code
stringlengths 86
54.5k
| code_codestyle
int64 0
371
| style_context
stringlengths 87
49.2k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
|---|---|---|---|---|
import unittest
from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
A : int = get_tests_dir('fixtures/test_sentencepiece.model')
@require_sentencepiece
@require_tokenizers
class A ( UpperCamelCase__ , unittest.TestCase ):
'''simple docstring'''
A__ = XLNetTokenizer
A__ = XLNetTokenizerFast
A__ = True
A__ = True
def lowerCamelCase__ (self : Union[str, Any] ) -> Dict:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__ = XLNetTokenizer(__a , keep_accents=__a )
tokenizer.sanitize_special_tokens()
tokenizer.save_pretrained(self.tmpdirname )
def lowerCamelCase__ (self : Dict ) -> int:
"""simple docstring"""
lowercase__ = """<s>"""
lowercase__ = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__a ) , __a )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__a ) , __a )
def lowerCamelCase__ (self : Optional[Any] ) -> Dict:
"""simple docstring"""
lowercase__ = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , """<unk>""" )
self.assertEqual(vocab_keys[1] , """<s>""" )
self.assertEqual(vocab_keys[-1] , """<eod>""" )
self.assertEqual(len(__a ) , 1006 )
def lowerCamelCase__ (self : Tuple ) -> Optional[Any]:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1000 )
def lowerCamelCase__ (self : Tuple ) -> int:
"""simple docstring"""
lowercase__ = XLNetTokenizer(__a , keep_accents=__a )
lowercase__ = tokenizer.tokenize("""This is a test""" )
self.assertListEqual(__a , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [285, 46, 10, 170, 382] )
lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""é""",
""".""",
] , )
lowercase__ = tokenizer.convert_tokens_to_ids(__a )
self.assertListEqual(__a , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] )
lowercase__ = tokenizer.convert_ids_to_tokens(__a )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""<unk>""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""s""",
"""<unk>""",
""".""",
] , )
def lowerCamelCase__ (self : Any ) -> Any:
"""simple docstring"""
lowercase__ = XLNetTokenizer(__a , do_lower_case=__a )
lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + """""",
"""i""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""▁he""", """ll""", """o"""] )
def lowerCamelCase__ (self : int ) -> Dict:
"""simple docstring"""
lowercase__ = XLNetTokenizer(__a , do_lower_case=__a )
lowercase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" )
self.assertListEqual(
__a , [
SPIECE_UNDERLINE + """I""",
SPIECE_UNDERLINE + """was""",
SPIECE_UNDERLINE + """b""",
"""or""",
"""n""",
SPIECE_UNDERLINE + """in""",
SPIECE_UNDERLINE + """""",
"""9""",
"""2""",
"""0""",
"""0""",
"""0""",
""",""",
SPIECE_UNDERLINE + """and""",
SPIECE_UNDERLINE + """this""",
SPIECE_UNDERLINE + """is""",
SPIECE_UNDERLINE + """f""",
"""al""",
"""se""",
""".""",
] , )
@slow
def lowerCamelCase__ (self : str ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = XLNetTokenizer.from_pretrained("""xlnet-base-cased""" )
lowercase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=__a )
lowercase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__a )
lowercase__ = tokenizer.build_inputs_with_special_tokens(__a )
lowercase__ = tokenizer.build_inputs_with_special_tokens(__a , __a )
assert encoded_sentence == text + [4, 3]
assert encoded_pair == text + [4] + text_a + [4, 3]
@slow
def lowerCamelCase__ (self : Optional[int] ) -> List[str]:
"""simple docstring"""
lowercase__ = {"""input_ids""": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__a , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
| 305
|
'''simple docstring'''
import inspect
import unittest
import numpy as np
from transformers import ViTConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel
class __A ( unittest.TestCase ):
def __init__(self : str , __a : Optional[Any] , __a : Optional[Any]=13 , __a : int=30 , __a : Union[str, Any]=2 , __a : Dict=3 , __a : List[Any]=True , __a : Optional[Any]=True , __a : List[Any]=32 , __a : Any=5 , __a : str=4 , __a : Optional[int]=37 , __a : Optional[int]="gelu" , __a : List[str]=0.1 , __a : Tuple=0.1 , __a : List[str]=10 , __a : Optional[int]=0.02 , ):
UpperCAmelCase_ = parent
UpperCAmelCase_ = batch_size
UpperCAmelCase_ = image_size
UpperCAmelCase_ = patch_size
UpperCAmelCase_ = num_channels
UpperCAmelCase_ = is_training
UpperCAmelCase_ = use_labels
UpperCAmelCase_ = hidden_size
UpperCAmelCase_ = num_hidden_layers
UpperCAmelCase_ = num_attention_heads
UpperCAmelCase_ = intermediate_size
UpperCAmelCase_ = hidden_act
UpperCAmelCase_ = hidden_dropout_prob
UpperCAmelCase_ = attention_probs_dropout_prob
UpperCAmelCase_ = type_sequence_label_size
UpperCAmelCase_ = initializer_range
# in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ = (image_size // patch_size) ** 2
UpperCAmelCase_ = num_patches + 1
def _lowercase (self : Any ):
UpperCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase_ = ViTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__a , initializer_range=self.initializer_range , )
return config, pixel_values
def _lowercase (self : Dict , __a : Any , __a : List[Any] ):
UpperCAmelCase_ = FlaxViTModel(config=__a )
UpperCAmelCase_ = model(__a )
# expected sequence length = num_patches + 1 (we add 1 for the [CLS] token)
UpperCAmelCase_ = (self.image_size, self.image_size)
UpperCAmelCase_ = (self.patch_size, self.patch_size)
UpperCAmelCase_ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0])
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) )
def _lowercase (self : Tuple , __a : str , __a : Any ):
UpperCAmelCase_ = self.type_sequence_label_size
UpperCAmelCase_ = FlaxViTForImageClassification(config=__a )
UpperCAmelCase_ = model(__a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
UpperCAmelCase_ = 1
UpperCAmelCase_ = FlaxViTForImageClassification(__a )
UpperCAmelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
UpperCAmelCase_ = model(__a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ = self.prepare_config_and_inputs()
(
(
UpperCAmelCase_
) , (
UpperCAmelCase_
) ,
) = config_and_inputs
UpperCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_flax
class __A ( UpperCamelCase__ , unittest.TestCase ):
a__ : Tuple = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else ()
def _lowercase (self : Any ):
UpperCAmelCase_ = FlaxViTModelTester(self )
UpperCAmelCase_ = ConfigTester(self , config_class=__a , has_text_modality=__a , hidden_size=37 )
def _lowercase (self : Tuple ):
self.config_tester.run_common_tests()
def _lowercase (self : str ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__a )
def _lowercase (self : str ):
UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__a )
def _lowercase (self : Tuple ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase_ = model_class(__a )
UpperCAmelCase_ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase_ = [*signature.parameters.keys()]
UpperCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , __a )
def _lowercase (self : Optional[Any] ):
UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCAmelCase_ = self._prepare_for_class(__a , __a )
UpperCAmelCase_ = model_class(__a )
@jax.jit
def model_jitted(__a : Tuple , **__a : List[Any] ):
return model(pixel_values=__a , **__a )
with self.subTest("JIT Enabled" ):
UpperCAmelCase_ = model_jitted(**__a ).to_tuple()
with self.subTest("JIT Disabled" ):
with jax.disable_jit():
UpperCAmelCase_ = model_jitted(**__a ).to_tuple()
self.assertEqual(len(__a ) , len(__a ) )
for jitted_output, output in zip(__a , __a ):
self.assertEqual(jitted_output.shape , output.shape )
@slow
def _lowercase (self : Tuple ):
for model_class_name in self.all_model_classes:
UpperCAmelCase_ = model_class_name.from_pretrained("google/vit-base-patch16-224" )
UpperCAmelCase_ = model(np.ones((1, 3, 224, 224) ) )
self.assertIsNotNone(__a )
| 1
| 0
|
"""simple docstring"""
from __future__ import absolute_import, division, print_function, unicode_literals
from torch import nn
from torch.nn import CrossEntropyLoss, MSELoss
from transformers import RobertaConfig
from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward
from transformers.models.roberta.modeling_roberta import (
ROBERTA_INPUTS_DOCSTRING,
ROBERTA_START_DOCSTRING,
RobertaEmbeddings,
)
from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy
@add_start_docstrings(
"The RoBERTa Model transformer with early exiting (DeeRoBERTa). " , _UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :int = RobertaConfig
SCREAMING_SNAKE_CASE__ :Any = "roberta"
def __init__( self : int , __a : List[Any] ) -> List[str]:
super().__init__(__a )
_UpperCamelCase : Optional[Any] = RobertaEmbeddings(__a )
self.init_weights()
@add_start_docstrings(
"RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top,\n also takes care of multi-layer training. " , _UpperCamelCase , )
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :str = RobertaConfig
SCREAMING_SNAKE_CASE__ :Union[str, Any] = "roberta"
def __init__( self : Tuple , __a : Optional[int] ) -> Optional[int]:
super().__init__(__a )
_UpperCamelCase : Tuple = config.num_labels
_UpperCamelCase : Dict = config.num_hidden_layers
_UpperCamelCase : Optional[Any] = DeeRobertaModel(__a )
_UpperCamelCase : int = nn.Dropout(config.hidden_dropout_prob )
_UpperCamelCase : Tuple = nn.Linear(config.hidden_size , self.config.num_labels )
@add_start_docstrings_to_model_forward(__a )
def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : int=None , __a : List[str]=None , __a : Optional[Any]=None , __a : int=None , __a : Dict=None , __a : Optional[Any]=None , __a : int=None , __a : Dict=-1 , __a : Union[str, Any]=False , ) -> str:
_UpperCamelCase : Tuple = self.num_layers
try:
_UpperCamelCase : Union[str, Any] = self.roberta(
__a , attention_mask=__a , token_type_ids=__a , position_ids=__a , head_mask=__a , inputs_embeds=__a , )
_UpperCamelCase : int = outputs[1]
_UpperCamelCase : Any = self.dropout(__a )
_UpperCamelCase : Optional[int] = self.classifier(__a )
_UpperCamelCase : str = (logits,) + outputs[2:] # add hidden states and attention if they are here
except HighwayException as e:
_UpperCamelCase : str = e.message
_UpperCamelCase : Tuple = e.exit_layer
_UpperCamelCase : Optional[int] = outputs[0]
if not self.training:
_UpperCamelCase : List[Any] = entropy(__a )
_UpperCamelCase : List[Any] = []
_UpperCamelCase : Union[str, Any] = []
if labels is not None:
if self.num_labels == 1:
# We are doing regression
_UpperCamelCase : List[Any] = MSELoss()
_UpperCamelCase : List[Any] = loss_fct(logits.view(-1 ) , labels.view(-1 ) )
else:
_UpperCamelCase : Tuple = CrossEntropyLoss()
_UpperCamelCase : List[str] = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
# work with highway exits
_UpperCamelCase : Any = []
for highway_exit in outputs[-1]:
_UpperCamelCase : Union[str, Any] = highway_exit[0]
if not self.training:
highway_logits_all.append(__a )
highway_entropy.append(highway_exit[2] )
if self.num_labels == 1:
# We are doing regression
_UpperCamelCase : Optional[Any] = MSELoss()
_UpperCamelCase : Tuple = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) )
else:
_UpperCamelCase : Optional[Any] = CrossEntropyLoss()
_UpperCamelCase : Optional[Any] = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
highway_losses.append(__a )
if train_highway:
_UpperCamelCase : Optional[int] = (sum(highway_losses[:-1] ),) + outputs
# exclude the final highway, of course
else:
_UpperCamelCase : Union[str, Any] = (loss,) + outputs
if not self.training:
_UpperCamelCase : int = outputs + ((original_entropy, highway_entropy), exit_layer)
if output_layer >= 0:
_UpperCamelCase : int = (
(outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:]
) # use the highway of the last layer
return outputs # (loss), logits, (hidden_states), (attentions), entropy
| 310
|
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
"facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json",
"facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json",
# See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl
}
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ :List[Any] = "xlm-roberta-xl"
def __init__( self : Any , __a : Tuple=25_0880 , __a : Optional[Any]=2560 , __a : List[str]=36 , __a : Any=32 , __a : Dict=1_0240 , __a : Optional[Any]="gelu" , __a : int=0.1 , __a : Tuple=0.1 , __a : str=514 , __a : Any=1 , __a : List[Any]=0.02 , __a : List[str]=1e-0_5 , __a : Optional[Any]=1 , __a : List[Any]=0 , __a : Tuple=2 , __a : int="absolute" , __a : Dict=True , __a : Dict=None , **__a : Tuple , ) -> str:
super().__init__(pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , **__a )
_UpperCamelCase : Any = vocab_size
_UpperCamelCase : Optional[int] = hidden_size
_UpperCamelCase : str = num_hidden_layers
_UpperCamelCase : Optional[int] = num_attention_heads
_UpperCamelCase : List[str] = hidden_act
_UpperCamelCase : Union[str, Any] = intermediate_size
_UpperCamelCase : str = hidden_dropout_prob
_UpperCamelCase : str = attention_probs_dropout_prob
_UpperCamelCase : Dict = max_position_embeddings
_UpperCamelCase : Optional[Any] = type_vocab_size
_UpperCamelCase : str = initializer_range
_UpperCamelCase : Any = layer_norm_eps
_UpperCamelCase : Any = position_embedding_type
_UpperCamelCase : Union[str, Any] = use_cache
_UpperCamelCase : Optional[Any] = classifier_dropout
class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ):
'''simple docstring'''
@property
def __SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]:
if self.task == "multiple-choice":
_UpperCamelCase : Any = {0: "batch", 1: "choice", 2: "sequence"}
else:
_UpperCamelCase : Dict = {0: "batch", 1: "sequence"}
return OrderedDict(
[
("input_ids", dynamic_axis),
("attention_mask", dynamic_axis),
] )
| 310
| 1
|
'''simple docstring'''
import argparse
import json
import os
import re
import shutil
import torch
from transformers import BioGptConfig, BioGptForCausalLM
from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
__UpperCAmelCase =2
class a__ :
def __init__( self : int , *, # begin keyword-only arguments
a : Dict="<s>" , a : Dict="<pad>" , a : int="</s>" , a : List[Any]="<unk>" , a : int=None , ):
"""simple docstring"""
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = bos, unk, pad, eos
__lowerCamelCase = []
__lowerCamelCase = []
__lowerCamelCase = {}
__lowerCamelCase = self.add_symbol(a )
__lowerCamelCase = self.add_symbol(a )
__lowerCamelCase = self.add_symbol(a )
__lowerCamelCase = self.add_symbol(a )
if extra_special_symbols:
for s in extra_special_symbols:
self.add_symbol(a )
__lowerCamelCase = len(self.symbols )
def __eq__( self : Dict , a : Tuple ):
"""simple docstring"""
return self.indices == other.indices
def __getitem__( self : List[Any] , a : Tuple ):
"""simple docstring"""
if idx < len(self.symbols ):
return self.symbols[idx]
return self.unk_word
def __len__( self : List[str] ):
"""simple docstring"""
return len(self.symbols )
def __contains__( self : Optional[int] , a : List[str] ):
"""simple docstring"""
return sym in self.indices
@classmethod
def SCREAMING_SNAKE_CASE__ ( cls : str , a : Dict ):
"""simple docstring"""
__lowerCamelCase = cls()
d.add_from_file(a )
return d
def SCREAMING_SNAKE_CASE__ ( self : Any , a : Tuple , a : Any=1 , a : List[str]=False ):
"""simple docstring"""
if word in self.indices and not overwrite:
__lowerCamelCase = self.indices[word]
__lowerCamelCase = self.count[idx] + n
return idx
else:
__lowerCamelCase = len(self.symbols )
__lowerCamelCase = idx
self.symbols.append(a )
self.count.append(a )
return idx
def SCREAMING_SNAKE_CASE__ ( self : List[str] , a : Any ):
"""simple docstring"""
return 0
def SCREAMING_SNAKE_CASE__ ( self : Any , a : str ):
"""simple docstring"""
if isinstance(a , a ):
try:
with open(a , '''r''' , encoding='''utf-8''' ) as fd:
self.add_from_file(a )
except FileNotFoundError as fnfe:
raise fnfe
except UnicodeError:
raise Exception('''Incorrect encoding detected in {}, please rebuild the dataset'''.format(a ) )
return
__lowerCamelCase = f.readlines()
__lowerCamelCase = self._load_meta(a )
for line in lines[indices_start_line:]:
try:
__lowerCamelCase , __lowerCamelCase = line.rstrip().rsplit(''' ''' , 1 )
if field == "#fairseq:overwrite":
__lowerCamelCase = True
__lowerCamelCase , __lowerCamelCase = line.rsplit(''' ''' , 1 )
else:
__lowerCamelCase = False
__lowerCamelCase = int(a )
__lowerCamelCase = line
if word in self and not overwrite:
raise RuntimeError(
'''Duplicate word found when loading Dictionary: \'{}\'. '''
'''Duplicate words can overwrite earlier ones by adding the '''
'''#fairseq:overwrite flag at the end of the corresponding row '''
'''in the dictionary file. If using the Camembert model, please '''
'''download an updated copy of the model file.'''.format(a ) )
self.add_symbol(a , n=a , overwrite=a )
except ValueError:
raise ValueError('''Incorrect dictionary format, expected \'<token> <cnt> [flags]\'''' )
def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple:
# (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up,
# e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7}
__lowerCamelCase = dict((re.sub(r'''@@$''' , '''''' , UpperCamelCase__ ), v) if k.endswith('''@@''' ) else (re.sub(r'''$''' , '''</w>''' , UpperCamelCase__ ), v) for k, v in d.items() )
__lowerCamelCase = '''<s> <pad> </s> <unk>'''.split()
# restore the special tokens
for k in keep_keys:
del da[f"""{k}</w>"""]
__lowerCamelCase = d[k] # restore
return da
def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> Union[str, Any]:
# prep
if not os.path.exists(UpperCamelCase__ ):
raise ValueError(f"""path {biogpt_checkpoint_path} does not exist!""" )
os.makedirs(UpperCamelCase__ , exist_ok=UpperCamelCase__ )
print(f"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
__lowerCamelCase = os.path.join(UpperCamelCase__ , '''checkpoint.pt''' )
if not os.path.isfile(UpperCamelCase__ ):
raise ValueError(f"""path to the file {checkpoint_file} does not exist!""" )
__lowerCamelCase = torch.load(UpperCamelCase__ , map_location='''cpu''' )
__lowerCamelCase = chkpt['''cfg''']['''model''']
# dicts
__lowerCamelCase = os.path.join(UpperCamelCase__ , '''dict.txt''' )
if not os.path.isfile(UpperCamelCase__ ):
raise ValueError(f"""path to the file {dict_file} does not exist!""" )
__lowerCamelCase = Dictionary.load(UpperCamelCase__ )
__lowerCamelCase = rewrite_dict_keys(src_dict.indices )
__lowerCamelCase = len(UpperCamelCase__ )
__lowerCamelCase = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES['''vocab_file'''] )
print(f"""Generating {src_vocab_file} of {src_vocab_size} records""" )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) )
# merges_file (bpecodes)
__lowerCamelCase = os.path.join(UpperCamelCase__ , '''bpecodes''' )
if not os.path.isfile(UpperCamelCase__ ):
raise ValueError(f"""path to the file {bpecodes_file} does not exist!""" )
__lowerCamelCase = os.path.join(UpperCamelCase__ , VOCAB_FILES_NAMES['''merges_file'''] )
shutil.copyfile(UpperCamelCase__ , UpperCamelCase__ )
# model config
__lowerCamelCase = os.path.join(UpperCamelCase__ , '''config.json''' )
__lowerCamelCase = {
'''activation_dropout''': args['''activation_dropout'''],
'''architectures''': ['''BioGptForCausalLM'''],
'''attention_probs_dropout_prob''': args['''attention_dropout'''],
'''bos_token_id''': 0,
'''eos_token_id''': 2,
'''hidden_act''': args['''activation_fn'''],
'''hidden_dropout_prob''': args['''dropout'''],
'''hidden_size''': args['''decoder_embed_dim'''],
'''initializer_range''': 0.0_2,
'''intermediate_size''': args['''decoder_ffn_embed_dim'''],
'''layer_norm_eps''': 1E-12,
'''layerdrop''': args['''decoder_layerdrop'''],
'''max_position_embeddings''': args['''max_target_positions'''],
'''model_type''': '''biogpt''',
'''num_attention_heads''': args['''decoder_attention_heads'''],
'''num_hidden_layers''': args['''decoder_layers'''],
'''pad_token_id''': 1,
'''scale_embedding''': not args['''no_scale_embedding'''],
'''tie_word_embeddings''': args['''share_decoder_input_output_embed'''],
'''vocab_size''': src_vocab_size,
}
# good hparam defaults to start with
print(f"""Generating {biogpt_model_config_file}""" )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) )
# tokenizer config
__lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = {
'''bos_token''': '''<s>''',
'''eos_token''': '''</s>''',
'''model_max_length''': 10_24,
'''pad_token''': '''<pad>''',
'''special_tokens_map_file''': None,
'''tokenizer_class''': '''BioGptTokenizer''',
'''unk_token''': '''<unk>''',
}
print(f"""Generating {biogpt_tokenizer_config_file}""" )
with open(UpperCamelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(UpperCamelCase__ , ensure_ascii=UpperCamelCase__ , indent=UpperCamelCase__ ) )
# model
__lowerCamelCase = chkpt['''model''']
# remove unneeded keys
__lowerCamelCase = [
'''decoder.version''',
]
for k in ignore_keys:
model_state_dict.pop(UpperCamelCase__ , UpperCamelCase__ )
__lowerCamelCase = list(model_state_dict.keys() )
for layer_name in layer_names:
if layer_name.endswith('''output_projection.weight''' ):
__lowerCamelCase = model_state_dict.pop(UpperCamelCase__ )
else:
__lowerCamelCase = model_state_dict.pop(UpperCamelCase__ )
__lowerCamelCase = BioGptConfig.from_pretrained(UpperCamelCase__ )
__lowerCamelCase = BioGptForCausalLM(UpperCamelCase__ )
# check that it loads ok
model_new.load_state_dict(UpperCamelCase__ )
# save
__lowerCamelCase = os.path.join(UpperCamelCase__ , UpperCamelCase__ )
print(f"""Generating {pytorch_weights_dump_path}""" )
torch.save(UpperCamelCase__ , UpperCamelCase__ )
print('''Conversion is done!''' )
if __name__ == "__main__":
__UpperCAmelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--biogpt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
__UpperCAmelCase =parser.parse_args()
convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
| 67
|
"""simple docstring"""
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
OpenAIGPTConfig,
OpenAIGPTDoubleHeadsModel,
OpenAIGPTForSequenceClassification,
OpenAIGPTLMHeadModel,
OpenAIGPTModel,
)
class _UpperCAmelCase :
def __init__( self : Union[str, Any] , lowercase_ : List[Any] , lowercase_ : int=13 , lowercase_ : Optional[int]=7 , lowercase_ : Any=True , lowercase_ : Dict=True , lowercase_ : Dict=True , lowercase_ : Optional[Any]=99 , lowercase_ : Union[str, Any]=32 , lowercase_ : str=5 , lowercase_ : Union[str, Any]=4 , lowercase_ : Any=37 , lowercase_ : Tuple="gelu" , lowercase_ : Dict=0.1 , lowercase_ : Tuple=0.1 , lowercase_ : Optional[int]=512 , lowercase_ : Optional[Any]=16 , lowercase_ : Optional[Any]=2 , lowercase_ : Optional[Any]=0.02 , lowercase_ : List[Any]=3 , lowercase_ : Union[str, Any]=4 , lowercase_ : List[Any]=None , ):
snake_case_ : Any = parent
snake_case_ : List[str] = batch_size
snake_case_ : List[Any] = seq_length
snake_case_ : Optional[int] = is_training
snake_case_ : Union[str, Any] = use_token_type_ids
snake_case_ : Optional[Any] = use_labels
snake_case_ : Union[str, Any] = vocab_size
snake_case_ : Any = hidden_size
snake_case_ : List[Any] = num_hidden_layers
snake_case_ : Any = num_attention_heads
snake_case_ : Dict = intermediate_size
snake_case_ : Union[str, Any] = hidden_act
snake_case_ : Optional[int] = hidden_dropout_prob
snake_case_ : Optional[Any] = attention_probs_dropout_prob
snake_case_ : Tuple = max_position_embeddings
snake_case_ : int = type_vocab_size
snake_case_ : Tuple = type_sequence_label_size
snake_case_ : str = initializer_range
snake_case_ : Tuple = num_labels
snake_case_ : str = num_choices
snake_case_ : Any = scope
snake_case_ : Dict = self.vocab_size - 1
def _snake_case ( self : int ):
snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ : Optional[Any] = None
if self.use_token_type_ids:
snake_case_ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ : str = None
snake_case_ : Dict = None
snake_case_ : str = None
if self.use_labels:
snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ : Tuple = ids_tensor([self.batch_size] , self.num_choices )
snake_case_ : int = OpenAIGPTConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
snake_case_ : Any = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
head_mask,
token_type_ids,
sequence_labels,
token_labels,
choice_labels,
)
def _snake_case ( self : Tuple , lowercase_ : Any , lowercase_ : Union[str, Any] , lowercase_ : str , lowercase_ : Dict , *lowercase_ : Dict ):
snake_case_ : List[Any] = OpenAIGPTModel(config=lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case_ : Any = model(lowercase_ , token_type_ids=lowercase_ , head_mask=lowercase_ )
snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ )
snake_case_ : Optional[Any] = model(lowercase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _snake_case ( self : Tuple , lowercase_ : Dict , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : List[Any] , *lowercase_ : Optional[Any] ):
snake_case_ : Union[str, Any] = OpenAIGPTLMHeadModel(lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case_ : Union[str, Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self : List[str] , lowercase_ : Dict , lowercase_ : List[str] , lowercase_ : Any , lowercase_ : Dict , *lowercase_ : Union[str, Any] ):
snake_case_ : Tuple = OpenAIGPTDoubleHeadsModel(lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case_ : Dict = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _snake_case ( self : Any , lowercase_ : str , lowercase_ : List[str] , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , *lowercase_ : Any ):
snake_case_ : int = self.num_labels
snake_case_ : Any = OpenAIGPTForSequenceClassification(lowercase_ )
model.to(lowercase_ )
model.eval()
snake_case_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ : Optional[Any] = model(lowercase_ , token_type_ids=lowercase_ , labels=lowercase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _snake_case ( self : int ):
snake_case_ : Dict = self.prepare_config_and_inputs()
(
(
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
), (
snake_case_
),
) : str = config_and_inputs
snake_case_ : str = {
'''input_ids''': input_ids,
'''token_type_ids''': token_type_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_torch
class _UpperCAmelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase):
_lowerCAmelCase : Dict = (
(OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification)
if is_torch_available()
else ()
)
_lowerCAmelCase : int = (
(OpenAIGPTLMHeadModel,) if is_torch_available() else ()
) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
_lowerCAmelCase : Union[str, Any] = (
{
"""feature-extraction""": OpenAIGPTModel,
"""text-classification""": OpenAIGPTForSequenceClassification,
"""text-generation""": OpenAIGPTLMHeadModel,
"""zero-shot""": OpenAIGPTForSequenceClassification,
}
if is_torch_available()
else {}
)
def _snake_case ( self : Tuple , lowercase_ : Optional[int] , lowercase_ : int , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Union[str, Any] ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
# tiny config could not be created.
return True
return False
def _snake_case ( self : Optional[int] , lowercase_ : List[Any] , lowercase_ : Optional[int] , lowercase_ : List[str]=False ):
snake_case_ : Dict = super()._prepare_for_class(lowercase_ , lowercase_ , return_labels=lowercase_ )
if return_labels:
if model_class.__name__ == "OpenAIGPTDoubleHeadsModel":
snake_case_ : List[str] = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=lowercase_ , )
snake_case_ : int = inputs_dict['''labels''']
snake_case_ : Optional[Any] = inputs_dict['''labels''']
snake_case_ : int = torch.zeros(
(self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=lowercase_ , )
snake_case_ : Tuple = torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=lowercase_ )
return inputs_dict
def _snake_case ( self : Any ):
snake_case_ : List[str] = OpenAIGPTModelTester(self )
snake_case_ : Dict = ConfigTester(self , config_class=lowercase_ , n_embd=37 )
def _snake_case ( self : List[str] ):
self.config_tester.run_common_tests()
def _snake_case ( self : Optional[Any] ):
snake_case_ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_model(*lowercase_ )
def _snake_case ( self : List[str] ):
snake_case_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*lowercase_ )
def _snake_case ( self : int ):
snake_case_ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_double_lm_head_model(*lowercase_ )
def _snake_case ( self : List[str] ):
snake_case_ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*lowercase_ )
@slow
def _snake_case ( self : Dict ):
for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ : Optional[Any] = OpenAIGPTModel.from_pretrained(lowercase_ )
self.assertIsNotNone(lowercase_ )
@require_torch
class _UpperCAmelCase ( unittest.TestCase):
@slow
def _snake_case ( self : Optional[int] ):
snake_case_ : Optional[Any] = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' )
model.to(lowercase_ )
snake_case_ : List[str] = torch.tensor([[481, 4735, 544]] , dtype=torch.long , device=lowercase_ ) # the president is
snake_case_ : List[Any] = [
481,
4735,
544,
246,
963,
870,
762,
239,
244,
40477,
244,
249,
719,
881,
487,
544,
240,
244,
603,
481,
] # the president is a very good man. " \n " i\'m sure he is, " said the
snake_case_ : Optional[Any] = model.generate(lowercase_ , do_sample=lowercase_ )
self.assertListEqual(output_ids[0].tolist() , lowercase_ )
| 264
| 0
|
import argparse
import datetime
def lowerCamelCase_ ( _a ):
"""simple docstring"""
lowerCAmelCase__ : Optional[Any] = {
'''0''': '''Sunday''',
'''1''': '''Monday''',
'''2''': '''Tuesday''',
'''3''': '''Wednesday''',
'''4''': '''Thursday''',
'''5''': '''Friday''',
'''6''': '''Saturday''',
}
lowerCAmelCase__ : Optional[int] = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(_a ) < 11:
raise ValueError('''Must be 10 characters long''' )
# Get month
lowerCAmelCase__ : int = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError('''Month must be between 1 - 12''' )
lowerCAmelCase__ : str = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get day
lowerCAmelCase__ : int = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError('''Date must be between 1 - 31''' )
# Get second separator
lowerCAmelCase__ : str = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError('''Date separator must be \'-\' or \'/\'''' )
# Get year
lowerCAmelCase__ : int = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8_500:
raise ValueError(
'''Year out of range. There has to be some sort of limit...right?''' )
# Get datetime obj for validation
lowerCAmelCase__ : Dict = datetime.date(int(_a ) , int(_a ) , int(_a ) )
# Start math
if m <= 2:
lowerCAmelCase__ : List[Any] = y - 1
lowerCAmelCase__ : List[str] = m + 12
# maths var
lowerCAmelCase__ : int = int(str(_a )[:2] )
lowerCAmelCase__ : int = int(str(_a )[2:] )
lowerCAmelCase__ : int = int(2.6 * m - 5.39 )
lowerCAmelCase__ : int = int(c / 4 )
lowerCAmelCase__ : int = int(k / 4 )
lowerCAmelCase__ : int = int(d + k )
lowerCAmelCase__ : int = int(t + u + v + x )
lowerCAmelCase__ : int = int(z - (2 * c) )
lowerCAmelCase__ : int = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError('''The date was evaluated incorrectly. Contact developer.''' )
# Response
lowerCAmelCase__ : str = f'Your date {date_input}, is a {days[str(_a )]}!'
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
lowerCamelCase = argparse.ArgumentParser(
description=(
'''Find out what day of the week nearly any date is or was. Enter '''
'''date as a string in the mm-dd-yyyy or mm/dd/yyyy format'''
)
)
parser.add_argument(
'''date_input''', type=str, help='''Date as a string (mm-dd-yyyy or mm/dd/yyyy)'''
)
lowerCamelCase = parser.parse_args()
zeller(args.date_input)
| 370
|
import random
from .binary_exp_mod import bin_exp_mod
def lowerCamelCase_ ( _a , _a=1_000 ):
"""simple docstring"""
if n < 2:
return False
if n % 2 == 0:
return n == 2
# this means n is odd
lowerCAmelCase__ : int = n - 1
lowerCAmelCase__ : Any = 0
while d % 2 == 0:
d /= 2
exp += 1
# n - 1=d*(2**exp)
lowerCAmelCase__ : Optional[Any] = 0
while count < prec:
lowerCAmelCase__ : Optional[Any] = random.randint(2 , n - 1 )
lowerCAmelCase__ : List[Any] = bin_exp_mod(_a , _a , _a )
if b != 1:
lowerCAmelCase__ : Dict = True
for _ in range(_a ):
if b == n - 1:
lowerCAmelCase__ : Union[str, Any] = False
break
lowerCAmelCase__ : Tuple = b * b
b %= n
if flag:
return False
count += 1
return True
if __name__ == "__main__":
lowerCamelCase = abs(int(input('''Enter bound : ''').strip()))
print('''Here\'s the list of primes:''')
print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
| 211
| 0
|
"""simple docstring"""
from __future__ import annotations
def _lowerCAmelCase ( UpperCamelCase_ ):
__SCREAMING_SNAKE_CASE = [True] * limit
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
__SCREAMING_SNAKE_CASE = i * 2
while index < limit:
__SCREAMING_SNAKE_CASE = False
__SCREAMING_SNAKE_CASE = index + i
__SCREAMING_SNAKE_CASE = [2]
for i in range(3 , UpperCamelCase_ , 2 ):
if is_prime[i]:
primes.append(UpperCamelCase_ )
return primes
def _lowerCAmelCase ( UpperCamelCase_ = 100_0000 ):
__SCREAMING_SNAKE_CASE = prime_sieve(UpperCamelCase_ )
__SCREAMING_SNAKE_CASE = 0
__SCREAMING_SNAKE_CASE = 0
for i in range(len(UpperCamelCase_ ) ):
for j in range(i + length , len(UpperCamelCase_ ) ):
__SCREAMING_SNAKE_CASE = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
__SCREAMING_SNAKE_CASE = j - i
__SCREAMING_SNAKE_CASE = sol
return largest
if __name__ == "__main__":
print(F"""{solution() = }""")
| 100
|
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__UpperCamelCase : Any = {"""tokenization_byt5""": ["""ByT5Tokenizer"""]}
if TYPE_CHECKING:
from .tokenization_byta import ByTaTokenizer
else:
import sys
__UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 307
| 0
|
# We ignore warnings about stepping the scheduler since we step it ourselves during gradient accumulation
import warnings
from .state import AcceleratorState, GradientState
warnings.filterwarnings('ignore', category=UserWarning, module='torch.optim.lr_scheduler')
class lowerCAmelCase__:
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = True , __lowerCamelCase = False ) -> Dict:
_SCREAMING_SNAKE_CASE : Any = scheduler
_SCREAMING_SNAKE_CASE : List[str] = optimizers if isinstance(__lowerCamelCase , (list, tuple) ) else [optimizers]
_SCREAMING_SNAKE_CASE : List[Any] = split_batches
_SCREAMING_SNAKE_CASE : List[str] = step_with_optimizer
_SCREAMING_SNAKE_CASE : Union[str, Any] = GradientState()
def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> List[str]:
if not self.step_with_optimizer:
# No link between scheduler and optimizer -> just step
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
return
# Otherwise, first make sure the optimizer was stepped.
if not self.gradient_state.sync_gradients:
if self.gradient_state.adjust_scheduler:
self.scheduler._step_count += 1
return
for opt in self.optimizers:
if opt.step_was_skipped:
return
if self.split_batches:
# Split batches -> the training dataloader batch size is not changed so one step per training step
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
else:
# Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do
# num_processes steps per training step
_SCREAMING_SNAKE_CASE : Dict = AcceleratorState().num_processes
for _ in range(__lowerCamelCase ):
# Special case when using OneCycle and `drop_last` was not used
if hasattr(self.scheduler , "total_steps" ):
if self.scheduler._step_count <= self.scheduler.total_steps:
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
else:
self.scheduler.step(*__lowerCamelCase , **__lowerCamelCase )
def UpperCamelCase_ ( self ) -> str:
return self.scheduler.get_last_lr()
def UpperCamelCase_ ( self ) -> Optional[int]:
return self.scheduler.state_dict()
def UpperCamelCase_ ( self , __lowerCamelCase ) -> str:
self.scheduler.load_state_dict(__lowerCamelCase )
def UpperCamelCase_ ( self ) -> str:
return self.scheduler.get_lr()
def UpperCamelCase_ ( self , *__lowerCamelCase , **__lowerCamelCase ) -> Optional[Any]:
return self.scheduler.print_lr(*__lowerCamelCase , **__lowerCamelCase )
| 358
|
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class lowerCAmelCase__:
'''simple docstring'''
def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=3 , __lowerCamelCase=4 , __lowerCamelCase=None , ) -> Any:
_SCREAMING_SNAKE_CASE : str = parent
_SCREAMING_SNAKE_CASE : List[Any] = 1_3
_SCREAMING_SNAKE_CASE : List[str] = 7
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : List[str] = True
_SCREAMING_SNAKE_CASE : int = True
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : int = 9_9
_SCREAMING_SNAKE_CASE : str = 3_8_4
_SCREAMING_SNAKE_CASE : List[Any] = 2
_SCREAMING_SNAKE_CASE : Dict = 4
_SCREAMING_SNAKE_CASE : Dict = 3_7
_SCREAMING_SNAKE_CASE : Union[str, Any] = "gelu"
_SCREAMING_SNAKE_CASE : str = 0.1
_SCREAMING_SNAKE_CASE : str = 0.1
_SCREAMING_SNAKE_CASE : List[Any] = 5_1_2
_SCREAMING_SNAKE_CASE : Tuple = 1_6
_SCREAMING_SNAKE_CASE : Dict = 2
_SCREAMING_SNAKE_CASE : Any = 0.02
_SCREAMING_SNAKE_CASE : Any = 3
_SCREAMING_SNAKE_CASE : List[str] = 4
_SCREAMING_SNAKE_CASE : List[Any] = 1_2_8
_SCREAMING_SNAKE_CASE : Optional[int] = 2
_SCREAMING_SNAKE_CASE : int = 9
_SCREAMING_SNAKE_CASE : List[str] = 1
_SCREAMING_SNAKE_CASE : List[Any] = None
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_SCREAMING_SNAKE_CASE : List[str] = None
if self.use_input_mask:
_SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] )
_SCREAMING_SNAKE_CASE : Dict = None
if self.use_token_type_ids:
_SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_SCREAMING_SNAKE_CASE : List[Any] = None
_SCREAMING_SNAKE_CASE : Union[str, Any] = None
_SCREAMING_SNAKE_CASE : Optional[int] = None
if self.use_labels:
_SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size] , self.num_choices )
_SCREAMING_SNAKE_CASE : Union[str, Any] = ConvBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
_SCREAMING_SNAKE_CASE : Any = TFConvBertModel(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Tuple = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
_SCREAMING_SNAKE_CASE : str = [input_ids, input_mask]
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = model(__lowerCamelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Dict = TFConvBertForMaskedLM(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]:
_SCREAMING_SNAKE_CASE : int = self.num_labels
_SCREAMING_SNAKE_CASE : str = TFConvBertForSequenceClassification(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> str:
_SCREAMING_SNAKE_CASE : Optional[int] = self.num_choices
_SCREAMING_SNAKE_CASE : List[Any] = TFConvBertForMultipleChoice(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) )
_SCREAMING_SNAKE_CASE : List[Any] = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
_SCREAMING_SNAKE_CASE : List[Any] = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : Dict = self.num_labels
_SCREAMING_SNAKE_CASE : Tuple = TFConvBertForTokenClassification(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> int:
_SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
_SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCamelCase_ ( self ) -> Tuple:
_SCREAMING_SNAKE_CASE : Dict = self.prepare_config_and_inputs()
(
(
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) , (
_SCREAMING_SNAKE_CASE
) ,
) : List[Any] = config_and_inputs
_SCREAMING_SNAKE_CASE : Optional[Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ):
'''simple docstring'''
__snake_case = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
__snake_case = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
__snake_case = False
__snake_case = False
__snake_case = False
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self )
_SCREAMING_SNAKE_CASE : int = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=3_7 )
def UpperCamelCase_ ( self ) -> List[Any]:
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Optional[Any]:
_SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase )
def UpperCamelCase_ ( self ) -> int:
_SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase )
@slow
def UpperCamelCase_ ( self ) -> Optional[int]:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : Any = True
if hasattr(__lowerCamelCase , "use_cache" ):
_SCREAMING_SNAKE_CASE : List[str] = True
_SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
_SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase )
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = len(model(__lowerCamelCase ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = os.path.join(__lowerCamelCase , "saved_model" , "1" )
_SCREAMING_SNAKE_CASE : Optional[Any] = tf.keras.models.load_model(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase )
if self.is_encoder_decoder:
_SCREAMING_SNAKE_CASE : List[Any] = outputs["encoder_hidden_states"]
_SCREAMING_SNAKE_CASE : Union[str, Any] = outputs["encoder_attentions"]
else:
_SCREAMING_SNAKE_CASE : List[str] = outputs["hidden_states"]
_SCREAMING_SNAKE_CASE : Dict = outputs["attentions"]
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = getattr(
self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , )
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
@slow
def UpperCamelCase_ ( self ) -> str:
_SCREAMING_SNAKE_CASE : Any = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(__lowerCamelCase )
def UpperCamelCase_ ( self ) -> Dict:
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length )
_SCREAMING_SNAKE_CASE : Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length )
_SCREAMING_SNAKE_CASE : Any = getattr(self.model_tester , "key_length" , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase )
def check_decoder_attentions_output(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Union[str, Any] = len(__lowerCamelCase )
self.assertEqual(out_len % 2 , 0 )
_SCREAMING_SNAKE_CASE : Optional[int] = outputs.decoder_attentions
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , )
def check_encoder_attentions_output(__lowerCamelCase ):
_SCREAMING_SNAKE_CASE : Optional[Any] = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , )
for model_class in self.all_model_classes:
_SCREAMING_SNAKE_CASE : Any = True
_SCREAMING_SNAKE_CASE : Any = False
_SCREAMING_SNAKE_CASE : Optional[Any] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
_SCREAMING_SNAKE_CASE : Any = len(__lowerCamelCase )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
if self.is_encoder_decoder:
_SCREAMING_SNAKE_CASE : Tuple = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_decoder_attentions_output(__lowerCamelCase )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_SCREAMING_SNAKE_CASE : Dict = True
_SCREAMING_SNAKE_CASE : List[Any] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
# Check attention is always last and order is fine
_SCREAMING_SNAKE_CASE : Union[str, Any] = True
_SCREAMING_SNAKE_CASE : Any = True
_SCREAMING_SNAKE_CASE : Optional[int] = model_class(__lowerCamelCase )
_SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) )
self.assertEqual(model.config.output_hidden_states , __lowerCamelCase )
check_encoder_attentions_output(__lowerCamelCase )
@require_tf
class lowerCAmelCase__( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self ) -> List[Any]:
_SCREAMING_SNAKE_CASE : int = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
_SCREAMING_SNAKE_CASE : Tuple = tf.constant([[0, 1, 2, 3, 4, 5]] )
_SCREAMING_SNAKE_CASE : str = model(__lowerCamelCase )[0]
_SCREAMING_SNAKE_CASE : int = [1, 6, 7_6_8]
self.assertEqual(output.shape , __lowerCamelCase )
_SCREAMING_SNAKE_CASE : Optional[int] = tf.constant(
[
[
[-0.0347_5493, -0.468_6034, -0.3063_8832],
[0.2263_7248, -0.2698_8646, -0.742_3424],
[0.1032_4868, -0.4501_3508, -0.5828_0784],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1E-4 )
| 325
| 0
|
"""simple docstring"""
import json
import multiprocessing as mp
import re
from collections import defaultdict
from functools import partial
from typing import Dict, List, Optional, Set, Tuple, Type
from datasets import Dataset
from datasketch import MinHash, MinHashLSH
from dpu_utils.utils.iterators import ThreadedIterator
from tqdm import tqdm
lowercase_ = re.compile("[^A-Za-z_0-9]")
# parameters used in DuplicationIndex
lowercase_ = 1_0
lowercase_ = 2_5_6
def lowercase ( lowerCAmelCase__ : List[str] ) -> Optional[MinHash]:
if len(lowerCAmelCase__ ) < MIN_NUM_TOKENS:
return None
__a = MinHash(num_perm=lowerCAmelCase__ )
for token in set(lowerCAmelCase__ ):
min_hash.update(token.encode() )
return min_hash
def lowercase ( lowerCAmelCase__ : str ) -> Set[str]:
return {t for t in NON_ALPHA.split(lowerCAmelCase__ ) if len(t.strip() ) > 0}
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , *,
_a = 0.85 , ):
__a = duplication_jaccard_threshold
__a = NUM_PERM
__a = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm )
__a = defaultdict(_a )
def __UpperCAmelCase ( self , _a , _a ):
__a = self._index.query(_a )
if code_key in self._index.keys:
print(f'''Duplicate key {code_key}''' )
return
self._index.insert(_a , _a )
if len(_a ) > 0:
for base_duplicate in close_duplicates:
if base_duplicate in self._duplicate_clusters:
self._duplicate_clusters[base_duplicate].add(_a )
break
else:
self._duplicate_clusters[close_duplicates[0]].add(_a )
def __UpperCAmelCase ( self ):
__a = []
for base, duplicates in self._duplicate_clusters.items():
__a = [base] + list(_a )
# reformat the cluster to be a list of dict
__a = [{'''base_index''': el[0], '''repo_name''': el[1], '''path''': el[2]} for el in cluster]
duplicate_clusters.append(_a )
return duplicate_clusters
def __UpperCAmelCase ( self , _a ):
__a = self.get_duplicate_clusters()
with open(_a , '''w''' ) as f:
json.dump(_a , _a )
def lowercase ( lowerCAmelCase__ : List[str] ) -> int:
__a , __a = element
__a = get_min_hash([t for t in NON_ALPHA.split(data['''content'''] ) if len(t.strip() ) > 0] )
if min_hash is not None:
return (index, data["repo_name"], data["path"]), min_hash
def lowercase ( lowerCAmelCase__ : Type[Dataset] ) -> str:
with mp.Pool() as pool:
for data in pool.imap_unordered(
_compute_min_hash , ThreadedIterator(lowerCAmelCase__ , max_queue_size=10000 ) , chunksize=100 , ):
if data is not None:
yield data
def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float ) -> Dict:
__a = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase__ )
for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase__ ) ) , max_queue_size=100 ) ):
di.add(lowerCAmelCase__ , lowerCAmelCase__ )
# Returns a List[Cluster] where Cluster is List[str] with the filenames.
return di.get_duplicate_clusters()
def lowercase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str ) -> float:
__a = get_tokens(lowerCAmelCase__ )
__a = get_tokens(lowerCAmelCase__ )
return len(tokensa & tokensa ) / len(tokensa | tokensa )
lowercase_ = None
def lowercase ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] ) -> Any:
__a = []
for elementa in cluster:
__a = _shared_dataset[elementa['''base_index''']]['''content''']
for elementa in extremes:
__a = _shared_dataset[elementa['''base_index''']]['''content''']
if jaccard_similarity(lowerCAmelCase__ , lowerCAmelCase__ ) >= jaccard_threshold:
elementa["copies"] += 1
break
else:
__a = 1
extremes.append(lowerCAmelCase__ )
return extremes
def lowercase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Optional[int] ) -> Optional[int]:
global _shared_dataset
__a = dataset
__a = []
__a = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase__ )
with mp.Pool() as pool:
for extremes in tqdm(
pool.imap_unordered(
lowerCAmelCase__ , lowerCAmelCase__ , ) , total=len(lowerCAmelCase__ ) , ):
extremes_list.append(lowerCAmelCase__ )
return extremes_list
def lowercase ( lowerCAmelCase__ : Type[Dataset] , lowerCAmelCase__ : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]:
__a = make_duplicate_clusters(lowerCAmelCase__ , lowerCAmelCase__ )
__a = {x['''base_index'''] for cluster in duplicate_clusters for x in cluster}
__a = {}
__a = find_extremes(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
for extremes in extremes_clusters:
for element in extremes:
__a = element
__a = duplicate_indices - set(extreme_dict.keys() )
__a = dataset.filter(lambda lowerCAmelCase__ , lowerCAmelCase__ : idx not in remove_indices , with_indices=lowerCAmelCase__ )
# update duplicate_clusters
for cluster in duplicate_clusters:
for element in cluster:
__a = element['''base_index'''] in extreme_dict
if element["is_extreme"]:
__a = extreme_dict[element['''base_index''']]['''copies''']
print(f'''Original dataset size: {len(lowerCAmelCase__ )}''' )
print(f'''Number of duplicate clusters: {len(lowerCAmelCase__ )}''' )
print(f'''Files in duplicate cluster: {len(lowerCAmelCase__ )}''' )
print(f'''Unique files in duplicate cluster: {len(lowerCAmelCase__ )}''' )
print(f'''Filtered dataset size: {len(lowerCAmelCase__ )}''' )
return ds_filter, duplicate_clusters
| 45
|
"""simple docstring"""
def lowercase ( lowerCAmelCase__ : str ) -> list:
if n_term == "":
return []
__a = []
for temp in range(int(lowerCAmelCase__ ) ):
series.append(f'''1/{temp + 1}''' if series else '''1''' )
return series
if __name__ == "__main__":
lowercase_ = input("Enter the last number (nth term) of the Harmonic Series")
print("Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n")
print(harmonic_series(nth_term))
| 45
| 1
|
import json
import os
from typing import Dict, List, Optional, Tuple
import regex as re
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'''vocab_file''': '''vocab.json''',
'''merges_file''': '''merges.txt''',
'''tokenizer_config_file''': '''tokenizer_config.json''',
}
lowerCamelCase__ = {
'''vocab_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json'''
},
'''merges_file''': {
'''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt'''
},
'''tokenizer_config_file''': {
'''facebook/blenderbot_small-90M''': (
'''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json'''
)
},
}
lowerCamelCase__ = {'''facebook/blenderbot_small-90M''': 512}
def lowerCAmelCase__ ( a__ ) ->Any:
'''simple docstring'''
_UpperCamelCase = set()
_UpperCamelCase = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
_UpperCamelCase = char
_UpperCamelCase = set(a__ )
return pairs
class _UpperCAmelCase ( lowerCAmelCase ):
'''simple docstring'''
__A = VOCAB_FILES_NAMES
__A = PRETRAINED_VOCAB_FILES_MAP
__A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A = ['''input_ids''', '''attention_mask''']
def __init__( self : str , lowercase_ : Any , lowercase_ : int , lowercase_ : List[Any]="__start__" , lowercase_ : Optional[int]="__end__" , lowercase_ : List[Any]="__unk__" , lowercase_ : List[str]="__null__" , **lowercase_ : Optional[int] , ) -> List[Any]:
"""simple docstring"""
super().__init__(unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , pad_token=lowercase_ , **lowercase_)
with open(lowercase_ , encoding="utf-8") as vocab_handle:
_UpperCamelCase = json.load(lowercase_)
_UpperCamelCase = {v: k for k, v in self.encoder.items()}
with open(lowercase_ , encoding="utf-8") as merges_handle:
_UpperCamelCase = merges_handle.read().split("\n")[1:-1]
_UpperCamelCase = [tuple(merge.split()) for merge in merges]
_UpperCamelCase = dict(zip(lowercase_ , range(len(lowercase_))))
_UpperCamelCase = {}
@property
def __UpperCAmelCase ( self : List[str]) -> int:
"""simple docstring"""
return len(self.encoder)
def __UpperCAmelCase ( self : Tuple) -> Dict:
"""simple docstring"""
return dict(self.encoder , **self.added_tokens_encoder)
def __UpperCAmelCase ( self : Tuple , lowercase_ : str) -> str:
"""simple docstring"""
if token in self.cache:
return self.cache[token]
_UpperCamelCase = re.sub("([.,!?()])" , R" \1" , lowercase_)
_UpperCamelCase = re.sub("(')" , R" \1 " , lowercase_)
_UpperCamelCase = re.sub(R"\s{2,}" , " " , lowercase_)
if "\n" in token:
_UpperCamelCase = token.replace("\n" , " __newln__")
_UpperCamelCase = token.split(" ")
_UpperCamelCase = []
for token in tokens:
if not len(lowercase_):
continue
_UpperCamelCase = token.lower()
_UpperCamelCase = tuple(lowercase_)
_UpperCamelCase = tuple(list(word[:-1]) + [word[-1] + "</w>"])
_UpperCamelCase = get_pairs(lowercase_)
if not pairs:
words.append(lowercase_)
continue
while True:
_UpperCamelCase = min(lowercase_ , key=lambda lowercase_: self.bpe_ranks.get(lowercase_ , float("inf")))
if bigram not in self.bpe_ranks:
break
_UpperCamelCase , _UpperCamelCase = bigram
_UpperCamelCase = []
_UpperCamelCase = 0
while i < len(lowercase_):
try:
_UpperCamelCase = word.index(lowercase_ , lowercase_)
new_word.extend(word[i:j])
_UpperCamelCase = j
except ValueError:
new_word.extend(word[i:])
break
if word[i] == first and i < len(lowercase_) - 1 and word[i + 1] == second:
new_word.append(first + second)
i += 2
else:
new_word.append(word[i])
i += 1
_UpperCamelCase = tuple(lowercase_)
_UpperCamelCase = new_word
if len(lowercase_) == 1:
break
else:
_UpperCamelCase = get_pairs(lowercase_)
_UpperCamelCase = "@@ ".join(lowercase_)
_UpperCamelCase = word[:-4]
_UpperCamelCase = word
words.append(lowercase_)
return " ".join(lowercase_)
def __UpperCAmelCase ( self : Optional[int] , lowercase_ : str) -> List[str]:
"""simple docstring"""
_UpperCamelCase = []
_UpperCamelCase = re.findall(R"\S+\n?" , lowercase_)
for token in words:
split_tokens.extend(list(self.bpe(lowercase_).split(" ")))
return split_tokens
def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : str) -> int:
"""simple docstring"""
_UpperCamelCase = token.lower()
return self.encoder.get(lowercase_ , self.encoder.get(self.unk_token))
def __UpperCAmelCase ( self : Any , lowercase_ : int) -> str:
"""simple docstring"""
return self.decoder.get(lowercase_ , self.unk_token)
def __UpperCAmelCase ( self : Any , lowercase_ : List[str]) -> str:
"""simple docstring"""
_UpperCamelCase = " ".join(lowercase_).replace("@@ " , "").strip()
return out_string
def __UpperCAmelCase ( self : str , lowercase_ : str , lowercase_ : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
if not os.path.isdir(lowercase_):
logger.error(f'Vocabulary path ({save_directory}) should be a directory')
return
_UpperCamelCase = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
_UpperCamelCase = os.path.join(
lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"])
with open(lowercase_ , "w" , encoding="utf-8") as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowercase_ , ensure_ascii=lowercase_) + "\n")
_UpperCamelCase = 0
with open(lowercase_ , "w" , encoding="utf-8") as writer:
writer.write("#version: 0.2\n")
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowercase_: kv[1]):
if index != token_index:
logger.warning(
f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'
" Please check that the tokenizer is not corrupted!")
_UpperCamelCase = token_index
writer.write(" ".join(lowercase_) + "\n")
index += 1
return vocab_file, merge_file
| 361
|
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class _UpperCAmelCase :
'''simple docstring'''
def __init__( self : Optional[Any] , lowercase_ : Optional[Any] , ) -> Optional[Any]:
"""simple docstring"""
_UpperCamelCase = parent
_UpperCamelCase = 13
_UpperCamelCase = 7
_UpperCamelCase = 30
_UpperCamelCase = self.seq_length + self.mem_len
_UpperCamelCase = 15
_UpperCamelCase = True
_UpperCamelCase = True
_UpperCamelCase = 99
_UpperCamelCase = [10, 50, 80]
_UpperCamelCase = 32
_UpperCamelCase = 32
_UpperCamelCase = 4
_UpperCamelCase = 8
_UpperCamelCase = 128
_UpperCamelCase = 2
_UpperCamelCase = 2
_UpperCamelCase = None
_UpperCamelCase = 1
_UpperCamelCase = 0
_UpperCamelCase = 3
_UpperCamelCase = self.vocab_size - 1
_UpperCamelCase = 0.01
def __UpperCAmelCase ( self : Dict) -> Optional[int]:
"""simple docstring"""
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_UpperCamelCase = None
if self.use_labels:
_UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_UpperCamelCase = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple:
"""simple docstring"""
random.seed(self.seed)
tf.random.set_seed(self.seed)
def __UpperCAmelCase ( self : int , lowercase_ : Optional[int] , lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = TFTransfoXLModel(lowercase_)
_UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple()
_UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a}
_UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def __UpperCAmelCase ( self : Dict , lowercase_ : str , lowercase_ : str , lowercase_ : Dict , lowercase_ : List[Any]) -> Union[str, Any]:
"""simple docstring"""
_UpperCamelCase = TFTransfoXLLMHeadModel(lowercase_)
_UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple()
_UpperCamelCase = {"input_ids": input_ids_a, "labels": lm_labels}
_UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple()
_UpperCamelCase , _UpperCamelCase = model([input_ids_a, mems_a]).to_tuple()
_UpperCamelCase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels}
_UpperCamelCase , _UpperCamelCase = model(lowercase_).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def __UpperCAmelCase ( self : Optional[Any] , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Optional[Any] , lowercase_ : Dict) -> str:
"""simple docstring"""
_UpperCamelCase = TFTransfoXLForSequenceClassification(lowercase_)
_UpperCamelCase = model(lowercase_)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def __UpperCAmelCase ( self : Dict) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = self.prepare_config_and_inputs()
((_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase) , (_UpperCamelCase)) = config_and_inputs
_UpperCamelCase = {"input_ids": input_ids_a}
return config, inputs_dict
@require_tf
class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, unittest.TestCase ):
'''simple docstring'''
__A = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__A = () if is_tf_available() else ()
__A = (
{
'''feature-extraction''': TFTransfoXLModel,
'''text-classification''': TFTransfoXLForSequenceClassification,
'''text-generation''': TFTransfoXLLMHeadModel,
'''zero-shot''': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__A = False
__A = False
__A = False
__A = False
def __UpperCAmelCase ( self : List[Any] , lowercase_ : Dict , lowercase_ : Tuple , lowercase_ : Dict , lowercase_ : Any , lowercase_ : List[str]) -> Any:
"""simple docstring"""
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def __UpperCAmelCase ( self : Optional[Any]) -> int:
"""simple docstring"""
_UpperCamelCase = TFTransfoXLModelTester(self)
_UpperCamelCase = ConfigTester(self , config_class=lowercase_ , d_embed=37)
def __UpperCAmelCase ( self : Dict) -> Optional[int]:
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]:
"""simple docstring"""
self.model_tester.set_seed()
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*lowercase_)
def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]:
"""simple docstring"""
self.model_tester.set_seed()
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*lowercase_)
def __UpperCAmelCase ( self : List[str]) -> List[Any]:
"""simple docstring"""
_UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*lowercase_)
def __UpperCAmelCase ( self : Dict) -> int:
"""simple docstring"""
_UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
_UpperCamelCase = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
_UpperCamelCase = model_class(lowercase_)
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer)
if model_class in list_other_models_with_output_ebd:
_UpperCamelCase = model.get_output_embeddings()
assert isinstance(lowercase_ , tf.keras.layers.Layer)
_UpperCamelCase = model.get_bias()
assert name is None
else:
_UpperCamelCase = model.get_output_embeddings()
assert x is None
_UpperCamelCase = model.get_bias()
assert name is None
def __UpperCAmelCase ( self : Optional[int]) -> Any:
"""simple docstring"""
pass
@slow
def __UpperCAmelCase ( self : List[str]) -> Tuple:
"""simple docstring"""
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_UpperCamelCase = TFTransfoXLModel.from_pretrained(lowercase_)
self.assertIsNotNone(lowercase_)
@unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss.")
def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple:
"""simple docstring"""
pass
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@unittest.skip("Skip test until #12651 is resolved.")
@slow
def __UpperCAmelCase ( self : Optional[Any]) -> Dict:
"""simple docstring"""
_UpperCamelCase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103")
# fmt: off
_UpperCamelCase = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
_UpperCamelCase = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
_UpperCamelCase = model.generate(lowercase_ , max_length=200 , do_sample=lowercase_)
self.assertListEqual(output_ids[0].numpy().tolist() , lowercase_)
| 63
| 0
|
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __lowerCamelCase (_a ):
def __init__( self: Optional[Any],*A_: Any,A_: Union[str, Any]=None,A_: Tuple=None,**A_: Dict ):
'''simple docstring'''
super().__init__(*A_,**A_ )
__UpperCamelCase = eval_examples
__UpperCamelCase = post_process_function
def snake_case_ ( self: Optional[int],A_: Union[str, Any]=None,A_: List[str]=None,A_: Optional[Any]=None,A_: str = "eval" ):
'''simple docstring'''
__UpperCamelCase = self.eval_dataset if eval_dataset is None else eval_dataset
__UpperCamelCase = self.get_eval_dataloader(A_ )
__UpperCamelCase = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCamelCase = self.compute_metrics
__UpperCamelCase = None
__UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
__UpperCamelCase = time.time()
try:
__UpperCamelCase = eval_loop(
A_,description='Evaluation',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=A_,metric_key_prefix=A_,)
finally:
__UpperCamelCase = compute_metrics
__UpperCamelCase = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
A_,A_,num_samples=output.num_samples,num_steps=math.ceil(output.num_samples / total_batch_size ),) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
__UpperCamelCase = self.post_process_function(A_,A_,output.predictions )
__UpperCamelCase = self.compute_metrics(A_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__UpperCamelCase = metrics.pop(A_ )
metrics.update(output.metrics )
else:
__UpperCamelCase = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(A_ )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
__UpperCamelCase = self.callback_handler.on_evaluate(self.args,self.state,self.control,A_ )
return metrics
def snake_case_ ( self: int,A_: Optional[Any],A_: int,A_: str=None,A_: str = "test" ):
'''simple docstring'''
__UpperCamelCase = self.get_test_dataloader(A_ )
# Temporarily disable metric computation, we will do it in the loop here.
__UpperCamelCase = self.compute_metrics
__UpperCamelCase = None
__UpperCamelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
__UpperCamelCase = time.time()
try:
__UpperCamelCase = eval_loop(
A_,description='Prediction',prediction_loss_only=True if compute_metrics is None else None,ignore_keys=A_,metric_key_prefix=A_,)
finally:
__UpperCamelCase = compute_metrics
__UpperCamelCase = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
A_,A_,num_samples=output.num_samples,num_steps=math.ceil(output.num_samples / total_batch_size ),) )
if self.post_process_function is None or self.compute_metrics is None:
return output
__UpperCamelCase = self.post_process_function(A_,A_,output.predictions,'predict' )
__UpperCamelCase = self.compute_metrics(A_ )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
__UpperCamelCase = metrics.pop(A_ )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions,label_ids=predictions.label_ids,metrics=A_ )
| 310
|
import itertools
import json
import linecache
import os
import pickle
import re
import socket
import string
from collections import Counter
from logging import getLogger
from pathlib import Path
from typing import Callable, Dict, Iterable, List
import git
import torch
from torch.utils.data import Dataset
from transformers import BartTokenizer, RagTokenizer, TaTokenizer
def _A ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Union[str, Any]:
"""simple docstring"""
__UpperCamelCase = {'add_prefix_space': True} if isinstance(_lowercase , _lowercase ) and not line.startswith(' ' ) else {}
__UpperCamelCase = padding_side
return tokenizer(
[line] , max_length=_lowercase , padding='max_length' if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , )
def _A ( _lowercase , _lowercase , _lowercase=None , ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = input_ids.ne(_lowercase ).any(dim=0 )
if attention_mask is None:
return input_ids[:, keep_column_mask]
else:
return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask])
class __lowerCamelCase (_a ):
def __init__( self: List[str],A_: str,A_: List[str],A_: List[str],A_: List[str],A_: Tuple="train",A_: Any=None,A_: List[str]=None,A_: List[Any]=None,A_: int="",):
'''simple docstring'''
super().__init__()
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.source' )
__UpperCamelCase = Path(A_ ).joinpath(type_path + '.target' )
__UpperCamelCase = self.get_char_lens(self.src_file )
__UpperCamelCase = max_source_length
__UpperCamelCase = max_target_length
assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}'''
__UpperCamelCase = tokenizer
__UpperCamelCase = prefix
if n_obs is not None:
__UpperCamelCase = self.src_lens[:n_obs]
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
def __len__( self: Optional[Any] ):
'''simple docstring'''
return len(self.src_lens )
def __getitem__( self: int,A_: Optional[Any] ):
'''simple docstring'''
__UpperCamelCase = index + 1 # linecache starts at 1
__UpperCamelCase = self.prefix + linecache.getline(str(self.src_file ),A_ ).rstrip('\n' )
__UpperCamelCase = linecache.getline(str(self.tgt_file ),A_ ).rstrip('\n' )
assert source_line, F'''empty source line for index {index}'''
assert tgt_line, F'''empty tgt line for index {index}'''
# Need to add eos token manually for T5
if isinstance(self.tokenizer,A_ ):
source_line += self.tokenizer.eos_token
tgt_line += self.tokenizer.eos_token
# Pad source and target to the right
__UpperCamelCase = (
self.tokenizer.question_encoder if isinstance(self.tokenizer,A_ ) else self.tokenizer
)
__UpperCamelCase = self.tokenizer.generator if isinstance(self.tokenizer,A_ ) else self.tokenizer
__UpperCamelCase = encode_line(A_,A_,self.max_source_length,'right' )
__UpperCamelCase = encode_line(A_,A_,self.max_target_length,'right' )
__UpperCamelCase = source_inputs['input_ids'].squeeze()
__UpperCamelCase = target_inputs['input_ids'].squeeze()
__UpperCamelCase = source_inputs['attention_mask'].squeeze()
return {
"input_ids": source_ids,
"attention_mask": src_mask,
"decoder_input_ids": target_ids,
}
@staticmethod
def snake_case_ ( A_: List[Any] ):
'''simple docstring'''
return [len(A_ ) for x in Path(A_ ).open().readlines()]
def snake_case_ ( self: Union[str, Any],A_: Any ):
'''simple docstring'''
__UpperCamelCase = torch.stack([x['input_ids'] for x in batch] )
__UpperCamelCase = torch.stack([x['attention_mask'] for x in batch] )
__UpperCamelCase = torch.stack([x['decoder_input_ids'] for x in batch] )
__UpperCamelCase = (
self.tokenizer.generator.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = (
self.tokenizer.question_encoder.pad_token_id
if isinstance(self.tokenizer,A_ )
else self.tokenizer.pad_token_id
)
__UpperCamelCase = trim_batch(A_,A_ )
__UpperCamelCase, __UpperCamelCase = trim_batch(A_,A_,attention_mask=A_ )
__UpperCamelCase = {
'input_ids': source_ids,
'attention_mask': source_mask,
'decoder_input_ids': y,
}
return batch
__snake_case = getLogger(__name__)
def _A ( _lowercase ) -> Any:
"""simple docstring"""
return list(itertools.chain.from_iterable(_lowercase ) )
def _A ( _lowercase ) -> None:
"""simple docstring"""
__UpperCamelCase = get_git_info()
save_json(_lowercase , os.path.join(_lowercase , 'git_log.json' ) )
def _A ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[Any]:
"""simple docstring"""
with open(_lowercase , 'w' ) as f:
json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase )
def _A ( _lowercase ) -> Union[str, Any]:
"""simple docstring"""
with open(_lowercase ) as f:
return json.load(_lowercase )
def _A ( ) -> Dict:
"""simple docstring"""
__UpperCamelCase = git.Repo(search_parent_directories=_lowercase )
__UpperCamelCase = {
'repo_id': str(_lowercase ),
'repo_sha': str(repo.head.object.hexsha ),
'repo_branch': str(repo.active_branch ),
'hostname': str(socket.gethostname() ),
}
return repo_infos
def _A ( _lowercase , _lowercase ) -> List:
"""simple docstring"""
return list(map(_lowercase , _lowercase ) )
def _A ( _lowercase , _lowercase ) -> Tuple:
"""simple docstring"""
with open(_lowercase , 'wb' ) as f:
return pickle.dump(_lowercase , _lowercase )
def _A ( _lowercase ) -> List[Any]:
"""simple docstring"""
def remove_articles(_lowercase ):
return re.sub(r'\b(a|an|the)\b' , ' ' , _lowercase )
def white_space_fix(_lowercase ):
return " ".join(text.split() )
def remove_punc(_lowercase ):
__UpperCamelCase = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowercase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) )
def _A ( _lowercase , _lowercase ) -> int:
"""simple docstring"""
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = normalize_answer(_lowercase ).split()
__UpperCamelCase = Counter(_lowercase ) & Counter(_lowercase )
__UpperCamelCase = sum(common.values() )
if num_same == 0:
return 0
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = 1.0 * num_same / len(_lowercase )
__UpperCamelCase = (2 * precision * recall) / (precision + recall)
return fa
def _A ( _lowercase , _lowercase ) -> Any:
"""simple docstring"""
return normalize_answer(_lowercase ) == normalize_answer(_lowercase )
def _A ( _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
assert len(_lowercase ) == len(_lowercase )
__UpperCamelCase = 0
for hypo, pred in zip(_lowercase , _lowercase ):
em += exact_match_score(_lowercase , _lowercase )
if len(_lowercase ) > 0:
em /= len(_lowercase )
return {"em": em}
def _A ( _lowercase ) -> Optional[Any]:
"""simple docstring"""
return model_prefix.startswith('rag' )
def _A ( _lowercase , _lowercase , _lowercase ) -> Dict:
"""simple docstring"""
__UpperCamelCase = {p: p for p in extra_params}
# T5 models don't have `dropout` param, they have `dropout_rate` instead
__UpperCamelCase = 'dropout_rate'
for p in extra_params:
if getattr(_lowercase , _lowercase , _lowercase ):
if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ):
logger.info('config doesn\'t have a `{}` attribute'.format(_lowercase ) )
delattr(_lowercase , _lowercase )
continue
__UpperCamelCase = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p]
setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) )
delattr(_lowercase , _lowercase )
return hparams, config
| 310
| 1
|
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
__lowerCamelCase : str = None
__lowerCamelCase : Tuple = logging.get_logger(__name__)
__lowerCamelCase : int = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
__lowerCamelCase : str = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
},
"""tokenizer_file""": {
"""google/bigbird-roberta-base""": (
"""https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"""
),
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"""
),
},
}
__lowerCamelCase : Union[str, Any] = {
"""google/bigbird-roberta-base""": 4096,
"""google/bigbird-roberta-large""": 4096,
"""google/bigbird-base-trivia-itc""": 4096,
}
__lowerCamelCase : List[Any] = """▁"""
class A__ ( __snake_case ):
_UpperCAmelCase :Any = VOCAB_FILES_NAMES
_UpperCAmelCase :Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase :Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase :Optional[int] = BigBirdTokenizer
_UpperCAmelCase :Dict = ['input_ids', 'attention_mask']
_UpperCAmelCase :List[int] = []
def __init__( self , A_=None , A_=None , A_="<unk>" , A_="<s>" , A_="</s>" , A_="<pad>" , A_="[SEP]" , A_="[MASK]" , A_="[CLS]" , **A_ , ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else bos_token
UpperCamelCase : Tuple = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else eos_token
UpperCamelCase : Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else unk_token
UpperCamelCase : Optional[int] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else pad_token
UpperCamelCase : int = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else cls_token
UpperCamelCase : int = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
UpperCamelCase : List[str] = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token
super().__init__(
A_ , tokenizer_file=A_ , bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , **A_ , )
UpperCamelCase : Optional[Any] = vocab_file
UpperCamelCase : List[str] = False if not self.vocab_file else True
def __UpperCamelCase( self , A_ , A_ = None ):
'''simple docstring'''
UpperCamelCase : int = [self.sep_token_id]
UpperCamelCase : int = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def __UpperCamelCase( self , A_ , A_ = None , A_ = False ):
'''simple docstring'''
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(A_ )) + [1]
return [1] + ([0] * len(A_ )) + [1] + ([0] * len(A_ )) + [1]
def __UpperCamelCase( self , A_ , A_ = None ):
'''simple docstring'''
UpperCamelCase : Optional[int] = [self.sep_token_id]
UpperCamelCase : List[str] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __UpperCamelCase( self , A_ , A_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(A_ ):
logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" )
return
UpperCamelCase : Optional[int] = os.path.join(
A_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file , A_ )
return (out_vocab_file,)
| 140
|
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import ViTImageProcessor
class A__ ( unittest.TestCase ):
def __init__( self , A_ , A_=13 , A_=3 , A_=224 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
UpperCamelCase : Any = size if size is not None else {"height": 18, "width": 18}
UpperCamelCase : Tuple = parent
UpperCamelCase : Tuple = batch_size
UpperCamelCase : Tuple = num_channels
UpperCamelCase : str = image_size
UpperCamelCase : Optional[int] = min_resolution
UpperCamelCase : List[Any] = max_resolution
UpperCamelCase : Union[str, Any] = do_resize
UpperCamelCase : str = size
UpperCamelCase : List[str] = do_normalize
UpperCamelCase : Any = image_mean
UpperCamelCase : int = image_std
def __UpperCamelCase( self ):
'''simple docstring'''
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class A__ ( __snake_case , unittest.TestCase ):
_UpperCAmelCase :Tuple = ViTImageProcessor if is_vision_available() else None
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : int = EfficientFormerImageProcessorTester(self )
@property
def __UpperCamelCase( self ):
'''simple docstring'''
return self.image_proc_tester.prepare_image_processor_dict()
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , "image_mean" ) )
self.assertTrue(hasattr(A_ , "image_std" ) )
self.assertTrue(hasattr(A_ , "do_normalize" ) )
self.assertTrue(hasattr(A_ , "do_resize" ) )
self.assertTrue(hasattr(A_ , "size" ) )
def __UpperCamelCase( self ):
'''simple docstring'''
pass
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase : Union[str, Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase : Optional[Any] = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["height"],
self.image_proc_tester.size["width"],
) , )
# Test batched
UpperCamelCase : Tuple = image_processor(A_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["height"],
self.image_proc_tester.size["width"],
) , )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase : List[Any] = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase : Dict = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["height"],
self.image_proc_tester.size["width"],
) , )
# Test batched
UpperCamelCase : Optional[Any] = image_processor(A_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["height"],
self.image_proc_tester.size["width"],
) , )
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase : Any = prepare_image_inputs(self.image_proc_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase : Any = image_processor(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["height"],
self.image_proc_tester.size["width"],
) , )
# Test batched
UpperCamelCase : Any = image_processor(A_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_proc_tester.batch_size,
self.image_proc_tester.num_channels,
self.image_proc_tester.size["height"],
self.image_proc_tester.size["width"],
) , )
| 140
| 1
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase ={
"configuration_nllb_moe": [
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
"NllbMoeConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase =[
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
"NllbMoeForConditionalGeneration",
"NllbMoeModel",
"NllbMoePreTrainedModel",
"NllbMoeTop2Router",
"NllbMoeSparseMLP",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
_lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 334
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase_ = {"configuration_mmbt": ["MMBTConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase_ = ["MMBTForClassification", "MMBTModel", "ModalEmbeddings"]
if TYPE_CHECKING:
from .configuration_mmbt import MMBTConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings
else:
import sys
lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 211
| 0
|
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
ConditionalDetrConfig,
ConditionalDetrForObjectDetection,
ConditionalDetrForSegmentation,
ConditionalDetrImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCAmelCase_ = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
lowerCAmelCase_ = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''',
F'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''',
F'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias'''))
# q, k, v projections in self/cross-attention in decoder for conditional DETR
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''')
)
rename_keys.append(
(F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''')
)
# rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias"))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''')
)
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias'''))
rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias'''))
rename_keys.append(
(F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''')
)
# convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads
# for conditional DETR, also convert reference point head and query scale MLP
rename_keys.extend(
[
('''input_proj.weight''', '''input_projection.weight'''),
('''input_proj.bias''', '''input_projection.bias'''),
('''query_embed.weight''', '''query_position_embeddings.weight'''),
('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''),
('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''),
('''class_embed.weight''', '''class_labels_classifier.weight'''),
('''class_embed.bias''', '''class_labels_classifier.bias'''),
('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''),
('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''),
('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''),
('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''),
('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''),
('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''),
('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''),
('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''),
('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''),
('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''),
('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''),
('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''),
('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''),
('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''),
('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''),
('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''),
]
)
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[int] = state_dict.pop(_UpperCamelCase )
snake_case_ : Any = val
def lowerCamelCase_ ( _UpperCamelCase ) -> Union[str, Any]:
"""simple docstring"""
snake_case_ : Tuple = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
snake_case_ : Optional[int] = key.replace('''backbone.0.body''' , '''backbone.conv_encoder.model''' )
snake_case_ : List[Any] = value
else:
snake_case_ : List[Any] = value
return new_state_dict
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase=False ) -> Dict:
"""simple docstring"""
snake_case_ : Optional[Any] = ''''''
if is_panoptic:
snake_case_ : Tuple = '''conditional_detr.'''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
snake_case_ : Dict = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' )
snake_case_ : Tuple = state_dict.pop(f'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' )
# next, add query, keys and values (in that order) to the state dict
snake_case_ : int = in_proj_weight[:256, :]
snake_case_ : List[str] = in_proj_bias[:256]
snake_case_ : Tuple = in_proj_weight[256:512, :]
snake_case_ : Dict = in_proj_bias[256:512]
snake_case_ : Optional[int] = in_proj_weight[-256:, :]
snake_case_ : Optional[Any] = in_proj_bias[-256:]
def lowerCamelCase_ ( ) -> Tuple:
"""simple docstring"""
snake_case_ : Optional[int] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
snake_case_ : Dict = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return im
@torch.no_grad()
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> int:
"""simple docstring"""
snake_case_ : Optional[int] = ConditionalDetrConfig()
# set backbone and dilation attributes
if "resnet101" in model_name:
snake_case_ : List[str] = '''resnet101'''
if "dc5" in model_name:
snake_case_ : Dict = True
snake_case_ : Optional[Any] = '''panoptic''' in model_name
if is_panoptic:
snake_case_ : List[str] = 250
else:
snake_case_ : Union[str, Any] = 91
snake_case_ : Dict = '''huggingface/label-files'''
snake_case_ : Optional[Any] = '''coco-detection-id2label.json'''
snake_case_ : str = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='''dataset''' ) , '''r''' ) )
snake_case_ : int = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
snake_case_ : Tuple = idalabel
snake_case_ : Any = {v: k for k, v in idalabel.items()}
# load image processor
snake_case_ : List[str] = '''coco_panoptic''' if is_panoptic else '''coco_detection'''
snake_case_ : Union[str, Any] = ConditionalDetrImageProcessor(format=_UpperCamelCase )
# prepare image
snake_case_ : Union[str, Any] = prepare_img()
snake_case_ : Tuple = image_processor(images=_UpperCamelCase , return_tensors='''pt''' )
snake_case_ : Any = encoding['''pixel_values''']
logger.info(f'''Converting model {model_name}...''' )
# load original model from torch hub
snake_case_ : Union[str, Any] = torch.hub.load('''DeppMeng/ConditionalDETR''' , _UpperCamelCase , pretrained=_UpperCamelCase ).eval()
snake_case_ : str = conditional_detr.state_dict()
# rename keys
for src, dest in rename_keys:
if is_panoptic:
snake_case_ : Optional[Any] = '''conditional_detr.''' + src
rename_key(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
snake_case_ : Optional[Any] = rename_backbone_keys(_UpperCamelCase )
# query, key and value matrices need special treatment
read_in_q_k_v(_UpperCamelCase , is_panoptic=_UpperCamelCase )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
snake_case_ : Optional[int] = '''conditional_detr.model.''' if is_panoptic else '''model.'''
for key in state_dict.copy().keys():
if is_panoptic:
if (
key.startswith('''conditional_detr''' )
and not key.startswith('''class_labels_classifier''' )
and not key.startswith('''bbox_predictor''' )
):
snake_case_ : str = state_dict.pop(_UpperCamelCase )
snake_case_ : Union[str, Any] = val
elif "class_labels_classifier" in key or "bbox_predictor" in key:
snake_case_ : Optional[Any] = state_dict.pop(_UpperCamelCase )
snake_case_ : Union[str, Any] = val
elif key.startswith('''bbox_attention''' ) or key.startswith('''mask_head''' ):
continue
else:
snake_case_ : Any = state_dict.pop(_UpperCamelCase )
snake_case_ : List[str] = val
else:
if not key.startswith('''class_labels_classifier''' ) and not key.startswith('''bbox_predictor''' ):
snake_case_ : Any = state_dict.pop(_UpperCamelCase )
snake_case_ : Tuple = val
# finally, create HuggingFace model and load state dict
snake_case_ : int = ConditionalDetrForSegmentation(_UpperCamelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_UpperCamelCase )
model.load_state_dict(_UpperCamelCase )
model.eval()
model.push_to_hub(repo_id=_UpperCamelCase , organization='''DepuMeng''' , commit_message='''Add model''' )
# verify our conversion
snake_case_ : int = conditional_detr(_UpperCamelCase )
snake_case_ : Optional[int] = model(_UpperCamelCase )
assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-4 )
assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-4 )
if is_panoptic:
assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4 )
# Save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' )
Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase )
model.save_pretrained(_UpperCamelCase )
image_processor.save_pretrained(_UpperCamelCase )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument(
'''--model_name''',
default='''conditional_detr_resnet50''',
type=str,
help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.'''
