result_sum.item() - 119.8487548828125 ) < 1e-2 assert abs(result_mean.item() - 0.1560530662536621 ) < 1e-3 def a__ ( self ) -> List[str]: _A : Union[str, Any] = self.scheduler_classes[0] _A : List[Any] = self.get_scheduler_config() _A : List[str] = scheduler_class(**_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Union[str, Any] = self.dummy_model() _A : Optional[Any] = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma for t in scheduler.timesteps: _A : int = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : Dict = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : str = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 167.46957397460938 ) < 1e-2 assert abs(result_mean.item() - 0.21805934607982635 ) < 1e-3 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 171.59353637695312 ) < 1e-2 assert abs(result_mean.item() - 0.22342908382415771 ) < 1e-3 else: assert abs(result_sum.item() - 162.52383422851562 ) < 1e-2 assert abs(result_mean.item() - 0.211619570851326 ) < 1e-3 def a__ ( self ) -> Union[str, Any]: _A : List[Any] = self.scheduler_classes[0] _A : Optional[Any] = self.get_scheduler_config() _A : int = scheduler_class(**_a , use_karras_sigmas=_a ) scheduler.set_timesteps(self.num_inference_steps , device=_a ) _A : Optional[Any] = self.dummy_model() _A : Dict = self.dummy_sample_deter.to(_a ) * scheduler.init_noise_sigma _A : str = sample.to(_a ) for t in scheduler.timesteps: _A : Optional[int] = scheduler.scale_model_input(_a , _a ) _A : List[Any] = model(_a , _a ) _A : Dict = scheduler.step(_a , _a , _a ) _A : List[str] = output.prev_sample _A : str = torch.sum(torch.abs(_a ) ) _A : List[str] = torch.mean(torch.abs(_a ) ) if torch_device in ["mps"]: assert abs(result_sum.item() - 176.66974135742188 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 elif torch_device in ["cuda"]: assert abs(result_sum.item() - 177.63653564453125 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2 else: assert abs(result_sum.item() - 170.3135223388672 ) < 1e-2 assert abs(result_mean.item() - 0.23003872730981811 ) < 1e-2
26
1
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowercase__ : int = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[int] = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowercase__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
190
'''simple docstring''' import argparse lowercase__ : Any = '''docs/source/_static/js/custom.js''' def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> str: with open(__snake_case , encoding='utf-8' , newline='\n' ) as f: __A : Optional[Any] = f.readlines() __A : List[str] = 0 # First let's put the right version while not lines[index].startswith('const stableVersion =' ): index += 1 __A : Tuple = f'const stableVersion = "v{version}"\n' # Then update the dictionary while not lines[index].startswith('const versionMapping = {' ): index += 1 # We go until the end while not lines[index].startswith('}' ): index += 1 # We add the new version at the end lines[index - 1] += f' "v{version}": "v{version}",\n' with open(__snake_case , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(__snake_case ) if __name__ == "__main__": lowercase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--version''', help='''Release version.''') lowercase__ : List[str] = parser.parse_args() update_custom_js(args.version)
190
1
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class A__ ( lowerCAmelCase__ , lowerCAmelCase__ ): @register_to_config def __init__( self : Optional[Any] , _UpperCAmelCase : int = 1_28 , _UpperCAmelCase : int = 2_56 , _UpperCAmelCase : float = 2_000.0 , _UpperCAmelCase : int = 7_68 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 12 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : int = 20_48 , _UpperCAmelCase : float = 0.1 , ) -> List[str]: """simple docstring""" super().__init__() __lowercase = nn.Sequential( nn.Linear(_UpperCAmelCase , d_model * 4 , bias=_UpperCAmelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=_UpperCAmelCase ) , nn.SiLU() , ) __lowercase = nn.Embedding(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = False __lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.Dropout(p=_UpperCAmelCase ) __lowercase = nn.ModuleList() for lyr_num in range(_UpperCAmelCase ): # FiLM conditional T5 decoder __lowercase = DecoderLayer(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase ) self.decoders.append(_UpperCAmelCase ) __lowercase = TaLayerNorm(_UpperCAmelCase ) __lowercase = nn.Dropout(p=_UpperCAmelCase ) __lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) def a__ ( self : str , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] ) -> Dict: """simple docstring""" __lowercase = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def a__ ( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : str , _UpperCAmelCase : str ) -> List[Any]: """simple docstring""" __lowercase , __lowercase , __lowercase = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. __lowercase = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) __lowercase = self.conditioning_emb(_UpperCAmelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) __lowercase = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. __lowercase = torch.broadcast_to( torch.arange(_UpperCAmelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) __lowercase = self.position_encoding(_UpperCAmelCase ) __lowercase = self.continuous_inputs_projection(_UpperCAmelCase ) inputs += position_encodings __lowercase = self.dropout(_UpperCAmelCase ) # decoder: No padding present. __lowercase = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. __lowercase = [(x, self.encoder_decoder_mask(_UpperCAmelCase , _UpperCAmelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings __lowercase = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) __lowercase = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: __lowercase = lyr( _UpperCAmelCase , conditioning_emb=_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , encoder_attention_mask=_UpperCAmelCase , )[0] __lowercase = self.decoder_norm(_UpperCAmelCase ) __lowercase = self.post_dropout(_UpperCAmelCase ) __lowercase = self.spec_out(_UpperCAmelCase ) return spec_out class A__ ( nn.Module ): def __init__( self : List[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : int , _UpperCAmelCase : Any , _UpperCAmelCase : Dict=1e-6 ) -> Union[str, Any]: """simple docstring""" super().__init__() __lowercase = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=_UpperCAmelCase , d_kv=_UpperCAmelCase , num_heads=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase , layer_norm_epsilon=_UpperCAmelCase ) ) def a__ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Union[str, Any]=None , _UpperCAmelCase : Optional[int]=None , ) -> List[Any]: """simple docstring""" __lowercase = self.layer[0]( _UpperCAmelCase , conditioning_emb=_UpperCAmelCase , attention_mask=_UpperCAmelCase , ) if encoder_hidden_states is not None: __lowercase = torch.where(encoder_attention_mask > 0 , 0 , -1e1_0 ).to( encoder_hidden_states.dtype ) __lowercase = self.layer[1]( _UpperCAmelCase , key_value_states=_UpperCAmelCase , attention_mask=_UpperCAmelCase , ) # Apply Film Conditional Feed Forward layer __lowercase = self.layer[-1](_UpperCAmelCase , _UpperCAmelCase ) return (hidden_states,) class A__ ( nn.Module ): def __init__( self : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" super().__init__() __lowercase = TaLayerNorm(_UpperCAmelCase ) __lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase ) __lowercase = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase ) __lowercase = nn.Dropout(_UpperCAmelCase ) def a__ ( self : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : int=None , ) -> Tuple: """simple docstring""" __lowercase = self.layer_norm(_UpperCAmelCase ) if conditioning_emb is not None: __lowercase = self.FiLMLayer(_UpperCAmelCase , _UpperCAmelCase ) # Self-attention block __lowercase = self.attention(_UpperCAmelCase ) __lowercase = hidden_states + self.dropout(_UpperCAmelCase ) return hidden_states class A__ ( nn.Module ): def __init__( self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict ) -> Optional[int]: """simple docstring""" super().__init__() __lowercase = Attention(query_dim=_UpperCAmelCase , heads=_UpperCAmelCase , dim_head=_UpperCAmelCase , out_bias=_UpperCAmelCase , scale_qk=_UpperCAmelCase ) __lowercase = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase ) __lowercase = nn.Dropout(_UpperCAmelCase ) def a__ ( self : int , _UpperCAmelCase : Any , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=None , ) -> Any: """simple docstring""" __lowercase = self.layer_norm(_UpperCAmelCase ) __lowercase = self.attention( _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase , attention_mask=attention_mask.squeeze(1 ) , ) __lowercase = hidden_states + self.dropout(_UpperCAmelCase ) return layer_output class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] ) -> str: """simple docstring""" super().__init__() __lowercase = TaDenseGatedActDense(d_model=_UpperCAmelCase , d_ff=_UpperCAmelCase , dropout_rate=_UpperCAmelCase ) __lowercase = TaFiLMLayer(in_features=d_model * 4 , out_features=_UpperCAmelCase ) __lowercase = TaLayerNorm(_UpperCAmelCase , eps=_UpperCAmelCase ) __lowercase = nn.Dropout(_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=None ) -> Any: """simple docstring""" __lowercase = self.layer_norm(_UpperCAmelCase ) if conditioning_emb is not None: __lowercase = self.film(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = self.DenseReluDense(_UpperCAmelCase ) __lowercase = hidden_states + self.dropout(_UpperCAmelCase ) return hidden_states class A__ ( nn.Module ): def __init__( self : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" super().__init__() __lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) __lowercase = nn.Dropout(_UpperCAmelCase ) __lowercase = NewGELUActivation() def a__ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.act(self.wi_a(_UpperCAmelCase ) ) __lowercase = self.wi_a(_UpperCAmelCase ) __lowercase = hidden_gelu * hidden_linear __lowercase = self.dropout(_UpperCAmelCase ) __lowercase = self.wo(_UpperCAmelCase ) return hidden_states class A__ ( nn.Module ): def __init__( self : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int=1e-6 ) -> str: """simple docstring""" super().__init__() __lowercase = nn.Parameter(torch.ones(_UpperCAmelCase ) ) __lowercase = eps def a__ ( self : Optional[int] , _UpperCAmelCase : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __lowercase = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=_UpperCAmelCase ) __lowercase = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: __lowercase = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class A__ ( nn.Module ): def a__ ( self : List[Any] , _UpperCAmelCase : torch.Tensor ) -> torch.Tensor: """simple docstring""" return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044_715 * torch.pow(_UpperCAmelCase , 3.0 )) )) class A__ ( nn.Module ): def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] ) -> int: """simple docstring""" super().__init__() __lowercase = nn.Linear(_UpperCAmelCase , out_features * 2 , bias=_UpperCAmelCase ) def a__ ( self : Tuple , _UpperCAmelCase : Any , _UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" __lowercase = self.scale_bias(_UpperCAmelCase ) __lowercase , __lowercase = torch.chunk(_UpperCAmelCase , 2 , -1 ) __lowercase = x * (1 + scale) + shift return x
325
