code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
def a ( snake_case__: int = 100 ): '''simple docstring''' lowercase_ = (n * (n + 1) // 2) ** 2 lowercase_ = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f"{solution() = }")
30
from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig __a = logging.get_logger(__name__) # General docstring __a = 'RegNetConfig' # Base docstring __a = 'facebook/regnet-y-040' __a = [1, 1_0_8_8, 7, 7] # Image classification docstring __a = 'facebook/regnet-y-040' __a = 'tabby, tabby cat' __a = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 3 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : int = 1 , SCREAMING_SNAKE_CASE_ : Optional[str] = "relu" , **SCREAMING_SNAKE_CASE_ : Any , ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb lowercase_ = tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) lowercase_ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE_ , kernel_size=SCREAMING_SNAKE_CASE_ , strides=SCREAMING_SNAKE_CASE_ , padding='''VALID''' , groups=SCREAMING_SNAKE_CASE_ , use_bias=SCREAMING_SNAKE_CASE_ , name='''convolution''' , ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) lowercase_ = ACTaFN[activation] if activation is not None else tf.identity def _lowercase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: lowercase_ = self.convolution(self.padding(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = self.normalization(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : str ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = config.num_channels lowercase_ = TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]: lowercase_ = shape_list(SCREAMING_SNAKE_CASE_ )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 2, 3, 1) ) lowercase_ = self.embedder(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Union[str, Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.keras.layers.ConvaD( filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , strides=SCREAMING_SNAKE_CASE_ , use_bias=SCREAMING_SNAKE_CASE_ , name='''convolution''' ) lowercase_ = tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False ) -> tf.Tensor: return self.normalization(self.convolution(SCREAMING_SNAKE_CASE_ ) , training=SCREAMING_SNAKE_CASE_ ) class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE_ , name='''pooler''' ) lowercase_ = [ tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Dict: # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] lowercase_ = self.pooler(SCREAMING_SNAKE_CASE_ ) for layer_module in self.attention: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = hidden_state * pooled return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. lowercase_ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ , name='''layer.2''' ), ] lowercase_ = ACTaFN[config.hidden_act] def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Any: lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 1 , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = in_channels != out_channels or stride != 1 lowercase_ = max(1 , out_channels // config.groups_width ) lowercase_ = ( TFRegNetShortCut(SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) lowercase_ = [ TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , groups=SCREAMING_SNAKE_CASE_ , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(SCREAMING_SNAKE_CASE_ , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(SCREAMING_SNAKE_CASE_ , kernel_size=1 , activation=SCREAMING_SNAKE_CASE_ , name='''layer.3''' ), ] lowercase_ = ACTaFN[config.hidden_act] def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: lowercase_ = hidden_state for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) lowercase_ = self.shortcut(SCREAMING_SNAKE_CASE_ ) hidden_state += residual lowercase_ = self.activation(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE_ : RegNetConfig , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int = 2 , SCREAMING_SNAKE_CASE_ : int = 2 , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> List[str]: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer lowercase_ = [ # downsampling is done in the first layer with stride of 2 layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , name='''layers.0''' ), *[layer(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , name=f'''layers.{i+1}''' ) for i in range(depth - 1 )], ] def _lowercase ( self : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> int: for layer_module in self.layers: lowercase_ = layer_module(SCREAMING_SNAKE_CASE_ ) return hidden_state class lowercase__( tf.keras.layers.Layer ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , **SCREAMING_SNAKE_CASE_ : Dict ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = [] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( SCREAMING_SNAKE_CASE_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) lowercase_ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(SCREAMING_SNAKE_CASE_ , config.depths[1:] ) ): self.stages.append(TFRegNetStage(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , depth=SCREAMING_SNAKE_CASE_ , name=f'''stages.{i+1}''' ) ) def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True ) -> TFBaseModelOutputWithNoAttention: lowercase_ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) lowercase_ = stage_module(SCREAMING_SNAKE_CASE_ ) if output_hidden_states: lowercase_ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ ) @keras_serializable class lowercase__( tf.keras.layers.Layer ): """simple docstring""" a :str = RegNetConfig def __init__( self : str , SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : List[str] ) -> Any: super().__init__(**SCREAMING_SNAKE_CASE_ ) lowercase_ = config lowercase_ = TFRegNetEmbeddings(SCREAMING_SNAKE_CASE_ , name='''embedder''' ) lowercase_ = TFRegNetEncoder(SCREAMING_SNAKE_CASE_ , name='''encoder''' ) lowercase_ = tf.keras.layers.GlobalAveragePoolingaD(keepdims=SCREAMING_SNAKE_CASE_ , name='''pooler''' ) @unpack_inputs def _lowercase ( self : Dict , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : bool = False , ) -> TFBaseModelOutputWithPoolingAndNoAttention: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.embedder(SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = self.encoder( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = encoder_outputs[0] lowercase_ = self.pooler(SCREAMING_SNAKE_CASE_ ) # Change to NCHW output format have uniformity in the modules lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) lowercase_ = tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: lowercase_ = tuple([tf.transpose(SCREAMING_SNAKE_CASE_ , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=SCREAMING_SNAKE_CASE_ , pooler_output=SCREAMING_SNAKE_CASE_ , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class lowercase__( UpperCAmelCase ): """simple docstring""" a :Tuple = RegNetConfig a :Any = 'regnet' a :List[str] = 'pixel_values' @property def _lowercase ( self : List[str] ) -> str: return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 2_2_4, 2_2_4) , dtype=tf.floataa )} __a = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' __a = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : Any , **SCREAMING_SNAKE_CASE_ : str ) -> List[str]: super().__init__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE_ , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowercase ( self : List[str] , SCREAMING_SNAKE_CASE_ : tf.Tensor , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , ) -> Union[TFBaseModelOutputWithPoolingAndNoAttention, Tuple[tf.Tensor]]: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( pixel_values=SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase , ) class lowercase__( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : RegNetConfig , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]: super().__init__(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowercase_ = config.num_labels lowercase_ = TFRegNetMainLayer(SCREAMING_SNAKE_CASE_ , name='''regnet''' ) # classification head lowercase_ = [ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(SCREAMING_SNAKE_CASE_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=SCREAMING_SNAKE_CASE_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : tf.Tensor = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : bool = None , SCREAMING_SNAKE_CASE_ : Dict=False , ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: lowercase_ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase_ = return_dict if return_dict is not None else self.config.use_return_dict lowercase_ = self.regnet( SCREAMING_SNAKE_CASE_ , output_hidden_states=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , training=SCREAMING_SNAKE_CASE_ ) lowercase_ = outputs.pooler_output if return_dict else outputs[1] lowercase_ = self.classifier[0](SCREAMING_SNAKE_CASE_ ) lowercase_ = self.classifier[1](SCREAMING_SNAKE_CASE_ ) lowercase_ = None if labels is None else self.hf_compute_loss(labels=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ ) if not return_dict: lowercase_ = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=SCREAMING_SNAKE_CASE_ , logits=SCREAMING_SNAKE_CASE_ , hidden_states=outputs.hidden_states )
30
1
from typing import List, Union import numpy as np from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_DEPTH_ESTIMATION_MAPPING lowercase : List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase_ ) class __snake_case ( lowercase_ ): def __init__( self ,*snake_case ,**snake_case ): '''simple docstring''' super().__init__(*a__ ,**a__ ) requires_backends(self ,"""vision""" ) self.check_model_type(a__ ) def __call__( self ,snake_case ,**snake_case ): '''simple docstring''' return super().__call__(a__ ,**a__ ) def _SCREAMING_SNAKE_CASE ( self ,**snake_case ): '''simple docstring''' return {}, {}, {} def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Any = load_image(a__ ) lowercase : List[Any] = image.size lowercase : int = self.image_processor(images=a__ ,return_tensors=self.framework ) return model_inputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[Any] = self.model(**a__ ) return model_outputs def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : List[str] = model_outputs.predicted_depth lowercase : List[Any] = torch.nn.functional.interpolate( predicted_depth.unsqueeze(1 ) ,size=self.image_size[::-1] ,mode="""bicubic""" ,align_corners=a__ ) lowercase : List[str] = prediction.squeeze().cpu().numpy() lowercase : Any = (output * 255 / np.max(a__ )).astype("""uint8""" ) lowercase : Optional[Any] = Image.fromarray(a__ ) lowercase : List[str] = {} lowercase : Tuple = predicted_depth lowercase : str = depth return output_dict
354