)
lowerCAmelCase_ = parser.parse_args()
convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 351
|
import numpy as np
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
def lowerCamelCase_ ( _UpperCamelCase ) -> tuple:
"""simple docstring"""
return (data["data"], data["target"])
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ) -> XGBClassifier:
"""simple docstring"""
snake_case_ : Optional[Any] = XGBClassifier()
classifier.fit(_UpperCamelCase , _UpperCamelCase )
return classifier
def lowerCamelCase_ ( ) -> None:
"""simple docstring"""
snake_case_ : Optional[Any] = load_iris()
snake_case_ , snake_case_ : str = data_handling(_UpperCamelCase )
snake_case_ , snake_case_ , snake_case_ , snake_case_ : Dict = train_test_split(
_UpperCamelCase , _UpperCamelCase , test_size=0.25 )
snake_case_ : List[str] = iris['''target_names''']
# Create an XGBoost Classifier from the training data
snake_case_ : int = xgboost(_UpperCamelCase , _UpperCamelCase )
# Display the confusion matrix of the classifier with both training and test sets
ConfusionMatrixDisplay.from_estimator(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , display_labels=_UpperCamelCase , cmap='''Blues''' , normalize='''true''' , )
plt.title('''Normalized Confusion Matrix - IRIS Dataset''' )
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
main()
| 279
| 0
|
import argparse
import torch
from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : Union[str, Any] = logging.get_logger(__name__)
_lowerCamelCase : Tuple = [
['''attention''', '''attn'''],
['''encoder_attention''', '''encoder_attn'''],
['''q_lin''', '''q_proj'''],
['''k_lin''', '''k_proj'''],
['''v_lin''', '''v_proj'''],
['''out_lin''', '''out_proj'''],
['''norm_embeddings''', '''layernorm_embedding'''],
['''position_embeddings''', '''embed_positions'''],
['''embeddings''', '''embed_tokens'''],
['''ffn.lin''', '''fc'''],
]
def a_ ( __lowercase : str ) -> str:
if k == "embeddings.weight":
return "shared.weight"
for parlai_name, hf_name in PATTERNS:
_snake_case = k.replace(__lowercase , __lowercase )
if k.startswith('encoder' ):
_snake_case = k.replace('.attn' , '.self_attn' )
_snake_case = k.replace('norm1' , 'self_attn_layer_norm' )
_snake_case = k.replace('norm2' , 'final_layer_norm' )
elif k.startswith('decoder' ):
_snake_case = k.replace('norm1' , 'self_attn_layer_norm' )
_snake_case = k.replace('norm2' , 'encoder_attn_layer_norm' )
_snake_case = k.replace('norm3' , 'final_layer_norm' )
return k
def a_ ( __lowercase : Optional[int] ) -> List[str]:
_snake_case = [
'model.encoder.layernorm_embedding.weight',
'model.encoder.layernorm_embedding.bias',
'model.decoder.layernorm_embedding.weight',
'model.decoder.layernorm_embedding.bias',
]
for k in keys:
_snake_case = sd.pop(__lowercase )
_snake_case = k.replace('layernorm_embedding' , 'layer_norm' )
assert new_k not in sd
_snake_case = v
_lowerCamelCase : Union[str, Any] = ['''START''']
@torch.no_grad()
def a_ ( __lowercase : List[Any] , __lowercase : Dict , __lowercase : Tuple ) -> int:
_snake_case = torch.load(__lowercase , map_location='cpu' )
_snake_case = model['model']
_snake_case = BlenderbotConfig.from_json_file(__lowercase )
_snake_case = BlenderbotForConditionalGeneration(__lowercase )
_snake_case = m.model.state_dict().keys()
_snake_case = []
_snake_case = {}
for k, v in sd.items():
if k in IGNORE_KEYS:
continue
_snake_case = rename_state_dict_key(__lowercase )
if new_k not in valid_keys:
failures.append([k, new_k] )
else:
_snake_case = v
if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm
rename_layernorm_keys(__lowercase )
m.model.load_state_dict(__lowercase , strict=__lowercase )
m.half()
m.save_pretrained(__lowercase )
if __name__ == "__main__":
_lowerCamelCase : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''')
parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''')
parser.add_argument(
'''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use'''
)
_lowerCamelCase : Dict = parser.parse_args()
convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
| 282
|
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : int , **_UpperCAmelCase : Optional[Any] ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> Dict:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : List[str] ) -> Optional[int]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : int ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_torch
def a__ ( self : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [torch.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , torch.tensor(_UpperCAmelCase ) , torch.tensor(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(_UpperCAmelCase ):
__lowercase = processor.post_process_masks(_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) )
@require_vision
@require_tf
class A__ ( unittest.TestCase ):
def a__ ( self : Optional[Any] ) -> Any:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : str , **_UpperCAmelCase : Tuple ) -> Tuple:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : Union[str, Any] ) -> List[str]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : Tuple ) -> Optional[int]:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def a__ ( self : Union[str, Any] ) -> List[Any]:
"""simple docstring"""
__lowercase = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
__lowercase = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0 )
__lowercase = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_UpperCAmelCase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _UpperCAmelCase )
def a__ ( self : Optional[Any] ) -> List[str]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='np' )
__lowercase = processor(images=_UpperCAmelCase , return_tensors='np' )
input_feat_extract.pop('original_sizes' ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop('reshaped_input_sizes' ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 )
@require_tf
def a__ ( self : Dict ) -> List[Any]:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = [tf.ones((1, 3, 5, 5) )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , tf.convert_to_tensor(_UpperCAmelCase ) , tf.convert_to_tensor(_UpperCAmelCase ) , return_tensors='tf' , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
__lowercase = [np.ones((1, 3, 5, 5) )]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
__lowercase = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
__lowercase = processor.post_process_masks(
_UpperCAmelCase , np.array(_UpperCAmelCase ) , np.array(_UpperCAmelCase ) , return_tensors='tf' )
@require_vision
@require_torchvision
class A__ ( unittest.TestCase ):
def a__ ( self : Any ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = tempfile.mkdtemp()
__lowercase = SamImageProcessor()
__lowercase = SamProcessor(_UpperCAmelCase )
processor.save_pretrained(self.tmpdirname )
def a__ ( self : Dict , **_UpperCAmelCase : int ) -> Optional[Any]:
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase ).image_processor
def a__ ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def a__ ( self : List[str] ) -> int:
"""simple docstring"""
__lowercase = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
__lowercase = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def a__ ( self : Tuple ) -> str:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
__lowercase = [tf.convert_to_tensor(_UpperCAmelCase )]
__lowercase = [torch.tensor(_UpperCAmelCase )]
__lowercase = [[17_64, 26_46]]
__lowercase = [[6_83, 10_24]]
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='tf' )
__lowercase = processor.post_process_masks(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , return_tensors='pt' )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def a__ ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
__lowercase = self.get_image_processor()
__lowercase = SamProcessor(image_processor=_UpperCAmelCase )
__lowercase = self.prepare_image_inputs()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='pt' )['pixel_values'].numpy()
__lowercase = image_processor(_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
__lowercase = processor(images=_UpperCAmelCase , return_tensors='tf' )['pixel_values'].numpy()
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
self.assertTrue(np.allclose(_UpperCAmelCase , _UpperCAmelCase ) )
| 325
| 0
|
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import KarrasVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : UNetaDModel
UpperCAmelCase : KarrasVeScheduler
def __init__( self : Any , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : KarrasVeScheduler ):
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Any , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Optional[int] , ):
_A = self.unet.config.sample_size
_A = (batch_size, 3, img_size, img_size)
_A = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
_A = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device ) * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
for t in self.progress_bar(self.scheduler.timesteps ):
# here sigma_t == t_i from the paper
_A = self.scheduler.schedule[t]
_A = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
_A , _A = self.scheduler.add_noise_to_input(_UpperCAmelCase , _UpperCAmelCase , generator=_UpperCAmelCase )
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_hat / 2) * model((sample_hat + 1) / 2 , sigma_hat / 2 ).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
_A = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2 , sigma_prev / 2 ).sample
_A = self.scheduler.step_correct(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , step_output.prev_sample , step_output['derivative'] , )
_A = step_output.prev_sample
_A = (sample / 2 + 0.5).clamp(0 , 1 )
_A = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 271
|
"""simple docstring"""
from collections import deque
class lowercase_ :
'''simple docstring'''
def __init__( self : int , _UpperCAmelCase : str , _UpperCAmelCase : int , _UpperCAmelCase : int ):
_A = process_name # process name
_A = arrival_time # arrival time of the process
# completion time of finished process or last interrupted time
_A = arrival_time
_A = burst_time # remaining burst time
_A = 0 # total time of the process wait in ready queue
_A = 0 # time from arrival time to completion time
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : list[int] , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int , ):
# total number of mlfq's queues
_A = number_of_queues
# time slice of queues that round robin algorithm applied
_A = time_slices
# unfinished process is in this ready_queue
_A = queue
# current time
_A = current_time
# finished process is in this sequence queue
_A = deque()
def lowerCAmelCase_ ( self : Dict ):
_A = []
for i in range(len(self.finish_queue ) ):
sequence.append(self.finish_queue[i].process_name )
return sequence
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
waiting_times.append(queue[i].waiting_time )
return waiting_times
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
turnaround_times.append(queue[i].turnaround_time )
return turnaround_times
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : list[Process] ):
_A = []
for i in range(len(_UpperCAmelCase ) ):
completion_times.append(queue[i].stop_time )
return completion_times
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] ):
return [q.burst_time for q in queue]
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Process ):
process.waiting_time += self.current_time - process.stop_time
return process.waiting_time
def lowerCAmelCase_ ( self : int , _UpperCAmelCase : deque[Process] ):
_A = deque() # sequence deque of finished process
while len(_UpperCAmelCase ) != 0:
_A = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of current process
self.update_waiting_time(_UpperCAmelCase )
# update current time
self.current_time += cp.burst_time
# finish the process and set the process's burst-time 0
_A = 0
# set the process's turnaround time because it is finished
_A = self.current_time - cp.arrival_time
# set the completion time
_A = self.current_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# FCFS will finish all remaining processes
return finished
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : deque[Process] , _UpperCAmelCase : int ):
_A = deque() # sequence deque of terminated process
# just for 1 cycle and unfinished processes will go back to queue
for _ in range(len(_UpperCAmelCase ) ):
_A = ready_queue.popleft() # current process
# if process's arrival time is later than current time, update current time
if self.current_time < cp.arrival_time:
self.current_time += cp.arrival_time
# update waiting time of unfinished processes
self.update_waiting_time(_UpperCAmelCase )
# if the burst time of process is bigger than time-slice
if cp.burst_time > time_slice:
# use CPU for only time-slice
self.current_time += time_slice
# update remaining burst time
cp.burst_time -= time_slice
# update end point time
_A = self.current_time
# locate the process behind the queue because it is not finished
ready_queue.append(_UpperCAmelCase )
else:
# use CPU for remaining burst time
self.current_time += cp.burst_time
# set burst time 0 because the process is finished
_A = 0
# set the finish time
_A = self.current_time
# update the process' turnaround time because it is finished
_A = self.current_time - cp.arrival_time
# add the process to queue that has finished queue
finished.append(_UpperCAmelCase )
self.finish_queue.extend(_UpperCAmelCase ) # add finished process to finish queue
# return finished processes queue and remaining processes queue
return finished, ready_queue
def lowerCAmelCase_ ( self : str ):
# all queues except last one have round_robin algorithm
for i in range(self.number_of_queues - 1 ):
_A , _A = self.round_robin(
self.ready_queue , self.time_slices[i] )
# the last queue has first_come_first_served algorithm
self.first_come_first_served(self.ready_queue )
return self.finish_queue
if __name__ == "__main__":
import doctest
a = Process('''P1''', 0, 53)
a = Process('''P2''', 0, 17)
a = Process('''P3''', 0, 68)
a = Process('''P4''', 0, 24)
a = 3
a = [17, 25]
a = deque([Pa, Pa, Pa, Pa])
if len(time_slices) != number_of_queues - 1:
raise SystemExit(0)
doctest.testmod(extraglobs={'''queue''': deque([Pa, Pa, Pa, Pa])})
a = Process('''P1''', 0, 53)
a = Process('''P2''', 0, 17)
a = Process('''P3''', 0, 68)
a = Process('''P4''', 0, 24)
a = 3
a = [17, 25]
a = deque([Pa, Pa, Pa, Pa])
a = MLFQ(number_of_queues, time_slices, queue, 0)
a = mlfq.multi_level_feedback_queue()
# print total waiting times of processes(P1, P2, P3, P4)
print(
F'''waiting time:\
\t\t\t{MLFQ.calculate_waiting_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print completion times of processes(P1, P2, P3, P4)
print(
F'''completion time:\
\t\t{MLFQ.calculate_completion_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print total turnaround times of processes(P1, P2, P3, P4)
print(
F'''turnaround time:\
\t\t{MLFQ.calculate_turnaround_time(mlfq, [Pa, Pa, Pa, Pa])}'''
)
# print sequence of finished processes
print(
F'''sequence of finished processes:\
{mlfq.calculate_sequence_of_finish_queue()}'''
)
| 271
| 1
|
import io
import os
import unicodedata
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
_lowercase: List[Any] = logging.get_logger(__name__)
_lowercase: str = '▁'
_lowercase: Dict = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'}
_lowercase: str = {
'sentencepiece_model_file': 'sentencepiece.bpe.model',
'vocab_file': 'vocab.txt',
}
_lowercase: Any = {
'vocab_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt',
},
'sentencepiece_model_file': {
'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model',
},
}
_lowercase: Any = {
'ernie-m-base': 514,
'ernie-m-large': 514,
}
_lowercase: Any = {
'ernie-m-base': {'do_lower_case': False},
'ernie-m-large': {'do_lower_case': False},
}
class _lowercase ( lowerCamelCase_ ):
"""simple docstring"""
__A = ["input_ids"]
__A = VOCAB_FILES_NAMES
__A = PRETRAINED_INIT_CONFIGURATION
__A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__A = PRETRAINED_VOCAB_FILES_MAP
__A = RESOURCE_FILES_NAMES
def __init__(self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False , lowerCamelCase_="utf8" , lowerCamelCase_="[UNK]" , lowerCamelCase_="[SEP]" , lowerCamelCase_="[PAD]" , lowerCamelCase_="[CLS]" , lowerCamelCase_="[MASK]" , lowerCamelCase_ = None , **lowerCamelCase_ , ):
"""simple docstring"""
a = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , vocab_file=__a , encoding=__a , sp_model_kwargs=self.sp_model_kwargs , **__a , )
a = do_lower_case
a = sentencepiece_model_ckpt
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(__a )
# to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning
if vocab_file is not None:
a = self.load_vocab(filepath=__a )
else:
a = {self.sp_model.id_to_piece(__a ): id for id in range(self.sp_model.get_piece_size() )}
a = {v: k for k, v in self.vocab.items()}
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
if text is None:
return None
a = self.tokenize(__a )
a , a = "", []
for i, ch in enumerate(__a ):
if ch in self.SP_CHAR_MAPPING:
a = self.SP_CHAR_MAPPING.get(__a )
else:
a = unicodedata.normalize("NFKC" , __a )
if self.is_whitespace(__a ):
continue
normalized_text += ch
char_mapping.extend([i] * len(__a ) )
a , a , a = normalized_text, [], 0
if self.do_lower_case:
a = text.lower()
for token in split_tokens:
if token[:1] == "▁":
a = token[1:]
a = text[offset:].index(__a ) + offset
a = start + len(__a )
token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) )
a = end
return token_mapping
@property
def UpperCamelCase_ (self ):
"""simple docstring"""
return len(self.vocab )
def UpperCamelCase_ (self ):
"""simple docstring"""
return dict(self.vocab , **self.added_tokens_encoder )
def __getstate__(self ):
"""simple docstring"""
a = self.__dict__.copy()
a = None
return state
def __setstate__(self , lowerCamelCase_ ):
"""simple docstring"""
a = d
# for backward compatibility
if not hasattr(self , "sp_model_kwargs" ):
a = {}
a = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.sentencepiece_model_ckpt )
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
return "".join((self.SP_CHAR_MAPPING.get(__a , __a ) for c in text) )
def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=False , lowerCamelCase_=64 , lowerCamelCase_=0.1 ):
"""simple docstring"""
if self.sp_model_kwargs.get("enable_sampling" ) is True:
a = True
if self.sp_model_kwargs.get("alpha" ) is not None:
a = self.sp_model_kwargs.get("alpha" )
if self.sp_model_kwargs.get("nbest_size" ) is not None:
a = self.sp_model_kwargs.get("nbest_size" )
if not enable_sampling:
a = self.sp_model.EncodeAsPieces(__a )
else:
a = self.sp_model.SampleEncodeAsPieces(__a , __a , __a )
a = []
for pi, piece in enumerate(__a ):
if piece == SPIECE_UNDERLINE:
if not pieces[pi + 1].startswith(__a ) and pi != 0:
new_pieces.append(__a )
continue
else:
continue
a = 0
for i, chunk in enumerate(__a ):
if chunk == SPIECE_UNDERLINE:
continue
if self.is_ch_char(__a ) or self.is_punct(__a ):
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
new_pieces.append(__a )
a = i + 1
elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
a = i
elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit():
if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE:
new_pieces.append(piece[lst_i:i] )
a = i
if len(__a ) > lst_i:
new_pieces.append(piece[lst_i:] )
return new_pieces
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
a = "".join(__a ).replace(__a , " " ).strip()
return out_string
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
a = self.convert_ids_to_tokens(__a )
a = "".join(__a ).replace(__a , " " ).strip()
return out_string
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
return self.vocab.get(__a , self.vocab.get(self.unk_token ) )
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
return self.reverse_vocab.get(__a , self.unk_token )
def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ):
"""simple docstring"""
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
a = [self.cls_token_id]
a = [self.sep_token_id]
return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep
def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None ):
"""simple docstring"""
if offset_mapping_a is None:
return [(0, 0)] + offset_mapping_a + [(0, 0)]
return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)]
def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=None , lowerCamelCase_=False ):
"""simple docstring"""
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(__a )) + [1, 1] + ([0] * len(__a )) + [1]
return [1] + ([0] * len(__a )) + [1]
def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ):
"""simple docstring"""
if token_ids_a is None:
# [CLS] X [SEP]
return (len(__a ) + 2) * [0]
# [CLS] A [SEP] [SEP] B [SEP]
return [0] * (len(__a ) + 1) + [1] * (len(__a ) + 3)
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
if "\u4e00" <= char <= "\u9fff":
return True
return False
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
if ("a" <= char <= "z") or ("A" <= char <= "Z"):
return True
return False
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
if char in ",;:.?!~,;:。?!《》【】":
return True
return False
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
if len(__a ) == 1:
a = unicodedata.category(__a )
if cat == "Zs":
return True
return False
def UpperCamelCase_ (self , lowerCamelCase_ ):
"""simple docstring"""
a = {}
with io.open(__a , "r" , encoding="utf-8" ) as f:
for index, line in enumerate(__a ):
a = line.rstrip("\n" )
a = int(__a )
return token_to_idx
def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ = None ):
"""simple docstring"""
a = 0
if os.path.isdir(__a ):
a = os.path.join(
__a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
else:
a = (filename_prefix + "-" if filename_prefix else "") + save_directory
with open(__a , "w" , encoding="utf-8" ) as writer:
for token, token_index in sorted(self.vocab.items() , key=lambda lowerCamelCase_ : kv[1] ):
if index != token_index:
logger.warning(
F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.'''
" Please check that the vocabulary is not corrupted!" )
a = token_index
writer.write(token + "\n" )
index += 1
a = os.path.join(__a , "sentencepiece.bpe.model" )
with open(__a , "wb" ) as fi:
a = self.sp_model.serialized_model_proto()
fi.write(__a )
return (vocab_file,)
| 227
|
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase_ : Dict = logging.get_logger(__name__)
lowerCAmelCase_ : Optional[int] = {
'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json',
}
class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ):
"""simple docstring"""
__a ='deta'
__a ={
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self : List[str] , __a : List[str]=None , __a : Dict=9_00 , __a : str=20_48 , __a : Tuple=6 , __a : List[str]=20_48 , __a : str=8 , __a : Union[str, Any]=6 , __a : int=10_24 , __a : List[Any]=8 , __a : Dict=0.0 , __a : Tuple=True , __a : Optional[Any]="relu" , __a : Tuple=2_56 , __a : Optional[Any]=0.1 , __a : int=0.0 , __a : List[Any]=0.0 , __a : Optional[int]=0.02 , __a : str=1.0 , __a : Dict=True , __a : Dict=False , __a : Optional[int]="sine" , __a : Any=5 , __a : List[str]=4 , __a : Optional[int]=4 , __a : List[str]=True , __a : str=3_00 , __a : int=True , __a : int=True , __a : Tuple=1 , __a : Optional[int]=5 , __a : Tuple=2 , __a : Dict=1 , __a : Optional[int]=1 , __a : Any=5 , __a : Optional[int]=2 , __a : Dict=0.1 , __a : str=0.25 , **__a : Tuple , ):
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
_a = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"] )
else:
if isinstance(__a , __a ):
_a = backbone_config.pop("model_type" )
_a = CONFIG_MAPPING[backbone_model_type]
_a = config_class.from_dict(__a )
_a = backbone_config
_a = num_queries
_a = max_position_embeddings
_a = d_model
_a = encoder_ffn_dim
_a = encoder_layers
_a = encoder_attention_heads
_a = decoder_ffn_dim
_a = decoder_layers
_a = decoder_attention_heads
_a = dropout
_a = attention_dropout
_a = activation_dropout
_a = activation_function
_a = init_std
_a = init_xavier_std
_a = encoder_layerdrop
_a = auxiliary_loss
_a = position_embedding_type
# deformable attributes
_a = num_feature_levels
_a = encoder_n_points
_a = decoder_n_points
_a = two_stage
_a = two_stage_num_proposals
_a = with_box_refine
_a = assign_first_stage
if two_stage is True and with_box_refine is False:
raise ValueError("If two_stage is True, with_box_refine must be True." )
# Hungarian matcher
_a = class_cost
_a = bbox_cost
_a = giou_cost
# Loss coefficients
_a = mask_loss_coefficient
_a = dice_loss_coefficient
_a = bbox_loss_coefficient
_a = giou_loss_coefficient
_a = eos_coefficient
_a = focal_alpha
super().__init__(is_encoder_decoder=__a , **__a )
@property
def UpperCamelCase__ ( self : Optional[Any] ):
return self.encoder_attention_heads
@property
def UpperCamelCase__ ( self : Dict ):
return self.d_model
def UpperCamelCase__ ( self : List[str] ):
_a = copy.deepcopy(self.__dict__ )
_a = self.backbone_config.to_dict()
_a = self.__class__.model_type
return output
| 63
| 0
|
'''simple docstring'''
import re
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase : str = re.compile(
R"^(?:0|94|\+94|0{2}94)" R"7(0|1|2|4|5|6|7|8)" R"(-| |)" R"\d{7}$" )
return bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) )
if __name__ == "__main__":
lowerCamelCase__ = '0094702343221'
print(is_sri_lankan_phone_number(phone))
| 370
|
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
lowerCamelCase__ = logging.getLogger(__name__)
torch.set_grad_enabled(False)
lowerCamelCase__ = 'cuda' if torch.cuda.is_available() else 'cpu'
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase=100 , __lowerCAmelCase=" " ):
_UpperCAmelCase : Any = text.split(__lowerCAmelCase )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowerCAmelCase ) , __lowerCAmelCase )]
def __lowerCAmelCase (__lowerCAmelCase ):
_UpperCAmelCase , _UpperCAmelCase : Dict = [], []
for title, text in zip(documents["title"] , documents["text"] ):
if text is not None:
for passage in split_text(__lowerCAmelCase ):
titles.append(title if title is not None else "" )
texts.append(__lowerCAmelCase )
return {"title": titles, "text": texts}
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
_UpperCAmelCase : str = ctx_tokenizer(
documents["title"] , documents["text"] , truncation=__lowerCAmelCase , padding="longest" , return_tensors="pt" )["input_ids"]
_UpperCAmelCase : str = ctx_encoder(input_ids.to(device=__lowerCAmelCase ) , return_dict=__lowerCAmelCase ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def __lowerCAmelCase (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ):
######################################
logger.info("Step 1 - Create the dataset" )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
_UpperCAmelCase : Optional[int] = load_dataset(
"csv" , data_files=[rag_example_args.csv_path] , split="train" , delimiter="\t" , column_names=["title", "text"] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
_UpperCAmelCase : Optional[int] = dataset.map(__lowerCAmelCase , batched=__lowerCAmelCase , num_proc=processing_args.num_proc )
# And compute the embeddings
_UpperCAmelCase : Union[str, Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowerCAmelCase )
_UpperCAmelCase : Optional[int] = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
_UpperCAmelCase : Dict = Features(
{"text": Value("string" ), "title": Value("string" ), "embeddings": Sequence(Value("float32" ) )} ) # optional, save as float32 instead of float64 to save space
_UpperCAmelCase : int = dataset.map(
partial(__lowerCAmelCase , ctx_encoder=__lowerCAmelCase , ctx_tokenizer=__lowerCAmelCase ) , batched=__lowerCAmelCase , batch_size=processing_args.batch_size , features=__lowerCAmelCase , )
# And finally save your dataset
_UpperCAmelCase : List[Any] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset" )
dataset.save_to_disk(__lowerCAmelCase )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info("Step 2 - Index the dataset" )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
_UpperCAmelCase : Any = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index("embeddings" , custom_index=__lowerCAmelCase )
# And save the index
_UpperCAmelCase : List[str] = os.path.join(rag_example_args.output_dir , "my_knowledge_dataset_hnsw_index.faiss" )
dataset.get_index("embeddings" ).save(__lowerCAmelCase )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : str = field(
default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" / "my_knowledge_dataset.csv" ) , metadata={"help": "Path to a tab-separated csv file with columns 'title' and 'text'"} , )
lowerCAmelCase : Optional[str] = field(
default=UpperCAmelCase__ , metadata={"help": "Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."} , )
lowerCAmelCase : str = field(
default="facebook/rag-sequence-nq" , metadata={"help": "The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"} , )
lowerCAmelCase : str = field(
default="facebook/dpr-ctx_encoder-multiset-base" , metadata={
"help": (
"The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"
" 'facebook/dpr-ctx_encoder-multiset-base'"
)
} , )
lowerCAmelCase : Optional[str] = field(
default=str(Path(UpperCAmelCase__ ).parent / "test_run" / "dummy-kb" ) , metadata={"help": "Path to a directory where the dataset passages and the index will be saved"} , )
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : Optional[int] = field(
default=UpperCAmelCase__ , metadata={
"help": "The number of processes to use to split the documents into passages. Default is single process."
} , )
lowerCAmelCase : int = field(
default=16 , metadata={
"help": "The batch size to use when computing the passages embeddings using the DPR context encoder."
} , )
@dataclass
class lowerCAmelCase__ :
lowerCAmelCase : int = field(
default=768 , metadata={"help": "The dimension of the embeddings to pass to the HNSW Faiss index."} , )
lowerCAmelCase : int = field(
default=128 , metadata={
"help": (
"The number of bi-directional links created for every new element during the HNSW index construction."
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
lowerCamelCase__ = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
lowerCamelCase__ = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 322
| 0
|
import tempfile
import unittest
from make_student import create_student_by_copying_alternating_layers
from transformers import AutoConfig
from transformers.file_utils import cached_property
from transformers.testing_utils import require_torch
_UpperCAmelCase = """sshleifer/bart-tiny-random"""
_UpperCAmelCase = """patrickvonplaten/t5-tiny-random"""
@require_torch
class UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self ):
"""simple docstring"""
return AutoConfig.from_pretrained(lowercase )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.num_hidden_layers , 1 )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ , *A_ : int = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ , *A_ : str = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=lowercase )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
A_ , *A_ : List[str] = create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=1 , d=1 )
self.assertEqual(student.config.encoder_layers , 1 )
self.assertEqual(student.config.decoder_layers , 1 )
def lowerCAmelCase_ ( self ):
"""simple docstring"""
with self.assertRaises(lowercase ):
create_student_by_copying_alternating_layers(lowercase , tempfile.mkdtemp() , e=lowercase , d=lowercase )
| 140
|
def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : int ,__lowercase : int ,__lowercase : list[int] ):
'''simple docstring'''
if graph[path[curr_ind - 1]][next_ver] == 0:
return False
# 2. Validate that next vertex is not already in path
return not any(vertex == next_ver for vertex in path )
def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : list[int] ,__lowercase : int ):
'''simple docstring'''
if curr_ind == len(__lowercase ):
# return whether path exists between current and starting vertices
return graph[path[curr_ind - 1]][path[0]] == 1
# Recursive Step
for next_ver in range(0 ,len(__lowercase ) ):
if valid_connection(__lowercase ,__lowercase ,__lowercase ,__lowercase ):
# Insert current vertex into path as next transition
A_ : Tuple = next_ver
# Validate created path
if util_hamilton_cycle(__lowercase ,__lowercase ,curr_ind + 1 ):
return True
# Backtrack
A_ : Tuple = -1
return False
def UpperCamelCase ( __lowercase : list[list[int]] ,__lowercase : int = 0 ):
'''simple docstring'''
A_ : Any = [-1] * (len(__lowercase ) + 1)
# initialize start and end of path with starting index
A_ : Dict = start_index
# evaluate and if we find answer return path either return empty array
return path if util_hamilton_cycle(__lowercase ,__lowercase ,1 ) else []
| 140
| 1
|
import unittest
from transformers import AutoTokenizer, is_flax_available
from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow
if is_flax_available():
import jax.numpy as jnp
from transformers import FlaxXLMRobertaModel
@require_sentencepiece
@require_tokenizers
@require_flax
class lowerCAmelCase ( unittest.TestCase ):
@slow
def A_ ( self : Any ) -> int:
lowerCamelCase__ : int = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' )
lowerCamelCase__ : Optional[int] = AutoTokenizer.from_pretrained('xlm-roberta-base' )
lowerCamelCase__ : Any = 'The dog is cute and lives in the garden house'
lowerCamelCase__ : Union[str, Any] = jnp.array([tokenizer.encode(UpperCAmelCase )] )
lowerCamelCase__ : Optional[int] = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim
lowerCamelCase__ : str = jnp.array(
[[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] )
lowerCamelCase__ : Union[str, Any] = model(UpperCAmelCase )['last_hidden_state']
self.assertEqual(output.shape , UpperCAmelCase )
# compare the actual values for a slice of last dim
self.assertTrue(jnp.allclose(output[:, :, -1] , UpperCAmelCase , atol=1e-3 ) )
| 362
|
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
_UpperCAmelCase : List[str] = logging.get_logger()
@dataclass
class lowerCAmelCase :
UpperCAmelCase__ = 42
UpperCAmelCase__ = field(default_factory=__UpperCamelCase )
UpperCAmelCase__ = field(default_factory=__UpperCamelCase )
def A_ ( self : List[str] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tensor , UpperCAmelCase : Tensor ) -> Any:
lowerCamelCase__ : List[str] = len(list(m.modules() ) ) == 1 or isinstance(UpperCAmelCase , nn.Convad ) or isinstance(UpperCAmelCase , nn.BatchNormad )
if has_not_submodules:
self.traced.append(UpperCAmelCase )
def __call__( self : Any , UpperCAmelCase : Tensor ) -> Dict:
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(UpperCAmelCase )
[x.remove() for x in self.handles]
return self
@property
def A_ ( self : List[str] ) -> int:
# check the len of the state_dict keys to see if we have learnable params
return list(filter(lambda UpperCAmelCase : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class lowerCAmelCase :
UpperCAmelCase__ = 42
UpperCAmelCase__ = 42
UpperCAmelCase__ = 0
UpperCAmelCase__ = field(default_factory=__UpperCamelCase )
UpperCAmelCase__ = field(default_factory=__UpperCamelCase )
def __call__( self : Any , UpperCAmelCase : Tensor ) -> int:
lowerCamelCase__ : Union[str, Any] = Tracker(self.dest )(UpperCAmelCase ).parametrized
lowerCamelCase__ : List[Any] = Tracker(self.src )(UpperCAmelCase ).parametrized
lowerCamelCase__ : Any = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.src_skip , UpperCAmelCase ) )
lowerCamelCase__ : int = list(filter(lambda UpperCAmelCase : type(UpperCAmelCase ) not in self.dest_skip , UpperCAmelCase ) )
if len(UpperCAmelCase ) != len(UpperCAmelCase ):
raise Exception(
F"""Numbers of operations are different. Source module has {len(UpperCAmelCase )} operations while"""
F""" destination module has {len(UpperCAmelCase )}.""" )
for dest_m, src_m in zip(UpperCAmelCase , UpperCAmelCase ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"""Transfered from={src_m} to={dest_m}""" )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True ) -> Any:
print(F"""Converting {name}...""" )
with torch.no_grad():
lowerCamelCase__ : int = timm.create_model(_UpperCAmelCase , pretrained=_UpperCAmelCase ).eval()
lowerCamelCase__ : Union[str, Any] = ResNetForImageClassification(_UpperCAmelCase ).eval()
lowerCamelCase__ : str = ModuleTransfer(src=_UpperCAmelCase , dest=_UpperCAmelCase )
lowerCamelCase__ : Optional[int] = torch.randn((1, 3, 224, 224) )
module_transfer(_UpperCAmelCase )
assert torch.allclose(from_model(_UpperCAmelCase ) , our_model(_UpperCAmelCase ).logits ), "The model logits don't match the original one."
lowerCamelCase__ : Union[str, Any] = F"""resnet{"-".join(name.split("resnet" ) )}"""
print(_UpperCAmelCase )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='Add model' , use_temp_dir=_UpperCAmelCase , )
# we can use the convnext one
lowerCamelCase__ : Union[str, Any] = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='Add image processor' , use_temp_dir=_UpperCAmelCase , )
print(F"""Pushed {checkpoint_name}""" )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True ) -> List[str]:
lowerCamelCase__ : Dict = 'imagenet-1k-id2label.json'
lowerCamelCase__ : Optional[int] = 1000
lowerCamelCase__ : int = (1, num_labels)
lowerCamelCase__ : Any = 'huggingface/label-files'
lowerCamelCase__ : str = num_labels
lowerCamelCase__ : Any = json.load(open(hf_hub_download(_UpperCAmelCase , _UpperCAmelCase , repo_type='dataset' ) , 'r' ) )
lowerCamelCase__ : Any = {int(_UpperCAmelCase ): v for k, v in idalabel.items()}
lowerCamelCase__ : str = idalabel
lowerCamelCase__ : Any = {v: k for k, v in idalabel.items()}
lowerCamelCase__ : Tuple = partial(_UpperCAmelCase , num_labels=_UpperCAmelCase , idalabel=_UpperCAmelCase , labelaid=_UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = {
'resnet18': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ),
'resnet26': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ),
'resnet34': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='basic' ),
'resnet50': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ),
'resnet101': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ),
'resnet152': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='bottleneck' ),
}
if model_name:
convert_weight_and_push(_UpperCAmelCase , names_to_config[model_name] , _UpperCAmelCase , _UpperCAmelCase )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, expected_shape
if __name__ == "__main__":
_UpperCAmelCase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--model_name""",
default=None,
type=str,
help=(
"""The name of the model you wish to convert, it must be one of the supported resnet* architecture,"""
""" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."""
),
)
parser.add_argument(
"""--pytorch_dump_folder_path""",
default=None,
type=Path,
required=True,
help="""Path to the output PyTorch model directory.""",
)
parser.add_argument(
"""--push_to_hub""",
default=True,
type=bool,
required=False,
help="""If True, push model and image processor to the hub.""",
)
_UpperCAmelCase : str = parser.parse_args()
_UpperCAmelCase : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 45
| 0
|
'''simple docstring'''
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class A__ ( _a , _a , unittest.TestCase ):
__UpperCamelCase : Any = IFInpaintingSuperResolutionPipeline
__UpperCamelCase : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''}
__UpperCamelCase : Tuple = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
__UpperCamelCase : Any = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __UpperCAmelCase ( self :Union[str, Any] ) -> int:
'''simple docstring'''
return self._get_superresolution_dummy_components()
def __UpperCAmelCase ( self :Union[str, Any] , SCREAMING_SNAKE_CASE :str , SCREAMING_SNAKE_CASE :Tuple=0 ) -> List[str]:
'''simple docstring'''
if str(SCREAMING_SNAKE_CASE ).startswith("""mps""" ):
_a : Dict =torch.manual_seed(SCREAMING_SNAKE_CASE )
else:
_a : List[str] =torch.Generator(device=SCREAMING_SNAKE_CASE ).manual_seed(SCREAMING_SNAKE_CASE )
_a : Union[str, Any] =floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE )
_a : str =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE )
_a : Tuple =floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(SCREAMING_SNAKE_CASE ) ).to(SCREAMING_SNAKE_CASE )
_a : Optional[Any] ={
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''mask_image''': mask_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def __UpperCAmelCase ( self :Optional[Any] ) -> List[str]:
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
def __UpperCAmelCase ( self :Optional[int] ) -> List[Any]:
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != """cuda""" , reason="""float16 requires CUDA""" )
def __UpperCAmelCase ( self :Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1e-1 )
def __UpperCAmelCase ( self :Dict ) -> Optional[Any]:
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 )
def __UpperCAmelCase ( self :int ) -> Dict:
'''simple docstring'''
self._test_save_load_local()
def __UpperCAmelCase ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1e-2 , )
| 276
|
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
lowerCAmelCase_ = logging.getLogger(__name__)
@dataclass
class __lowerCAmelCase :
lowerCamelCase_ : str
lowerCamelCase_ : List[str]
lowerCamelCase_ : Optional[List[str]]
@dataclass
class __lowerCAmelCase :
lowerCamelCase_ : List[int]
lowerCamelCase_ : List[int]
lowerCamelCase_ : Optional[List[int]] = None
lowerCamelCase_ : Optional[List[int]] = None
class __lowerCAmelCase ( _a ):
lowerCamelCase_ : str = '''train'''
lowerCamelCase_ : List[str] = '''dev'''
lowerCamelCase_ : List[Any] = '''test'''
class __lowerCAmelCase :
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ ) -> List[InputExample]:
'''simple docstring'''
raise NotImplementedError
@staticmethod
def lowerCamelCase (__magic_name__ ) -> List[str]:
'''simple docstring'''
raise NotImplementedError
@staticmethod
def lowerCamelCase (__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=False , __magic_name__="[CLS]" , __magic_name__=1 , __magic_name__="[SEP]" , __magic_name__=False , __magic_name__=False , __magic_name__=0 , __magic_name__=0 , __magic_name__=-100 , __magic_name__=0 , __magic_name__=True , ) -> List[InputFeatures]:
'''simple docstring'''
snake_case_ : Optional[int] = {label: i for i, label in enumerate(__magic_name__ )}
snake_case_ : Dict = []
for ex_index, example in enumerate(__magic_name__ ):
if ex_index % 1_0000 == 0:
logger.info('''Writing example %d of %d''' , __magic_name__ , len(__magic_name__ ) )
snake_case_ : List[str] = []
snake_case_ : List[str] = []
for word, label in zip(example.words , example.labels ):
snake_case_ : Optional[Any] = tokenizer.tokenize(__magic_name__ )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(__magic_name__ ) > 0:
tokens.extend(__magic_name__ )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__magic_name__ ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
snake_case_ : Union[str, Any] = tokenizer.num_special_tokens_to_add()
if len(__magic_name__ ) > max_seq_length - special_tokens_count:
snake_case_ : str = tokens[: (max_seq_length - special_tokens_count)]
snake_case_ : Any = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
snake_case_ : Union[str, Any] = [sequence_a_segment_id] * len(__magic_name__ )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
snake_case_ : Union[str, Any] = [cls_token] + tokens
snake_case_ : List[Any] = [pad_token_label_id] + label_ids
snake_case_ : Optional[Any] = [cls_token_segment_id] + segment_ids
snake_case_ : Optional[Any] = tokenizer.convert_tokens_to_ids(__magic_name__ )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
snake_case_ : int = [1 if mask_padding_with_zero else 0] * len(__magic_name__ )
# Zero-pad up to the sequence length.
snake_case_ : Optional[int] = max_seq_length - len(__magic_name__ )
if pad_on_left:
snake_case_ : Optional[Any] = ([pad_token] * padding_length) + input_ids
snake_case_ : Optional[int] = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
snake_case_ : Optional[Any] = ([pad_token_segment_id] * padding_length) + segment_ids
snake_case_ : Dict = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(__magic_name__ ) == max_seq_length
assert len(__magic_name__ ) == max_seq_length
assert len(__magic_name__ ) == max_seq_length
assert len(__magic_name__ ) == max_seq_length
if ex_index < 5:
logger.info('''*** Example ***''' )
logger.info('''guid: %s''' , example.guid )
logger.info('''tokens: %s''' , ''' '''.join([str(__magic_name__ ) for x in tokens] ) )
logger.info('''input_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_ids] ) )
logger.info('''input_mask: %s''' , ''' '''.join([str(__magic_name__ ) for x in input_mask] ) )
logger.info('''segment_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in segment_ids] ) )
logger.info('''label_ids: %s''' , ''' '''.join([str(__magic_name__ ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
snake_case_ : int = None
features.append(
InputFeatures(
input_ids=__magic_name__ , attention_mask=__magic_name__ , token_type_ids=__magic_name__ , label_ids=__magic_name__ ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class __lowerCAmelCase ( _a ):
lowerCamelCase_ : List[InputFeatures]
lowerCamelCase_ : int = nn.CrossEntropyLoss().ignore_index
def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = os.path.join(
__magic_name__ , '''cached_{}_{}_{}'''.format(mode.value , tokenizer.__class__.__name__ , str(__magic_name__ ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
snake_case_ : Dict = cached_features_file + '''.lock'''
with FileLock(__magic_name__ ):
if os.path.exists(__magic_name__ ) and not overwrite_cache:
logger.info(F'''Loading features from cached file {cached_features_file}''' )
snake_case_ : Dict = torch.load(__magic_name__ )
else:
logger.info(F'''Creating features from dataset file at {data_dir}''' )
snake_case_ : Any = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ )
# TODO clean up all this to leverage built-in features of tokenizers
snake_case_ : int = token_classification_task.convert_examples_to_features(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(F'''Saving features into cached file {cached_features_file}''' )
torch.save(self.features , __magic_name__ )
def __len__(self ) -> Optional[Any]:
'''simple docstring'''
return len(self.features )
def __getitem__(self , __magic_name__ ) -> InputFeatures:
'''simple docstring'''
return self.features[i]
if is_tf_available():
import tensorflow as tf
class __lowerCAmelCase :
lowerCamelCase_ : List[InputFeatures]
lowerCamelCase_ : int = -100
def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__=False , __magic_name__ = Split.train , ) -> Optional[int]:
'''simple docstring'''
snake_case_ : Optional[int] = token_classification_task.read_examples_from_file(__magic_name__ , __magic_name__ )
# TODO clean up all this to leverage built-in features of tokenizers
snake_case_ : int = token_classification_task.convert_examples_to_features(
__magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , cls_token_at_end=bool(model_type in ['''xlnet'''] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['''xlnet'''] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__magic_name__ , pad_on_left=bool(tokenizer.padding_side == '''left''' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
snake_case_ : Optional[Any] = tf.data.Dataset.from_generator(
__magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa}, tf.intaa) , (
{'''input_ids''': tf.TensorShape([None] ), '''attention_mask''': tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
snake_case_ : int = tf.data.Dataset.from_generator(
__magic_name__ , ({'''input_ids''': tf.intaa, '''attention_mask''': tf.intaa, '''token_type_ids''': tf.intaa}, tf.intaa) , (
{
'''input_ids''': tf.TensorShape([None] ),
'''attention_mask''': tf.TensorShape([None] ),
'''token_type_ids''': tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def lowerCamelCase (self ) -> List[Any]:
'''simple docstring'''
snake_case_ : Optional[Any] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__(self ) -> str:
'''simple docstring'''
return len(self.features )
def __getitem__(self , __magic_name__ ) -> InputFeatures:
'''simple docstring'''
return self.features[i]
| 279
| 0
|
from __future__ import annotations
from math import pow, sqrt
def _UpperCamelCase ( UpperCamelCase_ : Dict , UpperCamelCase_ : Tuple , UpperCamelCase_ : int ) -> Union[str, Any]:
"""simple docstring"""
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('One and only one argument must be 0' )
if resistance == 0:
return {"resistance": sqrt(pow(UpperCamelCase_ , 2 ) - pow(UpperCamelCase_ , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(UpperCamelCase_ , 2 ) - pow(UpperCamelCase_ , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(UpperCamelCase_ , 2 ) + pow(UpperCamelCase_ , 2 ) )}
else:
raise ValueError('Exactly one argument must be 0' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 371
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Union[str, Any] = {
"""configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""],
"""tokenization_convbert""": ["""ConvBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[str] = ["""ConvBertTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Optional[Any] = [
"""CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ConvBertForMaskedLM""",
"""ConvBertForMultipleChoice""",
"""ConvBertForQuestionAnswering""",
"""ConvBertForSequenceClassification""",
"""ConvBertForTokenClassification""",
"""ConvBertLayer""",
"""ConvBertModel""",
"""ConvBertPreTrainedModel""",
"""load_tf_weights_in_convbert""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] = [
"""TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFConvBertForMaskedLM""",
"""TFConvBertForMultipleChoice""",
"""TFConvBertForQuestionAnswering""",
"""TFConvBertForSequenceClassification""",
"""TFConvBertForTokenClassification""",
"""TFConvBertLayer""",
"""TFConvBertModel""",
"""TFConvBertPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig
from .tokenization_convbert import ConvBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_convbert_fast import ConvBertTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_convbert import (
CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
ConvBertForMaskedLM,
ConvBertForMultipleChoice,
ConvBertForQuestionAnswering,
ConvBertForSequenceClassification,
ConvBertForTokenClassification,
ConvBertLayer,
ConvBertModel,
ConvBertPreTrainedModel,
load_tf_weights_in_convbert,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_convbert import (
TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertLayer,
TFConvBertModel,
TFConvBertPreTrainedModel,
)
else:
import sys
__snake_case : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 122
| 0
|
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self : Any ,_a : List[Any] ,_a : List[str]=sys.maxsize ):
'''simple docstring'''
_a : List[str] = 'bilinear'
_a : List[Any] = max_size
_a : Dict = short_edge_length
def __call__( self : int ,_a : List[Any] ):
'''simple docstring'''
_a : List[str] = []
for img in imgs:
_a, _a : Union[str, Any] = img.shape[:2]
# later: provide list and randomly choose index for resize
_a : Optional[int] = np.random.randint(self.short_edge_length[0] ,self.short_edge_length[1] + 1 )
if size == 0:
return img
_a : Any = size * 1.0 / min(_a ,_a )
if h < w:
_a, _a : Optional[Any] = size, scale * w
else:
_a, _a : Union[str, Any] = scale * h, size
if max(_a ,_a ) > self.max_size:
_a : Any = self.max_size * 1.0 / max(_a ,_a )
_a : Any = newh * scale
_a : Dict = neww * scale
_a : str = int(neww + 0.5 )
_a : Optional[Any] = int(newh + 0.5 )
if img.dtype == np.uinta:
_a : Any = Image.fromarray(_a )
_a : List[Any] = pil_image.resize((neww, newh) ,PILImageResampling.BILINEAR )
_a : Tuple = np.asarray(_a )
else:
_a : Dict = img.permute(2 ,0 ,1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
_a : Any = nn.functional.interpolate(
_a ,(newh, neww) ,mode=self.interp_method ,align_corners=_a ).squeeze(0 )
img_augs.append(_a )
return img_augs
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self : str ,_a : Union[str, Any] ):
'''simple docstring'''
_a : Dict = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] ,cfg.INPUT.MAX_SIZE_TEST )
_a : Any = cfg.INPUT.FORMAT
_a : List[Any] = cfg.SIZE_DIVISIBILITY
_a : str = cfg.PAD_VALUE
_a : List[str] = cfg.INPUT.MAX_SIZE_TEST
_a : Union[str, Any] = cfg.MODEL.DEVICE
_a : Optional[Any] = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 )
_a : Optional[int] = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 )
_a : Optional[Any] = lambda _a : (x - self.pixel_mean) / self.pixel_std
def __lowercase ( self : int ,_a : Optional[Any] ):
'''simple docstring'''
_a : List[Any] = tuple(max(_a ) for s in zip(*[img.shape for img in images] ) )
_a : List[Any] = [im.shape[-2:] for im in images]
_a : Dict = [
nn.functional.pad(
_a ,[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] ,value=self.pad_value ,)
for size, im in zip(_a ,_a )
]
return torch.stack(_a ), torch.tensor(_a )
def __call__( self : List[Any] ,_a : Union[str, Any] ,_a : Union[str, Any]=False ):
'''simple docstring'''
with torch.no_grad():
if not isinstance(_a ,_a ):
_a : Optional[Any] = [images]
if single_image:
assert len(_a ) == 1
for i in range(len(_a ) ):
if isinstance(images[i] ,torch.Tensor ):
images.insert(_a ,images.pop(_a ).to(self.device ).float() )
elif not isinstance(images[i] ,torch.Tensor ):
images.insert(
_a ,torch.as_tensor(img_tensorize(images.pop(_a ) ,input_format=self.input_format ) )
.to(self.device )
.float() ,)
# resize smallest edge
_a : List[Any] = torch.tensor([im.shape[:2] for im in images] )
_a : Any = self.aug(_a )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
_a : Any = [self.normalizer(_a ) for x in images]
# now pad them to do the following operations
_a, _a : Any = self.pad(_a )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
_a : List[str] = torch.true_divide(_a ,_a )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def UpperCAmelCase_ (__a : Tuple , __a : List[Any] ):
"""simple docstring"""
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def UpperCAmelCase_ (__a : Any , __a : Tuple[int, int] ):
"""simple docstring"""
assert torch.isfinite(__a ).all(), "Box tensor contains infinite or NaN!"
_a, _a : List[str] = box_size
tensor[:, 0].clamp_(min=0 , max=__a )
tensor[:, 1].clamp_(min=0 , max=__a )
tensor[:, 2].clamp_(min=0 , max=__a )
tensor[:, 3].clamp_(min=0 , max=__a )
| 271
|
'''simple docstring'''
import inspect
import unittest
import numpy as np
from tests.test_modeling_common import floats_tensor
from transformers import MaskaFormerConfig, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel
if is_vision_available():
from transformers import MaskaFormerImageProcessor
if is_vision_available():
from PIL import Image
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self : int ,_a : Any ,_a : Optional[int]=2 ,_a : Optional[Any]=True ,_a : Dict=False ,_a : Dict=10 ,_a : Any=3 ,_a : str=32 * 8 ,_a : Optional[int]=32 * 8 ,_a : int=4 ,_a : str=64 ,):
'''simple docstring'''
_a : Dict = parent
_a : Union[str, Any] = batch_size
_a : Tuple = is_training
_a : List[str] = use_auxiliary_loss
_a : Optional[Any] = num_queries
_a : str = num_channels
_a : List[str] = min_size
_a : int = max_size
_a : Optional[int] = num_labels
_a : List[str] = hidden_dim
_a : int = hidden_dim
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
_a : Tuple = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to(
_a )
_a : Optional[Any] = torch.ones([self.batch_size, self.min_size, self.max_size] ,device=_a )
_a : Union[str, Any] = (
torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] ,device=_a ) > 0.5
).float()
_a : Tuple = (torch.rand((self.batch_size, self.num_labels) ,device=_a ) > 0.5).long()
_a : Dict = self.get_config()
return config, pixel_values, pixel_mask, mask_labels, class_labels
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
_a : int = MaskaFormerConfig(
hidden_size=self.hidden_dim ,)
_a : str = self.num_queries
_a : Union[str, Any] = self.num_labels
_a : Tuple = [1, 1, 1, 1]
_a : Dict = self.num_channels
_a : str = 64
_a : Tuple = 128
_a : Optional[Any] = self.hidden_dim
_a : Union[str, Any] = self.hidden_dim
_a : List[Any] = self.hidden_dim
return config
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
_a, _a, _a, _a, _a : Optional[Any] = self.prepare_config_and_inputs()
_a : str = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask}
return config, inputs_dict
def __lowercase ( self : List[str] ,_a : Optional[Any] ,_a : str ):
'''simple docstring'''
_a : str = output.encoder_hidden_states
_a : Any = output.pixel_decoder_hidden_states
_a : Optional[Any] = output.transformer_decoder_hidden_states
self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_a ) ,len(config.backbone_config.depths ) )
self.parent.assertTrue(len(_a ) ,config.decoder_layers )
def __lowercase ( self : List[str] ,_a : str ,_a : List[Any] ,_a : Any ,_a : Union[str, Any]=False ):
'''simple docstring'''
with torch.no_grad():
_a : str = MaskaFormerModel(config=_a )
model.to(_a )
model.eval()
_a : Any = model(pixel_values=_a ,pixel_mask=_a )
_a : Optional[Any] = model(_a ,output_hidden_states=_a )
self.parent.assertEqual(
output.transformer_decoder_last_hidden_state.shape ,(self.batch_size, self.num_queries, self.hidden_dim) ,)
# let's ensure the other two hidden state exists
self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(output.encoder_last_hidden_state is not None )
if output_hidden_states:
self.check_output_hidden_state(_a ,_a )
def __lowercase ( self : Tuple ,_a : List[Any] ,_a : Union[str, Any] ,_a : Tuple ,_a : List[str] ,_a : Any ):
'''simple docstring'''
_a : int = MaskaFormerForUniversalSegmentation(config=_a )
model.to(_a )
model.eval()
def comm_check_on_output(_a : Any ):
# let's still check that all the required stuff is there
self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None )
self.parent.assertTrue(result.encoder_last_hidden_state is not None )
# okay, now we need to check the logits shape
# due to the encoder compression, masks have a //4 spatial size
self.parent.assertEqual(
result.masks_queries_logits.shape ,(self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) ,)
# + 1 for null class
self.parent.assertEqual(
result.class_queries_logits.shape ,(self.batch_size, self.num_queries, self.num_labels + 1) )
with torch.no_grad():
_a : Any = model(pixel_values=_a ,pixel_mask=_a )
_a : Optional[int] = model(_a )
comm_check_on_output(_a )
_a : List[str] = model(
pixel_values=_a ,pixel_mask=_a ,mask_labels=_a ,class_labels=_a )
comm_check_on_output(_a )
self.parent.assertTrue(result.loss is not None )
self.parent.assertEqual(result.loss.shape ,torch.Size([1] ) )
@require_torch
class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else ()
__UpperCAmelCase : Dict = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {}
__UpperCAmelCase : Dict = False
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : Dict = False
__UpperCAmelCase : List[Any] = False
def __lowercase ( self : Optional[int] ):
'''simple docstring'''
_a : Union[str, Any] = MaskaFormerModelTester(self )
_a : Dict = ConfigTester(self ,config_class=_a ,has_text_modality=_a )
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
self.config_tester.run_common_tests()
def __lowercase ( self : Optional[int] ):
'''simple docstring'''
_a, _a : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a )
def __lowercase ( self : str ):
'''simple docstring'''
_a : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a )
@unittest.skip(reason='Mask2Former does not use inputs_embeds' )
def __lowercase ( self : Any ):
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not have a get_input_embeddings method' )
def __lowercase ( self : str ):
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former is not a generative model' )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
pass
@unittest.skip(reason='Mask2Former does not use token embeddings' )
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(
reason='Mask2Former has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def __lowercase ( self : Dict ):
'''simple docstring'''
pass
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
pass
def __lowercase ( self : int ):
'''simple docstring'''
_a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Union[str, Any] = model_class(_a )
_a : List[str] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_a : Optional[Any] = [*signature.parameters.keys()]
_a : List[Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] ,_a )
@slow
def __lowercase ( self : List[str] ):
'''simple docstring'''
for model_name in ["facebook/mask2former-swin-small-coco-instance"]:
_a : Dict = MaskaFormerModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def __lowercase ( self : List[Any] ):
'''simple docstring'''
_a : int = (self.model_tester.min_size,) * 2
_a : Any = {
'pixel_values': torch.randn((2, 3, *size) ,device=_a ),
'mask_labels': torch.randn((2, 10, *size) ,device=_a ),
'class_labels': torch.zeros(2 ,10 ,device=_a ).long(),
}
_a : List[Any] = self.model_tester.get_config()
_a : int = MaskaFormerForUniversalSegmentation(_a ).to(_a )
_a : str = model(**_a )
self.assertTrue(outputs.loss is not None )
def __lowercase ( self : List[str] ):
'''simple docstring'''
_a, _a : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.create_and_check_maskaformer_model(_a ,**_a ,output_hidden_states=_a )
def __lowercase ( self : int ):
'''simple docstring'''
_a, _a : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_a : Any = model_class(_a ).to(_a )
_a : Optional[int] = model(**_a ,output_attentions=_a )
self.assertTrue(outputs.attentions is not None )
def __lowercase ( self : Tuple ):
'''simple docstring'''
if not self.model_tester.is_training:
return
_a : List[str] = self.all_model_classes[1]
_a, _a, _a, _a, _a : List[str] = self.model_tester.prepare_config_and_inputs()
_a : Any = model_class(_a )
model.to(_a )
model.train()
_a : Union[str, Any] = model(_a ,mask_labels=_a ,class_labels=_a ).loss
loss.backward()
def __lowercase ( self : int ):
'''simple docstring'''
_a : int = self.all_model_classes[1]
_a, _a, _a, _a, _a : List[Any] = self.model_tester.prepare_config_and_inputs()
_a : str = True
_a : str = True
_a : List[str] = model_class(_a ).to(_a )
model.train()
_a : Optional[int] = model(_a ,mask_labels=_a ,class_labels=_a )
_a : Tuple = outputs.encoder_hidden_states[0]
encoder_hidden_states.retain_grad()
_a : str = outputs.pixel_decoder_hidden_states[0]
pixel_decoder_hidden_states.retain_grad()
_a : Dict = outputs.transformer_decoder_hidden_states[0]
transformer_decoder_hidden_states.retain_grad()
_a : List[str] = outputs.attentions[0]
attentions.retain_grad()
outputs.loss.backward(retain_graph=_a )
self.assertIsNotNone(encoder_hidden_states.grad )
self.assertIsNotNone(pixel_decoder_hidden_states.grad )
self.assertIsNotNone(transformer_decoder_hidden_states.grad )
self.assertIsNotNone(attentions.grad )
__lowerCAmelCase = 1e-4
def UpperCAmelCase_ ():
"""simple docstring"""
_a : int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_vision
@slow
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def __lowercase ( self : Union[str, Any] ):
'''simple docstring'''
return "facebook/mask2former-swin-small-coco-instance"
@cached_property
def __lowercase ( self : Any ):
'''simple docstring'''
return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None
def __lowercase ( self : Any ):
'''simple docstring'''
_a : List[str] = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a )
_a : int = self.default_image_processor
_a : Tuple = prepare_img()
_a : Any = image_processor(_a ,return_tensors='pt' ).to(_a )
_a : Union[str, Any] = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_a ,(1, 3, 384, 384) )
with torch.no_grad():
_a : Optional[Any] = model(**_a )
_a : List[Any] = torch.tensor(
[[-0.2790, -1.0717, -1.1668], [-0.5128, -0.3128, -0.4987], [-0.5832, 0.1971, -0.0197]] ).to(_a )
self.assertTrue(
torch.allclose(
outputs.encoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) )
_a : str = torch.tensor(
[[0.8973, 1.1847, 1.1776], [1.1934, 1.5040, 1.5128], [1.1153, 1.4486, 1.4951]] ).to(_a )
self.assertTrue(
torch.allclose(
outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] ,_a ,atol=_a ) )
_a : Any = torch.tensor(
[[2.1152, 1.7000, -0.8603], [1.5808, 1.8004, -0.9353], [1.6043, 1.7495, -0.5999]] ).to(_a )
self.assertTrue(
torch.allclose(
outputs.transformer_decoder_last_hidden_state[0, :3, :3] ,_a ,atol=_a ) )
def __lowercase ( self : Tuple ):
'''simple docstring'''
_a : List[Any] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval()
_a : Optional[Any] = self.default_image_processor
_a : List[Any] = prepare_img()
_a : str = image_processor(_a ,return_tensors='pt' ).to(_a )
_a : Any = inputs['pixel_values'].shape
# check size is divisible by 32
self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 )
# check size
self.assertEqual(_a ,(1, 3, 384, 384) )
with torch.no_grad():
_a : Optional[int] = model(**_a )
# masks_queries_logits
_a : Dict = outputs.masks_queries_logits
self.assertEqual(
masks_queries_logits.shape ,(1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) )
_a : Dict = [
[-8.7839, -9.0056, -8.8121],
[-7.4104, -7.0313, -6.5401],
[-6.6105, -6.3427, -6.4675],
]
_a : Optional[Any] = torch.tensor(_a ).to(_a )
self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] ,_a ,atol=_a ) )
# class_queries_logits
_a : str = outputs.class_queries_logits
self.assertEqual(class_queries_logits.shape ,(1, model.config.num_queries, model.config.num_labels + 1) )
_a : str = torch.tensor(
[
[1.8324, -8.0835, -4.1922],
[0.8450, -9.0050, -3.6053],
[0.3045, -7.7293, -3.0275],
] ).to(_a )
self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] ,_a ,atol=_a ) )
def __lowercase ( self : Optional[Any] ):
'''simple docstring'''
_a : Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval()
_a : Tuple = self.default_image_processor
_a : Tuple = image_processor(
[np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] ,segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] ,return_tensors='pt' ,)
_a : str = inputs['pixel_values'].to(_a )
_a : str = [el.to(_a ) for el in inputs['mask_labels']]
_a : Dict = [el.to(_a ) for el in inputs['class_labels']]
with torch.no_grad():
_a : List[str] = model(**_a )
self.assertTrue(outputs.loss is not None )
| 271
| 1
|
'''simple docstring'''
from __future__ import annotations
import inspect
import unittest
import numpy as np
from transformers import DeiTConfig
from transformers.testing_utils import require_tf, require_vision, slow
from transformers.utils import cached_property, is_tf_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
TFDeiTModel,
)
from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class _UpperCamelCase :
'''simple docstring'''
def __init__( self : int , _lowerCAmelCase : int , _lowerCAmelCase : Any=1_3 , _lowerCAmelCase : str=3_0 , _lowerCAmelCase : List[Any]=2 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : Dict=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Union[str, Any]=3_2 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : Optional[Any]=4 , _lowerCAmelCase : Union[str, Any]=3_7 , _lowerCAmelCase : List[str]="gelu" , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[Any]=1_0 , _lowerCAmelCase : Any=0.02 , _lowerCAmelCase : Any=3 , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : Union[str, Any]=2 , ):
'''simple docstring'''
__lowercase =parent
__lowercase =batch_size
__lowercase =image_size
__lowercase =patch_size
__lowercase =num_channels
__lowercase =is_training
__lowercase =use_labels
__lowercase =hidden_size
__lowercase =num_hidden_layers
__lowercase =num_attention_heads
__lowercase =intermediate_size
__lowercase =hidden_act
__lowercase =hidden_dropout_prob
__lowercase =attention_probs_dropout_prob
__lowercase =type_sequence_label_size
__lowercase =initializer_range
__lowercase =scope
__lowercase =encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
__lowercase =(image_size // patch_size) ** 2
__lowercase =num_patches + 2
def __lowerCamelCase ( self : Any):
'''simple docstring'''
__lowercase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
__lowercase =None
if self.use_labels:
__lowercase =ids_tensor([self.batch_size] , self.type_sequence_label_size)
__lowercase =self.get_config()
return config, pixel_values, labels
def __lowerCamelCase ( self : Optional[int]):
'''simple docstring'''
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def __lowerCamelCase ( self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : int):
'''simple docstring'''
__lowercase =TFDeiTModel(config=_lowerCAmelCase)
__lowercase =model(_lowerCAmelCase)
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
def __lowerCamelCase ( self : Union[str, Any] , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : str , _lowerCAmelCase : List[str]):
'''simple docstring'''
__lowercase =TFDeiTForMaskedImageModeling(config=_lowerCAmelCase)
__lowercase =model(_lowerCAmelCase)
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size))
# test greyscale images
__lowercase =1
__lowercase =TFDeiTForMaskedImageModeling(_lowerCAmelCase)
__lowercase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
__lowercase =model(_lowerCAmelCase)
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size))
def __lowerCamelCase ( self : Optional[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]):
'''simple docstring'''
__lowercase =self.type_sequence_label_size
__lowercase =TFDeiTForImageClassification(_lowerCAmelCase)
__lowercase =model(_lowerCAmelCase , labels=_lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
# test greyscale images
__lowercase =1
__lowercase =TFDeiTForImageClassification(_lowerCAmelCase)
__lowercase =floats_tensor([self.batch_size, 1, self.image_size, self.image_size])
__lowercase =model(_lowerCAmelCase , labels=_lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size))
def __lowerCamelCase ( self : str):
'''simple docstring'''
__lowercase =self.prepare_config_and_inputs()
__lowercase , __lowercase , __lowercase =config_and_inputs
__lowercase ={'pixel_values': pixel_values}
return config, inputs_dict
@require_tf
class _UpperCamelCase ( A , A , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ = (
(
TFDeiTModel,
TFDeiTForImageClassification,
TFDeiTForImageClassificationWithTeacher,
TFDeiTForMaskedImageModeling,
)
if is_tf_available()
else ()
)
lowerCAmelCase__ = (
{
"""feature-extraction""": TFDeiTModel,
"""image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher),
}
if is_tf_available()
else {}
)
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
lowerCAmelCase__ = False
def __lowerCamelCase ( self : Optional[Any]):
'''simple docstring'''
__lowercase =TFDeiTModelTester(self)
__lowercase =ConfigTester(self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=3_7)
def __lowerCamelCase ( self : int):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='DeiT does not use inputs_embeds')
def __lowerCamelCase ( self : List[str]):
'''simple docstring'''
pass
def __lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
__lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase =model_class(_lowerCAmelCase)
self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer))
__lowercase =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(_lowerCAmelCase , tf.keras.layers.Dense))
def __lowerCamelCase ( self : List[str]):
'''simple docstring'''
__lowercase , __lowercase =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__lowercase =model_class(_lowerCAmelCase)
__lowercase =inspect.signature(model.call)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__lowercase =[*signature.parameters.keys()]
__lowercase =['pixel_values']
self.assertListEqual(arg_names[:1] , _lowerCAmelCase)
def __lowerCamelCase ( self : List[str]):
'''simple docstring'''
__lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_lowerCAmelCase)
def __lowerCamelCase ( self : Any):
'''simple docstring'''
__lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*_lowerCAmelCase)
def __lowerCamelCase ( self : str):
'''simple docstring'''
__lowercase =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase)
def __lowerCamelCase ( self : str , _lowerCAmelCase : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Tuple=False):
'''simple docstring'''
__lowercase =super()._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase , return_labels=_lowerCAmelCase)
if return_labels:
if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call).parameters:
del inputs_dict["labels"]
return inputs_dict
@slow
def __lowerCamelCase ( self : Union[str, Any]):
'''simple docstring'''
for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase =TFDeiTModel.from_pretrained(_lowerCAmelCase)
self.assertIsNotNone(_lowerCAmelCase)
def _A ( ):
"""simple docstring"""
__lowercase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
@require_vision
class _UpperCamelCase ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def __lowerCamelCase ( self : List[Any]):
'''simple docstring'''
return (
DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224')
if is_vision_available()
else None
)
@slow
def __lowerCamelCase ( self : str):
'''simple docstring'''
__lowercase =TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224')
__lowercase =self.default_image_processor
__lowercase =prepare_img()
__lowercase =image_processor(images=_lowerCAmelCase , return_tensors='tf')
# forward pass
__lowercase =model(**_lowerCAmelCase)
# verify the logits
__lowercase =tf.TensorShape((1, 1_0_0_0))
self.assertEqual(outputs.logits.shape , _lowerCAmelCase)
__lowercase =tf.constant([-1.0266, 0.1912, -1.2861])
self.assertTrue(np.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4))
| 353
|
'''simple docstring'''
from math import factorial
def _A ( _lowerCAmelCase = 20 ):
"""simple docstring"""
__lowercase =2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1,
# 2, 3,...
__lowercase =n // 2
return int(factorial(_lowerCAmelCase ) / (factorial(_lowerCAmelCase ) * factorial(n - k )) )
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution(20))
else:
try:
lowerCamelCase = int(sys.argv[1])
print(solution(n))
except ValueError:
print("""Invalid entry - please enter a number.""")
| 48
| 0
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
a_ = logging.get_logger(__name__)
a_ = {'''vocab_file''': '''vocab.txt'''}
a_ = {
'''vocab_file''': {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''',
}
}
a_ = {
'''YituTech/conv-bert-base''': 512,
'''YituTech/conv-bert-medium-small''': 512,
'''YituTech/conv-bert-small''': 512,
}
a_ = {
'''YituTech/conv-bert-base''': {'''do_lower_case''': True},
'''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True},
'''YituTech/conv-bert-small''': {'''do_lower_case''': True},
}
class lowercase__ ( _UpperCAmelCase ):
a_ =VOCAB_FILES_NAMES
a_ =PRETRAINED_VOCAB_FILES_MAP
a_ =PRETRAINED_INIT_CONFIGURATION
a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ =ConvBertTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , )-> Dict:
'''simple docstring'''
super().__init__(
__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , do_lower_case=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , tokenize_chinese_chars=__UpperCAmelCase , strip_accents=__UpperCAmelCase , **__UpperCAmelCase , )
lowerCAmelCase__ = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , __UpperCAmelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , __UpperCAmelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , __UpperCAmelCase ) != tokenize_chinese_chars
):
lowerCAmelCase__ = getattr(__UpperCAmelCase , normalizer_state.pop("type" ) )
lowerCAmelCase__ = do_lower_case
lowerCAmelCase__ = strip_accents
lowerCAmelCase__ = tokenize_chinese_chars
lowerCAmelCase__ = normalizer_class(**__UpperCAmelCase )
lowerCAmelCase__ = do_lower_case
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=None )-> List[Any]:
'''simple docstring'''
lowerCAmelCase__ = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> List[int]:
'''simple docstring'''
lowerCAmelCase__ = [self.sep_token_id]
lowerCAmelCase__ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None )-> Tuple[str]:
'''simple docstring'''
lowerCAmelCase__ = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
| 340
|
a_ = '''0.21.0'''
from .accelerator import Accelerator
from .big_modeling import (
cpu_offload,
cpu_offload_with_hook,
disk_offload,
dispatch_model,
init_empty_weights,
init_on_device,
load_checkpoint_and_dispatch,
)
from .data_loader import skip_first_batches
from .launchers import debug_launcher, notebook_launcher
from .state import PartialState
from .utils import (
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
FullyShardedDataParallelPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
find_executable_batch_size,
infer_auto_device_map,
is_rich_available,
load_checkpoint_in_model,
synchronize_rng_states,
)
if is_rich_available():
from .utils import rich
| 340
| 1
|
"""simple docstring"""
def __UpperCAmelCase ( snake_case_ : Any ) -> List[str]:
"""simple docstring"""
_lowerCAmelCase , _lowerCAmelCase = [], []
while len(snake_case_ ) > 1:
_lowerCAmelCase , _lowerCAmelCase = min(snake_case_ ), max(snake_case_ )
start.append(snake_case_ )
end.append(snake_case_ )
collection.remove(snake_case_ )
collection.remove(snake_case_ )
end.reverse()
return start + collection + end
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Tuple = input('''Enter numbers separated by a comma:\n''').strip()
SCREAMING_SNAKE_CASE : Any = [int(item) for item in user_input.split(''',''')]
print(*merge_sort(unsorted), sep=''',''')
| 370
|
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel
from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS,
CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCamelCase ( __lowercase , unittest.TestCase ):
__UpperCamelCase = DiTPipeline
__UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS
__UpperCamelCase = PipelineTesterMixin.required_optional_params - {
'latents',
'num_images_per_prompt',
'callback',
'callback_steps',
}
__UpperCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS
__UpperCamelCase = False
def A__ (self ):
'''simple docstring'''
torch.manual_seed(0 )
_lowerCAmelCase = TransformeraDModel(
sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=lowerCamelCase , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1_000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=lowerCamelCase , )
_lowerCAmelCase = AutoencoderKL()
_lowerCAmelCase = DDIMScheduler()
_lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler}
return components
def A__ (self , lowerCamelCase , lowerCamelCase=0 ):
'''simple docstring'''
if str(lowerCamelCase ).startswith("""mps""" ):
_lowerCAmelCase = torch.manual_seed(lowerCamelCase )
else:
_lowerCAmelCase = torch.Generator(device=lowerCamelCase ).manual_seed(lowerCamelCase )
_lowerCAmelCase = {
"""class_labels""": [1],
"""generator""": generator,
"""num_inference_steps""": 2,
"""output_type""": """numpy""",
}
return inputs
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = """cpu"""
_lowerCAmelCase = self.get_dummy_components()
_lowerCAmelCase = self.pipeline_class(**lowerCamelCase )
pipe.to(lowerCamelCase )
pipe.set_progress_bar_config(disable=lowerCamelCase )
_lowerCAmelCase = self.get_dummy_inputs(lowerCamelCase )
_lowerCAmelCase = pipe(**lowerCamelCase ).images
_lowerCAmelCase = image[0, -3:, -3:, -1]
self.assertEqual(image.shape , (1, 16, 16, 3) )
_lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] )
_lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max()
self.assertLessEqual(lowerCamelCase , 1e-3 )
def A__ (self ):
'''simple docstring'''
self._test_inference_batch_single_identical(relax_max_difference=lowerCamelCase , expected_max_diff=1e-3 )
@unittest.skipIf(
torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , )
def A__ (self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 )
@require_torch_gpu
@slow
class __lowerCamelCase ( unittest.TestCase ):
def A__ (self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""]
_lowerCAmelCase = pipe.get_label_ids(lowerCamelCase )
_lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=40 , output_type="""np""" ).images
for word, image in zip(lowerCamelCase , lowerCamelCase ):
_lowerCAmelCase = load_numpy(
f"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-2
def A__ (self ):
'''simple docstring'''
_lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" )
_lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config )
pipe.to("""cuda""" )
_lowerCAmelCase = ["""vase""", """umbrella"""]
_lowerCAmelCase = pipe.get_label_ids(lowerCamelCase )
_lowerCAmelCase = torch.manual_seed(0 )
_lowerCAmelCase = pipe(lowerCamelCase , generator=lowerCamelCase , num_inference_steps=25 , output_type="""np""" ).images
for word, image in zip(lowerCamelCase , lowerCamelCase ):
_lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
f"""/dit/{word}_512.npy""" )
assert np.abs((expected_image - image).max() ) < 1e-1
| 317
| 0
|
"""simple docstring"""
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
from .unet_ad_blocks import get_down_block, get_mid_block, get_out_block, get_up_block
@dataclass
class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE ):
__a = 42
class lowerCAmelCase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
@register_to_config
def __init__( self : Union[str, Any] , _lowerCamelCase : Union[str, Any] = 65536 , _lowerCamelCase : List[str] = None , _lowerCamelCase : str = 2 , _lowerCamelCase : Tuple = 2 , _lowerCamelCase : Optional[int] = 0 , _lowerCamelCase : Dict = "fourier" , _lowerCamelCase : Tuple = True , _lowerCamelCase : int = False , _lowerCamelCase : List[str] = 0.0 , _lowerCamelCase : List[Any] = ("DownBlock1DNoSkip", "DownBlock1D", "AttnDownBlock1D") , _lowerCamelCase : str = ("AttnUpBlock1D", "UpBlock1D", "UpBlock1DNoSkip") , _lowerCamelCase : List[Any] = "UNetMidBlock1D" , _lowerCamelCase : Optional[int] = None , _lowerCamelCase : List[Any] = (32, 32, 64) , _lowerCamelCase : Union[str, Any] = None , _lowerCamelCase : List[Any] = 8 , _lowerCamelCase : str = 1 , _lowerCamelCase : str = False , ):
super().__init__()
_snake_case = sample_size
# time
if time_embedding_type == "fourier":
_snake_case = GaussianFourierProjection(
embedding_size=8 , set_W_to_weight=_a , log=_a , flip_sin_to_cos=_a )
_snake_case = 2 * block_out_channels[0]
elif time_embedding_type == "positional":
_snake_case = Timesteps(
block_out_channels[0] , flip_sin_to_cos=_a , downscale_freq_shift=_a )
_snake_case = block_out_channels[0]
if use_timestep_embedding:
_snake_case = block_out_channels[0] * 4
_snake_case = TimestepEmbedding(
in_channels=_a , time_embed_dim=_a , act_fn=_a , out_dim=block_out_channels[0] , )
_snake_case = nn.ModuleList([] )
_snake_case = None
_snake_case = nn.ModuleList([] )
_snake_case = None
# down
_snake_case = in_channels
for i, down_block_type in enumerate(_a ):
_snake_case = output_channel
_snake_case = block_out_channels[i]
if i == 0:
input_channel += extra_in_channels
_snake_case = i == len(_a ) - 1
_snake_case = get_down_block(
_a , num_layers=_a , in_channels=_a , out_channels=_a , temb_channels=block_out_channels[0] , add_downsample=not is_final_block or downsample_each_block , )
self.down_blocks.append(_a )
# mid
_snake_case = get_mid_block(
_a , in_channels=block_out_channels[-1] , mid_channels=block_out_channels[-1] , out_channels=block_out_channels[-1] , embed_dim=block_out_channels[0] , num_layers=_a , add_downsample=_a , )
# up
_snake_case = list(reversed(_a ) )
_snake_case = reversed_block_out_channels[0]
if out_block_type is None:
_snake_case = out_channels
else:
_snake_case = block_out_channels[0]
for i, up_block_type in enumerate(_a ):
_snake_case = output_channel
_snake_case = (
reversed_block_out_channels[i + 1] if i < len(_a ) - 1 else final_upsample_channels
)
_snake_case = i == len(_a ) - 1
_snake_case = get_up_block(
_a , num_layers=_a , in_channels=_a , out_channels=_a , temb_channels=block_out_channels[0] , add_upsample=not is_final_block , )
self.up_blocks.append(_a )
_snake_case = output_channel
# out
_snake_case = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4 , 32 )
_snake_case = get_out_block(
out_block_type=_a , num_groups_out=_a , embed_dim=block_out_channels[0] , out_channels=_a , act_fn=_a , fc_dim=block_out_channels[-1] // 4 , )
def lowercase ( self : Dict , _lowerCamelCase : int , _lowerCamelCase : Any , _lowerCamelCase : List[str] = True , ):
_snake_case = timestep
if not torch.is_tensor(_a ):
_snake_case = torch.tensor([timesteps] , dtype=torch.long , device=sample.device )
elif torch.is_tensor(_a ) and len(timesteps.shape ) == 0:
_snake_case = timesteps[None].to(sample.device )
_snake_case = self.time_proj(_a )
if self.config.use_timestep_embedding:
_snake_case = self.time_mlp(_a )
else:
_snake_case = timestep_embed[..., None]
_snake_case = timestep_embed.repeat([1, 1, sample.shape[2]] ).to(sample.dtype )
_snake_case = timestep_embed.broadcast_to((sample.shape[:1] + timestep_embed.shape[1:]) )
# 2. down
_snake_case = ()
for downsample_block in self.down_blocks:
_snake_case , _snake_case = downsample_block(hidden_states=_a , temb=_a )
down_block_res_samples += res_samples
# 3. mid
if self.mid_block:
_snake_case = self.mid_block(_a , _a )
# 4. up
for i, upsample_block in enumerate(self.up_blocks ):
_snake_case = down_block_res_samples[-1:]
_snake_case = down_block_res_samples[:-1]
_snake_case = upsample_block(_a , res_hidden_states_tuple=_a , temb=_a )
# 5. post-process
if self.out_block:
_snake_case = self.out_block(_a , _a )
if not return_dict:
return (sample,)
return UNetaDOutput(sample=_a )
| 288
|
"""simple docstring"""
import gc
import unittest
from transformers import CTRLConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
CTRL_PRETRAINED_MODEL_ARCHIVE_LIST,
CTRLForSequenceClassification,
CTRLLMHeadModel,
CTRLModel,
)
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self , _a , _a=14 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , ):
__a = parent
__a = batch_size
__a = seq_length
__a = is_training
__a = use_token_type_ids
__a = use_input_mask
__a = use_labels
__a = use_mc_token_ids
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = intermediate_size
__a = hidden_act
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = type_sequence_label_size
__a = initializer_range
__a = num_labels
__a = num_choices
__a = scope
__a = self.vocab_size - 1
def __UpperCAmelCase ( self ):
__a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__a = None
if self.use_input_mask:
__a = random_attention_mask([self.batch_size, self.seq_length] )
__a = None
if self.use_token_type_ids:
__a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__a = None
if self.use_mc_token_ids:
__a = ids_tensor([self.batch_size, self.num_choices] , self.seq_length )
__a = None
__a = None
__a = None
if self.use_labels:
__a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__a = ids_tensor([self.batch_size] , self.num_choices )
__a = self.get_config()
__a = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
token_type_ids,
mc_token_ids,
sequence_labels,
token_labels,
choice_labels,
)
def __UpperCAmelCase ( self ):
return CTRLConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a ):
__a = CTRLModel(config=_a )
model.to(_a )
model.eval()
model(_a , token_type_ids=_a , head_mask=_a )
model(_a , token_type_ids=_a )
__a = model(_a )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(len(result.past_key_values ) , config.n_layer )
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a , *_a ):
__a = CTRLLMHeadModel(_a )
model.to(_a )
model.eval()
__a = model(_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCAmelCase ( self ):
__a = self.prepare_config_and_inputs()
(
(
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) , (
__a
) ,
) = config_and_inputs
__a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask}
return config, inputs_dict
def __UpperCAmelCase ( self , _a , _a , _a , _a , *_a ):
__a = self.num_labels
__a = CTRLForSequenceClassification(_a )
model.to(_a )
model.eval()
__a = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__a = model(_a , token_type_ids=_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
__UpperCAmelCase : str = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else ()
__UpperCAmelCase : Union[str, Any] = (CTRLLMHeadModel,) if is_torch_available() else ()
__UpperCAmelCase : Union[str, Any] = (
{
'feature-extraction': CTRLModel,
'text-classification': CTRLForSequenceClassification,
'text-generation': CTRLLMHeadModel,
'zero-shot': CTRLForSequenceClassification,
}
if is_torch_available()
else {}
)
__UpperCAmelCase : Optional[Any] = True
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : str = False
def __UpperCAmelCase ( self , _a , _a , _a , _a , _a ):
if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
# Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
# `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny
# config could not be created.
return True
return False
def __UpperCAmelCase ( self ):
__a = CTRLModelTester(self )
__a = ConfigTester(self , config_class=_a , n_embd=37 )
def __UpperCAmelCase ( self ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
def __UpperCAmelCase ( self ):
self.config_tester.run_common_tests()
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_ctrl_model(*_a )
def __UpperCAmelCase ( self ):
__a = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_lm_head_model(*_a )
@unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' )
def __UpperCAmelCase ( self ):
pass
@slow
def __UpperCAmelCase ( self ):
for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__a = CTRLModel.from_pretrained(_a )
self.assertIsNotNone(_a )
@unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :)
def __UpperCAmelCase ( self ):
pass
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def __UpperCAmelCase ( self ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
torch.cuda.empty_cache()
@slow
def __UpperCAmelCase ( self ):
__a = CTRLLMHeadModel.from_pretrained('''ctrl''' )
model.to(_a )
__a = torch.tensor(
[[11_859, 0, 1_611, 8]] , dtype=torch.long , device=_a ) # Legal the president is
__a = [
11_859,
0,
1_611,
8,
5,
150,
26_449,
2,
19,
348,
469,
3,
2_595,
48,
20_740,
246_533,
246_533,
19,
30,
5,
] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a
__a = model.generate(_a , do_sample=_a )
self.assertListEqual(output_ids[0].tolist() , _a )
| 45
| 0
|
'''simple docstring'''
from __future__ import annotations
def lowerCAmelCase_ ( snake_case__ ):
'''simple docstring'''
A : List[str] = 2
A : Dict = []
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.append(snake_case__ )
if n > 1:
factors.append(snake_case__ )
return factors
if __name__ == "__main__":
import doctest
doctest.testmod()
| 311
|
'''simple docstring'''
import sys
from typing import Tuple
import numpy as np
import torch
from PIL import Image
from torch import nn
from transformers.image_utils import PILImageResampling
from utils import img_tensorize
class A :
def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=sys.maxsize ) -> Union[str, Any]:
"""simple docstring"""
A : Tuple = '''bilinear'''
A : Optional[int] = max_size
A : Dict = short_edge_length
def __call__( self , SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
A : Tuple = []
for img in imgs:
A, A : str = img.shape[:2]
# later: provide list and randomly choose index for resize
A : Union[str, Any] = np.random.randint(self.short_edge_length[0] , self.short_edge_length[1] + 1 )
if size == 0:
return img
A : int = size * 1.0 / min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if h < w:
A, A : Tuple = size, scale * w
else:
A, A : str = scale * h, size
if max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) > self.max_size:
A : List[str] = self.max_size * 1.0 / max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
A : Tuple = newh * scale
A : int = neww * scale
A : List[str] = int(neww + 0.5 )
A : int = int(newh + 0.5 )
if img.dtype == np.uinta:
A : Dict = Image.fromarray(SCREAMING_SNAKE_CASE )
A : Optional[Any] = pil_image.resize((neww, newh) , PILImageResampling.BILINEAR )
A : str = np.asarray(SCREAMING_SNAKE_CASE )
else:
A : Dict = img.permute(2 , 0 , 1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw
A : List[Any] = nn.functional.interpolate(
SCREAMING_SNAKE_CASE , (newh, neww) , mode=self.interp_method , align_corners=SCREAMING_SNAKE_CASE ).squeeze(0 )
img_augs.append(SCREAMING_SNAKE_CASE )
return img_augs
class A :
def __init__( self , SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
A : Any = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] , cfg.INPUT.MAX_SIZE_TEST )
A : str = cfg.INPUT.FORMAT
A : int = cfg.SIZE_DIVISIBILITY
A : Optional[int] = cfg.PAD_VALUE
A : Dict = cfg.INPUT.MAX_SIZE_TEST
A : Optional[Any] = cfg.MODEL.DEVICE
A : Dict = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : Tuple = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) , 1 , 1 )
A : str = lambda SCREAMING_SNAKE_CASE : (x - self.pixel_mean) / self.pixel_std
def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
A : Union[str, Any] = tuple(max(SCREAMING_SNAKE_CASE ) for s in zip(*[img.shape for img in images] ) )
A : List[str] = [im.shape[-2:] for im in images]
A : Optional[Any] = [
nn.functional.pad(
SCREAMING_SNAKE_CASE , [0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] , value=self.pad_value , )
for size, im in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
]
return torch.stack(SCREAMING_SNAKE_CASE ), torch.tensor(SCREAMING_SNAKE_CASE )
def __call__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False ) -> Union[str, Any]:
"""simple docstring"""
with torch.no_grad():
if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
A : str = [images]
if single_image:
assert len(SCREAMING_SNAKE_CASE ) == 1
for i in range(len(SCREAMING_SNAKE_CASE ) ):
if isinstance(images[i] , torch.Tensor ):
images.insert(SCREAMING_SNAKE_CASE , images.pop(SCREAMING_SNAKE_CASE ).to(self.device ).float() )
elif not isinstance(images[i] , torch.Tensor ):
images.insert(
SCREAMING_SNAKE_CASE , torch.as_tensor(img_tensorize(images.pop(SCREAMING_SNAKE_CASE ) , input_format=self.input_format ) )
.to(self.device )
.float() , )
# resize smallest edge
A : Tuple = torch.tensor([im.shape[:2] for im in images] )
A : Dict = self.aug(SCREAMING_SNAKE_CASE )
# transpose images and convert to torch tensors
# images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images]
# now normalize before pad to avoid useless arithmetic
A : Tuple = [self.normalizer(SCREAMING_SNAKE_CASE ) for x in images]
# now pad them to do the following operations
A, A : Optional[int] = self.pad(SCREAMING_SNAKE_CASE )
# Normalize
if self.size_divisibility > 0:
raise NotImplementedError()
# pad
A : Tuple = torch.true_divide(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if single_image:
return images[0], sizes[0], scales_yx[0]
else:
return images, sizes, scales_yx
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
boxes[:, 0::2] *= scale_yx[:, 1]
boxes[:, 1::2] *= scale_yx[:, 0]
return boxes
def lowerCAmelCase_ ( snake_case__ , snake_case__ ):
'''simple docstring'''
assert torch.isfinite(snake_case__ ).all(), "Box tensor contains infinite or NaN!"