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A__ : def __init__( self : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : List[str]=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : str=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Optional[Any]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[Any]=None , ) -> Union[str, Any]: """simple docstring""" __lowercase = parent __lowercase = 13 __lowercase = 7 __lowercase = True __lowercase = True __lowercase = True __lowercase = True __lowercase = 99 __lowercase = 3_84 __lowercase = 2 __lowercase = 4 __lowercase = 37 __lowercase = 'gelu' __lowercase = 0.1 __lowercase = 0.1 __lowercase = 5_12 __lowercase = 16 __lowercase = 2 __lowercase = 0.02 __lowercase = 3 __lowercase = 4 __lowercase = 1_28 __lowercase = 2 __lowercase = 9 __lowercase = 1 __lowercase = None def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModel(config=_UpperCAmelCase ) __lowercase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __lowercase = [input_ids, input_mask] __lowercase = model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" __lowercase = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : str , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Any , _UpperCAmelCase : str ) -> Dict: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a__ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> Union[str, Any]: """simple docstring""" __lowercase = self.num_choices __lowercase = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __lowercase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Dict , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] ) -> int: """simple docstring""" __lowercase = self.num_labels __lowercase = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : Tuple , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : List[Any] ) -> Any: """simple docstring""" __lowercase = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __lowercase = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } __lowercase = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : int ) -> Optional[int]: """simple docstring""" __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : List[str] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : List[str] = False def a__ ( self : List[str] ) -> List[Any]: """simple docstring""" __lowercase = TFConvBertModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : Any ) -> Dict: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a__ ( self : int ) -> str: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> int: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a__ ( self : List[str] ) -> List[str]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a__ ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = True if hasattr(_UpperCAmelCase , 'use_cache' ): __lowercase = True __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: __lowercase = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __lowercase = model_class(_UpperCAmelCase ) __lowercase = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __lowercase = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) __lowercase = tf.keras.models.load_model(_UpperCAmelCase ) __lowercase = model(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = outputs['encoder_hidden_states'] __lowercase = outputs['encoder_attentions'] else: __lowercase = outputs['hidden_states'] __lowercase = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __lowercase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a__ ( self : List[str] ) -> Dict: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def a__ ( self : Tuple ) -> Tuple: """simple docstring""" __lowercase , __lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = True __lowercase = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) __lowercase = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : int ): __lowercase = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __lowercase = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Union[str, Any] ): __lowercase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __lowercase = True __lowercase = False __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __lowercase = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __lowercase = True __lowercase = True __lowercase = model_class(_UpperCAmelCase ) __lowercase = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __lowercase = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) __lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowercase = model(_UpperCAmelCase )[0] __lowercase = [1, 6, 7_68] self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 )
325
1
'''simple docstring''' import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _UpperCamelCase = logging.get_logger(__name__) # General docstring _UpperCamelCase = '''PoolFormerConfig''' # Base docstring _UpperCamelCase = '''sail/poolformer_s12''' _UpperCamelCase = [1, 512, 7, 7] # Image classification docstring _UpperCamelCase = '''sail/poolformer_s12''' _UpperCamelCase = '''tabby, tabby cat''' _UpperCamelCase = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def lowercase_ ( lowerCAmelCase__ : int , lowerCAmelCase__ : float = 0.0 , lowerCAmelCase__ : bool = False ): """simple docstring""" if drop_prob == 0.0 or not training: return input __UpperCAmelCase : Dict = 1 - drop_prob __UpperCAmelCase : str = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets __UpperCAmelCase : List[Any] = keep_prob + torch.rand(lowerCAmelCase__ , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize __UpperCAmelCase : Optional[int] = input.div(lowerCAmelCase__ ) * random_tensor return output class _A ( nn.Module ): def __init__( self , __UpperCAmelCase = None ) -> None: '''simple docstring''' super().__init__() __UpperCAmelCase : Optional[Any] = drop_prob def __A ( self , __UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return drop_path(__UpperCAmelCase , self.drop_prob , self.training ) def __A ( self ) -> str: '''simple docstring''' return "p={}".format(self.drop_prob ) class _A ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Any: '''simple docstring''' super().__init__() __UpperCAmelCase : List[Any] = patch_size if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (patch_size, patch_size) __UpperCAmelCase : Any = stride if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (stride, stride) __UpperCAmelCase : Optional[int] = padding if isinstance(__UpperCAmelCase , collections.abc.Iterable ) else (padding, padding) __UpperCAmelCase : Dict = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , kernel_size=__UpperCAmelCase , stride=__UpperCAmelCase , padding=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = norm_layer(__UpperCAmelCase ) if norm_layer else nn.Identity() def __A ( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = self.projection(__UpperCAmelCase ) __UpperCAmelCase : Tuple = self.norm(__UpperCAmelCase ) return embeddings class _A ( nn.GroupNorm ): def __init__( self , __UpperCAmelCase , **__UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' super().__init__(1 , __UpperCAmelCase , **__UpperCAmelCase ) class _A ( nn.Module ): def __init__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' super().__init__() __UpperCAmelCase : Dict = nn.AvgPoolad(__UpperCAmelCase , stride=1 , padding=pool_size // 2 , count_include_pad=__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> Any: '''simple docstring''' return self.pool(__UpperCAmelCase ) - hidden_states class _A ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' super().__init__() __UpperCAmelCase : Optional[Any] = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __UpperCAmelCase : Dict = nn.Convad(__UpperCAmelCase , __UpperCAmelCase , 1 ) __UpperCAmelCase : int = PoolFormerDropPath(__UpperCAmelCase ) if isinstance(config.hidden_act , __UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = ACTaFN[config.hidden_act] else: __UpperCAmelCase : str = config.hidden_act def __A ( self , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = self.conva(__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.act_fn(__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.drop(__UpperCAmelCase ) __UpperCAmelCase : int = self.conva(__UpperCAmelCase ) __UpperCAmelCase : Tuple = self.drop(__UpperCAmelCase ) return hidden_states class _A ( nn.Module ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() __UpperCAmelCase : List[str] = PoolFormerPooling(__UpperCAmelCase ) __UpperCAmelCase : Any = PoolFormerOutput(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Optional[int] = PoolFormerGroupNorm(__UpperCAmelCase ) __UpperCAmelCase : int = PoolFormerGroupNorm(__UpperCAmelCase ) # Useful for training neural nets __UpperCAmelCase : Optional[int] = PoolFormerDropPath(__UpperCAmelCase ) if drop_path > 0.0 else nn.Identity() __UpperCAmelCase : Optional[Any] = config.use_layer_scale if config.use_layer_scale: __UpperCAmelCase : Union[str, Any] = nn.Parameter( config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase ) __UpperCAmelCase : int = nn.Parameter( config.layer_scale_init_value * torch.ones((__UpperCAmelCase) ) , requires_grad=__UpperCAmelCase ) def __A ( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' if self.use_layer_scale: __UpperCAmelCase : int = self.pooling(self.before_norm(__UpperCAmelCase ) ) __UpperCAmelCase : str = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection __UpperCAmelCase : List[str] = hidden_states + self.drop_path(__UpperCAmelCase ) __UpperCAmelCase : List[str] = () __UpperCAmelCase : Union[str, Any] = self.output(self.after_norm(__UpperCAmelCase ) ) __UpperCAmelCase : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection __UpperCAmelCase : int = hidden_states + self.drop_path(__UpperCAmelCase ) __UpperCAmelCase : List[str] = (output,) + outputs return outputs else: __UpperCAmelCase : Dict = self.drop_path(self.pooling(self.before_norm(__UpperCAmelCase ) ) ) # First residual connection __UpperCAmelCase : Dict = pooling_output + hidden_states __UpperCAmelCase : Any = () # Second residual connection inside the PoolFormerOutput block __UpperCAmelCase : Optional[int] = self.drop_path(self.output(self.after_norm(__UpperCAmelCase ) ) ) __UpperCAmelCase : Tuple = hidden_states + layer_output __UpperCAmelCase : int = (output,) + outputs return outputs class _A ( nn.Module ): def __init__( self , __UpperCAmelCase ) -> Any: '''simple docstring''' super().__init__() __UpperCAmelCase : Tuple = config # stochastic depth decay rule __UpperCAmelCase : str = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings __UpperCAmelCase : int = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) __UpperCAmelCase : int = nn.ModuleList(__UpperCAmelCase ) # Transformer blocks __UpperCAmelCase : List[Any] = [] __UpperCAmelCase : List[Any] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers __UpperCAmelCase : Any = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( __UpperCAmelCase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(__UpperCAmelCase ) ) __UpperCAmelCase : List[Any] = nn.ModuleList(__UpperCAmelCase ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = () if output_hidden_states else None __UpperCAmelCase : Optional[int] = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): __UpperCAmelCase : List[str] = layers # Get patch embeddings from hidden_states __UpperCAmelCase : List[str] = embedding_layer(__UpperCAmelCase ) # Send the embeddings through the blocks for _, blk in enumerate(__UpperCAmelCase ): __UpperCAmelCase : Dict = blk(__UpperCAmelCase ) __UpperCAmelCase : List[Any] = layer_outputs[0] if output_hidden_states: __UpperCAmelCase : int = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=__UpperCAmelCase , hidden_states=__UpperCAmelCase ) class _A ( __SCREAMING_SNAKE_CASE ): _SCREAMING_SNAKE_CASE : str = PoolFormerConfig _SCREAMING_SNAKE_CASE : Optional[int] = "poolformer" _SCREAMING_SNAKE_CASE : Union[str, Any] = "pixel_values" _SCREAMING_SNAKE_CASE : Optional[int] = True def __A ( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if isinstance(__UpperCAmelCase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(__UpperCAmelCase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase=False ) -> Optional[Any]: '''simple docstring''' if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCAmelCase : Any = value _UpperCamelCase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _UpperCamelCase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." , __SCREAMING_SNAKE_CASE , ) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCAmelCase : List[str] = config __UpperCAmelCase : Optional[int] = PoolFormerEncoder(__UpperCAmelCase ) # Initialize weights and apply final processing self.post_init() def __A ( self ) -> Dict: '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __A ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Union[Tuple, BaseModelOutputWithNoAttention]: '''simple docstring''' __UpperCAmelCase : Dict = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) __UpperCAmelCase : List[str] = self.encoder( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=__UpperCAmelCase , hidden_states=encoder_outputs.hidden_states , ) class _A ( nn.Module ): def __init__( self , __UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase : Union[str, Any] = nn.Linear(config.hidden_size , config.hidden_size ) def __A ( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.dense(__UpperCAmelCase ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " , __SCREAMING_SNAKE_CASE , ) class _A ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase ) -> List[str]: '''simple docstring''' super().__init__(__UpperCAmelCase ) __UpperCAmelCase : Tuple = config.num_labels __UpperCAmelCase : List[str] = PoolFormerModel(__UpperCAmelCase ) # Final norm __UpperCAmelCase : List[Any] = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head __UpperCAmelCase : Union[str, Any] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(__UpperCAmelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__UpperCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __A ( self , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Union[Tuple, ImageClassifierOutputWithNoAttention]: '''simple docstring''' __UpperCAmelCase : Tuple = return_dict if return_dict is not None else self.config.use_return_dict __UpperCAmelCase : List[str] = self.poolformer( __UpperCAmelCase , output_hidden_states=__UpperCAmelCase , return_dict=__UpperCAmelCase , ) __UpperCAmelCase : Any = outputs[0] __UpperCAmelCase : Any = self.classifier(self.norm(__UpperCAmelCase ).mean([-2, -1] ) ) __UpperCAmelCase : List[Any] = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: __UpperCAmelCase : Union[str, Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): __UpperCAmelCase : Optional[int] = """single_label_classification""" else: __UpperCAmelCase : str = """multi_label_classification""" if self.config.problem_type == "regression": __UpperCAmelCase : Optional[int] = MSELoss() if self.num_labels == 1: __UpperCAmelCase : str = loss_fct(logits.squeeze() , labels.squeeze() ) else: __UpperCAmelCase : int = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) elif self.config.problem_type == "single_label_classification": __UpperCAmelCase : str = CrossEntropyLoss() __UpperCAmelCase : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": __UpperCAmelCase : Any = BCEWithLogitsLoss() __UpperCAmelCase : Union[str, Any] = loss_fct(__UpperCAmelCase , __UpperCAmelCase ) if not return_dict: __UpperCAmelCase : Any = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=__UpperCAmelCase , logits=__UpperCAmelCase , hidden_states=outputs.hidden_states )