from bisect import bisect from itertools import accumulate def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Optional[int]: lowercase : Dict = sorted(zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , key=lambda SCREAMING_SNAKE_CASE__ : x[0] / x[1] , reverse=SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : Optional[Any] = [i[0] for i in r], [i[1] for i in r] lowercase : Any = list(accumulate(SCREAMING_SNAKE_CASE__ ) ) lowercase : int = bisect(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
285
0
'''simple docstring''' from __future__ import annotations from cmath import sqrt def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if a == 0: raise ValueError('''Coefficient \'a\' must not be zero.''' ) A : List[str] = b * b - 4 * a * c A : Optional[Any] = (-b + sqrt(snake_case__ )) / (2 * a) A : int = (-b - sqrt(snake_case__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def lowerCAmelCase_ ( ): '''simple docstring''' A, A : int = quadratic_roots(a=5 , b=6 , c=1 ) print(F'The solutions are: {solutiona} and {solutiona}' ) if __name__ == "__main__": main()
3
'''simple docstring''' import os import sys import unittest lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[Any] = {'''BertModelTest''': '''BertModelTester'''} A : int = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Union[str, Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : str = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
3
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def a_ ( __lowercase : int ) -> List[List[ImageInput]]: if isinstance(__lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__lowercase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = ["pixel_values"] def __init__( self : Optional[Any] , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , lowercase : Union[int, float] = 1 / 255 , lowercase : bool = True , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , **lowercase : Any , ): '''simple docstring''' super().__init__(**lowercase ) _snake_case = size if size is not None else {'shortest_edge': 224} _snake_case = get_size_dict(lowercase , default_to_square=lowercase ) _snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} _snake_case = get_size_dict(lowercase , param_name='crop_size' ) _snake_case = do_resize _snake_case = size _snake_case = do_center_crop _snake_case = crop_size _snake_case = resample _snake_case = do_rescale _snake_case = rescale_factor _snake_case = do_normalize _snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def A ( self : Union[str, Any] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Tuple , ): '''simple docstring''' _snake_case = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" in size: _snake_case = get_resize_output_image_size(lowercase , size['shortest_edge'] , default_to_square=lowercase ) elif "height" in size and "width" in size: _snake_case = (size['height'], size['width']) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def A ( self : Dict , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowercase , size=(size['height'], size['width']) , data_format=lowercase , **lowercase ) def A ( self : Any , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Tuple , ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def A ( self : str , lowercase : np.ndarray , lowercase : Union[float, List[float]] , lowercase : Union[float, List[float]] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : Any , ): '''simple docstring''' return normalize(lowercase , mean=lowercase , std=lowercase , data_format=lowercase , **lowercase ) def A ( self : List[str] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[ChannelDimension] = ChannelDimension.FIRST , ): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. _snake_case = to_numpy_array(lowercase ) if do_resize: _snake_case = self.resize(image=lowercase , size=lowercase , resample=lowercase ) if do_center_crop: _snake_case = self.center_crop(lowercase , size=lowercase ) if do_rescale: _snake_case = self.rescale(image=lowercase , scale=lowercase ) if do_normalize: _snake_case = self.normalize(image=lowercase , mean=lowercase , std=lowercase ) _snake_case = to_channel_dimension_format(lowercase , lowercase ) return image def A ( self : Tuple , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[float, List[float]]] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : Optional[Any] , ): '''simple docstring''' _snake_case = do_resize if do_resize is not None else self.do_resize _snake_case = resample if resample is not None else self.resample _snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop _snake_case = do_rescale if do_rescale is not None else self.do_rescale _snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor _snake_case = do_normalize if do_normalize is not None else self.do_normalize _snake_case = image_mean if image_mean is not None else self.image_mean _snake_case = image_std if image_std is not None else self.image_std _snake_case = size if size is not None else self.size _snake_case = get_size_dict(lowercase , default_to_square=lowercase ) _snake_case = crop_size if crop_size is not None else self.crop_size _snake_case = get_size_dict(lowercase , param_name='crop_size' ) if not valid_images(lowercase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) _snake_case = make_batched(lowercase ) _snake_case = [ [ self._preprocess_image( image=lowercase , do_resize=lowercase , size=lowercase , resample=lowercase , do_center_crop=lowercase , crop_size=lowercase , do_rescale=lowercase , rescale_factor=lowercase , do_normalize=lowercase , image_mean=lowercase , image_std=lowercase , data_format=lowercase , ) for img in video ] for video in videos ] _snake_case = {'pixel_values': videos} return BatchFeature(data=lowercase , tensor_type=lowercase )
358
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCamelCase : List[Any] = logging.get_logger(__name__) # General docstring _lowerCamelCase : Dict = '''PoolFormerConfig''' # Base docstring _lowerCamelCase : int = '''sail/poolformer_s12''' _lowerCamelCase : Optional[Any] = [1, 512, 7, 7] # Image classification docstring _lowerCamelCase : Optional[int] = '''sail/poolformer_s12''' _lowerCamelCase : List[Any] = '''tabby, tabby cat''' _lowerCamelCase : List[str] = [ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def a_ ( __lowercase : List[Any] , __lowercase : float = 0.0 , __lowercase : bool = False ) -> Optional[int]: if drop_prob == 0.0 or not training: return input _snake_case = 1 - drop_prob _snake_case = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets _snake_case = keep_prob + torch.rand(__lowercase , dtype=input.dtype , device=input.device ) random_tensor.floor_() # binarize _snake_case = input.div(__lowercase ) * random_tensor return output class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Optional[float] = None ): '''simple docstring''' super().__init__() _snake_case = drop_prob def A ( self : Any , lowercase : torch.Tensor ): '''simple docstring''' return drop_path(lowercase , self.drop_prob , self.training ) def A ( self : Tuple ): '''simple docstring''' return "p={}".format(self.drop_prob ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowercase : Dict , lowercase : Dict , lowercase : str , lowercase : int , lowercase : Optional[Any] , lowercase : str=None ): '''simple docstring''' super().__init__() _snake_case = patch_size if isinstance(lowercase , collections.abc.Iterable ) else (patch_size, patch_size) _snake_case = stride if isinstance(lowercase , collections.abc.Iterable ) else (stride, stride) _snake_case = padding if isinstance(lowercase , collections.abc.Iterable ) else (padding, padding) _snake_case = nn.Convad(lowercase , lowercase , kernel_size=lowercase , stride=lowercase , padding=lowercase ) _snake_case = norm_layer(lowercase ) if norm_layer else nn.Identity() def A ( self : int , lowercase : Union[str, Any] ): '''simple docstring''' _snake_case = self.projection(lowercase ) _snake_case = self.norm(lowercase ) return embeddings class SCREAMING_SNAKE_CASE__ ( nn.GroupNorm ): '''simple docstring''' def __init__( self : Dict , lowercase : List[Any] , **lowercase : str ): '''simple docstring''' super().__init__(1 , lowercase , **lowercase ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : int , lowercase : List[Any] ): '''simple docstring''' super().__init__() _snake_case = nn.AvgPoolad(lowercase , stride=1 , padding=pool_size // 2 , count_include_pad=lowercase ) def A ( self : int , lowercase : List[str] ): '''simple docstring''' return self.pool(lowercase ) - hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowercase : Tuple , lowercase : str , lowercase : Optional[Any] , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__() _snake_case = nn.Convad(lowercase , lowercase , 1 ) _snake_case = nn.Convad(lowercase , lowercase , 1 ) _snake_case = PoolFormerDropPath(lowercase ) if isinstance(config.hidden_act , lowercase ): _snake_case = ACTaFN[config.hidden_act] else: _snake_case = config.hidden_act def A ( self : Optional[int] , lowercase : str ): '''simple docstring''' _snake_case = self.conva(lowercase ) _snake_case = self.act_fn(lowercase ) _snake_case = self.drop(lowercase ) _snake_case = self.conva(lowercase ) _snake_case = self.drop(lowercase ) return hidden_states class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : str , lowercase : Tuple , lowercase : int , lowercase : str , lowercase : Union[str, Any] , lowercase : str , lowercase : Dict ): '''simple docstring''' super().__init__() _snake_case = PoolFormerPooling(lowercase ) _snake_case = PoolFormerOutput(lowercase , lowercase , lowercase , lowercase ) _snake_case = PoolFormerGroupNorm(lowercase ) _snake_case = PoolFormerGroupNorm(lowercase ) # Useful for training neural nets _snake_case = PoolFormerDropPath(lowercase ) if drop_path > 0.0 else nn.Identity() _snake_case = config.use_layer_scale if config.use_layer_scale: _snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase ) _snake_case = nn.Parameter( config.layer_scale_init_value * torch.ones((lowercase) ) , requires_grad=lowercase ) def A ( self : Optional[int] , lowercase : Union[str, Any] ): '''simple docstring''' if self.use_layer_scale: _snake_case = self.pooling(self.before_norm(lowercase ) ) _snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection _snake_case = hidden_states + self.drop_path(lowercase ) _snake_case = () _snake_case = self.output(self.after_norm(lowercase ) ) _snake_case = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection _snake_case = hidden_states + self.drop_path(lowercase ) _snake_case = (output,) + outputs return outputs else: _snake_case = self.drop_path(self.pooling(self.before_norm(lowercase ) ) ) # First residual connection _snake_case = pooling_output + hidden_states _snake_case = () # Second residual connection inside the PoolFormerOutput block _snake_case = self.drop_path(self.output(self.after_norm(lowercase ) ) ) _snake_case = hidden_states + layer_output _snake_case = (output,) + outputs return outputs class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' super().