A, A : str = box_size
tensor[:, 0].clamp_(min=0 , max=snake_case__ )
tensor[:, 1].clamp_(min=0 , max=snake_case__ )
tensor[:, 2].clamp_(min=0 , max=snake_case__ )
tensor[:, 3].clamp_(min=0 , max=snake_case__ )
| 311
| 1
|
import tempfile
import unittest
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from transformers.testing_utils import (
is_torch_available,
require_optimum,
require_torch,
slow,
)
if is_torch_available():
import torch
@require_torch
@require_optimum
@slow
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
def _a ( self ) -> Any:
__UpperCamelCase ='hf-internal-testing/tiny-random-t5'
__UpperCamelCase =AutoTokenizer.from_pretrained(A_ )
__UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained(A_ )
__UpperCamelCase =tokenizer('This is me' , return_tensors='pt' )
__UpperCamelCase =model.to_bettertransformer()
self.assertTrue(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
__UpperCamelCase =model.generate(**A_ )
__UpperCamelCase =model.reverse_bettertransformer()
self.assertFalse(any('BetterTransformer' in mod.__class__.__name__ for _, mod in model.named_modules() ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(A_ )
__UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained(A_ )
self.assertFalse(
any('BetterTransformer' in mod.__class__.__name__ for _, mod in model_reloaded.named_modules() ) )
__UpperCamelCase =model_reloaded.generate(**A_ )
self.assertTrue(torch.allclose(A_ , A_ ) )
def _a ( self ) -> str:
__UpperCamelCase ='hf-internal-testing/tiny-random-t5'
__UpperCamelCase =AutoModelForSeqaSeqLM.from_pretrained(A_ )
__UpperCamelCase =model.to_bettertransformer()
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(A_ ):
model.save_pretrained(A_ )
__UpperCamelCase =model.reverse_bettertransformer()
model.save_pretrained(A_ )
| 62
|
import inspect
import unittest
from transformers import RegNetConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from transformers.utils import cached_property, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class lowercase_ ( unittest.TestCase ):
def __init__( self , __UpperCamelCase , __UpperCamelCase=3 , __UpperCamelCase=3_2 , __UpperCamelCase=3 , __UpperCamelCase=1_0 , __UpperCamelCase=[1_0, 2_0, 3_0, 4_0] , __UpperCamelCase=[1, 1, 2, 1] , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="relu" , __UpperCamelCase=3 , __UpperCamelCase=None , ):
"""simple docstring"""
UpperCamelCase_ = parent
UpperCamelCase_ = batch_size
UpperCamelCase_ = image_size
UpperCamelCase_ = num_channels
UpperCamelCase_ = embeddings_size
UpperCamelCase_ = hidden_sizes
UpperCamelCase_ = depths
UpperCamelCase_ = is_training
UpperCamelCase_ = use_labels
UpperCamelCase_ = hidden_act
UpperCamelCase_ = num_labels
UpperCamelCase_ = scope
UpperCamelCase_ = len(__UpperCamelCase )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase_ = self.get_config()
return config, pixel_values
def lowerCamelCase_ ( self ):
"""simple docstring"""
return RegNetConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = FlaxRegNetModel(config=__UpperCamelCase )
UpperCamelCase_ = model(__UpperCamelCase )
# Output shape (b, c, h, w)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , )
def lowerCamelCase_ ( self , __UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
UpperCamelCase_ = self.num_labels
UpperCamelCase_ = FlaxRegNetForImageClassification(config=__UpperCamelCase )
UpperCamelCase_ = model(__UpperCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.prepare_config_and_inputs()
UpperCamelCase_ , UpperCamelCase_ = config_and_inputs
UpperCamelCase_ = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_flax
class lowercase_ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
A__ : Tuple = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else ()
A__ : Any = False
A__ : List[Any] = False
A__ : Dict = False
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = FlaxRegNetModelTester(self )
UpperCamelCase_ = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase )
def lowerCamelCase_ ( self ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowerCamelCase_ ( self ):
"""simple docstring"""
return
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCamelCase )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCamelCase )
@unittest.skip(reason="""RegNet does not use inputs_embeds""" )
def lowerCamelCase_ ( self ):
"""simple docstring"""
pass
@unittest.skip(reason="""RegNet does not support input and output embeddings""" )
def lowerCamelCase_ ( self ):
"""simple docstring"""
pass
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = model_class(__UpperCamelCase )
UpperCamelCase_ = inspect.signature(model.__call__ )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase_ = [*signature.parameters.keys()]
UpperCamelCase_ = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , __UpperCamelCase )
def lowerCamelCase_ ( self ):
"""simple docstring"""
def check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ):
UpperCamelCase_ = model_class(__UpperCamelCase )
UpperCamelCase_ = model(**self._prepare_for_class(__UpperCamelCase , __UpperCamelCase ) )
UpperCamelCase_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
UpperCamelCase_ = self.model_tester.num_stages
self.assertEqual(len(__UpperCamelCase ) , expected_num_stages + 1 )
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase_ = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase_ = True
check_hidden_states_output(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ , UpperCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
UpperCamelCase_ = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase )
UpperCamelCase_ = model_class(__UpperCamelCase )
@jax.jit
def model_jitted(__UpperCamelCase , **__UpperCamelCase ):
return model(pixel_values=__UpperCamelCase , **__UpperCamelCase )
with self.subTest("""JIT Enabled""" ):
UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple()
with self.subTest("""JIT Disabled""" ):
with jax.disable_jit():
UpperCamelCase_ = model_jitted(**__UpperCamelCase ).to_tuple()
self.assertEqual(len(__UpperCamelCase ) , len(__UpperCamelCase ) )
for jitted_output, output in zip(__UpperCamelCase , __UpperCamelCase ):
self.assertEqual(jitted_output.shape , output.shape )
def lowerCamelCase__ ( ) -> Tuple:
UpperCamelCase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_flax
class lowercase_ ( unittest.TestCase ):
@cached_property
def lowerCamelCase_ ( self ):
"""simple docstring"""
return AutoImageProcessor.from_pretrained("""facebook/regnet-y-040""" ) if is_vision_available() else None
@slow
def lowerCamelCase_ ( self ):
"""simple docstring"""
UpperCamelCase_ = FlaxRegNetForImageClassification.from_pretrained("""facebook/regnet-y-040""" )
UpperCamelCase_ = self.default_image_processor
UpperCamelCase_ = prepare_img()
UpperCamelCase_ = image_processor(images=__UpperCamelCase , return_tensors="""np""" )
UpperCamelCase_ = model(**__UpperCamelCase )
# verify the logits
UpperCamelCase_ = (1, 1_0_0_0)
self.assertEqual(outputs.logits.shape , __UpperCamelCase )
UpperCamelCase_ = jnp.array([-0.4_180, -1.5_051, -3.4_836] )
self.assertTrue(jnp.allclose(outputs.logits[0, :3] , __UpperCamelCase , atol=1e-4 ) )
| 122
| 0
|
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ..models.auto import AutoModelForVisionaSeq
from ..utils import requires_backends
from .base import PipelineTool
if TYPE_CHECKING:
from PIL import Image
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : str = "Salesforce/blip-image-captioning-base"
__UpperCAmelCase : Any = (
"This is a tool that generates a description of an image. It takes an input named `image` which should be the "
"image to caption, and returns a text that contains the description in English."
)
__UpperCAmelCase : Any = "image_captioner"
__UpperCAmelCase : Optional[Any] = AutoModelForVisionaSeq
__UpperCAmelCase : Tuple = ["image"]
__UpperCAmelCase : int = ["text"]
def __init__( self : Tuple, *UpperCAmelCase__ : Optional[int], **UpperCAmelCase__ : Dict ):
requires_backends(self, ["vision"] )
super().__init__(*UpperCAmelCase__, **UpperCAmelCase__ )
def _lowercase ( self : str, UpperCAmelCase__ : "Image" ):
return self.pre_processor(images=UpperCAmelCase__, return_tensors="pt" )
def _lowercase ( self : str, UpperCAmelCase__ : Optional[int] ):
return self.model.generate(**UpperCAmelCase__ )
def _lowercase ( self : Dict, UpperCAmelCase__ : List[Any] ):
return self.pre_processor.batch_decode(UpperCAmelCase__, skip_special_tokens=UpperCAmelCase__ )[0].strip()
| 144
|
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_a = logging.get_logger(__name__)
_a = {
'caidas/swin2sr-classicalsr-x2-64': (
'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json'
),
}
class _lowerCAmelCase ( lowercase ):
"""simple docstring"""
__UpperCAmelCase : List[Any] = "swin2sr"
__UpperCAmelCase : List[Any] = {
"hidden_size": "embed_dim",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self : Any, UpperCAmelCase__ : Dict=6_4, UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : Dict=3, UpperCAmelCase__ : Optional[Any]=1_8_0, UpperCAmelCase__ : Any=[6, 6, 6, 6, 6, 6], UpperCAmelCase__ : Dict=[6, 6, 6, 6, 6, 6], UpperCAmelCase__ : Tuple=8, UpperCAmelCase__ : Optional[int]=2.0, UpperCAmelCase__ : List[str]=True, UpperCAmelCase__ : Tuple=0.0, UpperCAmelCase__ : Optional[Any]=0.0, UpperCAmelCase__ : List[str]=0.1, UpperCAmelCase__ : Dict="gelu", UpperCAmelCase__ : Dict=False, UpperCAmelCase__ : Dict=0.02, UpperCAmelCase__ : Tuple=1E-5, UpperCAmelCase__ : str=2, UpperCAmelCase__ : str=1.0, UpperCAmelCase__ : Optional[int]="1conv", UpperCAmelCase__ : Dict="pixelshuffle", **UpperCAmelCase__ : List[Any], ):
super().__init__(**UpperCAmelCase__ )
__lowercase = image_size
__lowercase = patch_size
__lowercase = num_channels
__lowercase = embed_dim
__lowercase = depths
__lowercase = len(UpperCAmelCase__ )
__lowercase = num_heads
__lowercase = window_size
__lowercase = mlp_ratio
__lowercase = qkv_bias
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = drop_path_rate
__lowercase = hidden_act
__lowercase = use_absolute_embeddings
__lowercase = layer_norm_eps
__lowercase = initializer_range
__lowercase = upscale
__lowercase = img_range
__lowercase = resi_connection
__lowercase = upsampler
| 144
| 1
|
"""simple docstring"""
import re
import string
import numpy as np
import datasets
lowercase__ = '\nReturns the rate at which the input predicted strings exactly match their references, ignoring any strings input as part of the regexes_to_ignore list.\n'
lowercase__ = '\nArgs:\n predictions: List of predicted texts.\n references: List of reference texts.\n regexes_to_ignore: List, defaults to None. Regex expressions of characters to\n ignore when calculating the exact matches. Note: these regexes are removed\n from the input data before the changes based on the options below (e.g. ignore_case,\n ignore_punctuation, ignore_numbers) are applied.\n ignore_case: Boolean, defaults to False. If true, turns everything\n to lowercase so that capitalization differences are ignored.\n ignore_punctuation: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\n ignore_numbers: Boolean, defaults to False. If true, removes all punctuation before\n comparing predictions and references.\nReturns:\n exact_match: Dictionary containing exact_match rate. Possible values are between 0.0 and 100.0, inclusive.\nExamples:\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 25.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 50.0\n\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True)\n >>> print(round(results["exact_match"], 1))\n 75.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["the cat", "theater", "YELLING", "agent007"]\n >>> preds = ["cat?", "theater", "yelling", "agent"]\n >>> results = exact_match.compute(references=refs, predictions=preds, regexes_to_ignore=["the ", "yell", "YELL"], ignore_case=True, ignore_punctuation=True, ignore_numbers=True)\n >>> print(round(results["exact_match"], 1))\n 100.0\n\n >>> exact_match = datasets.load_metric("exact_match")\n >>> refs = ["The cat sat on the mat.", "Theaters are great.", "It\'s like comparing oranges and apples."]\n >>> preds = ["The cat sat on the mat?", "Theaters are great.", "It\'s like comparing apples and oranges."]\n >>> results = exact_match.compute(references=refs, predictions=preds)\n >>> print(round(results["exact_match"], 1))\n 33.3\n\n'
lowercase__ = '\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION )
class lowerCAmelCase__ ( datasets.Metric ):
'''simple docstring'''
def A_ ( self ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('string' , id='sequence' ),
'references': datasets.Value('string' , id='sequence' ),
} ) , reference_urls=[] , )
def A_ ( self , lowercase , lowercase , lowercase=None , lowercase=False , lowercase=False , lowercase=False , ):
if regexes_to_ignore is not None:
for s in regexes_to_ignore:
_lowerCamelCase : Dict = np.array([re.sub(UpperCamelCase__ , '' , UpperCamelCase__ ) for x in predictions] )
_lowerCamelCase : Any = np.array([re.sub(UpperCamelCase__ , '' , UpperCamelCase__ ) for x in references] )
else:
_lowerCamelCase : List[Any] = np.asarray(UpperCamelCase__ )
_lowerCamelCase : Union[str, Any] = np.asarray(UpperCamelCase__ )
if ignore_case:
_lowerCamelCase : str = np.char.lower(UpperCamelCase__ )
_lowerCamelCase : Optional[Any] = np.char.lower(UpperCamelCase__ )
if ignore_punctuation:
_lowerCamelCase : Union[str, Any] = string.punctuation.maketrans('' , '' , string.punctuation )
_lowerCamelCase : List[str] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
_lowerCamelCase : Any = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
if ignore_numbers:
_lowerCamelCase : Union[str, Any] = string.digits.maketrans('' , '' , string.digits )
_lowerCamelCase : Optional[int] = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
_lowerCamelCase : str = np.char.translate(UpperCamelCase__ , table=UpperCamelCase__ )
_lowerCamelCase : Optional[int] = predictions == references
return {"exact_match": np.mean(UpperCamelCase__ ) * 100}
| 96
|
from math import sqrt
def A ( _SCREAMING_SNAKE_CASE = 100_0000 ) -> int:
lowerCamelCase : int = 0
lowerCamelCase : int = 0
lowerCamelCase : int
while num_cuboids <= limit:
max_cuboid_size += 1
for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ):
if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer():
num_cuboids += (
min(_SCREAMING_SNAKE_CASE ,sum_shortest_sides // 2 )
- max(1 ,sum_shortest_sides - max_cuboid_size )
+ 1
)
return max_cuboid_size
if __name__ == "__main__":
print(f'''{solution() = }''')
| 48
| 0
|
from __future__ import annotations
def a__ ( UpperCAmelCase : int , UpperCAmelCase : Any , UpperCAmelCase : Any , UpperCAmelCase : int , UpperCAmelCase : str , ) -> int:
UpperCAmelCase : Optional[Any] = len(UpperCAmelCase )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append(['''. ''' * i + '''Q ''' + '''. ''' * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(UpperCAmelCase ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , UpperCAmelCase , UpperCAmelCase , )
def a__ ( UpperCAmelCase : Dict ) -> Optional[Any]:
UpperCAmelCase : Any = []
depth_first_search([] , [] , [] , UpperCAmelCase , UpperCAmelCase )
# Print all the boards
for board in boards:
for column in board:
print(UpperCAmelCase )
print('''''' )
print(len(UpperCAmelCase ) , '''solutions were found.''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 355
|
from __future__ import annotations
import queue
class __UpperCAmelCase :
def __init__( self : str, __A : Union[str, Any] ):
UpperCAmelCase : Dict = data
UpperCAmelCase : Tuple = None
UpperCAmelCase : Any = None
def a__ ( ) -> TreeNode:
print('''\n********Press N to stop entering at any point of time********\n''' )
UpperCAmelCase : Any = input('''Enter the value of the root node: ''' ).strip().lower()
UpperCAmelCase : queue.Queue = queue.Queue()
UpperCAmelCase : Tuple = TreeNode(int(UpperCAmelCase ) )
q.put(UpperCAmelCase )
while not q.empty():
UpperCAmelCase : int = q.get()
UpperCAmelCase : Union[str, Any] = f'''Enter the left node of {node_found.data}: '''
UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n'''
if check == "n":
return tree_node
UpperCAmelCase : List[str] = TreeNode(int(UpperCAmelCase ) )
UpperCAmelCase : List[str] = left_node
q.put(UpperCAmelCase )
UpperCAmelCase : List[Any] = f'''Enter the right node of {node_found.data}: '''
UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n'''
if check == "n":
return tree_node
UpperCAmelCase : Dict = TreeNode(int(UpperCAmelCase ) )
UpperCAmelCase : Dict = right_node
q.put(UpperCAmelCase )
raise
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
print(node.data , end=''',''' )
pre_order(node.left )
pre_order(node.right )
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
in_order(node.left )
print(node.data , end=''',''' )
in_order(node.right )
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
post_order(node.left )
post_order(node.right )
print(node.data , end=''',''' )
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
UpperCAmelCase : queue.Queue = queue.Queue()
q.put(UpperCAmelCase )
while not q.empty():
UpperCAmelCase : List[Any] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
q.put(node_dequeued.left )
if node_dequeued.right:
q.put(node_dequeued.right )
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
UpperCAmelCase : queue.Queue = queue.Queue()
q.put(UpperCAmelCase )
while not q.empty():
UpperCAmelCase : int = []
while not q.empty():
UpperCAmelCase : List[str] = q.get()
print(node_dequeued.data , end=''',''' )
if node_dequeued.left:
list_.append(node_dequeued.left )
if node_dequeued.right:
list_.append(node_dequeued.right )
print()
for node in list_:
q.put(UpperCAmelCase )
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
UpperCAmelCase : list[TreeNode] = []
UpperCAmelCase : List[str] = node
while n or stack:
while n: # start from root node, find its left child
print(n.data , end=''',''' )
stack.append(UpperCAmelCase )
UpperCAmelCase : Dict = n.left
# end of while means current node doesn't have left child
UpperCAmelCase : Union[str, Any] = stack.pop()
# start to traverse its right child
UpperCAmelCase : List[str] = n.right
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
UpperCAmelCase : list[TreeNode] = []
UpperCAmelCase : Any = node
while n or stack:
while n:
stack.append(UpperCAmelCase )
UpperCAmelCase : Dict = n.left
UpperCAmelCase : Optional[int] = stack.pop()
print(n.data , end=''',''' )
UpperCAmelCase : Any = n.right
def a__ ( UpperCAmelCase : TreeNode ) -> None:
if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node:
return
UpperCAmelCase , UpperCAmelCase : Dict = [], []
UpperCAmelCase : Any = node
stacka.append(UpperCAmelCase )
while stacka: # to find the reversed order of post order, store it in stack2
UpperCAmelCase : Union[str, Any] = stacka.pop()
if n.left:
stacka.append(n.left )
if n.right:
stacka.append(n.right )
stacka.append(UpperCAmelCase )
while stacka: # pop up from stack2 will be the post order
print(stacka.pop().data , end=''',''' )
def a__ ( UpperCAmelCase : str = "" , UpperCAmelCase : int=50 , UpperCAmelCase : Union[str, Any]="*" ) -> str:
if not s:
return "\n" + width * char
UpperCAmelCase , UpperCAmelCase : int = divmod(width - len(UpperCAmelCase ) - 2 , 2 )
return f'''{left * char} {s} {(left + extra) * char}'''
if __name__ == "__main__":
import doctest
doctest.testmod()
print(prompt("Binary Tree Traversals"))
_lowerCamelCase : TreeNode = build_tree()
print(prompt("Pre Order Traversal"))
pre_order(node)
print(prompt() + "\n")
print(prompt("In Order Traversal"))
in_order(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal"))
post_order(node)
print(prompt() + "\n")
print(prompt("Level Order Traversal"))
level_order(node)
print(prompt() + "\n")
print(prompt("Actual Level Order Traversal"))
level_order_actual(node)
print("*" * 5_0 + "\n")
print(prompt("Pre Order Traversal - Iteration Version"))
pre_order_iter(node)
print(prompt() + "\n")
print(prompt("In Order Traversal - Iteration Version"))
in_order_iter(node)
print(prompt() + "\n")
print(prompt("Post Order Traversal - Iteration Version"))
post_order_iter(node)
print(prompt())
| 99
| 0
|
'''simple docstring'''
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def _lowerCAmelCase ( __snake_case : Features ) -> Optional[int]:
__A : Union[str, Any] = np.inf
def set_batch_size(__snake_case : FeatureType ) -> None:
nonlocal batch_size
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__A : str = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
__A : int = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and feature.dtype == "binary":
__A : Tuple = min(SCREAMING_SNAKE_CASE__ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return None if batch_size is np.inf else batch_size
class SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE_ ):
def __init__( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , **_UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
_UpperCAmelCase , split=_UpperCAmelCase , features=_UpperCAmelCase , cache_dir=_UpperCAmelCase , keep_in_memory=_UpperCAmelCase , streaming=_UpperCAmelCase , num_proc=_UpperCAmelCase , **_UpperCAmelCase , )
__A : Tuple = path_or_paths if isinstance(_UpperCAmelCase , _UpperCAmelCase) else {self.split: path_or_paths}
__A : Optional[int] = _PACKAGED_DATASETS_MODULES["""parquet"""][1]
__A : Union[str, Any] = Parquet(
cache_dir=_UpperCAmelCase , data_files=_UpperCAmelCase , features=_UpperCAmelCase , hash=_UpperCAmelCase , **_UpperCAmelCase , )
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
if self.streaming:
__A : Any = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
__A : List[Any] = None
__A : List[str] = None
__A : Optional[int] = None
__A : Optional[int] = None
self.builder.download_and_prepare(
download_config=_UpperCAmelCase , download_mode=_UpperCAmelCase , verification_mode=_UpperCAmelCase , base_path=_UpperCAmelCase , num_proc=self.num_proc , )
__A : Optional[int] = self.builder.as_dataset(
split=self.split , verification_mode=_UpperCAmelCase , in_memory=self.keep_in_memory)
return dataset
class SCREAMING_SNAKE_CASE :
def __init__( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase , ):
'''simple docstring'''
__A : Union[str, Any] = dataset
__A : List[Any] = path_or_buf
__A : List[Any] = batch_size or get_writer_batch_size(dataset.features)
__A : List[str] = parquet_writer_kwargs
def SCREAMING_SNAKE_CASE ( self):
'''simple docstring'''
__A : Union[str, Any] = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with open(self.path_or_buf , 'wb+') as buffer:
__A : int = self._write(file_obj=_UpperCAmelCase , batch_size=_UpperCAmelCase , **self.parquet_writer_kwargs)
else:
__A : List[Any] = self._write(file_obj=self.path_or_buf , batch_size=_UpperCAmelCase , **self.parquet_writer_kwargs)
return written
def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase):
'''simple docstring'''
__A : Tuple = 0
__A : Union[str, Any] = parquet_writer_kwargs.pop('path_or_buf' , _UpperCAmelCase)
__A : Tuple = self.dataset.features.arrow_schema
__A : Dict = pq.ParquetWriter(_UpperCAmelCase , schema=_UpperCAmelCase , **_UpperCAmelCase)
for offset in logging.tqdm(
range(0 , len(self.dataset) , _UpperCAmelCase) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ):
__A : Union[str, Any] = query_table(
table=self.dataset._data , key=slice(_UpperCAmelCase , offset + batch_size) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(_UpperCAmelCase)
written += batch.nbytes
writer.close()
return written
| 190
|
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : Tuple = field
_snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths}
_snake_case : int = Json(
cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , )
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
if self.streaming:
_snake_case : int = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
_snake_case : str = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , )
_snake_case : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory)
return dataset
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''')
_snake_case : Optional[Any] = dataset
_snake_case : str = path_or_buf
_snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_snake_case : Tuple = num_proc
_snake_case : Dict = """utf-8"""
_snake_case : str = to_json_kwargs
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase)
_snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""")
_snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False)
_snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True)
_snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer:
_snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""")
_snake_case : Tuple = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
return written
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args
_snake_case : int = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , )
_snake_case : Optional[Any] = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase)
if not json_str.endswith("""\n"""):
json_str += "\n"
return json_str.encode(self.encoding)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int:
"""simple docstring"""
_snake_case : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(lowerCAmelCase)
else:
_snake_case , _snake_case : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase)
return written
| 317
| 0
|
"""simple docstring"""
from __future__ import annotations
import numpy as np
def snake_case ( A__ ):
return np.maximum(0 ,A__ )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 253
|
"""simple docstring"""
from math import factorial
def snake_case ( A__ = 1_00 ):
return sum(int(A__ ) for x in str(factorial(A__ ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 253
| 1
|
'''simple docstring'''
import inspect
import unittest
from transformers import ViTHybridConfig
from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel
from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCamelCase__ :
"""simple docstring"""
def __init__( self , snake_case , snake_case=1_3 , snake_case=6_4 , snake_case=2 , snake_case=3 , snake_case=True , snake_case=True , snake_case=3_2 , snake_case=5 , snake_case=4 , snake_case=3_7 , snake_case="gelu" , snake_case=0.1 , snake_case=0.1 , snake_case=1_0 , snake_case=0.02 , snake_case=[1, 1_6, 4, 4] , snake_case=None , ):
'''simple docstring'''
UpperCAmelCase : Tuple = parent
UpperCAmelCase : Union[str, Any] = batch_size
UpperCAmelCase : int = image_size
UpperCAmelCase : Dict = patch_size
UpperCAmelCase : Dict = num_channels
UpperCAmelCase : str = is_training
UpperCAmelCase : Optional[Any] = use_labels
UpperCAmelCase : Optional[Any] = hidden_size
UpperCAmelCase : List[str] = num_hidden_layers
UpperCAmelCase : List[str] = num_attention_heads
UpperCAmelCase : List[Any] = intermediate_size
UpperCAmelCase : Optional[Any] = hidden_act
UpperCAmelCase : Tuple = hidden_dropout_prob
UpperCAmelCase : Union[str, Any] = attention_probs_dropout_prob
UpperCAmelCase : Optional[Any] = type_sequence_label_size
UpperCAmelCase : Tuple = initializer_range
UpperCAmelCase : Optional[int] = scope
UpperCAmelCase : Dict = backbone_featmap_shape
# in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
# the number of patches is based on the feature map of the backbone, which by default uses an output stride
# of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size
UpperCAmelCase : Tuple = (self.image_size // 3_2) ** 2
UpperCAmelCase : List[str] = num_patches + 1
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCAmelCase : Optional[int] = None
if self.use_labels:
UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCAmelCase : Dict = self.get_config()
return config, pixel_values, labels
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = {
"global_padding": "same",
"layer_type": "bottleneck",
"depths": [3, 4, 9],
"out_features": ["stage1", "stage2", "stage3"],
"embedding_dynamic_padding": True,
"hidden_sizes": [4, 8, 1_6, 3_2],
"num_groups": 2,
}
return ViTHybridConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=snake_case , )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : str = ViTHybridModel(config=snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : Dict = model(snake_case )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def A_ ( self , snake_case , snake_case , snake_case ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = self.type_sequence_label_size
UpperCAmelCase : Tuple = ViTHybridForImageClassification(snake_case )
model.to(snake_case )
model.eval()
UpperCAmelCase : List[str] = model(snake_case , labels=snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs()
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Union[str, Any] = config_and_inputs
UpperCAmelCase : Tuple = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : List[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else ()
SCREAMING_SNAKE_CASE__ : int = (
{"feature-extraction": ViTHybridModel, "image-classification": ViTHybridForImageClassification}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE__ : Dict = False
SCREAMING_SNAKE_CASE__ : Dict = False
SCREAMING_SNAKE_CASE__ : Optional[int] = False
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = ViTHybridModelTester(self )
UpperCAmelCase : int = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=3_7 )
def A_ ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason="ViT does not use inputs_embeds" )
def A_ ( self ):
'''simple docstring'''
pass
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : str = model_class(snake_case )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
UpperCAmelCase : str = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCAmelCase : Dict = model_class(snake_case )
UpperCAmelCase : Optional[int] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCAmelCase : Optional[Any] = [*signature.parameters.keys()]
UpperCAmelCase : Tuple = ["pixel_values"]
self.assertListEqual(arg_names[:1] , snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*snake_case )
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase , UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCAmelCase : Optional[Any] = _config_zero_init(snake_case )
for model_class in self.all_model_classes:
UpperCAmelCase : Optional[int] = model_class(config=snake_case )
# Skip the check for the backbone
for name, module in model.named_modules():
if module.__class__.__name__ == "ViTHybridPatchEmbeddings":
UpperCAmelCase : List[str] = [f"{name}.{key}" for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , )
@slow
def A_ ( self ):
'''simple docstring'''
for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase : Optional[Any] = ViTHybridModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
def lowercase ( ):
'''simple docstring'''
UpperCAmelCase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def A_ ( self ):
'''simple docstring'''
return (
ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
if is_vision_available()
else None
)
@slow
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Any = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(
snake_case )
UpperCAmelCase : List[Any] = self.default_image_processor
UpperCAmelCase : Any = prepare_img()
UpperCAmelCase : str = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case )
# forward pass
with torch.no_grad():
UpperCAmelCase : Optional[Any] = model(**snake_case )
# verify the logits
UpperCAmelCase : Dict = torch.Size((1, 1_0_0_0) )
self.assertEqual(outputs.logits.shape , snake_case )
UpperCAmelCase : Union[str, Any] = torch.tensor([-1.9090, -0.4993, -0.2389] ).to(snake_case )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
@slow
@require_accelerate
def A_ ( self ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = ViTHybridImageProcessor.from_pretrained("google/vit-hybrid-base-bit-384" )
UpperCAmelCase : Optional[Any] = ViTHybridForImageClassification.from_pretrained("google/vit-hybrid-base-bit-384" , device_map="auto" )
UpperCAmelCase : int = prepare_img()
UpperCAmelCase : Dict = image_processor(images=snake_case , return_tensors="pt" )
UpperCAmelCase : Tuple = model(**snake_case )
UpperCAmelCase : Dict = outputs.logits
# model predicts one of the 1000 ImageNet classes
UpperCAmelCase : Optional[Any] = logits.argmax(-1 ).item()
self.assertTrue(model.config.idalabel[predicted_class_idx] , "tabby, tabby cat" )
| 311
|
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
a : Tuple = re.compile(R"([A-Z]+)([A-Z][a-z])")
a : Union[str, Any] = re.compile(R"([a-z\d])([A-Z])")
a : str = re.compile(R"(?<!_)_(?!_)")
a : List[Any] = re.compile(R"(_{2,})")
a : List[Any] = R"^\w+(\.\w+)*$"
a : Dict = R"<>:/\|?*"
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Dict = _uppercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
UpperCAmelCase : List[str] = _lowercase_uppercase_re.sub(R"\1_\2" , __magic_name__ )
return name.lower()
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : Any = _single_underscore_re.split(__magic_name__ )
UpperCAmelCase : Union[str, Any] = [_multiple_underscores_re.split(__magic_name__ ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(__magic_name__ ) if n != "" )
def lowercase ( __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
return camelcase_to_snakecase(__magic_name__ )
def lowercase ( __magic_name__ , __magic_name__ ):
'''simple docstring'''
if os.path.basename(__magic_name__ ) != name:
raise ValueError(F"Should be a dataset name, not a path: {name}" )
if not re.match(_split_re , __magic_name__ ):
raise ValueError(F"Split name should match '{_split_re}'' but got '{split}'." )
return F"{filename_prefix_for_name(__magic_name__ )}-{split}"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
if filetype_suffix:
prefix += F".{filetype_suffix}"
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
return F"{filepath}*"
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ):
'''simple docstring'''
UpperCAmelCase : List[str] = filename_prefix_for_split(__magic_name__ , __magic_name__ )
UpperCAmelCase : int = os.path.join(__magic_name__ , __magic_name__ )
if shard_lengths:
UpperCAmelCase : Tuple = len(__magic_name__ )
UpperCAmelCase : Optional[int] = [F"{prefix}-{shard_id:05d}-of-{num_shards:05d}" for shard_id in range(__magic_name__ )]
if filetype_suffix:
UpperCAmelCase : Optional[int] = [filename + F".{filetype_suffix}" for filename in filenames]
return filenames
else:
UpperCAmelCase : int = prefix
if filetype_suffix:
filename += F".{filetype_suffix}"
return [filename]
| 311
| 1
|
'''simple docstring'''
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class __snake_case( _lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Union[str, Any] = ["image_processor", "tokenizer"]
UpperCAmelCase : Tuple = "BlipImageProcessor"
UpperCAmelCase : Union[str, Any] = ("BertTokenizer", "BertTokenizerFast")
def __init__( self , A_ , A_ ) -> Dict:
lowerCAmelCase = False
super().__init__(A_ , A_ )
lowerCAmelCase = self.image_processor
def __call__( self , A_ = None , A_ = None , A_ = True , A_ = False , A_ = None , A_ = None , A_ = 0 , A_ = None , A_ = None , A_ = False , A_ = False , A_ = False , A_ = False , A_ = False , A_ = True , A_ = None , **A_ , ) -> BatchEncoding:
if images is None and text is None:
raise ValueError("""You have to specify either images or text.""" )
# Get only text
if images is None:
lowerCAmelCase = self.tokenizer
lowerCAmelCase = self.tokenizer(
text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , )
return text_encoding
# add pixel_values
lowerCAmelCase = self.image_processor(A_ , return_tensors=A_ )
if text is not None:
lowerCAmelCase = self.tokenizer(
text=A_ , add_special_tokens=A_ , padding=A_ , truncation=A_ , max_length=A_ , stride=A_ , pad_to_multiple_of=A_ , return_attention_mask=A_ , return_overflowing_tokens=A_ , return_special_tokens_mask=A_ , return_offsets_mapping=A_ , return_token_type_ids=A_ , return_length=A_ , verbose=A_ , return_tensors=A_ , **A_ , )
else:
lowerCAmelCase = None
if text_encoding is not None:
encoding_image_processor.update(A_ )
return encoding_image_processor
def __snake_case ( self , *A_ , **A_ ) -> Union[str, Any]:
return self.tokenizer.batch_decode(*A_ , **A_ )
def __snake_case ( self , *A_ , **A_ ) -> Tuple:
return self.tokenizer.decode(*A_ , **A_ )
@property
def __snake_case ( self ) -> str:
lowerCAmelCase = self.tokenizer.model_input_names
lowerCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 187
|
'''simple docstring'''
import numpy
class __snake_case:
'''simple docstring'''
def __init__( self , A_ , A_ ) -> None:
lowerCAmelCase = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCAmelCase = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCAmelCase = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCAmelCase = numpy.random.rand(3 , 1 )
# Real output values provided.
lowerCAmelCase = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCAmelCase = numpy.zeros(output_array.shape )
def __snake_case ( self ) -> numpy.ndarray:
lowerCAmelCase = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def __snake_case ( self ) -> None:
lowerCAmelCase = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
lowerCAmelCase = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
lowerCAmelCase = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def __snake_case ( self , A_ , A_ , A_ ) -> None:
for iteration in range(1 , iterations + 1 ):
lowerCAmelCase = self.feedforward()
self.back_propagation()
if give_loss:
lowerCAmelCase = numpy.mean(numpy.square(output - self.feedforward() ) )
print(f'Iteration {iteration} Loss: {loss}' )
def __snake_case ( self , A_ ) -> int:
lowerCAmelCase = input_arr
lowerCAmelCase = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
lowerCAmelCase = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _SCREAMING_SNAKE_CASE : numpy.ndarray ) -> numpy.ndarray:
"""simple docstring"""
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _SCREAMING_SNAKE_CASE : numpy.ndarray ) -> numpy.ndarray:
"""simple docstring"""
return (value) * (1 - (value))
def _snake_case ( ) -> int:
"""simple docstring"""
lowerCAmelCase = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCAmelCase = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCAmelCase = TwoHiddenLayerNeuralNetwork(
input_array=_SCREAMING_SNAKE_CASE , output_array=_SCREAMING_SNAKE_CASE )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_SCREAMING_SNAKE_CASE , iterations=10 , give_loss=_SCREAMING_SNAKE_CASE )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 187
| 1
|
"""simple docstring"""
import json
import os
import shutil
import tempfile
import unittest
from multiprocessing import get_context
from pathlib import Path
import datasets
import numpy as np
from datasets import load_dataset
from parameterized import parameterized
from transformers import AutoProcessor
from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available
from ..wavaveca.test_feature_extraction_wavaveca import floats_list
if is_pyctcdecode_available():
from huggingface_hub import snapshot_download
from pyctcdecode import BeamSearchDecoderCTC
from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM
from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput
if is_torch_available():
from transformers import WavaVecaForCTC
@require_pyctcdecode
class lowercase__ ( unittest.TestCase ):
def UpperCAmelCase__ ( self : Optional[int] ):
lowerCamelCase_ : str ="| <pad> <unk> <s> </s> a b c d e f g h i j k".split()
lowerCamelCase_ : Optional[int] =dict(zip(snake_case__ , range(len(snake_case__ ) ) ) )
lowerCamelCase_ : Any ={
"unk_token": "<unk>",
"bos_token": "<s>",
"eos_token": "</s>",
}
lowerCamelCase_ : Any ={
"feature_size": 1,
"padding_value": 0.0,
"sampling_rate": 1_6000,
"return_attention_mask": False,
"do_normalize": True,
}
lowerCamelCase_ : str =tempfile.mkdtemp()
lowerCamelCase_ : Optional[Any] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
lowerCamelCase_ : Optional[Any] =os.path.join(self.tmpdirname , snake_case__ )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case__ ) + "\n" )
with open(self.feature_extraction_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(snake_case__ ) + "\n" )
# load decoder from hub
lowerCamelCase_ : Dict ="hf-internal-testing/ngram-beam-search-decoder"
def UpperCAmelCase__ ( self : Tuple , **snake_case__ : str ):
lowerCamelCase_ : Optional[Any] =self.add_kwargs_tokens_map.copy()
kwargs.update(snake_case__ )
return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **snake_case__ )
def UpperCAmelCase__ ( self : List[str] , **snake_case__ : Dict ):
return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **snake_case__ )
def UpperCAmelCase__ ( self : Tuple , **snake_case__ : Any ):
return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **snake_case__ )
def UpperCAmelCase__ ( self : Tuple ):
shutil.rmtree(self.tmpdirname )
def UpperCAmelCase__ ( self : Dict ):
lowerCamelCase_ : List[str] =self.get_tokenizer()
lowerCamelCase_ : str =self.get_feature_extractor()
lowerCamelCase_ : List[Any] =self.get_decoder()
lowerCamelCase_ : str =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
processor.save_pretrained(self.tmpdirname )
lowerCamelCase_ : str =WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname )
# tokenizer
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() )
self.assertIsInstance(processor.tokenizer , snake_case__ )
# feature extractor
self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() )
self.assertIsInstance(processor.feature_extractor , snake_case__ )
# decoder
self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels )
self.assertEqual(
processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , )
self.assertIsInstance(processor.decoder , snake_case__ )
def UpperCAmelCase__ ( self : int ):
lowerCamelCase_ : Union[str, Any] =WavaVecaProcessorWithLM(
tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
processor.save_pretrained(self.tmpdirname )
# make sure that error is thrown when decoder alphabet doesn't match
lowerCamelCase_ : Dict =WavaVecaProcessorWithLM.from_pretrained(
self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 )
# decoder
self.assertEqual(processor.language_model.alpha , 5.0 )
self.assertEqual(processor.language_model.beta , 3.0 )
self.assertEqual(processor.language_model.score_boundary , -7.0 )
self.assertEqual(processor.language_model.unk_score_offset , 3 )
def UpperCAmelCase__ ( self : Union[str, Any] ):
lowerCamelCase_ : List[Any] =self.get_tokenizer()
# add token to trigger raise
tokenizer.add_tokens(["xx"] )
with self.assertRaisesRegex(snake_case__ , "include" ):
WavaVecaProcessorWithLM(
tokenizer=snake_case__ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() )
def UpperCAmelCase__ ( self : int ):
lowerCamelCase_ : Optional[int] =self.get_feature_extractor()
lowerCamelCase_ : Any =self.get_tokenizer()
lowerCamelCase_ : Optional[int] =self.get_decoder()
lowerCamelCase_ : int =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
lowerCamelCase_ : str =floats_list((3, 1000) )
lowerCamelCase_ : Optional[Any] =feature_extractor(snake_case__ , return_tensors="np" )
lowerCamelCase_ : str =processor(snake_case__ , return_tensors="np" )
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
def UpperCAmelCase__ ( self : str ):
lowerCamelCase_ : Any =self.get_feature_extractor()
lowerCamelCase_ : Optional[int] =self.get_tokenizer()
lowerCamelCase_ : int =self.get_decoder()
lowerCamelCase_ : Optional[int] =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
lowerCamelCase_ : List[Any] ="This is a test string"
lowerCamelCase_ : List[Any] =processor(text=snake_case__ )
lowerCamelCase_ : Optional[Any] =tokenizer(snake_case__ )
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key] )
def UpperCAmelCase__ ( self : List[str] , snake_case__ : str=(2, 10, 16) , snake_case__ : str=77 ):
np.random.seed(snake_case__ )
return np.random.rand(*snake_case__ )
def UpperCAmelCase__ ( self : str ):
lowerCamelCase_ : Optional[int] =self.get_feature_extractor()
lowerCamelCase_ : str =self.get_tokenizer()
lowerCamelCase_ : Optional[int] =self.get_decoder()
lowerCamelCase_ : Optional[Any] =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
lowerCamelCase_ : Tuple =self._get_dummy_logits(shape=(10, 16) , seed=13 )
lowerCamelCase_ : int =processor.decode(snake_case__ )
lowerCamelCase_ : Union[str, Any] =decoder.decode_beams(snake_case__ )[0]
self.assertEqual(decoded_decoder[0] , decoded_processor.text )
self.assertEqual("</s> <s> </s>" , decoded_processor.text )
self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score )
self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score )
@parameterized.expand([[None], ["fork"], ["spawn"]] )
def UpperCAmelCase__ ( self : List[Any] , snake_case__ : Optional[int] ):
lowerCamelCase_ : Union[str, Any] =self.get_feature_extractor()
lowerCamelCase_ : Dict =self.get_tokenizer()
lowerCamelCase_ : Optional[int] =self.get_decoder()
lowerCamelCase_ : Any =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
lowerCamelCase_ : List[str] =self._get_dummy_logits()
# note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM.
# otherwise, the LM won't be available to the pool's sub-processes.
# manual logic used to allow parameterized test for both pool=None and pool=Pool(...)
if pool_context is None:
lowerCamelCase_ : Any =processor.batch_decode(snake_case__ )
else:
with get_context(snake_case__ ).Pool() as pool:
lowerCamelCase_ : int =processor.batch_decode(snake_case__ , snake_case__ )
lowerCamelCase_ : Optional[int] =list(snake_case__ )
with get_context("fork" ).Pool() as p:
lowerCamelCase_ : int =decoder.decode_beams_batch(snake_case__ , snake_case__ )
lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Union[str, Any] =[], [], []
for beams in decoded_beams:
texts_decoder.append(beams[0][0] )
logit_scores_decoder.append(beams[0][-2] )
lm_scores_decoder.append(beams[0][-1] )
self.assertListEqual(snake_case__ , decoded_processor.text )
self.assertListEqual(["<s> <s> </s>", "<s> <s> <s>"] , decoded_processor.text )
self.assertListEqual(snake_case__ , decoded_processor.logit_score )
self.assertListEqual(snake_case__ , decoded_processor.lm_score )
def UpperCAmelCase__ ( self : Optional[Any] ):
lowerCamelCase_ : List[Any] =self.get_feature_extractor()
lowerCamelCase_ : Dict =self.get_tokenizer()
lowerCamelCase_ : Optional[Any] =self.get_decoder()
lowerCamelCase_ : Tuple =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
lowerCamelCase_ : Optional[Any] =self._get_dummy_logits()
lowerCamelCase_ : Union[str, Any] =15
lowerCamelCase_ : str =-20.0
lowerCamelCase_ : Tuple =-4.0
lowerCamelCase_ : Optional[Any] =processor.batch_decode(
snake_case__ , beam_width=snake_case__ , beam_prune_logp=snake_case__ , token_min_logp=snake_case__ , )
lowerCamelCase_ : Tuple =decoded_processor_out.text
lowerCamelCase_ : List[str] =list(snake_case__ )
with get_context("fork" ).Pool() as pool:
lowerCamelCase_ : str =decoder.decode_beams_batch(
snake_case__ , snake_case__ , beam_width=snake_case__ , beam_prune_logp=snake_case__ , token_min_logp=snake_case__ , )
lowerCamelCase_ : str =[d[0][0] for d in decoded_decoder_out]
lowerCamelCase_ : str =[d[0][2] for d in decoded_decoder_out]
lowerCamelCase_ : Union[str, Any] =[d[0][3] for d in decoded_decoder_out]
self.assertListEqual(snake_case__ , snake_case__ )
self.assertListEqual(["</s> <s> <s>", "<s> <s> <s>"] , snake_case__ )
self.assertTrue(np.array_equal(snake_case__ , decoded_processor_out.logit_score ) )
self.assertTrue(np.allclose([-20.054, -18.447] , snake_case__ , atol=1E-3 ) )
self.assertTrue(np.array_equal(snake_case__ , decoded_processor_out.lm_score ) )
self.assertTrue(np.allclose([-15.554, -13.9_474] , snake_case__ , atol=1E-3 ) )
def UpperCAmelCase__ ( self : str ):
lowerCamelCase_ : Union[str, Any] =self.get_feature_extractor()
lowerCamelCase_ : Any =self.get_tokenizer()
lowerCamelCase_ : Optional[Any] =self.get_decoder()
lowerCamelCase_ : Optional[int] =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
lowerCamelCase_ : List[Any] =self._get_dummy_logits()
lowerCamelCase_ : Tuple =2.0
lowerCamelCase_ : int =5.0
lowerCamelCase_ : Dict =-20.0
lowerCamelCase_ : str =True
lowerCamelCase_ : Optional[Any] =processor.batch_decode(
snake_case__ , alpha=snake_case__ , beta=snake_case__ , unk_score_offset=snake_case__ , lm_score_boundary=snake_case__ , )
lowerCamelCase_ : str =decoded_processor_out.text
lowerCamelCase_ : Tuple =list(snake_case__ )
decoder.reset_params(
alpha=snake_case__ , beta=snake_case__ , unk_score_offset=snake_case__ , lm_score_boundary=snake_case__ , )
with get_context("fork" ).Pool() as pool:
lowerCamelCase_ : Dict =decoder.decode_beams_batch(
snake_case__ , snake_case__ , )
lowerCamelCase_ : Optional[Any] =[d[0][0] for d in decoded_decoder_out]
self.assertListEqual(snake_case__ , snake_case__ )
self.assertListEqual(["<s> </s> <s> </s> </s>", "</s> </s> <s> </s> </s>"] , snake_case__ )
lowerCamelCase_ : List[Any] =processor.decoder.model_container[processor.decoder._model_key]
self.assertEqual(lm_model.alpha , 2.0 )
self.assertEqual(lm_model.beta , 5.0 )
self.assertEqual(lm_model.unk_score_offset , -20.0 )
self.assertEqual(lm_model.score_boundary , snake_case__ )
def UpperCAmelCase__ ( self : int ):
lowerCamelCase_ : Any =WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase_ : List[str] =processor.decoder.model_container[processor.decoder._model_key]
lowerCamelCase_ : List[Any] =Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
lowerCamelCase_ : Dict =os.listdir(snake_case__ )
lowerCamelCase_ : Optional[int] =["alphabet.json", "language_model"]
downloaded_decoder_files.sort()
expected_decoder_files.sort()
# test that only decoder relevant files from
# https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main
# are downloaded and none of the rest (e.g. README.md, ...)
self.assertListEqual(snake_case__ , snake_case__ )
def UpperCAmelCase__ ( self : Union[str, Any] ):
lowerCamelCase_ : Dict =snapshot_download("hf-internal-testing/processor_with_lm" )
lowerCamelCase_ : Any =WavaVecaProcessorWithLM.from_pretrained(snake_case__ )
lowerCamelCase_ : Optional[int] =processor.decoder.model_container[processor.decoder._model_key]
lowerCamelCase_ : Dict =Path(language_model._kenlm_model.path.decode("utf-8" ) ).parent.parent.absolute()
lowerCamelCase_ : Dict =os.listdir(snake_case__ )
lowerCamelCase_ : List[str] =os.listdir(snake_case__ )
local_decoder_files.sort()
expected_decoder_files.sort()
# test that both decoder form hub and local files in cache are the same
self.assertListEqual(snake_case__ , snake_case__ )
def UpperCAmelCase__ ( self : Union[str, Any] ):
lowerCamelCase_ : Dict =WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase_ : Dict =AutoProcessor.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase_ : Any =floats_list((3, 1000) )
lowerCamelCase_ : Union[str, Any] =processor_wavaveca(snake_case__ , return_tensors="np" )
lowerCamelCase_ : str =processor_auto(snake_case__ , return_tensors="np" )
for key in input_wavaveca.keys():
self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1E-2 )
lowerCamelCase_ : Optional[int] =self._get_dummy_logits()
lowerCamelCase_ : int =processor_wavaveca.batch_decode(snake_case__ )
lowerCamelCase_ : Dict =processor_auto.batch_decode(snake_case__ )
self.assertListEqual(decoded_wavaveca.text , decoded_auto.text )
def UpperCAmelCase__ ( self : List[str] ):
lowerCamelCase_ : Optional[int] =self.get_feature_extractor()
lowerCamelCase_ : Optional[Any] =self.get_tokenizer()
lowerCamelCase_ : Optional[int] =self.get_decoder()
lowerCamelCase_ : Optional[Any] =WavaVecaProcessorWithLM(tokenizer=snake_case__ , feature_extractor=snake_case__ , decoder=snake_case__ )
self.assertListEqual(
processor.model_input_names , feature_extractor.model_input_names , msg="`processor` and `feature_extractor` model input names do not match" , )
@staticmethod
def UpperCAmelCase__ ( snake_case__ : List[Any] , snake_case__ : Any ):
lowerCamelCase_ : str =[d[key] for d in offsets]
return retrieved_list
def UpperCAmelCase__ ( self : int ):
lowerCamelCase_ : Dict =WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase_ : Union[str, Any] =self._get_dummy_logits()[0]
lowerCamelCase_ : Optional[int] =processor.decode(snake_case__ , output_word_offsets=snake_case__ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(snake_case__ , snake_case__ ) )
self.assertEqual(" ".join(self.get_from_offsets(outputs["word_offsets"] , "word" ) ) , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"] , "end_offset" ) , [1, 3, 5] )
def UpperCAmelCase__ ( self : Optional[Any] ):
lowerCamelCase_ : int =WavaVecaProcessorWithLM.from_pretrained("hf-internal-testing/processor_with_lm" )
lowerCamelCase_ : Optional[int] =self._get_dummy_logits()
lowerCamelCase_ : Tuple =processor.batch_decode(snake_case__ , output_word_offsets=snake_case__ )
# check Wav2Vec2CTCTokenizerOutput keys for word
self.assertEqual(len(outputs.keys() ) , 4 )
self.assertTrue("text" in outputs )
self.assertTrue("word_offsets" in outputs )
self.assertTrue(isinstance(snake_case__ , snake_case__ ) )
self.assertListEqual(
[" ".join(self.get_from_offsets(snake_case__ , "word" ) ) for o in outputs["word_offsets"]] , outputs.text )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "word" ) , ["<s>", "<s>", "</s>"] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "start_offset" ) , [0, 2, 4] )
self.assertListEqual(self.get_from_offsets(outputs["word_offsets"][0] , "end_offset" ) , [1, 3, 5] )
@slow
@require_torch
@require_torchaudio
def UpperCAmelCase__ ( self : int ):
import torch
lowerCamelCase_ : Any =load_dataset("common_voice" , "en" , split="train" , streaming=snake_case__ )
lowerCamelCase_ : int =ds.cast_column("audio" , datasets.Audio(sampling_rate=1_6000 ) )
lowerCamelCase_ : Optional[int] =iter(snake_case__ )
lowerCamelCase_ : int =next(snake_case__ )
lowerCamelCase_ : Optional[int] =AutoProcessor.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
lowerCamelCase_ : Union[str, Any] =WavaVecaForCTC.from_pretrained("patrickvonplaten/wav2vec2-base-100h-with-lm" )
# compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train
lowerCamelCase_ : Optional[Any] =processor(sample["audio"]["array"] , return_tensors="pt" ).input_values
with torch.no_grad():
lowerCamelCase_ : Tuple =model(snake_case__ ).logits.cpu().numpy()
lowerCamelCase_ : Tuple =processor.decode(logits[0] , output_word_offsets=snake_case__ )
lowerCamelCase_ : List[str] =model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate
lowerCamelCase_ : Optional[int] =[
{
"start_time": d["start_offset"] * time_offset,
"end_time": d["end_offset"] * time_offset,
"word": d["word"],
}
for d in output["word_offsets"]
]
lowerCamelCase_ : str ="WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL"
# output words
self.assertEqual(" ".join(self.get_from_offsets(snake_case__ , "word" ) ) , snake_case__ )
self.assertEqual(" ".join(self.get_from_offsets(snake_case__ , "word" ) ) , output.text )
# output times
lowerCamelCase_ : Any =torch.tensor(self.get_from_offsets(snake_case__ , "start_time" ) )
lowerCamelCase_ : Tuple =torch.tensor(self.get_from_offsets(snake_case__ , "end_time" ) )
# fmt: off
lowerCamelCase_ : Dict =torch.tensor([1.4_199, 1.6_599, 2.2_599, 3.0, 3.24, 3.5_999, 3.7_999, 4.0_999, 4.26, 4.94, 5.28, 5.6_599, 5.78, 5.94, 6.32, 6.5_399, 6.6_599] )
lowerCamelCase_ : Optional[Any] =torch.tensor([1.5_399, 1.8_999, 2.9, 3.16, 3.5_399, 3.72, 4.0_199, 4.1_799, 4.76, 5.1_599, 5.5_599, 5.6_999, 5.86, 6.1_999, 6.38, 6.6_199, 6.94] )
# fmt: on
self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=0.01 ) )
self.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=0.01 ) )
| 144
|
"""simple docstring"""
from __future__ import annotations
from math import pi, sqrt
def _snake_case ( lowerCamelCase__ : float , lowerCamelCase__ : float ) -> tuple:
if inductance <= 0:
raise ValueError("Inductance cannot be 0 or negative" )
elif capacitance <= 0:
raise ValueError("Capacitance cannot be 0 or negative" )
else:
return (
"Resonant frequency",
float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 144
| 1
|
import os
import re
import shutil
from argparse import ArgumentParser, Namespace
from datasets.commands import BaseDatasetsCLICommand
from datasets.utils.logging import get_logger
_UpperCAmelCase : Union[str, Any] = "<<<<<<< This should probably be modified because it mentions: "
_UpperCAmelCase : List[Any] = "=======\n>>>>>>>\n"
_UpperCAmelCase : Optional[int] = [
"TextEncoderConfig",
"ByteTextEncoder",
"SubwordTextEncoder",
"encoder_config",
"maybe_build_from_corpus",
"manual_dir",
]
_UpperCAmelCase : Optional[Any] = [
# (pattern, replacement)
# Order is important here for some replacements
(R"tfds\.core", R"datasets"),
(R"tf\.io\.gfile\.GFile", R"open"),
(R"tf\.([\w\d]+)", R"datasets.Value('\1')"),
(R"tfds\.features\.Text\(\)", R"datasets.Value('string')"),
(R"tfds\.features\.Text\(", R"datasets.Value('string'),"),
(R"features\s*=\s*tfds.features.FeaturesDict\(", R"features=datasets.Features("),
(R"tfds\.features\.FeaturesDict\(", R"dict("),
(R"The TensorFlow Datasets Authors", R"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
(R"tfds\.", R"datasets."),
(R"dl_manager\.manual_dir", R"self.config.data_dir"),
(R"self\.builder_config", R"self.config"),
]
def A ( lowercase ) -> Optional[Any]:
'''simple docstring'''
return ConvertCommand(args.tfds_path , args.datasets_directory )
class lowercase ( _SCREAMING_SNAKE_CASE ):
@staticmethod
def __UpperCamelCase ( A_ ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase = parser.add_parser(
'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , )
train_parser.add_argument(
'--tfds_path' , type=A_ , required=A_ , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , )
train_parser.add_argument(
'--datasets_directory' , type=A_ , required=A_ , help='Path to the HuggingFace Datasets folder.' )
train_parser.set_defaults(func=A_ )
def __init__( self , A_ , A_ , *A_ ) -> Any:
"""simple docstring"""
UpperCamelCase = get_logger('datasets-cli/converting' )
UpperCamelCase = tfds_path
UpperCamelCase = datasets_directory
def __UpperCamelCase ( self ) -> int:
"""simple docstring"""
if os.path.isdir(self._tfds_path ):
UpperCamelCase = os.path.abspath(self._tfds_path )
elif os.path.isfile(self._tfds_path ):
UpperCamelCase = os.path.dirname(self._tfds_path )
else:
raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' )
UpperCamelCase = os.path.abspath(self._datasets_directory )
self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' )
UpperCamelCase = []
UpperCamelCase = []
UpperCamelCase = {}
if os.path.isdir(self._tfds_path ):
UpperCamelCase = os.listdir(A_ )
else:
UpperCamelCase = [os.path.basename(self._tfds_path )]
for f_name in file_names:
self._logger.info(F'''Looking at file {f_name}''' )
UpperCamelCase = os.path.join(A_ , A_ )
UpperCamelCase = os.path.join(A_ , A_ )
if not os.path.isfile(A_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
self._logger.info('Skipping file' )
continue
with open(A_ , encoding='utf-8' ) as f:
UpperCamelCase = f.readlines()
UpperCamelCase = []
UpperCamelCase = False
UpperCamelCase = False
UpperCamelCase = []
for line in lines:
UpperCamelCase = line
# Convert imports
if "import tensorflow.compat.v2 as tf" in out_line:
continue
elif "@tfds.core" in out_line:
continue
elif "builder=self" in out_line:
continue
elif "import tensorflow_datasets.public_api as tfds" in out_line:
UpperCamelCase = 'import datasets\n'
elif "import tensorflow" in out_line:
# order is important here
UpperCamelCase = ''
continue
elif "from absl import logging" in out_line:
UpperCamelCase = 'from datasets import logging\n'
elif "getLogger" in out_line:
UpperCamelCase = out_line.replace('getLogger' , 'get_logger' )
elif any(expression in out_line for expression in TO_HIGHLIGHT ):
UpperCamelCase = True
UpperCamelCase = list(filter(lambda A_ : e in out_line , A_ ) )
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(A_ ) + '\n' )
out_lines.append(A_ )
out_lines.append(A_ )
continue
else:
for pattern, replacement in TO_CONVERT:
UpperCamelCase = re.sub(A_ , A_ , A_ )
# Take care of saving utilities (to later move them together with main script)
if "tensorflow_datasets" in out_line:
UpperCamelCase = re.match(r'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , A_ )
tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) )
UpperCamelCase = 'from . import ' + match.group(1 )
# Check we have not forget anything
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
raise ValueError(F'''Error converting {out_line.strip()}''' )
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
UpperCamelCase = True
out_lines.append(A_ )
if is_builder or "wmt" in f_name:
# We create a new directory for each dataset
UpperCamelCase = f_name.replace('.py' , '' )
UpperCamelCase = os.path.join(A_ , A_ )
UpperCamelCase = os.path.join(A_ , A_ )
os.makedirs(A_ , exist_ok=A_ )
self._logger.info(F'''Adding directory {output_dir}''' )
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} )
else:
# Utilities will be moved at the end
utils_files.append(A_ )
if needs_manual_update:
with_manual_update.append(A_ )
with open(A_ , 'w' , encoding='utf-8' ) as f:
f.writelines(A_ )
self._logger.info(F'''Converted in {output_file}''' )
for utils_file in utils_files:
try:
UpperCamelCase = os.path.basename(A_ )
UpperCamelCase = imports_to_builder_map[f_name.replace('.py' , '' )]
self._logger.info(F'''Moving {dest_folder} to {utils_file}''' )
shutil.copy(A_ , A_ )
except KeyError:
self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' )
if with_manual_update:
for file_path in with_manual_update:
self._logger.warning(
F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
| 110
|
import os
import sys
import unittest
_UpperCAmelCase : str = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_dummies # noqa: E402
from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402
# Align TRANSFORMERS_PATH in check_dummies with the current path
_UpperCAmelCase : Tuple = os.path.join(git_repo_path, "src", "diffusers")
class lowercase ( unittest.TestCase ):
def __UpperCamelCase ( self ) -> Tuple:
"""simple docstring"""
UpperCamelCase = find_backend(' if not is_torch_available():' )
self.assertEqual(A_ , 'torch' )
# backend_with_underscore = find_backend(" if not is_tensorflow_text_available():")
# self.assertEqual(backend_with_underscore, "tensorflow_text")
UpperCamelCase = find_backend(' if not (is_torch_available() and is_transformers_available()):' )
self.assertEqual(A_ , 'torch_and_transformers' )
# double_backend_with_underscore = find_backend(
# " if not (is_sentencepiece_available() and is_tensorflow_text_available()):"
# )
# self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text")
UpperCamelCase = find_backend(
' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):' )
self.assertEqual(A_ , 'torch_and_transformers_and_onnx' )
def __UpperCamelCase ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = read_init()
# We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects
self.assertIn('torch' , A_ )
self.assertIn('torch_and_transformers' , A_ )
self.assertIn('flax_and_transformers' , A_ )
self.assertIn('torch_and_transformers_and_onnx' , A_ )
# Likewise, we can't assert on the exact content of a key
self.assertIn('UNet2DModel' , objects['torch'] )
self.assertIn('FlaxUNet2DConditionModel' , objects['flax'] )
self.assertIn('StableDiffusionPipeline' , objects['torch_and_transformers'] )
self.assertIn('FlaxStableDiffusionPipeline' , objects['flax_and_transformers'] )
self.assertIn('LMSDiscreteScheduler' , objects['torch_and_scipy'] )
self.assertIn('OnnxStableDiffusionPipeline' , objects['torch_and_transformers_and_onnx'] )
def __UpperCamelCase ( self ) -> Any:
"""simple docstring"""
UpperCamelCase = create_dummy_object('CONSTANT' , '\'torch\'' )
self.assertEqual(A_ , '\nCONSTANT = None\n' )
UpperCamelCase = create_dummy_object('function' , '\'torch\'' )
self.assertEqual(
A_ , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' )
UpperCamelCase = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, \'torch\')\n'
UpperCamelCase = create_dummy_object('FakeClass' , '\'torch\'' )
self.assertEqual(A_ , A_ )
def __UpperCamelCase ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n\n @classmethod\n def from_config(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n\n @classmethod\n def from_pretrained(cls, *args, **kwargs):\n requires_backends(cls, ["torch"])\n'
UpperCamelCase = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} )
self.assertEqual(dummy_files['torch'] , A_ )
| 110
| 1
|
"""simple docstring"""
import argparse
import os
import gluonnlp as nlp
import mxnet as mx
import numpy as np
import torch
from gluonnlp.base import get_home_dir
from gluonnlp.model.bert import BERTEncoder
from gluonnlp.model.utils import _load_vocab
from gluonnlp.vocab import Vocab
from packaging import version
from torch import nn
from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.utils import logging
if version.parse(nlp.__version__) != version.parse("""0.8.3"""):
raise Exception("""requires gluonnlp == 0.8.3""")
if version.parse(mx.__version__) != version.parse("""1.5.0"""):
raise Exception("""requires mxnet == 1.5.0""")
logging.set_verbosity_info()
UpperCAmelCase_ : List[str] = logging.get_logger(__name__)
UpperCAmelCase_ : Optional[int] = """The Nymphenburg Palace is a beautiful palace in Munich!"""
def _A (__a , __a ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = {
'''attention_cell''': '''multi_head''',
'''num_layers''': 4,
'''units''': 10_24,
'''hidden_size''': 7_68,
'''max_length''': 5_12,
'''num_heads''': 8,
'''scaled''': True,
'''dropout''': 0.1,
'''use_residual''': True,
'''embed_size''': 10_24,
'''embed_dropout''': 0.1,
'''word_embed''': None,
'''layer_norm_eps''': 1e-5,
'''token_type_vocab_size''': 2,
}
SCREAMING_SNAKE_CASE_ : str = bort_4_8_768_1024_hparams
# Let's construct the original Bort model here
# Taken from official BERT implementation, see:
# https://github.com/alexa/bort/blob/master/bort/bort.py
SCREAMING_SNAKE_CASE_ : Dict = BERTEncoder(
attention_cell=predefined_args['''attention_cell'''] , num_layers=predefined_args['''num_layers'''] , units=predefined_args['''units'''] , hidden_size=predefined_args['''hidden_size'''] , max_length=predefined_args['''max_length'''] , num_heads=predefined_args['''num_heads'''] , scaled=predefined_args['''scaled'''] , dropout=predefined_args['''dropout'''] , output_attention=__a , output_all_encodings=__a , use_residual=predefined_args['''use_residual'''] , activation=predefined_args.get('''activation''' , '''gelu''' ) , layer_norm_eps=predefined_args.get('''layer_norm_eps''' , __a ) , )
# Vocab information needs to be fetched first
# It's the same as RoBERTa, so RobertaTokenizer can be used later
SCREAMING_SNAKE_CASE_ : str = '''openwebtext_ccnews_stories_books_cased'''
# Specify download folder to Gluonnlp's vocab
SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(get_home_dir() , '''models''' )
SCREAMING_SNAKE_CASE_ : List[Any] = _load_vocab(__a , __a , __a , cls=__a )
SCREAMING_SNAKE_CASE_ : Optional[Any] = nlp.model.BERTModel(
__a , len(__a ) , units=predefined_args['''units'''] , embed_size=predefined_args['''embed_size'''] , embed_dropout=predefined_args['''embed_dropout'''] , word_embed=predefined_args['''word_embed'''] , use_pooler=__a , use_token_type_embed=__a , token_type_vocab_size=predefined_args['''token_type_vocab_size'''] , use_classifier=__a , use_decoder=__a , )
original_bort.load_parameters(__a , cast_dtype=__a , ignore_extra=__a )
SCREAMING_SNAKE_CASE_ : List[str] = original_bort._collect_params_with_prefix()
# Build our config 🤗
SCREAMING_SNAKE_CASE_ : List[Any] = {
'''architectures''': ['''BertForMaskedLM'''],
'''attention_probs_dropout_prob''': predefined_args['''dropout'''],
'''hidden_act''': '''gelu''',
'''hidden_dropout_prob''': predefined_args['''dropout'''],
'''hidden_size''': predefined_args['''embed_size'''],
'''initializer_range''': 0.02,
'''intermediate_size''': predefined_args['''hidden_size'''],
'''layer_norm_eps''': predefined_args['''layer_norm_eps'''],
'''max_position_embeddings''': predefined_args['''max_length'''],
'''model_type''': '''bort''',
'''num_attention_heads''': predefined_args['''num_heads'''],
'''num_hidden_layers''': predefined_args['''num_layers'''],
'''pad_token_id''': 1, # 2 = BERT, 1 = RoBERTa
'''type_vocab_size''': 1, # 2 = BERT, 1 = RoBERTa
'''vocab_size''': len(__a ),
}
SCREAMING_SNAKE_CASE_ : List[str] = BertConfig.from_dict(__a )
SCREAMING_SNAKE_CASE_ : str = BertForMaskedLM(__a )
hf_bort_model.eval()
# Parameter mapping table (Gluonnlp to Transformers)
# * denotes layer index
#
# | Gluon Parameter | Transformers Parameter
# | -------------------------------------------------------------- | ----------------------
# | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias`
# | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight`
# | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight`
# | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight`
# | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias`
# | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight`
# | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight`
# | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias`
# | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight`
# | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias`
# | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight`
# | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias`
# | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight`
# Helper function to convert MXNET Arrays to PyTorch
def to_torch(__a ) -> nn.Parameter:
return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) )
# Check param shapes and map new HF param back
def check_and_map_params(__a , __a ):
SCREAMING_SNAKE_CASE_ : Tuple = hf_param.shape
SCREAMING_SNAKE_CASE_ : Optional[int] = to_torch(params[gluon_param] )
SCREAMING_SNAKE_CASE_ : Tuple = gluon_param.shape
assert (
shape_hf == shape_gluon
), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers'
return gluon_param
SCREAMING_SNAKE_CASE_ : str = check_and_map_params(
hf_bort_model.bert.embeddings.word_embeddings.weight , '''word_embed.0.weight''' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params(
hf_bort_model.bert.embeddings.position_embeddings.weight , '''encoder.position_weight''' )
SCREAMING_SNAKE_CASE_ : Optional[int] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.bias , '''encoder.layer_norm.beta''' )
SCREAMING_SNAKE_CASE_ : Optional[int] = check_and_map_params(
hf_bort_model.bert.embeddings.LayerNorm.weight , '''encoder.layer_norm.gamma''' )
# Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them)
SCREAMING_SNAKE_CASE_ : Dict = torch.zeros_like(
hf_bort_model.bert.embeddings.token_type_embeddings.weight.data )
for i in range(hf_bort_config.num_hidden_layers ):
SCREAMING_SNAKE_CASE_ : BertLayer = hf_bort_model.bert.encoder.layer[i]
# self attention
SCREAMING_SNAKE_CASE_ : BertSelfAttention = layer.attention.self
SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params(
self_attn.key.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' )
SCREAMING_SNAKE_CASE_ : str = check_and_map_params(
self_attn.key.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' )
SCREAMING_SNAKE_CASE_ : Any = check_and_map_params(
self_attn.query.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' )
SCREAMING_SNAKE_CASE_ : str = check_and_map_params(
self_attn.query.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' )
SCREAMING_SNAKE_CASE_ : Tuple = check_and_map_params(
self_attn.value.bias.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' )
SCREAMING_SNAKE_CASE_ : Optional[Any] = check_and_map_params(
self_attn.value.weight.data , f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' )
# self attention output
SCREAMING_SNAKE_CASE_ : BertSelfOutput = layer.attention.output
SCREAMING_SNAKE_CASE_ : List[str] = check_and_map_params(
self_output.dense.bias , f'encoder.transformer_cells.{i}.proj.bias' )
SCREAMING_SNAKE_CASE_ : List[str] = check_and_map_params(
self_output.dense.weight , f'encoder.transformer_cells.{i}.proj.weight' )
SCREAMING_SNAKE_CASE_ : Any = check_and_map_params(
self_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.layer_norm.beta' )
SCREAMING_SNAKE_CASE_ : Tuple = check_and_map_params(
self_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.layer_norm.gamma' )
# intermediate
SCREAMING_SNAKE_CASE_ : BertIntermediate = layer.intermediate
SCREAMING_SNAKE_CASE_ : List[Any] = check_and_map_params(
intermediate.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' )
SCREAMING_SNAKE_CASE_ : Any = check_and_map_params(
intermediate.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' )
# output
SCREAMING_SNAKE_CASE_ : BertOutput = layer.output
SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params(
bert_output.dense.bias , f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = check_and_map_params(
bert_output.dense.weight , f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' )
SCREAMING_SNAKE_CASE_ : Dict = check_and_map_params(
bert_output.LayerNorm.bias , f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' )
SCREAMING_SNAKE_CASE_ : str = check_and_map_params(
bert_output.LayerNorm.weight , f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' )
# Save space and energy 🎄
hf_bort_model.half()
# Compare output of both models
SCREAMING_SNAKE_CASE_ : int = RobertaTokenizer.from_pretrained('''roberta-base''' )
SCREAMING_SNAKE_CASE_ : Optional[int] = tokenizer.encode_plus(__a )['''input_ids''']
# Get gluon output
SCREAMING_SNAKE_CASE_ : List[str] = mx.nd.array([input_ids] )
SCREAMING_SNAKE_CASE_ : int = original_bort(inputs=__a , token_types=[] )
# Get Transformer output (save and reload model again)
hf_bort_model.save_pretrained(__a )
SCREAMING_SNAKE_CASE_ : List[str] = BertModel.from_pretrained(__a )
hf_bort_model.eval()
SCREAMING_SNAKE_CASE_ : Dict = tokenizer.encode_plus(__a , return_tensors='''pt''' )
SCREAMING_SNAKE_CASE_ : List[Any] = hf_bort_model(**__a )[0]
SCREAMING_SNAKE_CASE_ : List[Any] = output_gluon[0].asnumpy()
SCREAMING_SNAKE_CASE_ : Union[str, Any] = output_hf[0].detach().numpy()
SCREAMING_SNAKE_CASE_ : int = np.max(np.abs(hf_layer - gluon_layer ) ).item()
SCREAMING_SNAKE_CASE_ : Tuple = np.allclose(__a , __a , atol=1e-3 )
if success:
print('''✔️ Both model do output the same tensors''' )
else:
print('''❌ Both model do **NOT** output the same tensors''' )
print('''Absolute difference is:''' , __a )
if __name__ == "__main__":
UpperCAmelCase_ : Dict = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file."""
)
parser.add_argument(
"""--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model."""
)
UpperCAmelCase_ : Optional[Any] = parser.parse_args()
convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
| 91
|
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class A__ ( __UpperCAmelCase ):
"""simple docstring"""
def __lowercase ( self) -> Tuple:
'''simple docstring'''
a__ : Dict = self.config_class(**self.inputs_dict)
self.parent.assertTrue(hasattr(lowercase , 'hidden_sizes'))
self.parent.assertTrue(hasattr(lowercase , 'num_attention_heads'))
self.parent.assertTrue(hasattr(lowercase , 'num_encoder_blocks'))
class A__ :
"""simple docstring"""
def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[16, 32, 64, 128] , lowercase=[1, 4, 8, 16] , lowercase=[1, 2, 4, 8] , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Tuple:
'''simple docstring'''
a__ : Optional[Any] = parent
a__ : int = batch_size
a__ : Tuple = image_size
a__ : Union[str, Any] = num_channels
a__ : str = num_encoder_blocks
a__ : Dict = sr_ratios
a__ : Dict = depths
a__ : Union[str, Any] = hidden_sizes
a__ : str = downsampling_rates
a__ : Tuple = num_attention_heads
a__ : Optional[Any] = is_training
a__ : Union[str, Any] = use_labels
a__ : Any = hidden_act
a__ : Optional[int] = hidden_dropout_prob
a__ : int = attention_probs_dropout_prob
a__ : Optional[Any] = initializer_range
a__ : Tuple = num_labels
a__ : Union[str, Any] = scope
def __lowercase ( self) -> Any:
'''simple docstring'''
a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
a__ : str = None
if self.use_labels:
a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels)
a__ : Any = self.get_config()
return config, pixel_values, labels
def __lowercase ( self) -> Any:
'''simple docstring'''
return SegformerConfig(
image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , )
def __lowercase ( self , lowercase , lowercase , lowercase) -> Dict:
'''simple docstring'''
a__ : Dict = SegformerModel(config=lowercase)
model.to(lowercase)
model.eval()
a__ : Optional[Any] = model(lowercase)
a__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width))
def __lowercase ( self , lowercase , lowercase , lowercase) -> str:
'''simple docstring'''
a__ : Optional[Any] = self.num_labels
a__ : List[str] = SegformerForSemanticSegmentation(lowercase)
model.to(lowercase)
model.eval()
a__ : List[str] = model(lowercase)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4))
a__ : int = model(lowercase , labels=lowercase)
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4))
self.parent.assertGreater(result.loss , 0.0)
def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[int]:
'''simple docstring'''
a__ : Union[str, Any] = 1
a__ : Optional[int] = SegformerForSemanticSegmentation(config=lowercase)
model.to(lowercase)
model.eval()
a__ : Union[str, Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowercase)
a__ : Optional[Any] = model(lowercase , labels=lowercase)
self.parent.assertGreater(result.loss , 0.0)
def __lowercase ( self) -> int:
'''simple docstring'''
a__ : Any = self.prepare_config_and_inputs()
a__ , a__ , a__ : str = config_and_inputs
a__ : Optional[int] = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ):
"""simple docstring"""
__A : Any = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
__A : List[str] = (
{
'''feature-extraction''': SegformerModel,
'''image-classification''': SegformerForImageClassification,
'''image-segmentation''': SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
__A : List[str] = True
__A : Any = False
__A : Any = False
__A : str = False
def __lowercase ( self) -> Tuple:
'''simple docstring'''
a__ : Union[str, Any] = SegformerModelTester(self)
a__ : Optional[Any] = SegformerConfigTester(self , config_class=lowercase)
def __lowercase ( self) -> List[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def __lowercase ( self) -> Tuple:
'''simple docstring'''
a__ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowercase)
def __lowercase ( self) -> Dict:
'''simple docstring'''
a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase)
def __lowercase ( self) -> Dict:
'''simple docstring'''
a__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*lowercase)
@unittest.skip('SegFormer does not use inputs_embeds')
def __lowercase ( self) -> Tuple:
'''simple docstring'''
pass
@unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods')
def __lowercase ( self) -> str:
'''simple docstring'''
pass
def __lowercase ( self) -> Union[str, Any]:
'''simple docstring'''
a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : List[str] = model_class(lowercase)
a__ : Dict = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
a__ : Optional[int] = [*signature.parameters.keys()]
a__ : Union[str, Any] = ['pixel_values']
self.assertListEqual(arg_names[:1] , lowercase)
def __lowercase ( self) -> str:
'''simple docstring'''
a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
a__ : Tuple = True
for model_class in self.all_model_classes:
a__ : str = True
a__ : List[str] = False
a__ : int = True
a__ : List[Any] = model_class(lowercase)
model.to(lowercase)
model.eval()
with torch.no_grad():
a__ : Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase))
a__ : Optional[Any] = outputs.attentions
a__ : Dict = sum(self.model_tester.depths)
self.assertEqual(len(lowercase) , lowercase)
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
a__ : Dict = True
a__ : int = model_class(lowercase)
model.to(lowercase)
model.eval()
with torch.no_grad():
a__ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase))
a__ : Optional[Any] = outputs.attentions
self.assertEqual(len(lowercase) , lowercase)
# verify the first attentions (first block, first layer)
a__ : Tuple = (self.model_tester.image_size // 4) ** 2
a__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
# verify the last attentions (last block, last layer)
a__ : str = (self.model_tester.image_size // 32) ** 2
a__ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , )
a__ : Dict = len(lowercase)
# Check attention is always last and order is fine
a__ : List[Any] = True
a__ : Any = True
a__ : Dict = model_class(lowercase)
model.to(lowercase)
model.eval()
with torch.no_grad():
a__ : int = model(**self._prepare_for_class(lowercase , lowercase))
self.assertEqual(out_len + 1 , len(lowercase))
a__ : int = outputs.attentions
self.assertEqual(len(lowercase) , lowercase)
# verify the first attentions (first block, first layer)
a__ : List[Any] = (self.model_tester.image_size // 4) ** 2
a__ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , )
def __lowercase ( self) -> List[Any]:
'''simple docstring'''
def check_hidden_states_output(lowercase , lowercase , lowercase):
a__ : Optional[Any] = model_class(lowercase)
model.to(lowercase)
model.eval()
with torch.no_grad():
a__ : int = model(**self._prepare_for_class(lowercase , lowercase))
a__ : Union[str, Any] = outputs.hidden_states
a__ : Any = self.model_tester.num_encoder_blocks
self.assertEqual(len(lowercase) , lowercase)
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:]) , [
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
a__ : List[str] = True
check_hidden_states_output(lowercase , lowercase , lowercase)
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
a__ : int = True
check_hidden_states_output(lowercase , lowercase , lowercase)
def __lowercase ( self) -> Any:
'''simple docstring'''
if not self.model_tester.is_training:
return
a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
a__ : Tuple = True
for model_class in self.all_model_classes:
if model_class in get_values(lowercase):
continue
a__ : Dict = model_class(lowercase)
model.to(lowercase)
model.train()
a__ : str = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase)
a__ : Optional[int] = model(**lowercase).loss
loss.backward()
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.')