350
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _UpperCamelCase = {'''LayoutLMv2Config''', '''LayoutLMv3Config'''} @is_pipeline_test class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _SCREAMING_SNAKE_CASE : int = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _SCREAMING_SNAKE_CASE : int = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _SCREAMING_SNAKE_CASE : Union[str, Any] = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : int = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" ) __UpperCAmelCase : List[Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : int = text_classifier("""This is great !""" , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}] ) __UpperCAmelCase : Optional[int] = text_classifier(["""This is great !""", """This is bad"""] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , top_k=1 ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) # Legacy behavior __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) __UpperCAmelCase : Dict = text_classifier("""This is great !""" , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}]] ) __UpperCAmelCase : str = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], [{"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_1""", """score""": 0.496}], ] , ) __UpperCAmelCase : Any = text_classifier(["""This is great !""", """Something else"""] , return_all_scores=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [ {"""label""": """LABEL_0""", """score""": 0.504}, {"""label""": """LABEL_0""", """score""": 0.504}, ] , ) @require_torch def __A ( self ) -> Dict: '''simple docstring''' import torch __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""pt""" , device=torch.device("""cpu""" ) , ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @require_tf def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = pipeline( task="""text-classification""" , model="""hf-internal-testing/tiny-random-distilbert""" , framework="""tf""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """LABEL_0""", """score""": 0.504}] ) @slow @require_torch def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = pipeline("""text-classification""" ) __UpperCAmelCase : int = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : Any = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) @slow @require_tf def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : str = pipeline("""text-classification""" , framework="""tf""" ) __UpperCAmelCase : Union[str, Any] = text_classifier("""This is great !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 1.0}] ) __UpperCAmelCase : int = text_classifier("""This is bad !""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """NEGATIVE""", """score""": 1.0}] ) __UpperCAmelCase : str = text_classifier("""Birds are a type of animal""" ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": """POSITIVE""", """score""": 0.988}] ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = TextClassificationPipeline(model=__UpperCAmelCase , tokenizer=__UpperCAmelCase ) return text_classifier, ["HuggingFace is in", "This is another test"] def __A ( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : int = text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 __UpperCAmelCase : Union[str, Any] = """HuggingFace is in""" __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual(nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) __UpperCAmelCase : Optional[int] = ["""HuggingFace is in """, """Paris is in France"""] __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}, {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["""label"""] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format __UpperCAmelCase : Any = text_classifier(__UpperCAmelCase , top_k=__UpperCAmelCase ) __UpperCAmelCase : Any = len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [[{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N, [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] * N] , ) __UpperCAmelCase : str = {"""text""": """HuggingFace is in """, """text_pair""": """Paris is in France"""} __UpperCAmelCase : Optional[int] = text_classifier(__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , {"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )} , ) self.assertTrue(outputs["""label"""] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. __UpperCAmelCase : Union[str, Any] = [["""HuggingFace is in """, """Paris is in France"""]] with self.assertRaises(__UpperCAmelCase ): text_classifier(__UpperCAmelCase ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility __UpperCAmelCase : Tuple = text_classifier([[["""HuggingFace is in """, """Paris is in France"""]]] ) self.assertEqual( nested_simplify(__UpperCAmelCase ) , [{"""label""": ANY(__UpperCAmelCase ), """score""": ANY(__UpperCAmelCase )}] , ) self.assertTrue(outputs[0]["""label"""] in model.config.idalabel.values() )
16
0
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss __snake_case = pytest.mark.integration @require_faiss class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = Dataset.from_dict({'''filename''': ['''my_name-train''' + '''_''' + str(UpperCamelCase_ ) for x in np.arange(30 ).tolist()]} ) return dset def lowerCAmelCase__ ( self ): '''simple docstring''' import faiss UpperCamelCase__ :Dataset = self._create_dummy_dataset() UpperCamelCase__ :Any = dset.map( lambda UpperCamelCase_ , UpperCamelCase_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=UpperCamelCase_ , keep_in_memory=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = dset.add_faiss_index('''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) dset.drop_index('''vecs''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' import faiss UpperCamelCase__ :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) UpperCamelCase__ , UpperCamelCase__ :str = dset.get_nearest_examples('''vecs''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' import faiss UpperCamelCase__ :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase_ ) as tmp_file: dset.save_faiss_index('''vecs''' , tmp_file.name ) dset.load_faiss_index('''vecs2''' , tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase__ , UpperCamelCase__ :str = dset.get_nearest_examples('''vecs2''' , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name='''vecs''' ) dset.drop_index('''vecs''' ) self.assertRaises(UpperCamelCase_ , partial(dset.get_nearest_examples , '''vecs2''' , np.ones(5 , dtype=np.floataa ) ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' from elasticsearch import Elasticsearch UpperCamelCase__ :Dataset = self._create_dummy_dataset() with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: UpperCamelCase__ :Optional[int] = {'''acknowledged''': True} mocked_bulk.return_value([(True, None)] * 30 ) UpperCamelCase__ :str = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 29}]}} UpperCamelCase__ :Optional[Any] = Elasticsearch() dset.add_elasticsearch_index('''filename''' , es_client=UpperCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ :Tuple = dset.get_nearest_examples('''filename''' , '''my_name-train_29''' ) self.assertEqual(examples['''filename'''][0] , '''my_name-train_29''' ) @require_faiss class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' import faiss UpperCamelCase__ :List[str] = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query UpperCamelCase__ :Any = np.zeros(5 , dtype=np.floataa ) UpperCamelCase__ :Optional[int] = 1 UpperCamelCase__ , UpperCamelCase__ :str = index.search(UpperCamelCase_ ) self.assertRaises(UpperCamelCase_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries UpperCamelCase__ :List[str] = np.eye(5 , dtype=np.floataa )[::-1] UpperCamelCase__ , UpperCamelCase__ :Optional[Any] = index.search_batch(UpperCamelCase_ ) self.assertRaises(UpperCamelCase_ , index.search_batch , queries[0] ) UpperCamelCase__ :List[Any] = [scores[0] for scores in total_scores] UpperCamelCase__ :Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' import faiss UpperCamelCase__ :Tuple = FaissIndex(string_factory='''Flat''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) UpperCamelCase__ :Dict = FaissIndex(string_factory='''LSH''' ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(UpperCamelCase_ ): UpperCamelCase__ :Optional[int] = FaissIndex(string_factory='''Flat''' , custom_index=faiss.IndexFlat(5 ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' import faiss UpperCamelCase__ :List[Any] = faiss.IndexFlat(5 ) UpperCamelCase__ :List[Any] = FaissIndex(custom_index=UpperCamelCase_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def lowerCAmelCase__ ( self ): '''simple docstring''' import faiss UpperCamelCase__ :str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=UpperCamelCase_ ) as tmp_file: index.save(tmp_file.name ) UpperCamelCase__ :Optional[Any] = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) UpperCamelCase__ :Dict = np.zeros(5 , dtype=np.floataa ) UpperCamelCase__ :str = 1 UpperCamelCase__ , UpperCamelCase__ :List[str] = index.search(UpperCamelCase_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def a ( __a ) -> Tuple: '''simple docstring''' import faiss UpperCamelCase__ :Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) UpperCamelCase__ :Optional[int] = '''index.faiss''' UpperCamelCase__ :Tuple = f'''mock://{index_name}''' index.save(__a , storage_options=mockfs.storage_options ) UpperCamelCase__ :List[Any] = FaissIndex.load(__a , storage_options=mockfs.storage_options ) UpperCamelCase__ :Tuple = np.zeros(5 , dtype=np.floataa ) UpperCamelCase__ :int = 1 UpperCamelCase__ , UpperCamelCase__ :str = index.search(__a ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowercase ( A__ ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' from elasticsearch import Elasticsearch with patch('''elasticsearch.Elasticsearch.search''' ) as mocked_search, patch( '''elasticsearch.client.IndicesClient.create''' ) as mocked_index_create, patch('''elasticsearch.helpers.streaming_bulk''' ) as mocked_bulk: UpperCamelCase__ :Any = Elasticsearch() UpperCamelCase__ :Any = {'''acknowledged''': True} UpperCamelCase__ :int = ElasticSearchIndex(es_client=UpperCamelCase_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(['''foo''', '''bar''', '''foobar'''] ) # single query UpperCamelCase__ :Any = '''foo''' UpperCamelCase__ :Dict = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} UpperCamelCase__ , UpperCamelCase__ :int = index.search(UpperCamelCase_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout UpperCamelCase__ :Dict = '''foo''' UpperCamelCase__ :Union[str, Any] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 0}]}} UpperCamelCase__ , UpperCamelCase__ :Any = index.search(UpperCamelCase_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries UpperCamelCase__ :Tuple = ['''foo''', '''bar''', '''foobar'''] UpperCamelCase__ :Optional[int] = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} UpperCamelCase__ , UpperCamelCase__ :List[Any] = index.search_batch(UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = [scores[0] for scores in total_scores] UpperCamelCase__ :int = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase_ ) # batched queries with timeout UpperCamelCase__ :Any = ['''foo''', '''bar''', '''foobar'''] UpperCamelCase__ :int = {'''hits''': {'''hits''': [{'''_score''': 1, '''_id''': 1}]}} UpperCamelCase__ , UpperCamelCase__ :Optional[int] = index.search_batch(UpperCamelCase_ , request_timeout=30 ) UpperCamelCase__ :Any = [scores[0] for scores in total_scores] UpperCamelCase__ :str = [indices[0] for indices in total_indices] self.assertGreater(np.min(UpperCamelCase_ ) , 0 ) self.assertListEqual([1, 1, 1] , UpperCamelCase_ )
97