__init__() _snake_case = config # stochastic depth decay rule _snake_case = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings _snake_case = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) _snake_case = nn.ModuleList(lowercase ) # Transformer blocks _snake_case = [] _snake_case = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers _snake_case = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( lowercase , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(lowercase ) ) _snake_case = nn.ModuleList(lowercase ) def A ( self : Any , lowercase : List[str] , lowercase : str=False , lowercase : Tuple=True ): '''simple docstring''' _snake_case = () if output_hidden_states else None _snake_case = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): _snake_case , _snake_case = layers # Get patch embeddings from hidden_states _snake_case = embedding_layer(lowercase ) # Send the embeddings through the blocks for _, blk in enumerate(lowercase ): _snake_case = blk(lowercase ) _snake_case = layer_outputs[0] if output_hidden_states: _snake_case = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=lowercase , hidden_states=lowercase ) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : List[Any] = PoolFormerConfig _UpperCAmelCase : Optional[int] = "poolformer" _UpperCAmelCase : str = "pixel_values" _UpperCAmelCase : int = True def A ( self : Tuple , lowercase : str ): '''simple docstring''' if isinstance(lowercase , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(lowercase , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def A ( self : Optional[Any] , lowercase : str , lowercase : Dict=False ): '''simple docstring''' if isinstance(lowercase , lowercase ): _snake_case = value _lowerCamelCase : Optional[Any] = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowerCamelCase : Tuple = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( "The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top." ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : str , lowercase : List[Any] ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config _snake_case = PoolFormerEncoder(lowercase ) # Initialize weights and apply final processing self.post_init() def A ( self : List[str] ): '''simple docstring''' return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowercase , config_class=_CONFIG_FOR_DOC , modality='vision' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def A ( self : Tuple , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError('You have to specify pixel_values' ) _snake_case = self.encoder( lowercase , output_hidden_states=lowercase , return_dict=lowercase , ) _snake_case = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=lowercase , hidden_states=encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , lowercase : Union[str, Any] ): '''simple docstring''' super().__init__() _snake_case = nn.Linear(config.hidden_size , config.hidden_size ) def A ( self : Optional[Any] , lowercase : Optional[int] ): '''simple docstring''' _snake_case = self.dense(lowercase ) return output @add_start_docstrings( "\n PoolFormer Model transformer with an image classification head on top\n " ,UpperCAmelCase ,) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : str , lowercase : Any ): '''simple docstring''' super().__init__(lowercase ) _snake_case = config.num_labels _snake_case = PoolFormerModel(lowercase ) # Final norm _snake_case = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head _snake_case = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def A ( self : Union[str, Any] , lowercase : Optional[torch.FloatTensor] = None , lowercase : Optional[torch.LongTensor] = None , lowercase : Optional[bool] = None , lowercase : Optional[bool] = None , ): '''simple docstring''' _snake_case = return_dict if return_dict is not None else self.config.use_return_dict _snake_case = self.poolformer( lowercase , output_hidden_states=lowercase , return_dict=lowercase , ) _snake_case = outputs[0] _snake_case = self.classifier(self.norm(lowercase ).mean([-2, -1] ) ) _snake_case = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case = 'single_label_classification' else: _snake_case = 'multi_label_classification' if self.config.problem_type == "regression": _snake_case = MSELoss() if self.num_labels == 1: _snake_case = loss_fct(logits.squeeze() , labels.squeeze() ) else: _snake_case = loss_fct(lowercase , lowercase ) elif self.config.problem_type == "single_label_classification": _snake_case = CrossEntropyLoss() _snake_case = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": _snake_case = BCEWithLogitsLoss() _snake_case = loss_fct(lowercase , lowercase ) if not return_dict: _snake_case = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowercase , logits=lowercase , hidden_states=outputs.hidden_states )
130
0
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger _lowercase: Any = "<<<<<<< This should probably be modified because it mentions: " _lowercase: List[Any] = "=======\n>>>>>>>\n" _lowercase: Optional[Any] = [ "TextEncoderConfig", "ByteTextEncoder", "SubwordTextEncoder", "encoder_config", "maybe_build_from_corpus", "manual_dir", ] _lowercase: Tuple = [ # (pattern, replacement) # Order is important here for some replacements (r"tfds\.core", r"datasets"), (r"tf\.io\.gfile\.GFile", r"open"), (r"tf\.([\w\d]+)", r"datasets.Value('\1')"), (r"tfds\.features\.Text\(\)", r"datasets.Value('string')"), (r"tfds\.features\.Text\(", r"datasets.Value('string'),"), (r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("), (r"tfds\.features\.FeaturesDict\(", r"dict("), (r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"), (r"tfds\.", r"datasets."), (r"dl_manager\.manual_dir", r"self.config.data_dir"), (r"self\.builder_config", r"self.config"), ] def a( A : Namespace ) -> List[Any]: """simple docstring""" return ConvertCommand(args.tfds_path , args.datasets_directory ) class _lowercase ( lowerCAmelCase ): """simple docstring""" @staticmethod def UpperCamelCase_ (lowerCamelCase_ ): """simple docstring""" a = parser.add_parser( "convert" , help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset." , ) train_parser.add_argument( "--tfds_path" , type=lowerCamelCase_ , required=lowerCamelCase_ , help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert." , ) train_parser.add_argument( "--datasets_directory" , type=lowerCamelCase_ , required=lowerCamelCase_ , help="Path to the HuggingFace Datasets folder." ) train_parser.set_defaults(func=lowerCamelCase_ ) def __init__(self , lowerCamelCase_ , lowerCamelCase_ , *lowerCamelCase_ ): """simple docstring""" a = get_logger("datasets-cli/converting" ) a = tfds_path a = datasets_directory def UpperCamelCase_ (self ): """simple docstring""" if os.path.isdir(self._tfds_path ): a = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): a = os.path.dirname(self._tfds_path ) else: raise ValueError("--tfds_path is neither a directory nor a file. Please check path." ) a = os.path.abspath(self._datasets_directory ) self._logger.info(F'''Converting datasets from {abs_tfds_path} to {abs_datasets_path}''' ) a = [] a = [] a = {} if os.path.isdir(self._tfds_path ): a = os.listdir(lowerCamelCase_ ) else: a = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(F'''Looking at file {f_name}''' ) a = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) a = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) if not os.path.isfile(lowerCamelCase_ ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info("Skipping file" ) continue with open(lowerCamelCase_ , encoding="utf-8" ) as f: a = f.readlines() a = [] a = False a = False a = [] for line in lines: a = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: a = "import datasets\n" elif "import tensorflow" in out_line: # order is important here a = "" continue elif "from absl import logging" in out_line: a = "from datasets import logging\n" elif "getLogger" in out_line: a = out_line.replace("getLogger" , "get_logger" ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): a = True a = list(filter(lambda lowerCamelCase_ : e in out_line , lowerCamelCase_ ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(lowerCamelCase_ ) + "\n" ) out_lines.append(lowerCamelCase_ ) out_lines.append(lowerCamelCase_ ) continue else: for pattern, replacement in TO_CONVERT: a = re.sub(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: a = re.match(R"from\stensorflow_datasets.*import\s([^\.\r\n]+)" , lowerCamelCase_ ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split("," ) ) a = "from . import " + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(F'''Error converting {out_line.strip()}''' ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: a = True out_lines.append(lowerCamelCase_ ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset a = f_name.replace(".py" , "" ) a = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) a = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) self._logger.info(F'''Adding directory {output_dir}''' ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(lowerCamelCase_ ) if needs_manual_update: with_manual_update.append(lowerCamelCase_ ) with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as f: f.writelines(lowerCamelCase_ ) self._logger.info(F'''Converted in {output_file}''' ) for utils_file in utils_files: try: a = os.path.basename(lowerCamelCase_ ) a = imports_to_builder_map[f_name.replace(".py" , "" )] self._logger.info(F'''Moving {dest_folder} to {utils_file}''' ) shutil.copy(lowerCamelCase_ , lowerCamelCase_ ) except KeyError: self._logger.error(F'''Cannot find destination folder for {utils_file}. Please copy manually.''' ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( F'''You need to manually update file {file_path} to remove configurations using \'TextEncoderConfig\'.''' )
227
def a( A : list ) -> list: """simple docstring""" if any(not isinstance(A , A ) or x < 0 for x in sequence ): raise TypeError("Sequence must be list of non-negative integers" ) for _ in range(len(A ) ): for i, (rod_upper, rod_lower) in enumerate(zip(A , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
227
1