def __lowercase ( self) -> Union[str, Any]:
'''simple docstring'''
pass
@slow
def __lowercase ( self) -> Tuple:
'''simple docstring'''
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
a__ : Optional[Any] = SegformerModel.from_pretrained(lowercase)
self.assertIsNotNone(lowercase)
def A_ ( ) -> int:
a__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
class A__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def __lowercase ( self) -> Any:
'''simple docstring'''
a__ : Dict = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase)
a__ : int = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to(
lowercase)
a__ : Optional[int] = prepare_img()
a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt')
a__ : List[str] = encoded_inputs.pixel_values.to(lowercase)
with torch.no_grad():
a__ : Optional[int] = model(lowercase)
a__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128))
self.assertEqual(outputs.logits.shape , lowercase)
a__ : Dict = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
]).to(lowercase)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-4))
@slow
def __lowercase ( self) -> Union[str, Any]:
'''simple docstring'''
a__ : Dict = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase)
a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained(
'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(lowercase)
a__ : Dict = prepare_img()
a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt')
a__ : List[str] = encoded_inputs.pixel_values.to(lowercase)
with torch.no_grad():
a__ : Optional[Any] = model(lowercase)
a__ : List[Any] = torch.Size((1, model.config.num_labels, 128, 128))
self.assertEqual(outputs.logits.shape , lowercase)
a__ : Optional[Any] = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
]).to(lowercase)
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-1))
@slow
def __lowercase ( self) -> Dict:
'''simple docstring'''
a__ : List[str] = SegformerImageProcessor(
image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase)
a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to(
lowercase)
a__ : Any = prepare_img()
a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt')
a__ : Optional[int] = encoded_inputs.pixel_values.to(lowercase)
with torch.no_grad():
a__ : Union[str, Any] = model(lowercase)
a__ : int = outputs.logits.detach().cpu()
a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)])
a__ : Optional[Any] = torch.Size((500, 300))
self.assertEqual(segmentation[0].shape , lowercase)
a__ : Any = image_processor.post_process_semantic_segmentation(outputs=lowercase)
a__ : Union[str, Any] = torch.Size((128, 128))
self.assertEqual(segmentation[0].shape , lowercase)
| 99
| 0
|
"""simple docstring"""
import itertools
import random
import unittest
import numpy as np
from transformers import ASTFeatureExtractor
from transformers.testing_utils import require_torch, require_torchaudio
from transformers.utils.import_utils import is_torch_available
from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin
__A : Optional[Any] = random.Random()
if is_torch_available():
import torch
def A_ ( snake_case_ : Any ,snake_case_ : Tuple=1.0 ,snake_case_ : Dict=None ,snake_case_ : str=None ):
'''simple docstring'''
if rng is None:
UpperCamelCase : str = global_rng
UpperCamelCase : Tuple = []
for batch_idx in range(shape[0] ):
values.append([] )
for _ in range(shape[1] ):
values[-1].append(rng.random() * scale )
return values
class lowerCamelCase ( unittest.TestCase ):
def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=7 , SCREAMING_SNAKE_CASE_=400 , SCREAMING_SNAKE_CASE_=2000 , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=0.0 , SCREAMING_SNAKE_CASE_=1_6000 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , ):
UpperCamelCase : Union[str, Any] = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : Tuple = min_seq_length
UpperCamelCase : Any = max_seq_length
UpperCamelCase : Union[str, Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1)
UpperCamelCase : Optional[Any] = feature_size
UpperCamelCase : Optional[Any] = padding_value
UpperCamelCase : str = sampling_rate
UpperCamelCase : Tuple = return_attention_mask
UpperCamelCase : Union[str, Any] = do_normalize
def a_ ( self ):
return {
"feature_size": self.feature_size,
"padding_value": self.padding_value,
"sampling_rate": self.sampling_rate,
"return_attention_mask": self.return_attention_mask,
"do_normalize": self.do_normalize,
}
def a_ ( self , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ):
def _flatten(SCREAMING_SNAKE_CASE_ ):
return list(itertools.chain(*_lowerCamelCase ) )
if equal_length:
UpperCamelCase : List[Any] = floats_list((self.batch_size, self.max_seq_length) )
else:
# make sure that inputs increase in size
UpperCamelCase : Tuple = [
_flatten(floats_list((x, self.feature_size) ) )
for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff )
]
if numpify:
UpperCamelCase : int = [np.asarray(_lowerCamelCase ) for x in speech_inputs]
return speech_inputs
@require_torch
@require_torchaudio
class lowerCamelCase ( a__ , unittest.TestCase ):
lowercase : Optional[int] = ASTFeatureExtractor
def a_ ( self ):
UpperCamelCase : Dict = ASTFeatureExtractionTester(self )
def a_ ( self ):
# Tests that all call wrap to encode_plus and batch_encode_plus
UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
# create three inputs of length 800, 1000, and 1200
UpperCamelCase : int = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )]
UpperCamelCase : Any = [np.asarray(_lowerCamelCase ) for speech_input in speech_inputs]
# Test not batched input
UpperCamelCase : Any = feat_extract(speech_inputs[0] , return_tensors="""np""" ).input_values
UpperCamelCase : Any = feat_extract(np_speech_inputs[0] , return_tensors="""np""" ).input_values
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
# Test batched
UpperCamelCase : Union[str, Any] = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors="""np""" ).input_values
UpperCamelCase : str = feat_extract(_lowerCamelCase , padding=_lowerCamelCase , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ):
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
# Test 2-D numpy arrays are batched.
UpperCamelCase : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)]
UpperCamelCase : str = np.asarray(_lowerCamelCase )
UpperCamelCase : Dict = feat_extract(_lowerCamelCase , return_tensors="""np""" ).input_values
UpperCamelCase : int = feat_extract(_lowerCamelCase , return_tensors="""np""" ).input_values
for enc_seq_a, enc_seq_a in zip(_lowerCamelCase , _lowerCamelCase ):
self.assertTrue(np.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
@require_torch
def a_ ( self ):
import torch
UpperCamelCase : Tuple = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() )
UpperCamelCase : Optional[int] = np.random.rand(100 ).astype(np.floataa )
UpperCamelCase : Tuple = np_speech_inputs.tolist()
for inputs in [py_speech_inputs, np_speech_inputs]:
UpperCamelCase : List[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""np""" )
self.assertTrue(np_processed.input_values.dtype == np.floataa )
UpperCamelCase : Optional[Any] = feature_extractor.pad([{"""input_values""": inputs}] , return_tensors="""pt""" )
self.assertTrue(pt_processed.input_values.dtype == torch.floataa )
def a_ ( self , SCREAMING_SNAKE_CASE_ ):
from datasets import load_dataset
UpperCamelCase : int = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" )
# automatic decoding with librispeech
UpperCamelCase : Any = ds.sort("""id""" ).select(range(_lowerCamelCase ) )[:num_samples]['''audio''']
return [x["array"] for x in speech_samples]
@require_torch
def a_ ( self ):
# fmt: off
UpperCamelCase : Optional[int] = torch.tensor(
[-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776,
-1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133,
-1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936,
-0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] )
# fmt: on
UpperCamelCase : Optional[Any] = self._load_datasamples(1 )
UpperCamelCase : Any = ASTFeatureExtractor()
UpperCamelCase : List[Any] = feature_extractor(_lowerCamelCase , return_tensors="""pt""" ).input_values
self.assertEquals(input_values.shape , (1, 1024, 128) )
self.assertTrue(torch.allclose(input_values[0, 0, :30] , _lowerCamelCase , atol=1e-4 ) )
| 369
|
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCamelCase ( unittest.TestCase ):
def a_ ( self ):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
def a_ ( self ):
UpperCamelCase : Tuple = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/sd2-inpaint/init_image.png""" )
UpperCamelCase : int = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" )
UpperCamelCase : Dict = """xvjiarui/stable-diffusion-2-inpainting"""
UpperCamelCase , UpperCamelCase : List[str] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = """Face of a yellow cat, high resolution, sitting on a park bench"""
UpperCamelCase : List[str] = jax.random.PRNGKey(0 )
UpperCamelCase : Tuple = 50
UpperCamelCase : Dict = jax.device_count()
UpperCamelCase : Optional[int] = num_samples * [prompt]
UpperCamelCase : int = num_samples * [init_image]
UpperCamelCase : List[Any] = num_samples * [mask_image]
UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[Any] = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# shard inputs and rng
UpperCamelCase : Optional[int] = replicate(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[int] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() )
UpperCamelCase : str = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Union[str, Any] = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : int = shard(SCREAMING_SNAKE_CASE_ )
UpperCamelCase : Optional[Any] = pipeline(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ )
UpperCamelCase : List[str] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 )
UpperCamelCase : List[Any] = images[0, 253:256, 253:256, -1]
UpperCamelCase : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
UpperCamelCase : Dict = jnp.array(
[0.3611307, 0.37649736, 0.3757408, 0.38213953, 0.39295167, 0.3841631, 0.41554978, 0.4137475, 0.4217084] )
print(f'output_slice: {output_slice}' )
assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
| 27
| 0
|
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
lowerCAmelCase : Any = logging.getLogger(__name__)
class _A ( __magic_name__):
def __init__( self , _SCREAMING_SNAKE_CASE=-1 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = label_idx
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE_ : int = mode.value
SCREAMING_SNAKE_CASE_ : Any = os.path.join(_SCREAMING_SNAKE_CASE , f"{mode}.txt" )
SCREAMING_SNAKE_CASE_ : List[Any] = 1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
SCREAMING_SNAKE_CASE_ : Dict = []
SCREAMING_SNAKE_CASE_ : Any = []
for line in f:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) )
guid_index += 1
SCREAMING_SNAKE_CASE_ : Any = []
SCREAMING_SNAKE_CASE_ : Dict = []
else:
SCREAMING_SNAKE_CASE_ : List[str] = line.split(' ' )
words.append(splits[0] )
if len(_SCREAMING_SNAKE_CASE ) > 1:
labels.append(splits[self.label_idx].replace('\n' , '' ) )
else:
# Examples could have no label for mode = "test"
labels.append('O' )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) )
return examples
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Tuple = 0
for line in test_input_reader:
if line.startswith('-DOCSTART-' ) or line == "" or line == "\n":
writer.write(_SCREAMING_SNAKE_CASE )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
SCREAMING_SNAKE_CASE_ : List[str] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n'
writer.write(_SCREAMING_SNAKE_CASE )
else:
logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if path:
with open(_SCREAMING_SNAKE_CASE , 'r' ) as f:
SCREAMING_SNAKE_CASE_ : Tuple = f.read().splitlines()
if "O" not in labels:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = ['O'] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class _A ( __magic_name__):
def __init__( self ):
"""simple docstring"""
super().__init__(label_idx=-2 )
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if path:
with open(_SCREAMING_SNAKE_CASE , 'r' ) as f:
SCREAMING_SNAKE_CASE_ : int = f.read().splitlines()
if "O" not in labels:
SCREAMING_SNAKE_CASE_ : int = ['O'] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class _A ( __magic_name__):
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE_ : Dict = mode.value
SCREAMING_SNAKE_CASE_ : str = os.path.join(_SCREAMING_SNAKE_CASE , f"{mode}.txt" )
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
SCREAMING_SNAKE_CASE_ : Tuple = []
with open(_SCREAMING_SNAKE_CASE , encoding='utf-8' ) as f:
for sentence in parse_incr(_SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE_ : List[str] = []
SCREAMING_SNAKE_CASE_ : List[str] = []
for token in sentence:
words.append(token['form'] )
labels.append(token['upos'] )
assert len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )
if words:
examples.append(InputExample(guid=f"{mode}-{guid_index}" , words=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) )
guid_index += 1
return examples
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = 0
for sentence in parse_incr(_SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE_ : List[str] = preds_list[example_id]
SCREAMING_SNAKE_CASE_ : Any = ''
for token in sentence:
out += f"{token['form']} ({token['upos']}|{s_p.pop(0 )}) "
out += "\n"
writer.write(_SCREAMING_SNAKE_CASE )
example_id += 1
def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if path:
with open(_SCREAMING_SNAKE_CASE , 'r' ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 253
|
import os
from typing import Dict, List, Tuple, TypeVar, Union
lowerCAmelCase : str = TypeVar('T')
lowerCAmelCase : Optional[Any] = Union[List[T], Tuple[T, ...]]
lowerCAmelCase : str = Union[T, List[T], Dict[str, T]]
lowerCAmelCase : Union[str, Any] = Union[str, bytes, os.PathLike]
| 253
| 1
|
def lowerCAmelCase__ ( ):
'''simple docstring'''
for n in range(1 ,1000000):
yield n * (n + 1) // 2
def lowerCAmelCase__ ( lowerCamelCase_ : int):
'''simple docstring'''
lowerCAmelCase__ : Union[str, Any] = 1
lowerCAmelCase__ : Union[str, Any] = 2
while i * i <= n:
lowerCAmelCase__ : Optional[Any] = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def lowerCAmelCase__ ( ):
'''simple docstring'''
return next(i for i in triangle_number_generator() if count_divisors(lowerCamelCase_) > 500)
if __name__ == "__main__":
print(solution())
| 94
|
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__snake_case : Any ={
'configuration_blenderbot_small': [
'BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP',
'BlenderbotSmallConfig',
'BlenderbotSmallOnnxConfig',
],
'tokenization_blenderbot_small': ['BlenderbotSmallTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Union[str, Any] =['BlenderbotSmallTokenizerFast']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : List[str] =[
'BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST',
'BlenderbotSmallForCausalLM',
'BlenderbotSmallForConditionalGeneration',
'BlenderbotSmallModel',
'BlenderbotSmallPreTrainedModel',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : str =[
'TFBlenderbotSmallForConditionalGeneration',
'TFBlenderbotSmallModel',
'TFBlenderbotSmallPreTrainedModel',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case : Dict =[
'FlaxBlenderbotSmallForConditionalGeneration',
'FlaxBlenderbotSmallModel',
'FlaxBlenderbotSmallPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_CONFIG_ARCHIVE_MAP,
BlenderbotSmallConfig,
BlenderbotSmallOnnxConfig,
)
from .tokenization_blenderbot_small import BlenderbotSmallTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_blenderbot_small_fast import BlenderbotSmallTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blenderbot_small import (
BLENDERBOT_SMALL_PRETRAINED_MODEL_ARCHIVE_LIST,
BlenderbotSmallForCausalLM,
BlenderbotSmallForConditionalGeneration,
BlenderbotSmallModel,
BlenderbotSmallPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blenderbot_small import (
TFBlenderbotSmallForConditionalGeneration,
TFBlenderbotSmallModel,
TFBlenderbotSmallPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallPreTrainedModel,
)
else:
import sys
__snake_case : Optional[int] =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 94
| 1
|
def lowerCamelCase__ ( _A ):
'''simple docstring'''
snake_case_ = [int(_A ) for i in ip_va_address.split("." ) if i.isdigit()]
return len(_A ) == 4 and all(0 <= int(_A ) <= 254 for octet in octets )
if __name__ == "__main__":
lowercase__ : str = input().strip()
lowercase__ : str = "valid" if is_ip_va_address_valid(ip) else "invalid"
print(f'''{ip} is a {valid_or_invalid} IP v4 address.''')
| 187
|
def lowerCamelCase__ ( _A ):
'''simple docstring'''
if num <= 0:
raise ValueError("Input must be a positive integer" )
snake_case_ = [True] * (num + 1)
snake_case_ = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , _A ):
snake_case_ = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
lowercase__ : Tuple = int(input("Enter a positive integer: ").strip())
print(prime_sieve_eratosthenes(user_num))
| 187
| 1
|
'''simple docstring'''
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
lowerCAmelCase: int = logging.getLogger(__name__)
lowerCAmelCase: str = 5_0 # max width of layer names
lowerCAmelCase: List[Any] = 7_0 # max width of quantizer names
def lowerCamelCase__ ( _A ):
a : Optional[Any] = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_A , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_A , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_A , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_A , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_A , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_A , type=_A , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_A , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def lowerCamelCase__ ( _A ):
if args.calibrator == "max":
a : List[Any] = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
a : Any = 'histogram'
elif args.calibrator == "mse":
a : Dict = 'histogram'
else:
raise ValueError(f"""Invalid calibrator {args.calibrator}""" )
a : Optional[Any] = QuantDescriptor(num_bits=args.aprec , calib_method=_A )
a : Any = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_A )
quant_nn.QuantLinear.set_default_quant_desc_weight(_A )
def lowerCamelCase__ ( _A , _A , _A=False , _A=False ):
logger.info('Configuring Model for Quantization' )
logger.info(f"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_A , ['embeddings'] , which='weight' , _disabled=_A )
if args.quant_disable:
set_quantizer_by_name(_A , [''] , _disabled=_A )
if args.quant_disable_keyword:
set_quantizer_by_name(_A , args.quant_disable_keyword , _disabled=_A )
if args.quant_disable_layer_module:
set_quantizer_by_name(_A , [r'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_A )
if args.quant_enable_layer_module:
set_quantizer_by_name(_A , [r'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_A )
if args.recalibrate_weights:
recalibrate_weights(_A )
if args.fuse_qkv:
fuse_qkv(_A , _A )
if args.clip_gelu:
clip_gelu(_A , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_A )
def lowerCamelCase__ ( _A ):
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"""{name:80}: {module}""" )
def lowerCamelCase__ ( _A , _A ):
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_A )
def lowerCamelCase__ ( _A , _A ):
def fusea(_A , _A , _A ):
for mod in [qq, qk, qv]:
if not hasattr(_A , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
a : Optional[Any] = qq._amax.detach().item()
a : int = qk._amax.detach().item()
a : Optional[int] = qv._amax.detach().item()
a : List[Any] = max(_A , _A , _A )
qq._amax.fill_(_A )
qk._amax.fill_(_A )
qv._amax.fill_(_A )
logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(f"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def lowerCamelCase__ ( _A , _A ):
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
a : Dict = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_A )
a : Dict = mod._input_quantizer._amax.data.detach().item()
logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def lowerCamelCase__ ( _A ):
for name, mod in model.named_modules():
if hasattr(_A , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
a : List[Any] = mod.weight.shape[0]
a : Optional[Any] = mod._weight_quantizer._amax.detach()
a : int = torch.ones(_A , dtype=amax.dtype , device=amax.device ) * amax
print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def lowerCamelCase__ ( _A ):
for name, mod in model.named_modules():
if hasattr(_A , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
a : Any = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
a : Union[str, Any] = set(range(len(mod.weight.size() ) ) ) - axis_set
a : Any = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_A , keepdims=_A ).detach()
logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
a : Optional[int] = amax
def lowerCamelCase__ ( _A , _A=25 , _A=180 , _A=None ):
if ignore is None:
a : Tuple = []
elif not isinstance(_A , _A ):
a : Union[str, Any] = [ignore]
a : List[Any] = 0
for name, mod in model.named_modules():
if not hasattr(_A , 'weight' ):
continue
a : Optional[int] = max(_A , len(_A ) )
for name, mod in model.named_modules():
a : Tuple = getattr(_A , '_input_quantizer' , _A )
a : int = getattr(_A , '_weight_quantizer' , _A )
if not hasattr(_A , 'weight' ):
continue
if type(_A ) in ignore:
continue
if [True for s in ignore if type(_A ) is str and s in name]:
continue
a : int = f"""Act:{input_q.extra_repr()}"""
a : Optional[Any] = f"""Wgt:{weight_q.extra_repr()}"""
a : Optional[Any] = f"""{name:{name_width}} {act_str} {wgt_str}"""
if len(_A ) <= line_width:
logger.info(_A )
else:
logger.info(f"""{name:{name_width}} {act_str}""" )
logger.info(f"""{" ":{name_width}} {wgt_str}""" )
def lowerCamelCase__ ( _A ):
a : str = 0
for name, mod in model.named_modules():
if isinstance(_A , pytorch_quantization.nn.TensorQuantizer ):
print(f"""{name:80} {mod}""" )
count += 1
print(f"""{count} TensorQuantizers found in model""" )
def lowerCamelCase__ ( _A , _A , _A , _A , _A ):
a : Any = getattr(_A , _A , _A )
if quantizer_mod is not None:
assert hasattr(_A , _A )
setattr(_A , _A , _A )
else:
logger.warning(f"""{name} has no {quantizer}""" )
def lowerCamelCase__ ( _A , _A , _A="both" , **_A ):
a : Optional[int] = f"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(_A , _A , '_input_quantizer' , _A , _A )
if which in ["weight", "both"]:
set_quantizer(_A , _A , '_weight_quantizer' , _A , _A )
logger.info(_A )
def lowerCamelCase__ ( _A , _A , **_A ):
for name, mod in model.named_modules():
if hasattr(_A , '_input_quantizer' ) or hasattr(_A , '_weight_quantizer' ):
for n in names:
if re.search(_A , _A ):
set_quantizers(_A , _A , **_A )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_A , _A ):
a : Optional[int] = f"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
setattr(_A , _A , _A )
logger.info(_A )
| 96
|
'''simple docstring'''
# Copyright (c) 2021-, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
####################################################################################################
#
# Note: If when running this conversion script you're getting an exception:
# ModuleNotFoundError: No module named 'megatron.model.enums'
# you need to tell python where to find the clone of Megatron-LM, e.g.:
#
# cd /tmp
# git clone https://github.com/NVIDIA/Megatron-LM
# PYTHONPATH=/tmp/Megatron-LM python src/transformers/models/megatron_gpt2/convert_megatron_gpt2_checkpoint.py ...
#
# if you already have it cloned elsewhere, simply adjust the path to the existing path
#
# If the training was done using a Megatron-LM fork, e.g.,
# https://github.com/microsoft/Megatron-DeepSpeed/ then chances are that you need to have that one
# in your path, i.e., /path/to/Megatron-DeepSpeed/
#
import argparse
import os
import re
import zipfile
import torch
from transformers import AutoTokenizer, GPTaConfig
def lowerCamelCase__ ( _A , _A , _A=0 ):
# Format the message.
if name is None:
a : Tuple = None
else:
a : Dict = '.' * max(0 , spaces - 2 ) + '# {:' + str(50 - spaces ) + 's}'
a : Tuple = fmt.format(_A )
# Print and recurse (if needed).
if isinstance(_A , _A ):
if msg is not None:
print(_A )
for k in val.keys():
recursive_print(_A , val[k] , spaces + 2 )
elif isinstance(_A , torch.Tensor ):
print(_A , ':' , val.size() )
else:
print(_A , ':' , _A )
def lowerCamelCase__ ( _A , _A , _A , _A , _A ):
# Permutes layout of param tensor to [num_splits * num_heads * hidden_size, :]
# for compatibility with later versions of NVIDIA Megatron-LM.
# The inverse operation is performed inside Megatron-LM to read checkpoints:
# https://github.com/NVIDIA/Megatron-LM/blob/v2.4/megatron/checkpointing.py#L209
# If param is the weight tensor of the self-attention block, the returned tensor
# will have to be transposed one more time to be read by HuggingFace GPT2.
a : str = param.size()
if checkpoint_version == 1.0:
# version 1.0 stores [num_heads * hidden_size * num_splits, :]
a : List[Any] = (num_heads, hidden_size, num_splits) + input_shape[1:]
a : int = param.view(*_A )
a : List[str] = param.transpose(0 , 2 )
a : Union[str, Any] = param.transpose(1 , 2 ).contiguous()
elif checkpoint_version >= 2.0:
# other versions store [num_heads * num_splits * hidden_size, :]
a : Union[str, Any] = (num_heads, num_splits, hidden_size) + input_shape[1:]
a : List[str] = param.view(*_A )
a : Union[str, Any] = param.transpose(0 , 1 ).contiguous()
a : List[Any] = param.view(*_A )
return param
def lowerCamelCase__ ( _A , _A , _A ):
# The converted output model.
a : Optional[Any] = {}
# old versions did not store training args
a : Dict = input_state_dict.get('args' , _A )
if ds_args is not None:
# do not make the user write a config file when the exact dimensions/sizes are already in the checkpoint
# from pprint import pprint
# pprint(vars(ds_args))
a : Union[str, Any] = ds_args.padded_vocab_size
a : str = ds_args.max_position_embeddings
a : Dict = ds_args.hidden_size
a : Union[str, Any] = ds_args.num_layers
a : Dict = ds_args.num_attention_heads
a : int = ds_args.ffn_hidden_size
# pprint(config)
# The number of heads.
a : Any = config.n_head
# The hidden_size per head.
a : Tuple = config.n_embd // config.n_head
# Megatron-LM checkpoint version
if "checkpoint_version" in input_state_dict.keys():
a : Any = input_state_dict['checkpoint_version']
else:
a : Any = 0.0
# The model.
a : Optional[int] = input_state_dict['model']
# The language model.
a : Optional[Any] = model['language_model']
# The embeddings.
a : List[str] = lm['embedding']
# The word embeddings.
a : List[Any] = embeddings['word_embeddings']['weight']
# Truncate the embedding table to vocab_size rows.
a : Dict = word_embeddings[: config.vocab_size, :]
a : int = word_embeddings
# The position embeddings.
a : Tuple = embeddings['position_embeddings']['weight']
# Read the causal mask dimension (seqlen). [max_sequence_length, hidden_size]
a : List[str] = pos_embeddings.size(0 )
if n_positions != config.n_positions:
raise ValueError(
f"""pos_embeddings.max_sequence_length={n_positions} and config.n_positions={config.n_positions} don't match""" )
# Store the position embeddings.
a : Optional[Any] = pos_embeddings
# The transformer.
a : Union[str, Any] = lm['transformer'] if 'transformer' in lm.keys() else lm['encoder']
# The regex to extract layer names.
a : List[Any] = re.compile(r'layers\.(\d+)\.([a-z0-9_.]+)\.([a-z]+)' )
# The simple map of names for "automated" rules.
a : Optional[Any] = {
'attention.dense': '.attn.c_proj.',
'self_attention.dense': '.attn.c_proj.',
'mlp.dense_h_to_4h': '.mlp.c_fc.',
'mlp.dense_4h_to_h': '.mlp.c_proj.',
}
# Extract the layers.
for key, val in transformer.items():
# Match the name.
a : Tuple = layer_re.match(_A )
# Stop if that's not a layer
if m is None:
break
# The index of the layer.
a : Union[str, Any] = int(m.group(1 ) )
# The name of the operation.
a : Optional[int] = m.group(2 )
# Is it a weight or a bias?
a : Optional[int] = m.group(3 )
# The name of the layer.
a : Any = f"""transformer.h.{layer_idx}"""
# For layernorm(s), simply store the layer norm.
if op_name.endswith('layernorm' ):
a : str = 'ln_1' if op_name.startswith('input' ) else 'ln_2'
a : Tuple = val
# Transpose the QKV matrix.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "weight":
# Insert a tensor of 1x1xDxD bias.
a : Dict = torch.tril(torch.ones((n_positions, n_positions) , dtype=torch.floataa ) ).view(
1 , 1 , _A , _A )
a : Optional[Any] = causal_mask
# Insert a "dummy" tensor for masked_bias.
a : List[Any] = torch.tensor(-1E4 , dtype=torch.floataa )
a : List[str] = masked_bias
a : Union[str, Any] = fix_query_key_value_ordering(_A , _A , 3 , _A , _A )
# Megatron stores (3*D) x D but transformers-GPT2 expects D x 3*D.
a : int = out_val.transpose(0 , 1 ).contiguous()
# Store.
a : int = out_val
# Transpose the bias.
elif (
op_name == "attention.query_key_value" or op_name == "self_attention.query_key_value"
) and weight_or_bias == "bias":
a : str = fix_query_key_value_ordering(_A , _A , 3 , _A , _A )
# Store. No change of shape.
a : List[str] = out_val
# Transpose the weights.
elif weight_or_bias == "weight":
a : Tuple = megatron_to_transformers[op_name]
a : List[str] = val.transpose(0 , 1 )
# Copy the bias.
elif weight_or_bias == "bias":
a : Dict = megatron_to_transformers[op_name]
a : Optional[Any] = val
# DEBUG.
assert config.n_layer == layer_idx + 1
# The final layernorm.
a : str = transformer['final_layernorm.weight']
a : List[str] = transformer['final_layernorm.bias']
# For LM head, transformers' wants the matrix to weight embeddings.
a : Optional[int] = word_embeddings
# It should be done!
return output_state_dict
def lowerCamelCase__ ( ):
# Create the argument parser.
a : Dict = argparse.ArgumentParser()
parser.add_argument('--print-checkpoint-structure' , action='store_true' )
parser.add_argument(
'path_to_checkpoint' , type=_A , help='Path to the checkpoint file (.zip archive or direct .pt file)' , )
parser.add_argument(
'--config_file' , default='' , type=_A , help='An optional config json file describing the pre-trained model.' , )
a : Union[str, Any] = parser.parse_args()
# Extract the basename.
a : Optional[Any] = os.path.dirname(args.path_to_checkpoint )
# Load the model.
# the .zip is very optional, let's keep it for backward compatibility
print(f"""Extracting PyTorch state dictionary from {args.path_to_checkpoint}""" )
if args.path_to_checkpoint.endswith('.zip' ):
with zipfile.ZipFile(args.path_to_checkpoint , 'r' ) as checkpoint:
with checkpoint.open('release/mp_rank_00/model_optim_rng.pt' ) as pytorch_dict:
a : Union[str, Any] = torch.load(_A , map_location='cpu' )
else:
a : Any = torch.load(args.path_to_checkpoint , map_location='cpu' )
a : List[Any] = input_state_dict.get('args' , _A )
# Read the config, or default to the model released by NVIDIA.
if args.config_file == "":
if ds_args is not None:
if ds_args.bias_gelu_fusion:
a : int = 'gelu_fast'
elif ds_args.openai_gelu:
a : Dict = 'gelu_new'
else:
a : Any = 'gelu'
else:
# in the very early days this used to be "gelu_new"
a : Any = 'gelu_new'
# Spell out all parameters in case the defaults change.
a : Tuple = GPTaConfig(
vocab_size=5_0257 , n_positions=1024 , n_embd=1024 , n_layer=24 , n_head=16 , n_inner=4096 , activation_function=_A , resid_pdrop=0.1 , embd_pdrop=0.1 , attn_pdrop=0.1 , layer_norm_epsilon=1E-5 , initializer_range=0.02 , summary_type='cls_index' , summary_use_proj=_A , summary_activation=_A , summary_proj_to_labels=_A , summary_first_dropout=0.1 , scale_attn_weights=_A , use_cache=_A , bos_token_id=5_0256 , eos_token_id=5_0256 , )
else:
a : str = GPTaConfig.from_json_file(args.config_file )
a : Any = ['GPT2LMHeadModel']
# Convert.
print('Converting' )
a : Union[str, Any] = convert_megatron_checkpoint(_A , _A , _A )
# Print the structure of converted state dict.
if args.print_checkpoint_structure:
recursive_print(_A , _A )
# Add tokenizer class info to config
# see https://github.com/huggingface/transformers/issues/13906)
if ds_args is not None:
a : Union[str, Any] = ds_args.tokenizer_type
if tokenizer_type == "GPT2BPETokenizer":
a : Tuple = 'gpt2'
elif tokenizer_type == "PretrainedFromHF":
a : List[str] = ds_args.tokenizer_name_or_path
else:
raise ValueError(f"""Unrecognized tokenizer_type {tokenizer_type}""" )
else:
a : Optional[Any] = 'gpt2'
a : Tuple = AutoTokenizer.from_pretrained(_A )
a : str = type(_A ).__name__
a : List[str] = tokenizer_class
# Store the config to file.
print('Saving config' )
config.save_pretrained(_A )
# Save tokenizer based on args
print(f"""Adding {tokenizer_class} tokenizer files""" )
tokenizer.save_pretrained(_A )
# Store the state_dict to file.
a : Optional[int] = os.path.join(_A , 'pytorch_model.bin' )
print(f"""Saving checkpoint to \"{output_checkpoint_file}\"""" )
torch.save(_A , _A )
####################################################################################################
if __name__ == "__main__":
main()
####################################################################################################
| 96
| 1
|
import logging
import os
import threading
import time
try:
import warnings
except ImportError:
lowerCAmelCase = None
try:
import msvcrt
except ImportError:
lowerCAmelCase = None
try:
import fcntl
except ImportError:
lowerCAmelCase = None
# Backward compatibility
# ------------------------------------------------
try:
TimeoutError
except NameError:
lowerCAmelCase = OSError
# Data
# ------------------------------------------------
lowerCAmelCase = [
'Timeout',
'BaseFileLock',
'WindowsFileLock',
'UnixFileLock',
'SoftFileLock',
'FileLock',
]
lowerCAmelCase = '3.0.12'
lowerCAmelCase = None
def _a ( ):
"""simple docstring"""
global _logger
lowercase__ = _logger or logging.getLogger(__name__ )
return _logger
class _a ( UpperCamelCase__ ):
def __init__( self: List[Any] , UpperCamelCase_: Optional[int] ) -> Optional[Any]:
"""simple docstring"""
lowercase__ = lock_file
return None
def __str__( self: List[Any] ) -> Any:
"""simple docstring"""
lowercase__ = f'The file lock \'{self.lock_file}\' could not be acquired.'
return temp
class _a :
def __init__( self: List[Any] , UpperCamelCase_: Any ) -> Optional[int]:
"""simple docstring"""
lowercase__ = lock
return None
def __enter__( self: List[Any] ) -> Optional[Any]:
"""simple docstring"""
return self.lock
def __exit__( self: Optional[int] , UpperCamelCase_: Any , UpperCamelCase_: int , UpperCamelCase_: Optional[int] ) -> Any:
"""simple docstring"""
self.lock.release()
return None
class _a :
def __init__( self: Optional[Any] , UpperCamelCase_: str , UpperCamelCase_: Tuple=-1 , UpperCamelCase_: List[Any]=None ) -> Dict:
"""simple docstring"""
lowercase__ = max_filename_length if max_filename_length is not None else 255
# Hash the filename if it's too long
lowercase__ = self.hash_filename_if_too_long(UpperCamelCase_ , UpperCamelCase_ )
# The path to the lock file.
lowercase__ = lock_file
# The file descriptor for the *_lock_file* as it is returned by the
# os.open() function.
# This file lock is only NOT None, if the object currently holds the
# lock.
lowercase__ = None
# The default timeout value.
lowercase__ = timeout
# We use this lock primarily for the lock counter.
lowercase__ = threading.Lock()
# The lock counter is used for implementing the nested locking
# mechanism. Whenever the lock is acquired, the counter is increased and
# the lock is only released, when this value is 0 again.
lowercase__ = 0
return None
@property
def lowerCamelCase_ ( self: Tuple ) -> Union[str, Any]:
"""simple docstring"""
return self._lock_file
@property
def lowerCamelCase_ ( self: int ) -> str:
"""simple docstring"""
return self._timeout
@timeout.setter
def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase_: Dict ) -> str:
"""simple docstring"""
lowercase__ = float(UpperCamelCase_ )
return None
def lowerCamelCase_ ( self: List[str] ) -> Any:
"""simple docstring"""
raise NotImplementedError()
def lowerCamelCase_ ( self: Tuple ) -> Optional[int]:
"""simple docstring"""
raise NotImplementedError()
@property
def lowerCamelCase_ ( self: Dict ) -> int:
"""simple docstring"""
return self._lock_file_fd is not None
def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Optional[Any]=0.05 ) -> str:
"""simple docstring"""
if timeout is None:
lowercase__ = self.timeout
# Increment the number right at the beginning.
# We can still undo it, if something fails.
with self._thread_lock:
self._lock_counter += 1
lowercase__ = id(self )
lowercase__ = self._lock_file
lowercase__ = time.time()
try:
while True:
with self._thread_lock:
if not self.is_locked:
logger().debug(f'Attempting to acquire lock {lock_id} on {lock_filename}' )
self._acquire()
if self.is_locked:
logger().debug(f'Lock {lock_id} acquired on {lock_filename}' )
break
elif timeout >= 0 and time.time() - start_time > timeout:
logger().debug(f'Timeout on acquiring lock {lock_id} on {lock_filename}' )
raise Timeout(self._lock_file )
else:
logger().debug(
f'Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...' )
time.sleep(UpperCamelCase_ )
except: # noqa
# Something did go wrong, so decrement the counter.
with self._thread_lock:
lowercase__ = max(0 , self._lock_counter - 1 )
raise
return _Acquire_ReturnProxy(lock=self )
def lowerCamelCase_ ( self: Any , UpperCamelCase_: int=False ) -> int:
"""simple docstring"""
with self._thread_lock:
if self.is_locked:
self._lock_counter -= 1
if self._lock_counter == 0 or force:
lowercase__ = id(self )
lowercase__ = self._lock_file
logger().debug(f'Attempting to release lock {lock_id} on {lock_filename}' )
self._release()
lowercase__ = 0
logger().debug(f'Lock {lock_id} released on {lock_filename}' )
return None
def __enter__( self: Optional[int] ) -> Tuple:
"""simple docstring"""
self.acquire()
return self
def __exit__( self: str , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Optional[Any] ) -> Any:
"""simple docstring"""
self.release()
return None
def __del__( self: Any ) -> Union[str, Any]:
"""simple docstring"""
self.release(force=UpperCamelCase_ )
return None
def lowerCamelCase_ ( self: Dict , UpperCamelCase_: str , UpperCamelCase_: int ) -> str:
"""simple docstring"""
lowercase__ = os.path.basename(UpperCamelCase_ )
if len(UpperCamelCase_ ) > max_length and max_length > 0:
lowercase__ = os.path.dirname(UpperCamelCase_ )
lowercase__ = str(hash(UpperCamelCase_ ) )
lowercase__ = filename[: max_length - len(UpperCamelCase_ ) - 8] + '''...''' + hashed_filename + '''.lock'''
return os.path.join(UpperCamelCase_ , UpperCamelCase_ )
else:
return path
class _a ( UpperCamelCase__ ):
def __init__( self: Union[str, Any] , UpperCamelCase_: Optional[int] , UpperCamelCase_: Tuple=-1 , UpperCamelCase_: List[Any]=None ) -> Union[str, Any]:
"""simple docstring"""
from .file_utils import relative_to_absolute_path
super().__init__(UpperCamelCase_ , timeout=UpperCamelCase_ , max_filename_length=UpperCamelCase_ )
lowercase__ = '''\\\\?\\''' + relative_to_absolute_path(self.lock_file )
def lowerCamelCase_ ( self: Dict ) -> List[str]:
"""simple docstring"""
lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC
try:
lowercase__ = os.open(self._lock_file , UpperCamelCase_ )
except OSError:
pass
else:
try:
msvcrt.locking(UpperCamelCase_ , msvcrt.LK_NBLCK , 1 )
except OSError:
os.close(UpperCamelCase_ )
else:
lowercase__ = fd
return None
def lowerCamelCase_ ( self: str ) -> Optional[int]:
"""simple docstring"""
lowercase__ = self._lock_file_fd
lowercase__ = None
msvcrt.locking(UpperCamelCase_ , msvcrt.LK_UNLCK , 1 )
os.close(UpperCamelCase_ )
try:
os.remove(self._lock_file )
# Probably another instance of the application
# that acquired the file lock.
except OSError:
pass
return None
class _a ( UpperCamelCase__ ):
def __init__( self: str , UpperCamelCase_: List[Any] , UpperCamelCase_: Optional[int]=-1 , UpperCamelCase_: Tuple=None ) -> str:
"""simple docstring"""
lowercase__ = os.statvfs(os.path.dirname(UpperCamelCase_ ) ).f_namemax
super().__init__(UpperCamelCase_ , timeout=UpperCamelCase_ , max_filename_length=UpperCamelCase_ )
def lowerCamelCase_ ( self: Optional[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = os.O_RDWR | os.O_CREAT | os.O_TRUNC
lowercase__ = os.open(self._lock_file , UpperCamelCase_ )
try:
fcntl.flock(UpperCamelCase_ , fcntl.LOCK_EX | fcntl.LOCK_NB )
except OSError:
os.close(UpperCamelCase_ )
else:
lowercase__ = fd
return None
def lowerCamelCase_ ( self: Optional[Any] ) -> Any:
"""simple docstring"""
lowercase__ = self._lock_file_fd
lowercase__ = None
fcntl.flock(UpperCamelCase_ , fcntl.LOCK_UN )
os.close(UpperCamelCase_ )
return None
class _a ( UpperCamelCase__ ):
def lowerCamelCase_ ( self: Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
lowercase__ = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC
try:
lowercase__ = os.open(self._lock_file , UpperCamelCase_ )
except OSError:
pass
else:
lowercase__ = fd
return None
def lowerCamelCase_ ( self: List[Any] ) -> str:
"""simple docstring"""
os.close(self._lock_file_fd )
lowercase__ = None
try:
os.remove(self._lock_file )
# The file is already deleted and that's what we want.
except OSError:
pass
return None
lowerCAmelCase = None
if msvcrt:
lowerCAmelCase = WindowsFileLock
elif fcntl:
lowerCAmelCase = UnixFileLock
else:
lowerCAmelCase = SoftFileLock
if warnings is not None:
warnings.warn('only soft file lock is available')
| 110
|
import socket
def _a ( ):
"""simple docstring"""
lowercase__ = socket.socket(socket.AF_INET , socket.SOCK_STREAM )
lowercase__ = socket.gethostname()
lowercase__ = 1_23_12
sock.connect((host, port) )
sock.send(B'''Hello server!''' )
with open('''Received_file''' , '''wb''' ) as out_file:
print('''File opened''' )
print('''Receiving data...''' )
while True:
lowercase__ = sock.recv(10_24 )
if not data:
break
out_file.write(SCREAMING_SNAKE_CASE )
print('''Successfully received the file''' )
sock.close()
print('''Connection closed''' )
if __name__ == "__main__":
main()
| 110
| 1
|
from math import factorial
def _snake_case( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> int:
'''simple docstring'''
if n < k or k < 0:
raise ValueError('Please enter positive integers for n and k where n >= k' )
return factorial(SCREAMING_SNAKE_CASE__ ) // (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k ))
if __name__ == "__main__":
print(
"The number of five-card hands possible from a standard",
f"""fifty-two card deck is: {combinations(52, 5)}\n""",
)
print(
"If a class of 40 students must be arranged into groups of",
f"""4 for group projects, there are {combinations(40, 4)} ways""",
"to arrange them.\n",
)
print(
"If 10 teams are competing in a Formula One race, there",
f"""are {combinations(10, 3)} ways that first, second and""",
"third place can be awarded.",
)
| 282
|
from collections.abc import Sequence
def _snake_case( SCREAMING_SNAKE_CASE__ : Sequence[int] | None = None ) -> int:
'''simple docstring'''
if nums is None or not nums:
raise ValueError('Input sequence should not be empty' )
A__ = nums[0]
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
A__ = nums[i]
A__ = max(SCREAMING_SNAKE_CASE__ , ans + num , SCREAMING_SNAKE_CASE__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
lowercase_ = int(input("Enter number of elements : ").strip())
lowercase_ = list(map(int, input("\nEnter the numbers : ").strip().split()))[:n]
print(max_subsequence_sum(array))
| 282
| 1
|
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def _snake_case ( lowerCAmelCase : Dict ):
"""simple docstring"""
if (
(cp >= 0X4_E_0_0 and cp <= 0X9_F_F_F)
or (cp >= 0X3_4_0_0 and cp <= 0X4_D_B_F) #
or (cp >= 0X2_0_0_0_0 and cp <= 0X2_A_6_D_F) #
or (cp >= 0X2_A_7_0_0 and cp <= 0X2_B_7_3_F) #
or (cp >= 0X2_B_7_4_0 and cp <= 0X2_B_8_1_F) #
or (cp >= 0X2_B_8_2_0 and cp <= 0X2_C_E_A_F) #
or (cp >= 0XF_9_0_0 and cp <= 0XF_A_F_F)
or (cp >= 0X2_F_8_0_0 and cp <= 0X2_F_A_1_F) #
): #
return True
return False
def _snake_case ( lowerCAmelCase : str ):
"""simple docstring"""
for char in word:
SCREAMING_SNAKE_CASE_ : Any = ord(lowerCAmelCase )
if not _is_chinese_char(lowerCAmelCase ):
return 0
return 1
def _snake_case ( lowerCAmelCase : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = set()
for token in tokens:
SCREAMING_SNAKE_CASE_ : int = len(lowerCAmelCase ) > 1 and is_chinese(lowerCAmelCase )
if chinese_word:
word_set.add(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = list(lowerCAmelCase )
return word_list
def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : set() ):
"""simple docstring"""
if not chinese_word_set:
return bert_tokens
SCREAMING_SNAKE_CASE_ : str = max([len(lowerCAmelCase ) for w in chinese_word_set] )
SCREAMING_SNAKE_CASE_ : int = bert_tokens
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = 0, len(lowerCAmelCase )
while start < end:
SCREAMING_SNAKE_CASE_ : Optional[int] = True
if is_chinese(bert_word[start] ):
SCREAMING_SNAKE_CASE_ : List[str] = min(end - start , lowerCAmelCase )
for i in range(lowerCAmelCase , 1 , -1 ):
SCREAMING_SNAKE_CASE_ : Tuple = "".join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
SCREAMING_SNAKE_CASE_ : Optional[int] = "##" + bert_word[j]
SCREAMING_SNAKE_CASE_ : int = start + i
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
break
if single_word:
start += 1
return bert_word
def _snake_case ( lowerCAmelCase : List[str] , lowerCAmelCase : LTP , lowerCAmelCase : BertTokenizer ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ):
SCREAMING_SNAKE_CASE_ : Optional[int] = ltp_tokenizer.seg(lines[i : i + 1_0_0] )[0]
SCREAMING_SNAKE_CASE_ : List[Any] = [get_chinese_word(lowerCAmelCase ) for r in res]
ltp_res.extend(lowerCAmelCase )
assert len(lowerCAmelCase ) == len(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = []
for i in range(0 , len(lowerCAmelCase ) , 1_0_0 ):
SCREAMING_SNAKE_CASE_ : str = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=lowerCAmelCase , truncation=lowerCAmelCase , max_length=5_1_2 )
bert_res.extend(res["input_ids"] )
assert len(lowerCAmelCase ) == len(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : int = []
for input_ids, chinese_word in zip(lowerCAmelCase , lowerCAmelCase ):
SCREAMING_SNAKE_CASE_ : str = []
for id in input_ids:
SCREAMING_SNAKE_CASE_ : Tuple = bert_tokenizer._convert_id_to_token(lowerCAmelCase )
input_tokens.append(lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Any = add_sub_symbol(lowerCAmelCase , lowerCAmelCase )
SCREAMING_SNAKE_CASE_ : Tuple = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(lowerCAmelCase ):
if token[:2] == "##":
SCREAMING_SNAKE_CASE_ : List[Any] = token[2:]
# save chinese tokens' pos
if len(lowerCAmelCase ) == 1 and _is_chinese_char(ord(lowerCAmelCase ) ):
ref_id.append(lowerCAmelCase )
ref_ids.append(lowerCAmelCase )
assert len(lowerCAmelCase ) == len(lowerCAmelCase )
return ref_ids
def _snake_case ( lowerCAmelCase : Optional[int] ):
"""simple docstring"""
with open(args.file_name , "r" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE_ : List[Any] = f.readlines()
SCREAMING_SNAKE_CASE_ : int = [line.strip() for line in data if len(lowerCAmelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
SCREAMING_SNAKE_CASE_ : Union[str, Any] = LTP(args.ltp ) # faster in GPU device
SCREAMING_SNAKE_CASE_ : Tuple = BertTokenizer.from_pretrained(args.bert )
SCREAMING_SNAKE_CASE_ : List[str] = prepare_ref(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )
with open(args.save_path , "w" , encoding="utf-8" ) as f:
SCREAMING_SNAKE_CASE_ : Optional[int] = [json.dumps(lowerCAmelCase ) + "\n" for ref in ref_ids]
f.writelines(lowerCAmelCase )
if __name__ == "__main__":
__lowerCamelCase : Any = argparse.ArgumentParser(description='''prepare_chinese_ref''')
parser.add_argument(
'''--file_name''',
type=str,
default='''./resources/chinese-demo.txt''',
help='''file need process, same as training data in lm''',
)
parser.add_argument(
'''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path'''
)
parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''')
parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''')
__lowerCamelCase : int = parser.parse_args()
main(args)
| 18
|
'''simple docstring'''
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def lowerCamelCase (*_SCREAMING_SNAKE_CASE : int ):
with open(_SCREAMING_SNAKE_CASE , 'r' ) as fh:
fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_EX )
try:
print(*_SCREAMING_SNAKE_CASE )
finally:
fcntl.flock(_SCREAMING_SNAKE_CASE , fcntl.LOCK_UN )
__lowercase : Dict = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
__lowercase : Tuple = torch.device('cuda', local_rank)
__lowercase : Optional[int] = socket.gethostname()
__lowercase : List[str] = f'''[{hostname}-{local_rank}]'''
try:
# test distributed
dist.init_process_group('nccl')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__lowercase : str = dist.get_rank()
__lowercase : Union[str, Any] = dist.get_world_size()
printflock(f'''{gpu} is OK (global rank: {rank}/{world_size})''')
dist.barrier()
if rank == 0:
printflock(f'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''')
except Exception:
printflock(f'''{gpu} is broken''')
raise
| 27
| 0
|
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
__A = 16
__A = 32
def lowercase_ ( _lowerCamelCase: Accelerator , _lowerCamelCase: int = 16 ) -> Dict:
'''simple docstring'''
__lowerCamelCase : List[str] = AutoTokenizer.from_pretrained("bert-base-cased" )
__lowerCamelCase : List[Any] = load_dataset("glue" , "mrpc" )
def tokenize_function(_lowerCamelCase: Any ):
# max_length=None => use the model max length (it's actually the default)
__lowerCamelCase : Tuple = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=_lowerCamelCase , max_length=_lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
__lowerCamelCase : Optional[int] = datasets.map(
_lowerCamelCase , batched=_lowerCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
__lowerCamelCase : Dict = tokenized_datasets.rename_column("label" , "labels" )
def collate_fn(_lowerCamelCase: Union[str, Any] ):
# On TPU it's best to pad everything to the same length or training will be very slow.
__lowerCamelCase : Any = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
__lowerCamelCase : str = 16
elif accelerator.mixed_precision != "no":
__lowerCamelCase : Tuple = 8
else:
__lowerCamelCase : Dict = None
return tokenizer.pad(
_lowerCamelCase , padding="longest" , max_length=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_tensors="pt" , )
# Instantiate dataloaders.
__lowerCamelCase : List[Any] = DataLoader(
tokenized_datasets["train"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
__lowerCamelCase : Optional[Any] = DataLoader(
tokenized_datasets["validation"] , shuffle=_lowerCamelCase , collate_fn=_lowerCamelCase , batch_size=_lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
__A = mocked_dataloaders # noqa: F811
def lowercase_ ( _lowerCamelCase: List[Any] , _lowerCamelCase: Any ) -> Any:
'''simple docstring'''
if os.environ.get("TESTING_MOCKED_DATALOADERS" , _lowerCamelCase ) == "1":
__lowerCamelCase : Dict = 2
# Initialize accelerator
__lowerCamelCase : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
__lowerCamelCase : Dict = config["lr"]
__lowerCamelCase : Union[str, Any] = int(config["num_epochs"] )
__lowerCamelCase : List[Any] = int(config["seed"] )
__lowerCamelCase : str = int(config["batch_size"] )
__lowerCamelCase : str = evaluate.load("glue" , "mrpc" )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=_lowerCamelCase )
def inner_training_loop(_lowerCamelCase: str ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(_lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
__lowerCamelCase : Dict = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=_lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
__lowerCamelCase : List[Any] = model.to(accelerator.device )
# Instantiate optimizer
__lowerCamelCase : Any = AdamW(params=model.parameters() , lr=_lowerCamelCase )
__lowerCamelCase : Optional[Any] = get_dataloaders(_lowerCamelCase , _lowerCamelCase )
# Instantiate scheduler
__lowerCamelCase : Union[str, Any] = get_linear_schedule_with_warmup(
optimizer=_lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(_lowerCamelCase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
__lowerCamelCase : int = accelerator.prepare(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
# Now we train the model
for epoch in range(_lowerCamelCase ):
model.train()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
__lowerCamelCase : List[Any] = model(**_lowerCamelCase )
__lowerCamelCase : int = outputs.loss
accelerator.backward(_lowerCamelCase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(_lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
__lowerCamelCase : List[Any] = model(**_lowerCamelCase )
__lowerCamelCase : Any = outputs.logits.argmax(dim=-1 )
__lowerCamelCase : int = accelerator.gather_for_metrics((predictions, batch["labels"]) )
metric.add_batch(
predictions=_lowerCamelCase , references=_lowerCamelCase , )
__lowerCamelCase : int = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , _lowerCamelCase )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def lowercase_ ( ) -> str:
'''simple docstring'''
__lowerCamelCase : Any = argparse.ArgumentParser(description="Simple example of training script." )
parser.add_argument(
"--mixed_precision" , type=_lowerCamelCase , default=_lowerCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose"
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
"and an Nvidia Ampere GPU." , )
parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." )
__lowerCamelCase : int = parser.parse_args()
__lowerCamelCase : str = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16}
training_function(_lowerCamelCase , _lowerCamelCase )
if __name__ == "__main__":
main()
| 353
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import add_start_docstrings
__A = R'''
[`RagConfig`] stores the configuration of a *RagModel*. Configuration objects inherit from [`PretrainedConfig`] and
can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information.
Args:
title_sep (`str`, *optional*, defaults to `" / "`):
Separator inserted between the title and the text of the retrieved document when calling [`RagRetriever`].
doc_sep (`str`, *optional*, defaults to `" // "`):
Separator inserted between the text of the retrieved document and the original input when calling
[`RagRetriever`].
n_docs (`int`, *optional*, defaults to 5):
Number of documents to retrieve.
max_combined_length (`int`, *optional*, defaults to 300):
Max length of contextualized input returned by [`~RagRetriever.__call__`].
retrieval_vector_size (`int`, *optional*, defaults to 768):
Dimensionality of the document embeddings indexed by [`RagRetriever`].
retrieval_batch_size (`int`, *optional*, defaults to 8):
Retrieval batch size, defined as the number of queries issues concurrently to the faiss index encapsulated
[`RagRetriever`].
dataset (`str`, *optional*, defaults to `"wiki_dpr"`):
A dataset identifier of the indexed dataset in HuggingFace Datasets (list all available datasets and ids
using `datasets.list_datasets()`).
dataset_split (`str`, *optional*, defaults to `"train"`)
Which split of the `dataset` to load.
index_name (`str`, *optional*, defaults to `"compressed"`)
The index name of the index associated with the `dataset`. One can choose between `"legacy"`, `"exact"` and
`"compressed"`.
index_path (`str`, *optional*)
The path to the serialized faiss index on disk.
passages_path (`str`, *optional*):
A path to text passages compatible with the faiss index. Required if using
[`~models.rag.retrieval_rag.LegacyIndex`]
use_dummy_dataset (`bool`, *optional*, defaults to `False`)
Whether to load a "dummy" variant of the dataset specified by `dataset`.
label_smoothing (`float`, *optional*, defaults to 0.0):
Only relevant if `return_loss` is set to `True`. Controls the `epsilon` parameter value for label smoothing
in the loss calculation. If set to 0, no label smoothing is performed.
do_marginalize (`bool`, *optional*, defaults to `False`):
If `True`, the logits are marginalized over all documents by making use of
`torch.nn.functional.log_softmax`.
reduce_loss (`bool`, *optional*, defaults to `False`):
Whether or not to reduce the NLL loss using the `torch.Tensor.sum` operation.
do_deduplication (`bool`, *optional*, defaults to `True`):
Whether or not to deduplicate the generations from different context documents for a given input. Has to be
set to `False` if used while training with distributed backend.
exclude_bos_score (`bool`, *optional*, defaults to `False`):
Whether or not to disregard the BOS token when computing the loss.
output_retrieved(`bool`, *optional*, defaults to `False`):
If set to `True`, `retrieved_doc_embeds`, `retrieved_doc_ids`, `context_input_ids` and
`context_attention_mask` are returned. See returned tensors for more detail.
use_cache (`bool`, *optional*, defaults to `True`):
Whether or not the model should return the last key/values attentions (not used by all models).
forced_eos_token_id (`int`, *optional*):
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
`eos_token_id`.
'''
@add_start_docstrings(a__ )
class _snake_case ( a__ ):
snake_case__ = "rag"
snake_case__ = True
def __init__( self : Dict , UpperCAmelCase : Optional[int]=None , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Dict=None , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=" / " , UpperCAmelCase : Optional[int]=" // " , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Union[str, Any]=300 , UpperCAmelCase : int=768 , UpperCAmelCase : Any=8 , UpperCAmelCase : Any="wiki_dpr" , UpperCAmelCase : Any="train" , UpperCAmelCase : Union[str, Any]="compressed" , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : str=None , UpperCAmelCase : List[str]=False , UpperCAmelCase : List[str]=False , UpperCAmelCase : Optional[Any]=0.0 , UpperCAmelCase : int=True , UpperCAmelCase : str=False , UpperCAmelCase : Union[str, Any]=False , UpperCAmelCase : Dict=False , UpperCAmelCase : str=True , UpperCAmelCase : Union[str, Any]=None , **UpperCAmelCase : str , ):
super().__init__(
bos_token_id=UpperCAmelCase , pad_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , decoder_start_token_id=UpperCAmelCase , forced_eos_token_id=UpperCAmelCase , is_encoder_decoder=UpperCAmelCase , prefix=UpperCAmelCase , vocab_size=UpperCAmelCase , **UpperCAmelCase , )
assert (
"question_encoder" in kwargs and "generator" in kwargs
), "Config has to be initialized with question_encoder and generator config"
__lowerCamelCase : Dict = kwargs.pop("question_encoder" )
__lowerCamelCase : str = question_encoder_config.pop("model_type" )
__lowerCamelCase : List[Any] = kwargs.pop("generator" )
__lowerCamelCase : Tuple = decoder_config.pop("model_type" )
from ..auto.configuration_auto import AutoConfig
__lowerCamelCase : Optional[int] = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase )
__lowerCamelCase : Tuple = AutoConfig.for_model(UpperCAmelCase , **UpperCAmelCase )
__lowerCamelCase : Dict = reduce_loss
__lowerCamelCase : Optional[Any] = label_smoothing
__lowerCamelCase : List[Any] = exclude_bos_score
__lowerCamelCase : List[str] = do_marginalize
__lowerCamelCase : str = title_sep
__lowerCamelCase : Optional[Any] = doc_sep
__lowerCamelCase : List[Any] = n_docs
__lowerCamelCase : List[str] = max_combined_length
__lowerCamelCase : int = dataset
__lowerCamelCase : Any = dataset_split
__lowerCamelCase : str = index_name
__lowerCamelCase : int = retrieval_vector_size
__lowerCamelCase : Union[str, Any] = retrieval_batch_size
__lowerCamelCase : Dict = passages_path
__lowerCamelCase : int = index_path
__lowerCamelCase : List[str] = use_dummy_dataset
__lowerCamelCase : int = output_retrieved
__lowerCamelCase : List[str] = do_deduplication
__lowerCamelCase : Tuple = use_cache
if self.forced_eos_token_id is None:
__lowerCamelCase : Tuple = getattr(self.generator , "forced_eos_token_id" , UpperCAmelCase )
@classmethod
def lowerCamelCase__ ( cls : str , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : PretrainedConfig , **UpperCAmelCase : List[Any] ):
return cls(question_encoder=question_encoder_config.to_dict() , generator=generator_config.to_dict() , **UpperCAmelCase )
def lowerCamelCase__ ( self : List[Any] ):
__lowerCamelCase : Any = copy.deepcopy(self.__dict__ )
__lowerCamelCase : Tuple = self.question_encoder.to_dict()
__lowerCamelCase : List[Any] = self.generator.to_dict()
__lowerCamelCase : Optional[Any] = self.__class__.model_type
return output
| 64
| 0
|
from pathlib import PurePosixPath
from typing import Optional
import fsspec
from fsspec import AbstractFileSystem
from huggingface_hub.hf_api import DatasetInfo
from ..utils.file_utils import get_authentication_headers_for_url
from ..utils.hub import hf_hub_url
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = ''
SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs
def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ):
super().__init__(self , **_lowerCamelCase )
a :Union[str, Any] = repo_info
a :int = token
a :int = None
def SCREAMING_SNAKE_CASE__ ( self ):
if self.dir_cache is None:
a :Dict = {}
for hf_file in self.repo_info.siblings:
# TODO(QL): add sizes
a :List[Any] = {
'''name''': hf_file.rfilename,
'''size''': None,
'''type''': '''file''',
}
self.dir_cache.update(
{
str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''}
for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1]
} )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ):
if not isinstance(self.repo_info , _lowerCamelCase ):
raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' )
a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha )
return fsspec.open(
_lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open()
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ):
self._get_dirs()
a :Union[str, Any] = self._strip_protocol(_lowerCamelCase )
if path in self.dir_cache:
return self.dir_cache[path]
else:
raise FileNotFoundError(_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ):
self._get_dirs()
a :str = PurePosixPath(path.strip('''/''' ) )
a :Tuple = {}
for p, f in self.dir_cache.items():
a :Optional[int] = PurePosixPath(p.strip('''/''' ) )
a :str = p.parent
if root == path:
a :List[str] = f
a :Any = list(paths.values() )
if detail:
return out
else:
return sorted(f['''name'''] for f in out )
| 94
|
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
snake_case : Dict = logging.get_logger(__name__)
snake_case : Tuple = '''▁'''
snake_case : Any = {'''vocab_file''': '''sentencepiece.bpe.model'''}
snake_case : Tuple = {
'''vocab_file''': {
'''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model''',
'''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model''',
'''xlm-roberta-large-finetuned-conll02-dutch''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll02-spanish''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll03-english''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model'''
),
'''xlm-roberta-large-finetuned-conll03-german''': (
'''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model'''
),
}
}
snake_case : int = {
'''xlm-roberta-base''': 5_12,
'''xlm-roberta-large''': 5_12,
'''xlm-roberta-large-finetuned-conll02-dutch''': 5_12,
'''xlm-roberta-large-finetuned-conll02-spanish''': 5_12,
'''xlm-roberta-large-finetuned-conll03-english''': 5_12,
'''xlm-roberta-large-finetuned-conll03-german''': 5_12,
}
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask']
def __init__( self , _lowerCamelCase , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase = None , **_lowerCamelCase , ):
# Mask token behave like a normal word, i.e. include the space before it
a :Optional[int] = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else mask_token
a :int = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **_lowerCamelCase , )
a :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_lowerCamelCase ) )
a :str = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
a :Tuple = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
a :List[str] = 1
a :Dict = len(self.sp_model ) + self.fairseq_offset
a :List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
a :List[str] = self.__dict__.copy()
a :Optional[int] = None
a :int = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , _lowerCamelCase ):
a :Union[str, Any] = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
a :Union[str, Any] = {}
a :Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ):
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
a :List[Any] = [self.cls_token_id]
a :Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase )
if token_ids_a is None:
return [1] + ([0] * len(_lowerCamelCase )) + [1]
return [1] + ([0] * len(_lowerCamelCase )) + [1, 1] + ([0] * len(_lowerCamelCase )) + [1]
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ):
a :int = [self.sep_token_id]
a :int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def SCREAMING_SNAKE_CASE__ ( self ):
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def SCREAMING_SNAKE_CASE__ ( self ):
a :Any = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
return self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
a :Optional[Any] = self.sp_model.PieceToId(_lowerCamelCase )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase ):
a :Tuple = ''''''.join(_lowerCamelCase ).replace(_lowerCamelCase , ''' ''' ).strip()
return out_string
def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = None ):
if not os.path.isdir(_lowerCamelCase ):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' )
return
a :int = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
a :List[Any] = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 94
| 1
|
"""simple docstring"""
from __future__ import annotations
from typing import Any
def __UpperCAmelCase ( lowercase ):
"""simple docstring"""
create_state_space_tree(a_ ,[] ,0 )
def __UpperCAmelCase ( lowercase ,lowercase ,lowercase ):
"""simple docstring"""
if index == len(a_ ):
print(a_ )
return
create_state_space_tree(a_ ,a_ ,index + 1 )
current_subsequence.append(sequence[index] )
create_state_space_tree(a_ ,a_ ,index + 1 )
current_subsequence.pop()
if __name__ == "__main__":
UpperCAmelCase__ = [3, 1, 2, 4]
generate_all_subsequences(seq)
seq.clear()
seq.extend(["""A""", """B""", """C"""])
generate_all_subsequences(seq)
| 364
|
"""simple docstring"""
from itertools import product
def __UpperCAmelCase ( lowercase ,lowercase ):
"""simple docstring"""
_UpperCAmelCase = sides_number
_UpperCAmelCase = max_face_number * dice_number
_UpperCAmelCase = [0] * (max_total + 1)
_UpperCAmelCase = 1
_UpperCAmelCase = range(lowercase ,max_face_number + 1 )
for dice_numbers in product(lowercase ,repeat=lowercase ):
_UpperCAmelCase = sum(lowercase )
totals_frequencies[total] += 1
return totals_frequencies
def __UpperCAmelCase ( ):
"""simple docstring"""
_UpperCAmelCase = total_frequency_distribution(
sides_number=4 ,dice_number=9 )
_UpperCAmelCase = total_frequency_distribution(
sides_number=6 ,dice_number=6 )
_UpperCAmelCase = 0
_UpperCAmelCase = 9
_UpperCAmelCase = 4 * 9
_UpperCAmelCase = 6
for peter_total in range(lowercase ,max_peter_total + 1 ):
peter_wins_count += peter_totals_frequencies[peter_total] * sum(
colin_totals_frequencies[min_colin_total:peter_total] )
_UpperCAmelCase = (4**9) * (6**6)
_UpperCAmelCase = peter_wins_count / total_games_number
_UpperCAmelCase = round(lowercase ,ndigits=7 )
return rounded_peter_win_probability
if __name__ == "__main__":
print(F'''{solution() = }''')
| 30
| 0
|
"""simple docstring"""
import datetime
import platform
import subprocess
from typing import Optional, Tuple, Union
import numpy as np
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : Tuple = f'''{sampling_rate}'''
_lowerCamelCase : str = '1'
_lowerCamelCase : str = 'f32le'
_lowerCamelCase : Union[str, Any] = [
'ffmpeg',
'-i',
'pipe:0',
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
try:
with subprocess.Popen(lowercase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process:
_lowerCamelCase : str = ffmpeg_process.communicate(lowercase__ )
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error
_lowerCamelCase : List[Any] = output_stream[0]
_lowerCamelCase : Tuple = np.frombuffer(lowercase__ , np.floataa )
if audio.shape[0] == 0:
raise ValueError('Malformed soundfile' )
return audio
def _snake_case ( lowercase__ , lowercase__ , lowercase__ = "f32le" , ):
_lowerCamelCase : Optional[Any] = f'''{sampling_rate}'''
_lowerCamelCase : List[str] = '1'
if format_for_conversion == "s16le":
_lowerCamelCase : List[str] = 2
elif format_for_conversion == "f32le":
_lowerCamelCase : List[Any] = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
_lowerCamelCase : Dict = platform.system()
if system == "Linux":
_lowerCamelCase : Optional[int] = 'alsa'
_lowerCamelCase : Optional[Any] = 'default'
elif system == "Darwin":
_lowerCamelCase : Optional[int] = 'avfoundation'
_lowerCamelCase : Any = ':0'
elif system == "Windows":
_lowerCamelCase : Tuple = 'dshow'
_lowerCamelCase : Tuple = 'default'
_lowerCamelCase : Optional[int] = [
'ffmpeg',
'-f',
format_,
'-i',
input_,
'-ac',
ac,
'-ar',
ar,
'-f',
format_for_conversion,
'-fflags',
'nobuffer',
'-hide_banner',
'-loglevel',
'quiet',
'pipe:1',
]
_lowerCamelCase : Tuple = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
_lowerCamelCase : List[Any] = _ffmpeg_stream(lowercase__ , lowercase__ )
for item in iterator:
yield item
def _snake_case ( lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = "f32le" , ):
if stream_chunk_s is not None:
_lowerCamelCase : int = stream_chunk_s
else:
_lowerCamelCase : Optional[Any] = chunk_length_s
_lowerCamelCase : Optional[Any] = ffmpeg_microphone(lowercase__ , lowercase__ , format_for_conversion=lowercase__ )
if format_for_conversion == "s16le":
_lowerCamelCase : List[str] = np.intaa
_lowerCamelCase : str = 2
elif format_for_conversion == "f32le":
_lowerCamelCase : Any = np.floataa
_lowerCamelCase : List[Any] = 4
else:
raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' )
if stride_length_s is None:
_lowerCamelCase : Union[str, Any] = chunk_length_s / 6
_lowerCamelCase : Optional[int] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample
if isinstance(lowercase__ , (int, float) ):
_lowerCamelCase : Any = [stride_length_s, stride_length_s]
_lowerCamelCase : Tuple = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample
_lowerCamelCase : Optional[Any] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample
_lowerCamelCase : List[Any] = datetime.datetime.now()
_lowerCamelCase : Optional[int] = datetime.timedelta(seconds=lowercase__ )
for item in chunk_bytes_iter(lowercase__ , lowercase__ , stride=(stride_left, stride_right) , stream=lowercase__ ):
# Put everything back in numpy scale
_lowerCamelCase : List[Any] = np.frombuffer(item['raw'] , dtype=lowercase__ )
_lowerCamelCase : int = (
item['stride'][0] // size_of_sample,
item['stride'][1] // size_of_sample,
)
_lowerCamelCase : Optional[int] = sampling_rate
audio_time += delta
if datetime.datetime.now() > audio_time + 10 * delta:
# We're late !! SKIP
continue
yield item
def _snake_case ( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False ):
_lowerCamelCase : int = B''
_lowerCamelCase, _lowerCamelCase : Dict = stride
if stride_left + stride_right >= chunk_len:
raise ValueError(
f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' )
_lowerCamelCase : str = 0
for raw in iterator:
acc += raw
if stream and len(lowercase__ ) < chunk_len:
_lowerCamelCase : Optional[int] = (_stride_left, 0)
yield {"raw": acc[:chunk_len], "stride": stride, "partial": True}
else:
while len(lowercase__ ) >= chunk_len:
# We are flushing the accumulator
_lowerCamelCase : str = (_stride_left, stride_right)
_lowerCamelCase : str = {'raw': acc[:chunk_len], 'stride': stride}
if stream:
_lowerCamelCase : List[Any] = False
yield item
_lowerCamelCase : Optional[Any] = stride_left
_lowerCamelCase : str = acc[chunk_len - stride_left - stride_right :]
# Last chunk
if len(lowercase__ ) > stride_left:
_lowerCamelCase : Optional[Any] = {'raw': acc, 'stride': (_stride_left, 0)}
if stream:
_lowerCamelCase : Tuple = False
yield item
def _snake_case ( lowercase__ , lowercase__ ):
_lowerCamelCase : int = 2**24 # 16Mo
try:
with subprocess.Popen(lowercase__ , stdout=subprocess.PIPE , bufsize=lowercase__ ) as ffmpeg_process:
while True:
_lowerCamelCase : Optional[Any] = ffmpeg_process.stdout.read(lowercase__ )
if raw == b"":
break
yield raw
except FileNotFoundError as error:
raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
| 96
|
"""simple docstring"""
import functools
from typing import Any
def _snake_case ( lowercase__ , lowercase__ ):
# Validation
if not isinstance(lowercase__ , lowercase__ ) or len(lowercase__ ) == 0:
raise ValueError('the string should be not empty string' )
if not isinstance(lowercase__ , lowercase__ ) or not all(
isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0 for item in words ):
raise ValueError('the words should be a list of non-empty strings' )
# Build trie
_lowerCamelCase : dict[str, Any] = {}
_lowerCamelCase : List[Any] = 'WORD_KEEPER'
for word in words:
_lowerCamelCase : Dict = trie
for c in word:
if c not in trie_node:
_lowerCamelCase : Any = {}
_lowerCamelCase : str = trie_node[c]
_lowerCamelCase : Optional[Any] = True
_lowerCamelCase : Dict = len(lowercase__ )
# Dynamic programming method
@functools.cache
def is_breakable(lowercase__ ) -> bool:
if index == len_string:
return True
_lowerCamelCase : List[Any] = trie
for i in range(lowercase__ , lowercase__ ):
_lowerCamelCase : Any = trie_node.get(string[i] , lowercase__ )
if trie_node is None:
return False
if trie_node.get(lowercase__ , lowercase__ ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 96
| 1
|
import uuid
from typing import Any, Dict, List, Optional, Union
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
if is_torch_available():
import torch
_UpperCAmelCase = logging.get_logger(__name__)
class snake_case_ :
def __init__( self : Optional[Any] , _snake_case : str = None , _snake_case : uuid.UUID = None , _snake_case : List[str]=None , _snake_case : Tuple=None )->Optional[Any]:
'''simple docstring'''
if not conversation_id:
__lowerCAmelCase : Any = uuid.uuida()
if past_user_inputs is None:
__lowerCAmelCase : Optional[Any] = []
if generated_responses is None:
__lowerCAmelCase : Optional[Any] = []
__lowerCAmelCase : uuid.UUID = conversation_id
__lowerCAmelCase : List[str] = past_user_inputs
__lowerCAmelCase : List[str] = generated_responses
__lowerCAmelCase : Optional[str] = text
def __eq__( self : str , _snake_case : Dict )->Optional[Any]:
'''simple docstring'''
if not isinstance(_snake_case , _snake_case ):
return False
if self.uuid == other.uuid:
return True
return (
self.new_user_input == other.new_user_input
and self.past_user_inputs == other.past_user_inputs
and self.generated_responses == other.generated_responses
)
def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : str , _snake_case : bool = False )->Any:
'''simple docstring'''
if self.new_user_input:
if overwrite:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten '''
F'''with: "{text}".''' )
__lowerCAmelCase : int = text
else:
logger.warning(
F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input '''
F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' )
else:
__lowerCAmelCase : List[str] = text
def UpperCAmelCase__ ( self : List[str] )->int:
'''simple docstring'''
if self.new_user_input:
self.past_user_inputs.append(self.new_user_input )
__lowerCAmelCase : List[str] = None
def UpperCAmelCase__ ( self : List[str] , _snake_case : str )->List[str]:
'''simple docstring'''
self.generated_responses.append(_snake_case )
def UpperCAmelCase__ ( self : str )->Optional[Any]:
'''simple docstring'''
for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ):
yield True, user_input
yield False, generated_response
if self.new_user_input:
yield True, self.new_user_input
def __repr__( self : Dict )->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : List[Any] = F'''Conversation id: {self.uuid} \n'''
for is_user, text in self.iter_texts():
__lowerCAmelCase : str = """user""" if is_user else """bot"""
output += F'''{name} >> {text} \n'''
return output
@add_end_docstrings(
__lowercase ,R'\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ' ,)
class snake_case_ ( __lowercase ):
def __init__( self : List[Any] , *_snake_case : str , **_snake_case : List[Any] )->List[Any]:
'''simple docstring'''
super().__init__(*_snake_case , **_snake_case )
if self.tokenizer.pad_token_id is None:
__lowerCAmelCase : Optional[int] = self.tokenizer.eos_token
def UpperCAmelCase__ ( self : Dict , _snake_case : Any=None , _snake_case : str=None , _snake_case : Tuple=None , **_snake_case : str )->str:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = {}
__lowerCAmelCase : Tuple = {}
__lowerCAmelCase : List[str] = {}
if min_length_for_response is not None:
__lowerCAmelCase : Optional[int] = min_length_for_response
if minimum_tokens is not None:
__lowerCAmelCase : Tuple = minimum_tokens
if "max_length" in generate_kwargs:
__lowerCAmelCase : List[str] = generate_kwargs["""max_length"""]
# self.max_length = generate_kwargs.get("max_length", self.model.config.max_length)
if clean_up_tokenization_spaces is not None:
__lowerCAmelCase : int = clean_up_tokenization_spaces
if generate_kwargs:
forward_params.update(_snake_case )
return preprocess_params, forward_params, postprocess_params
def __call__( self : int , _snake_case : Union[Conversation, List[Conversation]] , _snake_case : List[str]=0 , **_snake_case : Optional[Any] )->Optional[int]:
'''simple docstring'''
__lowerCAmelCase : Union[str, Any] = super().__call__(_snake_case , num_workers=_snake_case , **_snake_case )
if isinstance(_snake_case , _snake_case ) and len(_snake_case ) == 1:
return outputs[0]
return outputs
def UpperCAmelCase__ ( self : str , _snake_case : Conversation , _snake_case : Tuple=32 )->Dict[str, Any]:
'''simple docstring'''
if not isinstance(_snake_case , _snake_case ):
raise ValueError("""ConversationalPipeline, expects Conversation as inputs""" )
if conversation.new_user_input is None:
raise ValueError(
F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. '''
"""Add user inputs with the conversation's `add_user_input` method""" )
if hasattr(self.tokenizer , """_build_conversation_input_ids""" ):
__lowerCAmelCase : str = self.tokenizer._build_conversation_input_ids(_snake_case )
else:
# If the tokenizer cannot handle conversations, we default to only the old version
__lowerCAmelCase : Tuple = self._legacy_parse_and_tokenize(_snake_case )
if self.framework == "pt":
__lowerCAmelCase : int = torch.LongTensor([input_ids] )
elif self.framework == "tf":
__lowerCAmelCase : Dict = tf.constant([input_ids] )
return {"input_ids": input_ids, "conversation": conversation}
def UpperCAmelCase__ ( self : List[Any] , _snake_case : List[str] , _snake_case : Optional[int]=10 , **_snake_case : int )->Dict:
'''simple docstring'''
__lowerCAmelCase : int = generate_kwargs.get("""max_length""" , self.model.config.max_length )
__lowerCAmelCase : Tuple = model_inputs["""input_ids"""].shape[1]
if max_length - minimum_tokens < n:
logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' )
__lowerCAmelCase : Dict = max_length - minimum_tokens
__lowerCAmelCase : Dict = model_inputs["""input_ids"""][:, -trim:]
if "attention_mask" in model_inputs:
__lowerCAmelCase : List[str] = model_inputs["""attention_mask"""][:, -trim:]
__lowerCAmelCase : Union[str, Any] = model_inputs.pop("""conversation""" )
__lowerCAmelCase : Any = max_length
__lowerCAmelCase : Union[str, Any] = self.model.generate(**_snake_case , **_snake_case )
if self.model.config.is_encoder_decoder:
__lowerCAmelCase : str = 1
else:
__lowerCAmelCase : Optional[int] = n
return {"output_ids": output_ids[:, start_position:], "conversation": conversation}
def UpperCAmelCase__ ( self : str , _snake_case : Any , _snake_case : Optional[Any]=True )->Dict:
'''simple docstring'''
__lowerCAmelCase : str = model_outputs["""output_ids"""]
__lowerCAmelCase : str = self.tokenizer.decode(
output_ids[0] , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case , )
__lowerCAmelCase : Union[str, Any] = model_outputs["""conversation"""]
conversation.mark_processed()
conversation.append_response(_snake_case )
return conversation
def UpperCAmelCase__ ( self : Union[str, Any] , _snake_case : Conversation )->Dict:
'''simple docstring'''
__lowerCAmelCase : Optional[Any] = self.tokenizer.eos_token_id
__lowerCAmelCase : Tuple = []
for is_user, text in conversation.iter_texts():
if eos_token_id is not None:
input_ids.extend(self.tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) + [eos_token_id] )
else:
input_ids.extend(self.tokenizer.encode(_snake_case , add_special_tokens=_snake_case ) )
if len(_snake_case ) > self.tokenizer.model_max_length:
__lowerCAmelCase : Optional[Any] = input_ids[-self.tokenizer.model_max_length :]
return input_ids
| 350
|
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCAmelCase = logging.get_logger(__name__)
_UpperCAmelCase = {
'microsoft/unispeech-sat-base-100h-libri-ft': (
'https://huggingface.co/microsoft/unispeech-sat-base-100h-libri-ft/resolve/main/config.json'
),
# See all UniSpeechSat models at https://huggingface.co/models?filter=unispeech_sat
}
class snake_case_ ( __lowercase ):
A_ = 'unispeech-sat'
def __init__( self : str , _snake_case : List[Any]=32 , _snake_case : Union[str, Any]=768 , _snake_case : Tuple=12 , _snake_case : Optional[int]=12 , _snake_case : Optional[Any]=3072 , _snake_case : Tuple="gelu" , _snake_case : int=0.1 , _snake_case : List[Any]=0.1 , _snake_case : Union[str, Any]=0.1 , _snake_case : str=0.0 , _snake_case : List[str]=0.0 , _snake_case : int=0.1 , _snake_case : Optional[Any]=0.1 , _snake_case : Optional[Any]=0.02 , _snake_case : int=1E-5 , _snake_case : Dict="group" , _snake_case : Optional[Any]="gelu" , _snake_case : Optional[Any]=(512, 512, 512, 512, 512, 512, 512) , _snake_case : int=(5, 2, 2, 2, 2, 2, 2) , _snake_case : int=(10, 3, 3, 3, 3, 2, 2) , _snake_case : Any=False , _snake_case : Optional[Any]=128 , _snake_case : Tuple=16 , _snake_case : str=False , _snake_case : Dict=True , _snake_case : Tuple=0.05 , _snake_case : str=10 , _snake_case : Tuple=2 , _snake_case : List[Any]=0.0 , _snake_case : str=10 , _snake_case : Any=0 , _snake_case : List[Any]=320 , _snake_case : Union[str, Any]=2 , _snake_case : Dict=0.1 , _snake_case : Dict=100 , _snake_case : Union[str, Any]=256 , _snake_case : int=256 , _snake_case : Union[str, Any]=0.1 , _snake_case : Optional[Any]="mean" , _snake_case : int=False , _snake_case : str=False , _snake_case : str=256 , _snake_case : List[Any]=(512, 512, 512, 512, 1500) , _snake_case : Optional[int]=(5, 3, 3, 1, 1) , _snake_case : Tuple=(1, 2, 3, 1, 1) , _snake_case : Dict=512 , _snake_case : Union[str, Any]=0 , _snake_case : List[str]=1 , _snake_case : Optional[Any]=2 , _snake_case : Optional[int]=504 , **_snake_case : Optional[int] , )->Union[str, Any]:
'''simple docstring'''
super().__init__(**_snake_case , pad_token_id=_snake_case , bos_token_id=_snake_case , eos_token_id=_snake_case )
__lowerCAmelCase : Dict = hidden_size
__lowerCAmelCase : List[Any] = feat_extract_norm
__lowerCAmelCase : int = feat_extract_activation
__lowerCAmelCase : Union[str, Any] = list(_snake_case )
__lowerCAmelCase : str = list(_snake_case )
__lowerCAmelCase : Optional[Any] = list(_snake_case )
__lowerCAmelCase : Optional[int] = conv_bias
__lowerCAmelCase : Dict = num_conv_pos_embeddings
__lowerCAmelCase : List[Any] = num_conv_pos_embedding_groups
__lowerCAmelCase : Tuple = len(self.conv_dim )
__lowerCAmelCase : int = num_hidden_layers
__lowerCAmelCase : str = intermediate_size
__lowerCAmelCase : str = hidden_act
__lowerCAmelCase : Any = num_attention_heads
__lowerCAmelCase : Optional[int] = hidden_dropout
__lowerCAmelCase : str = attention_dropout
__lowerCAmelCase : int = activation_dropout
__lowerCAmelCase : Union[str, Any] = feat_proj_dropout
__lowerCAmelCase : List[str] = final_dropout
__lowerCAmelCase : Dict = layerdrop
__lowerCAmelCase : Tuple = layer_norm_eps
__lowerCAmelCase : Optional[Any] = initializer_range
__lowerCAmelCase : str = vocab_size
__lowerCAmelCase : Optional[int] = num_clusters
__lowerCAmelCase : List[Any] = do_stable_layer_norm
__lowerCAmelCase : Tuple = use_weighted_layer_sum
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
"""Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="""
""" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="""
F''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'''
F''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCAmelCase : Dict = apply_spec_augment
__lowerCAmelCase : List[Any] = mask_time_prob
__lowerCAmelCase : List[str] = mask_time_length
__lowerCAmelCase : Dict = mask_time_min_masks
__lowerCAmelCase : Tuple = mask_feature_prob
__lowerCAmelCase : List[str] = mask_feature_length
__lowerCAmelCase : str = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
__lowerCAmelCase : Optional[int] = num_codevectors_per_group
__lowerCAmelCase : List[Any] = num_codevector_groups
__lowerCAmelCase : int = contrastive_logits_temperature
__lowerCAmelCase : str = feat_quantizer_dropout
__lowerCAmelCase : int = num_negatives
__lowerCAmelCase : str = codevector_dim
__lowerCAmelCase : Any = proj_codevector_dim
__lowerCAmelCase : Any = diversity_loss_weight
# ctc loss
__lowerCAmelCase : Tuple = ctc_loss_reduction
__lowerCAmelCase : Any = ctc_zero_infinity
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
__lowerCAmelCase : Any = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
__lowerCAmelCase : List[str] = list(_snake_case )
__lowerCAmelCase : List[str] = list(_snake_case )
__lowerCAmelCase : Optional[int] = list(_snake_case )
__lowerCAmelCase : Optional[int] = xvector_output_dim
@property
def UpperCAmelCase__ ( self : Optional[Any] )->Any:
'''simple docstring'''
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 232
| 0
|
import json
import os
import shutil
import tempfile
import unittest
from transformers import BatchEncoding, CanineTokenizer
from transformers.testing_utils import require_tokenizers, require_torch
from transformers.tokenization_utils import AddedToken
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ):
'''simple docstring'''
_UpperCAmelCase : List[Any] = CanineTokenizer
_UpperCAmelCase : Dict = False
def A ( self : Tuple ):
'''simple docstring'''
super().setUp()
_snake_case = CanineTokenizer()
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def A ( self : Optional[Any] ):
'''simple docstring'''
return CanineTokenizer.from_pretrained('google/canine-s' )
def A ( self : List[str] , **lowercase : Union[str, Any] ):
'''simple docstring'''
_snake_case = self.tokenizer_class.from_pretrained(self.tmpdirname , **lowercase )
_snake_case = 1_024
return tokenizer
@require_torch
def A ( self : Dict ):
'''simple docstring'''
_snake_case = self.canine_tokenizer
_snake_case = ['Life is like a box of chocolates.', 'You never know what you\'re gonna get.']
# fmt: off
_snake_case = [57_344, 76, 105, 102, 101, 32, 105, 115, 32, 108, 105, 107, 101, 32, 97, 32, 98, 111, 120, 32, 111, 102, 32, 99, 104, 111, 99, 111, 108, 97, 116, 101, 115, 46, 57_345, 0, 0, 0, 0]
# fmt: on
_snake_case = tokenizer(lowercase , padding=lowercase , return_tensors='pt' )
self.assertIsInstance(lowercase , lowercase )
_snake_case = list(batch.input_ids.numpy()[0] )
self.assertListEqual(lowercase , lowercase )
self.assertEqual((2, 39) , batch.input_ids.shape )
self.assertEqual((2, 39) , batch.attention_mask.shape )
@require_torch
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = self.canine_tokenizer
_snake_case = ['Once there was a man.', 'He wrote a test in HuggingFace Tranformers.']