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , UpperCamelCase_ , UpperCamelCase_=7 , UpperCamelCase_=3 , UpperCamelCase_=30 , UpperCamelCase_=400 , UpperCamelCase_=True , UpperCamelCase_=None , UpperCamelCase_=True , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=[0.5, 0.5, 0.5] , UpperCamelCase_=True , UpperCamelCase_=1 / 255 , UpperCamelCase_=True , ): '''simple docstring''' UpperCamelCase__ :Dict = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} UpperCamelCase__ :str = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Dict = num_channels UpperCamelCase__ :str = min_resolution UpperCamelCase__ :Optional[Any] = max_resolution UpperCamelCase__ :int = do_resize UpperCamelCase__ :Optional[Any] = size UpperCamelCase__ :Tuple = do_normalize UpperCamelCase__ :List[Any] = image_mean UpperCamelCase__ :Dict = image_std UpperCamelCase__ :Union[str, Any] = do_rescale UpperCamelCase__ :Union[str, Any] = rescale_factor UpperCamelCase__ :Union[str, Any] = do_pad def lowerCAmelCase__ ( self ): '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_=False ): '''simple docstring''' if not batched: UpperCamelCase__ :List[str] = image_inputs[0] if isinstance(UpperCamelCase_ , Image.Image ): UpperCamelCase__ , UpperCamelCase__ :List[str] = image.size else: UpperCamelCase__ , UpperCamelCase__ :List[Any] = image.shape[1], image.shape[2] if w < h: UpperCamelCase__ :int = int(self.size['''shortest_edge'''] * h / w ) UpperCamelCase__ :Dict = self.size['''shortest_edge'''] elif w > h: UpperCamelCase__ :int = self.size['''shortest_edge'''] UpperCamelCase__ :Tuple = int(self.size['''shortest_edge'''] * w / h ) else: UpperCamelCase__ :str = self.size['''shortest_edge'''] UpperCamelCase__ :str = self.size['''shortest_edge'''] else: UpperCamelCase__ :Any = [] for image in image_inputs: UpperCamelCase__ , UpperCamelCase__ :Dict = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) UpperCamelCase__ :List[Any] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[0] )[0] UpperCamelCase__ :Optional[int] = max(UpperCamelCase_ , key=lambda UpperCamelCase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowercase ( A__ , unittest.TestCase ): """simple docstring""" _a = ConditionalDetrImageProcessor if is_vision_available() else None def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessingTester(self ) @property def lowerCAmelCase__ ( self ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_mean''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''image_std''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_normalize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''do_resize''' ) ) self.assertTrue(hasattr(UpperCamelCase_ , '''size''' ) ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=UpperCamelCase_ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' pass def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , Image.Image ) # Test not batched input UpperCamelCase__ :Any = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , numpify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , np.ndarray ) # Test not batched input UpperCamelCase__ :Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :List[Any] = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :Union[str, Any] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :str = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCamelCase_ , torchify=UpperCamelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCamelCase_ , torch.Tensor ) # Test not batched input UpperCamelCase__ :str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Dict = self.image_processor_tester.get_expected_values(UpperCamelCase_ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched UpperCamelCase__ :List[str] = image_processing(UpperCamelCase_ , return_tensors='''pt''' ).pixel_values UpperCamelCase__ , UpperCamelCase__ :Optional[int] = self.image_processor_tester.get_expected_values(UpperCamelCase_ , batched=UpperCamelCase_ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Optional[int] = json.loads(f.read() ) UpperCamelCase__ :Any = {'''image_id''': 39769, '''annotations''': target} # encode them UpperCamelCase__ :str = ConditionalDetrImageProcessor.from_pretrained('''microsoft/conditional-detr-resnet-50''' ) UpperCamelCase__ :List[Any] = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :List[str] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :List[str] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify orig_size UpperCamelCase__ :Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :Union[str, Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) ) @slow def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: UpperCamelCase__ :Tuple = json.loads(f.read() ) UpperCamelCase__ :List[str] = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} UpperCamelCase__ :Any = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them UpperCamelCase__ :List[Any] = ConditionalDetrImageProcessor(format='''coco_panoptic''' ) UpperCamelCase__ :Dict = image_processing(images=UpperCamelCase_ , annotations=UpperCamelCase_ , masks_path=UpperCamelCase_ , return_tensors='''pt''' ) # verify pixel values UpperCamelCase__ :str = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , UpperCamelCase_ , atol=1e-4 ) ) # verify area UpperCamelCase__ :Tuple = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , UpperCamelCase_ ) ) # verify boxes UpperCamelCase__ :Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , UpperCamelCase_ ) UpperCamelCase__ :List[Any] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , UpperCamelCase_ , atol=1e-3 ) ) # verify image_id UpperCamelCase__ :List[str] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , UpperCamelCase_ ) ) # verify is_crowd UpperCamelCase__ :Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , UpperCamelCase_ ) ) # verify class_labels UpperCamelCase__ :str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , UpperCamelCase_ ) ) # verify masks UpperCamelCase__ :Optional[Any] = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , UpperCamelCase_ ) # verify orig_size UpperCamelCase__ :List[str] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , UpperCamelCase_ ) ) # verify size UpperCamelCase__ :List[Any] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , UpperCamelCase_ ) )
97
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class __lowerCamelCase ( unittest.TestCase ): def A__ (self ): '''simple docstring''' _lowerCAmelCase = tempfile.mkdtemp() # fmt: off _lowerCAmelCase = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest"""] # fmt: on _lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) _lowerCAmelCase = { """do_resize""": True, """size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.5, 0.5, 0.5], """image_std""": [0.5, 0.5, 0.5], } _lowerCAmelCase = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self , **lowerCamelCase ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def A__ (self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowerCamelCase , padding_value=1.0 ) _lowerCAmelCase = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowerCamelCase , return_tensors="""np""" ) _lowerCAmelCase = processor(images=lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = processor(text=lowerCamelCase ) _lowerCAmelCase = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with self.assertRaises(lowerCamelCase ): processor() def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(lowerCamelCase ) _lowerCAmelCase = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def A__ (self ): '''simple docstring''' _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = VisionTextDualEncoderProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) _lowerCAmelCase = """lower newer""" _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
317
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool SCREAMING_SNAKE_CASE : Optional[Any] = { '''Acehnese Arabic''': '''ace_Arab''', '''Acehnese Latin''': '''ace_Latn''', '''Mesopotamian Arabic''': '''acm_Arab''', '''Ta\'izzi-Adeni Arabic''': '''acq_Arab''', '''Tunisian Arabic''': '''aeb_Arab''', '''Afrikaans''': '''afr_Latn''', '''South Levantine Arabic''': '''ajp_Arab''', '''Akan''': '''aka_Latn''', '''Amharic''': '''amh_Ethi''', '''North Levantine Arabic''': '''apc_Arab''', '''Modern Standard Arabic''': '''arb_Arab''', '''Modern Standard Arabic Romanized''': '''arb_Latn''', '''Najdi Arabic''': '''ars_Arab''', '''Moroccan Arabic''': '''ary_Arab''', '''Egyptian Arabic''': '''arz_Arab''', '''Assamese''': '''asm_Beng''', '''Asturian''': '''ast_Latn''', '''Awadhi''': '''awa_Deva''', '''Central Aymara''': '''ayr_Latn''', '''South Azerbaijani''': '''azb_Arab''', '''North Azerbaijani''': '''azj_Latn''', '''Bashkir''': '''bak_Cyrl''', '''Bambara''': '''bam_Latn''', '''Balinese''': '''ban_Latn''', '''Belarusian''': '''bel_Cyrl''', '''Bemba''': '''bem_Latn''', '''Bengali''': '''ben_Beng''', '''Bhojpuri''': '''bho_Deva''', '''Banjar Arabic''': '''bjn_Arab''', '''Banjar Latin''': '''bjn_Latn''', '''Standard Tibetan''': '''bod_Tibt''', '''Bosnian''': '''bos_Latn''', '''Buginese''': '''bug_Latn''', '''Bulgarian''': '''bul_Cyrl''', '''Catalan''': '''cat_Latn''', '''Cebuano''': '''ceb_Latn''', '''Czech''': '''ces_Latn''', '''Chokwe''': '''cjk_Latn''', '''Central Kurdish''': '''ckb_Arab''', '''Crimean Tatar''': '''crh_Latn''', '''Welsh''': '''cym_Latn''', '''Danish''': '''dan_Latn''', '''German''': '''deu_Latn''', '''Southwestern Dinka''': '''dik_Latn''', '''Dyula''': '''dyu_Latn''', '''Dzongkha''': '''dzo_Tibt''', '''Greek''': '''ell_Grek''', '''English''': '''eng_Latn''', '''Esperanto''': '''epo_Latn''', '''Estonian''': '''est_Latn''', '''Basque''': '''eus_Latn''', '''Ewe''': '''ewe_Latn''', '''Faroese''': '''fao_Latn''', '''Fijian''': '''fij_Latn''', '''Finnish''': '''fin_Latn''', '''Fon''': '''fon_Latn''', '''French''': '''fra_Latn''', '''Friulian''': '''fur_Latn''', '''Nigerian Fulfulde''': '''fuv_Latn''', '''Scottish Gaelic''': '''gla_Latn''', '''Irish''': '''gle_Latn''', '''Galician''': '''glg_Latn''', '''Guarani''': '''grn_Latn''', '''Gujarati''': '''guj_Gujr''', '''Haitian Creole''': '''hat_Latn''', '''Hausa''': '''hau_Latn''', '''Hebrew''': '''heb_Hebr''', '''Hindi''': '''hin_Deva''', '''Chhattisgarhi''': '''hne_Deva''', '''Croatian''': '''hrv_Latn''', '''Hungarian''': '''hun_Latn''', '''Armenian''': '''hye_Armn''', '''Igbo''': '''ibo_Latn''', '''Ilocano''': '''ilo_Latn''', '''Indonesian''': '''ind_Latn''', '''Icelandic''': '''isl_Latn''', '''Italian''': '''ita_Latn''', '''Javanese''': '''jav_Latn''', '''Japanese''': '''jpn_Jpan''', '''Kabyle''': '''kab_Latn''', '''Jingpho''': '''kac_Latn''', '''Kamba''': '''kam_Latn''', '''Kannada''': '''kan_Knda''', '''Kashmiri Arabic''': '''kas_Arab''', '''Kashmiri Devanagari''': '''kas_Deva''', '''Georgian''': '''kat_Geor''', '''Central Kanuri Arabic''': '''knc_Arab''', '''Central Kanuri Latin''': '''knc_Latn''', '''Kazakh''': '''kaz_Cyrl''', '''Kabiyè''': '''kbp_Latn''', '''Kabuverdianu''': '''kea_Latn''', '''Khmer''': '''khm_Khmr''', '''Kikuyu''': '''kik_Latn''', '''Kinyarwanda''': '''kin_Latn''', '''Kyrgyz''': '''kir_Cyrl''', '''Kimbundu''': '''kmb_Latn''', '''Northern Kurdish''': '''kmr_Latn''', '''Kikongo''': '''kon_Latn''', '''Korean''': '''kor_Hang''', '''Lao''': '''lao_Laoo''', '''Ligurian''': '''lij_Latn''', '''Limburgish''': '''lim_Latn''', '''Lingala''': '''lin_Latn''', '''Lithuanian''': '''lit_Latn''', '''Lombard''': '''lmo_Latn''', '''Latgalian''': '''ltg_Latn''', '''Luxembourgish''': '''ltz_Latn''', '''Luba-Kasai''': '''lua_Latn''', '''Ganda''': '''lug_Latn''', '''Luo''': '''luo_Latn''', '''Mizo''': '''lus_Latn''', '''Standard Latvian''': '''lvs_Latn''', '''Magahi''': '''mag_Deva''', '''Maithili''': '''mai_Deva''', '''Malayalam''': '''mal_Mlym''', '''Marathi''': '''mar_Deva''', '''Minangkabau Arabic ''': '''min_Arab''', '''Minangkabau Latin''': '''min_Latn''', '''Macedonian''': '''mkd_Cyrl''', '''Plateau Malagasy''': '''plt_Latn''', '''Maltese''': '''mlt_Latn''', '''Meitei Bengali''': '''mni_Beng''', '''Halh Mongolian''': '''khk_Cyrl''', '''Mossi''': '''mos_Latn''', '''Maori''': '''mri_Latn''', '''Burmese''': '''mya_Mymr''', '''Dutch''': '''nld_Latn''', '''Norwegian Nynorsk''': '''nno_Latn''', '''Norwegian Bokmål''': '''nob_Latn''', '''Nepali''': '''npi_Deva''', '''Northern Sotho''': '''nso_Latn''', '''Nuer''': '''nus_Latn''', '''Nyanja''': '''nya_Latn''', '''Occitan''': '''oci_Latn''', '''West Central Oromo''': '''gaz_Latn''', '''Odia''': '''ory_Orya''', '''Pangasinan''': '''pag_Latn''', '''Eastern Panjabi''': '''pan_Guru''', '''Papiamento''': '''pap_Latn''', '''Western Persian''': '''pes_Arab''', '''Polish''': '''pol_Latn''', '''Portuguese''': '''por_Latn''', '''Dari''': '''prs_Arab''', '''Southern Pashto''': '''pbt_Arab''', '''Ayacucho Quechua''': '''quy_Latn''', '''Romanian''': '''ron_Latn''', '''Rundi''': '''run_Latn''', '''Russian''': '''rus_Cyrl''', '''Sango''': '''sag_Latn''', '''Sanskrit''': '''san_Deva''', '''Santali''': '''sat_Olck''', '''Sicilian''': '''scn_Latn''', '''Shan''': '''shn_Mymr''', '''Sinhala''': '''sin_Sinh''', '''Slovak''': '''slk_Latn''', '''Slovenian''': '''slv_Latn''', '''Samoan''': '''smo_Latn''', '''Shona''': '''sna_Latn''', '''Sindhi''': '''snd_Arab''', '''Somali''': '''som_Latn''', '''Southern Sotho''': '''sot_Latn''', '''Spanish''': '''spa_Latn''', '''Tosk Albanian''': '''als_Latn''', '''Sardinian''': '''srd_Latn''', '''Serbian''': '''srp_Cyrl''', '''Swati''': '''ssw_Latn''', '''Sundanese''': '''sun_Latn''', '''Swedish''': '''swe_Latn''', '''Swahili''': '''swh_Latn''', '''Silesian''': '''szl_Latn''', '''Tamil''': '''tam_Taml''', '''Tatar''': '''tat_Cyrl''', '''Telugu''': '''tel_Telu''', '''Tajik''': '''tgk_Cyrl''', '''Tagalog''': '''tgl_Latn''', '''Thai''': '''tha_Thai''', '''Tigrinya''': '''tir_Ethi''', '''Tamasheq Latin''': '''taq_Latn''', '''Tamasheq Tifinagh''': '''taq_Tfng''', '''Tok