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetrImageProcessor class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=7 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=400 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 / 255 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__=[0.5, 0.5, 0.5] , SCREAMING_SNAKE_CASE__=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p lowercase : Optional[int] = size if size is not None else {'''shortest_edge''': 18, '''longest_edge''': 1333} lowercase : Tuple = parent lowercase : int = batch_size lowercase : List[str] = num_channels lowercase : Optional[int] = min_resolution lowercase : int = max_resolution lowercase : List[str] = do_resize lowercase : Any = size lowercase : Any = do_rescale lowercase : Optional[Any] = rescale_factor lowercase : Optional[Any] = do_normalize lowercase : Tuple = image_mean lowercase : Any = image_std lowercase : Tuple = do_pad def __lowerCamelCase ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_pad": self.do_pad, } def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=False ): if not batched: lowercase : Dict = image_inputs[0] if isinstance(SCREAMING_SNAKE_CASE__ , Image.Image ): lowercase , lowercase : str = image.size else: lowercase , lowercase : int = image.shape[1], image.shape[2] if w < h: lowercase : List[str] = int(self.size['''shortest_edge'''] * h / w ) lowercase : List[str] = self.size['''shortest_edge'''] elif w > h: lowercase : Dict = self.size['''shortest_edge'''] lowercase : List[str] = int(self.size['''shortest_edge'''] * w / h ) else: lowercase : Any = self.size['''shortest_edge'''] lowercase : Tuple = self.size['''shortest_edge'''] else: lowercase : List[Any] = [] for image in image_inputs: lowercase , lowercase : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowercase : List[Any] = max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[0] )[0] lowercase : Dict = max(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : List[Any] = DetrImageProcessor if is_vision_available() else None def __lowerCamelCase ( self ): lowercase : Optional[int] = DetrImageProcessingTester(self ) @property def __lowerCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCamelCase ( self ): lowercase : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''image_mean''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''image_std''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_normalize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_rescale''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''rescale_factor''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_resize''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''size''' ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , '''do_pad''' ) ) def __lowerCamelCase ( self ): lowercase : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18, '''longest_edge''': 1333} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) lowercase : int = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=SCREAMING_SNAKE_CASE__ ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42, '''longest_edge''': 84} ) self.assertEqual(image_processor.do_pad , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): pass def __lowerCamelCase ( self ): # Initialize image_processing lowercase : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowercase : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , Image.Image ) # Test not batched input lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : int = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase , lowercase : Optional[int] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing lowercase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowercase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , numpify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , np.ndarray ) # Test not batched input lowercase : Optional[Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Union[str, Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : str = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Optional[int] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowerCamelCase ( self ): # Initialize image_processing lowercase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowercase : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE__ , torchify=SCREAMING_SNAKE_CASE__ ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ) # Test not batched input lowercase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values lowercase , lowercase : Union[str, Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowercase : Tuple = image_processing(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).pixel_values lowercase , lowercase : List[Any] = self.image_processor_tester.get_expected_values(SCREAMING_SNAKE_CASE__ , batched=SCREAMING_SNAKE_CASE__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowerCamelCase ( self ): # prepare image and target lowercase : Optional[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: lowercase : Optional[int] = json.loads(f.read() ) lowercase : List[Any] = {'''image_id''': 39769, '''annotations''': target} # encode them lowercase : List[str] = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50''' ) lowercase : List[str] = image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) # verify pixel values lowercase : Optional[int] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE__ ) lowercase : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) # verify area lowercase : Optional[Any] = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes lowercase : str = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE__ ) lowercase : int = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # verify image_id lowercase : Optional[Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd lowercase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels lowercase : Optional[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE__ ) ) # verify orig_size lowercase : Any = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE__ ) ) # verify size lowercase : List[str] = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE__ ) ) @slow def __lowerCamelCase ( self ): # prepare image, target and masks_path lowercase : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: lowercase : Any = json.loads(f.read() ) lowercase : int = {'''file_name''': '''000000039769.png''', '''image_id''': 39769, '''segments_info''': target} lowercase : str = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them lowercase : str = DetrImageProcessor.from_pretrained('''facebook/detr-resnet-50-panoptic''' ) lowercase : List[str] = image_processing(images=SCREAMING_SNAKE_CASE__ , annotations=SCREAMING_SNAKE_CASE__ , masks_path=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) # verify pixel values lowercase : Optional[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['''pixel_values'''].shape , SCREAMING_SNAKE_CASE__ ) lowercase : Optional[Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) # verify area lowercase : Dict = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , SCREAMING_SNAKE_CASE__ ) ) # verify boxes lowercase : Any = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , SCREAMING_SNAKE_CASE__ ) lowercase : Dict = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , SCREAMING_SNAKE_CASE__ , atol=1E-3 ) ) # verify image_id lowercase : Tuple = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , SCREAMING_SNAKE_CASE__ ) ) # verify is_crowd lowercase : int = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , SCREAMING_SNAKE_CASE__ ) ) # verify class_labels lowercase : Union[str, Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , SCREAMING_SNAKE_CASE__ ) ) # verify masks lowercase : int = 822873 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , SCREAMING_SNAKE_CASE__ ) # verify orig_size lowercase : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , SCREAMING_SNAKE_CASE__ ) ) # verify size lowercase : Dict = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , SCREAMING_SNAKE_CASE__ ) )
173
def __lowercase ( _UpperCamelCase, _UpperCamelCase ) ->list[int]: """simple docstring""" lowercase : Dict = int(_UpperCamelCase ) # Initialize Result lowercase : Union[str, Any] = [] # Traverse through all denomination for denomination in reversed(_UpperCamelCase ): # Find denominations while int(_UpperCamelCase ) >= int(_UpperCamelCase ): total_value -= int(_UpperCamelCase ) answer.append(_UpperCamelCase ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": __a = [] __a = '''0''' if ( input('''Do you want to enter your denominations ? (yY/n): ''').strip().lower() == "y" ): __a = int(input('''Enter the number of denominations you want to add: ''').strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) __a = input('''Enter the change you want to make in Indian Currency: ''').strip() else: # All denominations of Indian Currency if user does not enter __a = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] __a = input('''Enter the change you want to make: ''').strip() if int(value) == 0 or int(value) < 0: print('''The total value cannot be zero or negative.''') else: print(F'''Following is minimal change for {value}: ''') __a = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=''' ''')
173
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) class A__ ( snake_case__ ): """simple docstring""" def __init__( self , __snake_case , __snake_case , __snake_case , **__snake_case ): snake_case = feature_size snake_case = sampling_rate snake_case = padding_value snake_case = kwargs.pop('''padding_side''' , '''right''' ) snake_case = kwargs.pop('''return_attention_mask''' , __snake_case ) super().