_snake_case = tokenizer(lowercase , padding=lowercase , return_tensors='pt' )
# check if input_ids, attention_mask and token_type_ids are returned
self.assertIn('input_ids' , lowercase )
self.assertIn('attention_mask' , lowercase )
self.assertIn('token_type_ids' , lowercase )
@require_torch
def A ( self : int ):
'''simple docstring'''
_snake_case = self.canine_tokenizer
_snake_case = [
'What\'s the weater?',
'It\'s about 25 degrees.',
]
_snake_case = tokenizer(
text_target=lowercase , max_length=32 , padding='max_length' , truncation=lowercase , return_tensors='pt' )
self.assertEqual(32 , targets['input_ids'].shape[1] )
def A ( self : Tuple ):
'''simple docstring'''
_snake_case = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
self.assertNotEqual(tokenizer.model_max_length , 42 )
# Now let's start the test
_snake_case = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case = tempfile.mkdtemp()
_snake_case = ' He is very happy, UNwant\u00E9d,running'
_snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
_snake_case = tokenizer.__class__.from_pretrained(lowercase )
_snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
shutil.rmtree(lowercase )
_snake_case = self.get_tokenizers(model_max_length=42 )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# Isolate this from the other tests because we save additional tokens/etc
_snake_case = tempfile.mkdtemp()
_snake_case = ' He is very happy, UNwant\u00E9d,running'
_snake_case = tokenizer.additional_special_tokens
# We can add a new special token for Canine as follows:
_snake_case = chr(0xE007 )
additional_special_tokens.append(lowercase )
tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} )
_snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase )
tokenizer.save_pretrained(lowercase )
_snake_case = tokenizer.__class__.from_pretrained(lowercase )
_snake_case = after_tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertListEqual(lowercase , lowercase )
self.assertIn(lowercase , after_tokenizer.additional_special_tokens )
self.assertEqual(after_tokenizer.model_max_length , 42 )
_snake_case = tokenizer.__class__.from_pretrained(lowercase , model_max_length=43 )
self.assertEqual(tokenizer.model_max_length , 43 )
shutil.rmtree(lowercase )
def A ( self : int ):
'''simple docstring'''
_snake_case = self.get_tokenizers(do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
_snake_case , _snake_case = self.get_clean_sequence(lowercase )
# a special token for Canine can be defined as follows:
_snake_case = 0xE005
_snake_case = chr(lowercase )
tokenizer.add_special_tokens({'cls_token': special_token} )
_snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertEqual(len(lowercase ) , 1 )
_snake_case = tokenizer.decode(ids + encoded_special_token , clean_up_tokenization_spaces=lowercase )
_snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase )
_snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase )
_snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase )
self.assertEqual(lowercase , input_encoded + special_token_id )
_snake_case = tokenizer.decode(lowercase , skip_special_tokens=lowercase )
self.assertTrue(special_token not in decoded )
def A ( self : Optional[int] ):
'''simple docstring'''
_snake_case = self.get_tokenizers(do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
_snake_case = chr(0xE005 )
_snake_case = chr(0xE006 )
# `add_tokens` method stores special tokens only in `tokenizer.unique_no_split_tokens`. (in tokenization_utils.py)
tokenizer.add_tokens([SPECIAL_TOKEN_1] , special_tokens=lowercase )
# `add_special_tokens` method stores special tokens in `tokenizer.additional_special_tokens`,
# which also occur in `tokenizer.all_special_tokens`. (in tokenization_utils_base.py)
tokenizer.add_special_tokens({'additional_special_tokens': [SPECIAL_TOKEN_2]} )
_snake_case = tokenizer.tokenize(lowercase )
_snake_case = tokenizer.tokenize(lowercase )
self.assertEqual(len(lowercase ) , 1 )
self.assertEqual(len(lowercase ) , 1 )
self.assertEqual(token_a[0] , lowercase )
self.assertEqual(token_a[0] , lowercase )
@require_tokenizers
def A ( self : Dict ):
'''simple docstring'''
_snake_case = self.get_tokenizers(do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
# a special token for Canine can be defined as follows:
_snake_case = 0xE006
_snake_case = chr(lowercase )
_snake_case = AddedToken(lowercase , lstrip=lowercase )
tokenizer.add_special_tokens({'additional_special_tokens': [new_token]} )
with tempfile.TemporaryDirectory() as tmp_dir_name:
tokenizer.save_pretrained(lowercase )
tokenizer.from_pretrained(lowercase )
def A ( self : Tuple ):
'''simple docstring'''
_snake_case = []
if self.test_slow_tokenizer:
tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) )
if self.test_rust_tokenizer:
tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) )
for tokenizer_class, tokenizer_utils in tokenizer_list:
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer_utils.save_pretrained(lowercase )
with open(os.path.join(lowercase , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file:
_snake_case = json.load(lowercase )
with open(os.path.join(lowercase , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file:
_snake_case = json.load(lowercase )
# a special token for Canine can be defined as follows:
_snake_case = 0xE006
_snake_case = chr(lowercase )
_snake_case = [new_token_a]
_snake_case = [new_token_a]
with open(os.path.join(lowercase , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(lowercase , lowercase )
with open(os.path.join(lowercase , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile:
json.dump(lowercase , lowercase )
# the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
# into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
# "special_tokens_map.json" files
_snake_case = tokenizer_class.from_pretrained(lowercase , extra_ids=0 )
self.assertIn(lowercase , tokenizer_without_change_in_init.additional_special_tokens )
# self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer_without_change_in_init.convert_ids_to_tokens(
tokenizer_without_change_in_init.convert_tokens_to_ids([new_token_a] ) ) , )
_snake_case = 0xE007
_snake_case = chr(lowercase )
# Now we test that we can change the value of additional_special_tokens in the from_pretrained
_snake_case = [AddedToken(lowercase , lstrip=lowercase )]
_snake_case = tokenizer_class.from_pretrained(
lowercase , additional_special_tokens=lowercase , extra_ids=0 )
self.assertIn(lowercase , tokenizer.additional_special_tokens )
# self.assertIn(new_token_2,tokenizer.get_vocab()) # ByT5Tokenization no vocab
self.assertEqual(
[new_token_a] , tokenizer.convert_ids_to_tokens(tokenizer.convert_tokens_to_ids([new_token_a] ) ) )
@require_tokenizers
def A ( self : Tuple ):
'''simple docstring'''
_snake_case = self.get_tokenizers(do_lower_case=lowercase )
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
_snake_case = 'hello world'
if self.space_between_special_tokens:
_snake_case = '[CLS] hello world [SEP]'
else:
_snake_case = input
_snake_case = tokenizer.encode(lowercase , add_special_tokens=lowercase )
_snake_case = tokenizer.decode(lowercase , spaces_between_special_tokens=self.space_between_special_tokens )
self.assertIn(lowercase , [output, output.lower()] )
def A ( self : List[Any] ):
'''simple docstring'''
_snake_case = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(f'''{tokenizer.__class__.__name__}''' ):
_snake_case = [
'bos_token',
'eos_token',
'unk_token',
'sep_token',
'pad_token',
'cls_token',
'mask_token',
]
_snake_case = 'a'
_snake_case = ord(lowercase )
for attr in attributes_list:
setattr(lowercase , attr + '_id' , lowercase )
self.assertEqual(getattr(lowercase , lowercase ) , lowercase )
self.assertEqual(getattr(lowercase , attr + '_id' ) , lowercase )
setattr(lowercase , attr + '_id' , lowercase )
self.assertEqual(getattr(lowercase , lowercase ) , lowercase )
self.assertEqual(getattr(lowercase , attr + '_id' ) , lowercase )
setattr(lowercase , 'additional_special_tokens_ids' , [] )
self.assertListEqual(getattr(lowercase , 'additional_special_tokens' ) , [] )
self.assertListEqual(getattr(lowercase , 'additional_special_tokens_ids' ) , [] )
_snake_case = 0xE006
_snake_case = chr(lowercase )
setattr(lowercase , 'additional_special_tokens_ids' , [additional_special_token_id] )
self.assertListEqual(getattr(lowercase , 'additional_special_tokens' ) , [additional_special_token] )
self.assertListEqual(getattr(lowercase , 'additional_special_tokens_ids' ) , [additional_special_token_id] )
def A ( self : str ):
'''simple docstring'''
pass
def A ( self : Optional[int] ):
'''simple docstring'''
pass
def A ( self : Optional[int] ):
'''simple docstring'''
pass
def A ( self : Optional[int] ):
'''simple docstring'''
pass
def A ( self : Optional[Any] ):
'''simple docstring'''
pass
def A ( self : Optional[int] ):
'''simple docstring'''
pass
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : Tuple ):
'''simple docstring'''
pass
| 282
|
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_torch_available
from transformers.testing_utils import require_torch, torch_device
if is_torch_available():
from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
'''simple docstring'''
def A ( self : List[Any] , lowercase : Dict ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ):
_snake_case = model_result['result'][batch_size][sequence_length]
self.assertIsNotNone(lowercase )
def A ( self : str ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A ( self : Any ):
'''simple docstring'''
_snake_case = 'sgugger/tiny-distilbert-classification'
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , only_pretrain_model=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A ( self : Optional[int] ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , torchscript=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' )
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , fpaa=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A ( self : str ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = AutoConfig.from_pretrained(lowercase )
# set architectures equal to `None`
_snake_case = None
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
@unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' )
def A ( self : str ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=lowercase , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def A ( self : Tuple ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = AutoConfig.from_pretrained(lowercase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A ( self : Union[str, Any] ):
'''simple docstring'''
_snake_case = 'sshleifer/tinier_bart'
_snake_case = AutoConfig.from_pretrained(lowercase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def A ( self : Dict ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
_snake_case = AutoConfig.from_pretrained(lowercase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def A ( self : Dict ):
'''simple docstring'''
_snake_case = 'sshleifer/tinier_bart'
_snake_case = AutoConfig.from_pretrained(lowercase )
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase , configs=[config] )
_snake_case = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , save_to_csv=lowercase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(lowercase , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(lowercase , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(lowercase , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(lowercase , 'train_time.csv' ) , env_info_csv_file=os.path.join(lowercase , 'env.csv' ) , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
benchmark.run()
self.assertTrue(Path(os.path.join(lowercase , 'inf_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , 'train_time.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , 'inf_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , 'train_mem.csv' ) ).exists() )
self.assertTrue(Path(os.path.join(lowercase , 'env.csv' ) ).exists() )
def A ( self : Union[str, Any] ):
'''simple docstring'''
_snake_case = 'sshleifer/tiny-gpt2'
def _check_summary_is_not_empty(lowercase : Optional[Any] ):
self.assertTrue(hasattr(lowercase , 'sequential' ) )
self.assertTrue(hasattr(lowercase , 'cumulative' ) )
self.assertTrue(hasattr(lowercase , 'current' ) )
self.assertTrue(hasattr(lowercase , 'total' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
_snake_case = PyTorchBenchmarkArguments(
models=[MODEL_ID] , training=lowercase , inference=lowercase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(lowercase , 'log.txt' ) , log_print=lowercase , trace_memory_line_by_line=lowercase , multi_process=lowercase , )
_snake_case = PyTorchBenchmark(lowercase )
_snake_case = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
_check_summary_is_not_empty(result.train_summary )
self.assertTrue(Path(os.path.join(lowercase , 'log.txt' ) ).exists() )
| 282
| 1
|
"""simple docstring"""
import argparse
import json
import os
import fairseq
import torch
from fairseq.data import Dictionary
from transformers import (
WavaVecaConformerConfig,
WavaVecaConformerForCTC,
WavaVecaConformerForPreTraining,
WavaVecaCTCTokenizer,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
logging,
)
logging.set_verbosity_info()
A = logging.get_logger(__name__)
A = {
"post_extract_proj": "feature_projection.projection",
"encoder.pos_conv.0": "encoder.pos_conv_embed.conv",
"self_attn.linear_k": "encoder.layers.*.self_attn.linear_k",
"self_attn.linear_v": "encoder.layers.*.self_attn.linear_v",
"self_attn.linear_q": "encoder.layers.*.self_attn.linear_q",
"self_attn.pos_bias_u": "encoder.layers.*.self_attn.pos_bias_u",
"self_attn.pos_bias_v": "encoder.layers.*.self_attn.pos_bias_v",
"self_attn.linear_out": "encoder.layers.*.self_attn.linear_out",
"self_attn.linear_pos": "encoder.layers.*.self_attn.linear_pos",
"self_attn.rotary_emb": "encoder.embed_positions",
"self_attn_layer_norm": "encoder.layers.*.self_attn_layer_norm",
"conv_module.pointwise_conv1": "encoder.layers.*.conv_module.pointwise_conv1",
"conv_module.pointwise_conv2": "encoder.layers.*.conv_module.pointwise_conv2",
"conv_module.depthwise_conv": "encoder.layers.*.conv_module.depthwise_conv",
"conv_module.batch_norm": "encoder.layers.*.conv_module.batch_norm",
"conv_module.layer_norm": "encoder.layers.*.conv_module.layer_norm",
"ffn1.w_1": "encoder.layers.*.ffn1.intermediate_dense",
"ffn1.w_2": "encoder.layers.*.ffn1.output_dense",
"ffn1.layer_norm": "encoder.layers.*.ffn1_layer_norm",
"ffn2.w_1": "encoder.layers.*.ffn2.intermediate_dense",
"ffn2.w_2": "encoder.layers.*.ffn2.output_dense",
"ffn2.layer_norm": "encoder.layers.*.ffn2_layer_norm",
"final_layer_norm": "encoder.layers.*.final_layer_norm",
"encoder.layer_norm": "encoder.layer_norm",
"w2v_model.layer_norm": "feature_projection.layer_norm",
"quantizer.weight_proj": "quantizer.weight_proj",
"quantizer.vars": "quantizer.codevectors",
"project_q": "project_q",
"final_proj": "project_hid",
"w2v_encoder.proj": "lm_head",
"mask_emb": "masked_spec_embed",
}
A = [
"lm_head",
"quantizer.weight_proj",
"quantizer.codevectors",
"project_q",
"project_hid",
]
def __A ( a_ :Union[str, Any] , a_ :str , a_ :Tuple , a_ :Any , a_ :Union[str, Any]) -> List[Any]:
for attribute in key.split('''.'''):
__a : Optional[int] = getattr(A__ , A__)
if weight_type is not None:
__a : Union[str, Any] = getattr(A__ , A__).shape
else:
__a : Any = hf_pointer.shape
if hf_shape != value.shape:
raise ValueError(
F"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be"""
F""" {value.shape} for {full_name}""")
if weight_type == "weight":
__a : Tuple = value
elif weight_type == "weight_g":
__a : Optional[int] = value
elif weight_type == "weight_v":
__a : Tuple = value
elif weight_type == "bias":
__a : List[str] = value
elif weight_type == "running_mean":
__a : str = value
elif weight_type == "running_var":
__a : List[str] = value
elif weight_type == "num_batches_tracked":
__a : Union[str, Any] = value
elif weight_type == "inv_freq":
__a : Optional[Any] = value
else:
__a : int = value
logger.info(F"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""")
def __A ( a_ :Optional[Any] , a_ :Any , a_ :List[Any]) -> List[str]:
__a : List[Any] = []
__a : Tuple = fairseq_model.state_dict()
__a : Tuple = hf_model.wavaveca_conformer.feature_extractor
for name, value in fairseq_dict.items():
__a : int = False
if "conv_layers" in name:
load_conv_layer(
A__ , A__ , A__ , A__ , hf_model.config.feat_extract_norm == '''group''' , )
__a : Optional[Any] = True
else:
for key, mapped_key in MAPPING.items():
__a : Dict = """wav2vec2_conformer.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key
if key in name or key.split('''w2v_model.''')[-1] == name.split('''.''')[0]:
__a : int = True
if "*" in mapped_key:
__a : Optional[int] = name.split(A__)[0].split('''.''')[-2]
__a : List[str] = mapped_key.replace('''*''' , A__)
if "pos_bias_u" in name:
__a : List[str] = None
elif "pos_bias_v" in name:
__a : Any = None
elif "weight_g" in name:
__a : str = """weight_g"""
elif "weight_v" in name:
__a : Tuple = """weight_v"""
elif "bias" in name:
__a : Optional[Any] = """bias"""
elif "weight" in name:
# TODO: don't match quantizer.weight_proj
__a : Optional[Any] = """weight"""
elif "running_mean" in name:
__a : List[str] = """running_mean"""
elif "inv_freq" in name:
__a : Union[str, Any] = """inv_freq"""
elif "running_var" in name:
__a : Any = """running_var"""
elif "num_batches_tracked" in name:
__a : Tuple = """num_batches_tracked"""
else:
__a : Any = None
set_recursively(A__ , A__ , A__ , A__ , A__)
continue
if not is_used:
unused_weights.append(A__)
logger.warning(F"""Unused weights: {unused_weights}""")
def __A ( a_ :Tuple , a_ :Any , a_ :List[Any] , a_ :str , a_ :Tuple) -> List[Any]:
__a : List[Any] = full_name.split('''conv_layers.''')[-1]
__a : int = name.split('''.''')
__a : Dict = int(items[0])
__a : Dict = int(items[1])
if type_id == 0:
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""")
__a : Optional[Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""")
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""")
__a : Union[str, Any] = value
logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""")
elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm):
if "bias" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""")
__a : Tuple = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""")
elif "weight" in name:
if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape:
raise ValueError(
F"""{full_name} has size {value.shape}, but"""
F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""")
__a : List[Any] = value
logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""")
else:
unused_weights.append(A__)
@torch.no_grad()
def __A ( a_ :Dict , a_ :Dict , a_ :Dict=None , a_ :List[Any]=None , a_ :Any=True) -> List[str]:
if config_path is not None:
__a : List[str] = WavaVecaConformerConfig.from_pretrained(A__ , hidden_act='''swish''')
else:
__a : int = WavaVecaConformerConfig()
if "rope" in checkpoint_path:
__a : str = """rotary"""
if is_finetuned:
if dict_path:
__a : Optional[Any] = Dictionary.load(A__)
# important change bos & pad token id since CTC symbol is <pad> and
# not <s> as in fairseq
__a : Optional[int] = target_dict.pad_index
__a : List[str] = target_dict.bos_index
__a : List[Any] = target_dict.eos_index
__a : Optional[Any] = len(target_dict.symbols)
__a : Optional[int] = os.path.join(A__ , '''vocab.json''')
if not os.path.isdir(A__):
logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(A__))
return
os.makedirs(A__ , exist_ok=A__)
__a : Optional[Any] = target_dict.indices
# fairseq has the <pad> and <s> switched
__a : str = 0
__a : List[str] = 1
with open(A__ , '''w''' , encoding='''utf-8''') as vocab_handle:
json.dump(A__ , A__)
__a : List[str] = WavaVecaCTCTokenizer(
A__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=A__ , )
__a : Optional[Any] = True if config.feat_extract_norm == """layer""" else False
__a : str = WavaVecaFeatureExtractor(
feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=A__ , return_attention_mask=A__ , )
__a : str = WavaVecaProcessor(feature_extractor=A__ , tokenizer=A__)
processor.save_pretrained(A__)
__a : Dict = WavaVecaConformerForCTC(A__)
else:
__a : List[Any] = WavaVecaConformerForPreTraining(A__)
if is_finetuned:
__a : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task(
[checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''')[:-1])})
else:
__a : Dict = argparse.Namespace(task='''audio_pretraining''')
__a : str = fairseq.tasks.setup_task(A__)
__a : int = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=A__)
__a : int = model[0].eval()
recursively_load_weights(A__ , A__ , not is_finetuned)
hf_wavavec.save_pretrained(A__)
if __name__ == "__main__":
A = argparse.ArgumentParser()
parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''')
parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''')
parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''')
parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''')
parser.add_argument(
'''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not'''
)
A = parser.parse_args()
convert_wavaveca_conformer_checkpoint(
args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned
)
| 351
|
"""simple docstring"""
import os
import unicodedata
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
A = logging.get_logger(__name__)
A = {'''vocab_file''': '''spiece.model'''}
A = {
'''vocab_file''': {
'''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''',
'''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''',
'''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''',
'''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''',
'''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''',
'''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''',
'''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''',
'''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''',
}
}
A = {
'''albert-base-v1''': 512,
'''albert-large-v1''': 512,
'''albert-xlarge-v1''': 512,
'''albert-xxlarge-v1''': 512,
'''albert-base-v2''': 512,
'''albert-large-v2''': 512,
'''albert-xlarge-v2''': 512,
'''albert-xxlarge-v2''': 512,
}
A = '''▁'''
class __lowercase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = VOCAB_FILES_NAMES
__lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP
__lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , _UpperCAmelCase , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase = None , **_UpperCAmelCase , ):
# Mask token behave like a normal word, i.e. include the space before it and
# is included in the raw text, there should be a match in a non-normalized sentence.
__a : int = (
AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase )
if isinstance(_UpperCAmelCase , _UpperCAmelCase )
else mask_token
)
__a : Any = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , )
__a : Tuple = do_lower_case
__a : Optional[Any] = remove_space
__a : Optional[Any] = keep_accents
__a : Union[str, Any] = vocab_file
__a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_UpperCAmelCase )
@property
def _lowerCamelCase ( self ):
return len(self.sp_model )
def _lowerCamelCase ( self ):
__a : Any = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
__a : str = self.__dict__.copy()
__a : Tuple = None
return state
def __setstate__( self , _UpperCAmelCase ):
__a : Any = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__a : Optional[Any] = {}
__a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCamelCase ( self , _UpperCAmelCase ):
if self.remove_space:
__a : Any = ''' '''.join(inputs.strip().split() )
else:
__a : Tuple = inputs
__a : Union[str, Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' )
if not self.keep_accents:
__a : List[str] = unicodedata.normalize('''NFKD''' , _UpperCAmelCase )
__a : Optional[int] = ''''''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] )
if self.do_lower_case:
__a : Optional[Any] = outputs.lower()
return outputs
def _lowerCamelCase ( self , _UpperCAmelCase ):
__a : int = self.preprocess_text(_UpperCAmelCase )
__a : Tuple = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase )
__a : int = []
for piece in pieces:
if len(_UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit():
__a : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '''''' ) )
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
if len(cur_pieces[0] ) == 1:
__a : Tuple = cur_pieces[1:]
else:
__a : Optional[Any] = cur_pieces[0][1:]
cur_pieces.append(piece[-1] )
new_pieces.extend(_UpperCAmelCase )
else:
new_pieces.append(_UpperCAmelCase )
return new_pieces
def _lowerCamelCase ( self , _UpperCAmelCase ):
return self.sp_model.PieceToId(_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase ):
return self.sp_model.IdToPiece(_UpperCAmelCase )
def _lowerCamelCase ( self , _UpperCAmelCase ):
__a : List[str] = []
__a : str = ''''''
__a : Any = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_UpperCAmelCase ) + token
__a : Tuple = True
__a : Tuple = []
else:
current_sub_tokens.append(_UpperCAmelCase )
__a : Optional[int] = False
out_string += self.sp_model.decode(_UpperCAmelCase )
return out_string.strip()
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__a : int = [self.sep_token_id]
__a : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase )
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1]
return [1] + ([0] * len(_UpperCAmelCase )) + [1]
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
__a : Union[str, Any] = [self.sep_token_id]
__a : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ):
if not os.path.isdir(_UpperCAmelCase ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
__a : List[str] = os.path.join(
_UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_UpperCAmelCase , '''wb''' ) as fi:
__a : Any = self.sp_model.serialized_model_proto()
fi.write(_UpperCAmelCase )
return (out_vocab_file,)
| 188
| 0
|
"""simple docstring"""
import importlib
import os
from dataclasses import dataclass
from enum import Enum
from typing import Any, Dict, Optional, Union
import torch
from ..utils import BaseOutput
lowerCamelCase_ : Optional[Any] = """scheduler_config.json"""
class __A ( __a ):
"""simple docstring"""
__lowerCAmelCase = 1
__lowerCAmelCase = 2
__lowerCAmelCase = 3
__lowerCAmelCase = 4
__lowerCAmelCase = 5
__lowerCAmelCase = 6
__lowerCAmelCase = 7
__lowerCAmelCase = 8
__lowerCAmelCase = 9
__lowerCAmelCase = 10
__lowerCAmelCase = 11
__lowerCAmelCase = 12
__lowerCAmelCase = 13
__lowerCAmelCase = 14
@dataclass
class __A ( __a ):
"""simple docstring"""
__lowerCAmelCase = 42
class __A :
"""simple docstring"""
__lowerCAmelCase = SCHEDULER_CONFIG_NAME
__lowerCAmelCase = []
__lowerCAmelCase = True
@classmethod
def SCREAMING_SNAKE_CASE ( cls , __A = None , __A = None , __A=False , **__A , ) -> Union[str, Any]:
a =cls.load_config(
pretrained_model_name_or_path=a_ , subfolder=a_ , return_unused_kwargs=a_ , return_commit_hash=a_ , **a_ , )
return cls.from_config(a_ , return_unused_kwargs=a_ , **a_ )
def SCREAMING_SNAKE_CASE ( self , __A , __A = False , **__A ) -> Optional[int]:
self.save_config(save_directory=a_ , push_to_hub=a_ , **a_ )
@property
def SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
return self._get_compatibles()
@classmethod
def SCREAMING_SNAKE_CASE ( cls ) -> Union[str, Any]:
a =list(set([cls.__name__] + cls._compatibles ) )
a =importlib.import_module(__name__.split('''.''' )[0] )
a =[
getattr(a_ , a_ ) for c in compatible_classes_str if hasattr(a_ , a_ )
]
return compatible_classes
| 81
|
"""simple docstring"""
import argparse
import os
# New Code #
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
from accelerate.utils import find_executable_batch_size
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to ensure out-of-memory errors never
# interrupt training, and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
A_ = 16
A_ = 32
def UpperCAmelCase__ (snake_case__ : Accelerator , snake_case__ : int = 16 ):
"""simple docstring"""
_snake_case : Optional[Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_snake_case : Any = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(snake_case__ : Any ):
# max_length=None => use the model max length (it's actually the default)
_snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=snake_case__ , max_length=snake_case__ )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_snake_case : List[Any] = datasets.map(
snake_case__ , batched=snake_case__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_snake_case : int = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(snake_case__ : int ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_snake_case : Optional[int] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_snake_case : str = 16
elif accelerator.mixed_precision != "no":
_snake_case : Optional[int] = 8
else:
_snake_case : Optional[int] = None
return tokenizer.pad(
snake_case__ , padding="""longest""" , max_length=snake_case__ , pad_to_multiple_of=snake_case__ , return_tensors="""pt""" , )
# Instantiate dataloaders.
_snake_case : Optional[int] = DataLoader(
tokenized_datasets["""train"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ )
_snake_case : Dict = DataLoader(
tokenized_datasets["""validation"""] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
A_ = mocked_dataloaders # noqa: F811
def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Any ):
"""simple docstring"""
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , snake_case__ ) == "1":
_snake_case : List[Any] = 2
# Initialize accelerator
_snake_case : str = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_snake_case : Tuple = config["""lr"""]
_snake_case : str = int(config["""num_epochs"""] )
_snake_case : Union[str, Any] = int(config["""seed"""] )
_snake_case : Union[str, Any] = int(config["""batch_size"""] )
_snake_case : List[str] = evaluate.load("""glue""" , """mrpc""" )
# New Code #
# We now can define an inner training loop function. It should take a batch size as the only parameter,
# and build the dataloaders in there.
# It also gets our decorator
@find_executable_batch_size(starting_batch_size=snake_case__ )
def inner_training_loop(snake_case__ : Union[str, Any] ):
# And now just move everything below under this function
# We need to bring in the Accelerator object from earlier
nonlocal accelerator
# And reset all of its attributes that could hold onto any memory:
accelerator.free_memory()
# Then we can declare the model, optimizer, and everything else:
set_seed(snake_case__ )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_snake_case : List[Any] = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=snake_case__ )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_snake_case : Tuple = model.to(accelerator.device )
# Instantiate optimizer
_snake_case : str = AdamW(params=model.parameters() , lr=snake_case__ )
_snake_case , _snake_case : Optional[int] = get_dataloaders(snake_case__ , snake_case__ )
# Instantiate scheduler
_snake_case : str = get_linear_schedule_with_warmup(
optimizer=snake_case__ , num_warmup_steps=1_00 , num_training_steps=(len(snake_case__ ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[str] = accelerator.prepare(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )
# Now we train the model
for epoch in range(snake_case__ ):
model.train()
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_snake_case : int = model(**snake_case__ )
_snake_case : str = outputs.loss
accelerator.backward(snake_case__ )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(snake_case__ ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_snake_case : int = model(**snake_case__ )
_snake_case : Optional[Any] = outputs.logits.argmax(dim=-1 )
_snake_case , _snake_case : Tuple = accelerator.gather_for_metrics((predictions, batch["""labels"""]) )
metric.add_batch(
predictions=snake_case__ , references=snake_case__ , )
_snake_case : str = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"epoch {epoch}:" , snake_case__ )
# New Code #
# And call it at the end with no arguments
# Note: You could also refactor this outside of your training loop function
inner_training_loop()
def UpperCAmelCase__ ():
"""simple docstring"""
_snake_case : Any = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=snake_case__ , default=snake_case__ , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
_snake_case : Dict = parser.parse_args()
_snake_case : int = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(snake_case__ , snake_case__ )
if __name__ == "__main__":
main()
| 64
| 0
|
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowerCamelCase : Any = logging.get_logger(__name__)
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ):
'''simple docstring'''
_UpperCAmelCase : Dict = "encoder-decoder"
_UpperCAmelCase : int = True
def __init__( self : Union[str, Any] , **lowercase : Tuple ):
'''simple docstring'''
super().__init__(**lowercase )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
_snake_case = kwargs.pop('encoder' )
_snake_case = encoder_config.pop('model_type' )
_snake_case = kwargs.pop('decoder' )
_snake_case = decoder_config.pop('model_type' )
from ..auto.configuration_auto import AutoConfig
_snake_case = AutoConfig.for_model(lowercase , **lowercase )
_snake_case = AutoConfig.for_model(lowercase , **lowercase )
_snake_case = True
@classmethod
def A ( cls : List[Any] , lowercase : PretrainedConfig , lowercase : PretrainedConfig , **lowercase : Union[str, Any] ):
'''simple docstring'''
logger.info('Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config' )
_snake_case = True
_snake_case = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **lowercase )
def A ( self : Tuple ):
'''simple docstring'''
_snake_case = copy.deepcopy(self.__dict__ )
_snake_case = self.encoder.to_dict()
_snake_case = self.decoder.to_dict()
_snake_case = self.__class__.model_type
return output
| 130
|
import json
import pathlib
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision, slow
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DeformableDetrImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : int , lowercase : Union[str, Any] , lowercase : str=7 , lowercase : Union[str, Any]=3 , lowercase : Tuple=30 , lowercase : Optional[Any]=400 , lowercase : List[Any]=True , lowercase : Any=None , lowercase : str=True , lowercase : Tuple=[0.5, 0.5, 0.5] , lowercase : List[Any]=[0.5, 0.5, 0.5] , lowercase : Union[str, Any]=True , lowercase : List[Any]=1 / 255 , lowercase : int=True , ):
'''simple docstring'''
_snake_case = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1_333}
_snake_case = parent
_snake_case = batch_size
_snake_case = num_channels
_snake_case = min_resolution
_snake_case = max_resolution
_snake_case = do_resize
_snake_case = size
_snake_case = do_normalize
_snake_case = image_mean
_snake_case = image_std
_snake_case = do_rescale
_snake_case = rescale_factor
_snake_case = do_pad
def A ( self : str ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_rescale": self.do_rescale,
"rescale_factor": self.rescale_factor,
"do_pad": self.do_pad,
}
def A ( self : Optional[int] , lowercase : List[Any] , lowercase : Tuple=False ):
'''simple docstring'''
if not batched:
_snake_case = image_inputs[0]
if isinstance(lowercase , Image.Image ):
_snake_case , _snake_case = image.size
else:
_snake_case , _snake_case = image.shape[1], image.shape[2]
if w < h:
_snake_case = int(self.size['shortest_edge'] * h / w )
_snake_case = self.size['shortest_edge']
elif w > h:
_snake_case = self.size['shortest_edge']
_snake_case = int(self.size['shortest_edge'] * w / h )
else:
_snake_case = self.size['shortest_edge']
_snake_case = self.size['shortest_edge']
else:
_snake_case = []
for image in image_inputs:
_snake_case , _snake_case = self.get_expected_values([image] )
expected_values.append((expected_height, expected_width) )
_snake_case = max(lowercase , key=lambda lowercase : item[0] )[0]
_snake_case = max(lowercase , key=lambda lowercase : item[1] )[1]
return expected_height, expected_width
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,unittest.TestCase ):
'''simple docstring'''
_UpperCAmelCase : Dict = DeformableDetrImageProcessor if is_vision_available() else None
def A ( self : List[Any] ):
'''simple docstring'''
_snake_case = DeformableDetrImageProcessingTester(self )
@property
def A ( self : int ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def A ( self : Dict ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowercase , 'image_mean' ) )
self.assertTrue(hasattr(lowercase , 'image_std' ) )
self.assertTrue(hasattr(lowercase , 'do_normalize' ) )
self.assertTrue(hasattr(lowercase , 'do_resize' ) )
self.assertTrue(hasattr(lowercase , 'do_rescale' ) )
self.assertTrue(hasattr(lowercase , 'do_pad' ) )
self.assertTrue(hasattr(lowercase , 'size' ) )
def A ( self : Union[str, Any] ):
'''simple docstring'''
_snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1_333} )
self.assertEqual(image_processor.do_pad , lowercase )
_snake_case = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowercase )
self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} )
self.assertEqual(image_processor.do_pad , lowercase )
def A ( self : Dict ):
'''simple docstring'''
pass
def A ( self : List[str] ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , Image.Image )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase )
_snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : List[str] ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , numpify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , np.ndarray )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase , torchify=lowercase )
for image in image_inputs:
self.assertIsInstance(lowercase , torch.Tensor )
# Test not batched input
_snake_case = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase )
self.assertEqual(
encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , )
# Test batched
_snake_case = image_processing(lowercase , return_tensors='pt' ).pixel_values
_snake_case , _snake_case = self.image_processor_tester.get_expected_values(lowercase , batched=lowercase )
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
expected_height,
expected_width,
) , )
@slow
def A ( self : List[str] ):
'''simple docstring'''
_snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f:
_snake_case = json.loads(f.read() )
_snake_case = {'image_id': 39_769, 'annotations': target}
# encode them
_snake_case = DeformableDetrImageProcessor()
_snake_case = image_processing(images=lowercase , annotations=lowercase , return_tensors='pt' )
# verify pixel values
_snake_case = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape , lowercase )
_snake_case = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) )
# verify area
_snake_case = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) )
# verify boxes
_snake_case = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase )
_snake_case = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) )
# verify image_id
_snake_case = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) )
# verify is_crowd
_snake_case = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) )
# verify class_labels
_snake_case = torch.tensor([75, 75, 63, 65, 17, 17] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) )
# verify orig_size
_snake_case = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) )
# verify size
_snake_case = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
@slow
def A ( self : Optional[Any] ):
'''simple docstring'''
_snake_case = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f:
_snake_case = json.loads(f.read() )
_snake_case = {'file_name': '000000039769.png', 'image_id': 39_769, 'segments_info': target}
_snake_case = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' )
# encode them
_snake_case = DeformableDetrImageProcessor(format='coco_panoptic' )
_snake_case = image_processing(images=lowercase , annotations=lowercase , masks_path=lowercase , return_tensors='pt' )
# verify pixel values
_snake_case = torch.Size([1, 3, 800, 1_066] )
self.assertEqual(encoding['pixel_values'].shape , lowercase )
_snake_case = torch.tensor([0.2796, 0.3138, 0.3481] )
self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , lowercase , atol=1E-4 ) )
# verify area
_snake_case = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] )
self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , lowercase ) )
# verify boxes
_snake_case = torch.Size([6, 4] )
self.assertEqual(encoding['labels'][0]['boxes'].shape , lowercase )
_snake_case = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] )
self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , lowercase , atol=1E-3 ) )
# verify image_id
_snake_case = torch.tensor([39_769] )
self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , lowercase ) )
# verify is_crowd
_snake_case = torch.tensor([0, 0, 0, 0, 0, 0] )
self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , lowercase ) )
# verify class_labels
_snake_case = torch.tensor([17, 17, 63, 75, 75, 93] )
self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , lowercase ) )
# verify masks
_snake_case = 822_873
self.assertEqual(encoding['labels'][0]['masks'].sum().item() , lowercase )
# verify orig_size
_snake_case = torch.tensor([480, 640] )
self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , lowercase ) )
# verify size
_snake_case = torch.tensor([800, 1_066] )
self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , lowercase ) )
| 130
| 1
|
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
import torch
from transformers.modeling_outputs import BaseModelOutput
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
lowerCAmelCase : Optional[Any] = logging.get_logger(__name__)
@add_end_docstrings(UpperCAmelCase_ )
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
def __init__( self : int , **lowerCAmelCase__ : Tuple):
super().__init__(**lowerCAmelCase__)
if self.framework == "tf":
raise ValueError(F"The {self.__class__} is only available in PyTorch.")
requires_backends(self , "vision")
self.check_model_type(lowerCAmelCase__)
def __call__( self : Union[str, Any] , lowerCAmelCase__ : Union[str, "Image.Image", List[Dict[str, Any]]] , lowerCAmelCase__ : Union[str, List[str]] = None , **lowerCAmelCase__ : Optional[int] , ):
if "text_queries" in kwargs:
SCREAMING_SNAKE_CASE_: Tuple = kwargs.pop("text_queries")
if isinstance(lowerCAmelCase__ , (str, Image.Image)):
SCREAMING_SNAKE_CASE_: str = {"image": image, "candidate_labels": candidate_labels}
else:
SCREAMING_SNAKE_CASE_: Tuple = image
SCREAMING_SNAKE_CASE_: List[Any] = super().__call__(lowerCAmelCase__ , **lowerCAmelCase__)
return results
def _SCREAMING_SNAKE_CASE ( self : Dict , **lowerCAmelCase__ : Dict):
SCREAMING_SNAKE_CASE_: Optional[Any] = {}
if "threshold" in kwargs:
SCREAMING_SNAKE_CASE_: str = kwargs["threshold"]
if "top_k" in kwargs:
SCREAMING_SNAKE_CASE_: Optional[Any] = kwargs["top_k"]
return {}, {}, postprocess_params
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : Optional[int]):
SCREAMING_SNAKE_CASE_: Union[str, Any] = load_image(inputs["image"])
SCREAMING_SNAKE_CASE_: Tuple = inputs["candidate_labels"]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: int = candidate_labels.split(",")
SCREAMING_SNAKE_CASE_: str = torch.tensor([[image.height, image.width]] , dtype=torch.intaa)
for i, candidate_label in enumerate(lowerCAmelCase__):
SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework)
SCREAMING_SNAKE_CASE_: Union[str, Any] = self.image_processor(lowerCAmelCase__ , return_tensors=self.framework)
yield {
"is_last": i == len(lowerCAmelCase__) - 1,
"target_size": target_size,
"candidate_label": candidate_label,
**text_inputs,
**image_features,
}
def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowerCAmelCase__ : Dict):
SCREAMING_SNAKE_CASE_: int = model_inputs.pop("target_size")
SCREAMING_SNAKE_CASE_: List[str] = model_inputs.pop("candidate_label")
SCREAMING_SNAKE_CASE_: Optional[int] = model_inputs.pop("is_last")
SCREAMING_SNAKE_CASE_: List[str] = self.model(**lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: str = {"target_size": target_size, "candidate_label": candidate_label, "is_last": is_last, **outputs}
return model_outputs
def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : List[Any]=0.1 , lowerCAmelCase__ : Dict=None):
SCREAMING_SNAKE_CASE_: Optional[Any] = []
for model_output in model_outputs:
SCREAMING_SNAKE_CASE_: Optional[int] = model_output["candidate_label"]
SCREAMING_SNAKE_CASE_: Any = BaseModelOutput(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[int] = self.image_processor.post_process_object_detection(
outputs=lowerCAmelCase__ , threshold=lowerCAmelCase__ , target_sizes=model_output["target_size"])[0]
for index in outputs["scores"].nonzero():
SCREAMING_SNAKE_CASE_: int = outputs["scores"][index].item()
SCREAMING_SNAKE_CASE_: Optional[Any] = self._get_bounding_box(outputs["boxes"][index][0])
SCREAMING_SNAKE_CASE_: Tuple = {"score": score, "label": label, "box": box}
results.append(lowerCAmelCase__)
SCREAMING_SNAKE_CASE_: Optional[int] = sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__: x["score"] , reverse=lowerCAmelCase__)
if top_k:
SCREAMING_SNAKE_CASE_: int = results[:top_k]
return results
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : "torch.Tensor"):
if self.framework != "pt":
raise ValueError("The ZeroShotObjectDetectionPipeline is only available in PyTorch.")
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Any = box.int().tolist()
SCREAMING_SNAKE_CASE_: Dict = {
"xmin": xmin,
"ymin": ymin,
"xmax": xmax,
"ymax": ymax,
}
return bbox
| 13
|
import importlib.metadata
import warnings
from copy import deepcopy
from packaging import version
from ..utils import logging
from .import_utils import is_accelerate_available, is_bitsandbytes_available
if is_bitsandbytes_available():
import bitsandbytes as bnb
import torch
import torch.nn as nn
from ..pytorch_utils import ConvaD
if is_accelerate_available():
from accelerate import init_empty_weights
from accelerate.utils import find_tied_parameters
__a = logging.get_logger(__name__)
def a ( snake_case__: Optional[int] , snake_case__: Dict , snake_case__: int , snake_case__: List[str]=None , snake_case__: List[Any]=None ):
'''simple docstring'''
# Recurse if needed
if "." in tensor_name:
lowercase_ = tensor_name.split('''.''' )
for split in splits[:-1]:
lowercase_ = getattr(snake_case__ , snake_case__ )
if new_module is None:
raise ValueError(F'''{module} has no attribute {split}.''' )
lowercase_ = new_module
lowercase_ = splits[-1]
if tensor_name not in module._parameters and tensor_name not in module._buffers:
raise ValueError(F'''{module} does not have a parameter or a buffer named {tensor_name}.''' )
lowercase_ = tensor_name in module._buffers
lowercase_ = getattr(snake_case__ , snake_case__ )
if old_value.device == torch.device('''meta''' ) and device not in ["meta", torch.device('''meta''' )] and value is None:
raise ValueError(F'''{tensor_name} is on the meta device, we need a `value` to put in on {device}.''' )
lowercase_ = False
lowercase_ = False
if is_buffer or not is_bitsandbytes_available():
lowercase_ = False
lowercase_ = False
else:
lowercase_ = hasattr(bnb.nn , '''Params4bit''' ) and isinstance(module._parameters[tensor_name] , bnb.nn.Paramsabit )
lowercase_ = isinstance(module._parameters[tensor_name] , bnb.nn.IntaParams )
if is_abit or is_abit:
lowercase_ = module._parameters[tensor_name]
if param.device.type != "cuda":
if value is None:
lowercase_ = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
lowercase_ = value.to('''cpu''' )
if value.dtype == torch.inta:
lowercase_ = version.parse(importlib.metadata.version('''bitsandbytes''' ) ) > version.parse(
'''0.37.2''' )
if not is_abit_serializable:
raise ValueError(
'''Detected int8 weights but the version of bitsandbytes is not compatible with int8 serialization. '''
'''Make sure to download the latest `bitsandbytes` version. `pip install --upgrade bitsandbytes`.''' )
else:
lowercase_ = torch.tensor(snake_case__ , device='''cpu''' )
# Support models using `Conv1D` in place of `nn.Linear` (e.g. gpt2) by transposing the weight matrix prior to quantization.
# Since weights are saved in the correct "orientation", we skip transposing when loading.
if issubclass(module.source_cls , snake_case__ ) and fpaa_statistics is None:
lowercase_ = new_value.T
lowercase_ = old_value.__dict__
if is_abit:
lowercase_ = bnb.nn.IntaParams(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
elif is_abit:
lowercase_ = bnb.nn.Paramsabit(snake_case__ , requires_grad=snake_case__ , **snake_case__ ).to(snake_case__ )
lowercase_ = new_value
if fpaa_statistics is not None:
setattr(module.weight , '''SCB''' , fpaa_statistics.to(snake_case__ ) )
else:
if value is None:
lowercase_ = old_value.to(snake_case__ )
elif isinstance(snake_case__ , torch.Tensor ):
lowercase_ = value.to(snake_case__ )
else:
lowercase_ = torch.tensor(snake_case__ , device=snake_case__ )
if is_buffer:
lowercase_ = new_value
else:
lowercase_ = nn.Parameter(snake_case__ , requires_grad=old_value.requires_grad )
lowercase_ = new_value
def a ( snake_case__: str , snake_case__: Union[str, Any]=None , snake_case__: Any=None , snake_case__: List[str]=None , snake_case__: Optional[Any]=False ):
'''simple docstring'''
for name, module in model.named_children():
if current_key_name is None:
lowercase_ = []
current_key_name.append(snake_case__ )
if (isinstance(snake_case__ , nn.Linear ) or isinstance(snake_case__ , snake_case__ )) and name not in modules_to_not_convert:
# Check if the current key is not in the `modules_to_not_convert`
if not any(key in '''.'''.join(snake_case__ ) for key in modules_to_not_convert ):
with init_empty_weights():
if isinstance(snake_case__ , snake_case__ ):
lowercase_ , lowercase_ = module.weight.shape
else:
lowercase_ = module.in_features
lowercase_ = module.out_features
if quantization_config.quantization_method() == "llm_int8":
lowercase_ = bnb.nn.LinearabitLt(
snake_case__ , snake_case__ , module.bias is not None , has_fpaa_weights=quantization_config.llm_inta_has_fpaa_weight , threshold=quantization_config.llm_inta_threshold , )
lowercase_ = True
else:
if (
quantization_config.llm_inta_skip_modules is not None
and name in quantization_config.llm_inta_skip_modules
):
pass
else:
lowercase_ = bnb.nn.Linearabit(
snake_case__ , snake_case__ , module.bias is not None , quantization_config.bnb_abit_compute_dtype , compress_statistics=quantization_config.bnb_abit_use_double_quant , quant_type=quantization_config.bnb_abit_quant_type , )
lowercase_ = True
# Store the module class in case we need to transpose the weight later
lowercase_ = type(snake_case__ )
# Force requires grad to False to avoid unexpected errors
model._modules[name].requires_grad_(snake_case__ )
if len(list(module.children() ) ) > 0:
lowercase_ , lowercase_ = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ , has_been_replaced=snake_case__ , )
# Remove the last key for recursion
current_key_name.pop(-1 )
return model, has_been_replaced
def a ( snake_case__: Any , snake_case__: Any=None , snake_case__: Union[str, Any]=None , snake_case__: str=None ):
'''simple docstring'''
lowercase_ = ['''lm_head'''] if modules_to_not_convert is None else modules_to_not_convert
lowercase_ , lowercase_ = _replace_with_bnb_linear(
snake_case__ , snake_case__ , snake_case__ , snake_case__ )
if not has_been_replaced:
logger.warning(
'''You are loading your model in 8bit or 4bit but no linear modules were found in your model.'''
''' Please double check your model architecture, or submit an issue on github if you think this is'''
''' a bug.''' )
return model
def a ( *snake_case__: str , **snake_case__: Dict ):
'''simple docstring'''
warnings.warn(
'''`replace_8bit_linear` will be deprecated in a future version, please use `replace_with_bnb_linear` instead''' , snake_case__ , )
return replace_with_bnb_linear(*snake_case__ , **snake_case__ )
def a ( *snake_case__: Any , **snake_case__: List[Any] ):
'''simple docstring'''
warnings.warn(
'''`set_module_8bit_tensor_to_device` will be deprecated in a future version, please use `set_module_quantized_tensor_to_device` instead''' , snake_case__ , )
return set_module_quantized_tensor_to_device(*snake_case__ , **snake_case__ )
def a ( snake_case__: Optional[Any] ):
'''simple docstring'''
lowercase_ = deepcopy(snake_case__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager`
tied_model.tie_weights()
lowercase_ = find_tied_parameters(snake_case__ )
# For compatibility with Accelerate < 0.18
if isinstance(snake_case__ , snake_case__ ):
lowercase_ = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() )
else:
lowercase_ = sum(snake_case__ , [] )
lowercase_ = len(snake_case__ ) > 0
# Check if it is a base model
lowercase_ = not hasattr(snake_case__ , model.base_model_prefix )
# Ignore this for base models (BertModel, GPT2Model, etc.)
if (not has_tied_params) and is_base_model:
return []
# otherwise they have an attached head
lowercase_ = list(model.named_children() )
lowercase_ = [list_modules[-1][0]]
# add last module together with tied weights
lowercase_ = set(snake_case__ ) - set(snake_case__ )
lowercase_ = list(set(snake_case__ ) ) + list(snake_case__ )
# remove ".weight" from the keys
lowercase_ = ['''.weight''', '''.bias''']
lowercase_ = []
for name in list_untouched:
for name_to_remove in names_to_remove:
if name_to_remove in name:
lowercase_ = name.replace(snake_case__ , '''''' )
filtered_module_names.append(snake_case__ )
return filtered_module_names
| 30
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCamelCase : Tuple ={
'''configuration_canine''': ['''CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CanineConfig'''],
'''tokenization_canine''': ['''CanineTokenizer'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase : int =[
'''CANINE_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CanineForMultipleChoice''',
'''CanineForQuestionAnswering''',
'''CanineForSequenceClassification''',
'''CanineForTokenClassification''',
'''CanineLayer''',
'''CanineModel''',
'''CaninePreTrainedModel''',
'''load_tf_weights_in_canine''',
]
if TYPE_CHECKING:
from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig
from .tokenization_canine import CanineTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_canine import (
CANINE_PRETRAINED_MODEL_ARCHIVE_LIST,
CanineForMultipleChoice,
CanineForQuestionAnswering,
CanineForSequenceClassification,
CanineForTokenClassification,
CanineLayer,
CanineModel,
CaninePreTrainedModel,
load_tf_weights_in_canine,
)
else:
import sys
lowerCamelCase : List[Any] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 196
|
from ..utils import DummyObject, requires_backends
class __a ( metaclass=A__ ):
_lowerCAmelCase : str = ['''torch''']
def __init__( self : int , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[Any] = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Union[str, Any] = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[str] = ['''torch''']
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Any = ['''torch''']
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[Any] = ['''torch''']
def __init__( self : int , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Optional[int] = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> int:
requires_backends(__lowerCAmelCase , ["torch"] )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]:
requires_backends(__lowerCAmelCase , ["torch"] )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]:
requires_backends(__lowerCAmelCase , ["torch"] )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Union[str, Any]:
requires_backends(__lowerCAmelCase , ["torch"] )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Any:
requires_backends(__lowerCAmelCase , ["torch"] )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Dict:
requires_backends(__lowerCAmelCase , ["torch"] )
def SCREAMING_SNAKE_CASE ( *__lowerCAmelCase , **__lowerCAmelCase ) -> List[Any]:
requires_backends(__lowerCAmelCase , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[str] = ['''torch''']
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Optional[int] = ['''torch''']
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : str = ['''torch''']
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Any = ['''torch''']
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : str = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Any = ['''torch''']
def __init__( self : str , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : int = ['''torch''']
def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Optional[int] = ['''torch''']
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[str] = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Any = ['''torch''']
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Any = ['''torch''']
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : str , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Union[str, Any] = ['''torch''']
def __init__( self : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Any = ['''torch''']
def __init__( self : int , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Union[str, Any] = ['''torch''']
def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Optional[int] = ['''torch''']
def __init__( self : int , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[Any] = ['''torch''']
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Optional[int] = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : str = ['''torch''']
def __init__( self : List[str] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : str , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Optional[int] , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : str = ['''torch''']
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[Any] = ['''torch''']
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Union[str, Any] = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : str = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Union[str, Any] = ['''torch''']
def __init__( self : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : List[str] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Any , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : Tuple ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[int] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : str , *SCREAMING_SNAKE_CASE : Any , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[Any] = ['''torch''']
def __init__( self : Tuple , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : Dict , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Optional[int] = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : List[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : int , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : List[str] = ['''torch''']
def __init__( self : int , *SCREAMING_SNAKE_CASE : Tuple , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : List[str] , *SCREAMING_SNAKE_CASE : List[str] , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : List[Any] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : Dict ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Tuple = ['''torch''']
def __init__( self : Any , *SCREAMING_SNAKE_CASE : str , **SCREAMING_SNAKE_CASE : Any ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Tuple , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[int] , *SCREAMING_SNAKE_CASE : Optional[Any] , **SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
class __a ( metaclass=A__ ):
_lowerCAmelCase : Dict = ['''torch''']
def __init__( self : Optional[int] , *SCREAMING_SNAKE_CASE : List[Any] , **SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
requires_backends(self , ["torch"] )
@classmethod
def __lowercase ( cls : Optional[Any] , *SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Union[str, Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
@classmethod
def __lowercase ( cls : Dict , *SCREAMING_SNAKE_CASE : Union[str, Any] , **SCREAMING_SNAKE_CASE : Optional[Any] ):
'''simple docstring'''
requires_backends(cls , ["torch"] )
| 196
| 1
|
'''simple docstring'''
from math import factorial
def _A ( A__ = 100 ):
"""simple docstring"""
return sum(int(A__ ) for x in str(factorial(A__ ) ) )
if __name__ == "__main__":
print(solution(int(input('''Enter the Number: ''').strip())))
| 104
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowercase : List[str] = {'configuration_vit_msn': ['VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTMSNConfig']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : Optional[Any] = [
'VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST',
'ViTMSNModel',
'ViTMSNForImageClassification',
'ViTMSNPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit_msn import (
VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTMSNForImageClassification,
ViTMSNModel,
ViTMSNPreTrainedModel,
)
else:
import sys
lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 232
| 0
|
"""simple docstring"""
from __future__ import annotations
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
if (voltage, current, resistance).count(0 ) != 1:
raise ValueError("One and only one argument must be 0" )
if resistance < 0:
raise ValueError("Resistance cannot be negative" )
if voltage == 0:
return {"voltage": float(current * resistance )}
elif current == 0:
return {"current": voltage / resistance}
elif resistance == 0:
return {"resistance": voltage / current}
else:
raise ValueError("Exactly one argument must be 0" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
_a = logging.get_logger(__name__)
class A_ (lowercase__ ):
'''simple docstring'''
def __init__( self , lowercase_ , lowercase_ , lowercase_ , **lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Optional[int] = feature_size
UpperCAmelCase_ : Any = sampling_rate
UpperCAmelCase_ : Any = padding_value
UpperCAmelCase_ : str = kwargs.pop("padding_side" , "right" )
UpperCAmelCase_ : List[str] = kwargs.pop("return_attention_mask" , lowercase_ )
super().__init__(**lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = True , lowercase_ = None , lowercase_ = False , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(lowercase_ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
UpperCAmelCase_ : Dict = {
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
"You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`"
F""" to this method that includes {self.model_input_names[0]}, but you provided"""
F""" {list(processed_features.keys() )}""" )
UpperCAmelCase_ : Tuple = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : List[str] = (
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(lowercase_ ) == 0:
if return_attention_mask:
UpperCAmelCase_ : Union[str, Any] = []
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
UpperCAmelCase_ : List[str] = required_input[0]
if isinstance(lowercase_ , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
UpperCAmelCase_ : Any = 0
while len(required_input[index] ) == 0:
index += 1
if index < len(lowercase_ ):
UpperCAmelCase_ : Optional[Any] = required_input[index][0]
if return_tensors is None:
if is_tf_tensor(lowercase_ ):
UpperCAmelCase_ : Dict = "tf"
elif is_torch_tensor(lowercase_ ):
UpperCAmelCase_ : Any = "pt"
elif isinstance(lowercase_ , (int, float, list, tuple, np.ndarray) ):
UpperCAmelCase_ : str = "np"
else:
raise ValueError(
F"""type of {first_element} unknown: {type(lowercase_ )}. """
"Should be one of a python, numpy, pytorch or tensorflow object." )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
UpperCAmelCase_ : Optional[int] = to_numpy(lowercase_ )
else:
UpperCAmelCase_ : List[str] = [to_numpy(lowercase_ ) for v in value]
# Convert padding_strategy in PaddingStrategy
UpperCAmelCase_ : Dict = self._get_padding_strategies(padding=lowercase_ , max_length=lowercase_ )
UpperCAmelCase_ : str = processed_features[self.model_input_names[0]]
UpperCAmelCase_ : int = len(lowercase_ )
if not all(len(lowercase_ ) == batch_size for v in processed_features.values() ):
raise ValueError("Some items in the output dictionary have a different batch size than others." )
UpperCAmelCase_ : int = []
for i in range(lowercase_ ):
UpperCAmelCase_ : str = {k: v[i] for k, v in processed_features.items()}
# truncation
UpperCAmelCase_ : List[str] = self._truncate(
lowercase_ , max_length=lowercase_ , pad_to_multiple_of=lowercase_ , truncation=lowercase_ , )
truncated_inputs.append(lowercase_ )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
UpperCAmelCase_ : str = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
UpperCAmelCase_ : Dict = PaddingStrategy.MAX_LENGTH
UpperCAmelCase_ : List[str] = {}
for i in range(lowercase_ ):
# padding
UpperCAmelCase_ : int = self._pad(
truncated_inputs[i] , max_length=lowercase_ , padding_strategy=lowercase_ , pad_to_multiple_of=lowercase_ , return_attention_mask=lowercase_ , )
for key, value in outputs.items():
if key not in batch_outputs:
UpperCAmelCase_ : Any = []
if value.dtype is np.dtype(np.floataa ):
UpperCAmelCase_ : List[Any] = value.astype(np.floataa )
batch_outputs[key].append(lowercase_ )
return BatchFeature(lowercase_ , tensor_type=lowercase_ )
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = PaddingStrategy.DO_NOT_PAD , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
UpperCAmelCase_ : Union[str, Any] = processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
UpperCAmelCase_ : Tuple = len(lowercase_ )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Tuple = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Dict = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(lowercase_ ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
UpperCAmelCase_ : Optional[int] = np.ones(len(lowercase_ ) , dtype=np.intaa )
if needs_to_be_padded:
UpperCAmelCase_ : Dict = max_length - len(lowercase_ )
if self.padding_side == "right":
if return_attention_mask:
UpperCAmelCase_ : List[Any] = np.pad(
processed_features["attention_mask"] , (0, difference) )
UpperCAmelCase_ : Dict = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
UpperCAmelCase_ : Optional[Any] = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
UpperCAmelCase_ : Optional[Any] = np.pad(
processed_features["attention_mask"] , (difference, 0) )
UpperCAmelCase_ : Dict = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
UpperCAmelCase_ : str = np.pad(
lowercase_ , lowercase_ , "constant" , constant_values=self.padding_value )
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return processed_features
def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = None , ):
"""simple docstring"""
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError("When setting ``truncation=True``, make sure that ``max_length`` is defined." )
UpperCAmelCase_ : Optional[int] = processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
UpperCAmelCase_ : Union[str, Any] = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
UpperCAmelCase_ : Optional[Any] = len(lowercase_ ) > max_length
if needs_to_be_truncated:
UpperCAmelCase_ : int = processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
UpperCAmelCase_ : Dict = processed_features["attention_mask"][:max_length]
return processed_features
def UpperCamelCase__ ( self , lowercase_=False , lowercase_=None ):
"""simple docstring"""
# Get padding strategy
if padding is not False:
if padding is True:
UpperCAmelCase_ : Dict = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : Optional[Any] = PaddingStrategy(lowercase_ )
elif isinstance(lowercase_ , lowercase_ ):
UpperCAmelCase_ : int = padding
else:
UpperCAmelCase_ : str = PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
"Asking to pad but the feature_extractor does not have a padding value. Please select a value to use"
" as `padding_value`. For example: `feature_extractor.padding_value = 0.0`." )
return padding_strategy
| 23
| 1
|
'''simple docstring'''
from heapq import heappop, heappush
import numpy as np
def UpperCamelCase_( snake_case : np.ndarray , snake_case : tuple[int, int] , snake_case : tuple[int, int] , snake_case : bool , ):
'''simple docstring'''
snake_case_ , snake_case_ = grid.shape
snake_case_ = [-1, 1, 0, 0]
snake_case_ = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
snake_case_ , snake_case_ = [(0, source)], set()
snake_case_ = np.full((rows, cols) , np.inf )
snake_case_ = 0
snake_case_ = np.empty((rows, cols) , dtype=snake_case )
snake_case_ = None
while queue:
((snake_case_) , (snake_case_)) = heappop(snake_case )
if (x, y) in visited:
continue
visited.add((x, y) )
if (x, y) == destination:
snake_case_ = []
while (x, y) != source:
path.append((x, y) )
snake_case_ , snake_case_ = predecessors[x, y]
path.append(snake_case ) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(snake_case ) ):
snake_case_ , snake_case_ = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
snake_case_ = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(snake_case , (dist + 1, (nx, ny)) )
snake_case_ = dist + 1
snake_case_ = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()
| 85
|
from __future__ import annotations
def UpperCAmelCase__ ( _A : float , _A : float , _A : float , ):
'''simple docstring'''
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('''You cannot supply more or less than 2 values''' )
elif stress < 0:
raise ValueError('''Stress cannot be negative''' )
elif tangential_force < 0:
raise ValueError('''Tangential Force cannot be negative''' )
elif area < 0:
raise ValueError('''Area cannot be negative''' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 188
| 0
|
#
# This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or
# many nodes) can talk to each other via nccl and allocate gpu memory.
#
# To run first adjust the number of processes and nodes:
#
# python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port
#
# You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d
#
# use torch.distributed.launch instead of torch.distributed.run for torch < 1.9
#
# If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with:
#
# NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py
#
# which should tell you what's going on behind the scenes.
#
#
# This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that
# runs on 2 nodes of 4 gpus per node:
#
# #SBATCH --job-name=test-nodes # name
# #SBATCH --nodes=2 # nodes
# #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node!
# #SBATCH --cpus-per-task=10 # number of cores per tasks
# #SBATCH --gres=gpu:4 # number of gpus
# #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS)
# #SBATCH --output=%x-%j.out # output file name
#
# GPUS_PER_NODE=4
# MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
# MASTER_PORT=6000
#
# srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \
# --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \
# --master_addr $MASTER_ADDR --master_port $MASTER_PORT \
# torch-distributed-gpu-test.py'
#
import fcntl
import os
import socket
import torch
import torch.distributed as dist
def __A ( *_lowercase ):
'''simple docstring'''
with open(_lowercase , '''r''' ) as fh:
fcntl.flock(_lowercase , fcntl.LOCK_EX )
try:
print(*_lowercase )
finally:
fcntl.flock(_lowercase , fcntl.LOCK_UN )
__A = int(os.environ['LOCAL_RANK'])
torch.cuda.set_device(local_rank)
__A = torch.device('cuda', local_rank)
__A = socket.gethostname()
__A = f'[{hostname}-{local_rank}]'
try:
# test distributed
dist.init_process_group('nccl')
dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM)
dist.barrier()
# test cuda is available and can allocate memory
torch.cuda.is_available()
torch.ones(1).cuda(local_rank)
# global rank
__A = dist.get_rank()
__A = dist.get_world_size()
printflock(f'{gpu} is OK (global rank: {rank}/{world_size})')
dist.barrier()
if rank == 0:
printflock(f'pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}')
except Exception:
printflock(f'{gpu} is broken')
raise
| 75
|
import unittest
import numpy as np
import torch
from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel
from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device
enable_full_determinism()
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
@property
def __A ( self: Dict ) -> Union[str, Any]:
torch.manual_seed(0 )
_A = UNetaDModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , )
return model
def __A ( self: Any ) -> Union[str, Any]:
_A = self.dummy_uncond_unet
_A = ScoreSdeVeScheduler()
_A = ScoreSdeVePipeline(unet=__A , scheduler=__A )
sde_ve.to(__A )
sde_ve.set_progress_bar_config(disable=__A )
_A = torch.manual_seed(0 )
_A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A ).images
_A = torch.manual_seed(0 )
_A = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=__A , return_dict=__A )[
0
]
_A = image[0, -3:, -3:, -1]
_A = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
_A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2
@slow
@require_torch
class SCREAMING_SNAKE_CASE ( unittest.TestCase ):
"""simple docstring"""
def __A ( self: Dict ) -> Any:
_A = '''google/ncsnpp-church-256'''
_A = UNetaDModel.from_pretrained(__A )
_A = ScoreSdeVeScheduler.from_pretrained(__A )
_A = ScoreSdeVePipeline(unet=__A , scheduler=__A )
sde_ve.to(__A )
sde_ve.set_progress_bar_config(disable=__A )
_A = torch.manual_seed(0 )
_A = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=__A ).images
_A = image[0, -3:, -3:, -1]
assert image.shape == (1, 2_56, 2_56, 3)
_A = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 75
| 1
|
from collections.abc import Sequence
def __lowerCamelCase ( lowerCamelCase__ = None ):
"""simple docstring"""
if nums is None or not nums:
raise ValueError("Input sequence should not be empty" )
lowercase__ : List[Any] = nums[0]
for i in range(1 , len(lowerCamelCase__ ) ):
lowercase__ : Optional[Any] = nums[i]
lowercase__ : Union[str, Any] = max(lowerCamelCase__ , ans + num , lowerCamelCase__ )
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()
# Try on a sample input from the user
lowerCAmelCase__ = int(input('''Enter number of elements : ''').strip())
lowerCAmelCase__ = list(map(int, input('''\nEnter the numbers : ''').strip().split()))[:n]
print(max_subsequence_sum(array))
| 130
|
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_distilbert import DistilBertTokenizer
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
lowerCAmelCase__ = {
'''vocab_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt'''
),
'''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt''',
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json''',
'''distilbert-base-uncased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json''',
'''distilbert-base-cased-distilled-squad''': (
'''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json'''
),
'''distilbert-base-german-cased''': (
'''https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json'''
),
'''distilbert-base-multilingual-cased''': (
'''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json'''
),
},
}
lowerCAmelCase__ = {
'''distilbert-base-uncased''': 5_1_2,
'''distilbert-base-uncased-distilled-squad''': 5_1_2,
'''distilbert-base-cased''': 5_1_2,
'''distilbert-base-cased-distilled-squad''': 5_1_2,
'''distilbert-base-german-cased''': 5_1_2,
'''distilbert-base-multilingual-cased''': 5_1_2,
}
lowerCAmelCase__ = {
'''distilbert-base-uncased''': {'''do_lower_case''': True},
'''distilbert-base-uncased-distilled-squad''': {'''do_lower_case''': True},
'''distilbert-base-cased''': {'''do_lower_case''': False},
'''distilbert-base-cased-distilled-squad''': {'''do_lower_case''': False},
'''distilbert-base-german-cased''': {'''do_lower_case''': False},
'''distilbert-base-multilingual-cased''': {'''do_lower_case''': False},
}
class snake_case__(_UpperCamelCase ):
"""simple docstring"""
lowercase_ = VOCAB_FILES_NAMES
lowercase_ = PRETRAINED_VOCAB_FILES_MAP
lowercase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase_ = PRETRAINED_INIT_CONFIGURATION
lowercase_ = ["""input_ids""", """attention_mask"""]
lowercase_ = DistilBertTokenizer
def __init__( self : Tuple , SCREAMING_SNAKE_CASE : str=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : Union[str, Any]="[UNK]" , SCREAMING_SNAKE_CASE : str="[SEP]" , SCREAMING_SNAKE_CASE : Dict="[PAD]" , SCREAMING_SNAKE_CASE : List[str]="[CLS]" , SCREAMING_SNAKE_CASE : List[str]="[MASK]" , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : int=None , **SCREAMING_SNAKE_CASE : Dict , ):
super().__init__(
SCREAMING_SNAKE_CASE , tokenizer_file=SCREAMING_SNAKE_CASE , do_lower_case=SCREAMING_SNAKE_CASE , unk_token=SCREAMING_SNAKE_CASE , sep_token=SCREAMING_SNAKE_CASE , pad_token=SCREAMING_SNAKE_CASE , cls_token=SCREAMING_SNAKE_CASE , mask_token=SCREAMING_SNAKE_CASE , tokenize_chinese_chars=SCREAMING_SNAKE_CASE , strip_accents=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
lowercase__ : List[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , SCREAMING_SNAKE_CASE ) != do_lower_case
or normalizer_state.get("strip_accents" , SCREAMING_SNAKE_CASE ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , SCREAMING_SNAKE_CASE ) != tokenize_chinese_chars
):
lowercase__ : Optional[Any] = getattr(SCREAMING_SNAKE_CASE , normalizer_state.pop("type" ) )
lowercase__ : Any = do_lower_case
lowercase__ : Optional[int] = strip_accents
lowercase__ : List[Any] = tokenize_chinese_chars
lowercase__ : List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE )
lowercase__ : Optional[int] = do_lower_case
def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict=None ):
lowercase__ : List[str] = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def snake_case ( self : List[str] , SCREAMING_SNAKE_CASE : List[int] , SCREAMING_SNAKE_CASE : Optional[List[int]] = None ):
lowercase__ : Dict = [self.sep_token_id]
lowercase__ : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def snake_case ( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[str] = None ):
lowercase__ : Union[str, Any] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE , name=SCREAMING_SNAKE_CASE )
return tuple(SCREAMING_SNAKE_CASE )
| 130
| 1
|
'''simple docstring'''
import warnings
warnings.warn(
"memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: "
"`from accelerate import find_executable_batch_size` to avoid this warning.",
FutureWarning,
)
| 123
|
'''simple docstring'''
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
__lowerCAmelCase : Optional[Any] ="\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n"
__lowerCAmelCase : Union[str, Any] ="\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n"
__lowerCAmelCase : str ="\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=[\"About 95 species are currently accepted .\"]\n >>> predictions=[\"About 95 you now get in .\"]\n >>> references=[[\"About 95 species are currently known .\"]]\n >>> wiki_split = datasets.load_metric(\"wiki_split\")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}\n"
def UpperCamelCase ( _lowerCamelCase : List[Any] ):
def remove_articles(_lowerCamelCase : Dict ):
A__ = re.compile(r"\b(a|an|the)\b" , re.UNICODE )
return re.sub(_lowerCamelCase , " " , _lowerCamelCase )
def white_space_fix(_lowerCamelCase : Tuple ):
return " ".join(text.split() )
def remove_punc(_lowerCamelCase : int ):
A__ = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(_lowerCamelCase : Optional[int] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) )
def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] ):
return int(normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) )
def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : List[Any] ):
A__ = [any(compute_exact(_lowerCamelCase , _lowerCamelCase ) for ref in refs ) for pred, refs in zip(_lowerCamelCase , _lowerCamelCase )]
return (sum(_lowerCamelCase ) / len(_lowerCamelCase )) * 1_00
def UpperCamelCase ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : str ):
A__ = [rgram for rgrams in rgramslist for rgram in rgrams]
A__ = Counter(_lowerCamelCase )
A__ = Counter(_lowerCamelCase )
A__ = Counter()
for sgram, scount in sgramcounter.items():
A__ = scount * numref
A__ = Counter(_lowerCamelCase )
A__ = Counter()
for cgram, ccount in cgramcounter.items():
A__ = ccount * numref
# KEEP
A__ = sgramcounter_rep & cgramcounter_rep
A__ = keepgramcounter_rep & rgramcounter
A__ = sgramcounter_rep & rgramcounter
A__ = 0
A__ = 0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
A__ = 1
A__ = 1
if len(_lowerCamelCase ) > 0:
A__ = keeptmpscorea / len(_lowerCamelCase )
if len(_lowerCamelCase ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
A__ = keeptmpscorea / sum(keepgramcounterall_rep.values() )
A__ = 0
if keepscore_precision > 0 or keepscore_recall > 0:
A__ = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
A__ = sgramcounter_rep - cgramcounter_rep
A__ = delgramcounter_rep - rgramcounter
A__ = sgramcounter_rep - rgramcounter
A__ = 0
A__ = 0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
A__ = 1
if len(_lowerCamelCase ) > 0:
A__ = deltmpscorea / len(_lowerCamelCase )
# ADDITION
A__ = set(_lowerCamelCase ) - set(_lowerCamelCase )
A__ = set(_lowerCamelCase ) & set(_lowerCamelCase )
A__ = set(_lowerCamelCase ) - set(_lowerCamelCase )
A__ = 0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
A__ = 1
A__ = 1
if len(_lowerCamelCase ) > 0:
A__ = addtmpscore / len(_lowerCamelCase )
if len(_lowerCamelCase ) > 0:
A__ = addtmpscore / len(_lowerCamelCase )
A__ = 0
if addscore_precision > 0 or addscore_recall > 0:
A__ = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def UpperCamelCase ( _lowerCamelCase : str , _lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any] ):
A__ = len(_lowerCamelCase )
A__ = ssent.split(" " )
A__ = csent.split(" " )
A__ = []
A__ = []
A__ = []
A__ = []
A__ = []
A__ = []
A__ = []
A__ = []
A__ = []
A__ = []
for rsent in rsents:
A__ = rsent.split(" " )
A__ = []
A__ = []
A__ = []
ragramslist.append(_lowerCamelCase )
for i in range(0 , len(_lowerCamelCase ) - 1 ):
if i < len(_lowerCamelCase ) - 1:
A__ = ragrams[i] + " " + ragrams[i + 1]
ragrams.append(_lowerCamelCase )
if i < len(_lowerCamelCase ) - 2:
A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2]
ragrams.append(_lowerCamelCase )
if i < len(_lowerCamelCase ) - 3:
A__ = ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3]
ragrams.append(_lowerCamelCase )
ragramslist.append(_lowerCamelCase )
ragramslist.append(_lowerCamelCase )
ragramslist.append(_lowerCamelCase )
for i in range(0 , len(_lowerCamelCase ) - 1 ):
if i < len(_lowerCamelCase ) - 1:
A__ = sagrams[i] + " " + sagrams[i + 1]
sagrams.append(_lowerCamelCase )
if i < len(_lowerCamelCase ) - 2:
A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2]
sagrams.append(_lowerCamelCase )
if i < len(_lowerCamelCase ) - 3:
A__ = sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3]
sagrams.append(_lowerCamelCase )
for i in range(0 , len(_lowerCamelCase ) - 1 ):
if i < len(_lowerCamelCase ) - 1:
A__ = cagrams[i] + " " + cagrams[i + 1]
cagrams.append(_lowerCamelCase )
if i < len(_lowerCamelCase ) - 2:
A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2]
cagrams.append(_lowerCamelCase )
if i < len(_lowerCamelCase ) - 3:
A__ = cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3]
cagrams.append(_lowerCamelCase )
((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
((A__), (A__), (A__)) = SARIngram(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
A__ = sum([keepascore, keepascore, keepascore, keepascore] ) / 4
A__ = sum([delascore, delascore, delascore, delascore] ) / 4
A__ = sum([addascore, addascore, addascore, addascore] ) / 4
A__ = (avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def UpperCamelCase ( _lowerCamelCase : Tuple , _lowerCamelCase : bool = True , _lowerCamelCase : str = "13a" , _lowerCamelCase : bool = True ):
# Normalization is requried for the ASSET dataset (one of the primary
# datasets in sentence simplification) to allow using space
# to split the sentence. Even though Wiki-Auto and TURK datasets,
# do not require normalization, we do it for consistency.
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
if lowercase:
A__ = sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
A__ = sacrebleu.metrics.bleu._get_tokenizer(_lowerCamelCase )()(_lowerCamelCase )
else:
A__ = sacrebleu.TOKENIZERS[tokenizer]()(_lowerCamelCase )
elif tokenizer == "moses":
A__ = sacremoses.MosesTokenizer().tokenize(_lowerCamelCase , return_str=_lowerCamelCase , escape=_lowerCamelCase )
elif tokenizer == "penn":
A__ = sacremoses.MosesTokenizer().penn_tokenize(_lowerCamelCase , return_str=_lowerCamelCase )
else:
A__ = sentence
if not return_str:
A__ = normalized_sent.split()
return normalized_sent
def UpperCamelCase ( _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ):
if not (len(_lowerCamelCase ) == len(_lowerCamelCase ) == len(_lowerCamelCase )):
raise ValueError("Sources length must match predictions and references lengths." )
A__ = 0
for src, pred, refs in zip(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
sari_score += SARIsent(normalize(_lowerCamelCase ) , normalize(_lowerCamelCase ) , [normalize(_lowerCamelCase ) for sent in refs] )
A__ = sari_score / len(_lowerCamelCase )
return 1_00 * sari_score
def UpperCamelCase ( _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]="exp" , _lowerCamelCase : int=None , _lowerCamelCase : str=False , _lowerCamelCase : List[str]=False , _lowerCamelCase : Dict=False , ):
A__ = len(references[0] )
if any(len(_lowerCamelCase ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
A__ = [[refs[i] for refs in references] for i in range(_lowerCamelCase )]
A__ = sacrebleu.corpus_bleu(
_lowerCamelCase , _lowerCamelCase , smooth_method=_lowerCamelCase , smooth_value=_lowerCamelCase , force=_lowerCamelCase , lowercase=_lowerCamelCase , use_effective_order=_lowerCamelCase , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCAmelCase ( datasets.Metric ):
def UpperCAmelCase_ ( self :Any )-> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=[
"https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py",
"https://github.com/cocoxu/simplification/blob/master/SARI.py",
"https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py",
"https://github.com/mjpost/sacreBLEU",
] , reference_urls=[
"https://www.aclweb.org/anthology/Q16-1029.pdf",
"https://github.com/mjpost/sacreBLEU",
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def UpperCAmelCase_ ( self :str , lowercase_ :Dict , lowercase_ :List[Any] , lowercase_ :int )-> int:
A__ = {}
result.update({"sari": compute_sari(sources=lowercase_ , predictions=lowercase_ , references=lowercase_ )} )
result.update({"sacrebleu": compute_sacrebleu(predictions=lowercase_ , references=lowercase_ )} )
result.update({"exact": compute_em(predictions=lowercase_ , references=lowercase_ )} )
return result
| 123
| 1
|
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
__lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name
__lowerCAmelCase = '''
Examples:
```py
>>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline
>>> from diffusers.utils import load_image
>>> import torch
>>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16
... )
>>> pipe_prior.to("cuda")
>>> prompt = "A red cartoon frog, 4k"
>>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)
>>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(
... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16
... )
>>> pipe.to("cuda")
>>> init_image = load_image(
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
... "/kandinsky/frog.png"
... )
>>> image = pipe(
... image=init_image,
... image_embeds=image_emb,
... negative_image_embeds=zero_image_emb,
... height=768,
... width=768,
... num_inference_steps=100,
... strength=0.2,
... ).images
>>> image[0].save("red_frog.png")
```
'''
def snake_case_ ( snake_case , snake_case , snake_case=8 ) -> Tuple:
lowercase__: Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
lowercase__: Union[str, Any] = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def snake_case_ ( snake_case , snake_case=5_12 , snake_case=5_12 ) -> Dict:
lowercase__: Optional[Any] = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1 )
lowercase__: Optional[int] = np.array(pil_image.convert('RGB' ) )
lowercase__: Optional[Any] = arr.astype(np.floataa ) / 1_2_7.5 - 1
lowercase__: str = np.transpose(snake_case , [2, 0, 1] )
lowercase__: Dict = torch.from_numpy(snake_case ).unsqueeze(0 )
return image
class __a ( __UpperCamelCase ):
def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> Any:
'''simple docstring'''
super().__init__()
self.register_modules(
unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ , movq=lowerCAmelCase__ , )
lowercase__: Optional[int] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> int:
'''simple docstring'''
# get the original timestep using init_timestep
lowercase__: Dict = min(int(num_inference_steps * strength ) , lowerCAmelCase__ )
lowercase__: Optional[int] = max(num_inference_steps - init_timestep , 0 )
lowercase__: int = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None ) -> Dict:
'''simple docstring'''
if not isinstance(lowerCAmelCase__ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowerCAmelCase__ )}' )
lowercase__: Tuple = image.to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
lowercase__: str = batch_size * num_images_per_prompt
if image.shape[1] == 4:
lowercase__: int = image
else:
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) and len(lowerCAmelCase__ ) != batch_size:
raise ValueError(
F'You have passed a list of generators of length {len(lowerCAmelCase__ )}, but requested an effective batch'
F' size of {batch_size}. Make sure the batch size matches the length of the generators.' )
elif isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase__: str = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowerCAmelCase__ )
]
lowercase__: Dict = torch.cat(lowerCAmelCase__ , dim=0 )
else:
lowercase__: Optional[int] = self.movq.encode(lowerCAmelCase__ ).latent_dist.sample(lowerCAmelCase__ )
lowercase__: Optional[int] = self.movq.config.scaling_factor * init_latents
lowercase__: str = torch.cat([init_latents] , dim=0 )
lowercase__: List[Any] = init_latents.shape
lowercase__: Optional[int] = randn_tensor(lowerCAmelCase__ , generator=lowerCAmelCase__ , device=lowerCAmelCase__ , dtype=lowerCAmelCase__ )
# get latents
lowercase__: str = self.scheduler.add_noise(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
lowercase__: Union[str, Any] = init_latents
return latents
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=0 ) -> Optional[int]:
'''simple docstring'''
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
lowercase__: Optional[int] = torch.device(F'cuda:{gpu_id}' )
lowercase__: Any = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowerCAmelCase__ , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=0 ) -> str:
'''simple docstring'''
if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' )
lowercase__: Optional[int] = torch.device(F'cuda:{gpu_id}' )
if self.device.type != "cpu":
self.to('cpu' , silence_dtype_warnings=lowerCAmelCase__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
lowercase__: int = None
for cpu_offloaded_model in [self.unet, self.movq]:
lowercase__ , lowercase__: List[str] = cpu_offload_with_hook(lowerCAmelCase__ , lowerCAmelCase__ , prev_module_hook=lowerCAmelCase__ )
# We'll offload the last model manually.
lowercase__: Optional[Any] = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
if not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowerCAmelCase__ , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowerCAmelCase__ )
def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 512 , lowerCAmelCase__ = 100 , lowerCAmelCase__ = 4.0 , lowerCAmelCase__ = 0.3 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = None , lowerCAmelCase__ = "pil" , lowerCAmelCase__ = True , ) -> Optional[int]:
'''simple docstring'''
lowercase__: int = self._execution_device
lowercase__: Tuple = guidance_scale > 1.0
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase__: Optional[int] = torch.cat(lowerCAmelCase__ , dim=0 )
lowercase__: str = image_embeds.shape[0]
if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase__: List[str] = torch.cat(lowerCAmelCase__ , dim=0 )
if do_classifier_free_guidance:
lowercase__: int = image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 )
lowercase__: int = negative_image_embeds.repeat_interleave(lowerCAmelCase__ , dim=0 )
lowercase__: str = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowerCAmelCase__ )
if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ):
lowercase__: str = [image]
if not all(isinstance(lowerCAmelCase__ , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F'Input is in incorrect format: {[type(lowerCAmelCase__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor' )
lowercase__: Optional[Any] = torch.cat([prepare_image(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) for i in image] , dim=0 )
lowercase__: List[str] = image.to(dtype=image_embeds.dtype , device=lowerCAmelCase__ )
lowercase__: int = self.movq.encode(lowerCAmelCase__ )['latents']
lowercase__: List[str] = latents.repeat_interleave(lowerCAmelCase__ , dim=0 )
self.scheduler.set_timesteps(lowerCAmelCase__ , device=lowerCAmelCase__ )
lowercase__ , lowercase__: Dict = self.get_timesteps(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ )
lowercase__: List[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt )
lowercase__ , lowercase__: Optional[Any] = downscale_height_and_width(lowerCAmelCase__ , lowerCAmelCase__ , self.movq_scale_factor )
lowercase__: List[Any] = self.prepare_latents(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , image_embeds.dtype , lowerCAmelCase__ , lowerCAmelCase__ )
for i, t in enumerate(self.progress_bar(lowerCAmelCase__ ) ):
# expand the latents if we are doing classifier free guidance
lowercase__: List[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
lowercase__: Optional[Any] = {'image_embeds': image_embeds}
lowercase__: List[str] = self.unet(
sample=lowerCAmelCase__ , timestep=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , added_cond_kwargs=lowerCAmelCase__ , return_dict=lowerCAmelCase__ , )[0]
if do_classifier_free_guidance:
lowercase__ , lowercase__: str = noise_pred.split(latents.shape[1] , dim=1 )
lowercase__ , lowercase__: Union[str, Any] = noise_pred.chunk(2 )
lowercase__ , lowercase__: Union[str, Any] = variance_pred.chunk(2 )
lowercase__: Optional[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
lowercase__: int = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , 'variance_type' )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
lowercase__ , lowercase__: Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
lowercase__: int = self.scheduler.step(
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ , )[0]
# post-processing
lowercase__: List[str] = self.movq.decode(lowerCAmelCase__ , force_not_quantize=lowerCAmelCase__ )['sample']
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}' )
if output_type in ["np", "pil"]:
lowercase__: List[Any] = image * 0.5 + 0.5
lowercase__: int = image.clamp(0 , 1 )
lowercase__: Optional[int] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
lowercase__: Dict = self.numpy_to_pil(lowerCAmelCase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowerCAmelCase__ )
| 196
|
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
__lowerCAmelCase = get_tests_dir('''fixtures/test_sentencepiece_no_bos.model''')
@require_sentencepiece
@require_tokenizers
class __a ( __UpperCamelCase , unittest.TestCase ):
__lowercase : int = PegasusTokenizer
__lowercase : Any = PegasusTokenizerFast
__lowercase : Optional[int] = True
__lowercase : Tuple = True
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__: List[str] = PegasusTokenizer(lowerCAmelCase__ )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
return PegasusTokenizer.from_pretrained('google/pegasus-large' )
def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer:
'''simple docstring'''
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[str]:
'''simple docstring'''
return ("This is a test", "This is a test")
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
'''simple docstring'''
lowercase__: Optional[Any] = '</s>'
lowercase__: Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__: Tuple = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '<pad>' )
self.assertEqual(vocab_keys[1] , '</s>' )
self.assertEqual(vocab_keys[-1] , 'v' )
self.assertEqual(len(lowerCAmelCase__ ) , 1_103 )
def SCREAMING_SNAKE_CASE__ ( self ) -> Any:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1_103 )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__: Dict = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__: Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__: Optional[Any] = (
'Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important'
' </s> <pad> <pad> <pad>'
)
lowercase__: Dict = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
lowercase__: Tuple = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
'''simple docstring'''
lowercase__: int = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
lowercase__: Any = '<mask_1> To ensure a <mask_2> flow of bank resolutions.'
lowercase__: Union[str, Any] = [2, 413, 615, 114, 3, 1_971, 113, 1_679, 10_710, 107, 1]
lowercase__: int = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
lowercase__: Optional[int] = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 96_103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1_024
lowercase__: int = 'To ensure a smooth flow of bank resolutions.'
lowercase__: Any = [413, 615, 114, 2_291, 1_971, 113, 1_679, 10_710, 107, 1]
lowercase__: str = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> Dict:
'''simple docstring'''
lowercase__: Any = ['This is going to be way too long.' * 150, 'short example']
lowercase__: Tuple = ['not super long but more than 5 tokens', 'tiny']
lowercase__: Dict = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' )
lowercase__: Any = self._large_tokenizer(
text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' )
assert batch.input_ids.shape == (2, 1_024)
assert batch.attention_mask.shape == (2, 1_024)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask.