Pisin''': '''tpi_Latn''', '''Tswana''': '''tsn_Latn''', '''Tsonga''': '''tso_Latn''', '''Turkmen''': '''tuk_Latn''', '''Tumbuka''': '''tum_Latn''', '''Turkish''': '''tur_Latn''', '''Twi''': '''twi_Latn''', '''Central Atlas Tamazight''': '''tzm_Tfng''', '''Uyghur''': '''uig_Arab''', '''Ukrainian''': '''ukr_Cyrl''', '''Umbundu''': '''umb_Latn''', '''Urdu''': '''urd_Arab''', '''Northern Uzbek''': '''uzn_Latn''', '''Venetian''': '''vec_Latn''', '''Vietnamese''': '''vie_Latn''', '''Waray''': '''war_Latn''', '''Wolof''': '''wol_Latn''', '''Xhosa''': '''xho_Latn''', '''Eastern Yiddish''': '''ydd_Hebr''', '''Yoruba''': '''yor_Latn''', '''Yue Chinese''': '''yue_Hant''', '''Chinese Simplified''': '''zho_Hans''', '''Chinese Traditional''': '''zho_Hant''', '''Standard Malay''': '''zsm_Latn''', '''Zulu''': '''zul_Latn''', } class __lowerCamelCase ( __lowercase ): __UpperCamelCase = 'facebook/nllb-200-distilled-600M' __UpperCamelCase = ( 'This is a tool that translates text from a language to another. It takes three inputs: `text`, which should ' 'be the text to translate, `src_lang`, which should be the language of the text to translate and `tgt_lang`, ' 'which should be the language for the desired ouput language. Both `src_lang` and `tgt_lang` are written in ' 'plain English, such as \'Romanian\', or \'Albanian\'. It returns the text translated in `tgt_lang`.' ) __UpperCamelCase = 'translator' __UpperCamelCase = AutoTokenizer __UpperCamelCase = AutoModelForSeqaSeqLM __UpperCamelCase = LANGUAGE_CODES __UpperCamelCase = ['text', 'text', 'text'] __UpperCamelCase = ['text'] def A__ (self , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' if src_lang not in self.lang_to_code: raise ValueError(f"""{src_lang} is not a supported language.""" ) if tgt_lang not in self.lang_to_code: raise ValueError(f"""{tgt_lang} is not a supported language.""" ) _lowerCAmelCase = self.lang_to_code[src_lang] _lowerCAmelCase = self.lang_to_code[tgt_lang] return self.pre_processor._build_translation_inputs( lowerCamelCase , return_tensors="""pt""" , src_lang=lowerCamelCase , tgt_lang=lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.model.generate(**lowerCamelCase ) def A__ (self , lowerCamelCase ): '''simple docstring''' return self.post_processor.decode(outputs[0].tolist() , skip_special_tokens=lowerCamelCase )
317
1
"""simple docstring""" import logging from transformers import PretrainedConfig a : Tuple = logging.getLogger(__name__) a : Dict = { '''bertabs-finetuned-cnndm''': '''https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json''', } class __UpperCamelCase ( a__ ): lowerCamelCase : Optional[Any] ="""bertabs""" def __init__( self , lowerCAmelCase__=3_0522 , lowerCAmelCase__=512 , lowerCAmelCase__=6 , lowerCAmelCase__=512 , lowerCAmelCase__=8 , lowerCAmelCase__=512 , lowerCAmelCase__=0.2 , lowerCAmelCase__=6 , lowerCAmelCase__=768 , lowerCAmelCase__=8 , lowerCAmelCase__=2048 , lowerCAmelCase__=0.2 , **lowerCAmelCase__ , ) -> int: super().__init__(**lowerCAmelCase__ ) a : Dict = vocab_size a : str = max_pos a : str = enc_layers a : int = enc_hidden_size a : Tuple = enc_heads a : Dict = enc_ff_size a : List[Any] = enc_dropout a : str = dec_layers a : Dict = dec_hidden_size a : Union[str, Any] = dec_heads a : Union[str, Any] = dec_ff_size a : List[Any] = dec_dropout
105
'''simple docstring''' def __UpperCAmelCase ( a_: str, a_: str ): if len(a_ ) != len(a_ ): raise ValueError("String lengths must match!" ) _UpperCAmelCase : Dict = 0 for chara, chara in zip(a_, a_ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
145
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : str = { "configuration_convbert": ["CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConvBertConfig", "ConvBertOnnxConfig"], "tokenization_convbert": ["ConvBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : List[str] = ["ConvBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Any = [ "CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "ConvBertForMaskedLM", "ConvBertForMultipleChoice", "ConvBertForQuestionAnswering", "ConvBertForSequenceClassification", "ConvBertForTokenClassification", "ConvBertLayer", "ConvBertModel", "ConvBertPreTrainedModel", "load_tf_weights_in_convbert", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Tuple = [ "TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFConvBertForMaskedLM", "TFConvBertForMultipleChoice", "TFConvBertForQuestionAnswering", "TFConvBertForSequenceClassification", "TFConvBertForTokenClassification", "TFConvBertLayer", "TFConvBertModel", "TFConvBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
99
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(4_2) _lowerCamelCase : List[str] = "bert-base-cased" _lowerCamelCase : str = "fp16" _lowerCamelCase : Optional[int] = "bf16" _lowerCamelCase : List[str] = [FPaa, BFaa] @require_fsdp @require_cuda class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : Tuple ): super().setUp() UpperCAmelCase : Optional[Any] = dict( ACCELERATE_USE_FSDP='''true''', MASTER_ADDR='''localhost''', MASTER_PORT='''10999''', RANK='''0''', LOCAL_RANK='''0''', WORLD_SIZE='''1''', ) def __magic_name__ ( self : int ): from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): UpperCAmelCase : List[Any] = self.dist_env.copy() UpperCAmelCase : Union[str, Any] = F'''{i + 1}''' UpperCAmelCase : Union[str, Any] = strategy with mockenv_context(**__A ): UpperCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy, ShardingStrategy(i + 1 ) ) def __magic_name__ ( self : Dict ): from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): UpperCAmelCase : int = self.dist_env.copy() UpperCAmelCase : Dict = prefetch_policy with mockenv_context(**__A ): UpperCAmelCase : Optional[int] = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch, BackwardPrefetch(i + 1 ) ) def __magic_name__ ( self : Any ): from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): UpperCAmelCase : Any = self.dist_env.copy() UpperCAmelCase : int = state_dict_type with mockenv_context(**__A ): UpperCAmelCase : str = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type, StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def __magic_name__ ( self : int ): UpperCAmelCase : Optional[int] = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: UpperCAmelCase : Any = self.dist_env.copy() UpperCAmelCase : List[Any] = policy if policy == "TRANSFORMER_BASED_WRAP": UpperCAmelCase : Tuple = '''BertLayer''' elif policy == "SIZE_BASED_WRAP": UpperCAmelCase : List[str] = '''2000''' with mockenv_context(**__A ): UpperCAmelCase : Optional[Any] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) UpperCAmelCase : List[str] = self.dist_env.copy() UpperCAmelCase : Tuple = '''TRANSFORMER_BASED_WRAP''' UpperCAmelCase : Optional[Any] = '''T5Layer''' with mockenv_context(**__A ): UpperCAmelCase : int = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) UpperCAmelCase : List[Any] = self.dist_env.copy() UpperCAmelCase : str = '''SIZE_BASED_WRAP''' UpperCAmelCase : str = '''0''' with mockenv_context(**__A ): UpperCAmelCase : Optional[int] = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def __magic_name__ ( self : int ): from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: UpperCAmelCase : List[Any] = self.dist_env.copy() UpperCAmelCase : int = mp_dtype with mockenv_context(**__A ): UpperCAmelCase : int = Accelerator() if mp_dtype == "fp16": UpperCAmelCase : Any = torch.floataa elif mp_dtype == "bf16": UpperCAmelCase : Any = torch.bfloataa UpperCAmelCase : Optional[Any] = MixedPrecision(param_dtype=__A, reduce_dtype=__A, buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy, __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler, __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def __magic_name__ ( self : Optional[int] ): from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: UpperCAmelCase : Any = self.dist_env.copy() UpperCAmelCase : int = str(__A ).lower() with mockenv_context(**__A ): UpperCAmelCase : Union[str, Any] = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload, CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class __UpperCAmelCase ( lowerCamelCase__ ): def __magic_name__ ( self : List[Any] ): super().setUp() UpperCAmelCase : int = 0.8_2 UpperCAmelCase : List[str] = [ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] UpperCAmelCase : int = { '''multi_gpu_fp16''': 3_2_0_0, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2_0_0_0, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1_9_0_0, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } UpperCAmelCase : List[str] = 1_6_0 UpperCAmelCase : Optional[int] = 1_6_0 UpperCAmelCase : Union[str, Any] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def __magic_name__ ( self : str ): UpperCAmelCase : str = os.path.join(self.test_scripts_folder, '''test_performance.py''' ) UpperCAmelCase : Any = ['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: UpperCAmelCase : Union[str, Any] = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A, env=os.environ.copy() ) def __magic_name__ ( self : Tuple ): UpperCAmelCase : Dict = os.path.join(self.test_scripts_folder, '''test_checkpointing.py''' ) UpperCAmelCase : Optional[int] = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(__A ): UpperCAmelCase : Optional[Any] = cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue UpperCAmelCase : Any = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: UpperCAmelCase : List[Any] = cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A, env=os.environ.copy() ) UpperCAmelCase : Tuple = cmd_config[:-1] UpperCAmelCase : List[str] = os.path.join(self.tmpdir, '''epoch_0''' ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A, env=os.environ.copy() ) def __magic_name__ ( self : Any ): UpperCAmelCase : Optional[Any] = os.path.join(self.test_scripts_folder, '''test_peak_memory_usage.py''' ) UpperCAmelCase : str = [ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): UpperCAmelCase : List[Any] = cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A, env=os.environ.copy() )
99
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : int = logging.get_logger(__name__) lowercase__ : int = { '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''roberta-prelayernorm''' def __init__( self , _UpperCAmelCase=5_0265 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1e-1_2 , _UpperCAmelCase=1 , _UpperCAmelCase=0 , _UpperCAmelCase=2 , _UpperCAmelCase="absolute" , _UpperCAmelCase=True , _UpperCAmelCase=None , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : List[Any] = hidden_size __A : Optional[int] = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : List[str] = hidden_act __A : Dict = intermediate_size __A : Optional[int] = hidden_dropout_prob __A : Optional[Any] = attention_probs_dropout_prob __A : Tuple = max_position_embeddings __A : Union[str, Any] = type_vocab_size __A : Any = initializer_range __A : str = layer_norm_eps __A : int = position_embedding_type __A : Optional[Any] = use_cache __A : Any = classifier_dropout class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if self.task == "multiple-choice": __A : Dict = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __A : Union[str, Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ])
190
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = tempfile.mkdtemp() # fmt: off __A : Optional[int] = ['l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', 'lo', 'l</w>', 'w</w>', 'r</w>', 't</w>', 'low</w>', 'er</w>', 'lowest</w>', 'newer</w>', 'wider', '<unk>', '<|startoftext|>', '<|endoftext|>'] # fmt: on __A : Tuple = dict(zip(_UpperCAmelCase , range(len(_UpperCAmelCase)))) __A : Any = ['#version: 0.2', 'l o', 'lo w</w>', 'e r</w>', ''] __A : List[str] = {'unk_token': '<unk>'} __A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) __A : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as fp: fp.write(json.dumps(_UpperCAmelCase) + '\n') with open(self.merges_file , 'w' , encoding='utf-8') as fp: fp.write('\n'.join(_UpperCAmelCase)) __A : str = { 'do_resize': True, 'size': 20, 'do_center_crop': True, 'crop_size': 18, 'do_normalize': True, 'image_mean': [0.48145466, 0.4578275, 0.40821073], 'image_std': [0.26862954, 0.26130258, 0.27577711], } __A : Union[str, Any] = os.path.join(self.tmpdirname , _UpperCAmelCase) with open(self.image_processor_file , 'w' , encoding='utf-8') as fp: json.dump(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __A : Optional[int] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = self.get_tokenizer() __A : int = self.get_rust_tokenizer() __A : Any = self.get_image_processor() __A : Union[str, Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor_slow.save_pretrained(self.tmpdirname) __A : Dict = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_UpperCAmelCase) __A : Union[str, Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) processor_fast.save_pretrained(self.tmpdirname) __A : Union[str, Any] = CLIPProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab()) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab()) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab()) self.assertIsInstance(processor_slow.tokenizer , _UpperCAmelCase) self.assertIsInstance(processor_fast.tokenizer , _UpperCAmelCase) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string()) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string()) self.assertIsInstance(processor_slow.image_processor , _UpperCAmelCase) self.assertIsInstance(processor_fast.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __A : Dict = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : Any = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Tuple = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : List[Any] = self.get_tokenizer() __A : List[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : List[str] = self.prepare_image_inputs() __A : Dict = image_processor(_UpperCAmelCase , return_tensors='np') __A : str = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : List[str] = self.get_tokenizer() __A : Optional[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = 'lower newer' __A : List[Any] = processor(text=_UpperCAmelCase) __A : Optional[int] = tokenizer(_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_image_processor() __A : Optional[int] = self.get_tokenizer() __A : Optional[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : int = 'lower newer' __A : Any = self.prepare_image_inputs() __A : Tuple = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['input_ids', 'attention_mask', 'pixel_values']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : str = self.get_tokenizer() __A : Optional[Any] = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : str = processor.batch_decode(_UpperCAmelCase) __A : Optional[Any] = tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[int] = self.get_image_processor() __A : int = self.get_tokenizer() __A : Any = CLIPProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Any = 'lower newer' __A : Any = self.prepare_image_inputs() __A : Any = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