__init__(**__snake_case ) def a_ ( self , __snake_case , __snake_case = True , __snake_case = None , __snake_case = False , __snake_case = None , __snake_case = None , __snake_case = None , ): # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__snake_case , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F''' to this method that includes {self.model_input_names[0]}, but you provided''' F''' {list(processed_features.keys() )}''' ) snake_case = processed_features[self.model_input_names[0]] snake_case = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__snake_case ) == 0: if return_attention_mask: snake_case = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case = required_input[0] if isinstance(__snake_case , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__snake_case ): snake_case = required_input[index][0] if return_tensors is None: if is_tf_tensor(__snake_case ): snake_case = '''tf''' elif is_torch_tensor(__snake_case ): snake_case = '''pt''' elif isinstance(__snake_case , (int, float, list, tuple, np.ndarray) ): snake_case = '''np''' else: raise ValueError( F'''type of {first_element} unknown: {type(__snake_case )}. ''' '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case = to_numpy(__snake_case ) else: snake_case = [to_numpy(__snake_case ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case = self._get_padding_strategies(padding=__snake_case , max_length=__snake_case ) snake_case = processed_features[self.model_input_names[0]] snake_case = len(__snake_case ) if not all(len(__snake_case ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) snake_case = [] for i in range(__snake_case ): snake_case = {k: v[i] for k, v in processed_features.items()} # truncation snake_case = self._truncate( __snake_case , max_length=__snake_case , pad_to_multiple_of=__snake_case , truncation=__snake_case , ) truncated_inputs.append(__snake_case ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case = PaddingStrategy.MAX_LENGTH snake_case = {} for i in range(__snake_case ): # padding snake_case = self._pad( truncated_inputs[i] , max_length=__snake_case , padding_strategy=__snake_case , pad_to_multiple_of=__snake_case , return_attention_mask=__snake_case , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case = [] if value.dtype is np.dtype(np.floataa ): snake_case = value.astype(np.floataa ) batch_outputs[key].append(__snake_case ) return BatchFeature(__snake_case , tensor_type=__snake_case ) def a_ ( self , __snake_case , __snake_case = None , __snake_case = PaddingStrategy.DO_NOT_PAD , __snake_case = None , __snake_case = None , ): snake_case = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case = len(__snake_case ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__snake_case ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case = np.ones(len(__snake_case ) , dtype=np.intaa ) if needs_to_be_padded: snake_case = max_length - len(__snake_case ) if self.padding_side == "right": if return_attention_mask: snake_case = np.pad( processed_features['''attention_mask'''] , (0, difference) ) snake_case = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) snake_case = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case = np.pad( __snake_case , __snake_case , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def a_ ( self , __snake_case , __snake_case = None , __snake_case = None , __snake_case = None , ): if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) snake_case = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case = len(__snake_case ) > max_length if needs_to_be_truncated: snake_case = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case = processed_features['''attention_mask'''][:max_length] return processed_features def a_ ( self , __snake_case=False , __snake_case=None ): # Get padding strategy if padding is not False: if padding is True: snake_case = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__snake_case , __snake_case ): snake_case = PaddingStrategy(__snake_case ) elif isinstance(__snake_case , __snake_case ): snake_case = padding else: snake_case = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F'''When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined''' ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
127
import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) _SCREAMING_SNAKE_CASE : List[str] = "hf-internal-testing/tiny-random-bert" _SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") _SCREAMING_SNAKE_CASE : Optional[int] = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class A__ ( unittest.TestCase ): """simple docstring""" def a_ ( self ): snake_case = cached_file(__snake_case , __snake_case ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(__snake_case ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(__snake_case , __snake_case ) ) ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) self.assertTrue(os.path.isfile(__snake_case ) ) # File is cached at the same place the second time. snake_case = cached_file(__snake_case , __snake_case ) self.assertEqual(__snake_case , __snake_case ) # Using a specific revision to test the full commit hash. snake_case = cached_file(__snake_case , __snake_case , revision='''9b8c223''' ) self.assertEqual(__snake_case , os.path.join(__snake_case , '''snapshots''' , __snake_case , __snake_case ) ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): snake_case = cached_file('''tiny-random-bert''' , __snake_case ) with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): snake_case = cached_file(__snake_case , __snake_case , revision='''aaaa''' ) with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) def a_ ( self ): with self.assertRaisesRegex(__snake_case , '''does not appear to have a file named''' ): snake_case = cached_file(__snake_case , '''conf''' ) with open(os.path.join(__snake_case , '''refs''' , '''main''' ) ) as f: snake_case = f.read() self.assertTrue(os.path.isfile(os.path.join(__snake_case , '''.no_exist''' , __snake_case , '''conf''' ) ) ) snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = cached_file(__snake_case , '''conf''' , local_files_only=__snake_case , _raise_exceptions_for_missing_entries=__snake_case ) self.assertIsNone(__snake_case ) snake_case = mock.Mock() snake_case = 5_0_0 snake_case = {} snake_case = HTTPError snake_case = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('''requests.Session.request''' , return_value=__snake_case ) as mock_head: snake_case = cached_file(__snake_case , '''conf''' , _raise_exceptions_for_connection_errors=__snake_case ) self.assertIsNone(__snake_case ) # This check we did call the fake head request mock_head.assert_called() def a_ ( self ): self.assertTrue(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) self.assertFalse(has_file('''hf-internal-testing/tiny-bert-pt-only''' , __snake_case ) ) def a_ ( self ): # `get_file_from_repo` returns None if the file does not exist self.assertIsNone(get_file_from_repo('''bert-base-cased''' , '''ahah.txt''' ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid model identifier''' ): get_file_from_repo('''bert-base-case''' , __snake_case ) # The function raises if the revision does not exist. with self.assertRaisesRegex(__snake_case , '''is not a valid git identifier''' ): get_file_from_repo('''bert-base-cased''' , __snake_case , revision='''ahaha''' ) snake_case = get_file_from_repo('''bert-base-cased''' , __snake_case ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case = json.loads(open(__snake_case , '''r''' ).read() ) self.assertEqual(config['''hidden_size'''] , 7_6_8 ) def a_ ( self ): with tempfile.TemporaryDirectory() as tmp_dir: snake_case = Path(__snake_case ) / '''a.txt''' filename.touch() self.assertEqual(get_file_from_repo(__snake_case , '''a.txt''' ) , str(__snake_case ) ) self.assertIsNone(get_file_from_repo(__snake_case , '''b.txt''' ) )
127
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'camembert' def __init__( self: Tuple ,__lowerCAmelCase: Union[str, Any]=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Union[str, Any]=12 ,__lowerCAmelCase: int=12 ,__lowerCAmelCase: Optional[int]=3_072 ,__lowerCAmelCase: Dict="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: int=512 ,__lowerCAmelCase: Union[str, Any]=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: Any=1 ,__lowerCAmelCase: Any=0 ,__lowerCAmelCase: Optional[int]=2 ,__lowerCAmelCase: Any="absolute" ,__lowerCAmelCase: Dict=True ,__lowerCAmelCase: Tuple=None ,**__lowerCAmelCase: Dict ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Any = hidden_size _lowerCamelCase : Union[str, Any] = num_hidden_layers _lowerCamelCase : str = num_attention_heads _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : int = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : List[str] = attention_probs_dropout_prob _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : str = type_vocab_size _lowerCamelCase : Dict = initializer_range _lowerCamelCase : Union[str, Any] = layer_norm_eps _lowerCamelCase : Tuple = position_embedding_type _lowerCamelCase : List[Any] = use_cache _lowerCamelCase : Dict = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Any ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
366
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model _lowerCAmelCase : str = '''0.12''' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None ) -> List[Any]: '''simple docstring''' if rng is None: _lowerCamelCase : Union[str, Any] = random.Random() _lowerCamelCase : Union[str, Any] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : Optional[int] = [] for _ in range(_lowerCamelCase ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : Union[str, Any] = np.array(_lowerCamelCase , dtype=jnp.intaa ).reshape(_lowerCamelCase ) return output def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]: '''simple docstring''' _lowerCamelCase : Optional[int] = ids_tensor(_lowerCamelCase , vocab_size=2 , rng=_lowerCamelCase ) # make sure that at least one token is attended to for each batch _lowerCamelCase : List[str] = 1 return attn_mask @require_flax class A_ : lowerCAmelCase__ = None lowerCAmelCase__ = () def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : List[str] = 2 _lowerCamelCase : str = inputs["input_ids"].shape[-1] // 2 _lowerCamelCase : Tuple = inputs["input_ids"][:max_batch_size, :sequence_length] _lowerCamelCase : Any = jnp.ones_like(__lowerCAmelCase ) _lowerCamelCase : List[Any] = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Optional[Any] = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : List[str] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Tuple = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : Dict = max_length _lowerCamelCase : Tuple = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Any = getattr(__lowerCAmelCase ,__lowerCAmelCase ) _lowerCamelCase : Dict = pt_model_class(__lowerCAmelCase ).eval() _lowerCamelCase : Optional[Any] = load_flax_weights_in_pytorch_model(__lowerCAmelCase ,flax_model.params ) _lowerCamelCase : int = flax_model.generate(__lowerCAmelCase ).sequences _lowerCamelCase : Optional[int] = pt_model.generate(torch.tensor(__lowerCAmelCase ,dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : List[Any] = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() ,flax_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Tuple ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = True _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : List[Any] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : int = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : int = False _lowerCamelCase : Optional[Any] = max_length _lowerCamelCase : Dict = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[str] = model_class(__lowerCAmelCase ) _lowerCamelCase : Dict = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = False _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : List[str] = 2 _lowerCamelCase : Optional[int] = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : str = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[0] ,input_ids.shape[0] * config.num_return_sequences ) def _lowercase ( self: List[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() _lowerCamelCase : int = True _lowerCamelCase : List[Any] = max_length _lowerCamelCase : Optional[Any] = 0.8 _lowerCamelCase : Union[str, Any] = 10 _lowerCamelCase : List[str] = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : str = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[int] = model_class(__lowerCAmelCase ) _lowerCamelCase : Any = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : Optional[int] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[int] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[Any] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = max_length _lowerCamelCase : Tuple = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Any = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: List[str] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = max_length _lowerCamelCase : List[Any] = 2 _lowerCamelCase : Tuple = 1 _lowerCamelCase : List[str] = 8 _lowerCamelCase : List[Any] = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : int = model_class(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = model.generate(__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Dict ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Tuple = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : Dict = False _lowerCamelCase : Any = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Tuple = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Optional[Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = True _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Union[str, Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) def _lowercase ( self: Union[str, Any] ): '''simple docstring''' _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = 2 _lowerCamelCase : int = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(__lowerCAmelCase ) _lowerCamelCase : int = model.generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertEqual(generation_outputs.shape[-1] ,__lowerCAmelCase ) _lowerCamelCase : Dict = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(__lowerCAmelCase ,attention_mask=__lowerCAmelCase ).sequences self.assertListEqual(generation_outputs.tolist() ,jit_generation_outputs.tolist() ) @require_flax class A_ ( unittest.TestCase ): def _lowercase ( self: Any ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert" ) _lowerCamelCase : Union[str, Any] = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only" ) _lowerCamelCase : Optional[Any] = "Hello world" _lowerCamelCase : str = tokenizer(__lowerCAmelCase ,return_tensors="np" ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__lowerCAmelCase ,"do_samples" ): model.generate(__lowerCAmelCase ,do_samples=__lowerCAmelCase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__lowerCAmelCase ,"foo" ): _lowerCamelCase : List[str] = {"foo": "bar"} model.generate(__lowerCAmelCase ,**__lowerCAmelCase )
340
0
'''simple docstring''' from __future__ import annotations import requests def UpperCamelCase_( snake_case : str ): '''simple docstring''' snake_case_ = f'https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty' return requests.get(snake_case ).json() def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" snake_case_ = requests.get(snake_case ).json()[:max_stories] return [get_hackernews_story(snake_case ) for story_id in story_ids] def UpperCamelCase_( snake_case : int = 1_0 ): '''simple docstring''' snake_case_ = hackernews_top_stories(snake_case ) return "\n".join("* [{title}]({url})".format(**snake_case ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
85
def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('Length must be a positive.' ) return 3 * ((25 + 10 * (5 ** (1 / 2))) ** (1 / 2)) * (edge**2) def __lowerCamelCase ( UpperCamelCase__ ): '''simple docstring''' if edge <= 0 or not isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('Length must be a positive.' ) return ((15 + (7 * (5 ** (1 / 2)))) / 4) * (edge**3) if __name__ == "__main__": import doctest doctest.testmod()
285
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel __A : List[str] = HfApi() __A : Optional[Any] = {} # fmt: off __A : Tuple = torch.tensor([ -0.7_5_1_5, -1.6_8_8_3, 0.2_4_2_0, 0.0_3_0_0, 0.6_3_4_7, 1.3_4_3_3, -1.1_7_4_3, -3.7_4_6_7, 1.2_3_4_2, -2.2_4_8_5, 0.4_6_3_6, 0.8_0_7_6, -0.7_9_9_1, 0.3_9_6_9, 0.8_4_9_8, 0.9_1_8_9, -1.8_8_8_7, -3.3_5_2_2, 0.7_6_3_9, 0.2_0_4_0, 0.6_2_7_1, -2.7_1_4_8, -1.6_3_1_6, 3.0_8_3_9, 0.3_1_8_6, 0.2_7_2_1, -0.9_7_5_9, -1.2_4_6_1, 2.6_2_5_7, 1.3_5_5_7 ]) __A : Optional[Any] = torch.tensor([ -2.3_6_3_9, -2.5_3_4_4, 0.0_0_5_4, -0.6_6_7_4, 1.5_9_9_0, 1.0_1_5_8, 0.3_1_2_4, -2.1_4_3_6, 1.8_7_9_5, -2.5_4_2_9, -0.1_5_6_6, -0.3_9_7_3, 1.2_4_9_0, 2.6_4_4_7, 1.2_2_8_3, -0.5_2_0_8, -2.8_1_5_4, -3.5_1_1_9, 2.3_8_3_8, 1.2_0_3_3, 1.7_2_0_1, -2.1_2_5_6, -1.4_5_7_6, 2.7_9_4_8, 2.4_2_0_4, -0.9_7_5_2, -1.2_5_4_6, 0.8_0_2_7, 3.2_7_5_8, 3.1_3_6_5 ]) __A : int = torch.tensor([ -0.6_5_3_1, -0.6_8_9_1, -0.3_1_7_2, -0.5_3_7_5, -0.9_1_4_0, -0.5_3_6_7, -0.1_1_7_5, -0.7_8_6_9, -0.3_8_0_8, -0.4_5_1_3, -0.2_0_9_8, -0.0_0_8_3, 0.3_1_8_3, 0.5_1_4_0, 0.2_2_4_7, -0.1_3_0_4, -0.1_3_0_2, -0.2_8_0_2, -0.2_0_8_4, -0.2_0_2_5, -0.4_9_6_7, -0.4_8_7_3, -0.0_8_6_1, 0.6_9_2_5, 0.0_2_5_0, 0.1_2_9_0, -0.1_5_4_3, 0.6_3_1_6, 1.0_4_6_0, 1.4_9_4_3 ]) __A : int = torch.tensor([ 0.0_9_1_1, 0.1_1_0_7, 0.0_1_8_2, 0.0_4_3_5, -0.0_8_0_5, -0.0_6_0_8, 0.0_3_8_1, 0.2_1_7_2, -0.0_2_8_0, 0.1_3_2_7, -0.0_2_9_9, -0.0_2_5_5, -0.0_0_5_0, -0.1_1_7_0, -0.1_0_4_6, 0.0_3_0_9, 0.1_3_6_7, 0.1_7_2_8, -0.0_5_3_3, -0.0_7_4_8, -0.0_5_3_4, 0.1_6_2_4, 0.0_3_8_4, -0.1_8_0_5, -0.0_7_0_7, 0.0_6_4_2, 0.0_2_2_0, -0.0_1_3_4, -0.1_3_3_3, -0.1_5_0_5 ]) __A : List[str] = torch.tensor([ 0.1_3_2_1, 0.1_3_3_7, 0.0_4_4_0, 0.0_6_2_2, -0.0_5_9_1, -0.0_3_7_0, 0.0_5_0_3, 0.2_1_3_3, -0.0_1_7_7, 0.1_4_1_5, -0.0_1_1_6, -0.0_1_1_2, 0.0_0_4_4, -0.0_9_8_0, -0.0_7_8_9, 0.0_3_9_5, 0.1_5_0_2, 0.1_7_8_5, -0.0_4_8_8, -0.0_5_1_4, -0.0_4_0_4, 0.1_5_3_9, 0.0_4_5_4, -0.1_5_5_9, -0.0_6_6_5, 0.0_6_5_9, 0.0_3_8_3, -0.0_0_0_5, -0.1_2_6_6, -0.1_3_8_6 ]) __A : Optional[int] = torch.tensor([ 0.1_1_5_4, 0.1_2_1_8, 0.0_3_0_7, 0.0_5_2_6, -0.0_7_1_1, -0.0_5_4_1, 0.0_3_6_6, 0.2_0_7_8, -0.0_2_6_7, 0.1_3_1_7, -0.0_2_2_6, -0.0_1_9_3, -0.0_0_1_4, -0.1_0_5_5, -0.0_9_0_2, 0.0_3_3_0, 0.1_3_9_1, 0.1_7_0_9, -0.0_5_6_2, -0.0_6_9_3, -0.0_5_6_0, 0.1_4_8_2, 0.0_3_8_1, -0.1_6_8_3, -0.0_6_8_1, 0.0_6_6_1, 0.0_3_3_1, -0.0_0_4_6, -0.1_2_6_8, -0.1_4_3_1 ]) __A : Any = torch.tensor([ 0.1_1_9_2, 0.1_2_4_0, 0.0_4_1_4, 0.0_6_0_6, -0.0_5_5_7, -0.0_4_1_2, 0.0_4_3_0, 0.2_0_4_2, -0.0_2_0_0, 0.1_3_8_5, -0.0_1_1_5, -0.0_1_3_2, 0.0_0_1_7, -0.0_9_6_5, -0.0_8_0_2, 0.0_3_9_8, 0.1_4_3_3, 0.1_7_4_7, -0.0_4_5_8, -0.0_5_3_3, -0.0_4_0_7, 0.1_5_4_5, 0.0_4_1_9, -0.1_5_7_4, -0.0_6_4_5, 0.0_6_2_6, 0.0_3_4_1, -0.0_0_1_0, -0.1_1_9_9, -0.1_3_9_0 ]) __A : Dict = torch.tensor([ 0.1_0_7_5, 0.1_0_7_4, 0.0_2_0_5, 0.0_4_3_1, -0.0_7_7_4, -0.0_6_0_7, 0.0_2_9_8, 0.2_0_4_2, -0.0_3_2_0, 0.1_2_6_7, -0.0_2_8_1, -0.0_2_5_0, -0.0_0_6_4, -0.1_0_9_1, -0.0_9_4_6, 0.0_2_9_0, 0.1_3_2_8, 0.1_6_5_0, -0.0_5_8_0, -0.0_7_3_8, -0.0_5_8_6, 0.1_4_4_0, 0.0_3_3_7, -0.1_7_4_6, -0.0_7_1_2, 0.0_6_0_5, 0.0_2_5_0, -0.0_0_9_9, -0.1_3_1_6, -0.1_4_7_3 ]) __A : Any = torch.tensor([ -1.4_5_7_2, -2.0_4_8_1, -0.0_4_1_4, -0.6_0_0_5, 1.4_1_3_6, 0.5_8_4_8, 0.4_0_2_8, -2.7_3_3_0, 1.2_2_1_2, -2.1_2_2_8, 0.2_1_5_5, 0.4_0_3_9, 0.7_6_6_2, 2.0_5_3_5, 0.7_4_7_7, -0.3_2_4_3, -2.1_7_5_8, -2.7_6_4_8, 1.6_9_4_7, 0.7_0_2_6, 1.2_3_3_8, -1.6_0_7_8, -0.8_6_8_2, 2.2_8_1_0, 1.8_5_7_4, -0.5_7_1_8, -0.5_5_8_6, -0.0_1_8_6, 2.3_4_1_5, 2.1_2_5_1]) __A : int = torch.tensor([ -1.3_6_9_0, -1.9_7_2_0, -0.4_0_9_0, -0.6_9_6_6, 1.4_6_6_0, 0.9_9_3_8, -0.1_3_8_5, -2.7_3_2_4, 0.7_7_3_6, -1.8_9_1_7, 0.2_9_2_3, 0.4_2_9_3, 0.1_6_9_3, 1.4_1_1_2, 1.1_8_8_7, -0.3_1_8_1, -2.2_1_6_0, -2.6_3_8_1, 1.3_1_7_0, 0.8_1_6_3, 0.9_2_4_0, -1.6_5_4_4, -0.6_0_9_9, 2.5_2_5_9, 1.6_4_3_0, -0.9_0_9_0, -0.9_3_9_2, -0.0_1_2_6, 2.4_2_6_8, 2.3_2_6_6 ]) __A : Optional[int] = torch.tensor([ -1.3_5_2_5, -1.9_6_2_8, -0.3_9_5_6, -0.6_8_6_0, 1.4_6_6_4, 1.0_0_1_4, -0.1_2_5_9, -2.7_2_1_2, 0.7_7_7_2, -1.8_8_1_1, 0.2_9_9_6, 0.4_3_8_8, 0.1_7_0_4, 1.4_0_2_9, 1.1_7_0_1, -0.3_0_2_7, -2.2_0_5_3, -2.6_2_8_7, 1.3_3_5_0, 0.8_1_3_1, 0.9_2_7_4, -1.6_2_9_2, -0.6_0_9_8, 2.5_1_3_1, 1.6_5_0_5, -0.8_9_5_8, -0.9_2_9_8, -0.0_1_5_1, 2.4_2_5_7, 2.3_3_5_5 ]) __A : Any = torch.tensor([ -2.0_5_8_5, -2.7_8_9_7, -0.2_8_5_0, -0.8_9_4_0, 1.9_0_5_2, 0.5_7_0_2, 0.6_3_4_5, -3.8_9_5_9, 1.5_9_3_2, -3.2_3_1_9, 0.1_9_7_4, 0.0_2_8_7, 1.7_5_6_6, 2.6_5_4_3, 0.8_3_8_7, -0.5_3_5_1, -3.2_7_3_6, -4.3_3_7_5, 2.9_0_2_9, 1.6_3_9_0, 1.4_6_4_0, -2.1_7_0_1, -1.9_0_1_3, 2.9_3_4_1, 3.4_9_8_1, -0.6_2_5_5, -1.1_6_4_4, -0.1_5_9_1, 3.7_0_9_7, 3.2_0_6_6 ]) __A : Dict = torch.tensor([ -2.3_1_3_9, -2.5_5_9_4, -0.0_1_9_7, -0.6_7_8_5, 1.7_0_0_1, 1.1_6_0_6, 0.3_0_7_5, -2.1_7_4_0, 1.8_0_7_1, -2.5_6_3_0, -0.0_9_2_6, -0.3_8_1_1, 1.2_1_1_6, 2.6_2_4_6, 1.2_7_3_1, -0.5_3_9_8, -2.8_1_5_3, -3.6_1_4_0, 2.3_8_9_3, 1.3_2_6_2, 1.6_2_5_8, -2.1_8_5_6, -1.3_2_6_7, 2.8_3_9_5, 2.3_7_7_9, -1.0_6_2_3, -1.2_4_6_8, 0.8_9_5_9, 3.3_3_6_7, 3.2_2_4_3 ]) __A : Optional[Any] = torch.tensor([ -2.0_6_2_8, -2.7_6_6_7, -0.2_0_8_9, -0.8_2_6_3, 2.0_5_3_9, 0.5_9_9_2, 0.6_4_9_5, -3.8_3_3_6, 1.6_0_2_5, -3.2_8_1_7, 0.1_7_2_1, -0.0_6_3_3, 1.7_5_1_6, 2.7_0_3_9, 0.8_1_0_0, -0.5_9_0_8, -3.2_1_1_3, -4.4_3_4_3, 2.9_2_5_7, 1.3_6_3_2, 1.5_5_6_2, -2.1_4_8_9, -1.9_8_9_4, 3.0_5_6_0, 3.3_3_9_6, -0.7_3_2_8, -1.0_4_1_7, 0.0_3_8_3, 3.7_0_9_3, 3.2_3_4_3 ]) __A : Dict = torch.tensor([ -1.4_5_7_4, -2.0_5_6_9, -0.0_4_7_3, -0.6_1_1_7, 1.4_0_1_8, 0.5_7_6_9, 0.4_1_2_9, -2.7_3_4_4, 1.2_2_4_1, -2.1_3_9_7, 0.2_0_0_0, 0.3_9_3_7, 0.7_6_1_6, 2.0_4_5_3, 0.7_3_2_4, -0.3_3_9_1, -2.1_7_4_6, -2.7_7_4_4, 1.6_9_6_3, 0.6_9_2_1, 1.2_1_8_7, -1.6_1_7_2, -0.8_8_7_7, 2.2_4_3_9, 1.8_4_7_1, -0.5_8_3_9, -0.5_6_0_5, -0.0_4_6_4, 2.3_2_5_0, 2.1_2_1_9 ]) # fmt: on __A : List[str] = api.list_models(filter="diffusers") for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": __A : Optional[Any] = "/home/patrick/google_checkpoints/" + mod.modelId.split("/")[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith("CompVis"): __A : int = UNetaDModel.from_pretrained(local_checkpoint, subfolder="unet") else: __A : Union[str, Any] = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) __A : Tuple = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) __A : List[str] = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): __A : Dict = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results["_".join("_".join(mod.modelId.split("/")).split("-"))], atol=1E-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
356