@slow
def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]:
'''simple docstring'''
# fmt: off
lowercase__: List[str] = {'input_ids': [[38_979, 143, 18_485, 606, 130, 26_669, 87_686, 121, 54_189, 1_129, 111, 26_669, 87_686, 121, 9_114, 14_787, 121, 13_249, 158, 592, 956, 121, 14_621, 31_576, 143, 62_613, 108, 9_688, 930, 43_430, 11_562, 62_613, 304, 108, 11_443, 897, 108, 9_314, 17_415, 63_399, 108, 11_443, 7_614, 18_316, 118, 4_284, 7_148, 12_430, 143, 1_400, 25_703, 158, 111, 4_284, 7_148, 11_772, 143, 21_297, 1_064, 158, 122, 204, 3_506, 1_754, 1_133, 14_787, 1_581, 115, 33_224, 4_482, 111, 1_355, 110, 29_173, 317, 50_833, 108, 20_147, 94_665, 111, 77_198, 107, 1], [110, 62_613, 117, 638, 112, 1_133, 121, 20_098, 1_355, 79_050, 13_872, 135, 1_596, 53_541, 1_352, 141, 13_039, 5_542, 124, 302, 518, 111, 268, 2_956, 115, 149, 4_427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1_235, 2_799, 18_289, 17_780, 204, 109, 9_474, 1_296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase__ , model_name='google/bigbird-pegasus-large-arxiv' , revision='ba85d0851d708441f91440d509690f1ab6353415' , )
@require_sentencepiece
@require_tokenizers
class __a ( __UpperCamelCase , unittest.TestCase ):
__lowercase : int = PegasusTokenizer
__lowercase : Any = PegasusTokenizerFast
__lowercase : Any = True
__lowercase : Dict = True
def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
lowercase__: Union[str, Any] = PegasusTokenizer(lowerCAmelCase__ , offset=0 , mask_token_sent=lowerCAmelCase__ , mask_token='[MASK]' )
tokenizer.save_pretrained(self.tmpdirname )
@cached_property
def SCREAMING_SNAKE_CASE__ ( self ) -> str:
'''simple docstring'''
return PegasusTokenizer.from_pretrained('google/bigbird-pegasus-large-arxiv' )
def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> PegasusTokenizer:
'''simple docstring'''
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Optional[int]:
'''simple docstring'''
return ("This is a test", "This is a test")
def SCREAMING_SNAKE_CASE__ ( self ) -> List[str]:
'''simple docstring'''
lowercase__: str = self.rust_tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__: str = self.tokenizer_class.from_pretrained(self.tmpdirname )
lowercase__: Tuple = (
'Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>'
' <pad> <pad> <pad>'
)
lowercase__: List[Any] = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
lowercase__: Any = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ).input_ids[0]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
@require_torch
def SCREAMING_SNAKE_CASE__ ( self ) -> int:
'''simple docstring'''
lowercase__: List[Any] = ['This is going to be way too long.' * 1_000, 'short example']
lowercase__: str = ['not super long but more than 5 tokens', 'tiny']
lowercase__: Tuple = self._large_tokenizer(lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' )
lowercase__: Dict = self._large_tokenizer(
text_target=lowerCAmelCase__ , max_length=5 , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , return_tensors='pt' )
assert batch.input_ids.shape == (2, 4_096)
assert batch.attention_mask.shape == (2, 4_096)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase__ ) == 2 # input_ids, attention_mask.
def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple:
'''simple docstring'''
lowercase__: str = (
'This is an example string that is used to test the original TF implementation against the HF'
' implementation'
)
lowercase__: Optional[int] = self._large_tokenizer(lowerCAmelCase__ ).input_ids
self.assertListEqual(
lowerCAmelCase__ , [182, 117, 142, 587, 4_211, 120, 117, 263, 112, 804, 109, 856, 25_016, 3_137, 464, 109, 26_955, 3_137, 1] , )
| 196
| 1
|
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCamelCase_ ( _UpperCAmelCase ,unittest.TestCase ):
'''simple docstring'''
a__ = FunnelTokenizer
a__ = FunnelTokenizerFast
a__ = True
a__ = True
def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> int:
super().setUp()
A : Optional[Any] = [
'''<unk>''',
'''<cls>''',
'''<sep>''',
'''want''',
'''##want''',
'''##ed''',
'''wa''',
'''un''',
'''runn''',
'''##ing''',
''',''',
'''low''',
'''lowest''',
]
A : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) )
def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , **__lowerCamelCase : Union[str, Any] ) -> List[str]:
return FunnelTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : int , **__lowerCamelCase : Dict ) -> Optional[Any]:
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] , __lowerCamelCase : int ) -> Dict:
A : Tuple = '''UNwant\u00E9d,running'''
A : Optional[int] = '''unwanted, running'''
return input_text, output_text
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[Any]:
A : List[str] = self.tokenizer_class(self.vocab_file )
A : Tuple = tokenizer.tokenize("UNwant\u00E9d,running" )
self.assertListEqual(_UpperCAmelCase , ["un", "##want", "##ed", ",", "runn", "##ing"] )
self.assertListEqual(tokenizer.convert_tokens_to_ids(_UpperCAmelCase ) , [7, 4, 5, 10, 8, 9] )
def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict:
A : Union[str, Any] = self.get_tokenizers(do_lower_case=_UpperCAmelCase )
for tokenizer in tokenizers:
A : int = tokenizer("UNwant\u00E9d,running" )
A : Union[str, Any] = len(inputs["input_ids"] ) - 1
self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len )
A : Union[str, Any] = tokenizer("UNwant\u00E9d,running" , "UNwant\u00E9d,running" )
self.assertListEqual(inputs["token_type_ids"] , [2] + [0] * sentence_len + [1] * sentence_len )
| 352
|
from collections.abc import Generator
from math import sin
def UpperCAmelCase ( _lowerCamelCase ):
if len(_lowerCamelCase ) != 32:
raise ValueError("Input must be of length 32" )
A : Any = B""
for i in [3, 2, 1, 0]:
little_endian += string_aa[8 * i : 8 * i + 8]
return little_endian
def UpperCAmelCase ( _lowerCamelCase ):
if i < 0:
raise ValueError("Input must be non-negative" )
A : List[Any] = format(_lowerCamelCase , "08x" )[-8:]
A : List[str] = B""
for i in [3, 2, 1, 0]:
little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("utf-8" )
return little_endian_hex
def UpperCAmelCase ( _lowerCamelCase ):
A : Optional[Any] = B""
for char in message:
bit_string += format(_lowerCamelCase , "08b" ).encode("utf-8" )
A : int = format(len(_lowerCamelCase ) , "064b" ).encode("utf-8" )
# Pad bit_string to a multiple of 512 chars
bit_string += b"1"
while len(_lowerCamelCase ) % 512 != 448:
bit_string += b"0"
bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] )
return bit_string
def UpperCAmelCase ( _lowerCamelCase ):
if len(_lowerCamelCase ) % 512 != 0:
raise ValueError("Input must have length that's a multiple of 512" )
for pos in range(0 , len(_lowerCamelCase ) , 512 ):
A : Optional[int] = bit_string[pos : pos + 512]
A : List[str] = []
for i in range(0 , 512 , 32 ):
block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) )
yield block_words
def UpperCAmelCase ( _lowerCamelCase ):
if i < 0:
raise ValueError("Input must be non-negative" )
A : Union[str, Any] = format(_lowerCamelCase , "032b" )
A : List[str] = ""
for c in i_str:
new_str += "1" if c == "0" else "0"
return int(_lowerCamelCase , 2 )
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
return (a + b) % 2**32
def UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase ):
if i < 0:
raise ValueError("Input must be non-negative" )
if shift < 0:
raise ValueError("Shift must be non-negative" )
return ((i << shift) ^ (i >> (32 - shift))) % 2**32
def UpperCAmelCase ( _lowerCamelCase ):
A : Union[str, Any] = preprocess(_lowerCamelCase )
A : Any = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )]
# Starting states
A : Optional[int] = 0X67452301
A : Any = 0Xefcdab89
A : Tuple = 0X98badcfe
A : Union[str, Any] = 0X10325476
A : Optional[Any] = [
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
7,
12,
17,
22,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
5,
9,
14,
20,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
4,
11,
16,
23,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
6,
10,
15,
21,
]
# Process bit string in chunks, each with 16 32-char words
for block_words in get_block_words(_lowerCamelCase ):
A : Optional[Any] = aa
A : Optional[Any] = ba
A : List[Any] = ca
A : Optional[int] = da
# Hash current chunk
for i in range(64 ):
if i <= 15:
# f = (b & c) | (not_32(b) & d) # Alternate definition for f
A : Dict = d ^ (b & (c ^ d))
A : Optional[Any] = i
elif i <= 31:
# f = (d & b) | (not_32(d) & c) # Alternate definition for f
A : Optional[int] = c ^ (d & (b ^ c))
A : List[Any] = (5 * i + 1) % 16
elif i <= 47:
A : Tuple = b ^ c ^ d
A : str = (3 * i + 5) % 16
else:
A : Union[str, Any] = c ^ (b | not_aa(_lowerCamelCase ))
A : Any = (7 * i) % 16
A : Union[str, Any] = (f + a + added_consts[i] + block_words[g]) % 2**32
A : Dict = d
A : Optional[int] = c
A : Optional[int] = b
A : Any = sum_aa(_lowerCamelCase , left_rotate_aa(_lowerCamelCase , shift_amounts[i] ) )
# Add hashed chunk to running total
A : Dict = sum_aa(_lowerCamelCase , _lowerCamelCase )
A : Any = sum_aa(_lowerCamelCase , _lowerCamelCase )
A : Dict = sum_aa(_lowerCamelCase , _lowerCamelCase )
A : Union[str, Any] = sum_aa(_lowerCamelCase , _lowerCamelCase )
A : Optional[Any] = reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase ) + reformat_hex(_lowerCamelCase )
return digest
if __name__ == "__main__":
import doctest
doctest.testmod()
| 256
| 0
|
'''simple docstring'''
import torch
from transformers import CamembertForMaskedLM, CamembertTokenizer
def snake_case_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : str=5 ) -> Any:
# Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py
assert masked_input.count('''<mask>''' ) == 1
UpperCAmelCase : Dict = torch.tensor(tokenizer.encode(_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ) ).unsqueeze(0 ) # Batch size 1
UpperCAmelCase : List[str] = model(_lowerCAmelCase )[0] # The last hidden-state is the first element of the output tuple
UpperCAmelCase : Tuple = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item()
UpperCAmelCase : int = logits[0, masked_index, :]
UpperCAmelCase : str = logits.softmax(dim=0 )
UpperCAmelCase , UpperCAmelCase : str = prob.topk(k=_lowerCAmelCase , dim=0 )
UpperCAmelCase : str = ''' '''.join(
[tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(_lowerCAmelCase ) )] )
UpperCAmelCase : Any = tokenizer.mask_token
UpperCAmelCase : Optional[int] = []
for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ):
UpperCAmelCase : int = predicted_token_bpe.replace('''\u2581''' , ''' ''' )
if " {0}".format(_lowerCAmelCase ) in masked_input:
topk_filled_outputs.append(
(
masked_input.replace(''' {0}'''.format(_lowerCAmelCase ) , _lowerCAmelCase ),
values[index].item(),
predicted_token,
) )
else:
topk_filled_outputs.append(
(
masked_input.replace(_lowerCAmelCase , _lowerCAmelCase ),
values[index].item(),
predicted_token,
) )
return topk_filled_outputs
UpperCamelCase__: Optional[int] = CamembertTokenizer.from_pretrained("camembert-base")
UpperCamelCase__: List[Any] = CamembertForMaskedLM.from_pretrained("camembert-base")
model.eval()
UpperCamelCase__: int = "Le camembert est <mask> :)"
print(fill_mask(masked_input, model, tokenizer, topk=3))
| 23
|
'''simple docstring'''
import tempfile
import unittest
import numpy as np
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_flax
if is_flax_available():
import os
from flax.core.frozen_dict import unfreeze
from flax.traverse_util import flatten_dict
from transformers import FlaxBertModel
UpperCamelCase__: Tuple = "0.12" # assumed parallelism: 8
@require_flax
@is_staging_test
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
@classmethod
def A ( cls : Union[str, Any] ) -> int:
UpperCAmelCase : Optional[Any] = TOKEN
HfFolder.save_token(__snake_case )
@classmethod
def A ( cls : List[str] ) -> Tuple:
try:
delete_repo(token=cls._token , repo_id='''test-model-flax''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-model-flax-org''' )
except HTTPError:
pass
def A ( self : int ) -> Tuple:
UpperCAmelCase : List[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
model.push_to_hub('''test-model-flax''' , use_auth_token=self._token )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Tuple = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Union[str, Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''test-model-flax''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(__snake_case , repo_id='''test-model-flax''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(F"""{USER}/test-model-flax""" )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : str = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Optional[Any] = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def A ( self : Optional[Any] ) -> Union[str, Any]:
UpperCAmelCase : Dict = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
UpperCAmelCase : Optional[Any] = FlaxBertModel(__snake_case )
model.push_to_hub('''valid_org/test-model-flax-org''' , use_auth_token=self._token )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : List[Any] = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : int = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : Any = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-model-flax-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(
__snake_case , repo_id='''valid_org/test-model-flax-org''' , push_to_hub=__snake_case , use_auth_token=self._token )
UpperCAmelCase : str = FlaxBertModel.from_pretrained('''valid_org/test-model-flax-org''' )
UpperCAmelCase : Any = flatten_dict(unfreeze(model.params ) )
UpperCAmelCase : Optional[Any] = flatten_dict(unfreeze(new_model.params ) )
for key in base_params.keys():
UpperCAmelCase : int = (base_params[key] - new_params[key]).sum().item()
self.assertLessEqual(__snake_case , 1E-3 , msg=F"""{key} not identical""" )
def snake_case_ ( _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any ) -> Union[str, Any]:
UpperCAmelCase : str = True
UpperCAmelCase : int = flatten_dict(modela.params )
UpperCAmelCase : Dict = flatten_dict(modela.params )
for key in flat_params_a.keys():
if np.sum(np.abs(flat_params_a[key] - flat_params_a[key] ) ) > 1e-4:
UpperCAmelCase : Dict = False
return models_are_equal
@require_flax
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
"""simple docstring"""
def A ( self : Tuple ) -> Union[str, Any]:
UpperCAmelCase : List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : int = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : str = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : List[str] ) -> Dict:
UpperCAmelCase : Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-bert-flax-only''' )
UpperCAmelCase : Dict = FlaxBertModel(__snake_case )
UpperCAmelCase : Optional[int] = '''bert'''
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(os.path.join(__snake_case , __snake_case ) , max_shard_size='''10KB''' )
with self.assertRaises(__snake_case ):
UpperCAmelCase : Any = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertTrue(check_models_equal(__snake_case , __snake_case ) )
def A ( self : Optional[int] ) -> str:
UpperCAmelCase : Dict = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Optional[Any] = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Tuple = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
def A ( self : Dict ) -> List[Any]:
UpperCAmelCase : Optional[int] = '''bert'''
UpperCAmelCase : int = '''hf-internal-testing/tiny-random-bert-sharded-subfolder'''
with self.assertRaises(__snake_case ):
UpperCAmelCase : Dict = FlaxBertModel.from_pretrained(__snake_case )
UpperCAmelCase : Union[str, Any] = FlaxBertModel.from_pretrained(__snake_case , subfolder=__snake_case )
self.assertIsNotNone(__snake_case )
| 23
| 1
|
"""simple docstring"""
import argparse
import math
import os
import torch
from neural_compressor.utils.pytorch import load
from PIL import Image
from transformers import CLIPTextModel, CLIPTokenizer
from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel
def snake_case_() -> List[Any]:
"""simple docstring"""
_snake_case = argparse.ArgumentParser()
parser.add_argument(
'''-m''' , '''--pretrained_model_name_or_path''' , type=lowercase_ , default=lowercase_ , required=lowercase_ , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , )
parser.add_argument(
'''-c''' , '''--caption''' , type=lowercase_ , default='''robotic cat with wings''' , help='''Text used to generate images.''' , )
parser.add_argument(
'''-n''' , '''--images_num''' , type=lowercase_ , default=4 , help='''How much images to generate.''' , )
parser.add_argument(
'''-s''' , '''--seed''' , type=lowercase_ , default=42 , help='''Seed for random process.''' , )
parser.add_argument(
'''-ci''' , '''--cuda_id''' , type=lowercase_ , default=0 , help='''cuda_id.''' , )
_snake_case = parser.parse_args()
return args
def snake_case_(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> str:
"""simple docstring"""
if not len(lowercase_ ) == rows * cols:
raise ValueError('''The specified number of rows and columns are not correct.''' )
_snake_case, _snake_case = imgs[0].size
_snake_case = Image.new('''RGB''' , size=(cols * w, rows * h) )
_snake_case, _snake_case = grid.size
for i, img in enumerate(lowercase_ ):
grid.paste(lowercase_ , box=(i % cols * w, i // cols * h) )
return grid
def snake_case_(_UpperCamelCase , _UpperCamelCase="robotic cat with wings" , _UpperCamelCase=7.5 , _UpperCamelCase=50 , _UpperCamelCase=1 , _UpperCamelCase=42 , ) -> Tuple:
"""simple docstring"""
_snake_case = torch.Generator(pipeline.device ).manual_seed(lowercase_ )
_snake_case = pipeline(
lowercase_ , guidance_scale=lowercase_ , num_inference_steps=lowercase_ , generator=lowercase_ , num_images_per_prompt=lowercase_ , ).images
_snake_case = int(math.sqrt(lowercase_ ) )
_snake_case = image_grid(lowercase_ , rows=_rows , cols=num_images_per_prompt // _rows )
return grid, images
__A = parse_args()
# Load models and create wrapper for stable diffusion
__A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='''tokenizer''')
__A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''text_encoder''')
__A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='''vae''')
__A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='''unet''')
__A = StableDiffusionPipeline.from_pretrained(
args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer
)
__A = lambda images, clip_input: (images, False)
if os.path.exists(os.path.join(args.pretrained_model_name_or_path, '''best_model.pt''')):
__A = load(args.pretrained_model_name_or_path, model=unet)
unet.eval()
setattr(pipeline, '''unet''', unet)
else:
__A = unet.to(torch.device('''cuda''', args.cuda_id))
__A = pipeline.to(unet.device)
__A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed)
grid.save(os.path.join(args.pretrained_model_name_or_path, '''{}.png'''.format('''_'''.join(args.caption.split()))))
__A = os.path.join(args.pretrained_model_name_or_path, '''_'''.join(args.caption.split()))
os.makedirs(dirname, exist_ok=True)
for idx, image in enumerate(images):
image.save(os.path.join(dirname, '''{}.png'''.format(idx + 1)))
| 357
|
import json
import os
import unittest
from transformers import CLIPTokenizer, CLIPTokenizerFast
from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES
from transformers.testing_utils import require_ftfy, require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowercase_ ( __lowercase , unittest.TestCase ):
UpperCamelCase_ : Union[str, Any] = CLIPTokenizer
UpperCamelCase_ : Optional[int] = CLIPTokenizerFast
UpperCamelCase_ : Dict = True
UpperCamelCase_ : Union[str, Any] = {}
UpperCamelCase_ : Optional[Any] = False
def UpperCamelCase_ ( self : Union[str, Any] ) -> Dict:
super().setUp()
# fmt: off
_snake_case = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>''']
# fmt: on
_snake_case = dict(zip(A__ , range(len(A__ ) ) ) )
_snake_case = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''']
_snake_case = {'''unk_token''': '''<unk>'''}
_snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
_snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(A__ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(A__ ) )
def UpperCamelCase_ ( self : List[Any] , **A__ : int ) -> Union[str, Any]:
kwargs.update(self.special_tokens_map )
return CLIPTokenizer.from_pretrained(self.tmpdirname , **A__ )
def UpperCamelCase_ ( self : Any , **A__ : Tuple ) -> Optional[Any]:
kwargs.update(self.special_tokens_map )
return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **A__ )
def UpperCamelCase_ ( self : Optional[Any] , A__ : str ) -> str:
_snake_case = '''lower newer'''
_snake_case = '''lower newer'''
return input_text, output_text
def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[int]:
_snake_case = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map )
_snake_case = '''lower newer'''
_snake_case = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>''']
_snake_case = tokenizer.tokenize(A__ )
self.assertListEqual(A__ , A__ )
_snake_case = tokens + [tokenizer.unk_token]
_snake_case = [10, 2, 16, 9, 3, 2, 16, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ )
@require_ftfy
def UpperCamelCase_ ( self : Any ) -> Optional[int]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_snake_case = self.tokenizer_class.from_pretrained(A__ , **A__ )
_snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ )
_snake_case = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.'''
_snake_case = tokenizer_s.tokenize(A__ )
_snake_case = tokenizer_r.tokenize(A__ )
self.assertListEqual(A__ , A__ )
# Test that the tokenization is identical on an example containing a character (Latin Small Letter A
# with Tilde) encoded in 2 different ways
_snake_case = '''xa\u0303y''' + ''' ''' + '''x\xe3y'''
_snake_case = tokenizer_s.tokenize(A__ )
_snake_case = tokenizer_r.tokenize(A__ )
self.assertListEqual(A__ , A__ )
# Test that the tokenization is identical on unicode of space type
_snake_case = [
'''\u0009''', # (horizontal tab, '\t')
'''\u000B''', # (vertical tab)
'''\u000C''', # (form feed)
'''\u0020''', # (space, ' ')
'''\u200E''', # (left-to-right mark):w
'''\u200F''', # (right-to-left mark)
]
for unicode_seq in spaces_unicodes:
_snake_case = tokenizer_s.tokenize(A__ )
_snake_case = tokenizer_r.tokenize(A__ )
self.assertListEqual(A__ , A__ )
# Test that the tokenization is identical on unicode of line break type
_snake_case = [
'''\u000A''', # (line feed, '\n')
'''\r\n''', # (carriage return and line feed, '\r\n')
'''\u000D''', # (carriage return, '\r')
'''\r''', # (carriage return, '\r')
'''\u000D''', # (carriage return, '\r')
'''\u2028''', # (line separator)
'''\u2029''', # (paragraph separator)
# "\u0085", # (next line)
]
# The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms
# it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a
# space (and thus into an empty list).
for unicode_seq in line_break_unicodes:
_snake_case = tokenizer_s.tokenize(A__ )
_snake_case = tokenizer_r.tokenize(A__ )
self.assertListEqual(A__ , A__ )
def UpperCamelCase_ ( self : List[Any] ) -> Optional[Any]:
# Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space`
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
_snake_case = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
_snake_case = f"""{text_of_1_token} {text_of_1_token}"""
_snake_case = self.rust_tokenizer_class.from_pretrained(
A__ , use_fast=A__ , )
_snake_case = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(A__ ) + 1, len(A__ ) + 1 + len(A__ )) , )
_snake_case = f""" {text}"""
_snake_case = self.rust_tokenizer_class.from_pretrained(
A__ , use_fast=A__ , )
_snake_case = tokenizer_r(A__ , return_offsets_mapping=A__ , add_special_tokens=A__ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A__ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(A__ ) + 1, 1 + len(A__ ) + 1 + len(A__ )) , )
def UpperCamelCase_ ( self : Union[str, Any] ) -> Optional[Any]:
# Test related to the breaking change introduced in transformers v4.17.0
# We need to check that an error in raised when the user try to load a previous version of the tokenizer.
with self.assertRaises(A__ ) as context:
self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' )
self.assertTrue(
context.exception.args[0].startswith(
'''The `backend_tokenizer` provided does not match the expected format.''' ) )
@require_ftfy
def UpperCamelCase_ ( self : Dict ) -> Union[str, Any]:
super().test_tokenization_python_rust_equals()
def UpperCamelCase_ ( self : str ) -> Optional[int]:
# CLIP always lower cases letters
pass
| 278
| 0
|
'''simple docstring'''
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class __UpperCamelCase ( lowerCamelCase__ ):
def __init__( self, *lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase=None, **lowerCAmelCase ):
"""simple docstring"""
super().__init__(*lowerCAmelCase, **lowerCAmelCase )
lowerCamelCase_ =eval_examples
lowerCamelCase_ =post_process_function
def lowercase__ ( self, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase=None, lowerCAmelCase = "eval" ):
"""simple docstring"""
lowerCamelCase_ =self.eval_dataset if eval_dataset is None else eval_dataset
lowerCamelCase_ =self.get_eval_dataloader(lowerCAmelCase )
lowerCamelCase_ =self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
lowerCamelCase_ =self.compute_metrics
lowerCamelCase_ =None
lowerCamelCase_ =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowerCamelCase_ =time.time()
try:
lowerCamelCase_ =eval_loop(
lowerCAmelCase, description='''Evaluation''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCAmelCase, metric_key_prefix=lowerCAmelCase, )
finally:
lowerCamelCase_ =compute_metrics
lowerCamelCase_ =self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowerCAmelCase, lowerCAmelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
lowerCamelCase_ =self.post_process_function(lowerCAmelCase, lowerCAmelCase, output.predictions )
lowerCamelCase_ =self.compute_metrics(lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
lowerCamelCase_ =metrics.pop(lowerCAmelCase )
metrics.update(output.metrics )
else:
lowerCamelCase_ =output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(lowerCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
lowerCamelCase_ =self.callback_handler.on_evaluate(self.args, self.state, self.control, lowerCAmelCase )
return metrics
def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase=None, lowerCAmelCase = "test" ):
"""simple docstring"""
lowerCamelCase_ =self.get_test_dataloader(lowerCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
lowerCamelCase_ =self.compute_metrics
lowerCamelCase_ =None
lowerCamelCase_ =self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
lowerCamelCase_ =time.time()
try:
lowerCamelCase_ =eval_loop(
lowerCAmelCase, description='''Prediction''', prediction_loss_only=True if compute_metrics is None else None, ignore_keys=lowerCAmelCase, metric_key_prefix=lowerCAmelCase, )
finally:
lowerCamelCase_ =compute_metrics
lowerCamelCase_ =self.args.eval_batch_size * self.args.world_size
if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
lowerCAmelCase, lowerCAmelCase, num_samples=output.num_samples, num_steps=math.ceil(output.num_samples / total_batch_size ), ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
lowerCamelCase_ =self.post_process_function(lowerCAmelCase, lowerCAmelCase, output.predictions, '''predict''' )
lowerCamelCase_ =self.compute_metrics(lowerCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(f'''{metric_key_prefix}_''' ):
lowerCamelCase_ =metrics.pop(lowerCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions, label_ids=predictions.label_ids, metrics=lowerCAmelCase )
| 75
|
'''simple docstring'''
from typing import List
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : Dict = logging.get_logger(__name__)
a_ : Any = {
"""snap-research/efficientformer-l1-300""": (
"""https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json"""
),
}
class __UpperCamelCase ( lowerCamelCase__ ):
lowercase : List[str] ='efficientformer'
def __init__( self, lowerCAmelCase = [3, 2, 6, 4], lowerCAmelCase = [48, 96, 224, 448], lowerCAmelCase = [True, True, True, True], lowerCAmelCase = 448, lowerCAmelCase = 32, lowerCAmelCase = 4, lowerCAmelCase = 7, lowerCAmelCase = 5, lowerCAmelCase = 8, lowerCAmelCase = 4, lowerCAmelCase = 0.0, lowerCAmelCase = 16, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 3, lowerCAmelCase = 2, lowerCAmelCase = 1, lowerCAmelCase = 0.0, lowerCAmelCase = 1, lowerCAmelCase = True, lowerCAmelCase = True, lowerCAmelCase = 1e-5, lowerCAmelCase = "gelu", lowerCAmelCase = 0.0_2, lowerCAmelCase = 1e-12, lowerCAmelCase = 224, lowerCAmelCase = 1e-05, **lowerCAmelCase, ):
"""simple docstring"""
super().__init__(**lowerCAmelCase )
lowerCamelCase_ =hidden_act
lowerCamelCase_ =hidden_dropout_prob
lowerCamelCase_ =hidden_sizes
lowerCamelCase_ =num_hidden_layers
lowerCamelCase_ =num_attention_heads
lowerCamelCase_ =initializer_range
lowerCamelCase_ =layer_norm_eps
lowerCamelCase_ =patch_size
lowerCamelCase_ =num_channels
lowerCamelCase_ =depths
lowerCamelCase_ =mlp_expansion_ratio
lowerCamelCase_ =downsamples
lowerCamelCase_ =dim
lowerCamelCase_ =key_dim
lowerCamelCase_ =attention_ratio
lowerCamelCase_ =resolution
lowerCamelCase_ =pool_size
lowerCamelCase_ =downsample_patch_size
lowerCamelCase_ =downsample_stride
lowerCamelCase_ =downsample_pad
lowerCamelCase_ =drop_path_rate
lowerCamelCase_ =num_metaad_blocks
lowerCamelCase_ =distillation
lowerCamelCase_ =use_layer_scale
lowerCamelCase_ =layer_scale_init_value
lowerCamelCase_ =image_size
lowerCamelCase_ =batch_norm_eps
| 75
| 1
|
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
_lowerCAmelCase = logging.get_logger(__name__)
_lowerCAmelCase = {
"""SenseTime/deformable-detr""": """https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json""",
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class _SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ):
__SCREAMING_SNAKE_CASE :Tuple = """deformable_detr"""
__SCREAMING_SNAKE_CASE :int = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """encoder_attention_heads""",
}
def __init__( self : Tuple , a__ : Any=True , a__ : str=None , a__ : str=3 , a__ : str=300 , a__ : Dict=1024 , a__ : Union[str, Any]=6 , a__ : Tuple=1024 , a__ : str=8 , a__ : Optional[Any]=6 , a__ : Union[str, Any]=1024 , a__ : Optional[Any]=8 , a__ : Optional[int]=0.0 , a__ : int=True , a__ : List[Any]="relu" , a__ : Union[str, Any]=256 , a__ : Dict=0.1 , a__ : Optional[int]=0.0 , a__ : Optional[int]=0.0 , a__ : List[Any]=0.02 , a__ : List[str]=1.0 , a__ : Any=True , a__ : Dict=False , a__ : str="sine" , a__ : Dict="resnet50" , a__ : Union[str, Any]=True , a__ : List[str]=False , a__ : Tuple=4 , a__ : int=4 , a__ : Optional[Any]=4 , a__ : Dict=False , a__ : Optional[int]=300 , a__ : List[str]=False , a__ : Union[str, Any]=1 , a__ : Tuple=5 , a__ : List[str]=2 , a__ : Any=1 , a__ : List[Any]=1 , a__ : Tuple=5 , a__ : Optional[Any]=2 , a__ : Optional[Any]=0.1 , a__ : Optional[int]=0.25 , a__ : int=False , **a__ : Union[str, Any] , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
__magic_name__ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
__magic_name__ = backbone_config.get('''model_type''' )
__magic_name__ = CONFIG_MAPPING[backbone_model_type]
__magic_name__ = config_class.from_dict(__SCREAMING_SNAKE_CASE )
__magic_name__ = use_timm_backbone
__magic_name__ = backbone_config
__magic_name__ = num_channels
__magic_name__ = num_queries
__magic_name__ = max_position_embeddings
__magic_name__ = d_model
__magic_name__ = encoder_ffn_dim
__magic_name__ = encoder_layers
__magic_name__ = encoder_attention_heads
__magic_name__ = decoder_ffn_dim
__magic_name__ = decoder_layers
__magic_name__ = decoder_attention_heads
__magic_name__ = dropout
__magic_name__ = attention_dropout
__magic_name__ = activation_dropout
__magic_name__ = activation_function
__magic_name__ = init_std
__magic_name__ = init_xavier_std
__magic_name__ = encoder_layerdrop
__magic_name__ = auxiliary_loss
__magic_name__ = position_embedding_type
__magic_name__ = backbone
__magic_name__ = use_pretrained_backbone
__magic_name__ = dilation
# deformable attributes
__magic_name__ = num_feature_levels
__magic_name__ = encoder_n_points
__magic_name__ = decoder_n_points
__magic_name__ = two_stage
__magic_name__ = two_stage_num_proposals
__magic_name__ = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
__magic_name__ = class_cost
__magic_name__ = bbox_cost
__magic_name__ = giou_cost
# Loss coefficients
__magic_name__ = mask_loss_coefficient
__magic_name__ = dice_loss_coefficient
__magic_name__ = bbox_loss_coefficient
__magic_name__ = giou_loss_coefficient
__magic_name__ = eos_coefficient
__magic_name__ = focal_alpha
__magic_name__ = disable_custom_kernels
super().__init__(is_encoder_decoder=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
@property
def snake_case__ ( self : Union[str, Any] ):
return self.encoder_attention_heads
@property
def snake_case__ ( self : Union[str, Any] ):
return self.d_model
def snake_case__ ( self : int ):
__magic_name__ = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
__magic_name__ = self.backbone_config.to_dict()
__magic_name__ = self.__class__.model_type
return output
| 352
|
'''simple docstring'''
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def UpperCamelCase ( a , a , a , a=1024 ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ , __magic_name__ = [], []
__magic_name__ = list(zip(a , a ) )
__magic_name__ , __magic_name__ = sorted_examples[0]
def is_too_big(a ):
return tok(a , return_tensors='''pt''' ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
__magic_name__ = new_src + ''' ''' + src
__magic_name__ = new_tgt + ''' ''' + tgt
if is_too_big(a ) or is_too_big(a ): # cant fit, finalize example
finished_src.append(a )
finished_tgt.append(a )
__magic_name__ , __magic_name__ = src, tgt
else: # can fit, keep adding
__magic_name__ , __magic_name__ = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(a )
finished_tgt.append(a )
return finished_src, finished_tgt
def UpperCamelCase ( a , a , a , a ) -> Any:
'''simple docstring'''
__magic_name__ = Path(a )
save_path.mkdir(exist_ok=a )
for split in ["train"]:
__magic_name__ , __magic_name__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target'''
__magic_name__ = [x.rstrip() for x in Path(a ).open().readlines()]
__magic_name__ = [x.rstrip() for x in Path(a ).open().readlines()]
__magic_name__ , __magic_name__ = pack_examples(a , a , a , a )
print(F'''packed {split} split from {len(a )} examples -> {len(a )}.''' )
Path(save_path / F'''{split}.source''' ).open('''w''' ).write('''\n'''.join(a ) )
Path(save_path / F'''{split}.target''' ).open('''w''' ).write('''\n'''.join(a ) )
for split in ["val", "test"]:
__magic_name__ , __magic_name__ = data_dir / F'''{split}.source''', data_dir / F'''{split}.target'''
shutil.copyfile(a , save_path / F'''{split}.source''' )
shutil.copyfile(a , save_path / F'''{split}.target''' )
def UpperCamelCase ( ) -> List[str]:
'''simple docstring'''
__magic_name__ = argparse.ArgumentParser()
parser.add_argument('''--tok_name''' , type=a , help='''like facebook/bart-large-cnn,t5-base, etc.''' )
parser.add_argument('''--max_seq_len''' , type=a , default=128 )
parser.add_argument('''--data_dir''' , type=a )
parser.add_argument('''--save_path''' , type=a )
__magic_name__ = parser.parse_args()
__magic_name__ = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(a , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 98
| 0
|
from typing import Optional, Union
import torch
from torch import nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
from ...modeling_utils import PreTrainedModel
from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
from .configuration_mobilenet_va import MobileNetVaConfig
_snake_case : str = logging.get_logger(__name__)
# General docstring
_snake_case : Union[str, Any] = "MobileNetV1Config"
# Base docstring
_snake_case : List[Any] = "google/mobilenet_v1_1.0_224"
_snake_case : Optional[Any] = [1, 1_024, 7, 7]
# Image classification docstring
_snake_case : Tuple = "google/mobilenet_v1_1.0_224"
_snake_case : str = "tabby, tabby cat"
_snake_case : Tuple = [
"google/mobilenet_v1_1.0_224",
"google/mobilenet_v1_0.75_192",
# See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1
]
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ):
__snake_case : Union[str, Any] = {}
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__snake_case : List[str] = model.mobilenet_va
else:
__snake_case : List[Any] = model
__snake_case : Optional[Any] = "MobilenetV1/Conv2d_0/"
__snake_case : List[Any] = backbone.conv_stem.convolution.weight
__snake_case : Dict = backbone.conv_stem.normalization.bias
__snake_case : int = backbone.conv_stem.normalization.weight
__snake_case : Union[str, Any] = backbone.conv_stem.normalization.running_mean
__snake_case : List[Any] = backbone.conv_stem.normalization.running_var
for i in range(1_3 ):
__snake_case : int = i + 1
__snake_case : Union[str, Any] = i * 2
__snake_case : Tuple = backbone.layer[pt_index]
__snake_case : Optional[Any] = F'MobilenetV1/Conv2d_{tf_index}_depthwise/'
__snake_case : Any = pointer.convolution.weight
__snake_case : str = pointer.normalization.bias
__snake_case : List[Any] = pointer.normalization.weight
__snake_case : List[str] = pointer.normalization.running_mean
__snake_case : Dict = pointer.normalization.running_var
__snake_case : Tuple = backbone.layer[pt_index + 1]
__snake_case : Optional[Any] = F'MobilenetV1/Conv2d_{tf_index}_pointwise/'
__snake_case : Union[str, Any] = pointer.convolution.weight
__snake_case : Optional[Any] = pointer.normalization.bias
__snake_case : Union[str, Any] = pointer.normalization.weight
__snake_case : List[Any] = pointer.normalization.running_mean
__snake_case : Optional[int] = pointer.normalization.running_var
if isinstance(__lowerCamelCase , __lowerCamelCase ):
__snake_case : Tuple = "MobilenetV1/Logits/Conv2d_1c_1x1/"
__snake_case : List[str] = model.classifier.weight
__snake_case : List[Any] = model.classifier.bias
return tf_to_pt_map
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ):
try:
import numpy as np
import tensorflow as tf
except ImportError:
logger.error(
"Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
"https://www.tensorflow.org/install/ for installation instructions." )
raise
# Load weights from TF model
__snake_case : Any = tf.train.list_variables(__lowerCamelCase )
__snake_case : Optional[int] = {}
for name, shape in init_vars:
logger.info(F'Loading TF weight {name} with shape {shape}' )
__snake_case : Dict = tf.train.load_variable(__lowerCamelCase , __lowerCamelCase )
__snake_case : List[str] = array
# Build TF to PyTorch weights loading map
__snake_case : int = _build_tf_to_pytorch_map(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
for name, pointer in tf_to_pt_map.items():
logger.info(F'Importing {name}' )
if name not in tf_weights:
logger.info(F'{name} not in tf pre-trained weights, skipping' )
continue
__snake_case : str = tf_weights[name]
if "depthwise_weights" in name:
logger.info("Transposing depthwise" )
__snake_case : Dict = np.transpose(__lowerCamelCase , (2, 3, 0, 1) )
elif "weights" in name:
logger.info("Transposing" )
if len(pointer.shape ) == 2: # copying into linear layer
__snake_case : Any = array.squeeze().transpose()
else:
__snake_case : str = np.transpose(__lowerCamelCase , (3, 2, 0, 1) )
if pointer.shape != array.shape:
raise ValueError(F'Pointer shape {pointer.shape} and array shape {array.shape} mismatched' )
logger.info(F'Initialize PyTorch weight {name} {array.shape}' )
__snake_case : Union[str, Any] = torch.from_numpy(__lowerCamelCase )
tf_weights.pop(__lowerCamelCase , __lowerCamelCase )
tf_weights.pop(name + "/RMSProp" , __lowerCamelCase )
tf_weights.pop(name + "/RMSProp_1" , __lowerCamelCase )
tf_weights.pop(name + "/ExponentialMovingAverage" , __lowerCamelCase )
logger.info(F'Weights not copied to PyTorch model: {", ".join(tf_weights.keys() )}' )
return model
def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ):
__snake_case , __snake_case : List[Any] = features.shape[-2:]
__snake_case , __snake_case : str = conv_layer.stride
__snake_case , __snake_case : Tuple = conv_layer.kernel_size
if in_height % stride_height == 0:
__snake_case : List[Any] = max(kernel_height - stride_height , 0 )
else:
__snake_case : List[str] = max(kernel_height - (in_height % stride_height) , 0 )
if in_width % stride_width == 0:
__snake_case : Any = max(kernel_width - stride_width , 0 )
else:
__snake_case : Union[str, Any] = max(kernel_width - (in_width % stride_width) , 0 )
__snake_case : Any = pad_along_width // 2
__snake_case : Union[str, Any] = pad_along_width - pad_left
__snake_case : str = pad_along_height // 2
__snake_case : Any = pad_along_height - pad_top
__snake_case : Union[str, Any] = (pad_left, pad_right, pad_top, pad_bottom)
return nn.functional.pad(__lowerCamelCase , __lowerCamelCase , "constant" , 0.0 )
class a (nn.Module ):
"""simple docstring"""
def __init__( self : str , lowerCamelCase : MobileNetVaConfig , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : int , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : bool = False , lowerCamelCase : Optional[bool] = True , lowerCamelCase : Optional[bool or str] = True , ) -> None:
super().__init__()
__snake_case : List[str] = config
if in_channels % groups != 0:
raise ValueError(F'Input channels ({in_channels}) are not divisible by {groups} groups.' )
if out_channels % groups != 0:
raise ValueError(F'Output channels ({out_channels}) are not divisible by {groups} groups.' )
__snake_case : Optional[int] = 0 if config.tf_padding else int((kernel_size - 1) / 2 )
__snake_case : int = nn.Convad(
in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=lowerCamelCase , stride=lowerCamelCase , padding=lowerCamelCase , groups=lowerCamelCase , bias=lowerCamelCase , padding_mode="zeros" , )
if use_normalization:
__snake_case : List[str] = nn.BatchNormad(
num_features=lowerCamelCase , eps=config.layer_norm_eps , momentum=0.99_97 , affine=lowerCamelCase , track_running_stats=lowerCamelCase , )
else:
__snake_case : Dict = None
if use_activation:
if isinstance(lowerCamelCase , lowerCamelCase ):
__snake_case : int = ACTaFN[use_activation]
elif isinstance(config.hidden_act , lowerCamelCase ):
__snake_case : Any = ACTaFN[config.hidden_act]
else:
__snake_case : Optional[int] = config.hidden_act
else:
__snake_case : Tuple = None
def __snake_case ( self : Dict , lowerCamelCase : torch.Tensor ) -> torch.Tensor:
if self.config.tf_padding:
__snake_case : Optional[Any] = apply_tf_padding(lowerCamelCase , self.convolution )
__snake_case : List[Any] = self.convolution(lowerCamelCase )
if self.normalization is not None:
__snake_case : Tuple = self.normalization(lowerCamelCase )
if self.activation is not None:
__snake_case : Dict = self.activation(lowerCamelCase )
return features
class a (_lowerCAmelCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = MobileNetVaConfig
__UpperCAmelCase : Optional[int] = load_tf_weights_in_mobilenet_va
__UpperCAmelCase : Dict = "mobilenet_v1"
__UpperCAmelCase : int = "pixel_values"
__UpperCAmelCase : str = False
def __snake_case ( self : Dict , lowerCamelCase : Union[nn.Linear, nn.Convad] ) -> None:
if isinstance(lowerCamelCase , (nn.Linear, nn.Convad) ):
module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range )
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(lowerCamelCase , nn.BatchNormad ):
module.bias.data.zero_()
module.weight.data.fill_(1.0 )
_snake_case : str = R"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n"
_snake_case : List[Any] = R"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`MobileNetV1ImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n"
@add_start_docstrings(
"The bare MobileNetV1 model outputting raw hidden-states without any specific head on top." , _lowerCAmelCase , )
class a (_lowerCAmelCase ):
"""simple docstring"""
def __init__( self : Any , lowerCamelCase : MobileNetVaConfig , lowerCamelCase : bool = True ) -> int:
super().__init__(lowerCamelCase )
__snake_case : List[Any] = config
__snake_case : int = 32
__snake_case : Union[str, Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
__snake_case : str = MobileNetVaConvLayer(
lowerCamelCase , in_channels=config.num_channels , out_channels=lowerCamelCase , kernel_size=3 , stride=2 , )
__snake_case : str = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
__snake_case : str = nn.ModuleList()
for i in range(13 ):
__snake_case : Optional[Any] = out_channels
if strides[i] == 2 or i == 0:
depth *= 2
__snake_case : Union[str, Any] = max(int(depth * config.depth_multiplier ) , config.min_depth )
self.layer.append(
MobileNetVaConvLayer(
lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=3 , stride=strides[i] , groups=lowerCamelCase , ) )
self.layer.append(
MobileNetVaConvLayer(
lowerCamelCase , in_channels=lowerCamelCase , out_channels=lowerCamelCase , kernel_size=1 , ) )
__snake_case : List[Any] = nn.AdaptiveAvgPoolad((1, 1) ) if add_pooling_layer else None
# Initialize weights and apply final processing
self.post_init()
def __snake_case ( self : Any , lowerCamelCase : Dict ) -> Dict:
raise NotImplementedError
@add_start_docstrings_to_model_forward(lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def __snake_case ( self : Optional[Any] , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[bool] = None , ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
__snake_case : Optional[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
__snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
if pixel_values is None:
raise ValueError("You have to specify pixel_values" )
__snake_case : Tuple = self.conv_stem(lowerCamelCase )
__snake_case : str = () if output_hidden_states else None
for i, layer_module in enumerate(self.layer ):
__snake_case : Dict = layer_module(lowerCamelCase )
if output_hidden_states:
__snake_case : int = all_hidden_states + (hidden_states,)
__snake_case : Any = hidden_states
if self.pooler is not None:
__snake_case : Optional[int] = torch.flatten(self.pooler(lowerCamelCase ) , start_dim=1 )
else:
__snake_case : List[Any] = None
if not return_dict:
return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None )
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCamelCase , pooler_output=lowerCamelCase , hidden_states=lowerCamelCase , )
@add_start_docstrings(
"\n MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n " , _lowerCAmelCase , )
class a (_lowerCAmelCase ):
"""simple docstring"""
def __init__( self : List[str] , lowerCamelCase : MobileNetVaConfig ) -> None:
super().__init__(lowerCamelCase )
__snake_case : Optional[Any] = config.num_labels
__snake_case : Dict = MobileNetVaModel(lowerCamelCase )
__snake_case : Dict = self.mobilenet_va.layer[-1].convolution.out_channels
# Classifier head
__snake_case : Dict = nn.Dropout(config.classifier_dropout_prob , inplace=lowerCamelCase )
__snake_case : Any = nn.Linear(lowerCamelCase , config.num_labels ) if config.num_labels > 0 else nn.Identity()
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCamelCase )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def __snake_case ( self : Any , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , lowerCamelCase : Optional[torch.Tensor] = None , lowerCamelCase : Optional[bool] = None , ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
__snake_case : List[str] = return_dict if return_dict is not None else self.config.use_return_dict
__snake_case : List[Any] = self.mobilenet_va(lowerCamelCase , output_hidden_states=lowerCamelCase , return_dict=lowerCamelCase )
__snake_case : Any = outputs.pooler_output if return_dict else outputs[1]
__snake_case : int = self.classifier(self.dropout(lowerCamelCase ) )
__snake_case : str = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
__snake_case : List[str] = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
__snake_case : Union[str, Any] = "single_label_classification"
else:
__snake_case : Union[str, Any] = "multi_label_classification"
if self.config.problem_type == "regression":
__snake_case : Optional[int] = MSELoss()
if self.num_labels == 1:
__snake_case : List[Any] = loss_fct(logits.squeeze() , labels.squeeze() )
else:
__snake_case : str = loss_fct(lowerCamelCase , lowerCamelCase )
elif self.config.problem_type == "single_label_classification":
__snake_case : str = CrossEntropyLoss()
__snake_case : Tuple = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
__snake_case : Union[str, Any] = BCEWithLogitsLoss()
__snake_case : List[str] = loss_fct(lowerCamelCase , lowerCamelCase )
if not return_dict:
__snake_case : Dict = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return ImageClassifierOutputWithNoAttention(
loss=lowerCamelCase , logits=lowerCamelCase , hidden_states=outputs.hidden_states , )
| 123
|
from importlib import import_module
from .logging import get_logger
_snake_case : Optional[int] = get_logger(__name__)
class a :
"""simple docstring"""
def __init__( self : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : List[str]=None ) -> Any:
__snake_case : Dict = attrs or []
if module is not None:
for key in module.__dict__:
if key in attrs or not key.startswith("__" ):
setattr(self , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase ) )
__snake_case : int = module._original_module if isinstance(lowerCamelCase , _PatchedModuleObj ) else module
class a :
"""simple docstring"""
__UpperCAmelCase : List[Any] = []
def __init__( self : List[Any] , lowerCamelCase : Any , lowerCamelCase : str , lowerCamelCase : Dict , lowerCamelCase : Optional[Any]=None ) -> List[Any]:
__snake_case : Union[str, Any] = obj
__snake_case : Dict = target
__snake_case : Any = new
__snake_case : List[str] = target.split("." )[0]
__snake_case : Union[str, Any] = {}
__snake_case : int = attrs or []
def __enter__( self : List[Any] ) -> Tuple:
*__snake_case , __snake_case : int = self.target.split("." )
# Patch modules:
# it's used to patch attributes of submodules like "os.path.join";
# in this case we need to patch "os" and "os.path"
for i in range(len(lowerCamelCase ) ):
try:
__snake_case : Any = import_module(".".join(submodules[: i + 1] ) )
except ModuleNotFoundError:
continue
# We iterate over all the globals in self.obj in case we find "os" or "os.path"
for attr in self.obj.__dir__():
__snake_case : Union[str, Any] = getattr(self.obj , lowerCamelCase )
# We don't check for the name of the global, but rather if its value *is* "os" or "os.path".
# This allows to patch renamed modules like "from os import path as ospath".
if obj_attr is submodule or (
(isinstance(lowerCamelCase , _PatchedModuleObj ) and obj_attr._original_module is submodule)
):
__snake_case : List[Any] = obj_attr
# patch at top level
setattr(self.obj , lowerCamelCase , _PatchedModuleObj(lowerCamelCase , attrs=self.attrs ) )
__snake_case : Optional[int] = getattr(self.obj , lowerCamelCase )
# construct lower levels patches
for key in submodules[i + 1 :]:
setattr(lowerCamelCase , lowerCamelCase , _PatchedModuleObj(getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase ) , attrs=self.attrs ) )
__snake_case : List[Any] = getattr(lowerCamelCase , lowerCamelCase )
# finally set the target attribute
setattr(lowerCamelCase , lowerCamelCase , self.new )
# Patch attribute itself:
# it's used for builtins like "open",
# and also to patch "os.path.join" we may also need to patch "join"
# itself if it was imported as "from os.path import join".
if submodules: # if it's an attribute of a submodule like "os.path.join"
try:
__snake_case : Union[str, Any] = getattr(import_module(".".join(lowerCamelCase ) ) , lowerCamelCase )
except (AttributeError, ModuleNotFoundError):
return
# We iterate over all the globals in self.obj in case we find "os.path.join"
for attr in self.obj.__dir__():
# We don't check for the name of the global, but rather if its value *is* "os.path.join".
# This allows to patch renamed attributes like "from os.path import join as pjoin".
if getattr(self.obj , lowerCamelCase ) is attr_value:
__snake_case : Tuple = getattr(self.obj , lowerCamelCase )
setattr(self.obj , lowerCamelCase , self.new )
elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open"
__snake_case : Dict = globals()["__builtins__"][target_attr]
setattr(self.obj , lowerCamelCase , self.new )
else:
raise RuntimeError(F'Tried to patch attribute {target_attr} instead of a submodule.' )
def __exit__( self : Any , *lowerCamelCase : Any ) -> Optional[int]:
for attr in list(self.original ):
setattr(self.obj , lowerCamelCase , self.original.pop(lowerCamelCase ) )
def __snake_case ( self : Optional[Any] ) -> Optional[int]:
self.__enter__()
self._active_patches.append(self )
def __snake_case ( self : Any ) -> List[str]:
try:
self._active_patches.remove(self )
except ValueError:
# If the patch hasn't been started this will fail
return None
return self.__exit__()
| 123
| 1
|
'''simple docstring'''
from typing import Optional, Union
import torch
from torch import nn
from ...configuration_utils import ConfigMixin, register_to_config
from ...models.modeling_utils import ModelMixin
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
@register_to_config
def __init__( self : Optional[int] , lowerCamelCase__ : int = 7_68 , ) ->List[Any]:
'''simple docstring'''
super().__init__()
_UpperCAmelCase : List[Any] = nn.Parameter(torch.zeros(1 , lowerCamelCase__ ) )
_UpperCAmelCase : Any = nn.Parameter(torch.ones(1 , lowerCamelCase__ ) )
def lowerCAmelCase__ ( self : Optional[int] , lowerCamelCase__ : Optional[Union[str, torch.device]] = None , lowerCamelCase__ : Optional[torch.dtype] = None , ) ->str:
'''simple docstring'''
_UpperCAmelCase : Union[str, Any] = nn.Parameter(self.mean.to(lowerCamelCase__ ).to(lowerCamelCase__ ) )
_UpperCAmelCase : str = nn.Parameter(self.std.to(lowerCamelCase__ ).to(lowerCamelCase__ ) )
return self
def lowerCAmelCase__ ( self : Tuple , lowerCamelCase__ : List[str] ) ->Any:
'''simple docstring'''
_UpperCAmelCase : str = (embeds - self.mean) * 1.0 / self.std
return embeds
def lowerCAmelCase__ ( self : int , lowerCamelCase__ : Any ) ->Dict:
'''simple docstring'''
_UpperCAmelCase : Any = (embeds * self.std) + self.mean
return embeds
| 364
|
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'microsoft/resnet-50': 'https://huggingface.co/microsoft/resnet-50/blob/main/config.json',
}
class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ ):
lowerCAmelCase : int = "resnet"
lowerCAmelCase : Union[str, Any] = ["basic", "bottleneck"]
def __init__( self : Dict , lowerCamelCase__ : Tuple=3 , lowerCamelCase__ : Any=64 , lowerCamelCase__ : Optional[int]=[2_56, 5_12, 10_24, 20_48] , lowerCamelCase__ : int=[3, 4, 6, 3] , lowerCamelCase__ : Dict="bottleneck" , lowerCamelCase__ : Dict="relu" , lowerCamelCase__ : List[Any]=False , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Tuple , ) ->List[str]:
'''simple docstring'''
super().__init__(**lowerCamelCase__ )
if layer_type not in self.layer_types:
raise ValueError(F"""layer_type={layer_type} is not one of {','.join(self.layer_types )}""" )
_UpperCAmelCase : str = num_channels
_UpperCAmelCase : List[str] = embedding_size
_UpperCAmelCase : Tuple = hidden_sizes
_UpperCAmelCase : Dict = depths
_UpperCAmelCase : List[Any] = layer_type
_UpperCAmelCase : Optional[int] = hidden_act
_UpperCAmelCase : Tuple = downsample_in_first_stage
_UpperCAmelCase : str = ["stem"] + [F"""stage{idx}""" for idx in range(1 , len(lowerCamelCase__ ) + 1 )]
_UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=lowerCamelCase__ , out_indices=lowerCamelCase__ , stage_names=self.stage_names )
class lowerCAmelCase__ ( UpperCAmelCase__ ):
lowerCAmelCase : Optional[Any] = version.parse("1.11" )
@property
def lowerCAmelCase__ ( self : Optional[Any] ) ->Mapping[str, Mapping[int, str]]:
'''simple docstring'''
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
] )
@property
def lowerCAmelCase__ ( self : str ) ->float:
'''simple docstring'''
return 1E-3
| 322
| 0
|
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
UpperCAmelCase = logging.get_logger(__name__)
UpperCAmelCase = {
"""Intel/dpt-large""": """https://huggingface.co/Intel/dpt-large/resolve/main/config.json""",
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class UpperCAmelCase_ ( _lowercase):
snake_case__ = '''dpt'''
def __init__( self : Tuple , __UpperCamelCase : str=768 , __UpperCamelCase : List[str]=12 , __UpperCamelCase : Dict=12 , __UpperCamelCase : Any=3072 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : str=0.0 , __UpperCamelCase : Union[str, Any]=0.0 , __UpperCamelCase : Union[str, Any]=0.0_2 , __UpperCamelCase : Dict=1E-12 , __UpperCamelCase : Any=384 , __UpperCamelCase : str=16 , __UpperCamelCase : Optional[Any]=3 , __UpperCamelCase : int=False , __UpperCamelCase : str=True , __UpperCamelCase : Optional[int]=[2, 5, 8, 11] , __UpperCamelCase : Any="project" , __UpperCamelCase : Any=[4, 2, 1, 0.5] , __UpperCamelCase : Tuple=[96, 192, 384, 768] , __UpperCamelCase : Dict=256 , __UpperCamelCase : List[Any]=-1 , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : Tuple=True , __UpperCamelCase : Any=0.4 , __UpperCamelCase : List[Any]=255 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : Union[str, Any]=[1, 1024, 24, 24] , __UpperCamelCase : List[Any]=[0, 1] , __UpperCamelCase : List[str]=None , **__UpperCamelCase : Optional[Any] , ) -> List[str]:
super().__init__(**__UpperCamelCase )
_UpperCamelCase = hidden_size
_UpperCamelCase = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('''Initializing the config with a `BiT` backbone.''' )
_UpperCamelCase = {
'''global_padding''': '''same''',
'''layer_type''': '''bottleneck''',
'''depths''': [3, 4, 9],
'''out_features''': ['''stage1''', '''stage2''', '''stage3'''],
'''embedding_dynamic_padding''': True,
}
_UpperCamelCase = BitConfig(**__UpperCamelCase )
elif isinstance(__UpperCamelCase , __UpperCamelCase ):
logger.info('''Initializing the config with a `BiT` backbone.''' )
_UpperCamelCase = BitConfig(**__UpperCamelCase )
elif isinstance(__UpperCamelCase , __UpperCamelCase ):
_UpperCamelCase = backbone_config
else:
raise ValueError(
F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
_UpperCamelCase = backbone_featmap_shape
_UpperCamelCase = neck_ignore_stages
if readout_type != "project":
raise ValueError('''Readout type must be \'project\' when using `DPT-hybrid` mode.''' )
else:
_UpperCamelCase = None
_UpperCamelCase = None
_UpperCamelCase = []
_UpperCamelCase = num_hidden_layers
_UpperCamelCase = num_attention_heads
_UpperCamelCase = intermediate_size
_UpperCamelCase = hidden_act
_UpperCamelCase = hidden_dropout_prob
_UpperCamelCase = attention_probs_dropout_prob
_UpperCamelCase = initializer_range
_UpperCamelCase = layer_norm_eps
_UpperCamelCase = image_size
_UpperCamelCase = patch_size
_UpperCamelCase = num_channels
_UpperCamelCase = qkv_bias
_UpperCamelCase = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('''Readout_type must be one of [\'ignore\', \'add\', \'project\']''' )
_UpperCamelCase = readout_type
_UpperCamelCase = reassemble_factors
_UpperCamelCase = neck_hidden_sizes
_UpperCamelCase = fusion_hidden_size
_UpperCamelCase = head_in_index
_UpperCamelCase = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_UpperCamelCase = use_auxiliary_head
_UpperCamelCase = auxiliary_loss_weight
_UpperCamelCase = semantic_loss_ignore_index
_UpperCamelCase = semantic_classifier_dropout
def _UpperCamelCase ( self : Dict ) -> Tuple:
_UpperCamelCase = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_UpperCamelCase = self.backbone_config.to_dict()
_UpperCamelCase = self.__class__.model_type
return output
| 256
|
"""simple docstring"""
import logging
from transformers import PretrainedConfig
UpperCAmelCase = logging.getLogger(__name__)
UpperCAmelCase = {
"""bertabs-finetuned-cnndm""": """https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json""",
}
class UpperCAmelCase_ ( _lowercase):
snake_case__ = '''bertabs'''
def __init__( self : Optional[Any] , __UpperCamelCase : List[Any]=3_0522 , __UpperCamelCase : Any=512 , __UpperCamelCase : int=6 , __UpperCamelCase : Optional[Any]=512 , __UpperCamelCase : Any=8 , __UpperCamelCase : int=512 , __UpperCamelCase : str=0.2 , __UpperCamelCase : List[str]=6 , __UpperCamelCase : Optional[Any]=768 , __UpperCamelCase : Union[str, Any]=8 , __UpperCamelCase : Optional[Any]=2048 , __UpperCamelCase : str=0.2 , **__UpperCamelCase : List[Any] , ) -> Union[str, Any]:
super().__init__(**__UpperCamelCase )
_UpperCamelCase = vocab_size
_UpperCamelCase = max_pos
_UpperCamelCase = enc_layers
_UpperCamelCase = enc_hidden_size
_UpperCamelCase = enc_heads
_UpperCamelCase = enc_ff_size
_UpperCamelCase = enc_dropout
_UpperCamelCase = dec_layers
_UpperCamelCase = dec_hidden_size
_UpperCamelCase = dec_heads
_UpperCamelCase = dec_ff_size
_UpperCamelCase = dec_dropout
| 256
| 1
|
import pickle
import numpy as np
from matplotlib import pyplot as plt
class a__ :
def __init__( self , A , A , A , A , A , A=0.2 , A=0.2 ) -> Any:
'''simple docstring'''
a = bp_numa
a = bp_numa
a = bp_numa
a = conva_get[:2]
a = conva_get[2]
a = size_pa
a = rate_w
a = rate_t
a = [
np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 )
for i in range(self.conva[1] )
]
a = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
a = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 )
a = -2 * np.random.rand(self.conva[1] ) + 1
a = -2 * np.random.rand(self.num_bpa ) + 1
a = -2 * np.random.rand(self.num_bpa ) + 1
def lowerCAmelCase_ ( self , A ) -> Optional[Any]:
'''simple docstring'''
a = {
"num_bp1": self.num_bpa,
"num_bp2": self.num_bpa,
"num_bp3": self.num_bpa,
"conv1": self.conva,
"step_conv1": self.step_conva,
"size_pooling1": self.size_poolinga,
"rate_weight": self.rate_weight,
"rate_thre": self.rate_thre,
"w_conv1": self.w_conva,
"wkj": self.wkj,
"vji": self.vji,
"thre_conv1": self.thre_conva,
"thre_bp2": self.thre_bpa,
"thre_bp3": self.thre_bpa,
}
with open(A , "wb" ) as f:
pickle.dump(A , A )
print(F'''Model saved: {save_path}''' )
@classmethod
def lowerCAmelCase_ ( cls , A ) -> Optional[Any]:
'''simple docstring'''
with open(A , "rb" ) as f:
a = pickle.load(A ) # noqa: S301
a = model_dic.get("conv1" )
conv_get.append(model_dic.get("step_conv1" ) )
a = model_dic.get("size_pooling1" )
a = model_dic.get("num_bp1" )
a = model_dic.get("num_bp2" )
a = model_dic.get("num_bp3" )
a = model_dic.get("rate_weight" )
a = model_dic.get("rate_thre" )
# create model instance
a = CNN(A , A , A , A , A , A , A )
# modify model parameter
a = model_dic.get("w_conv1" )
a = model_dic.get("wkj" )
a = model_dic.get("vji" )
a = model_dic.get("thre_conv1" )
a = model_dic.get("thre_bp2" )
a = model_dic.get("thre_bp3" )
return conv_ins
def lowerCAmelCase_ ( self , A ) -> Optional[Any]:
'''simple docstring'''
return 1 / (1 + np.exp(-1 * x ))
def lowerCAmelCase_ ( self , A ) -> Optional[Any]:
'''simple docstring'''
return round(A , 3 )
def lowerCAmelCase_ ( self , A , A , A , A , A ) -> str:
'''simple docstring'''
a = convs[0]
a = convs[1]
a = np.shape(A )[0]
# get the data slice of original image data, data_focus
a = []
for i_focus in range(0 , size_data - size_conv + 1 , A ):
for j_focus in range(0 , size_data - size_conv + 1 , A ):
a = data[
i_focus : i_focus + size_conv, j_focus : j_focus + size_conv
]
data_focus.append(A )
# calculate the feature map of every single kernel, and saved as list of matrix
a = []
a = int((size_data - size_conv) / conv_step + 1 )
for i_map in range(A ):
a = []
for i_focus in range(len(A ) ):
a = (
np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) )
- thre_convs[i_map]
)
featuremap.append(self.sig(A ) )
a = np.asmatrix(A ).reshape(
A , A )
data_featuremap.append(A )
# expanding the data slice to One dimenssion
a = []
for each_focus in data_focus:
focusa_list.extend(self.Expand_Mat(A ) )
a = np.asarray(A )
return focus_list, data_featuremap
def lowerCAmelCase_ ( self , A , A , A="average_pool" ) -> Tuple:
'''simple docstring'''
a = len(featuremaps[0] )
a = int(size_map / size_pooling )
a = []
for i_map in range(len(A ) ):
a = featuremaps[i_map]
a = []
for i_focus in range(0 , A , A ):
for j_focus in range(0 , A , A ):
a = feature_map[
i_focus : i_focus + size_pooling,
j_focus : j_focus + size_pooling,
]
if pooling_type == "average_pool":
# average pooling
map_pooled.append(np.average(A ) )
elif pooling_type == "max_pooling":
# max pooling
map_pooled.append(np.max(A ) )
a = np.asmatrix(A ).reshape(A , A )
featuremap_pooled.append(A )
return featuremap_pooled
def lowerCAmelCase_ ( self , A ) -> List[Any]:
'''simple docstring'''
a = []
for i in range(len(A ) ):
a = np.shape(data[i] )
a = data[i].reshape(1 , shapes[0] * shapes[1] )
a = data_listed.getA().tolist()[0]
data_expanded.extend(A )
a = np.asarray(A )
return data_expanded
def lowerCAmelCase_ ( self , A ) -> Optional[int]:
'''simple docstring'''
a = np.asarray(A )
a = np.shape(A )
a = data_mat.reshape(1 , shapes[0] * shapes[1] )
return data_expanded
def lowerCAmelCase_ ( self , A , A , A , A , A ) -> Tuple:
'''simple docstring'''
a = []
a = 0
for i_map in range(A ):
a = np.ones((size_map, size_map) )
for i in range(0 , A , A ):
for j in range(0 , A , A ):
a = pd_pool[
i_pool
]
a = i_pool + 1
a = np.multiply(
A , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) )
pd_all.append(A )
return pd_all
def lowerCAmelCase_ ( self , A , A , A , A , A , A=bool ) -> str:
'''simple docstring'''
print("----------------------Start Training-------------------------" )
print((" - - Shape: Train_Data ", np.shape(A )) )
print((" - - Shape: Teach_Data ", np.shape(A )) )
a = 0
a = []
a = 10000
while rp < n_repeat and mse >= error_accuracy:
a = 0
print(F'''-------------Learning Time {rp}--------------''' )
for p in range(len(A ) ):
# print('------------Learning Image: %d--------------'%p)
a = np.asmatrix(datas_train[p] )
a = np.asarray(datas_teach[p] )
a , a = self.convolute(
A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a = self.pooling(A , self.size_poolinga )
a = np.shape(A )
a = self._expand(A )
a = data_bp_input
a = np.dot(A , self.vji.T ) - self.thre_bpa
a = self.sig(A )
a = np.dot(A , self.wkj.T ) - self.thre_bpa
a = self.sig(A )
# --------------Model Leaning ------------------------
# calculate error and gradient---------------
a = np.multiply(
(data_teach - bp_outa) , np.multiply(A , (1 - bp_outa) ) )
a = np.multiply(
np.dot(A , self.wkj ) , np.multiply(A , (1 - bp_outa) ) )
a = np.dot(A , self.vji )
a = pd_i_all / (self.size_poolinga * self.size_poolinga)
a = pd_conva_pooled.T.getA().tolist()
a = self._calculate_gradient_from_pool(
A , A , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , )
# weight and threshold learning process---------
# convolution layer
for k_conv in range(self.conva[1] ):
a = self._expand_mat(pd_conva_all[k_conv] )
a = self.rate_weight * np.dot(A , A )
a = self.w_conva[k_conv] + delta_w.reshape(
(self.conva[0], self.conva[0]) )
a = (
self.thre_conva[k_conv]
- np.sum(pd_conva_all[k_conv] ) * self.rate_thre
)
# all connected layer
a = self.wkj + pd_k_all.T * bp_outa * self.rate_weight
a = self.vji + pd_j_all.T * bp_outa * self.rate_weight
a = self.thre_bpa - pd_k_all * self.rate_thre
a = self.thre_bpa - pd_j_all * self.rate_thre
# calculate the sum error of all single image
a = np.sum(abs(data_teach - bp_outa ) )
error_count += errors
# print(' ----Teach ',data_teach)
# print(' ----BP_output ',bp_out3)
a = rp + 1
a = error_count / patterns
all_mse.append(A )
def draw_error():
a = [error_accuracy for i in range(int(n_repeat * 1.2 ) )]
plt.plot(A , "+-" )
plt.plot(A , "r--" )
plt.xlabel("Learning Times" )
plt.ylabel("All_mse" )
plt.grid(A , alpha=0.5 )
plt.show()
print("------------------Training Complished---------------------" )
print((" - - Training epoch: ", rp, F''' - - Mse: {mse:.6f}''') )
if draw_e:
draw_error()
return mse
def lowerCAmelCase_ ( self , A ) -> int:
'''simple docstring'''
a = []
print("-------------------Start Testing-------------------------" )
print((" - - Shape: Test_Data ", np.shape(A )) )
for p in range(len(A ) ):
a = np.asmatrix(datas_test[p] )
a , a = self.convolute(
A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a = self.pooling(A , self.size_poolinga )
a = self._expand(A )
a = data_bp_input
a = bp_outa * self.vji.T - self.thre_bpa
a = self.sig(A )
a = bp_outa * self.wkj.T - self.thre_bpa
a = self.sig(A )
produce_out.extend(bp_outa.getA().tolist() )
a = [list(map(self.do_round , A ) ) for each in produce_out]
return np.asarray(A )
def lowerCAmelCase_ ( self , A ) -> str:
'''simple docstring'''
a = np.asmatrix(A )
a , a = self.convolute(
A , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , )
a = self.pooling(A , self.size_poolinga )
return data_conveda, data_pooleda
if __name__ == "__main__":
pass
| 363
|
lowercase__ : str = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
lowercase__ : Any = [{"type": "code", "content": INSTALL_CONTENT}]
lowercase__ : Any = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 180
| 0
|
"""simple docstring"""
import math
class lowerCamelCase :
'''simple docstring'''
def __init__( self: List[Any] , snake_case: int=0 ) -> int: # a graph with Node 0,1,...,N-1
snake_case_ :List[str] = n
snake_case_ :int = [
[math.inf for j in range(0 , snake_case )] for i in range(0 , snake_case )
] # adjacency matrix for weight
snake_case_ :str = [
[math.inf for j in range(0 , snake_case )] for i in range(0 , snake_case )
] # dp[i][j] stores minimum distance from i to j
def lowerCAmelCase_ ( self: Optional[int] , snake_case: str , snake_case: Optional[Any] , snake_case: str ) -> Tuple:
snake_case_ :List[Any] = w
def lowerCAmelCase_ ( self: List[str] ) -> str:
for k in range(0 , self.n ):
for i in range(0 , self.n ):
for j in range(0 , self.n ):
snake_case_ :Any = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] )
def lowerCAmelCase_ ( self: int , snake_case: List[Any] , snake_case: Optional[Any] ) -> Union[str, Any]:
return self.dp[u][v]
if __name__ == "__main__":
__a = Graph(5)
graph.add_edge(0, 2, 9)
graph.add_edge(0, 4, 10)
graph.add_edge(1, 3, 5)
graph.add_edge(2, 3, 7)
graph.add_edge(3, 0, 10)
graph.add_edge(3, 1, 2)
graph.add_edge(3, 2, 1)
graph.add_edge(3, 4, 6)
graph.add_edge(4, 1, 3)
graph.add_edge(4, 2, 4)
graph.add_edge(4, 3, 9)
graph.floyd_warshall()
graph.show_min(1, 4)
graph.show_min(0, 3)
| 66
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_A = logging.get_logger(__name__)
_A = {
'''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''',
# See all ViT models at https://huggingface.co/models?filter=vit
}
class A ( __UpperCAmelCase ):
__snake_case = 'vit'
def __init__( self, UpperCamelCase__=768, UpperCamelCase__=12, UpperCamelCase__=12, UpperCamelCase__=3072, UpperCamelCase__="gelu", UpperCamelCase__=0.0, UpperCamelCase__=0.0, UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=224, UpperCamelCase__=16, UpperCamelCase__=3, UpperCamelCase__=True, UpperCamelCase__=16, **UpperCamelCase__, ):
"""simple docstring"""
super().__init__(**UpperCamelCase__ )
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = hidden_dropout_prob
lowerCAmelCase_ = attention_probs_dropout_prob
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = image_size
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = qkv_bias
lowerCAmelCase_ = encoder_stride
class A ( __UpperCAmelCase ):
__snake_case = version.parse('1.11' )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return OrderedDict(
[
('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}),
] )
@property
def SCREAMING_SNAKE_CASE__ ( self ):
"""simple docstring"""
return 1E-4
| 278
| 0
|
"""simple docstring"""
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import cached_download, hf_hub_url
from PIL import Image
from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A_ = logging.get_logger(__name__)
def _lowerCAmelCase ( UpperCAmelCase__ : List[Any] ) ->List[str]:
A__ : Union[str, Any] = DPTConfig()
if "large" in checkpoint_url:
A__ : int = 1_0_2_4
A__ : Union[str, Any] = 4_0_9_6
A__ : Optional[int] = 2_4
A__ : int = 1_6
A__ : Union[str, Any] = [5, 1_1, 1_7, 2_3]
A__ : Tuple = [2_5_6, 5_1_2, 1_0_2_4, 1_0_2_4]
A__ : Tuple = (1, 3_8_4, 3_8_4)
if "ade" in checkpoint_url:
A__ : Optional[int] = True
A__ : int = 1_5_0
A__ : Union[str, Any] = """huggingface/label-files"""
A__ : List[Any] = """ade20k-id2label.json"""
A__ : Union[str, Any] = json.load(open(cached_download(hf_hub_url(UpperCAmelCase__, UpperCAmelCase__, repo_type="""dataset""" ) ), """r""" ) )
A__ : List[Any] = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()}
A__ : Dict = idalabel
A__ : List[Any] = {v: k for k, v in idalabel.items()}
A__ : Optional[Any] = [1, 1_5_0, 4_8_0, 4_8_0]
return config, expected_shape
def _lowerCAmelCase ( UpperCAmelCase__ : int ) ->Any:
A__ : List[Any] = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""]
for k in ignore_keys:
state_dict.pop(UpperCAmelCase__, UpperCAmelCase__ )
def _lowerCAmelCase ( UpperCAmelCase__ : Union[str, Any] ) ->List[str]:
if (
"pretrained.model" in name
and "cls_token" not in name
and "pos_embed" not in name
and "patch_embed" not in name
):
A__ : str = name.replace("""pretrained.model""", """dpt.encoder""" )
if "pretrained.model" in name:
A__ : Dict = name.replace("""pretrained.model""", """dpt.embeddings""" )
if "patch_embed" in name:
A__ : List[Any] = name.replace("""patch_embed""", """patch_embeddings""" )
if "pos_embed" in name:
A__ : int = name.replace("""pos_embed""", """position_embeddings""" )
if "attn.proj" in name:
A__ : Tuple = name.replace("""attn.proj""", """attention.output.dense""" )
if "proj" in name and "project" not in name:
A__ : List[Any] = name.replace("""proj""", """projection""" )
if "blocks" in name:
A__ : Optional[Any] = name.replace("""blocks""", """layer""" )
if "mlp.fc1" in name:
A__ : int = name.replace("""mlp.fc1""", """intermediate.dense""" )
if "mlp.fc2" in name:
A__ : List[str] = name.replace("""mlp.fc2""", """output.dense""" )
if "norm1" in name:
A__ : Any = name.replace("""norm1""", """layernorm_before""" )
if "norm2" in name:
A__ : List[str] = name.replace("""norm2""", """layernorm_after""" )
if "scratch.output_conv" in name:
A__ : Optional[int] = name.replace("""scratch.output_conv""", """head""" )
if "scratch" in name:
A__ : List[str] = name.replace("""scratch""", """neck""" )
if "layer1_rn" in name:
A__ : List[str] = name.replace("""layer1_rn""", """convs.0""" )
if "layer2_rn" in name:
A__ : Optional[int] = name.replace("""layer2_rn""", """convs.1""" )
if "layer3_rn" in name:
A__ : Any = name.replace("""layer3_rn""", """convs.2""" )
if "layer4_rn" in name:
A__ : Any = name.replace("""layer4_rn""", """convs.3""" )
if "refinenet" in name:
A__ : Union[str, Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] )
# tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3
A__ : str = name.replace(f'refinenet{layer_idx}', f'fusion_stage.layers.{abs(layer_idx-4 )}' )
if "out_conv" in name:
A__ : Optional[Any] = name.replace("""out_conv""", """projection""" )
if "resConfUnit1" in name:
A__ : List[Any] = name.replace("""resConfUnit1""", """residual_layer1""" )
if "resConfUnit2" in name:
A__ : Tuple = name.replace("""resConfUnit2""", """residual_layer2""" )
if "conv1" in name:
A__ : Tuple = name.replace("""conv1""", """convolution1""" )
if "conv2" in name:
A__ : List[Any] = name.replace("""conv2""", """convolution2""" )
# readout blocks
if "pretrained.act_postprocess1.0.project.0" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess1.0.project.0""", """neck.reassemble_stage.readout_projects.0.0""" )
if "pretrained.act_postprocess2.0.project.0" in name:
A__ : Tuple = name.replace("""pretrained.act_postprocess2.0.project.0""", """neck.reassemble_stage.readout_projects.1.0""" )
if "pretrained.act_postprocess3.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""", """neck.reassemble_stage.readout_projects.2.0""" )
if "pretrained.act_postprocess4.0.project.0" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""", """neck.reassemble_stage.readout_projects.3.0""" )
# resize blocks
if "pretrained.act_postprocess1.3" in name:
A__ : Any = name.replace("""pretrained.act_postprocess1.3""", """neck.reassemble_stage.layers.0.projection""" )
if "pretrained.act_postprocess1.4" in name:
A__ : List[Any] = name.replace("""pretrained.act_postprocess1.4""", """neck.reassemble_stage.layers.0.resize""" )
if "pretrained.act_postprocess2.3" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess2.3""", """neck.reassemble_stage.layers.1.projection""" )
if "pretrained.act_postprocess2.4" in name:
A__ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""", """neck.reassemble_stage.layers.1.resize""" )
if "pretrained.act_postprocess3.3" in name:
A__ : Union[str, Any] = name.replace("""pretrained.act_postprocess3.3""", """neck.reassemble_stage.layers.2.projection""" )
if "pretrained.act_postprocess4.3" in name:
A__ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""", """neck.reassemble_stage.layers.3.projection""" )
if "pretrained.act_postprocess4.4" in name:
A__ : Dict = name.replace("""pretrained.act_postprocess4.4""", """neck.reassemble_stage.layers.3.resize""" )
if "pretrained" in name:
A__ : Union[str, Any] = name.replace("""pretrained""", """dpt""" )
if "bn" in name:
A__ : Union[str, Any] = name.replace("""bn""", """batch_norm""" )
if "head" in name:
A__ : Dict = name.replace("""head""", """head.head""" )
if "encoder.norm" in name:
A__ : Optional[int] = name.replace("""encoder.norm""", """layernorm""" )
if "auxlayer" in name:
A__ : List[str] = name.replace("""auxlayer""", """auxiliary_head.head""" )
return name
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Dict ) ->str:
for i in range(config.num_hidden_layers ):
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A__ : Any = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.weight' )
A__ : Tuple = state_dict.pop(f'dpt.encoder.layer.{i}.attn.qkv.bias' )
# next, add query, keys and values (in that order) to the state dict
A__ : List[str] = in_proj_weight[: config.hidden_size, :]
A__ : int = in_proj_bias[: config.hidden_size]
A__ : Tuple = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A__ : Any = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A__ : str = in_proj_weight[
-config.hidden_size :, :
]
A__ : Optional[Any] = in_proj_bias[-config.hidden_size :]
def _lowerCAmelCase ( ) ->List[str]:
A__ : int = """http://images.cocodataset.org/val2017/000000039769.jpg"""
A__ : int = Image.open(requests.get(UpperCAmelCase__, stream=UpperCAmelCase__ ).raw )
return im
@torch.no_grad()
def _lowerCAmelCase ( UpperCAmelCase__ : int, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : str, UpperCAmelCase__ : int ) ->str:
A__ , A__ : Dict = get_dpt_config(UpperCAmelCase__ )
# load original state_dict from URL
A__ : Any = torch.hub.load_state_dict_from_url(UpperCAmelCase__, map_location="""cpu""" )
# remove certain keys
remove_ignore_keys_(UpperCAmelCase__ )
# rename keys
for key in state_dict.copy().keys():
A__ : int = state_dict.pop(UpperCAmelCase__ )
A__ : str = val
# read in qkv matrices
read_in_q_k_v(UpperCAmelCase__, UpperCAmelCase__ )
# load HuggingFace model
A__ : Optional[Any] = DPTForSemanticSegmentation(UpperCAmelCase__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(UpperCAmelCase__ )
model.load_state_dict(UpperCAmelCase__ )
model.eval()
# Check outputs on an image
A__ : Optional[Any] = 4_8_0 if """ade""" in checkpoint_url else 3_8_4
A__ : Dict = DPTImageProcessor(size=UpperCAmelCase__ )
A__ : Optional[int] = prepare_img()
A__ : Any = image_processor(UpperCAmelCase__, return_tensors="""pt""" )
# forward pass
A__ : List[str] = model(**UpperCAmelCase__ ).logits if """ade""" in checkpoint_url else model(**UpperCAmelCase__ ).predicted_depth
# Assert logits
A__ : Optional[Any] = torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] )
if "ade" in checkpoint_url:
A__ : Optional[int] = torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] )
assert outputs.shape == torch.Size(UpperCAmelCase__ )
assert (
torch.allclose(outputs[0, 0, :3, :3], UpperCAmelCase__, atol=1e-4 )
if "ade" in checkpoint_url
else torch.allclose(outputs[0, :3, :3], UpperCAmelCase__ )
)
Path(UpperCAmelCase__ ).mkdir(exist_ok=UpperCAmelCase__ )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(UpperCAmelCase__ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(UpperCAmelCase__ )
if push_to_hub:
print("""Pushing model to hub...""" )
model.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add model""", use_temp_dir=UpperCAmelCase__, )
image_processor.push_to_hub(
repo_path_or_name=Path(UpperCAmelCase__, UpperCAmelCase__ ), organization="""nielsr""", commit_message="""Add image processor""", use_temp_dir=UpperCAmelCase__, )
if __name__ == "__main__":
A_ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''',
type=str,
help='''URL of the original DPT checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
action='''store_true''',
)
parser.add_argument(
'''--model_name''',
default='''dpt-large''',
type=str,
help='''Name of the model, in case you\'re pushing to the hub.''',
)
A_ = parser.parse_args()
convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
| 296
|
"""simple docstring"""
from collections import defaultdict
from math import gcd
def _lowerCAmelCase ( UpperCAmelCase__ : int = 1_5_0_0_0_0_0 ) ->int:
A__ : defaultdict = defaultdict(UpperCAmelCase__ )
A__ : Any = 2
while 2 * euclid_m * (euclid_m + 1) <= limit:
for euclid_n in range((euclid_m % 2) + 1, UpperCAmelCase__, 2 ):
if gcd(UpperCAmelCase__, UpperCAmelCase__ ) > 1:
continue
A__ : str = 2 * euclid_m * (euclid_m + euclid_n)
for perimeter in range(UpperCAmelCase__, limit + 1, UpperCAmelCase__ ):
frequencies[perimeter] += 1
euclid_m += 1
return sum(1 for frequency in frequencies.values() if frequency == 1 )
if __name__ == "__main__":
print(F'{solution() = }')
| 296
| 1
|
"""simple docstring"""
import numpy as np
def SCREAMING_SNAKE_CASE ( _lowerCamelCase : np.array ) -> np.array:
return 1 / (1 + np.exp(-vector ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 44
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
lowerCAmelCase__ : str = {
'configuration_roc_bert': ['ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RoCBertConfig'],
'tokenization_roc_bert': ['RoCBertTokenizer'],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase__ : List[str] = [
'ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST',
'RoCBertForCausalLM',
'RoCBertForMaskedLM',
'RoCBertForMultipleChoice',
'RoCBertForPreTraining',
'RoCBertForQuestionAnswering',
'RoCBertForSequenceClassification',
'RoCBertForTokenClassification',
'RoCBertLayer',
'RoCBertModel',
'RoCBertPreTrainedModel',
'load_tf_weights_in_roc_bert',
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
lowerCAmelCase__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 98
| 0
|
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
__snake_case = logging.get_logger(__name__)
__snake_case = {
"""microsoft/unispeech-large-1500h-cv""": (
"""https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json"""
),
# See all UniSpeech models at https://huggingface.co/models?filter=unispeech
}
class lowercase__ ( _UpperCAmelCase ):
A__ : Optional[int] ="""unispeech"""
def __init__( self : int , UpperCAmelCase_ : Dict=32 , UpperCAmelCase_ : Dict=768 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : Dict=12 , UpperCAmelCase_ : Optional[Any]=3072 , UpperCAmelCase_ : Dict="gelu" , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : int=1e-5 , UpperCAmelCase_ : List[Any]="group" , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : int=(512, 512, 512, 512, 512, 512, 512) , UpperCAmelCase_ : List[str]=(5, 2, 2, 2, 2, 2, 2) , UpperCAmelCase_ : Optional[int]=(10, 3, 3, 3, 3, 2, 2) , UpperCAmelCase_ : List[Any]=False , UpperCAmelCase_ : List[str]=128 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : str=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[Any]=0.05 , UpperCAmelCase_ : Tuple=10 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : str=0.0 , UpperCAmelCase_ : Optional[int]=10 , UpperCAmelCase_ : List[str]=0 , UpperCAmelCase_ : Tuple=320 , UpperCAmelCase_ : Optional[int]=2 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : Dict=100 , UpperCAmelCase_ : str=256 , UpperCAmelCase_ : Union[str, Any]=256 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : Optional[Any]="mean" , UpperCAmelCase_ : int=False , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : int=256 , UpperCAmelCase_ : Optional[Any]=80 , UpperCAmelCase_ : Any=0 , UpperCAmelCase_ : str=1 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : Optional[int]=0.5 , **UpperCAmelCase_ : Dict , ):
super().__init__(**UpperCAmelCase_ , pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = hidden_size
SCREAMING_SNAKE_CASE__ = feat_extract_norm
SCREAMING_SNAKE_CASE__ = feat_extract_activation
SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = list(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ = conv_bias
SCREAMING_SNAKE_CASE__ = num_conv_pos_embeddings
SCREAMING_SNAKE_CASE__ = num_conv_pos_embedding_groups
SCREAMING_SNAKE_CASE__ = len(self.conv_dim )
SCREAMING_SNAKE_CASE__ = num_hidden_layers
SCREAMING_SNAKE_CASE__ = intermediate_size
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = num_attention_heads
SCREAMING_SNAKE_CASE__ = hidden_dropout
SCREAMING_SNAKE_CASE__ = attention_dropout
SCREAMING_SNAKE_CASE__ = activation_dropout
SCREAMING_SNAKE_CASE__ = feat_proj_dropout
SCREAMING_SNAKE_CASE__ = final_dropout
SCREAMING_SNAKE_CASE__ = layerdrop
SCREAMING_SNAKE_CASE__ = layer_norm_eps
SCREAMING_SNAKE_CASE__ = initializer_range
SCREAMING_SNAKE_CASE__ = num_ctc_classes
SCREAMING_SNAKE_CASE__ = vocab_size
SCREAMING_SNAKE_CASE__ = do_stable_layer_norm
SCREAMING_SNAKE_CASE__ = use_weighted_layer_sum
SCREAMING_SNAKE_CASE__ = classifier_proj_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =='
' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ='
F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
SCREAMING_SNAKE_CASE__ = apply_spec_augment
SCREAMING_SNAKE_CASE__ = mask_time_prob
SCREAMING_SNAKE_CASE__ = mask_time_length
SCREAMING_SNAKE_CASE__ = mask_time_min_masks
SCREAMING_SNAKE_CASE__ = mask_feature_prob
SCREAMING_SNAKE_CASE__ = mask_feature_length
SCREAMING_SNAKE_CASE__ = mask_feature_min_masks
# parameters for pretraining with codevector quantized representations
SCREAMING_SNAKE_CASE__ = num_codevectors_per_group
SCREAMING_SNAKE_CASE__ = num_codevector_groups
SCREAMING_SNAKE_CASE__ = contrastive_logits_temperature
SCREAMING_SNAKE_CASE__ = feat_quantizer_dropout
SCREAMING_SNAKE_CASE__ = num_negatives
SCREAMING_SNAKE_CASE__ = codevector_dim
SCREAMING_SNAKE_CASE__ = proj_codevector_dim
SCREAMING_SNAKE_CASE__ = diversity_loss_weight
# ctc loss
SCREAMING_SNAKE_CASE__ = ctc_loss_reduction
SCREAMING_SNAKE_CASE__ = ctc_zero_infinity
# pretraining loss
SCREAMING_SNAKE_CASE__ = replace_prob
@property
def A_ ( self : List[Any] ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 371
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
__snake_case = {
"""configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case = [
"""NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NezhaForNextSentencePrediction""",
"""NezhaForMaskedLM""",
"""NezhaForPreTraining""",
"""NezhaForMultipleChoice""",
"""NezhaForQuestionAnswering""",
"""NezhaForSequenceClassification""",
"""NezhaForTokenClassification""",
"""NezhaModel""",
"""NezhaPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nezha import (
NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST,
NezhaForMaskedLM,
NezhaForMultipleChoice,
NezhaForNextSentencePrediction,
NezhaForPreTraining,
NezhaForQuestionAnswering,
NezhaForSequenceClassification,
NezhaForTokenClassification,
NezhaModel,
NezhaPreTrainedModel,
)
else:
import sys
__snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 169
| 0
|
import argparse
import logging
import os
import sys
import numpy as np
import onnxruntime
import torch
from bart_onnx.generation_onnx import BARTBeamSearchGenerator
from bart_onnx.reduce_onnx_size import remove_dup_initializers
import transformers
from transformers import BartForConditionalGeneration, BartTokenizer
logging.basicConfig(
format="%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s",
datefmt="%Y-%m-%d %H:%M:%S",
level=os.environ.get("LOGLEVEL", "INFO").upper(),
stream=sys.stdout,
)
_lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__)
_lowerCAmelCase : Any = {"facebook/bart-base": BartForConditionalGeneration}
_lowerCAmelCase : List[str] = {"facebook/bart-base": BartTokenizer}
def lowerCAmelCase ( ):
"""simple docstring"""
UpperCAmelCase__ = argparse.ArgumentParser(description="Export Bart model + Beam Search to ONNX graph." )
parser.add_argument(
"--validation_file" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="A csv or a json file containing the validation data." )
parser.add_argument(
"--max_length" , type=_lowerCAmelCase , default=5 , help="The maximum total input sequence length after tokenization." , )
parser.add_argument(
"--num_beams" , type=_lowerCAmelCase , default=_lowerCAmelCase , help=(
"Number of beams to use for evaluation. This argument will be "
"passed to ``model.generate``, which is used during ``evaluate`` and ``predict``."