190
1
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase_ : def __init__( self : str , snake_case_ : Any , snake_case_ : List[Any]=13 , snake_case_ : Optional[int]=7 , snake_case_ : List[Any]=True , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : List[Any]=True , snake_case_ : List[str]=99 , snake_case_ : List[Any]=24 , snake_case_ : List[str]=2 , snake_case_ : Dict=6 , snake_case_ : Optional[Any]=37 , snake_case_ : Dict="gelu" , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[Any]=0.1 , snake_case_ : Tuple=512 , snake_case_ : int=16 , snake_case_ : Any=2 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : Tuple=3 , snake_case_ : Union[str, Any]=None , snake_case_ : str=1_000 , ) -> int: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = scope A__ = range_bbox def __magic_name__ ( self : List[Any] ) -> Dict: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A__ = bbox[i, j, 3] A__ = bbox[i, j, 1] A__ = t if bbox[i, j, 2] < bbox[i, j, 0]: A__ = bbox[i, j, 2] A__ = bbox[i, j, 0] A__ = t A__ = None if self.use_input_mask: A__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def __magic_name__ ( self : str ) -> List[Any]: '''simple docstring''' return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def __magic_name__ ( self : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Any , snake_case_ : int , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : str , ) -> Optional[int]: '''simple docstring''' A__ = LiltModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) A__ = model(snake_case_ , bbox=snake_case_ , token_type_ids=snake_case_ ) A__ = model(snake_case_ , bbox=snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __magic_name__ ( self : Optional[int] , snake_case_ : int , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : List[Any] , ) -> List[Any]: '''simple docstring''' A__ = self.num_labels A__ = LiltForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __magic_name__ ( self : int , snake_case_ : Optional[Any] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : List[Any] , snake_case_ : List[str] , snake_case_ : str , snake_case_ : str , ) -> Optional[Any]: '''simple docstring''' A__ = LiltForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model( snake_case_ , bbox=snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __magic_name__ ( self : Any ) -> Optional[Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ( A__ ), ) = config_and_inputs A__ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase_ ( A_, A_, A_, unittest.TestCase ): lowercase__ = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { '''feature-extraction''': LiltModel, '''question-answering''': LiltForQuestionAnswering, '''text-classification''': LiltForSequenceClassification, '''token-classification''': LiltForTokenClassification, '''zero-shot''': LiltForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = False lowercase__ = False def __magic_name__ ( self : Optional[int] , snake_case_ : int , snake_case_ : List[Any] , snake_case_ : Any , snake_case_ : List[str] , snake_case_ : List[Any] ) -> Optional[int]: '''simple docstring''' return True def __magic_name__ ( self : List[str] ) -> Tuple: '''simple docstring''' A__ = LiltModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ , hidden_size=37 ) def __magic_name__ ( self : Tuple ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __magic_name__ ( self : List[Any] ) -> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*snake_case_ ) def __magic_name__ ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case_ ) def __magic_name__ ( self : int ) -> Optional[int]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case_ ) @slow def __magic_name__ ( self : Any ) -> Optional[int]: '''simple docstring''' for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = LiltModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @require_torch @slow class UpperCAmelCase_ ( unittest.TestCase ): def __magic_name__ ( self : Tuple ) -> Any: '''simple docstring''' A__ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base" ).to(snake_case_ ) A__ = torch.tensor([[1, 2]] , device=snake_case_ ) A__ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=snake_case_ ) # forward pass with torch.no_grad(): A__ = model(input_ids=snake_case_ , bbox=snake_case_ ) A__ = torch.Size([1, 2, 768] ) A__ = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=snake_case_ , ) self.assertTrue(outputs.last_hidden_state.shape , snake_case_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , snake_case_ , atol=1e-3 ) )
230
"""simple docstring""" import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> Any: if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: A__ = TOKENIZER_CLASSES else: A__ = {tokenizer_name: getattr(lowercase_ , tokenizer_name + "Fast" )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: A__ = TOKENIZER_CLASSES[tokenizer_name] A__ = True if checkpoint_name is None: A__ = list(tokenizer_class.max_model_input_sizes.keys() ) else: A__ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer A__ = tokenizer_class.from_pretrained(lowercase_ , force_download=lowercase_ ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: A__, A__ = checkpoint.split("/" ) A__ = os.path.join(lowercase_ , lowercase_ ) elif add_prefix: A__ = checkpoint A__ = dump_path else: A__ = None A__ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: A__ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] A__ = file_path.split(lowercase_ )[-1][0] if next_char == "/": A__ = os.path.join(lowercase_ , lowercase_ ) A__ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) A__ = tokenizer.save_pretrained( lowercase_ , legacy_format=lowercase_ , filename_prefix=lowercase_ ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith("tokenizer.json" ): os.remove(lowercase_ ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( f'Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will ' "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
230
1
from math import isclose, sqrt def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ): __UpperCamelCase =point_y / 4 / point_x __UpperCamelCase =2 * normal_gradient / (1 + normal_gradient * normal_gradient) __UpperCamelCase =(1 - normal_gradient * normal_gradient) / ( 1 + normal_gradient * normal_gradient ) __UpperCamelCase =(sa - ca * incoming_gradient) / (ca + sa * incoming_gradient) # to find the next point, solve the simultaeneous equations: # y^2 + 4x^2 = 100 # y - b = m * (x - a) # ==> A x^2 + B x + C = 0 __UpperCamelCase =outgoing_gradient**2 + 4 __UpperCamelCase =2 * outgoing_gradient * (point_y - outgoing_gradient * point_x) __UpperCamelCase =(point_y - outgoing_gradient * point_x) ** 2 - 1_00 __UpperCamelCase =( -linear_term - sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) __UpperCamelCase =( -linear_term + sqrt(linear_term**2 - 4 * quadratic_term * constant_term ) ) / (2 * quadratic_term) # two solutions, one of which is our input point __UpperCamelCase =x_minus if isclose(__lowerCamelCase , __lowerCamelCase ) else x_plus __UpperCamelCase =point_y + outgoing_gradient * (next_x - point_x) return next_x, next_y, outgoing_gradient def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : int = 1.4 , SCREAMING_SNAKE_CASE__ : List[Any] = -9.6 ): __UpperCamelCase =0 __UpperCamelCase =first_x_coord __UpperCamelCase =first_y_coord __UpperCamelCase =(10.1 - point_y) / (0.0 - point_x) while not (-0.01 <= point_x <= 0.01 and point_y > 0): __UpperCamelCase =next_point(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) num_reflections += 1 return num_reflections if __name__ == "__main__": print(f"""{solution() = }""")
62
"""simple docstring""" def __UpperCAmelCase ( __lowerCamelCase = 50 ) -> int: lowercase__ : int = [[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(F'''{solution() = }''')
16
0
"""simple docstring""" import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _SCREAMING_SNAKE_CASE : def __init__( self , __A , __A=14 , __A=7 , __A=True , __A=True , __A=True , __A=True , __A=True , __A=99 , __A=32 , __A=5 , __A=4 , __A=37 , __A="gelu" , __A=0.1 , __A=0.1 , __A=512 , __A=16 , __A=2 , __A=0.0_2 , __A=3 , __A=4 , __A=None , ) -> Optional[Any]: lowerCAmelCase_ :Any = parent lowerCAmelCase_ :List[Any] = batch_size lowerCAmelCase_ :Union[str, Any] = seq_length lowerCAmelCase_ :Optional[Any] = is_training lowerCAmelCase_ :Optional[Any] = use_token_type_ids lowerCAmelCase_ :List[Any] = use_input_mask lowerCAmelCase_ :List[Any] = use_labels lowerCAmelCase_ :Optional[Any] = use_mc_token_ids lowerCAmelCase_ :Union[str, Any] = vocab_size lowerCAmelCase_ :Any = hidden_size lowerCAmelCase_ :List[Any] = num_hidden_layers lowerCAmelCase_ :Optional[Any] = num_attention_heads lowerCAmelCase_ :Optional[int] = intermediate_size lowerCAmelCase_ :List[Any] = hidden_act lowerCAmelCase_ :Any = hidden_dropout_prob lowerCAmelCase_ :List[str] = attention_probs_dropout_prob lowerCAmelCase_ :str = max_position_embeddings lowerCAmelCase_ :List[Any] = type_vocab_size lowerCAmelCase_ :Tuple = type_sequence_label_size lowerCAmelCase_ :str = initializer_range lowerCAmelCase_ :List[Any] = num_labels lowerCAmelCase_ :Dict = num_choices lowerCAmelCase_ :List[Any] = scope lowerCAmelCase_ :Union[str, Any] = self.vocab_size - 1 def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase_ :int = None if self.use_input_mask: lowerCAmelCase_ :List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ :Union[str, Any] = None if self.use_token_type_ids: lowerCAmelCase_ :int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase_ :str = None if self.use_mc_token_ids: lowerCAmelCase_ :Dict = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) lowerCAmelCase_ :Optional[Any] = None lowerCAmelCase_ :Dict = None lowerCAmelCase_ :Optional[Any] = None if self.use_labels: lowerCAmelCase_ :str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase_ :int = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase_ :Union[str, Any] = self.get_config() lowerCAmelCase_ :Dict = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __lowerCAmelCase ( self ) -> Union[str, Any]: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , *__A ) -> List[Any]: lowerCAmelCase_ :int = CTRLModel(config=__A ) model.to(__A ) model.eval() model(__A , token_type_ids=__A , head_mask=__A ) model(__A , token_type_ids=__A ) lowerCAmelCase_ :Dict = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def __lowerCAmelCase ( self , __A , __A , __A , __A , __A , *__A ) -> Optional[int]: lowerCAmelCase_ :Dict = CTRLLMHeadModel(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Optional[int] = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self ) -> Tuple: lowerCAmelCase_ :str = self.prepare_config_and_inputs() ( lowerCAmelCase_ ) :Optional[Any] = config_and_inputs lowerCAmelCase_ :Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """head_mask""": head_mask} return config, inputs_dict def __lowerCAmelCase ( self , __A , __A , __A , __A , *__A ) -> Optional[int]: lowerCAmelCase_ :Optional[Any] = self.num_labels lowerCAmelCase_ :Optional[int] = CTRLForSequenceClassification(__A ) model.to(__A ) model.eval() lowerCAmelCase_ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase_ :str = model(__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class _SCREAMING_SNAKE_CASE ( A__ , A__ , A__ , unittest.TestCase ): UpperCAmelCase_ :Optional[int] = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () UpperCAmelCase_ :Optional[Any] = (CTRLLMHeadModel,) if is_torch_available() else () UpperCAmelCase_ :Tuple = ( { "feature-extraction": CTRLModel, "text-classification": CTRLForSequenceClassification, "text-generation": CTRLLMHeadModel, "zero-shot": CTRLForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase_ :int = True UpperCAmelCase_ :int = False UpperCAmelCase_ :List[Any] = False def __lowerCAmelCase ( self , __A , __A , __A , __A , __A ) -> Optional[Any]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __lowerCAmelCase ( self ) -> Optional[Any]: lowerCAmelCase_ :int = CTRLModelTester(self ) lowerCAmelCase_ :Union[str, Any] = ConfigTester(self , config_class=__A , n_embd=37 ) def __lowerCAmelCase ( self ) -> str: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Dict: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__A ) def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__A ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __lowerCAmelCase ( self ) -> Optional[Any]: pass @slow def __lowerCAmelCase ( self ) -> Any: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ :str = CTRLModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @unittest.skip("""The model doesn't support left padding""" ) # and it's not used enough to be worth fixing :) def __lowerCAmelCase ( self ) -> Any: pass @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Dict: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :List[str] = CTRLLMHeadModel.from_pretrained("""ctrl""" ) model.to(__A ) lowerCAmelCase_ :Union[str, Any] = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__A ) # Legal the president is lowerCAmelCase_ :Dict = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowerCAmelCase_ :str = model.generate(__A , do_sample=__A ) self.assertListEqual(output_ids[0].tolist() , __A )
353
"""simple docstring""" def _snake_case ( lowercase__ : list , lowercase__ : list , lowercase__ : int , lowercase__ : int , lowercase__ : int ) -> int: '''simple docstring''' if index == number_of_items: return 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Dict = knapsack(lowercase__ , lowercase__ , lowercase__ , lowercase__ , index + 1 ) if weights[index] <= max_weight: lowerCAmelCase_ :str = values[index] + knapsack( lowercase__ , lowercase__ , lowercase__ , max_weight - weights[index] , index + 1 ) return max(lowercase__ , lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ = 16 a__ = 32 def lowercase ( SCREAMING_SNAKE_CASE__ : Accelerator , SCREAMING_SNAKE_CASE__ : int = 16 ) -> Dict: _snake_case : Any = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _snake_case : List[Any] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(SCREAMING_SNAKE_CASE__ : str ): # max_length=None => use the model max length (it's actually the default) _snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _snake_case : List[str] = datasets.map( SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _snake_case : Tuple = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(SCREAMING_SNAKE_CASE__ : List[str] ): # On TPU it's best to pad everything to the same length or training will be very slow. _snake_case : List[Any] = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _snake_case : Any = 16 elif accelerator.mixed_precision != "no": _snake_case : str = 8 else: _snake_case : List[Any] = None return tokenizer.pad( SCREAMING_SNAKE_CASE__ , padding="""longest""" , max_length=SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" , ) # Instantiate dataloaders. _snake_case : List[Any] = DataLoader( tokenized_datasets["""train"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) _snake_case : int = DataLoader( tokenized_datasets["""validation"""] , shuffle=SCREAMING_SNAKE_CASE__ , collate_fn=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ = mocked_dataloaders # noqa: F811 def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Any: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , SCREAMING_SNAKE_CASE__ ) == "1": _snake_case : int = 2 # New Code # _snake_case : Tuple = int(args.gradient_accumulation_steps ) _snake_case : Optional[Any] = int(args.local_sgd_steps ) # Initialize accelerator _snake_case : List[str] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=SCREAMING_SNAKE_CASE__ ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("""LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)""" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _snake_case : Union[str, Any] = config["""lr"""] _snake_case : Optional[int] = int(config["""num_epochs"""] ) _snake_case : Any = int(config["""seed"""] ) _snake_case : Optional[Any] = int(config["""batch_size"""] ) _snake_case : Any = evaluate.load("""glue""" , """mrpc""" ) set_seed(SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : List[Any] = get_dataloaders(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _snake_case : Dict = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=SCREAMING_SNAKE_CASE__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _snake_case : Tuple = model.to(accelerator.device ) # Instantiate optimizer _snake_case : Optional[int] = AdamW(params=model.parameters() , lr=SCREAMING_SNAKE_CASE__ ) # Instantiate scheduler _snake_case : Tuple = get_linear_schedule_with_warmup( optimizer=SCREAMING_SNAKE_CASE__ , num_warmup_steps=100 , num_training_steps=(len(SCREAMING_SNAKE_CASE__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now we train the model for epoch in range(SCREAMING_SNAKE_CASE__ ): model.train() with LocalSGD( accelerator=SCREAMING_SNAKE_CASE__ , model=SCREAMING_SNAKE_CASE__ , local_sgd_steps=SCREAMING_SNAKE_CASE__ , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(SCREAMING_SNAKE_CASE__ ): _snake_case : Optional[Any] = model(**SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = output.loss accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(SCREAMING_SNAKE_CASE__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _snake_case : Dict = model(**SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 ) _snake_case , _snake_case : Optional[Any] = accelerator.gather_for_metrics((predictions, batch["""labels"""]) ) metric.add_batch( predictions=SCREAMING_SNAKE_CASE__ , references=SCREAMING_SNAKE_CASE__ , ) _snake_case : Union[str, Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , SCREAMING_SNAKE_CASE__ ) def lowercase ( ) -> Any: _snake_case : List[Any] = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) # New Code # parser.add_argument( """--gradient_accumulation_steps""" , type=SCREAMING_SNAKE_CASE__ , default=1 , help="""The number of minibatches to be ran before gradients are accumulated.""" , ) parser.add_argument( """--local_sgd_steps""" , type=SCREAMING_SNAKE_CASE__ , default=8 , help="""Number of local SGD steps or None to disable local SGD""" ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _snake_case : int = parser.parse_args() _snake_case : str = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
'''simple docstring''' def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : int = [False] * len(A_ ) lowercase_ : List[str] = [] queue.append(A_ ) lowercase_ : Dict = True while queue: lowercase_ : Dict = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(A_ ) lowercase_ : List[Any] = True lowercase_ : Any = u return visited[t] def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] ): """simple docstring""" lowercase_ : str = [-1] * (len(A_ )) lowercase_ : Optional[Any] = 0 while bfs(A_ , A_ , A_ , A_ ): lowercase_ : Any = float('''Inf''' ) lowercase_ : Optional[int] = sink while s != source: # Find the minimum value in select path lowercase_ : Any = min(A_ , graph[parent[s]][s] ) lowercase_ : Optional[Any] = parent[s] max_flow += path_flow lowercase_ : str = sink while v != source: lowercase_ : int = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow lowercase_ : Optional[int] = parent[v] return max_flow _lowercase : Optional[int] = [ [0, 1_6, 1_3, 0, 0, 0], [0, 0, 1_0, 1_2, 0, 0], [0, 4, 0, 0, 1_4, 0], [0, 0, 9, 0, 0, 2_0], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] _lowercase : Tuple = 0, 5 print(ford_fulkerson(graph, source, sink))
358
'''simple docstring''' from __future__ import annotations from typing import Any class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = num_of_nodes lowercase_ : list[list[int]] = [] lowercase_ : dict[int, int] = {} def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase_ : Optional[int] = self.find_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase_ : Any = v_node component_size[v_node] += component_size[u_node] self.set_component(__SCREAMING_SNAKE_CASE ) elif component_size[u_node] >= component_size[v_node]: lowercase_ : int = self.find_component(__SCREAMING_SNAKE_CASE ) component_size[u_node] += component_size[v_node] self.set_component(__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Dict = [] lowercase_ : Optional[Any] = 0 lowercase_ : list[Any] = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase_ : Union[str, Any] = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase_ , lowercase_ , lowercase_ : List[Any] = edge lowercase_ : Dict = self.m_component[u] lowercase_ : Any = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase_ : Union[str, Any] = [u, v, w] for edge in minimum_weight_edge: if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ , lowercase_ , lowercase_ : str = edge lowercase_ : Tuple = self.m_component[u] lowercase_ : Union[str, Any] = self.m_component[v] if u_component != v_component: mst_weight += w self.union(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) print(F'''Added edge [{u} - {v}]\nAdded weight: {w}\n''' ) num_of_components -= 1 lowercase_ : str = [-1] * self.m_num_of_nodes print(F'''The total weight of the minimal spanning tree is: {mst_weight}''' ) def snake_case_ ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
264
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=10 , lowercase=3 , lowercase=2 , lowercase=2 , lowercase=2 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=0.9 , lowercase=None , ) -> List[str]: '''simple docstring''' a__ : List[str] = parent a__ : List[Any] = batch_size a__ : Union[str, Any] = image_size a__ : str = num_channels a__ : Optional[int] = patch_size a__ : Dict = tubelet_size a__ : str = num_frames a__ : List[str] = is_training a__ : Optional[int] = use_labels a__ : Tuple = hidden_size a__ : Optional[Any] = num_hidden_layers a__ : List[str] = num_attention_heads a__ : int = intermediate_size a__ : Union[str, Any] = hidden_act a__ : int = hidden_dropout_prob a__ : List[str] = attention_probs_dropout_prob a__ : Tuple = type_sequence_label_size a__ : List[Any] = initializer_range a__ : Optional[int] = mask_ratio a__ : int = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame a__ : Optional[Any] = (image_size // patch_size) ** 2 a__ : int = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos a__ : List[str] = int(mask_ratio * self.seq_length) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Union[str, Any] = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size]) a__ : Union[str, Any] = None if self.use_labels: a__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Dict: '''simple docstring''' return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> int: '''simple docstring''' a__ : Any = VideoMAEModel(config=lowercase) model.to(lowercase) model.eval() a__ : List[Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : Dict = VideoMAEForPreTraining(lowercase) model.to(lowercase) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__ : Optional[int] = torch.ones((self.num_masks,)) a__ : Tuple = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0))]) a__ : Tuple = mask.expand(self.batch_size , -1).bool() a__ : Any = model(lowercase , lowercase) # model only returns predictions for masked patches a__ : Optional[int] = mask.sum().item() a__ : Dict = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels)) def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : Dict = config_and_inputs a__ : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[int] = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __A : Optional[int] = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) __A : int = False __A : Tuple = False __A : int = False __A : List[str] = False def __lowercase ( self) -> List[Any]: '''simple docstring''' a__ : Union[str, Any] = VideoMAEModelTester(self) a__ : str = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self , lowercase , lowercase , lowercase=False) -> List[str]: '''simple docstring''' a__ : List[Any] = copy.deepcopy(lowercase) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch a__ : List[str] = torch.ones((self.model_tester.num_masks,)) a__ : Dict = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0))]) a__ : List[Any] = mask.expand(self.model_tester.batch_size , -1).bool() a__ : Any = bool_masked_pos.to(lowercase) if return_labels: if model_class in [ *get_values(lowercase), ]: a__ : Optional[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase) return