'''simple docstring''' from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=_SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = ['note_seq'] def __init__( self : Tuple , *lowerCamelCase : Optional[int] , **lowerCamelCase : Tuple ) -> Any: requires_backends(self , ["""note_seq"""] ) @classmethod def __lowercase ( cls : Optional[Any] , *lowerCamelCase : List[Any] , **lowerCamelCase : Dict ) -> List[Any]: requires_backends(cls , ["""note_seq"""] ) @classmethod def __lowercase ( cls : Union[str, Any] , *lowerCamelCase : Union[str, Any] , **lowerCamelCase : List[Any] ) -> Optional[int]: requires_backends(cls , ["""note_seq"""] )
89
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_distilbert import DistilBertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} __magic_name__ = { "vocab_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/vocab.txt", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/vocab.txt", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/vocab.txt" ), "distilbert-base-german-cased": "https://huggingface.co/distilbert-base-german-cased/resolve/main/vocab.txt", "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "distilbert-base-uncased": "https://huggingface.co/distilbert-base-uncased/resolve/main/tokenizer.json", "distilbert-base-uncased-distilled-squad": ( "https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-cased": "https://huggingface.co/distilbert-base-cased/resolve/main/tokenizer.json", "distilbert-base-cased-distilled-squad": ( "https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/tokenizer.json" ), "distilbert-base-german-cased": ( "https://huggingface.co/distilbert-base-german-cased/resolve/main/tokenizer.json" ), "distilbert-base-multilingual-cased": ( "https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/tokenizer.json" ), }, } __magic_name__ = { "distilbert-base-uncased": 512, "distilbert-base-uncased-distilled-squad": 512, "distilbert-base-cased": 512, "distilbert-base-cased-distilled-squad": 512, "distilbert-base-german-cased": 512, "distilbert-base-multilingual-cased": 512, } __magic_name__ = { "distilbert-base-uncased": {"do_lower_case": True}, "distilbert-base-uncased-distilled-squad": {"do_lower_case": True}, "distilbert-base-cased": {"do_lower_case": False}, "distilbert-base-cased-distilled-squad": {"do_lower_case": False}, "distilbert-base-german-cased": {"do_lower_case": False}, "distilbert-base-multilingual-cased": {"do_lower_case": False}, } class SCREAMING_SNAKE_CASE_ ( _UpperCamelCase ): """simple docstring""" __lowercase : List[Any] = VOCAB_FILES_NAMES __lowercase : List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = PRETRAINED_INIT_CONFIGURATION __lowercase : List[Any] = ['''input_ids''', '''attention_mask'''] __lowercase : List[str] = DistilBertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase__) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase__) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase__) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , normalizer_state.pop("""type""")) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = strip_accents __SCREAMING_SNAKE_CASE = tokenize_chinese_chars __SCREAMING_SNAKE_CASE = normalizer_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = do_lower_case def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__)
100
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class snake_case__(_UpperCamelCase , _UpperCamelCase ): """simple docstring""" @register_to_config def __init__( self : Dict , SCREAMING_SNAKE_CASE : int = 768 , ): super().__init__() lowercase__ : List[str] = nn.Parameter(torch.zeros(1 , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[int] = nn.Parameter(torch.ones(1 , SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[Union[str, torch.device]] = None , SCREAMING_SNAKE_CASE : Optional[torch.dtype] = None , ): lowercase__ : Union[str, Any] = nn.Parameter(self.mean.to(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) ) lowercase__ : Dict = nn.Parameter(self.std.to(SCREAMING_SNAKE_CASE ).to(SCREAMING_SNAKE_CASE ) ) return self def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : Optional[int] = (embeds - self.mean) * 1.0 / self.std return embeds def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : str ): lowercase__ : Any = (embeds * self.std) + self.mean return embeds
130
0
from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=A__ ) lowerCAmelCase_ : List[str] = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=A__ ) env_command_parser(subparsers=A__ ) launch_command_parser(subparsers=A__ ) tpu_command_parser(subparsers=A__ ) test_command_parser(subparsers=A__ ) # Let's go lowerCAmelCase_ : Dict = parser.parse_args() if not hasattr(A__ , """func""" ): parser.print_help() exit(1 ) # Run args.func(A__ ) if __name__ == "__main__": main()
353
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A : Tuple = "sshleifer/mar_enro_6_3_student" class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : List[Any] ) -> Optional[Any]: super().setUp() lowerCAmelCase_ : Any = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowerCamelCase , ) lowerCAmelCase_ : Optional[Any] = F'{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k' @slow @require_torch_gpu def __lowercase ( self : str ) -> str: MarianMTModel.from_pretrained(lowerCamelCase ) @slow @require_torch_gpu def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : str = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script lowerCAmelCase_ : Dict = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() lowerCAmelCase_ : Optional[int] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : Optional[int] = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) lowerCAmelCase_ : Optional[Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowerCAmelCase_ : Tuple = F'\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n '.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowerCAmelCase_ : Tuple = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): lowerCAmelCase_ : Optional[Any] = argparse.ArgumentParser() lowerCAmelCase_ : Any = pl.Trainer.add_argparse_args(lowerCamelCase ) lowerCAmelCase_ : List[str] = SummarizationModule.add_model_specific_args(lowerCamelCase , os.getcwd() ) lowerCAmelCase_ : Tuple = parser.parse_args() lowerCAmelCase_ : Dict = main(lowerCamelCase ) # Check metrics lowerCAmelCase_ : int = load_json(model.metrics_save_path ) lowerCAmelCase_ : Optional[Any] = metrics["""val"""][0] lowerCAmelCase_ : Tuple = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : Union[str, Any] = os.listdir(lowerCamelCase ) lowerCAmelCase_ : Any = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : Union[str, Any] = os.path.join(args.output_dir , lowerCamelCase ) lowerCAmelCase_ : int = torch.load(lowerCamelCase , map_location="""cpu""" ) lowerCAmelCase_ : List[str] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : List[str] = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @timeout_decorator.timeout(6_00 ) @slow @require_torch_gpu def __lowercase ( self : Optional[Any] ) -> Dict: lowerCAmelCase_ : List[str] = F'{self.test_file_dir_str}/test_data/wmt_en_ro' lowerCAmelCase_ : Dict = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 1_28, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script lowerCAmelCase_ : int = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) lowerCAmelCase_ : str = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowerCAmelCase_ : Tuple = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowerCAmelCase_ : Optional[int] = bash_script.replace(lowerCamelCase , str(lowerCamelCase ) ) lowerCAmelCase_ : int = self.get_auto_remove_tmp_dir() lowerCAmelCase_ : Optional[Any] = bash_script.replace("""--fp16""" , """""" ) lowerCAmelCase_ : Dict = 6 lowerCAmelCase_ : List[Any] = ( ["""distillation.py"""] + bash_script.split() + [ F'--output_dir={output_dir}', """--gpus=1""", """--learning_rate=1e-3""", F'--num_train_epochs={epochs}', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowerCamelCase , """argv""" , lowerCamelCase ): lowerCAmelCase_ : Dict = argparse.ArgumentParser() lowerCAmelCase_ : int = pl.Trainer.add_argparse_args(lowerCamelCase ) lowerCAmelCase_ : List[str] = SummarizationDistiller.add_model_specific_args(lowerCamelCase , os.getcwd() ) lowerCAmelCase_ : List[Any] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowerCAmelCase_ : str = distill_main(lowerCamelCase ) # Check metrics lowerCAmelCase_ : Union[str, Any] = load_json(model.metrics_save_path ) lowerCAmelCase_ : Union[str, Any] = metrics["""val"""][0] lowerCAmelCase_ : Union[str, Any] = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'val_avg_{model.val_metric}'] , lowerCamelCase ) # check lightning ckpt can be loaded and has a reasonable statedict lowerCAmelCase_ : Union[str, Any] = os.listdir(lowerCamelCase ) lowerCAmelCase_ : Dict = [x for x in contents if x.endswith(""".ckpt""" )][0] lowerCAmelCase_ : Optional[int] = os.path.join(args.output_dir , lowerCamelCase ) lowerCAmelCase_ : int = torch.load(lowerCamelCase , map_location="""cpu""" ) lowerCAmelCase_ : Tuple = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowerCAmelCase_ : Union[str, Any] = {os.path.basename(lowerCamelCase ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
89
0
import os from collections.abc import Iterator def lowercase_( SCREAMING_SNAKE_CASE_ = "." ): '''simple docstring''' for dir_path, dir_names, filenames in os.walk(UpperCAmelCase_ ): lowerCamelCase : Union[str, Any] = [d for d in dir_names if d != 'scripts' and d[0] not in '._'] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(UpperCAmelCase_ )[1] in (".py", ".ipynb"): yield os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ).lstrip("./" ) def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' return f"""{i * ' '}*""" if i else "\n##" def lowercase_( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : Optional[int] = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(UpperCAmelCase_ ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(UpperCAmelCase_ )} {new_part.replace('_' , ' ' ).title()}""" ) return new_path def lowercase_( SCREAMING_SNAKE_CASE_ = "." ): '''simple docstring''' lowerCamelCase : str = '' for filepath in sorted(good_file_paths(UpperCAmelCase_ ) ): lowerCamelCase : Optional[int] = os.path.split(UpperCAmelCase_ ) if filepath != old_path: lowerCamelCase : Any = print_path(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCamelCase : Any = (filepath.count(os.sep ) + 1) if filepath else 0 lowerCamelCase : str = f"""{filepath}/{filename}""".replace(" " , "%20" ) lowerCamelCase : List[Any] = os.path.splitext(filename.replace("_" , " " ).title() )[0] print(f"""{md_prefix(UpperCAmelCase_ )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md('''.''')