) , )
parser.add_argument(
"--model_name_or_path" , type=_lowerCAmelCase , help="Path to pretrained model or model identifier from huggingface.co/models." , required=_lowerCAmelCase , )
parser.add_argument(
"--config_name" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Pretrained config name or path if not the same as model_name" , )
parser.add_argument(
"--device" , type=_lowerCAmelCase , default="cpu" , help="Device where the model will be run" , )
parser.add_argument("--output_file_path" , type=_lowerCAmelCase , default=_lowerCAmelCase , help="Where to store the final ONNX file." )
UpperCAmelCase__ = parser.parse_args()
return args
def lowerCAmelCase ( _lowerCAmelCase : Any , _lowerCAmelCase : List[Any]="cpu" ):
"""simple docstring"""
UpperCAmelCase__ = model_dict[model_name].from_pretrained(_lowerCAmelCase ).to(_lowerCAmelCase )
UpperCAmelCase__ = tokenizer_dict[model_name].from_pretrained(_lowerCAmelCase )
if model_name in ["facebook/bart-base"]:
UpperCAmelCase__ = 0
UpperCAmelCase__ = None
UpperCAmelCase__ = 0
return huggingface_model, tokenizer
def lowerCAmelCase ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
model.eval()
UpperCAmelCase__ = None
UpperCAmelCase__ = torch.jit.script(BARTBeamSearchGenerator(_lowerCAmelCase ) )
with torch.no_grad():
UpperCAmelCase__ = 'My friends are cool but they eat too many carbs.'
UpperCAmelCase__ = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1024 , return_tensors="pt" ).to(model.device )
UpperCAmelCase__ = model.generate(
inputs["input_ids"] , attention_mask=inputs["attention_mask"] , num_beams=_lowerCAmelCase , max_length=_lowerCAmelCase , early_stopping=_lowerCAmelCase , decoder_start_token_id=model.config.decoder_start_token_id , )
torch.onnx.export(
_lowerCAmelCase , (
inputs["input_ids"],
inputs["attention_mask"],
num_beams,
max_length,
model.config.decoder_start_token_id,
) , _lowerCAmelCase , opset_version=14 , input_names=["input_ids", "attention_mask", "num_beams", "max_length", "decoder_start_token_id"] , output_names=["output_ids"] , dynamic_axes={
"input_ids": {0: "batch", 1: "seq"},
"output_ids": {0: "batch", 1: "seq_out"},
} , example_outputs=_lowerCAmelCase , )
logger.info("Model exported to {}".format(_lowerCAmelCase ) )
UpperCAmelCase__ = remove_dup_initializers(os.path.abspath(_lowerCAmelCase ) )
logger.info("Deduplicated and optimized model written to {}".format(_lowerCAmelCase ) )
UpperCAmelCase__ = onnxruntime.InferenceSession(_lowerCAmelCase )
UpperCAmelCase__ = ort_sess.run(
_lowerCAmelCase , {
"input_ids": inputs["input_ids"].cpu().numpy(),
"attention_mask": inputs["attention_mask"].cpu().numpy(),
"num_beams": np.array(_lowerCAmelCase ),
"max_length": np.array(_lowerCAmelCase ),
"decoder_start_token_id": np.array(model.config.decoder_start_token_id ),
} , )
np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 )
logger.info("Model outputs from torch and ONNX Runtime are similar." )
logger.info("Success." )
def lowerCAmelCase ( ):
"""simple docstring"""
UpperCAmelCase__ = parse_args()
UpperCAmelCase__ = 5
UpperCAmelCase__ = 4
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , )
logger.setLevel(logging.INFO )
transformers.utils.logging.set_verbosity_error()
UpperCAmelCase__ = torch.device(args.device )
UpperCAmelCase__ = load_model_tokenizer(args.model_name_or_path , _lowerCAmelCase )
if model.config.decoder_start_token_id is None:
raise ValueError("Make sure that `config.decoder_start_token_id` is correctly defined" )
model.to(_lowerCAmelCase )
if args.max_length:
UpperCAmelCase__ = args.max_length
if args.num_beams:
UpperCAmelCase__ = args.num_beams
if args.output_file_path:
UpperCAmelCase__ = args.output_file_path
else:
UpperCAmelCase__ = 'BART.onnx'
logger.info("Exporting model to ONNX" )
export_and_validate_model(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
if __name__ == "__main__":
main()
| 169
|
import math
import qiskit
def _a ( SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 , SCREAMING_SNAKE_CASE : int = 1 ) -> qiskit.result.counts.Counts:
"""simple docstring"""
if (
isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
):
raise TypeError('inputs must be integers.' )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError('inputs must be positive.' )
if (
(math.floor(SCREAMING_SNAKE_CASE ) != input_a)
or (math.floor(SCREAMING_SNAKE_CASE ) != input_a)
or (math.floor(SCREAMING_SNAKE_CASE ) != carry_in)
):
raise ValueError('inputs must be exact integers.' )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError('inputs must be less or equal to 2.' )
# build registers
__lowerCAmelCase: Union[str, Any] = qiskit.QuantumRegister(4 , 'qr' )
__lowerCAmelCase: List[Any] = qiskit.ClassicalRegister(2 , 'cr' )
# list the entries
__lowerCAmelCase: Any = [input_a, input_a, carry_in]
__lowerCAmelCase: List[str] = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(SCREAMING_SNAKE_CASE ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(SCREAMING_SNAKE_CASE ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(SCREAMING_SNAKE_CASE ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE ) # measure the last two qbits
__lowerCAmelCase: List[str] = qiskit.Aer.get_backend('aer_simulator' )
__lowerCAmelCase: List[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=10_00 )
return job.result().get_counts(SCREAMING_SNAKE_CASE )
if __name__ == "__main__":
print(f"Total sum count for state is: {quantum_full_adder(1, 1, 1)}")
| 322
| 0
|
"""simple docstring"""
import inspect
import os
import unittest
import torch
import accelerate
from accelerate import Accelerator
from accelerate.test_utils import execute_subprocess_async, require_multi_gpu
from accelerate.utils import patch_environment
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = inspect.getfile(accelerate.test_utils )
__snake_case : Union[str, Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_script.py'''] )
__snake_case : Optional[int] = os.path.sep.join(
mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_distributed_data_loop.py'''] )
__snake_case : List[str] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_ops.py'''] )
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
print(f"""Found {torch.cuda.device_count()} devices.""" )
__snake_case : Tuple = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.test_file_path]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(a__ , env=os.environ.copy() )
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
print(f"""Found {torch.cuda.device_count()} devices.""" )
__snake_case : Tuple = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.operation_file_path]
print(f"""Command: {cmd}""" )
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(a__ , env=os.environ.copy() )
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", inspect.getfile(self.__class__ )]
with patch_environment(omp_num_threads=1 ):
execute_subprocess_async(a__ , env=os.environ.copy() )
@require_multi_gpu
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
print(f"""Found {torch.cuda.device_count()} devices, using 2 devices only""" )
__snake_case : str = ['''torchrun''', f"""--nproc_per_node={torch.cuda.device_count()}""", self.data_loop_file_path]
with patch_environment(omp_num_threads=1 , cuda_visible_devices='''0,1''' ):
execute_subprocess_async(a__ , env=os.environ.copy() )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE : Optional[int] = Accelerator()
SCREAMING_SNAKE_CASE : Any = (accelerator.state.process_index + 2, 10)
SCREAMING_SNAKE_CASE : Tuple = torch.randint(0, 10, shape).to(accelerator.device)
SCREAMING_SNAKE_CASE : Any = ""
SCREAMING_SNAKE_CASE : List[str] = accelerator.pad_across_processes(tensor)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0):
error_msg += "Padding was not done with the right value (0)."
SCREAMING_SNAKE_CASE : Optional[Any] = accelerator.pad_across_processes(tensor, pad_first=True)
if tensora.shape[0] != accelerator.state.num_processes + 1:
error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0."
SCREAMING_SNAKE_CASE : Any = accelerator.state.num_processes - accelerator.state.process_index - 1
if not torch.equal(tensora[index:], tensor):
error_msg += "Tensors have different values."
if not torch.all(tensora[:index] == 0):
error_msg += "Padding was not done with the right value (0)."
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 353
|
"""simple docstring"""
import os
import tempfile
import unittest
from pathlib import Path
from transformers import AutoConfig, is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments
@require_tf
class _UpperCAmelCase ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE (self , a_ ):
'''simple docstring'''
for model_result in results.values():
for batch_size, sequence_length in zip(model_result['''bs'''] , model_result['''ss'''] ):
__snake_case : Dict = model_result['''result'''][batch_size][sequence_length]
self.assertIsNotNone(a_ )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Dict = '''sshleifer/tiny-gpt2'''
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : str = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : int = '''sgugger/tiny-distilbert-classification'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , only_pretrain_model=a_ , )
__snake_case : Optional[Any] = TensorFlowBenchmark(a_ )
__snake_case : List[str] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Any = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Union[str, Any] = AutoConfig.from_pretrained(a_ )
__snake_case : int = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Dict = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[str] = '''sshleifer/tiny-gpt2'''
__snake_case : Optional[Any] = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : Dict = TensorFlowBenchmark(a_ , [config] )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : int = TensorFlowBenchmark(a_ )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : List[Any] = '''sshleifer/tiny-gpt2'''
__snake_case : Dict = AutoConfig.from_pretrained(a_ )
__snake_case : Any = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ , [config] )
__snake_case : Any = benchmark.run()
self.check_results_dict_not_empty(results.time_train_result )
self.check_results_dict_not_empty(results.memory_train_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''patrickvonplaten/t5-tiny-random'''
__snake_case : Tuple = AutoConfig.from_pretrained(a_ )
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=a_ , )
__snake_case : List[str] = TensorFlowBenchmark(a_ , configs=[config] )
__snake_case : Union[str, Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
@unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('''GPU''' ) ) == 0 , '''Cannot do xla on CPU.''' )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Any = '''sshleifer/tiny-gpt2'''
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , training=a_ , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , use_xla=a_ , multi_process=a_ , )
__snake_case : Optional[int] = TensorFlowBenchmark(a_ )
__snake_case : List[Any] = benchmark.run()
self.check_results_dict_not_empty(results.time_inference_result )
self.check_results_dict_not_empty(results.memory_inference_result )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : str = '''sshleifer/tiny-gpt2'''
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Tuple = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , save_to_csv=a_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(a_ , '''inf_time.csv''' ) , inference_memory_csv_file=os.path.join(a_ , '''inf_mem.csv''' ) , env_info_csv_file=os.path.join(a_ , '''env.csv''' ) , multi_process=a_ , )
__snake_case : Union[str, Any] = TensorFlowBenchmark(a_ )
benchmark.run()
self.assertTrue(Path(os.path.join(a_ , '''inf_time.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''inf_mem.csv''' ) ).exists() )
self.assertTrue(Path(os.path.join(a_ , '''env.csv''' ) ).exists() )
def SCREAMING_SNAKE_CASE (self ):
'''simple docstring'''
__snake_case : Union[str, Any] = '''sshleifer/tiny-gpt2'''
def _check_summary_is_not_empty(a_ ):
self.assertTrue(hasattr(a_ , '''sequential''' ) )
self.assertTrue(hasattr(a_ , '''cumulative''' ) )
self.assertTrue(hasattr(a_ , '''current''' ) )
self.assertTrue(hasattr(a_ , '''total''' ) )
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case : Optional[Any] = TensorFlowBenchmarkArguments(
models=[MODEL_ID] , inference=a_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(a_ , '''log.txt''' ) , log_print=a_ , trace_memory_line_by_line=a_ , eager_mode=a_ , multi_process=a_ , )
__snake_case : List[Any] = TensorFlowBenchmark(a_ )
__snake_case : Optional[int] = benchmark.run()
_check_summary_is_not_empty(result.inference_summary )
self.assertTrue(Path(os.path.join(a_ , '''log.txt''' ) ).exists() )
| 24
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__)
SCREAMING_SNAKE_CASE__ = "▁"
SCREAMING_SNAKE_CASE__ = {"vocab_file": "sentencepiece.bpe.model"}
SCREAMING_SNAKE_CASE__ = {
"vocab_file": {
"xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model",
"xlm-roberta-large-finetuned-conll02-dutch": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll02-spanish": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-english": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model"
),
"xlm-roberta-large-finetuned-conll03-german": (
"https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model"
),
}
}
SCREAMING_SNAKE_CASE__ = {
"xlm-roberta-base": 512,
"xlm-roberta-large": 512,
"xlm-roberta-large-finetuned-conll02-dutch": 512,
"xlm-roberta-large-finetuned-conll02-spanish": 512,
"xlm-roberta-large-finetuned-conll03-english": 512,
"xlm-roberta-large-finetuned-conll03-german": 512,
}
class lowercase ( __lowerCAmelCase ):
_SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES
_SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP
_SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_SCREAMING_SNAKE_CASE = ['''input_ids''', '''attention_mask''']
def __init__( self , lowercase , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase = None , **lowercase , ) -> None:
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase = AddedToken(lowerCAmelCase_ , lstrip=lowerCAmelCase_ , rstrip=lowerCAmelCase_ ) if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else mask_token
lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=lowerCAmelCase_ , eos_token=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase_ , )
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(lowerCAmelCase_ ) )
lowerCAmelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# Mimic fairseq token-to-id alignment for the first 4 token
lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3}
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
lowerCAmelCase = 1
lowerCAmelCase = len(self.sp_model ) + self.fairseq_offset
lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ) -> Union[str, Any]:
lowerCAmelCase = self.__dict__.copy()
lowerCAmelCase = None
lowerCAmelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , lowercase ) -> List[str]:
lowerCAmelCase = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCAmelCase = {}
lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def _snake_case ( self , lowercase , lowercase = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
lowerCAmelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self , lowercase , lowercase = None , lowercase = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase_ , token_ids_a=lowerCAmelCase_ , already_has_special_tokens=lowerCAmelCase_ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase_ )) + [1]
return [1] + ([0] * len(lowerCAmelCase_ )) + [1, 1] + ([0] * len(lowerCAmelCase_ )) + [1]
def _snake_case ( self , lowercase , lowercase = None ) -> List[int]:
lowerCAmelCase = [self.sep_token_id]
lowerCAmelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _snake_case ( self ) -> int:
return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase_ ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _snake_case ( self , lowercase ) -> List[str]:
return self.sp_model.encode(lowerCAmelCase_ , out_type=lowerCAmelCase_ )
def _snake_case ( self , lowercase ) -> Dict:
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCAmelCase = self.sp_model.PieceToId(lowerCAmelCase_ )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _snake_case ( self , lowercase ) -> Tuple:
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _snake_case ( self , lowercase ) -> List[Any]:
lowerCAmelCase = """""".join(lowerCAmelCase_ ).replace(lowerCAmelCase_ , """ """ ).strip()
return out_string
def _snake_case ( self , lowercase , lowercase = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase_ ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCAmelCase = os.path.join(
lowerCAmelCase_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase_ ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , lowerCAmelCase_ )
elif not os.path.isfile(self.vocab_file ):
with open(lowerCAmelCase_ , """wb""" ) as fi:
lowerCAmelCase = self.sp_model.serialized_model_proto()
fi.write(lowerCAmelCase_ )
return (out_vocab_file,)
| 46
|
import random
from typing import Any
def snake_case ( snake_case__ :list) -> list[Any]:
for _ in range(len(snake_case__)):
_A = random.randint(0 , len(snake_case__) - 1)
_A = random.randint(0 , len(snake_case__) - 1)
_A , _A = data[b], data[a]
return data
if __name__ == "__main__":
_SCREAMING_SNAKE_CASE = [0, 1, 2, 3, 4, 5, 6, 7]
_SCREAMING_SNAKE_CASE = ['python', 'says', 'hello', '!']
print('Fisher-Yates Shuffle:')
print('List', integers, strings)
print('FY Shuffle', fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
| 180
| 0
|
"""simple docstring"""
import argparse
import random
import joblib
import numpy as np
import torch
from igf.igf import (
SecondaryLearner,
collect_objective_set,
compute_perplexity,
generate_datasets,
load_gpta,
recopy_gpta,
set_seed,
train_secondary_learner,
)
from torch.utils.data import DataLoader, RandomSampler
from transformers import GPTaLMHeadModel
def lowerCAmelCase_ ( _snake_case : Any=32 , _snake_case : str=10 , _snake_case : Optional[Any]=100 , _snake_case : Union[str, Any]=1026 , _snake_case : List[str]=True , _snake_case : Optional[int]="data/tokenized_stories_train_wikitext103.jbl" , _snake_case : List[Any]="igf_context_pairs.jbl" , ) -> str:
'''simple docstring'''
set_seed(3 )
# generate train_data and objective_set
__magic_name__ : Dict = generate_datasets(
_snake_case , _snake_case , number=_snake_case , min_len=1026 , trim=_snake_case )
# keeps model same across runs
set_seed(4 )
# model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights
# can we train on GPU?
__magic_name__ : Dict = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
# load pretrained model
__magic_name__ : str = load_gpta("gpt2" ).to(_snake_case )
print("computing perplexity on objective set" )
__magic_name__ : Union[str, Any] = compute_perplexity(_snake_case , _snake_case , _snake_case ).item()
print("perplexity on objective set:" , _snake_case )
# collect igf pairs and save to file demo.jbl
collect_objective_set(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case )
# clean up, delete model and data we don't need anymore
del model, train_data, objective_set
torch.cuda.empty_cache()
def lowerCAmelCase_ ( _snake_case : int , _snake_case : str=15 , _snake_case : Optional[Any]=128 , _snake_case : Optional[Any]=100 , _snake_case : Any="igf_model.pt" , ) -> List[str]:
'''simple docstring'''
set_seed(42 )
# Load pre-trained model
__magic_name__ : Any = GPTaLMHeadModel.from_pretrained("gpt2" )
# Initialize secondary learner to use embedding weights of model
__magic_name__ : List[str] = SecondaryLearner(_snake_case )
# Train secondary learner
__magic_name__ : Tuple = train_secondary_learner(
_snake_case , _snake_case , max_epochs=_snake_case , batch_size=_snake_case , eval_freq=100 , igf_model_path=_snake_case , )
del model, secondary_learner_train_data
torch.cuda.empty_cache()
return secondary_learner
def lowerCAmelCase_ ( _snake_case : str , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : int=32 , _snake_case : int=1000 , _snake_case : Union[str, Any]=16 , _snake_case : List[str]=1.0 , _snake_case : int=recopy_gpta , _snake_case : Optional[Any]=None , _snake_case : List[Any]=10 , _snake_case : Tuple="gpt2_finetuned.pt" , ) -> List[Any]:
'''simple docstring'''
__magic_name__ : List[str] = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" )
__magic_name__ : List[Any] = RandomSampler(_snake_case )
__magic_name__ : str = DataLoader(_snake_case , sampler=_snake_case )
__magic_name__ : Dict = max_steps // (len(_snake_case )) + 1
__magic_name__ : Union[str, Any] = 0
__magic_name__ : Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=_snake_case )
__magic_name__ : Union[str, Any] = recopy_model(_snake_case , _snake_case , _snake_case )
model.train()
if secondary_learner is not None:
secondary_learner.to(_snake_case )
secondary_learner.eval()
__magic_name__ : str = []
__magic_name__ : str = 0
__magic_name__ : List[Any] = []
__magic_name__ : Tuple = []
# Compute the performance of the transformer model at the beginning
__magic_name__ : Union[str, Any] = compute_perplexity(_snake_case , _snake_case , _snake_case )
test_perps.append(_snake_case )
print("Test perplexity, step" , _snake_case , ":" , _snake_case )
for epoch in range(int(_snake_case ) ):
for step, example in enumerate(_snake_case ):
torch.cuda.empty_cache()
__magic_name__ : str = random.randint(0 , example.size(2 ) - context_len - 1 )
__magic_name__ : str = example[0, 0, start : start + context_len]
lm_optimizer.zero_grad()
__magic_name__ : Union[str, Any] = model(_snake_case , labels=_snake_case )
__magic_name__ : Tuple = True
if secondary_learner is not None:
__magic_name__ : Union[str, Any] = secondary_learner.forward(
torch.tensor(_snake_case , dtype=torch.long , device=_snake_case ).unsqueeze(0 ) )[0].item()
observed_qs.append(float(_snake_case ) )
# Here we implement the simple non-constant threshold for the predicted IG(X) value
# We will decay the selectivity of our secondary learner filter from
# 1 standard deviation above average to 1 below average after 10 batches.
if global_step == 10:
__magic_name__ : Optional[int] = -1
if predicted_q < threshold:
__magic_name__ : List[Any] = False
# If we passed the filter, add the context to the batch!
if do_backprop:
contexts.append(np.array(context.cpu() ) )
__magic_name__ : int = outputs[0]
lm_loss.backward()
examples += 1
del outputs
# Once the batch is filled with enough contexts, backprop on the batch.
if examples == batch_size:
torch.cuda.empty_cache()
__magic_name__ : Dict = 0
# Do LM backprop
torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 )
lm_optimizer.step()
lm_scheduler.step() # Update learning rate schedule
global_step += 1
# Compute the performance of the transformer model at this batch
if global_step % eval_interval == 0:
__magic_name__ : str = compute_perplexity(_snake_case , _snake_case , _snake_case )
test_perps.append(_snake_case )
print("Test perplexity, step" , _snake_case , ":" , _snake_case )
# Break out of the loop after 60 batches
if max_steps > 0 and global_step > 60:
break
if max_steps > 0 and global_step > 60:
break
# save finetuned transformer model
torch.save(model.state_dict() , _snake_case )
torch.cuda.empty_cache()
# Do some cleaning up so we can reinitialize for the next run of this function
del lm_optimizer
del lm_scheduler
return model
def lowerCAmelCase_ ( ) -> List[str]:
'''simple docstring'''
__magic_name__ : Any = argparse.ArgumentParser(description="Fine-tune a transformer model with IGF on a language modeling task" )
# Required parameters
parser.add_argument(
"--data_dir" , default=_snake_case , type=_snake_case , required=_snake_case , help="The input data dir. Should contain data files for WikiText." , )
parser.add_argument(
"--model_name_or_path" , default=_snake_case , type=_snake_case , required=_snake_case , help="Path to pretrained model or model identifier from huggingface.co/models" , )
parser.add_argument(
"--data_file" , type=_snake_case , default=_snake_case , help=(
"A jbl file containing tokenized data which can be split as objective dataset, "
"train_dataset and test_dataset."
) , )
parser.add_argument(
"--igf_data_file" , type=_snake_case , default=_snake_case , help="A jbl file containing the context and information gain pairs to train secondary learner." , )
parser.add_argument(
"--output_dir" , default=_snake_case , type=_snake_case , required=_snake_case , help="The output directory where the final fine-tuned model is stored." , )
parser.add_argument(
"--tokenizer_name" , default=_snake_case , type=_snake_case , help="Pretrained tokenizer name or path if not the same as model_name" , )
parser.add_argument("--seed" , type=_snake_case , default=_snake_case , help="A seed for reproducible training." )
parser.add_argument(
"--context_len" , default=32 , type=_snake_case , help=(
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
) , )
parser.add_argument(
"--size_objective_set" , default=100 , type=_snake_case , help="number of articles that are long enough to be used as our objective set" , )
parser.add_argument(
"--eval_freq" , default=100 , type=_snake_case , help="secondary model evaluation is triggered at eval_freq" )
parser.add_argument("--max_steps" , default=1000 , type=_snake_case , help="To calculate training epochs" )
parser.add_argument(
"--secondary_learner_batch_size" , default=128 , type=_snake_case , help="batch size of training data for secondary learner" , )
parser.add_argument(
"--batch_size" , default=16 , type=_snake_case , help="batch size of training data of language model(gpt2) " )
parser.add_argument(
"--eval_interval" , default=10 , type=_snake_case , help=(
"decay the selectivity of our secondary learner filter from"
"1 standard deviation above average to 1 below average after 10 batches"
) , )
parser.add_argument(
"--number" , default=100 , type=_snake_case , help="The number of examples split to be used as objective_set/test_data" )
parser.add_argument(
"--min_len" , default=1026 , type=_snake_case , help="The minimum length of the article to be used as objective set" )
parser.add_argument(
"--secondary_learner_max_epochs" , default=15 , type=_snake_case , help="number of epochs to train secondary learner" )
parser.add_argument("--trim" , default=_snake_case , type=_snake_case , help="truncate the example if it exceeds context length" )
parser.add_argument(
"--threshold" , default=1.0 , type=_snake_case , help=(
"The threshold value used by secondary learner to filter the train_data and allow only"
" informative data as input to the model"
) , )
parser.add_argument("--finetuned_model_name" , default="gpt2_finetuned.pt" , type=_snake_case , help="finetuned_model_name" )
parser.add_argument(
"--recopy_model" , default=_snake_case , type=_snake_case , help="Reset the model to the original pretrained GPT-2 weights after each iteration" , )
# function calls
# Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner
generate_n_pairs(
context_len=32 , max_steps=10 , size_objective_set=100 , min_len=1026 , trim=_snake_case , data_file="data/tokenized_stories_train_wikitext103.jbl" , igf_data_file="igf_context_pairs.jbl" , )
# Load train data for secondary learner
__magic_name__ : List[str] = joblib.load("data/IGF_values.jbl" )
# Train secondary learner
__magic_name__ : List[str] = training_secondary_learner(
_snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=128 , eval_freq=100 , igf_model_path="igf_model.pt" , )
# load pretrained gpt2 model
__magic_name__ : int = GPTaLMHeadModel.from_pretrained("gpt2" )
set_seed(42 )
# Generate train and test data to train and evaluate gpt2 model
__magic_name__ : List[str] = generate_datasets(
context_len=32 , file="data/tokenized_stories_train_wikitext103.jbl" , number=100 , min_len=1026 , trim=_snake_case )
# fine-tuning of the gpt2 model using igf (Information Gain Filtration)
finetune(
_snake_case , _snake_case , _snake_case , context_len=32 , max_steps=1000 , batch_size=16 , threshold=1.0 , recopy_model=_snake_case , secondary_learner=_snake_case , eval_interval=10 , finetuned_model_name="gpt2_finetuned.pt" , )
if __name__ == "__main__":
main()
| 353
|
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _snake_case ( snake_case ):
UpperCamelCase__ = ['image_processor', 'tokenizer']
UpperCamelCase__ = 'BridgeTowerImageProcessor'
UpperCamelCase__ = ('RobertaTokenizer', 'RobertaTokenizerFast')
def __init__( self , _a , _a ):
super().__init__(_a , _a )
def __call__( self , _a , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ):
__magic_name__ : Dict = self.tokenizer(
text=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , )
# add pixel_values + pixel_mask
__magic_name__ : List[str] = self.image_processor(
_a , return_tensors=_a , do_normalize=_a , do_center_crop=_a , **_a )
encoding.update(_a )
return encoding
def SCREAMING_SNAKE_CASE ( self , *_a , **_a ):
return self.tokenizer.batch_decode(*_a , **_a )
def SCREAMING_SNAKE_CASE ( self , *_a , **_a ):
return self.tokenizer.decode(*_a , **_a )
@property
def SCREAMING_SNAKE_CASE ( self ):
__magic_name__ : Dict = self.tokenizer.model_input_names
__magic_name__ : Any = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 41
| 0
|
from functools import lru_cache
@lru_cache
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> int:
'''simple docstring'''
if num < 0:
raise ValueError("""Number should not be negative.""" )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 296
|
import importlib
import shutil
import threading
import warnings
from typing import List
import fsspec
import fsspec.asyn
from . import compression
from .hffilesystem import HfFileSystem
SCREAMING_SNAKE_CASE_ = importlib.util.find_spec("""s3fs""") is not None
if _has_safs:
from .safilesystem import SaFileSystem # noqa: F401
SCREAMING_SNAKE_CASE_ = [
compression.BzaFileSystem,
compression.GzipFileSystem,
compression.LzaFileSystem,
compression.XzFileSystem,
compression.ZstdFileSystem,
]
# Register custom filesystems
for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]:
if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class:
warnings.warn(F'''A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.''')
fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True)
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> str:
'''simple docstring'''
if "://" in dataset_path:
SCREAMING_SNAKE_CASE = dataset_path.split("""://""" )[1]
return dataset_path
def __lowercase ( _SCREAMING_SNAKE_CASE ) -> bool:
'''simple docstring'''
if fs is not None and fs.protocol != "file":
return True
else:
return False
def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
'''simple docstring'''
SCREAMING_SNAKE_CASE = not is_remote_filesystem(_SCREAMING_SNAKE_CASE )
if is_local:
# LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory
shutil.move(fs._strip_protocol(_SCREAMING_SNAKE_CASE ) , fs._strip_protocol(_SCREAMING_SNAKE_CASE ) )
else:
fs.mv(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , recursive=_SCREAMING_SNAKE_CASE )
def __lowercase ( ) -> None:
'''simple docstring'''
if hasattr(fsspec.asyn , """reset_lock""" ):
# for future fsspec>2022.05.0
fsspec.asyn.reset_lock()
else:
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = None
SCREAMING_SNAKE_CASE = threading.Lock()
| 296
| 1
|
import math
from collections import defaultdict
from typing import List, Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
def a__ ( __UpperCamelCase , __UpperCamelCase=0.999 , __UpperCamelCase="cosine" , ):
if alpha_transform_type == "cosine":
def alpha_bar_fn(__UpperCamelCase ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__UpperCamelCase ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
SCREAMING_SNAKE_CASE_ = []
for i in range(__SCREAMING_SNAKE_CASE ):
SCREAMING_SNAKE_CASE_ = i / num_diffusion_timesteps
SCREAMING_SNAKE_CASE_ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__SCREAMING_SNAKE_CASE ) / alpha_bar_fn(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) )
return torch.tensor(__SCREAMING_SNAKE_CASE , dtype=torch.floataa )
class lowerCamelCase (__UpperCamelCase , __UpperCamelCase ):
"""simple docstring"""
lowerCamelCase__ = [e.name for e in KarrasDiffusionSchedulers]
lowerCamelCase__ = 2
@register_to_config
def __init__( self : Optional[int] , __magic_name__ : int = 1_000 , __magic_name__ : float = 0.0_0085 , __magic_name__ : float = 0.012 , __magic_name__ : str = "linear" , __magic_name__ : Optional[Union[np.ndarray, List[float]]] = None , __magic_name__ : str = "epsilon" , __magic_name__ : Optional[bool] = False , __magic_name__ : Optional[bool] = False , __magic_name__ : float = 1.0 , __magic_name__ : str = "linspace" , __magic_name__ : int = 0 , ) -> Union[str, Any]:
if trained_betas is not None:
SCREAMING_SNAKE_CASE_ = torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "linear":
SCREAMING_SNAKE_CASE_ = torch.linspace(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , dtype=torch.floataa )
elif beta_schedule == "scaled_linear":
# this schedule is very specific to the latent diffusion model.
SCREAMING_SNAKE_CASE_ = (
torch.linspace(beta_start**0.5 , beta_end**0.5 , _lowerCAmelCase , dtype=torch.floataa ) ** 2
)
elif beta_schedule == "squaredcos_cap_v2":
# Glide cosine schedule
SCREAMING_SNAKE_CASE_ = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="cosine" )
elif beta_schedule == "exp":
SCREAMING_SNAKE_CASE_ = betas_for_alpha_bar(_lowerCAmelCase , alpha_transform_type="exp" )
else:
raise NotImplementedError(F'''{beta_schedule} does is not implemented for {self.__class__}''' )
SCREAMING_SNAKE_CASE_ = 1.0 - self.betas
SCREAMING_SNAKE_CASE_ = torch.cumprod(self.alphas , dim=0 )
# set all values
self.set_timesteps(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = use_karras_sigmas
def __A ( self : Tuple , __magic_name__ : int , __magic_name__ : int=None ) -> List[str]:
if schedule_timesteps is None:
SCREAMING_SNAKE_CASE_ = self.timesteps
SCREAMING_SNAKE_CASE_ = (schedule_timesteps == timestep).nonzero()
# The sigma index that is taken for the **very** first `step`
# is always the second index (or the last index if there is only 1)
# This way we can ensure we don't accidentally skip a sigma in
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
if len(self._index_counter ) == 0:
SCREAMING_SNAKE_CASE_ = 1 if len(_lowerCAmelCase ) > 1 else 0
else:
SCREAMING_SNAKE_CASE_ = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep
SCREAMING_SNAKE_CASE_ = self._index_counter[timestep_int]
return indices[pos].item()
@property
def __A ( self : Optional[Any] ) -> List[Any]:
# standard deviation of the initial noise distribution
if self.config.timestep_spacing in ["linspace", "trailing"]:
return self.sigmas.max()
return (self.sigmas.max() ** 2 + 1) ** 0.5
def __A ( self : Optional[Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : Union[float, torch.FloatTensor] , ) -> Dict:
SCREAMING_SNAKE_CASE_ = self.index_for_timestep(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = self.sigmas[step_index]
SCREAMING_SNAKE_CASE_ = sample / ((sigma**2 + 1) ** 0.5)
return sample
def __A ( self : List[Any] , __magic_name__ : int , __magic_name__ : Union[str, torch.device] = None , __magic_name__ : Optional[int] = None , ) -> Optional[int]:
SCREAMING_SNAKE_CASE_ = num_inference_steps
SCREAMING_SNAKE_CASE_ = num_train_timesteps or self.config.num_train_timesteps
# "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
if self.config.timestep_spacing == "linspace":
SCREAMING_SNAKE_CASE_ = np.linspace(0 , num_train_timesteps - 1 , _lowerCAmelCase , dtype=_lowerCAmelCase )[::-1].copy()
elif self.config.timestep_spacing == "leading":
SCREAMING_SNAKE_CASE_ = num_train_timesteps // self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
SCREAMING_SNAKE_CASE_ = (np.arange(0 , _lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(_lowerCAmelCase )
timesteps += self.config.steps_offset
elif self.config.timestep_spacing == "trailing":
SCREAMING_SNAKE_CASE_ = num_train_timesteps / self.num_inference_steps
# creates integer timesteps by multiplying by ratio
# casting to int to avoid issues when num_inference_step is power of 3
SCREAMING_SNAKE_CASE_ = (np.arange(_lowerCAmelCase , 0 , -step_ratio )).round().copy().astype(_lowerCAmelCase )
timesteps -= 1
else:
raise ValueError(
F'''{self.config.timestep_spacing} is not supported. Please make sure to choose one of \'linspace\', \'leading\' or \'trailing\'.''' )
SCREAMING_SNAKE_CASE_ = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 )
SCREAMING_SNAKE_CASE_ = np.log(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = np.interp(_lowerCAmelCase , np.arange(0 , len(_lowerCAmelCase ) ) , _lowerCAmelCase )
if self.config.use_karras_sigmas:
SCREAMING_SNAKE_CASE_ = self._convert_to_karras(in_sigmas=_lowerCAmelCase , num_inference_steps=self.num_inference_steps )
SCREAMING_SNAKE_CASE_ = np.array([self._sigma_to_t(_lowerCAmelCase , _lowerCAmelCase ) for sigma in sigmas] )
SCREAMING_SNAKE_CASE_ = np.concatenate([sigmas, [0.0]] ).astype(np.floataa )
SCREAMING_SNAKE_CASE_ = torch.from_numpy(_lowerCAmelCase ).to(device=_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2 ), sigmas[-1:]] )
SCREAMING_SNAKE_CASE_ = torch.from_numpy(_lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2 )] )
if str(_lowerCAmelCase ).startswith("mps" ):
# mps does not support float64
SCREAMING_SNAKE_CASE_ = timesteps.to(_lowerCAmelCase , dtype=torch.floataa )
else:
SCREAMING_SNAKE_CASE_ = timesteps.to(device=_lowerCAmelCase )
# empty dt and derivative
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
# for exp beta schedules, such as the one for `pipeline_shap_e.py`
# we need an index counter
SCREAMING_SNAKE_CASE_ = defaultdict(_lowerCAmelCase )
def __A ( self : List[Any] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ) -> str:
# get log sigma
SCREAMING_SNAKE_CASE_ = np.log(_lowerCAmelCase )
# get distribution
SCREAMING_SNAKE_CASE_ = log_sigma - log_sigmas[:, np.newaxis]
# get sigmas range
SCREAMING_SNAKE_CASE_ = np.cumsum((dists >= 0) , axis=0 ).argmax(axis=0 ).clip(max=log_sigmas.shape[0] - 2 )
SCREAMING_SNAKE_CASE_ = low_idx + 1
SCREAMING_SNAKE_CASE_ = log_sigmas[low_idx]
SCREAMING_SNAKE_CASE_ = log_sigmas[high_idx]
# interpolate sigmas
SCREAMING_SNAKE_CASE_ = (low - log_sigma) / (low - high)
SCREAMING_SNAKE_CASE_ = np.clip(_lowerCAmelCase , 0 , 1 )
# transform interpolation to time range
SCREAMING_SNAKE_CASE_ = (1 - w) * low_idx + w * high_idx
SCREAMING_SNAKE_CASE_ = t.reshape(sigma.shape )
return t
def __A ( self : Union[str, Any] , __magic_name__ : torch.FloatTensor , __magic_name__ : List[Any] ) -> Dict:
SCREAMING_SNAKE_CASE_ = in_sigmas[-1].item()
SCREAMING_SNAKE_CASE_ = in_sigmas[0].item()
SCREAMING_SNAKE_CASE_ = 7.0 # 7.0 is the value used in the paper
SCREAMING_SNAKE_CASE_ = np.linspace(0 , 1 , _lowerCAmelCase )
SCREAMING_SNAKE_CASE_ = sigma_min ** (1 / rho)
SCREAMING_SNAKE_CASE_ = sigma_max ** (1 / rho)
SCREAMING_SNAKE_CASE_ = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return sigmas
@property
def __A ( self : Optional[int] ) -> Any:
return self.dt is None
def __A ( self : Any , __magic_name__ : Union[torch.FloatTensor, np.ndarray] , __magic_name__ : Union[float, torch.FloatTensor] , __magic_name__ : Union[torch.FloatTensor, np.ndarray] , __magic_name__ : bool = True , ) -> str:
SCREAMING_SNAKE_CASE_ = self.index_for_timestep(_lowerCAmelCase )
# advance index counter by 1
SCREAMING_SNAKE_CASE_ = timestep.cpu().item() if torch.is_tensor(_lowerCAmelCase ) else timestep
self._index_counter[timestep_int] += 1
if self.state_in_first_order:
SCREAMING_SNAKE_CASE_ = self.sigmas[step_index]
SCREAMING_SNAKE_CASE_ = self.sigmas[step_index + 1]
else:
# 2nd order / Heun's method
SCREAMING_SNAKE_CASE_ = self.sigmas[step_index - 1]
SCREAMING_SNAKE_CASE_ = self.sigmas[step_index]
# currently only gamma=0 is supported. This usually works best anyways.
# We can support gamma in the future but then need to scale the timestep before
# passing it to the model which requires a change in API
SCREAMING_SNAKE_CASE_ = 0
SCREAMING_SNAKE_CASE_ = sigma * (gamma + 1) # Note: sigma_hat == sigma for now
# 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
if self.config.prediction_type == "epsilon":
SCREAMING_SNAKE_CASE_ = sigma_hat if self.state_in_first_order else sigma_next
SCREAMING_SNAKE_CASE_ = sample - sigma_input * model_output
elif self.config.prediction_type == "v_prediction":
SCREAMING_SNAKE_CASE_ = sigma_hat if self.state_in_first_order else sigma_next
SCREAMING_SNAKE_CASE_ = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
sample / (sigma_input**2 + 1)
)
elif self.config.prediction_type == "sample":
SCREAMING_SNAKE_CASE_ = model_output
else:
raise ValueError(
F'''prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`''' )
if self.config.clip_sample:
SCREAMING_SNAKE_CASE_ = pred_original_sample.clamp(
-self.config.clip_sample_range , self.config.clip_sample_range )
if self.state_in_first_order:
# 2. Convert to an ODE derivative for 1st order
SCREAMING_SNAKE_CASE_ = (sample - pred_original_sample) / sigma_hat
# 3. delta timestep
SCREAMING_SNAKE_CASE_ = sigma_next - sigma_hat
# store for 2nd order step
SCREAMING_SNAKE_CASE_ = derivative
SCREAMING_SNAKE_CASE_ = dt
SCREAMING_SNAKE_CASE_ = sample
else:
# 2. 2nd order / Heun's method
SCREAMING_SNAKE_CASE_ = (sample - pred_original_sample) / sigma_next
SCREAMING_SNAKE_CASE_ = (self.prev_derivative + derivative) / 2
# 3. take prev timestep & sample
SCREAMING_SNAKE_CASE_ = self.dt
SCREAMING_SNAKE_CASE_ = self.sample
# free dt and derivative
# Note, this puts the scheduler in "first order mode"
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = None
SCREAMING_SNAKE_CASE_ = sample + derivative * dt
if not return_dict:
return (prev_sample,)
return SchedulerOutput(prev_sample=_lowerCAmelCase )
def __A ( self : Any , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.FloatTensor , __magic_name__ : torch.FloatTensor , ) -> Optional[int]:
# Make sure sigmas and timesteps have the same device and dtype as original_samples
SCREAMING_SNAKE_CASE_ = self.sigmas.to(device=original_samples.device , dtype=original_samples.dtype )
if original_samples.device.type == "mps" and torch.is_floating_point(_lowerCAmelCase ):
# mps does not support float64
SCREAMING_SNAKE_CASE_ = self.timesteps.to(original_samples.device , dtype=torch.floataa )
SCREAMING_SNAKE_CASE_ = timesteps.to(original_samples.device , dtype=torch.floataa )
else:
SCREAMING_SNAKE_CASE_ = self.timesteps.to(original_samples.device )
SCREAMING_SNAKE_CASE_ = timesteps.to(original_samples.device )
SCREAMING_SNAKE_CASE_ = [self.index_for_timestep(_lowerCAmelCase , _lowerCAmelCase ) for t in timesteps]
SCREAMING_SNAKE_CASE_ = sigmas[step_indices].flatten()
while len(sigma.shape ) < len(original_samples.shape ):
SCREAMING_SNAKE_CASE_ = sigma.unsqueeze(-1 )
SCREAMING_SNAKE_CASE_ = original_samples + noise * sigma
return noisy_samples
def __len__( self : Tuple ) -> Dict:
return self.config.num_train_timesteps
| 370
|
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A : str = logging.get_logger(__name__)
A : Optional[int] = {
"microsoft/table-transformer-detection": (
"https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json"
),
}
class lowerCamelCase (SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
lowerCamelCase__ = '''table-transformer'''
lowerCamelCase__ = ['''past_key_values''']
lowerCamelCase__ = {
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''encoder_attention_heads''',
}
def __init__( self : List[Any] , __magic_name__ : Optional[Any]=True , __magic_name__ : Dict=None , __magic_name__ : Any=3 , __magic_name__ : List[str]=100 , __magic_name__ : Union[str, Any]=6 , __magic_name__ : Dict=2_048 , __magic_name__ : str=8 , __magic_name__ : int=6 , __magic_name__ : List[Any]=2_048 , __magic_name__ : Optional[int]=8 , __magic_name__ : Optional[int]=0.0 , __magic_name__ : List[Any]=0.0 , __magic_name__ : Optional[Any]=True , __magic_name__ : List[Any]="relu" , __magic_name__ : List[str]=256 , __magic_name__ : List[str]=0.1 , __magic_name__ : int=0.0 , __magic_name__ : Optional[Any]=0.0 , __magic_name__ : Tuple=0.02 , __magic_name__ : str=1.0 , __magic_name__ : int=False , __magic_name__ : Dict="sine" , __magic_name__ : Union[str, Any]="resnet50" , __magic_name__ : Optional[Any]=True , __magic_name__ : str=False , __magic_name__ : List[str]=1 , __magic_name__ : int=5 , __magic_name__ : Union[str, Any]=2 , __magic_name__ : Tuple=1 , __magic_name__ : Optional[int]=1 , __magic_name__ : Optional[Any]=5 , __magic_name__ : Optional[int]=2 , __magic_name__ : Union[str, Any]=0.1 , **__magic_name__ : Tuple , ) -> str:
if backbone_config is not None and use_timm_backbone:
raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." )
if not use_timm_backbone:
if backbone_config is None:
logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." )
SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING["resnet"](out_features=["stage4"] )
elif isinstance(__magic_name__ , __magic_name__ ):
SCREAMING_SNAKE_CASE_ = backbone_config.get("model_type" )
SCREAMING_SNAKE_CASE_ = CONFIG_MAPPING[backbone_model_type]
SCREAMING_SNAKE_CASE_ = config_class.from_dict(__magic_name__ )
# set timm attributes to None
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None, None, None
SCREAMING_SNAKE_CASE_ = use_timm_backbone
SCREAMING_SNAKE_CASE_ = backbone_config
SCREAMING_SNAKE_CASE_ = num_channels
SCREAMING_SNAKE_CASE_ = num_queries
SCREAMING_SNAKE_CASE_ = d_model
SCREAMING_SNAKE_CASE_ = encoder_ffn_dim
SCREAMING_SNAKE_CASE_ = encoder_layers
SCREAMING_SNAKE_CASE_ = encoder_attention_heads
SCREAMING_SNAKE_CASE_ = decoder_ffn_dim
SCREAMING_SNAKE_CASE_ = decoder_layers
SCREAMING_SNAKE_CASE_ = decoder_attention_heads
SCREAMING_SNAKE_CASE_ = dropout
SCREAMING_SNAKE_CASE_ = attention_dropout
SCREAMING_SNAKE_CASE_ = activation_dropout
SCREAMING_SNAKE_CASE_ = activation_function
SCREAMING_SNAKE_CASE_ = init_std
SCREAMING_SNAKE_CASE_ = init_xavier_std
SCREAMING_SNAKE_CASE_ = encoder_layerdrop
SCREAMING_SNAKE_CASE_ = decoder_layerdrop
SCREAMING_SNAKE_CASE_ = encoder_layers
SCREAMING_SNAKE_CASE_ = auxiliary_loss
SCREAMING_SNAKE_CASE_ = position_embedding_type
SCREAMING_SNAKE_CASE_ = backbone
SCREAMING_SNAKE_CASE_ = use_pretrained_backbone
SCREAMING_SNAKE_CASE_ = dilation
# Hungarian matcher
SCREAMING_SNAKE_CASE_ = class_cost
SCREAMING_SNAKE_CASE_ = bbox_cost
SCREAMING_SNAKE_CASE_ = giou_cost
# Loss coefficients
SCREAMING_SNAKE_CASE_ = mask_loss_coefficient
SCREAMING_SNAKE_CASE_ = dice_loss_coefficient
SCREAMING_SNAKE_CASE_ = bbox_loss_coefficient
SCREAMING_SNAKE_CASE_ = giou_loss_coefficient
SCREAMING_SNAKE_CASE_ = eos_coefficient
super().__init__(is_encoder_decoder=__magic_name__ , **__magic_name__ )
@property
def __A ( self : Union[str, Any] ) -> int:
return self.encoder_attention_heads
@property
def __A ( self : Any ) -> int:
return self.d_model
class lowerCamelCase (SCREAMING_SNAKE_CASE__ ):
"""simple docstring"""
lowerCamelCase__ = version.parse('''1.11''' )
@property
def __A ( self : Tuple ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("pixel_mask", {0: "batch"}),
] )
@property
def __A ( self : Any ) -> float:
return 1e-5
@property
def __A ( self : int ) -> int:
return 12
| 305
| 0
|
'''simple docstring'''
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class a__( unittest.TestCase ):
lowercase__ = MODEL_FOR_MASKED_LM_MAPPING
lowercase__ = TF_MODEL_FOR_MASKED_LM_MAPPING
def lowercase_ ( self : Optional[Any] ):
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def lowercase_ ( self : Union[str, Any] ):
a : Tuple = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='tf' )
a : Optional[Any] = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'sequence': 'My name is grouped', 'score': 2.1e-0_5, 'token': 3_80_15, 'token_str': ' grouped'},
{'sequence': 'My name is accuser', 'score': 2.1e-0_5, 'token': 2_55_06, 'token_str': ' accuser'},
] , )
a : Dict = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{
'sequence': 'The largest city in France is grouped',
'score': 2.1e-0_5,
'token': 3_80_15,
'token_str': ' grouped',
},
{
'sequence': 'The largest city in France is accuser',
'score': 2.1e-0_5,
'token': 2_55_06,
'token_str': ' accuser',
},
] , )
a : Union[str, Any] = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 1_36_06, 'token_str': ' Clara'},
{'sequence': 'My name is Patrick', 'score': 2e-0_5, 'token': 34_99, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 1.9e-0_5, 'token': 29_41, 'token_str': ' Te'},
] , )
@require_torch
def lowercase_ ( self : List[Any] ):
a : List[Any] = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , top_k=2 , framework='pt' )
a : Optional[int] = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'sequence': 'My name is Maul', 'score': 2.2e-0_5, 'token': 3_56_76, 'token_str': ' Maul'},
{'sequence': 'My name isELS', 'score': 2.2e-0_5, 'token': 1_64_16, 'token_str': 'ELS'},
] , )
a : List[str] = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{
'sequence': 'The largest city in France is Maul',
'score': 2.2e-0_5,
'token': 3_56_76,
'token_str': ' Maul',
},
{'sequence': 'The largest city in France isELS', 'score': 2.2e-0_5, 'token': 1_64_16, 'token_str': 'ELS'},
] , )
a : str = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
{'sequence': 'My name is Patrick', 'score': 2.1e-0_5, 'token': 34_99, 'token_str': ' Patrick'},
{'sequence': 'My name is Te', 'score': 2e-0_5, 'token': 29_41, 'token_str': ' Te'},
{'sequence': 'My name is Clara', 'score': 2e-0_5, 'token': 1_36_06, 'token_str': ' Clara'},
] , )
a : List[str] = unmasker('My name is <mask> <mask>' , top_k=2 )
self.assertEqual(
nested_simplify(__snake_case , decimals=6 ) , [
[
{
'score': 2.2e-0_5,
'token': 3_56_76,
'token_str': ' Maul',
'sequence': '<s>My name is Maul<mask></s>',
},
{'score': 2.2e-0_5, 'token': 1_64_16, 'token_str': 'ELS', 'sequence': '<s>My name isELS<mask></s>'},
],
[
{
'score': 2.2e-0_5,
'token': 3_56_76,
'token_str': ' Maul',
'sequence': '<s>My name is<mask> Maul</s>',
},
{'score': 2.2e-0_5, 'token': 1_64_16, 'token_str': 'ELS', 'sequence': '<s>My name is<mask>ELS</s>'},
],
] , )
@require_torch_gpu
def lowercase_ ( self : Any ):
a : str = pipeline('fill-mask' , model='hf-internal-testing/tiny-random-distilbert' , device=0 , framework='pt' )
# convert model to fp16
pipe.model.half()
a : Dict = pipe('Paris is the [MASK] of France.' )
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(__snake_case , __snake_case )
@slow
@require_torch
def lowercase_ ( self : Any ):
a : List[Any] = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='pt' )
self.run_large_test(__snake_case )
@slow
@require_tf
def lowercase_ ( self : Any ):
a : Union[str, Any] = pipeline(task='fill-mask' , model='distilroberta-base' , top_k=2 , framework='tf' )
self.run_large_test(__snake_case )
def lowercase_ ( self : Any , __snake_case : int ):
a : List[str] = unmasker('My name is <mask>' )
self.assertEqual(
nested_simplify(__snake_case ) , [
{'sequence': 'My name is John', 'score': 0.008, 'token': 6_10, 'token_str': ' John'},
{'sequence': 'My name is Chris', 'score': 0.007, 'token': 15_73, 'token_str': ' Chris'},
] , )
a : List[Any] = unmasker('The largest city in France is <mask>' )
self.assertEqual(
nested_simplify(__snake_case ) , [
{
'sequence': 'The largest city in France is Paris',
'score': 0.251,
'token': 22_01,
'token_str': ' Paris',
},
{
'sequence': 'The largest city in France is Lyon',
'score': 0.214,
'token': 1_27_90,
'token_str': ' Lyon',
},
] , )
a : str = unmasker('My name is <mask>' , targets=[' Patrick', ' Clara', ' Teven'] , top_k=3 )
self.assertEqual(
nested_simplify(__snake_case ) , [
{'sequence': 'My name is Patrick', 'score': 0.005, 'token': 34_99, 'token_str': ' Patrick'},
{'sequence': 'My name is Clara', 'score': 0.000, 'token': 1_36_06, 'token_str': ' Clara'},
{'sequence': 'My name is Te', 'score': 0.000, 'token': 29_41, 'token_str': ' Te'},
] , )
@require_torch
def lowercase_ ( self : List[Any] ):
a : str = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='pt' )
a : int = None
a : List[str] = None
self.run_pipeline_test(__snake_case , [] )
@require_tf
def lowercase_ ( self : Any ):
a : str = pipeline(task='fill-mask' , model='sshleifer/tiny-distilroberta-base' , framework='tf' )
a : List[Any] = None
a : Optional[int] = None
self.run_pipeline_test(__snake_case , [] )
def lowercase_ ( self : Any , __snake_case : Dict , __snake_case : Dict , __snake_case : Tuple ):
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest('The provided tokenizer has no mask token, (probably reformer or wav2vec2)' )
a : str = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
a : List[Any] = [
F"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def lowercase_ ( self : Optional[Any] , __snake_case : Tuple , __snake_case : str ):
a : Dict = fill_masker.tokenizer
a : Any = fill_masker.model
a : List[Any] = fill_masker(
F"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
__snake_case , [
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
] , )
a : Tuple = fill_masker([F"""This is a {tokenizer.mask_token}"""] )
self.assertEqual(
__snake_case , [
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
] , )
a : Any = fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""] )
self.assertEqual(
__snake_case , [
[
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
],
[
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
],
] , )
with self.assertRaises(__snake_case ):
fill_masker([None] )
# No mask_token is not supported
with self.assertRaises(__snake_case ):
fill_masker('This is' )
self.run_test_top_k(__snake_case , __snake_case )
self.run_test_targets(__snake_case , __snake_case )
self.run_test_top_k_targets(__snake_case , __snake_case )
self.fill_mask_with_duplicate_targets_and_top_k(__snake_case , __snake_case )
self.fill_mask_with_multiple_masks(__snake_case , __snake_case )
def lowercase_ ( self : str , __snake_case : str , __snake_case : Union[str, Any] ):
a : List[str] = tokenizer.get_vocab()
a : Optional[int] = sorted(vocab.keys() )[:2]
# Pipeline argument
a : Any = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , targets=__snake_case )
a : List[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
__snake_case , [
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
] , )
a : List[Any] = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , __snake_case )
a : List[str] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(__snake_case ) )
# Call argument
a : Tuple = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
a : str = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case )
self.assertEqual(
__snake_case , [
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
] , )
a : Tuple = {vocab[el] for el in targets}
self.assertEqual({el['token'] for el in outputs} , __snake_case )
a : Optional[int] = [tokenizer.decode([x] ) for x in target_ids]
self.assertEqual({el['token_str'] for el in outputs} , set(__snake_case ) )
# Score equivalence
a : List[str] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case )
a : List[str] = [top_mask['token_str'] for top_mask in outputs]
a : str = [top_mask['score'] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__snake_case ) == set(__snake_case ):
a : Optional[Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=__snake_case )
a : str = [top_mask['score'] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) )
# Raises with invalid
with self.assertRaises(__snake_case ):
a : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[] )
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(__snake_case ):
a : Any = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[''] )
with self.assertRaises(__snake_case ):
a : str = fill_masker(F"""This is a {tokenizer.mask_token}""" , targets='' )
def lowercase_ ( self : Optional[int] , __snake_case : int , __snake_case : Optional[Any] ):
a : str = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case , top_k=2 )
a : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" )
self.assertEqual(
__snake_case , [
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
] , )
a : Tuple = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
a : int = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
__snake_case , [
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
] , )
self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) )
def lowercase_ ( self : List[Any] , __snake_case : Optional[int] , __snake_case : Any ):
a : Any = tokenizer.get_vocab()
a : Optional[int] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
# top_k=2, ntargets=3
a : str = sorted(vocab.keys() )[:3]
a : Optional[int] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=__snake_case )
# If we use the most probably targets, and filter differently, we should still
# have the same results
a : Optional[int] = [el['token_str'] for el in sorted(__snake_case , key=lambda __snake_case : x["score"] , reverse=__snake_case )]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(__snake_case ).issubset(__snake_case ):
a : Union[str, Any] = fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=__snake_case )
# They should yield exactly the same result
self.assertEqual(nested_simplify(__snake_case ) , nested_simplify(__snake_case ) )
def lowercase_ ( self : Dict , __snake_case : List[Any] , __snake_case : Optional[int] ):
a : Union[str, Any] = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
a : int = tokenizer.get_vocab()
# String duplicates + id duplicates
a : str = sorted(vocab.keys() )[:3]
a : int = [targets[0], targets[1], targets[0], targets[2], targets[1]]
a : Union[str, Any] = fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=__snake_case , top_k=10 )
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(__snake_case ) , 3 )
def lowercase_ ( self : Dict , __snake_case : Optional[Any] , __snake_case : Union[str, Any] ):
a : Tuple = FillMaskPipeline(model=__snake_case , tokenizer=__snake_case )
a : Optional[int] = fill_masker(
F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2 )
self.assertEqual(
__snake_case , [
[
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
],
[
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
],
[
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
{'sequence': ANY(__snake_case ), 'score': ANY(__snake_case ), 'token': ANY(__snake_case ), 'token_str': ANY(__snake_case )},
],
] , )
| 297
|
from collections import defaultdict
from typing import Optional
from ..image_utils import load_image
from ..utils import (
add_end_docstrings,
is_torch_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, ChunkPipeline
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING
_lowerCAmelCase : Union[str, Any] = logging.get_logger(__name__)
@add_end_docstrings(lowerCAmelCase )
class _UpperCamelCase ( lowerCAmelCase ):
def __init__( self :Optional[int] , **lowerCamelCase :Dict ) -> int:
super().__init__(**lowerCamelCase )
requires_backends(self , "vision" )
requires_backends(self , "torch" )
if self.framework != "pt":
raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' )
self.check_model_type(lowerCamelCase )
def UpperCAmelCase_ ( self :Any , **lowerCamelCase :int ) -> int:
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
UpperCAmelCase__ = {}
# preprocess args
if "points_per_batch" in kwargs:
UpperCAmelCase__ = kwargs["points_per_batch"]
if "points_per_crop" in kwargs:
UpperCAmelCase__ = kwargs["points_per_crop"]
if "crops_n_layers" in kwargs:
UpperCAmelCase__ = kwargs["crops_n_layers"]
if "crop_overlap_ratio" in kwargs:
UpperCAmelCase__ = kwargs["crop_overlap_ratio"]
if "crop_n_points_downscale_factor" in kwargs:
UpperCAmelCase__ = kwargs["crop_n_points_downscale_factor"]
# postprocess args
if "pred_iou_thresh" in kwargs:
UpperCAmelCase__ = kwargs["pred_iou_thresh"]
if "stability_score_offset" in kwargs:
UpperCAmelCase__ = kwargs["stability_score_offset"]
if "mask_threshold" in kwargs:
UpperCAmelCase__ = kwargs["mask_threshold"]
if "stability_score_thresh" in kwargs:
UpperCAmelCase__ = kwargs["stability_score_thresh"]
if "crops_nms_thresh" in kwargs:
UpperCAmelCase__ = kwargs["crops_nms_thresh"]
if "output_rle_mask" in kwargs:
UpperCAmelCase__ = kwargs["output_rle_mask"]
if "output_bboxes_mask" in kwargs:
UpperCAmelCase__ = kwargs["output_bboxes_mask"]
return preprocess_kwargs, forward_params, postprocess_kwargs
def __call__( self :Union[str, Any] , lowerCamelCase :Union[str, Any] , *lowerCamelCase :str , lowerCamelCase :Optional[Any]=None , lowerCamelCase :int=None , **lowerCamelCase :Optional[Any] ) -> str:
return super().__call__(lowerCamelCase , *lowerCamelCase , num_workers=lowerCamelCase , batch_size=lowerCamelCase , **lowerCamelCase )
def UpperCAmelCase_ ( self :Any , lowerCamelCase :str , lowerCamelCase :Optional[Any]=64 , lowerCamelCase :int = 0 , lowerCamelCase :float = 512 / 1500 , lowerCamelCase :Optional[int] = 32 , lowerCamelCase :Optional[int] = 1 , ) -> Any:
UpperCAmelCase__ = load_image(lowerCamelCase )
UpperCAmelCase__ = self.image_processor.size["longest_edge"]
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.generate_crop_boxes(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
UpperCAmelCase__ = self.image_processor(images=lowerCamelCase , return_tensors="pt" )
with self.device_placement():
if self.framework == "pt":
UpperCAmelCase__ = self.get_inference_context()
with inference_context():
UpperCAmelCase__ = self._ensure_tensor_on_device(lowerCamelCase , device=self.device )
UpperCAmelCase__ = self.model.get_image_embeddings(model_inputs.pop("pixel_values" ) )
UpperCAmelCase__ = image_embeddings
UpperCAmelCase__ = grid_points.shape[1]
UpperCAmelCase__ = points_per_batch if points_per_batch is not None else n_points
if points_per_batch <= 0:
raise ValueError(
"Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. "
"To return all points at once, set points_per_batch to None" )
for i in range(0 , lowerCamelCase , lowerCamelCase ):
UpperCAmelCase__ = grid_points[:, i : i + points_per_batch, :, :]
UpperCAmelCase__ = input_labels[:, i : i + points_per_batch]
UpperCAmelCase__ = i == n_points - points_per_batch
yield {
"input_points": batched_points,
"input_labels": labels,
"input_boxes": crop_boxes,
"is_last": is_last,
**model_inputs,
}
def UpperCAmelCase_ ( self :Tuple , lowerCamelCase :List[str] , lowerCamelCase :Union[str, Any]=0.88 , lowerCamelCase :Optional[Any]=0.95 , lowerCamelCase :Tuple=0 , lowerCamelCase :Union[str, Any]=1 , ) -> Dict:
UpperCAmelCase__ = model_inputs.pop("input_boxes" )
UpperCAmelCase__ = model_inputs.pop("is_last" )
UpperCAmelCase__ = model_inputs.pop("original_sizes" ).tolist()
UpperCAmelCase__ = model_inputs.pop("reshaped_input_sizes" ).tolist()
UpperCAmelCase__ = self.model(**lowerCamelCase )
# post processing happens here in order to avoid CPU GPU copies of ALL the masks
UpperCAmelCase__ = model_outputs["pred_masks"]
UpperCAmelCase__ = self.image_processor.post_process_masks(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , binarize=lowerCamelCase )
UpperCAmelCase__ = model_outputs["iou_scores"]
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.filter_masks(
masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , )
return {
"masks": masks,
"is_last": is_last,
"boxes": boxes,
"iou_scores": iou_scores,
}
def UpperCAmelCase_ ( self :int , lowerCamelCase :str , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :Union[str, Any]=False , lowerCamelCase :int=0.7 , ) -> Union[str, Any]:
UpperCAmelCase__ = []
UpperCAmelCase__ = []
UpperCAmelCase__ = []
for model_output in model_outputs:
all_scores.append(model_output.pop("iou_scores" ) )
all_masks.extend(model_output.pop("masks" ) )
all_boxes.append(model_output.pop("boxes" ) )
UpperCAmelCase__ = torch.cat(lowerCamelCase )
UpperCAmelCase__ = torch.cat(lowerCamelCase )
UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = self.image_processor.post_process_for_mask_generation(
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
UpperCAmelCase__ = defaultdict(lowerCamelCase )
for output in model_outputs:
for k, v in output.items():
extra[k].append(lowerCamelCase )
UpperCAmelCase__ = {}
if output_rle_mask:
UpperCAmelCase__ = rle_mask
if output_bboxes_mask:
UpperCAmelCase__ = bounding_boxes
return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
| 169
| 0
|
from __future__ import annotations
import os
from typing import Any
import requests
lowerCamelCase_ = '''https://api.github.com'''
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
lowerCamelCase_ = BASE_URL + '''/user'''
# https://github.com/settings/tokens
lowerCamelCase_ = os.environ.get('''USER_TOKEN''', '''''')
def __magic_name__ ( __a : str ):
'''simple docstring'''
UpperCamelCase__ = {
"""Authorization""": f"token {auth_token}",
"""Accept""": """application/vnd.github.v3+json""",
}
return requests.get(__a , headers=__a ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'{key}: {value}')
else:
raise ValueError('''\'USER_TOKEN\' field cannot be empty.''')
| 178
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
lowerCamelCase_ = {
'''configuration_git''': ['''GIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GitConfig''', '''GitVisionConfig'''],
'''processing_git''': ['''GitProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase_ = [
'''GIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''GitForCausalLM''',
'''GitModel''',
'''GitPreTrainedModel''',
'''GitVisionModel''',
]
if TYPE_CHECKING:
from .configuration_git import GIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GitConfig, GitVisionConfig
from .processing_git import GitProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_git import (
GIT_PRETRAINED_MODEL_ARCHIVE_LIST,
GitForCausalLM,
GitModel,
GitPreTrainedModel,
GitVisionModel,
)
else:
import sys
lowerCamelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 178
| 1
|
"""simple docstring"""
from __future__ import annotations
import math
import numpy as np
from numpy.linalg import norm
def _A (__a , __a ) -> float:
"""simple docstring"""
return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(__a , __a ) ) )
def _A (__a , __a ) -> list[list[list[float] | float]]:
"""simple docstring"""
if dataset.ndim != value_array.ndim:
SCREAMING_SNAKE_CASE_ : Tuple = (
'''Wrong input data\'s dimensions... '''
f'dataset : {dataset.ndim}, value_array : {value_array.ndim}'
)
raise ValueError(__a )
try:
if dataset.shape[1] != value_array.shape[1]:
SCREAMING_SNAKE_CASE_ : Any = (
'''Wrong input data\'s shape... '''
f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}'
)
raise ValueError(__a )
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError('''Wrong shape''' )
if dataset.dtype != value_array.dtype:
SCREAMING_SNAKE_CASE_ : List[str] = (
'''Input data have different datatype... '''
f'dataset : {dataset.dtype}, value_array : {value_array.dtype}'
)
raise TypeError(__a )
SCREAMING_SNAKE_CASE_ : Any = []
for value in value_array:
SCREAMING_SNAKE_CASE_ : int = euclidean(__a , dataset[0] )
SCREAMING_SNAKE_CASE_ : List[str] = dataset[0].tolist()
for dataset_value in dataset[1:]:
SCREAMING_SNAKE_CASE_ : Optional[int] = euclidean(__a , __a )
if dist > temp_dist:
SCREAMING_SNAKE_CASE_ : Optional[int] = temp_dist
SCREAMING_SNAKE_CASE_ : int = dataset_value.tolist()
answer.append([vector, dist] )
return answer
def _A (__a , __a ) -> float:
"""simple docstring"""
return np.dot(__a , __a ) / (norm(__a ) * norm(__a ))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 91
|
import inspect
import unittest
from transformers import ConvNextConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import ConvNextBackbone, ConvNextForImageClassification, ConvNextModel
from transformers.models.convnext.modeling_convnext import CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class SCREAMING_SNAKE_CASE__ :
def __init__(self : Any , a__ : List[Any] , a__ : Dict=13 , a__ : str=32 , a__ : Tuple=3 , a__ : Optional[Any]=4 , a__ : Optional[int]=[10, 20, 30, 40] , a__ : List[Any]=[2, 2, 3, 2] , a__ : List[Any]=True , a__ : int=True , a__ : List[Any]=37 , a__ : Any="gelu" , a__ : int=10 , a__ : Dict=0.0_2 , a__ : Dict=["stage2", "stage3", "stage4"] , a__ : Tuple=[2, 3, 4] , a__ : List[str]=None , ):
"""simple docstring"""
__snake_case = parent
__snake_case = batch_size
__snake_case = image_size
__snake_case = num_channels
__snake_case = num_stages
__snake_case = hidden_sizes
__snake_case = depths
__snake_case = is_training
__snake_case = use_labels
__snake_case = intermediate_size
__snake_case = hidden_act
__snake_case = num_labels
__snake_case = initializer_range
__snake_case = out_features
__snake_case = out_indices
__snake_case = scope
def a (self : Dict ):
"""simple docstring"""
__snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__snake_case = None
if self.use_labels:
__snake_case = ids_tensor([self.batch_size] , self.num_labels )
__snake_case = self.get_config()
return config, pixel_values, labels
def a (self : List[str] ):
"""simple docstring"""
return ConvNextConfig(
num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=a__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , )
def a (self : str , a__ : Union[str, Any] , a__ : List[str] , a__ : List[Any] ):
"""simple docstring"""
__snake_case = ConvNextModel(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(a__ )
# expected last hidden states: B, C, H // 32, W // 32
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def a (self : Optional[Any] , a__ : List[Any] , a__ : str , a__ : List[Any] ):
"""simple docstring"""
__snake_case = ConvNextForImageClassification(a__ )
model.to(a__ )
model.eval()
__snake_case = model(a__ , labels=a__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def a (self : Tuple , a__ : List[Any] , a__ : List[str] , a__ : List[str] ):
"""simple docstring"""
__snake_case = ConvNextBackbone(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(a__ )
# verify hidden states
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
__snake_case = None
__snake_case = ConvNextBackbone(config=a__ )
model.to(a__ )
model.eval()
__snake_case = model(a__ )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def a (self : Tuple ):
"""simple docstring"""
__snake_case = self.prepare_config_and_inputs()
__snake_case , __snake_case , __snake_case = config_and_inputs
__snake_case = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ):
A_ : Dict = (
(
ConvNextModel,
ConvNextForImageClassification,
ConvNextBackbone,
)
if is_torch_available()
else ()
)
A_ : Optional[Any] = (
{'feature-extraction': ConvNextModel, 'image-classification': ConvNextForImageClassification}
if is_torch_available()
else {}
)
A_ : Dict = True
A_ : Optional[Any] = False
A_ : int = False
A_ : int = False
A_ : List[str] = False
def a (self : List[str] ):
"""simple docstring"""
__snake_case = ConvNextModelTester(self )
__snake_case = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 )
def a (self : Tuple ):
"""simple docstring"""
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def a (self : str ):
"""simple docstring"""
return
@unittest.skip(reason='''ConvNext does not use inputs_embeds''' )
def a (self : int ):
"""simple docstring"""
pass
@unittest.skip(reason='''ConvNext does not support input and output embeddings''' )
def a (self : Dict ):
"""simple docstring"""
pass
@unittest.skip(reason='''ConvNext does not use feedforward chunking''' )
def a (self : List[Any] ):
"""simple docstring"""
pass
def a (self : Optional[Any] ):
"""simple docstring"""
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = model_class(a__ )
__snake_case = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__snake_case = [*signature.parameters.keys()]
__snake_case = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , a__ )
def a (self : List[Any] ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*a__ )
def a (self : Dict ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*a__ )
def a (self : Dict ):
"""simple docstring"""
def check_hidden_states_output(a__ : List[str] , a__ : str , a__ : Tuple ):
__snake_case = model_class(a__ )
model.to(a__ )
model.eval()
with torch.no_grad():
__snake_case = model(**self._prepare_for_class(a__ , a__ ) )
__snake_case = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
__snake_case = self.model_tester.num_stages
self.assertEqual(len(a__ ) , expected_num_stages + 1 )
# ConvNext's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
__snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__snake_case = True
check_hidden_states_output(a__ , a__ , a__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
__snake_case = True
check_hidden_states_output(a__ , a__ , a__ )
def a (self : Optional[Any] ):
"""simple docstring"""
__snake_case = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*a__ )
@slow
def a (self : Any ):
"""simple docstring"""
for model_name in CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__snake_case = ConvNextModel.from_pretrained(a__ )
self.assertIsNotNone(a__ )
def lowerCamelCase__ ( ) -> List[str]:
__snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
@cached_property
def a (self : Tuple ):
"""simple docstring"""
return AutoImageProcessor.from_pretrained('''facebook/convnext-tiny-224''' ) if is_vision_available() else None
@slow
def a (self : Optional[Any] ):
"""simple docstring"""
__snake_case = ConvNextForImageClassification.from_pretrained('''facebook/convnext-tiny-224''' ).to(a__ )
__snake_case = self.default_image_processor
__snake_case = prepare_img()
__snake_case = image_processor(images=a__ , return_tensors='''pt''' ).to(a__ )
# forward pass
with torch.no_grad():
__snake_case = model(**a__ )
# verify the logits
__snake_case = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , a__ )
__snake_case = torch.tensor([-0.0_2_6_0, -0.4_7_3_9, 0.1_9_1_1] ).to(a__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) )
@require_torch
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase , _UpperCAmelCase ):
A_ : Union[str, Any] = (ConvNextBackbone,) if is_torch_available() else ()
A_ : List[Any] = ConvNextConfig
A_ : Optional[Any] = False
def a (self : Optional[int] ):
"""simple docstring"""
__snake_case = ConvNextModelTester(self )
| 24
| 0
|
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a_ = {
'''configuration_bigbird_pegasus''': [
'''BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BigBirdPegasusConfig''',
'''BigBirdPegasusOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a_ = [
'''BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BigBirdPegasusForCausalLM''',
'''BigBirdPegasusForConditionalGeneration''',
'''BigBirdPegasusForQuestionAnswering''',
'''BigBirdPegasusForSequenceClassification''',
'''BigBirdPegasusModel''',
'''BigBirdPegasusPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP,
BigBirdPegasusConfig,
BigBirdPegasusOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_bigbird_pegasus import (
BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST,
BigBirdPegasusForCausalLM,
BigBirdPegasusForConditionalGeneration,
BigBirdPegasusForQuestionAnswering,
BigBirdPegasusForSequenceClassification,
BigBirdPegasusModel,
BigBirdPegasusPreTrainedModel,
)
else:
import sys
a_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 353
|
import argparse
import shutil
from pathlib import Path
from tqdm import tqdm
from transformers import AutoTokenizer
def __lowercase ( lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Union[str, Any]=1024 ):
UpperCamelCase_, UpperCamelCase_ : int = [], []
UpperCamelCase_ : Dict = list(zip(lowerCamelCase , lowerCamelCase ) )
UpperCamelCase_, UpperCamelCase_ : int = sorted_examples[0]
def is_too_big(lowerCamelCase : str ):
return tok(lowerCamelCase , return_tensors='pt' ).input_ids.shape[1] > max_tokens
for src, tgt in tqdm(sorted_examples[1:] ):
UpperCamelCase_ : Optional[Any] = new_src + ' ' + src
UpperCamelCase_ : int = new_tgt + ' ' + tgt
if is_too_big(lowerCamelCase ) or is_too_big(lowerCamelCase ): # cant fit, finalize example
finished_src.append(lowerCamelCase )
finished_tgt.append(lowerCamelCase )
UpperCamelCase_, UpperCamelCase_ : Dict = src, tgt
else: # can fit, keep adding
UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = cand_src, cand_tgt
# cleanup
if new_src:
assert new_tgt
finished_src.append(lowerCamelCase )
finished_tgt.append(lowerCamelCase )
return finished_src, finished_tgt
def __lowercase ( lowerCamelCase : Dict , lowerCamelCase : Path , lowerCamelCase : Tuple , lowerCamelCase : Dict ):
UpperCamelCase_ : List[Any] = Path(lowerCamelCase )
save_path.mkdir(exist_ok=lowerCamelCase )
for split in ["train"]:
UpperCamelCase_, UpperCamelCase_ : Any = data_dir / F"{split}.source", data_dir / F"{split}.target"
UpperCamelCase_ : List[Any] = [x.rstrip() for x in Path(lowerCamelCase ).open().readlines()]
UpperCamelCase_ : Optional[int] = [x.rstrip() for x in Path(lowerCamelCase ).open().readlines()]
UpperCamelCase_, UpperCamelCase_ : Union[str, Any] = pack_examples(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase )
print(F"packed {split} split from {len(lowerCamelCase )} examples -> {len(lowerCamelCase )}." )
Path(save_path / F"{split}.source" ).open('w' ).write('\n'.join(lowerCamelCase ) )
Path(save_path / F"{split}.target" ).open('w' ).write('\n'.join(lowerCamelCase ) )
for split in ["val", "test"]:
UpperCamelCase_, UpperCamelCase_ : Any = data_dir / F"{split}.source", data_dir / F"{split}.target"
shutil.copyfile(lowerCamelCase , save_path / F"{split}.source" )
shutil.copyfile(lowerCamelCase , save_path / F"{split}.target" )
def __lowercase ( ):
UpperCamelCase_ : int = argparse.ArgumentParser()
parser.add_argument('--tok_name' , type=lowerCamelCase , help='like facebook/bart-large-cnn,t5-base, etc.' )
parser.add_argument('--max_seq_len' , type=lowerCamelCase , default=128 )
parser.add_argument('--data_dir' , type=lowerCamelCase )
parser.add_argument('--save_path' , type=lowerCamelCase )
UpperCamelCase_ : Tuple = parser.parse_args()
UpperCamelCase_ : Optional[int] = AutoTokenizer.from_pretrained(args.tok_name )
return pack_data_dir(lowerCamelCase , Path(args.data_dir ) , args.max_seq_len , args.save_path )
if __name__ == "__main__":
packer_cli()
| 50
| 0
|
from functools import lru_cache
def _snake_case ( lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = 2
SCREAMING_SNAKE_CASE_ : str = set()
while i * i <= n:
if n % i:
i += 1
else:
n //= i
factors.add(lowerCAmelCase )
if n > 1:
factors.add(lowerCAmelCase )
return factors
@lru_cache
def _snake_case ( lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
return len(unique_prime_factors(lowerCAmelCase ) )
def _snake_case ( lowerCAmelCase : Union[str, Any] ):
"""simple docstring"""
return len(set(lowerCAmelCase ) ) in (0, 1)
def _snake_case ( lowerCAmelCase : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = 2
while True:
# Increment each value of a generated range
SCREAMING_SNAKE_CASE_ : List[Any] = [base + i for i in range(lowerCAmelCase )]
# Run elements through out unique_prime_factors function
# Append our target number to the end.
SCREAMING_SNAKE_CASE_ : Dict = [upf_len(lowerCAmelCase ) for x in group]
checker.append(lowerCAmelCase )
# If all numbers in the list are equal, return the group variable.
if equality(lowerCAmelCase ):
return group
# Increment our base variable by 1
base += 1
def _snake_case ( lowerCAmelCase : str = 4 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = run(lowerCAmelCase )
return results[0] if len(lowerCAmelCase ) else None
if __name__ == "__main__":
print(solution())
| 18
|
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int:
return abs(UpperCamelCase ) if a == 0 else greatest_common_divisor(b % a , UpperCamelCase )
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int:
while y: # --> when y=0 then loop will terminate and return x as final GCD.
lowerCamelCase__ , lowerCamelCase__ : Tuple = y, x % y
return abs(UpperCamelCase )
def SCREAMING_SNAKE_CASE_ () -> Tuple:
try:
lowerCamelCase__ : Dict = input("""Enter two integers separated by comma (,): """ ).split(""",""" )
lowerCamelCase__ : Any = int(nums[0] )
lowerCamelCase__ : Optional[Any] = int(nums[1] )
print(
f'''greatest_common_divisor({num_a}, {num_a}) = '''
f'''{greatest_common_divisor(UpperCamelCase , UpperCamelCase )}''' )
print(f'''By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(UpperCamelCase , UpperCamelCase )}''' )
except (IndexError, UnboundLocalError, ValueError):
print("""Wrong input""" )
if __name__ == "__main__":
main()
| 41
| 0
|
"""simple docstring"""
def __A (_SCREAMING_SNAKE_CASE = 1000 ) ->int:
"""simple docstring"""
lowerCAmelCase__ :Union[str, Any] = -1
lowerCAmelCase__ :Optional[Any] = 0
for a in range(1 , n // 3 ):
# Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c
lowerCAmelCase__ :Tuple = (n * n - 2 * a * n) // (2 * n - 2 * a)
lowerCAmelCase__ :Union[str, Any] = n - a - b
if c * c == (a * a + b * b):
lowerCAmelCase__ :List[str] = a * b * c
if candidate >= product:
lowerCAmelCase__ :List[Any] = candidate
return product
if __name__ == "__main__":
print(F'''{solution() = }''')
| 254
|
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import _LazyModule
__A = {"""processing_wav2vec2_with_lm""": ["""Wav2Vec2ProcessorWithLM"""]}
if TYPE_CHECKING:
from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM
else:
import sys
__A = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 254
| 1
|
def A_ ( _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: List[Any] = generate_pascal_triangle(_UpperCAmelCase )
for row_idx in range(_UpperCAmelCase ):
# Print left spaces
for _ in range(num_rows - row_idx - 1 ):
print(end=" " )
# Print row values
for col_idx in range(row_idx + 1 ):
if col_idx != row_idx:
print(triangle[row_idx][col_idx] , end=" " )
else:
print(triangle[row_idx][col_idx] , end="" )
print()
def A_ ( _UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
SCREAMING_SNAKE_CASE_: list[list[int]] = []
for current_row_idx in range(_UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: List[Any] = populate_current_row(_UpperCAmelCase , _UpperCAmelCase )
triangle.append(_UpperCAmelCase )
return triangle
def A_ ( _UpperCAmelCase , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Dict = [-1] * (current_row_idx + 1)
# first and last elements of current row are equal to 1
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_: Tuple = 1, 1
for current_col_idx in range(1 , _UpperCAmelCase ):
calculate_current_element(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return current_row
def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ):
SCREAMING_SNAKE_CASE_: str = triangle[current_row_idx - 1][current_col_idx - 1]
SCREAMING_SNAKE_CASE_: Optional[int] = triangle[current_row_idx - 1][current_col_idx]
SCREAMING_SNAKE_CASE_: str = above_to_left_elt + above_to_right_elt
def A_ ( _UpperCAmelCase ):
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError("The input value of 'num_rows' should be 'int'" )
if num_rows == 0:
return []
elif num_rows < 0:
raise ValueError(
"The input value of 'num_rows' should be greater than or equal to 0" )
SCREAMING_SNAKE_CASE_: list[list[int]] = [[1]]
for row_index in range(1 , _UpperCAmelCase ):
SCREAMING_SNAKE_CASE_: Any = [0] + result[-1] + [0]
SCREAMING_SNAKE_CASE_: Tuple = row_index + 1
# Calculate the number of distinct elements in a row
SCREAMING_SNAKE_CASE_: Any = sum(divmod(_UpperCAmelCase , 2 ) )
SCREAMING_SNAKE_CASE_: Optional[int] = [
temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 )
]
SCREAMING_SNAKE_CASE_: Tuple = row_first_half[: (row_index + 1) // 2]
row_second_half.reverse()
SCREAMING_SNAKE_CASE_: List[str] = row_first_half + row_second_half
result.append(_UpperCAmelCase )
return result
def A_ ( ):
from collections.abc import Callable
from timeit import timeit
def benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase ) -> None:
SCREAMING_SNAKE_CASE_: int = f"{func.__name__}({value})"
SCREAMING_SNAKE_CASE_: List[str] = timeit(f"__main__.{call}" , setup="import __main__" )
# print(f"{call:38} = {func(value)} -- {timing:.4f} seconds")
print(f"{call:38} -- {timing:.4f} seconds" )
for value in range(15 ): # (1, 7, 14):
for func in (generate_pascal_triangle, generate_pascal_triangle_optimized):
benchmark_a_function(_UpperCAmelCase , _UpperCAmelCase )
print()
if __name__ == "__main__":
import doctest
doctest.testmod()
benchmark()
| 13
|
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from accelerate import PartialState
from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce
def UpperCamelCase ( __magic_name__ : Any ) -> Optional[int]:
"""simple docstring"""
return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device )
def UpperCamelCase ( __magic_name__ : int ) -> Union[str, Any]:
"""simple docstring"""
lowercase__ = create_tensor(__magic_name__ )
lowercase__ = gather(__magic_name__ )
assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) )
def UpperCamelCase ( __magic_name__ : Optional[int] ) -> Tuple:
"""simple docstring"""
lowercase__ = [state.process_index]
lowercase__ = gather_object(__magic_name__ )
assert len(__magic_name__ ) == state.num_processes, f'''{gathered_obj}, {len(__magic_name__ )} != {state.num_processes}'''
assert gathered_obj == list(range(state.num_processes ) ), f'''{gathered_obj} != {list(range(state.num_processes ) )}'''
def UpperCamelCase ( __magic_name__ : str ) -> Dict:
"""simple docstring"""
lowercase__ = create_tensor(__magic_name__ )
lowercase__ = broadcast(__magic_name__ )
assert broadcasted_tensor.shape == torch.Size([state.num_processes] )
assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) )
def UpperCamelCase ( __magic_name__ : str ) -> Dict:
"""simple docstring"""
if state.is_main_process:
lowercase__ = torch.arange(state.num_processes + 1 ).to(state.device )
else:
lowercase__ = torch.arange(state.num_processes ).to(state.device )
lowercase__ = pad_across_processes(__magic_name__ )
assert padded_tensor.shape == torch.Size([state.num_processes + 1] )
if not state.is_main_process:
assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0]
def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[int]:
"""simple docstring"""
if state.num_processes != 2:
return
lowercase__ = create_tensor(__magic_name__ )
lowercase__ = reduce(__magic_name__ , """sum""" )
lowercase__ = torch.tensor([4.0, 6] ).to(state.device )
assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}'''
def UpperCamelCase ( __magic_name__ : Dict ) -> int:
"""simple docstring"""
if state.num_processes != 2:
return
lowercase__ = create_tensor(__magic_name__ )
lowercase__ = reduce(__magic_name__ , """mean""" )
lowercase__ = torch.tensor([2.0, 3] ).to(state.device )
assert torch.allclose(__magic_name__ , __magic_name__ ), f'''{reduced_tensor} != {truth_tensor}'''
def UpperCamelCase ( __magic_name__ : str ) -> int:
"""simple docstring"""
main()
def UpperCamelCase ( ) -> Optional[int]:
"""simple docstring"""
lowercase__ = PartialState()
state.print(f'''State: {state}''' )
state.print("""testing gather""" )
test_gather(__magic_name__ )
state.print("""testing gather_object""" )
test_gather_object(__magic_name__ )
state.print("""testing broadcast""" )
test_broadcast(__magic_name__ )
state.print("""testing pad_across_processes""" )
test_pad_across_processes(__magic_name__ )
state.print("""testing reduce_sum""" )
test_reduce_sum(__magic_name__ )
state.print("""testing reduce_mean""" )
test_reduce_mean(__magic_name__ )
if __name__ == "__main__":
main()
| 305
| 0
|
'''simple docstring'''
import inspect
import unittest
from transformers import MobileNetVaConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel
from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class a_ ( lowerCamelCase ):
def A__ ( self ) -> int:
"""simple docstring"""
UpperCamelCase = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """tf_padding""" ) )
self.parent.assertTrue(hasattr(_SCREAMING_SNAKE_CASE , """depth_multiplier""" ) )
class a_ :
def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=0.2_5 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=8 , _SCREAMING_SNAKE_CASE=6 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE="relu6" , _SCREAMING_SNAKE_CASE=1280 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=None , ) -> Any:
"""simple docstring"""
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = depth_multiplier
UpperCamelCase = depth_divisible_by
UpperCamelCase = min_depth
UpperCamelCase = expand_ratio
UpperCamelCase = tf_padding
UpperCamelCase = output_stride
UpperCamelCase = first_layer_is_expansion
UpperCamelCase = finegrained_output
UpperCamelCase = hidden_act
UpperCamelCase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier )
UpperCamelCase = classifier_dropout_prob
UpperCamelCase = use_labels
UpperCamelCase = is_training
UpperCamelCase = num_labels
UpperCamelCase = initializer_range
UpperCamelCase = scope
def A__ ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
UpperCamelCase = None
UpperCamelCase = None
if self.use_labels:
UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels )
UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def A__ ( self ) -> Optional[int]:
"""simple docstring"""
return MobileNetVaConfig(
num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , )
def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase = MobileNetVaModel(config=_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.last_hidden_state.shape , (
self.batch_size,
self.last_hidden_size,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
self.parent.assertEqual(
result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , )
def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = MobileNetVaForImageClassification(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase = self.num_labels
UpperCamelCase = MobileNetVaForSemanticSegmentation(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase = model(_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.logits.shape , (
self.batch_size,
self.num_labels,
self.image_size // self.output_stride,
self.image_size // self.output_stride,
) , )
def A__ ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = self.prepare_config_and_inputs()
UpperCamelCase ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase = config_and_inputs
UpperCamelCase = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class a_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ):
lowercase = (
(MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase = (
{
"""feature-extraction""": MobileNetVaModel,
"""image-classification""": MobileNetVaForImageClassification,
"""image-segmentation""": MobileNetVaForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
lowercase = False
def A__ ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase = MobileNetVaModelTester(self )
UpperCamelCase = MobileNetVaConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE )
def A__ ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
@unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" )
def A__ ( self ) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" )
def A__ ( self ) -> Tuple:
"""simple docstring"""
pass
@unittest.skip(reason="""MobileNetV2 does not output attentions""" )
def A__ ( self ) -> List[Any]:
"""simple docstring"""
pass
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE )
UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
UpperCamelCase = [*signature.parameters.keys()]
UpperCamelCase = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE )
def A__ ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE )
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
def check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ):
UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE )
model.to(_SCREAMING_SNAKE_CASE )
model.eval()
with torch.no_grad():
UpperCamelCase = model(**self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) )
UpperCamelCase = outputs.hidden_states
UpperCamelCase = 16
self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE )
UpperCamelCase ,UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
UpperCamelCase = True
check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
UpperCamelCase = True
check_hidden_states_output(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
def A__ ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE )
def A__ ( self ) -> str:
"""simple docstring"""
UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*_SCREAMING_SNAKE_CASE )
@slow
def A__ ( self ) -> Tuple:
"""simple docstring"""
for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase = MobileNetVaModel.from_pretrained(_SCREAMING_SNAKE_CASE )
self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
def lowercase__ ( )-> Any:
UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
@require_vision
class a_ ( unittest.TestCase ):
@cached_property
def A__ ( self ) -> Dict:
"""simple docstring"""
return (
MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None
)
@slow
def A__ ( self ) -> int:
"""simple docstring"""
UpperCamelCase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(_SCREAMING_SNAKE_CASE )
UpperCamelCase = self.default_image_processor
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**_SCREAMING_SNAKE_CASE )
# verify the logits
UpperCamelCase = torch.Size((1, 1001) )
self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE )
UpperCamelCase = torch.tensor([0.2_4_4_5, -1.1_9_9_3, 0.1_9_0_5] ).to(_SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def A__ ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" )
UpperCamelCase = model.to(_SCREAMING_SNAKE_CASE )
UpperCamelCase = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" )
UpperCamelCase = prepare_img()
UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).to(_SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
UpperCamelCase = model(**_SCREAMING_SNAKE_CASE )
UpperCamelCase = outputs.logits
# verify the logits
UpperCamelCase = torch.Size((1, 21, 65, 65) )
self.assertEqual(logits.shape , _SCREAMING_SNAKE_CASE )
UpperCamelCase = torch.tensor(
[
[[1_7.5_7_9_0, 1_7.7_5_8_1, 1_8.3_3_5_5], [1_8.3_2_5_7, 1_8.4_2_3_0, 1_8.8_9_7_3], [1_8.6_1_6_9, 1_8.8_6_5_0, 1_9.2_1_8_7]],
[[-2.1_5_9_5, -2.0_9_7_7, -2.3_7_4_1], [-2.4_2_2_6, -2.3_0_2_8, -2.6_8_3_5], [-2.7_8_1_9, -2.5_9_9_1, -2.7_7_0_6]],
[[4.2_0_5_8, 4.8_3_1_7, 4.7_6_3_8], [4.4_1_3_6, 5.0_3_6_1, 4.9_3_8_3], [4.5_0_2_8, 4.9_6_4_4, 4.8_7_3_4]],
] , device=_SCREAMING_SNAKE_CASE , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1e-4 ) )
| 183
|
'''simple docstring'''
import argparse
import numpy as np
import torch
from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging
logging.set_verbosity_info()
SCREAMING_SNAKE_CASE__ = logging.get_logger('transformers.models.speecht5')
def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]:
hf_model.apply_weight_norm()
UpperCamelCase = checkpoint["""input_conv.weight_g"""]
UpperCamelCase = checkpoint["""input_conv.weight_v"""]
UpperCamelCase = checkpoint["""input_conv.bias"""]
for i in range(len(config.upsample_rates ) ):
UpperCamelCase = checkpoint[F"upsamples.{i}.1.weight_g"]
UpperCamelCase = checkpoint[F"upsamples.{i}.1.weight_v"]
UpperCamelCase = checkpoint[F"upsamples.{i}.1.bias"]
for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ):
for j in range(len(config.resblock_dilation_sizes ) ):
UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"]
UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"]
UpperCamelCase = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"]
UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"]
UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"]
UpperCamelCase = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"]
UpperCamelCase = checkpoint["""output_conv.1.weight_g"""]
UpperCamelCase = checkpoint["""output_conv.1.weight_v"""]
UpperCamelCase = checkpoint["""output_conv.1.bias"""]
hf_model.remove_weight_norm()
@torch.no_grad()
def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , )-> List[Any]:
if config_path is not None:
UpperCamelCase = SpeechTaHifiGanConfig.from_pretrained(__UpperCamelCase )
else:
UpperCamelCase = SpeechTaHifiGanConfig()
UpperCamelCase = SpeechTaHifiGan(__UpperCamelCase )
UpperCamelCase = torch.load(__UpperCamelCase )
load_weights(orig_checkpoint["""model"""]["""generator"""] , __UpperCamelCase , __UpperCamelCase )
UpperCamelCase = np.load(__UpperCamelCase )
UpperCamelCase = stats[0].reshape(-1 )
UpperCamelCase = stats[1].reshape(-1 )
UpperCamelCase = torch.from_numpy(__UpperCamelCase ).float()
UpperCamelCase = torch.from_numpy(__UpperCamelCase ).float()
model.save_pretrained(__UpperCamelCase )
if repo_id:
print("""Pushing to the hub...""" )
model.push_to_hub(__UpperCamelCase )
if __name__ == "__main__":
SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser()
parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint')
parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
parser.add_argument(
'--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.'