inputs_dict def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='VideoMAE does not use inputs_embeds') def __lowercase ( self) -> List[str]: '''simple docstring''' pass def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[Any] = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(lowercase) a__ : List[str] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Any = [*signature.parameters.keys()] a__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> int: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Dict = VideoMAEModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def __lowercase ( self) -> List[str]: '''simple docstring''' if not self.has_attentions: pass else: a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Optional[Any] = True for model_class in self.all_model_classes: a__ : Optional[Any] = self.model_tester.seq_length - self.model_tester.num_masks a__ : str = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) a__ : Optional[Any] = True a__ : List[str] = False a__ : Dict = True a__ : Any = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : str = model(**self._prepare_for_class(lowercase , lowercase)) a__ : List[str] = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : List[Any] = True a__ : int = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Any = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Tuple = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) a__ : str = len(lowercase) # Check attention is always last and order is fine a__ : Tuple = True a__ : int = True a__ : Optional[int] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Dict = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__ : str = outputs.attentions self.assertEqual(len(lowercase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __lowercase ( self) -> Dict: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : Optional[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[int] = outputs.hidden_states a__ : Dict = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(lowercase) , lowercase) a__ : str = self.model_tester.seq_length - self.model_tester.num_masks a__ : Union[str, Any] = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:]) , [seq_length, self.model_tester.hidden_size] , ) a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : int = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : str = True check_hidden_states_output(lowercase , lowercase , lowercase) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowercase ( self) -> Any: '''simple docstring''' pass def A_ ( ) -> int: a__ : Union[str, Any] = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) a__ : Optional[int] = np.load(A__ ) return list(A__ ) @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> List[Any]: '''simple docstring''' return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5]) if is_vision_available() else None ) @slow def __lowercase ( self) -> int: '''simple docstring''' a__ : Any = VideoMAEForVideoClassification.from_pretrained('MCG-NJU/videomae-base-finetuned-kinetics').to( lowercase) a__ : int = self.default_image_processor a__ : Optional[int] = prepare_video() a__ : str = image_processor(lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Dict = model(**lowercase) # verify the logits a__ : Any = torch.Size((1, 400)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([0.36_69, -0.06_88, -0.24_21]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Optional[Any] = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short').to(lowercase) a__ : Tuple = self.default_image_processor a__ : List[str] = prepare_video() a__ : List[str] = image_processor(lowercase , return_tensors='pt').to(lowercase) # add boolean mask, indicating which patches to mask a__ : List[Any] = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt') a__ : Optional[Any] = torch.load(lowercase) # forward pass with torch.no_grad(): a__ : Optional[int] = model(**lowercase) # verify the logits a__ : int = torch.Size([1, 1408, 1536]) a__ : List[str] = torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]] , device=lowercase) self.assertEqual(outputs.logits.shape , lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `True`) a__ : int = torch.tensor([0.51_42] , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4)) # verify the loss (`config.norm_pix_loss` = `False`) a__ : Any = VideoMAEForPreTraining.from_pretrained('MCG-NJU/videomae-base-short' , norm_pix_loss=lowercase).to( lowercase) with torch.no_grad(): a__ : Optional[int] = model(**lowercase) a__ : Tuple = torch.tensor(torch.tensor([0.64_69]) , device=lowercase) self.assertTrue(torch.allclose(outputs.loss , lowercase , atol=1e-4))
99
def A_ ( A__ , A__ ) -> str: if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) a__ : List[str] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : Optional[int] = str(bin(A__ ) )[2:] # remove the leading "0b" a__ : List[str] = max(len(A__ ) , len(A__ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(A__ ) , b_binary.zfill(A__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
99
1
def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : list[list[str]] = [[] for _ in range(lowerCAmelCase_ )] lowerCAmelCase__ : Optional[int] = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1 or len(lowerCAmelCase_ ) <= key: return input_string for position, character in enumerate(lowerCAmelCase_ ): lowerCAmelCase__ : List[Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Optional[int] = min(lowerCAmelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(lowerCAmelCase_ ) lowerCAmelCase__ : Optional[Any] = [''.join(lowerCAmelCase_ ) for row in temp_grid] lowerCAmelCase__ : Any = ''.join(lowerCAmelCase_ ) return output_string def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: lowerCAmelCase__ : Any = [] lowerCAmelCase__ : int = key - 1 if key <= 0: raise ValueError('Height of grid can\'t be 0 or negative' ) if key == 1: return input_string lowerCAmelCase__ : list[list[str]] = [[] for _ in range(lowerCAmelCase_ )] # generates template for position in range(len(lowerCAmelCase_ ) ): lowerCAmelCase__ : Union[str, Any] = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : Any = min(lowerCAmelCase_ , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append('*' ) lowerCAmelCase__ : Dict = 0 for row in temp_grid: # fills in the characters lowerCAmelCase__ : Optional[Any] = input_string[counter : counter + len(lowerCAmelCase_ )] grid.append(list(lowerCAmelCase_ ) ) counter += len(lowerCAmelCase_ ) lowerCAmelCase__ : Optional[int] = '' # reads as zigzag for position in range(len(lowerCAmelCase_ ) ): lowerCAmelCase__ : str = position % (lowest * 2) # puts it in bounds lowerCAmelCase__ : str = min(lowerCAmelCase_ , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> dict[int, str]: lowerCAmelCase__ : Any = {} for key_guess in range(1 , len(lowerCAmelCase_ ) ): # tries every key lowerCAmelCase__ : Optional[int] = decrypt(lowerCAmelCase_ , lowerCAmelCase_ ) return results if __name__ == "__main__": import doctest doctest.testmod()
369
from ..utils import DummyObject, requires_backends class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Union[str, Any] , *a : Optional[int] , **a : Optional[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : List[Any] , **a : int ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Any , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Optional[Any] , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Optional[int] , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : List[Any] , *a : List[str] , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[Any] , *a : Union[str, Any] , **a : Optional[int] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : List[Any] , *a : Dict , **a : List[str] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Dict , **a : List[Any] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : List[str] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : Dict , *a : str , **a : Union[str, Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : Any , **a : Any ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Any , *a : List[Any] , **a : str ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) class A__ ( metaclass=__magic_name__ ): lowercase = ['torch', 'transformers', 'onnx'] def __init__( self : str , *a : Union[str, Any] , **a : Optional[Any] ): '''simple docstring''' requires_backends(self , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : int , *a : Union[str, Any] , **a : Dict ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] ) @classmethod def _lowerCamelCase ( cls : Optional[int] , *a : Tuple , **a : List[str] ): '''simple docstring''' requires_backends(cls , ['torch', 'transformers', 'onnx'] )
307
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { '''configuration_albert''': ['''ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AlbertConfig''', '''AlbertOnnxConfig'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''AlbertTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''AlbertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AlbertForMaskedLM''', '''AlbertForMultipleChoice''', '''AlbertForPreTraining''', '''AlbertForQuestionAnswering''', '''AlbertForSequenceClassification''', '''AlbertForTokenClassification''', '''AlbertModel''', '''AlbertPreTrainedModel''', '''load_tf_weights_in_albert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFAlbertForMaskedLM''', '''TFAlbertForMultipleChoice''', '''TFAlbertForPreTraining''', '''TFAlbertForQuestionAnswering''', '''TFAlbertForSequenceClassification''', '''TFAlbertForTokenClassification''', '''TFAlbertMainLayer''', '''TFAlbertModel''', '''TFAlbertPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''FlaxAlbertForMaskedLM''', '''FlaxAlbertForMultipleChoice''', '''FlaxAlbertForPreTraining''', '''FlaxAlbertForQuestionAnswering''', '''FlaxAlbertForSequenceClassification''', '''FlaxAlbertForTokenClassification''', '''FlaxAlbertModel''', '''FlaxAlbertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_albert import ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, AlbertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert import AlbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_albert_fast import AlbertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_albert import ( ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, AlbertPreTrainedModel, load_tf_weights_in_albert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_albert import ( TF_ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFAlbertForMaskedLM, TFAlbertForMultipleChoice, TFAlbertForPreTraining, TFAlbertForQuestionAnswering, TFAlbertForSequenceClassification, TFAlbertForTokenClassification, TFAlbertMainLayer, TFAlbertModel, TFAlbertPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, FlaxAlbertPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
230
def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def _lowerCAmelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
230
1
from heapq import heappop, heappush import numpy as np def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> tuple[float | int, list[tuple[int, int]]]: lowerCamelCase__ , lowerCamelCase__ : Any = grid.shape lowerCamelCase__ : Dict = [-1, 1, 0, 0] lowerCamelCase__ : Any = [0, 0, -1, 1] if allow_diagonal: dx += [-1, -1, 1, 1] dy += [-1, 1, -1, 1] lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = [(0, source)], set() lowerCamelCase__ : int = np.full((rows, cols) , np.inf ) lowerCamelCase__ : List[Any] = 0 lowerCamelCase__ : int = np.empty((rows, cols) , dtype=_UpperCAmelCase ) lowerCamelCase__ : str = None while queue: ((lowerCamelCase__) , (lowerCamelCase__)) : str = heappop(_UpperCAmelCase ) if (x, y) in visited: continue visited.add((x, y) ) if (x, y) == destination: lowerCamelCase__ : Union[str, Any] = [] while (x, y) != source: path.append((x, y) ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = predecessors[x, y] path.append(_UpperCAmelCase ) # add the source manually path.reverse() return matrix[destination], path for i in range(len(_UpperCAmelCase ) ): lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = x + dx[i], y + dy[i] if 0 <= nx < rows and 0 <= ny < cols: lowerCamelCase__ : List[Any] = grid[nx][ny] if next_node == 1 and matrix[nx, ny] > dist + 1: heappush(_UpperCAmelCase , (dist + 1, (nx, ny)) ) lowerCamelCase__ : Optional[int] = dist + 1 lowerCamelCase__ : Optional[int] = (x, y) return np.inf, [] if __name__ == "__main__": import doctest doctest.testmod()
45
from __future__ import annotations def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> None: lowerCamelCase__ : Optional[Any] = len(_UpperCAmelCase ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(_UpperCAmelCase ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , _UpperCAmelCase , _UpperCAmelCase , ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: lowerCamelCase__ : list[list[str]] = [] depth_first_search([] , [] , [] , _UpperCAmelCase , _UpperCAmelCase ) # Print all the boards for board in boards: for column in board: print(_UpperCAmelCase ) print('' ) print(len(_UpperCAmelCase ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
45
1