)
SCREAMING_SNAKE_CASE__ = parser.parse_args()
convert_hifigan_checkpoint(
args.checkpoint_path,
args.stats_path,
args.pytorch_dump_folder_path,
args.config_path,
args.push_to_hub,
)
| 183
| 1
|
from scipy.stats import pearsonr
import datasets
lowercase = "\nPearson correlation coefficient and p-value for testing non-correlation.\nThe Pearson correlation coefficient measures the linear relationship between two datasets. The calculation of the p-value relies on the assumption that each dataset is normally distributed. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Correlations of -1 or +1 imply an exact linear relationship. Positive correlations imply that as x increases, so does y. Negative correlations imply that as x increases, y decreases.\nThe p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets.\n"
lowercase = "\nArgs:\n predictions (`list` of `int`): Predicted class labels, as returned by a model.\n references (`list` of `int`): Ground truth labels.\n return_pvalue (`boolean`): If `True`, returns the p-value, along with the correlation coefficient. If `False`, returns only the correlation coefficient. Defaults to `False`.\n\nReturns:\n pearsonr (`float`): Pearson correlation coefficient. Minimum possible value is -1. Maximum possible value is 1. Values of 1 and -1 indicate exact linear positive and negative relationships, respectively. A value of 0 implies no correlation.\n p-value (`float`): P-value, which roughly indicates the probability of an The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Pearson correlation at least as extreme as the one computed from these datasets. Minimum possible value is 0. Maximum possible value is 1. Higher values indicate higher probabilities.\n\nExamples:\n\n Example 1-A simple example using only predictions and references.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5])\n >>> print(round(results['pearsonr'], 2))\n -0.74\n\n Example 2-The same as Example 1, but that also returns the `p-value`.\n >>> pearsonr_metric = datasets.load_metric(\"pearsonr\")\n >>> results = pearsonr_metric.compute(predictions=[10, 9, 2.5, 6, 4], references=[1, 2, 3, 4, 5], return_pvalue=True)\n >>> print(sorted(list(results.keys())))\n ['p-value', 'pearsonr']\n >>> print(round(results['pearsonr'], 2))\n -0.74\n >>> print(round(results['p-value'], 2))\n 0.15\n"
lowercase = "\n@article{2020SciPy-NMeth,\nauthor = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, Ilhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Antonio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\ntitle = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\njournal = {Nature Methods},\nyear = {2020},\nvolume = {17},\npages = {261--272},\nadsurl = {https://rdcu.be/b08Wh},\ndoi = {10.1038/s41592-019-0686-2},\n}\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class UpperCamelCase_ ( datasets.Metric ):
'''simple docstring'''
def _UpperCamelCase ( self ) -> str:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.pearsonr.html'] , )
def _UpperCamelCase ( self , a , a , a=False ) -> Union[str, Any]:
if return_pvalue:
snake_case_ = pearsonr(a , a )
return {"pearsonr": results[0], "p-value": results[1]}
else:
return {"pearsonr": float(pearsonr(a , a )[0] )}
| 178
|
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SegformerConfig,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowercase = logging.get_logger(__name__)
def __UpperCAmelCase ( a_ , a_=False):
snake_case_ = OrderedDict()
for key, value in state_dict.items():
if encoder_only and not key.startswith('head'):
snake_case_ = 'segformer.encoder.' + key
if key.startswith('backbone'):
snake_case_ = key.replace('backbone' , 'segformer.encoder')
if "patch_embed" in key:
# replace for example patch_embed1 by patch_embeddings.0
snake_case_ = key[key.find('patch_embed') + len('patch_embed')]
snake_case_ = key.replace(f'''patch_embed{idx}''' , f'''patch_embeddings.{int(a_)-1}''')
if "norm" in key:
snake_case_ = key.replace('norm' , 'layer_norm')
if "segformer.encoder.layer_norm" in key:
# replace for example layer_norm1 by layer_norm.0
snake_case_ = key[key.find('segformer.encoder.layer_norm') + len('segformer.encoder.layer_norm')]
snake_case_ = key.replace(f'''layer_norm{idx}''' , f'''layer_norm.{int(a_)-1}''')
if "layer_norm1" in key:
snake_case_ = key.replace('layer_norm1' , 'layer_norm_1')
if "layer_norm2" in key:
snake_case_ = key.replace('layer_norm2' , 'layer_norm_2')
if "block" in key:
# replace for example block1 by block.0
snake_case_ = key[key.find('block') + len('block')]
snake_case_ = key.replace(f'''block{idx}''' , f'''block.{int(a_)-1}''')
if "attn.q" in key:
snake_case_ = key.replace('attn.q' , 'attention.self.query')
if "attn.proj" in key:
snake_case_ = key.replace('attn.proj' , 'attention.output.dense')
if "attn" in key:
snake_case_ = key.replace('attn' , 'attention.self')
if "fc1" in key:
snake_case_ = key.replace('fc1' , 'dense1')
if "fc2" in key:
snake_case_ = key.replace('fc2' , 'dense2')
if "linear_pred" in key:
snake_case_ = key.replace('linear_pred' , 'classifier')
if "linear_fuse" in key:
snake_case_ = key.replace('linear_fuse.conv' , 'linear_fuse')
snake_case_ = key.replace('linear_fuse.bn' , 'batch_norm')
if "linear_c" in key:
# replace for example linear_c4 by linear_c.3
snake_case_ = key[key.find('linear_c') + len('linear_c')]
snake_case_ = key.replace(f'''linear_c{idx}''' , f'''linear_c.{int(a_)-1}''')
if key.startswith('head'):
snake_case_ = key.replace('head' , 'classifier')
snake_case_ = value
return new_state_dict
def __UpperCAmelCase ( a_ , a_):
# for each of the encoder blocks:
for i in range(config.num_encoder_blocks):
for j in range(config.depths[i]):
# read in weights + bias of keys and values (which is a single matrix in the original implementation)
snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.weight''')
snake_case_ = state_dict.pop(f'''segformer.encoder.block.{i}.{j}.attention.self.kv.bias''')
# next, add keys and values (in that order) to the state dict
snake_case_ = kv_weight[
: config.hidden_sizes[i], :
]
snake_case_ = kv_bias[: config.hidden_sizes[i]]
snake_case_ = kv_weight[
config.hidden_sizes[i] :, :
]
snake_case_ = kv_bias[
config.hidden_sizes[i] :
]
def __UpperCAmelCase ( ):
snake_case_ = 'http://images.cocodataset.org/val2017/000000039769.jpg'
snake_case_ = Image.open(requests.get(a_ , stream=a_).raw)
return image
@torch.no_grad()
def __UpperCAmelCase ( a_ , a_ , a_):
snake_case_ = SegformerConfig()
snake_case_ = False
# set attributes based on model_name
snake_case_ = 'huggingface/label-files'
if "segformer" in model_name:
snake_case_ = model_name[len('segformer.') : len('segformer.') + 2]
if "ade" in model_name:
snake_case_ = 1_50
snake_case_ = 'ade20k-id2label.json'
snake_case_ = (1, 1_50, 1_28, 1_28)
elif "city" in model_name:
snake_case_ = 19
snake_case_ = 'cityscapes-id2label.json'
snake_case_ = (1, 19, 1_28, 1_28)
else:
raise ValueError(f'''Model {model_name} not supported''')
elif "mit" in model_name:
snake_case_ = True
snake_case_ = model_name[4:6]
snake_case_ = 10_00
snake_case_ = 'imagenet-1k-id2label.json'
snake_case_ = (1, 10_00)
else:
raise ValueError(f'''Model {model_name} not supported''')
# set config attributes
snake_case_ = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset') , 'r'))
snake_case_ = {int(a_): v for k, v in idalabel.items()}
snake_case_ = idalabel
snake_case_ = {v: k for k, v in idalabel.items()}
if size == "b0":
pass
elif size == "b1":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 2_56
elif size == "b2":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 4, 6, 3]
elif size == "b3":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 4, 18, 3]
elif size == "b4":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 8, 27, 3]
elif size == "b5":
snake_case_ = [64, 1_28, 3_20, 5_12]
snake_case_ = 7_68
snake_case_ = [3, 6, 40, 3]
else:
raise ValueError(f'''Size {size} not supported''')
# load image processor (only resize + normalize)
snake_case_ = SegformerImageProcessor(
image_scale=(5_12, 5_12) , keep_ratio=a_ , align=a_ , do_random_crop=a_)
# prepare image
snake_case_ = prepare_img()
snake_case_ = image_processor(images=a_ , return_tensors='pt').pixel_values
logger.info(f'''Converting model {model_name}...''')
# load original state dict
if encoder_only:
snake_case_ = torch.load(a_ , map_location=torch.device('cpu'))
else:
snake_case_ = torch.load(a_ , map_location=torch.device('cpu'))['state_dict']
# rename keys
snake_case_ = rename_keys(a_ , encoder_only=a_)
if not encoder_only:
del state_dict["decode_head.conv_seg.weight"]
del state_dict["decode_head.conv_seg.bias"]
# key and value matrices need special treatment
read_in_k_v(a_ , a_)
# create HuggingFace model and load state dict
if encoder_only:
snake_case_ = False
snake_case_ = SegformerForImageClassification(a_)
else:
snake_case_ = SegformerForSemanticSegmentation(a_)
model.load_state_dict(a_)
model.eval()
# forward pass
snake_case_ = model(a_)
snake_case_ = outputs.logits
# set expected_slice based on model name
# ADE20k checkpoints
if model_name == "segformer.b0.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
])
elif model_name == "segformer.b1.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-7.58_20, -8.72_31, -8.32_15], [-8.06_00, -10.35_29, -10.03_04], [-7.52_08, -9.41_03, -9.62_39]],
[[-12.69_18, -13.89_94, -13.71_37], [-13.31_96, -15.75_23, -15.47_89], [-12.93_43, -14.87_57, -14.96_89]],
[[-11.19_11, -11.94_21, -11.32_43], [-11.33_42, -13.68_39, -13.35_81], [-10.39_09, -12.18_32, -12.48_58]],
])
elif model_name == "segformer.b2.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-11.81_73, -14.38_50, -16.31_28], [-14.56_48, -16.58_04, -18.65_68], [-14.72_23, -15.73_87, -18.42_18]],
[[-15.72_90, -17.91_71, -19.44_23], [-18.31_05, -19.94_48, -21.46_61], [-17.92_96, -18.64_97, -20.79_10]],
[[-15.07_83, -17.03_36, -18.27_89], [-16.87_71, -18.68_70, -20.16_12], [-16.24_54, -17.14_26, -19.50_55]],
])
elif model_name == "segformer.b3.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-9.08_78, -10.20_81, -10.18_91], [-9.31_44, -10.79_41, -10.98_43], [-9.22_94, -10.38_55, -10.57_04]],
[[-12.23_16, -13.90_68, -13.61_02], [-12.91_61, -14.37_02, -14.32_35], [-12.52_33, -13.71_74, -13.79_32]],
[[-14.62_75, -15.24_90, -14.97_27], [-14.34_00, -15.96_87, -16.28_27], [-14.14_84, -15.40_33, -15.89_37]],
])
elif model_name == "segformer.b4.512x512.ade.160k":
snake_case_ = torch.tensor(
[
[[-12.31_44, -13.24_47, -14.08_02], [-13.36_14, -14.58_16, -15.61_17], [-13.33_40, -14.44_33, -16.22_19]],
[[-19.27_81, -20.41_28, -20.75_06], [-20.61_53, -21.65_66, -22.09_98], [-19.98_00, -21.04_30, -22.14_94]],
[[-18.87_39, -19.78_04, -21.18_34], [-20.12_33, -21.67_65, -23.29_44], [-20.03_15, -21.26_41, -23.69_44]],
])
elif model_name == "segformer.b5.640x640.ade.160k":
snake_case_ = torch.tensor(
[
[[-9.55_24, -12.08_35, -11.73_48], [-10.52_29, -13.64_46, -14.56_62], [-9.58_42, -12.88_51, -13.94_14]],
[[-15.34_32, -17.53_23, -17.08_18], [-16.33_30, -18.92_55, -19.21_01], [-15.13_40, -17.78_48, -18.39_71]],
[[-12.60_72, -14.94_86, -14.66_31], [-13.76_29, -17.09_07, -17.77_45], [-12.78_99, -16.16_95, -17.16_71]],
])
# Cityscapes checkpoints
elif model_name == "segformer.b0.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-11.92_95, -13.40_57, -14.81_06], [-13.34_31, -14.81_79, -15.37_81], [-14.28_36, -15.59_42, -16.15_88]],
[[-11.49_06, -12.80_67, -13.65_64], [-13.11_89, -14.05_00, -14.15_43], [-13.87_48, -14.51_36, -14.87_89]],
[[0.53_74, 0.10_67, -0.47_42], [0.11_41, -0.22_55, -0.70_99], [-0.30_00, -0.59_24, -1.31_05]],
])
elif model_name == "segformer.b0.512x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-7.82_17, -9.87_67, -10.17_17], [-9.44_38, -10.90_58, -11.40_47], [-9.79_39, -12.34_95, -12.10_79]],
[[-7.15_14, -9.53_36, -10.08_60], [-9.77_76, -11.68_22, -11.84_39], [-10.14_11, -12.76_55, -12.89_72]],
[[0.30_21, 0.08_05, -0.23_10], [-0.03_28, -0.16_05, -0.27_14], [-0.14_08, -0.54_77, -0.69_76]],
])
elif model_name == "segformer.b0.640x1280.city.160k":
snake_case_ = torch.tensor(
[
[
[-1.1_372E01, -1.2_787E01, -1.3_477E01],
[-1.2_536E01, -1.4_194E01, -1.4_409E01],
[-1.3_217E01, -1.4_888E01, -1.5_327E01],
],
[
[-1.4_791E01, -1.7_122E01, -1.8_277E01],
[-1.7_163E01, -1.9_192E01, -1.9_533E01],
[-1.7_897E01, -1.9_991E01, -2.0_315E01],
],
[
[7.6_723E-01, 4.1_921E-01, -7.7_878E-02],
[4.7_772E-01, 9.5_557E-03, -2.8_082E-01],
[3.6_032E-01, -2.4_826E-01, -5.1_168E-01],
],
])
elif model_name == "segformer.b0.768x768.city.160k":
snake_case_ = torch.tensor(
[
[[-9.49_59, -11.30_87, -11.74_79], [-11.00_25, -12.65_40, -12.33_19], [-11.40_64, -13.04_87, -12.99_05]],
[[-9.89_05, -11.30_84, -12.08_54], [-11.17_26, -12.76_98, -12.95_83], [-11.59_85, -13.32_78, -14.17_74]],
[[0.22_13, 0.01_92, -0.24_66], [-0.17_31, -0.42_13, -0.48_74], [-0.31_26, -0.65_41, -1.13_89]],
])
elif model_name == "segformer.b1.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
])
elif model_name == "segformer.b2.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-16.09_76, -16.48_56, -17.39_62], [-16.62_34, -19.03_42, -19.76_85], [-16.09_00, -18.06_61, -19.11_80]],
[[-18.47_50, -18.84_88, -19.50_74], [-19.40_30, -22.15_70, -22.59_77], [-19.11_91, -20.84_86, -22.37_83]],
[[-4.51_78, -5.50_37, -6.51_09], [-5.08_84, -7.21_74, -8.03_34], [-4.41_56, -5.81_17, -7.29_70]],
])
elif model_name == "segformer.b3.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-14.20_81, -14.47_32, -14.19_77], [-14.58_67, -16.44_23, -16.63_56], [-13.44_41, -14.96_85, -16.86_96]],
[[-14.45_76, -14.70_73, -15.04_51], [-15.08_16, -17.62_37, -17.98_73], [-14.42_13, -16.01_99, -18.59_92]],
[[-4.73_49, -4.95_88, -5.09_66], [-4.32_10, -6.93_25, -7.25_91], [-3.43_12, -4.74_84, -7.19_17]],
])
elif model_name == "segformer.b4.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-11.77_37, -11.95_26, -11.32_73], [-13.66_92, -14.45_74, -13.88_78], [-13.89_37, -14.69_24, -15.93_45]],
[[-14.67_06, -14.53_30, -14.13_06], [-16.15_02, -16.81_80, -16.42_69], [-16.83_38, -17.89_39, -20.17_46]],
[[1.04_91, 0.82_89, 1.03_10], [1.10_44, 0.52_19, 0.80_55], [1.08_99, 0.69_26, 0.55_90]],
])
elif model_name == "segformer.b5.1024x1024.city.160k":
snake_case_ = torch.tensor(
[
[[-12.56_41, -13.47_77, -13.06_84], [-13.95_87, -15.89_83, -16.65_57], [-13.31_09, -15.73_50, -16.31_41]],
[[-14.70_74, -15.43_52, -14.59_44], [-16.63_53, -18.16_63, -18.61_20], [-15.17_02, -18.03_29, -18.15_47]],
[[-1.79_90, -2.09_51, -1.77_84], [-2.63_97, -3.82_45, -3.96_86], [-1.52_64, -2.81_26, -2.93_16]],
])
else:
snake_case_ = logits.argmax(-1).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx])
# verify logits
if not encoder_only:
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3, :3, :3] , a_ , atol=1E-2)
# finally, save model and image processor
logger.info(f'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''')
Path(a_).mkdir(exist_ok=a_)
model.save_pretrained(a_)
image_processor.save_pretrained(a_)
if __name__ == "__main__":
lowercase = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="segformer.b0.512x512.ade.160k",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
lowercase = parser.parse_args()
convert_segformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 178
| 1
|
import gc
import random
import unittest
import numpy as np
import torch
from PIL import Image
from diffusers import (
DDIMScheduler,
KandinskyVaaInpaintPipeline,
KandinskyVaaPriorPipeline,
UNetaDConditionModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ):
__snake_case : List[str] =KandinskyVaaInpaintPipeline
__snake_case : Union[str, Any] =["image_embeds", "negative_image_embeds", "image", "mask_image"]
__snake_case : Tuple =[
"image_embeds",
"negative_image_embeds",
"image",
"mask_image",
]
__snake_case : str =[
"generator",
"height",
"width",
"latents",
"guidance_scale",
"num_inference_steps",
"return_dict",
"guidance_scale",
"num_images_per_prompt",
"output_type",
"return_dict",
]
__snake_case : List[str] =False
@property
def UpperCamelCase ( self: Tuple ):
'''simple docstring'''
return 32
@property
def UpperCamelCase ( self: Optional[int] ):
'''simple docstring'''
return 32
@property
def UpperCamelCase ( self: List[Any] ):
'''simple docstring'''
return self.time_input_dim
@property
def UpperCamelCase ( self: Optional[Any] ):
'''simple docstring'''
return self.time_input_dim * 4
@property
def UpperCamelCase ( self: Union[str, Any] ):
'''simple docstring'''
return 100
@property
def UpperCamelCase ( self: str ):
'''simple docstring'''
torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE = {
"""in_channels""": 9,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
_SCREAMING_SNAKE_CASE = UNetaDConditionModel(**UpperCAmelCase_ )
return model
@property
def UpperCamelCase ( self: Union[str, Any] ):
'''simple docstring'''
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def UpperCamelCase ( self: List[Any] ):
'''simple docstring'''
torch.manual_seed(0 )
_SCREAMING_SNAKE_CASE = VQModel(**self.dummy_movq_kwargs )
return model
def UpperCamelCase ( self: List[Any] ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = self.dummy_unet
_SCREAMING_SNAKE_CASE = self.dummy_movq
_SCREAMING_SNAKE_CASE = DDIMScheduler(
num_train_timesteps=1_000 , beta_schedule="""linear""" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , steps_offset=1 , prediction_type="""epsilon""" , thresholding=UpperCAmelCase_ , )
_SCREAMING_SNAKE_CASE = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def UpperCamelCase ( self: Dict , UpperCAmelCase_: Optional[int] , UpperCAmelCase_: List[str]=0 ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to(
UpperCAmelCase_ )
# create init_image
_SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = image.cpu().permute(0 , 2 , 3 , 1 )[0]
_SCREAMING_SNAKE_CASE = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("""RGB""" ).resize((256, 256) )
# create mask
_SCREAMING_SNAKE_CASE = np.ones((64, 64) , dtype=np.floataa )
_SCREAMING_SNAKE_CASE = 0
if str(UpperCAmelCase_ ).startswith("""mps""" ):
_SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ )
else:
_SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = {
"""image""": init_image,
"""mask_image""": mask,
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""num_inference_steps""": 2,
"""guidance_scale""": 4.0,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase ( self: str ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = """cpu"""
_SCREAMING_SNAKE_CASE = self.get_dummy_components()
_SCREAMING_SNAKE_CASE = self.pipeline_class(**UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = pipe.to(UpperCAmelCase_ )
pipe.set_progress_bar_config(disable=UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) )
_SCREAMING_SNAKE_CASE = output.images
_SCREAMING_SNAKE_CASE = pipe(
**self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0]
_SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1]
_SCREAMING_SNAKE_CASE = image_from_tuple[0, -3:, -3:, -1]
print(F'image.shape {image.shape}' )
assert image.shape == (1, 64, 64, 3)
_SCREAMING_SNAKE_CASE = np.array(
[0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] )
assert (
np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_slice.flatten()}'
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2
), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'
def UpperCamelCase ( self: int ):
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
@slow
@require_torch_gpu
class __UpperCAmelCase (unittest.TestCase ):
def UpperCamelCase ( self: List[Any] ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase ( self: List[str] ):
'''simple docstring'''
_SCREAMING_SNAKE_CASE = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" )
_SCREAMING_SNAKE_CASE = load_image(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" )
_SCREAMING_SNAKE_CASE = np.ones((768, 768) , dtype=np.floataa )
_SCREAMING_SNAKE_CASE = 0
_SCREAMING_SNAKE_CASE = """a hat"""
_SCREAMING_SNAKE_CASE = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa )
pipe_prior.to(UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = KandinskyVaaInpaintPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder-inpaint""" , torch_dtype=torch.floataa )
_SCREAMING_SNAKE_CASE = pipeline.to(UpperCAmelCase_ )
pipeline.set_progress_bar_config(disable=UpperCAmelCase_ )
_SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = pipe_prior(
UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
_SCREAMING_SNAKE_CASE = pipeline(
image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=100 , height=768 , width=768 , output_type="""np""" , )
_SCREAMING_SNAKE_CASE = output.images[0]
assert image.shape == (768, 768, 3)
assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
| 367
|
UpperCamelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []}
UpperCamelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]}
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = []
for neighbour in graph[vert]:
if not visited[neighbour]:
order += topology_sort(snake_case__ ,snake_case__ ,snake_case__ )
order.append(snake_case__ )
return order
def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list[int]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = True
_SCREAMING_SNAKE_CASE = [vert]
for neighbour in reversed_graph[vert]:
if not visited[neighbour]:
component += find_components(snake_case__ ,snake_case__ ,snake_case__ )
return component
def __lowerCamelCase ( snake_case__ ) -> list[list[int]]:
"""simple docstring"""
_SCREAMING_SNAKE_CASE = len(snake_case__ ) * [False]
_SCREAMING_SNAKE_CASE = {vert: [] for vert in range(len(snake_case__ ) )}
for vert, neighbours in graph.items():
for neighbour in neighbours:
reversed_graph[neighbour].append(snake_case__ )
_SCREAMING_SNAKE_CASE = []
for i, was_visited in enumerate(snake_case__ ):
if not was_visited:
order += topology_sort(snake_case__ ,snake_case__ ,snake_case__ )
_SCREAMING_SNAKE_CASE = []
_SCREAMING_SNAKE_CASE = len(snake_case__ ) * [False]
for i in range(len(snake_case__ ) ):
_SCREAMING_SNAKE_CASE = order[len(snake_case__ ) - i - 1]
if not visited[vert]:
_SCREAMING_SNAKE_CASE = find_components(snake_case__ ,snake_case__ ,snake_case__ )
components_list.append(snake_case__ )
return components_list
| 125
| 0
|
import unittest
import torch
from torch import nn
from accelerate.test_utils import require_cuda
from accelerate.utils.memory import find_executable_batch_size, release_memory
def lowerCAmelCase__ ( ) -> Optional[Any]:
'''simple docstring'''
raise RuntimeError("CUDA out of memory." )
class a__ ( nn.Module ):
"""simple docstring"""
def __init__( self ) -> Dict:
'''simple docstring'''
super().__init__()
A__ = nn.Linear(3 , 4 )
A__ = nn.BatchNormad(4 )
A__ = nn.Linear(4 , 5 )
def UpperCamelCase ( self , lowercase ) -> int:
'''simple docstring'''
return self.lineara(self.batchnorm(self.lineara(lowercase ) ) )
class a__ ( unittest.TestCase ):
"""simple docstring"""
def UpperCamelCase ( self ) -> Optional[int]:
'''simple docstring'''
A__ = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(lowercase ):
nonlocal batch_sizes
batch_sizes.append(lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
mock_training_loop_function()
self.assertListEqual(lowercase , [128, 64, 32, 16, 8] )
def UpperCamelCase ( self ) -> Union[str, Any]:
'''simple docstring'''
A__ = []
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(lowercase , lowercase ):
nonlocal batch_sizes
batch_sizes.append(lowercase )
if batch_size != 8:
raise_fake_out_of_memory()
return batch_size, arga
A__ , A__ = mock_training_loop_function("hello" )
self.assertListEqual(lowercase , [128, 64, 32, 16, 8] )
self.assertListEqual([bs, arga] , [8, "hello"] )
def UpperCamelCase ( self ) -> Optional[Any]:
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=0 )
def mock_training_loop_function(lowercase ):
pass
with self.assertRaises(lowercase ) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] )
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(lowercase ):
if batch_size > 0:
raise_fake_out_of_memory()
pass
with self.assertRaises(lowercase ) as cm:
mock_training_loop_function()
self.assertIn("No executable batch size found, reached zero." , cm.exception.args[0] )
def UpperCamelCase ( self ) -> List[str]:
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=128 )
def mock_training_loop_function(lowercase , lowercase , lowercase ):
if batch_size != 8:
raise raise_fake_out_of_memory()
with self.assertRaises(lowercase ) as cm:
mock_training_loop_function(128 , "hello" , "world" )
self.assertIn("Batch size was passed into `f`" , cm.exception.args[0] )
self.assertIn("`f(arg1='hello', arg2='world')" , cm.exception.args[0] )
def UpperCamelCase ( self ) -> Dict:
'''simple docstring'''
@find_executable_batch_size(starting_batch_size=16 )
def mock_training_loop_function(lowercase ):
raise ValueError("Oops, we had an error!" )
with self.assertRaises(lowercase ) as cm:
mock_training_loop_function()
self.assertIn("Oops, we had an error!" , cm.exception.args[0] )
@require_cuda
def UpperCamelCase ( self ) -> Tuple:
'''simple docstring'''
A__ = torch.cuda.memory_allocated()
A__ = ModelForTest()
model.cuda()
self.assertGreater(torch.cuda.memory_allocated() , lowercase )
A__ = release_memory(lowercase )
self.assertEqual(torch.cuda.memory_allocated() , lowercase )
| 68
|
import flax.linen as nn
import jax
import jax.numpy as jnp
class lowerCAmelCase ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = jnp.floataa
def A_ ( self : Any ) -> Any:
lowerCamelCase__ : str = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : int , UpperCAmelCase : Dict ) -> Optional[Any]:
lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = hidden_states.shape
lowerCamelCase__ : Union[str, Any] = jax.image.resize(
UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , )
lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase )
return hidden_states
class lowerCAmelCase ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = jnp.floataa
def A_ ( self : List[str] ) -> int:
lowerCamelCase__ : Tuple = nn.Conv(
self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
def __call__( self : str , UpperCAmelCase : Union[str, Any] ) -> Optional[Any]:
# pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim
# hidden_states = jnp.pad(hidden_states, pad_width=pad)
lowerCamelCase__ : Optional[Any] = self.conv(UpperCAmelCase )
return hidden_states
class lowerCAmelCase ( nn.Module ):
UpperCAmelCase__ = 42
UpperCAmelCase__ = None
UpperCAmelCase__ = 0.0
UpperCAmelCase__ = None
UpperCAmelCase__ = jnp.floataa
def A_ ( self : List[str] ) -> Union[str, Any]:
lowerCamelCase__ : Optional[Any] = self.in_channels if self.out_channels is None else self.out_channels
lowerCamelCase__ : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
lowerCamelCase__ : int = nn.Conv(
UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
lowerCamelCase__ : Union[str, Any] = nn.Dense(UpperCAmelCase , dtype=self.dtype )
lowerCamelCase__ : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1e-5 )
lowerCamelCase__ : List[Any] = nn.Dropout(self.dropout_prob )
lowerCamelCase__ : Tuple = nn.Conv(
UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , )
lowerCamelCase__ : Optional[Any] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut
lowerCamelCase__ : Union[str, Any] = None
if use_nin_shortcut:
lowerCamelCase__ : Dict = nn.Conv(
UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , )
def __call__( self : Optional[Any] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : int=True ) -> Optional[int]:
lowerCamelCase__ : Union[str, Any] = hidden_states
lowerCamelCase__ : List[Any] = self.norma(UpperCAmelCase )
lowerCamelCase__ : List[Any] = nn.swish(UpperCAmelCase )
lowerCamelCase__ : Any = self.conva(UpperCAmelCase )
lowerCamelCase__ : Optional[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase ) )
lowerCamelCase__ : List[str] = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase , 1 ) , 1 )
lowerCamelCase__ : List[str] = hidden_states + temb
lowerCamelCase__ : Optional[Any] = self.norma(UpperCAmelCase )
lowerCamelCase__ : List[str] = nn.swish(UpperCAmelCase )
lowerCamelCase__ : Optional[int] = self.dropout(UpperCAmelCase , UpperCAmelCase )
lowerCamelCase__ : str = self.conva(UpperCAmelCase )
if self.conv_shortcut is not None:
lowerCamelCase__ : Dict = self.conv_shortcut(UpperCAmelCase )
return hidden_states + residual
| 50
| 0
|
"""simple docstring"""
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
convert_to_rgb,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
OPENAI_CLIP_MEAN,
OPENAI_CLIP_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
lowerCAmelCase : Any = logging.get_logger(__name__)
if is_vision_available():
import PIL
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = ["pixel_values"]
def __init__( self , _a = True , _a = None , _a = PILImageResampling.BICUBIC , _a = True , _a = None , _a = True , _a = 1 / 255 , _a = True , _a = None , _a = None , _a = True , **_a , ):
"""simple docstring"""
super().__init__(**_a )
lowerCamelCase = size if size is not None else {"""shortest_edge""": 224}
lowerCamelCase = get_size_dict(_a , default_to_square=_a )
lowerCamelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224}
lowerCamelCase = get_size_dict(_a , default_to_square=_a , param_name="""crop_size""" )
lowerCamelCase = do_resize
lowerCamelCase = size
lowerCamelCase = resample
lowerCamelCase = do_center_crop
lowerCamelCase = crop_size
lowerCamelCase = do_rescale
lowerCamelCase = rescale_factor
lowerCamelCase = do_normalize
lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN
lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD
lowerCamelCase = do_convert_rgb
def _lowerCAmelCase ( self , _a , _a , _a = PILImageResampling.BICUBIC , _a = None , **_a , ):
"""simple docstring"""
lowerCamelCase = get_size_dict(_a , default_to_square=_a )
if "shortest_edge" not in size:
raise ValueError(f'The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}' )
lowerCamelCase = get_resize_output_image_size(_a , size=size["""shortest_edge"""] , default_to_square=_a )
return resize(_a , size=_a , resample=_a , data_format=_a , **_a )
def _lowerCAmelCase ( self , _a , _a , _a = None , **_a , ):
"""simple docstring"""
lowerCamelCase = get_size_dict(_a )
if "height" not in size or "width" not in size:
raise ValueError(f'The `size` parameter must contain the keys (height, width). Got {size.keys()}' )
return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a )
def _lowerCAmelCase ( self , _a , _a , _a = None , **_a , ):
"""simple docstring"""
return rescale(_a , scale=_a , data_format=_a , **_a )
def _lowerCAmelCase ( self , _a , _a , _a , _a = None , **_a , ):
"""simple docstring"""
return normalize(_a , mean=_a , std=_a , data_format=_a , **_a )
def _lowerCAmelCase ( self , _a , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = None , _a = ChannelDimension.FIRST , **_a , ):
"""simple docstring"""
lowerCamelCase = do_resize if do_resize is not None else self.do_resize
lowerCamelCase = size if size is not None else self.size
lowerCamelCase = get_size_dict(_a , param_name="""size""" , default_to_square=_a )
lowerCamelCase = resample if resample is not None else self.resample
lowerCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop
lowerCamelCase = crop_size if crop_size is not None else self.crop_size
lowerCamelCase = get_size_dict(_a , param_name="""crop_size""" , default_to_square=_a )
lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase = image_mean if image_mean is not None else self.image_mean
lowerCamelCase = image_std if image_std is not None else self.image_std
lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb
lowerCamelCase = make_list_of_images(_a )
if not valid_images(_a ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# PIL RGBA images are converted to RGB
if do_convert_rgb:
lowerCamelCase = [convert_to_rgb(_a ) for image in images]
# All transformations expect numpy arrays.
lowerCamelCase = [to_numpy_array(_a ) for image in images]
if do_resize:
lowerCamelCase = [self.resize(image=_a , size=_a , resample=_a ) for image in images]
if do_center_crop:
lowerCamelCase = [self.center_crop(image=_a , size=_a ) for image in images]
if do_rescale:
lowerCamelCase = [self.rescale(image=_a , scale=_a ) for image in images]
if do_normalize:
lowerCamelCase = [self.normalize(image=_a , mean=_a , std=_a ) for image in images]
lowerCamelCase = [to_channel_dimension_format(_a , _a ) for image in images]
lowerCamelCase = {"""pixel_values""": images}
return BatchFeature(data=_a , tensor_type=_a )
| 351
|
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from typing import List, Optional, Union
import tqdm
from filelock import FileLock
from transformers import (
BartTokenizer,
BartTokenizerFast,
DataProcessor,
PreTrainedTokenizer,
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : List[str] = logging.getLogger(__name__)
@dataclass(frozen=UpperCAmelCase__ )
class __magic_name__ :
'''simple docstring'''
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
@dataclass(frozen=UpperCAmelCase__ )
class __magic_name__ :
'''simple docstring'''
__UpperCamelCase = 42
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if is_torch_available():
import torch
from torch.utils.data import Dataset
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = 42
def __init__( self , _a , _a , _a , _a = None , _a=False , _a = False , ):
"""simple docstring"""
lowerCamelCase = hans_processors[task]()
lowerCamelCase = os.path.join(
_a , """cached_{}_{}_{}_{}""".format(
"""dev""" if evaluate else """train""" , tokenizer.__class__.__name__ , str(_a ) , _a , ) , )
lowerCamelCase = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCamelCase , lowerCamelCase = label_list[2], label_list[1]
lowerCamelCase = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
lowerCamelCase = cached_features_file + """.lock"""
with FileLock(_a ):
if os.path.exists(_a ) and not overwrite_cache:
logger.info(f'Loading features from cached file {cached_features_file}' )
lowerCamelCase = torch.load(_a )
else:
logger.info(f'Creating features from dataset file at {data_dir}' )
lowerCamelCase = (
processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a )
)
logger.info("""Training examples: %s""" , len(_a ) )
lowerCamelCase = hans_convert_examples_to_features(_a , _a , _a , _a )
logger.info("""Saving features into cached file %s""" , _a )
torch.save(self.features , _a )
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _a ):
"""simple docstring"""
return self.features[i]
def _lowerCAmelCase ( self ):
"""simple docstring"""
return self.label_list
if is_tf_available():
import tensorflow as tf
class __magic_name__ :
'''simple docstring'''
__UpperCamelCase = 42
def __init__( self , _a , _a , _a , _a = 128 , _a=False , _a = False , ):
"""simple docstring"""
lowerCamelCase = hans_processors[task]()
lowerCamelCase = processor.get_labels()
if tokenizer.__class__ in (
RobertaTokenizer,
RobertaTokenizerFast,
XLMRobertaTokenizer,
BartTokenizer,
BartTokenizerFast,
):
# HACK(label indices are swapped in RoBERTa pretrained model)
lowerCamelCase , lowerCamelCase = label_list[2], label_list[1]
lowerCamelCase = label_list
lowerCamelCase = processor.get_dev_examples(_a ) if evaluate else processor.get_train_examples(_a )
lowerCamelCase = hans_convert_examples_to_features(_a , _a , _a , _a )
def gen():
for ex_index, ex in tqdm.tqdm(enumerate(self.features ) , desc="""convert examples to features""" ):
if ex_index % 10_000 == 0:
logger.info("""Writing example %d of %d""" % (ex_index, len(_a )) )
yield (
{
"example_id": 0,
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label,
)
lowerCamelCase = tf.data.Dataset.from_generator(
_a , (
{
"""example_id""": tf.intaa,
"""input_ids""": tf.intaa,
"""attention_mask""": tf.intaa,
"""token_type_ids""": tf.intaa,
},
tf.intaa,
) , (
{
"""example_id""": tf.TensorShape([] ),
"""input_ids""": tf.TensorShape([None, None] ),
"""attention_mask""": tf.TensorShape([None, None] ),
"""token_type_ids""": tf.TensorShape([None, None] ),
},
tf.TensorShape([] ),
) , )
def _lowerCAmelCase ( self ):
"""simple docstring"""
return self.dataset
def __len__( self ):
"""simple docstring"""
return len(self.features )
def __getitem__( self , _a ):
"""simple docstring"""
return self.features[i]
def _lowerCAmelCase ( self ):
"""simple docstring"""
return self.label_list
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
return self._create_examples(self._read_tsv(os.path.join(_a , """heuristics_train_set.txt""" ) ) , """train""" )
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
return self._create_examples(self._read_tsv(os.path.join(_a , """heuristics_evaluation_set.txt""" ) ) , """dev""" )
def _lowerCAmelCase ( self ):
"""simple docstring"""
return ["contradiction", "entailment", "neutral"]
def _lowerCAmelCase ( self , _a , _a ):
"""simple docstring"""
lowerCamelCase = []
for i, line in enumerate(_a ):
if i == 0:
continue
lowerCamelCase = """%s-%s""" % (set_type, line[0])
lowerCamelCase = line[5]
lowerCamelCase = line[6]
lowerCamelCase = line[7][2:] if line[7].startswith("""ex""" ) else line[7]
lowerCamelCase = line[0]
examples.append(InputExample(guid=_a , text_a=_a , text_b=_a , label=_a , pairID=_a ) )
return examples
def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Tuple:
lowerCamelCase = {label: i for i, label in enumerate(snake_case__ )}
lowerCamelCase = []
for ex_index, example in tqdm.tqdm(enumerate(snake_case__ ) , desc="""convert examples to features""" ):
if ex_index % 1_00_00 == 0:
logger.info("""Writing example %d""" % (ex_index) )
lowerCamelCase = tokenizer(
example.text_a , example.text_b , add_special_tokens=snake_case__ , max_length=snake_case__ , padding="""max_length""" , truncation=snake_case__ , return_overflowing_tokens=snake_case__ , )
lowerCamelCase = label_map[example.label] if example.label in label_map else 0
lowerCamelCase = int(example.pairID )
features.append(InputFeatures(**snake_case__ , label=snake_case__ , pairID=snake_case__ ) )
for i, example in enumerate(examples[:5] ):
logger.info("""*** Example ***""" )
logger.info(F'guid: {example}' )
logger.info(F'features: {features[i]}' )
return features
lowerCAmelCase : List[str] = {
"""hans""": 3,
}
lowerCAmelCase : str = {
"""hans""": HansProcessor,
}
| 168
| 0
|
'''simple docstring'''
_UpperCamelCase = '''
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
_UpperCamelCase = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
_UpperCamelCase = {
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 254
|
'''simple docstring'''
from typing import Optional
from urllib.parse import quote
import huggingface_hub as hfh
from packaging import version
def lowercase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ):
"""simple docstring"""
if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release:
# old versions of hfh don't url-encode the file path
__UpperCAmelCase : Optional[Any] = quote(lowerCAmelCase__ )
return hfh.hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" , revision=lowerCAmelCase__ )
| 254
| 1
|
'''simple docstring'''
from __future__ import annotations
from math import pow, sqrt
def UpperCAmelCase ( a_ , a_ , a_ ) -> Union[str, Any]:
"""simple docstring"""
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError("""One and only one argument must be 0""" )
if resistance == 0:
return {"resistance": sqrt(pow(a_ , 2 ) - pow(a_ , 2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(a_ , 2 ) - pow(a_ , 2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(a_ , 2 ) + pow(a_ , 2 ) )}
else:
raise ValueError("""Exactly one argument must be 0""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 356
|
'''simple docstring'''
from statistics import mean, stdev
def UpperCAmelCase ( a_ , a_ = 3 ) -> list:
"""simple docstring"""
A_ : Tuple = min(a_ )
A_ : Union[str, Any] = max(a_ )
# normalize data
return [round((x - x_min) / (x_max - x_min) , a_ ) for x in data]
def UpperCAmelCase ( a_ , a_ = 3 ) -> list:
"""simple docstring"""
A_ : List[str] = mean(a_ )
A_ : List[str] = stdev(a_ )
# standardize data
return [round((x - mu) / (sigma) , a_ ) for x in data]
| 164
| 0
|
"""simple docstring"""
import inspect
import unittest
import warnings
from transformers import DeiTConfig
from transformers.models.auto import get_values
from transformers.testing_utils import (
require_accelerate,
require_torch,
require_torch_gpu,
require_vision,
slow,
torch_device,
)
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
MODEL_MAPPING,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
DeiTModel,
)
from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DeiTImageProcessor
class a :
def __init__( self : List[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Any=13 , __SCREAMING_SNAKE_CASE : List[Any]=30 , __SCREAMING_SNAKE_CASE : List[str]=2 , __SCREAMING_SNAKE_CASE : List[Any]=3 , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : List[str]=32 , __SCREAMING_SNAKE_CASE : Optional[Any]=5 , __SCREAMING_SNAKE_CASE : Tuple=4 , __SCREAMING_SNAKE_CASE : str=37 , __SCREAMING_SNAKE_CASE : str="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : int=0.1 , __SCREAMING_SNAKE_CASE : Dict=10 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : Tuple=None , __SCREAMING_SNAKE_CASE : Optional[int]=2 , ) -> str:
lowerCamelCase_ = parent
lowerCamelCase_ = batch_size
lowerCamelCase_ = image_size
lowerCamelCase_ = patch_size
lowerCamelCase_ = num_channels
lowerCamelCase_ = is_training
lowerCamelCase_ = use_labels
lowerCamelCase_ = hidden_size
lowerCamelCase_ = num_hidden_layers
lowerCamelCase_ = num_attention_heads
lowerCamelCase_ = intermediate_size
lowerCamelCase_ = hidden_act
lowerCamelCase_ = hidden_dropout_prob
lowerCamelCase_ = attention_probs_dropout_prob
lowerCamelCase_ = type_sequence_label_size
lowerCamelCase_ = initializer_range
lowerCamelCase_ = scope
lowerCamelCase_ = encoder_stride
# in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens)
lowerCamelCase_ = (image_size // patch_size) ** 2
lowerCamelCase_ = num_patches + 2
def UpperCamelCase ( self : List[Any] ) -> Optional[Any]:
lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase_ = None
if self.use_labels:
lowerCamelCase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase_ = self.get_config()
return config, pixel_values, labels
def UpperCamelCase ( self : Optional[int] ) -> Dict:
return DeiTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , )
def UpperCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] ) -> List[str]:
lowerCamelCase_ = DeiTModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int ) -> List[Any]:
lowerCamelCase_ = DeiTForMaskedImageModeling(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(
result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) )
# test greyscale images
lowerCamelCase_ = 1
lowerCamelCase_ = DeiTForMaskedImageModeling(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) )
def UpperCamelCase ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str ) -> Dict:
lowerCamelCase_ = self.type_sequence_label_size
lowerCamelCase_ = DeiTForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase_ = 1
lowerCamelCase_ = DeiTForImageClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
lowerCamelCase_ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCamelCase ( self : str ) -> int:
lowerCamelCase_ = self.prepare_config_and_inputs()
(
(
lowerCamelCase_
) , (
lowerCamelCase_
) , (
lowerCamelCase_
) ,
) = config_and_inputs
lowerCamelCase_ = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class a ( __snake_case , __snake_case , unittest.TestCase ):
SCREAMING_SNAKE_CASE : Tuple = (
(
DeiTModel,
DeiTForImageClassification,
DeiTForImageClassificationWithTeacher,
DeiTForMaskedImageModeling,
)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE : List[str] = (
{
"""feature-extraction""": DeiTModel,
"""image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher),
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE : Optional[Any] = False
SCREAMING_SNAKE_CASE : Tuple = False
SCREAMING_SNAKE_CASE : int = False
def UpperCamelCase ( self : Union[str, Any] ) -> str:
lowerCamelCase_ = DeiTModelTester(self )
lowerCamelCase_ = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , has_text_modality=__SCREAMING_SNAKE_CASE , hidden_size=37 )
def UpperCamelCase ( self : Dict ) -> int:
self.config_tester.run_common_tests()
@unittest.skip(reason='DeiT does not use inputs_embeds' )
def UpperCamelCase ( self : List[Any] ) -> Optional[int]:
pass
def UpperCamelCase ( self : Optional[Any] ) -> Tuple:
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCamelCase_ = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__SCREAMING_SNAKE_CASE , nn.Linear ) )
def UpperCamelCase ( self : str ) -> Union[str, Any]:
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE )
lowerCamelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase_ = [*signature.parameters.keys()]
lowerCamelCase_ = ['pixel_values']
self.assertListEqual(arg_names[:1] , __SCREAMING_SNAKE_CASE )
def UpperCamelCase ( self : Dict ) -> Tuple:
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def UpperCamelCase ( self : Tuple ) -> int:
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_image_modeling(*__SCREAMING_SNAKE_CASE )
def UpperCamelCase ( self : Dict ) -> Optional[Any]:
lowerCamelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__SCREAMING_SNAKE_CASE )
def UpperCamelCase ( self : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ) -> Any:
lowerCamelCase_ = super()._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
if return_labels:
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
del inputs_dict["labels"]
return inputs_dict
def UpperCamelCase ( self : str ) -> int:
if not self.model_tester.is_training:
return
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ = True
for model_class in self.all_model_classes:
# DeiTForImageClassificationWithTeacher supports inference-only
if (
model_class in get_values(__SCREAMING_SNAKE_CASE )
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.train()
lowerCamelCase_ = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def UpperCamelCase ( self : Optional[Any] ) -> int:
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
lowerCamelCase_ = False
lowerCamelCase_ = True
for model_class in self.all_model_classes:
if model_class in get_values(__SCREAMING_SNAKE_CASE ) or not model_class.supports_gradient_checkpointing:
continue
# DeiTForImageClassificationWithTeacher supports inference-only
if model_class.__name__ == "DeiTForImageClassificationWithTeacher":
continue
lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE )
model.gradient_checkpointing_enable()
model.to(__SCREAMING_SNAKE_CASE )
model.train()
lowerCamelCase_ = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE ).loss
loss.backward()
def UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
lowerCamelCase_ , lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase_ = [
{'title': 'multi_label_classification', 'num_labels': 2, 'dtype': torch.float},
{'title': 'single_label_classification', 'num_labels': 1, 'dtype': torch.long},
{'title': 'regression', 'num_labels': 1, 'dtype': torch.float},
]
for model_class in self.all_model_classes:
if (
model_class
not in [
*get_values(__SCREAMING_SNAKE_CASE ),
*get_values(__SCREAMING_SNAKE_CASE ),
]
or model_class.__name__ == "DeiTForImageClassificationWithTeacher"
):
continue
for problem_type in problem_types:
with self.subTest(msg=F'''Testing {model_class} with {problem_type["title"]}''' ):
lowerCamelCase_ = problem_type['title']
lowerCamelCase_ = problem_type['num_labels']
lowerCamelCase_ = model_class(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.train()
lowerCamelCase_ = self._prepare_for_class(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , return_labels=__SCREAMING_SNAKE_CASE )
if problem_type["num_labels"] > 1:
lowerCamelCase_ = inputs['labels'].unsqueeze(1 ).repeat(1 , problem_type['num_labels'] )
lowerCamelCase_ = inputs['labels'].to(problem_type['dtype'] )
# This tests that we do not trigger the warning form PyTorch "Using a target size that is different
# to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure
# they have the same size." which is a symptom something in wrong for the regression problem.
# See https://github.com/huggingface/transformers/issues/11780
with warnings.catch_warnings(record=__SCREAMING_SNAKE_CASE ) as warning_list:
lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE ).loss
for w in warning_list:
if "Using a target size that is different to the input size" in str(w.message ):
raise ValueError(
F'''Something is going wrong in the regression problem: intercepted {w.message}''' )
loss.backward()
@slow
def UpperCamelCase ( self : List[str] ) -> Tuple:
for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase_ = DeiTModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def lowerCamelCase__ ( ) -> Any:
lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class a ( unittest.TestCase ):
@cached_property
def UpperCamelCase ( self : Union[str, Any] ) -> Tuple:
return (
DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' )
if is_vision_available()
else None
)
@slow
def UpperCamelCase ( self : Optional[Any] ) -> int:
lowerCamelCase_ = DeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ).to(
__SCREAMING_SNAKE_CASE )
lowerCamelCase_ = self.default_image_processor
lowerCamelCase_ = prepare_img()
lowerCamelCase_ = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' ).to(__SCREAMING_SNAKE_CASE )
# forward pass
with torch.no_grad():
lowerCamelCase_ = model(**__SCREAMING_SNAKE_CASE )
# verify the logits
lowerCamelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __SCREAMING_SNAKE_CASE )
lowerCamelCase_ = torch.tensor([-1.0_266, 0.1_912, -1.2_861] ).to(__SCREAMING_SNAKE_CASE )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
@require_accelerate
@require_torch_gpu
def UpperCamelCase ( self : str ) -> Dict:
lowerCamelCase_ = DeiTModel.from_pretrained(
'facebook/deit-base-distilled-patch16-224' , torch_dtype=torch.floataa , device_map='auto' )
lowerCamelCase_ = self.default_image_processor
lowerCamelCase_ = prepare_img()
lowerCamelCase_ = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors='pt' )
lowerCamelCase_ = inputs.pixel_values.to(__SCREAMING_SNAKE_CASE )
# forward pass to make sure inference works in fp16
with torch.no_grad():
lowerCamelCase_ = model(__SCREAMING_SNAKE_CASE )
| 183
|
"""simple docstring"""
from math import pow, sqrt
def lowerCamelCase__ ( *_lowerCamelCase : float ) -> bool:
lowerCamelCase_ = len(_lowerCamelCase ) > 0 and all(value > 0.0 for value in values )
return result
def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError:
return (
round(sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(_lowerCamelCase , _lowerCamelCase )
else ValueError('Input Error: Molar mass values must greater than 0.' )
)
def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError:
return (
round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else ValueError(
'Input Error: Molar mass and effusion rate values must greater than 0.' )
)
def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError:
return (
round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 )
if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else ValueError(
'Input Error: Molar mass and effusion rate values must greater than 0.' )
)
def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError:
return (
round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 )
if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else ValueError(
'Input Error: Molar mass and effusion rate values must greater than 0.' )
)
def lowerCamelCase__ ( _lowerCamelCase : float , _lowerCamelCase : float , _lowerCamelCase : float ) -> float | ValueError:
return (
round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 )
if validate(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
else ValueError(
'Input Error: Molar mass and effusion rate values must greater than 0.' )
)
| 183
| 1
|
'''simple docstring'''
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf
if is_tf_available():
import tensorflow as tf
from tensorflow.python.eager import context
from tensorflow.python.framework import ops
from transformers import GradientAccumulator, create_optimizer
@require_tf
class __magic_name__ ( unittest.TestCase ):
def __lowercase ( self : int ,_UpperCAmelCase : int ,_UpperCAmelCase : str ,_UpperCAmelCase : Optional[Any] ):
self.assertEqual(len(_UpperCAmelCase ) ,len(_UpperCAmelCase ) )
for a, b in zip(_UpperCAmelCase ,_UpperCAmelCase ):
self.assertAlmostEqual(_UpperCAmelCase ,_UpperCAmelCase ,delta=_UpperCAmelCase )
def __lowercase ( self : int ):
_a : int = GradientAccumulator()
accumulator([tf.constant([1.0, 2.0] )] )
accumulator([tf.constant([-2.0, 1.0] )] )
accumulator([tf.constant([-1.0, 2.0] )] )
with self.assertRaises(_UpperCAmelCase ):
accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] )
self.assertEqual(accumulator.step ,3 )
self.assertEqual(len(accumulator.gradients ) ,1 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[-2.0, 5.0] ,tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() ,[0.0, 0.0] ,tol=1E-2 )
def __lowercase ( self : Any ):
_a : int = None
ops.enable_eager_execution_internal()
_a : Optional[int] = tf.config.list_physical_devices('CPU' )
if len(_UpperCAmelCase ) == 1:
tf.config.set_logical_device_configuration(
physical_devices[0] ,[tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] )
_a : Tuple = tf.config.list_logical_devices(device_type='CPU' )
_a : List[str] = tf.distribute.MirroredStrategy(devices=devices[:2] )
with strategy.scope():
_a : Tuple = GradientAccumulator()
_a : List[Any] = tf.Variable([4.0, 3.0] )
_a , _a : Dict = create_optimizer(5E-5 ,10 ,5 )
_a : Tuple = tf.Variable([0.0, 0.0] ,trainable=_UpperCAmelCase )
def accumulate_on_replica(_UpperCAmelCase : str ):
accumulator([gradient] )
def apply_on_replica():
optimizer.apply_gradients(list(zip(accumulator.gradients ,[variable] ) ) )
@tf.function
def accumulate(_UpperCAmelCase : Optional[int] ,_UpperCAmelCase : Optional[int] ):
with strategy.scope():
_a : Union[str, Any] = strategy.experimental_local_results(_UpperCAmelCase )
local_variables[0].assign(_UpperCAmelCase )
local_variables[1].assign(_UpperCAmelCase )
strategy.run(_UpperCAmelCase ,args=(gradient_placeholder,) )
@tf.function
def apply_grad():
with strategy.scope():
strategy.run(_UpperCAmelCase )
def _check_local_values(_UpperCAmelCase : Tuple ,_UpperCAmelCase : List[str] ):
_a : List[Any] = strategy.experimental_local_results(accumulator._gradients[0] )
self.assertListAlmostEqual(values[0].value() ,_UpperCAmelCase ,tol=1E-2 )
self.assertListAlmostEqual(values[1].value() ,_UpperCAmelCase ,tol=1E-2 )
accumulate([1.0, 2.0] ,[-1.0, 1.0] )
accumulate([3.0, -1.0] ,[-1.0, -1.0] )
accumulate([-2.0, 2.0] ,[3.0, -2.0] )
self.assertEqual(accumulator.step ,3 )
_check_local_values([2.0, 3.0] ,[1.0, -2.0] )
apply_grad()
self.assertListAlmostEqual(variable.value() ,[4.0, 3.0] ,tol=1E-2 )
accumulator.reset()
self.assertEqual(accumulator.step ,0 )
_check_local_values([0.0, 0.0] ,[0.0, 0.0] )
| 107
|
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__lowerCAmelCase = {
'''configuration_data2vec_audio''': ['''DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Data2VecAudioConfig'''],
'''configuration_data2vec_text''': [
'''DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Data2VecTextConfig''',
'''Data2VecTextOnnxConfig''',
],
'''configuration_data2vec_vision''': [
'''DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''Data2VecVisionConfig''',
'''Data2VecVisionOnnxConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase = [
'''DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecAudioForAudioFrameClassification''',
'''Data2VecAudioForCTC''',
'''Data2VecAudioForSequenceClassification''',
'''Data2VecAudioForXVector''',
'''Data2VecAudioModel''',
'''Data2VecAudioPreTrainedModel''',
]
__lowerCAmelCase = [
'''DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecTextForCausalLM''',
'''Data2VecTextForMaskedLM''',
'''Data2VecTextForMultipleChoice''',
'''Data2VecTextForQuestionAnswering''',
'''Data2VecTextForSequenceClassification''',
'''Data2VecTextForTokenClassification''',
'''Data2VecTextModel''',
'''Data2VecTextPreTrainedModel''',
]
__lowerCAmelCase = [
'''DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''Data2VecVisionForImageClassification''',
'''Data2VecVisionForMaskedImageModeling''',
'''Data2VecVisionForSemanticSegmentation''',
'''Data2VecVisionModel''',
'''Data2VecVisionPreTrainedModel''',
]
if is_tf_available():
__lowerCAmelCase = [
'''TFData2VecVisionForImageClassification''',
'''TFData2VecVisionForSemanticSegmentation''',
'''TFData2VecVisionModel''',
'''TFData2VecVisionPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig
from .configuration_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecTextConfig,
DataaVecTextOnnxConfig,
)
from .configuration_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP,
DataaVecVisionConfig,
DataaVecVisionOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_dataavec_audio import (
DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecAudioForAudioFrameClassification,
DataaVecAudioForCTC,
DataaVecAudioForSequenceClassification,
DataaVecAudioForXVector,
DataaVecAudioModel,
DataaVecAudioPreTrainedModel,
)
from .modeling_dataavec_text import (
DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecTextForCausalLM,
DataaVecTextForMaskedLM,
DataaVecTextForMultipleChoice,
DataaVecTextForQuestionAnswering,
DataaVecTextForSequenceClassification,
DataaVecTextForTokenClassification,
DataaVecTextModel,
DataaVecTextPreTrainedModel,
)
from .modeling_dataavec_vision import (
DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST,
DataaVecVisionForImageClassification,
DataaVecVisionForMaskedImageModeling,
DataaVecVisionForSemanticSegmentation,
DataaVecVisionModel,
DataaVecVisionPreTrainedModel,
)
if is_tf_available():
from .modeling_tf_dataavec_vision import (
TFDataaVecVisionForImageClassification,
TFDataaVecVisionForSemanticSegmentation,
TFDataaVecVisionModel,
TFDataaVecVisionPreTrainedModel,
)
else:
import sys
__lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 107
| 1
|
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case : Any = logging.get_logger(__name__)
snake_case : Dict = {
"weiweishi/roc-bert-base-zh": "https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json",
}
class _snake_case ( _snake_case ):
SCREAMING_SNAKE_CASE__ = "roc_bert"
def __init__( self , _lowerCamelCase=3_0522 , _lowerCamelCase=768 , _lowerCamelCase=12 , _lowerCamelCase=12 , _lowerCamelCase=3072 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=1e-12 , _lowerCamelCase=True , _lowerCamelCase=0 , _lowerCamelCase="absolute" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=768 , _lowerCamelCase=910 , _lowerCamelCase=512 , _lowerCamelCase=2_4858 , _lowerCamelCase=True , **_lowerCamelCase , ):
a :List[str] = vocab_size
a :Any = max_position_embeddings
a :Dict = hidden_size
a :int = num_hidden_layers
a :Optional[Any] = num_attention_heads
a :Optional[int] = intermediate_size
a :Dict = hidden_act
a :Tuple = hidden_dropout_prob
a :Optional[int] = attention_probs_dropout_prob
a :Dict = initializer_range
a :Optional[Any] = type_vocab_size
a :str = layer_norm_eps
a :Tuple = use_cache
a :Optional[int] = enable_pronunciation
a :Union[str, Any] = enable_shape
a :List[str] = pronunciation_embed_dim
a :List[str] = pronunciation_vocab_size
a :int = shape_embed_dim
a :Optional[int] = shape_vocab_size
a :Optional[Any] = concat_input
a :Dict = position_embedding_type
a :Union[str, Any] = classifier_dropout
super().__init__(pad_token_id=_lowerCamelCase , **_lowerCamelCase )
| 94
|
'''simple docstring'''
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import numpy as np
import pandas as pd
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
BartForSequenceClassification,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
TapexTokenizer,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.17.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
snake_case_ : List[str] = logging.getLogger(__name__)
@dataclass
class __a :
__a : Optional[str] = field(
default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} )
__a : Optional[str] = field(
default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , )
__a : int = field(
default=1_024 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
__a : bool = field(
default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
__a : bool = field(
default=lowerCamelCase , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
__a : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
__a : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
__a : Optional[int] = field(
default=lowerCamelCase , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "A csv or a json file containing the training data."} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "A csv or a json file containing the validation data."} )
__a : Optional[str] = field(default=lowerCamelCase , metadata={"help": "A csv or a json file containing the test data."} )
def UpperCAmelCase__ ( self : Dict ) -> Any:
"""simple docstring"""
if self.dataset_name is not None:
pass
elif self.train_file is None or self.validation_file is None:
raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' )
else:
UpperCAmelCase_ : Dict = self.train_file.split('''.''' )[-1]
assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file."
UpperCAmelCase_ : Union[str, Any] = self.validation_file.split('''.''' )[-1]
assert (
validation_extension == train_extension
), "`validation_file` should have the same extension (csv or json) as `train_file`."
@dataclass
class __a :
__a : str = field(
default=lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
__a : Optional[str] = field(
default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
__a : bool = field(
default=lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
__a : str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
__a : bool = field(
default=lowerCamelCase , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
def lowerCamelCase_ ( ) -> List[Any]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses()
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], )
UpperCAmelCase_ : List[str] = training_args.get_process_log_level()
logger.setLevel(SCREAMING_SNAKE_CASE__ )
datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
UpperCAmelCase_ : Tuple = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
UpperCAmelCase_ : Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
UpperCAmelCase_ : List[Any] = load_dataset(
data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir )
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
UpperCAmelCase_ : Dict = {'''train''': data_args.train_file, '''validation''': data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
UpperCAmelCase_ : Dict = data_args.train_file.split('''.''' )[-1]
UpperCAmelCase_ : Union[str, Any] = data_args.test_file.split('''.''' )[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
UpperCAmelCase_ : int = data_args.test_file
else:
raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' )
for key in data_files.keys():
logger.info(F"""load a local file for {key}: {data_files[key]}""" )
if data_args.train_file.endswith('''.csv''' ):
# Loading a dataset from local csv files
UpperCAmelCase_ : List[Any] = load_dataset('''csv''', data_files=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir )
else:
# Loading a dataset from local json files
UpperCAmelCase_ : int = load_dataset('''json''', data_files=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir )
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
UpperCAmelCase_ : Optional[Any] = raw_datasets['''train'''].features['''label'''].names
UpperCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE__ )
# Load pretrained model and tokenizer
#
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# load tapex tokenizer
UpperCAmelCase_ : str = TapexTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, add_prefix_space=SCREAMING_SNAKE_CASE__, )
UpperCAmelCase_ : Union[str, Any] = BartForSequenceClassification.from_pretrained(
model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, )
# Padding strategy
if data_args.pad_to_max_length:
UpperCAmelCase_ : Optional[int] = '''max_length'''
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
UpperCAmelCase_ : Dict = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
UpperCAmelCase_ : Tuple = {'''Refused''': 0, '''Entailed''': 1}
UpperCAmelCase_ : Tuple = {0: '''Refused''', 1: '''Entailed'''}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"""
F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" )
UpperCAmelCase_ : int = min(data_args.max_seq_length, tokenizer.model_max_length )
def preprocess_tabfact_function(SCREAMING_SNAKE_CASE__ : Optional[int] ):
# Tokenize the texts
def _convert_table_text_to_pandas(SCREAMING_SNAKE_CASE__ : Tuple ):
UpperCAmelCase_ : List[str] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )]
UpperCAmelCase_ : Any = pd.DataFrame.from_records(_table_content[1:], columns=_table_content[0] )
return _table_pd
UpperCAmelCase_ : Optional[Any] = examples['''statement''']
UpperCAmelCase_ : Union[str, Any] = list(map(_convert_table_text_to_pandas, examples['''table_text'''] ) )
UpperCAmelCase_ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, padding=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, truncation=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : List[Any] = examples['''label''']
return result
with training_args.main_process_first(desc='''dataset map pre-processing''' ):
UpperCAmelCase_ : List[str] = raw_datasets.map(
SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on dataset''', )
if training_args.do_train:
if "train" not in raw_datasets:
raise ValueError('''--do_train requires a train dataset''' )
UpperCAmelCase_ : Any = raw_datasets['''train''']
if data_args.max_train_samples is not None:
UpperCAmelCase_ : Dict = train_dataset.select(range(data_args.max_train_samples ) )
if training_args.do_eval:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError('''--do_eval requires a validation dataset''' )
UpperCAmelCase_ : str = raw_datasets['''validation''']
if data_args.max_eval_samples is not None:
UpperCAmelCase_ : Any = eval_dataset.select(range(data_args.max_eval_samples ) )
if training_args.do_predict or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError('''--do_predict requires a test dataset''' )
UpperCAmelCase_ : Dict = raw_datasets['''test''']
if data_args.max_predict_samples is not None:
UpperCAmelCase_ : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) )
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ), 3 ):
logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ):
UpperCAmelCase_ : Any = p.predictions[0] if isinstance(p.predictions, SCREAMING_SNAKE_CASE__ ) else p.predictions
UpperCAmelCase_ : Optional[int] = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 )
return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()}
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
UpperCAmelCase_ : Optional[Any] = default_data_collator
elif training_args.fpaa:
UpperCAmelCase_ : str = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__, pad_to_multiple_of=8 )
else:
UpperCAmelCase_ : List[Any] = None
# Initialize our Trainer
UpperCAmelCase_ : int = Trainer(
model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__, data_collator=SCREAMING_SNAKE_CASE__, )
# Training
if training_args.do_train:
UpperCAmelCase_ : Dict = None
if training_args.resume_from_checkpoint is not None:
UpperCAmelCase_ : Union[str, Any] = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
UpperCAmelCase_ : Optional[int] = last_checkpoint
UpperCAmelCase_ : Dict = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Any = train_result.metrics
UpperCAmelCase_ : Tuple = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ )
)
UpperCAmelCase_ : List[Any] = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics('''train''', SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('''train''', SCREAMING_SNAKE_CASE__ )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
UpperCAmelCase_ : Union[str, Any] = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ )
UpperCAmelCase_ : Tuple = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) )
trainer.log_metrics('''eval''', SCREAMING_SNAKE_CASE__ )
trainer.save_metrics('''eval''', SCREAMING_SNAKE_CASE__ )
if training_args.do_predict:
logger.info('''*** Predict ***''' )
# Removing the `label` columns because it contains -1 and Trainer won't like that.
UpperCAmelCase_ : Optional[int] = predict_dataset.remove_columns('''label''' )
UpperCAmelCase_ : Union[str, Any] = trainer.predict(SCREAMING_SNAKE_CASE__, metric_key_prefix='''predict''' ).predictions
UpperCAmelCase_ : Any = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 )
UpperCAmelCase_ : int = os.path.join(training_args.output_dir, '''predict_results_tabfact.txt''' )
if trainer.is_world_process_zero():
with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer:
logger.info('''***** Predict Results *****''' )
writer.write('''index\tprediction\n''' )
for index, item in enumerate(SCREAMING_SNAKE_CASE__ ):
UpperCAmelCase_ : Dict = label_list[item]
writer.write(F"""{index}\t{item}\n""" )
UpperCAmelCase_ : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''}
if training_args.push_to_hub:
trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ )
else:
trainer.create_model_card(**SCREAMING_SNAKE_CASE__ )
def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 125
| 0
|
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils import AddedToken
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_big_bird import BigBirdTokenizer
else:
lowercase__ = None
lowercase__ = logging.get_logger(__name__)
lowercase__ = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowercase__ = {
"""vocab_file""": {
"""google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""",
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model"""
),
},
"""tokenizer_file""": {
"""google/bigbird-roberta-base""": (
"""https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json"""
),
"""google/bigbird-roberta-large""": (
"""https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json"""
),
"""google/bigbird-base-trivia-itc""": (
"""https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json"""
),
},
}
lowercase__ = {
"""google/bigbird-roberta-base""": 4096,
"""google/bigbird-roberta-large""": 4096,
"""google/bigbird-base-trivia-itc""": 4096,
}
lowercase__ = """▁"""
class __lowerCamelCase ( A__ ):
'''simple docstring'''
a_ : Union[str, Any] = VOCAB_FILES_NAMES
a_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
a_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ : str = BigBirdTokenizer
a_ : Optional[int] = ["""input_ids""", """attention_mask"""]
a_ : List[int] = []
def __init__( self : str , a_ : Optional[Any]=None , a_ : Tuple=None , a_ : Any="<unk>" , a_ : Optional[Any]="<s>" , a_ : str="</s>" , a_ : Any="<pad>" , a_ : int="[SEP]" , a_ : str="[MASK]" , a_ : str="[CLS]" , **a_ : List[str] , ):
lowerCAmelCase_ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else bos_token
lowerCAmelCase_ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else eos_token
lowerCAmelCase_ : Any = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else unk_token
lowerCAmelCase_ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else pad_token
lowerCAmelCase_ : Any = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else cls_token
lowerCAmelCase_ : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else sep_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase_ : int = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token
super().__init__(
a_ , tokenizer_file=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , )
lowerCAmelCase_ : Any = vocab_file
lowerCAmelCase_ : Union[str, Any] = False if not self.vocab_file else True
def lowerCamelCase ( self : Union[str, Any] , a_ : List[int] , a_ : Optional[List[int]] = None ):
lowerCAmelCase_ : List[Any] = [self.sep_token_id]
lowerCAmelCase_ : Dict = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def lowerCamelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ):
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model." )
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is None:
return [1] + ([0] * len(a_ )) + [1]
return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1]
def lowerCamelCase ( self : List[Any] , a_ : List[int] , a_ : Optional[List[int]] = None ):
lowerCAmelCase_ : Optional[Any] = [self.sep_token_id]
lowerCAmelCase_ : int = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def lowerCamelCase ( self : str , a_ : str , a_ : Optional[str] = None ):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer." )
if not os.path.isdir(a_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase_ : Union[str, Any] = os.path.join(
a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ):
copyfile(self.vocab_file , a_ )
return (out_vocab_file,)
| 161
|
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class __lowerCamelCase ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : List[str] , a_ : List[str] , a_ : Tuple=7 , a_ : Any=3 , a_ : Union[str, Any]=18 , a_ : List[str]=30 , a_ : List[str]=4_00 , a_ : str=True , a_ : Tuple=None , a_ : str=True , a_ : Optional[int]=None , ):
lowerCAmelCase_ : Any = size if size is not None else {"shortest_edge": 20}
lowerCAmelCase_ : Any = crop_size if crop_size is not None else {"height": 18, "width": 18}
lowerCAmelCase_ : int = parent
lowerCAmelCase_ : Dict = batch_size
lowerCAmelCase_ : Any = num_channels
lowerCAmelCase_ : str = image_size
lowerCAmelCase_ : int = min_resolution
lowerCAmelCase_ : Tuple = max_resolution
lowerCAmelCase_ : str = do_resize
lowerCAmelCase_ : List[Any] = size
lowerCAmelCase_ : Any = do_center_crop
lowerCAmelCase_ : Tuple = crop_size
def lowerCamelCase ( self : List[str] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowerCamelCase ( A__ , unittest.TestCase ):
'''simple docstring'''
a_ : Optional[Any] = MobileNetVaImageProcessor if is_vision_available() else None
def lowerCamelCase ( self : Optional[int] ):
lowerCAmelCase_ : int = MobileNetVaImageProcessingTester(self )
@property
def lowerCamelCase ( self : Optional[Any] ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a_ , "do_resize" ) )
self.assertTrue(hasattr(a_ , "size" ) )
self.assertTrue(hasattr(a_ , "do_center_crop" ) )
self.assertTrue(hasattr(a_ , "crop_size" ) )
def lowerCamelCase ( self : Tuple ):
lowerCAmelCase_ : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"shortest_edge": 20} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
lowerCAmelCase_ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {"shortest_edge": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
def lowerCamelCase ( self : Tuple ):
pass
def lowerCamelCase ( self : Any ):
# Initialize image_processing
lowerCAmelCase_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
lowerCAmelCase_ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , Image.Image )
# Test not batched input
lowerCAmelCase_ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCAmelCase_ : List[str] = image_processing(a_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCamelCase ( self : str ):
# Initialize image_processing
lowerCAmelCase_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
lowerCAmelCase_ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , numpify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , np.ndarray )
# Test not batched input
lowerCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCAmelCase_ : Dict = image_processing(a_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def lowerCamelCase ( self : Union[str, Any] ):
# Initialize image_processing
lowerCAmelCase_ : str = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
lowerCAmelCase_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=a_ , torchify=a_ )
for image in image_inputs:
self.assertIsInstance(a_ , torch.Tensor )
# Test not batched input
lowerCAmelCase_ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
lowerCAmelCase_ : str = image_processing(a_ , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
| 161
| 1
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.