283
"""simple docstring""" import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError("At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training") # TF training parameters _a : Optional[int]= False _a : int= False def __UpperCAmelCase ( UpperCAmelCase_ : Namespace ) -> Optional[Any]: '''simple docstring''' return TrainCommand(UpperCAmelCase_ ) class UpperCamelCase ( lowercase ): @staticmethod def _lowercase (_A : ArgumentParser) -> Any: __snake_case : Any = parser.add_parser('train' , help='CLI tool to train a model on a task.') train_parser.add_argument( '--train_data' , type=_A , required=_A , help='path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences.' , ) train_parser.add_argument( '--column_label' , type=_A , default=0 , help='Column of the dataset csv file with example labels.') train_parser.add_argument( '--column_text' , type=_A , default=1 , help='Column of the dataset csv file with example texts.') train_parser.add_argument( '--column_id' , type=_A , default=2 , help='Column of the dataset csv file with example ids.') train_parser.add_argument( '--skip_first_row' , action='store_true' , help='Skip the first row of the csv file (headers).') train_parser.add_argument('--validation_data' , type=_A , default='' , help='path to validation dataset.') train_parser.add_argument( '--validation_split' , type=_A , default=0.1 , help='if validation dataset is not provided, fraction of train dataset to use as validation dataset.' , ) train_parser.add_argument('--output' , type=_A , default='./' , help='path to saved the trained model.') train_parser.add_argument( '--task' , type=_A , default='text_classification' , help='Task to train the model on.') train_parser.add_argument( '--model' , type=_A , default='bert-base-uncased' , help='Model\'s name or path to stored model.') train_parser.add_argument('--train_batch_size' , type=_A , default=32 , help='Batch size for training.') train_parser.add_argument('--valid_batch_size' , type=_A , default=64 , help='Batch size for validation.') train_parser.add_argument('--learning_rate' , type=_A , default=3E-5 , help='Learning rate.') train_parser.add_argument('--adam_epsilon' , type=_A , default=1E-08 , help='Epsilon for Adam optimizer.') train_parser.set_defaults(func=_A) def __init__(self : int , _A : Namespace) -> Tuple: __snake_case : Optional[int] = logging.get_logger('transformers-cli/training') __snake_case : Optional[int] = 'tf' if is_tf_available() else 'torch' os.makedirs(args.output , exist_ok=_A) __snake_case : List[Any] = args.output __snake_case : Any = args.column_label __snake_case : str = args.column_text __snake_case : Any = args.column_id self.logger.info(f"Loading {args.task} pipeline for {args.model}") if args.task == "text_classification": __snake_case : List[str] = TextClassificationPipeline.from_pretrained(args.model) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"Loading dataset from {args.train_data}") __snake_case : List[Any] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = None if args.validation_data: self.logger.info(f"Loading validation dataset from {args.validation_data}") __snake_case : Dict = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) __snake_case : List[str] = args.validation_split __snake_case : str = args.train_batch_size __snake_case : Any = args.valid_batch_size __snake_case : Union[str, Any] = args.learning_rate __snake_case : str = args.adam_epsilon def _lowercase (self : List[str]) -> str: if self.framework == "tf": return self.run_tf() return self.run_torch() def _lowercase (self : str) -> int: raise NotImplementedError def _lowercase (self : Union[str, Any]) -> Optional[Any]: self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output)
172
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging a : str = logging.get_logger(__name__) a : Any = { """Salesforce/codegen-350M-nl""": """https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json""", """Salesforce/codegen-350M-multi""": """https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json""", """Salesforce/codegen-350M-mono""": """https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json""", """Salesforce/codegen-2B-nl""": """https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json""", """Salesforce/codegen-2B-multi""": """https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json""", """Salesforce/codegen-2B-mono""": """https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json""", """Salesforce/codegen-6B-nl""": """https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json""", """Salesforce/codegen-6B-multi""": """https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json""", """Salesforce/codegen-6B-mono""": """https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json""", """Salesforce/codegen-16B-nl""": """https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json""", """Salesforce/codegen-16B-multi""": """https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json""", """Salesforce/codegen-16B-mono""": """https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json""", } class UpperCamelCase_ ( __magic_name__ ): lowercase = 'codegen' lowercase = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , A=50400 , A=2048 , A=2048 , A=4096 , A=28 , A=16 , A=64 , A=None , A="gelu_new" , A=0.0 , A=0.0 , A=0.0 , A=1e-5 , A=0.0_2 , A=True , A=50256 , A=50256 , A=False , **A , ) -> str: UpperCAmelCase : int = vocab_size UpperCAmelCase : Union[str, Any] = n_ctx UpperCAmelCase : Optional[Any] = n_positions UpperCAmelCase : Tuple = n_embd UpperCAmelCase : Any = n_layer UpperCAmelCase : Tuple = n_head UpperCAmelCase : Optional[Any] = n_inner UpperCAmelCase : List[Any] = rotary_dim UpperCAmelCase : Union[str, Any] = activation_function UpperCAmelCase : Any = resid_pdrop UpperCAmelCase : Optional[int] = embd_pdrop UpperCAmelCase : Dict = attn_pdrop UpperCAmelCase : Dict = layer_norm_epsilon UpperCAmelCase : Any = initializer_range UpperCAmelCase : Any = use_cache UpperCAmelCase : Optional[int] = bos_token_id UpperCAmelCase : Tuple = eos_token_id super().__init__( bos_token_id=A , eos_token_id=A , tie_word_embeddings=A , **A ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A = "default" , A = None , A = False , ) -> Union[str, Any]: super().__init__(A , task=A , patching_specs=A , use_past=A ) if not getattr(self._config , """pad_token_id""" , A ): # TODO: how to do that better? UpperCAmelCase : Optional[int] = 0 @property def _lowercase( self ) -> Mapping[str, Mapping[int, str]]: UpperCAmelCase : int = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} ) if self.use_past: self.fill_with_past_key_values_(A , direction="""inputs""" ) UpperCAmelCase : Optional[int] = {0: """batch""", 1: """past_sequence + sequence"""} else: UpperCAmelCase : Tuple = {0: """batch""", 1: """sequence"""} return common_inputs @property def _lowercase( self ) -> int: return self._config.n_layer @property def _lowercase( self ) -> int: return self._config.n_head def _lowercase( self , A , A = -1 , A = -1 , A = False , A = None , ) -> Mapping[str, Any]: UpperCAmelCase : Any = super(A , self ).generate_dummy_inputs( A , batch_size=A , seq_length=A , is_pair=A , framework=A ) # We need to order the input in the way they appears in the forward() UpperCAmelCase : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" ) else: import torch UpperCAmelCase : List[str] = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values UpperCAmelCase : Dict = seqlen + 2 UpperCAmelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) UpperCAmelCase : Optional[int] = [ (torch.zeros(A ), torch.zeros(A )) for _ in range(self.num_layers ) ] UpperCAmelCase : Union[str, Any] = common_inputs["""attention_mask"""] if self.use_past: UpperCAmelCase : Optional[int] = ordered_inputs["""attention_mask"""].dtype UpperCAmelCase : List[Any] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(A , A , dtype=A )] , dim=1 ) return ordered_inputs @property def _lowercase( self ) -> int: return 13
363
'''simple docstring''' import warnings from ...utils import logging from .image_processing_layoutlmva import LayoutLMvaImageProcessor a : Dict = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , *A , **A ) -> None: warnings.warn( """The class LayoutLMv2FeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use LayoutLMv2ImageProcessor instead.""" , A , ) super().__init__(*A , **A )
338
0
"""simple docstring""" import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : int = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} UpperCAmelCase : str = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } UpperCAmelCase : Dict = { 'abeja/gpt-neox-japanese-2.7b': 2048, } def lowerCamelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : Any ) -> Tuple: '''simple docstring''' with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: __UpperCAmelCase : Union[str, Any] = json.loads(f.read() ) __UpperCAmelCase : Optional[int] = collections.OrderedDict() __UpperCAmelCase : Optional[int] = collections.OrderedDict() __UpperCAmelCase : List[Any] = collections.OrderedDict() with open(UpperCamelCase_ , """r""" , encoding="""utf-8""" ) as f: __UpperCAmelCase : str = f.readlines() __UpperCAmelCase : str = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(UpperCamelCase_ ): __UpperCAmelCase : int = b __UpperCAmelCase : Optional[Any] = idx for wd in b: __UpperCAmelCase : Tuple = idx return vocab, raw_vocab, ids_to_tokens, emoji class lowerCamelCase__ ( _UpperCAmelCase ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : str , UpperCamelCase : List[Any] , UpperCamelCase : Optional[int] , UpperCamelCase : str="<|endoftext|>" , UpperCamelCase : Union[str, Any]="<|endoftext|>" , UpperCamelCase : int="<|startoftext|>" , UpperCamelCase : Optional[Any]="<|endoftext|>" , UpperCamelCase : Optional[Any]=False , **UpperCamelCase : Optional[int] , ): '''simple docstring''' super().__init__( unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , do_clean_text=__UpperCAmelCase , **__UpperCAmelCase , ) if not os.path.isfile(__UpperCAmelCase ): raise ValueError( f'''Can\'t find a vocabulary file at path \'{vocab_file}\'. To load the vocabulary from a Google pretrained''' """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(__UpperCAmelCase ): raise ValueError( f'''Can\'t find a emoji file at path \'{emoji_file}\'. To load the emoji information from a Google''' """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) __UpperCAmelCase : List[str] = do_clean_text __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : str = load_vocab_and_emoji(__UpperCAmelCase , __UpperCAmelCase ) __UpperCAmelCase : Dict = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' return len(self.raw_vocab ) def lowerCamelCase__ ( self : Dict ): '''simple docstring''' return dict(self.raw_vocab , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : str , UpperCamelCase : Any ): '''simple docstring''' return self.subword_tokenizer.tokenize(__UpperCAmelCase , clean=self.do_clean_text ) def lowerCamelCase__ ( self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' return self.vocab.get(__UpperCAmelCase , self.vocab.get(self.unk_token ) ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Optional[int] ): '''simple docstring''' return self.subword_tokenizer.convert_id_to_token(__UpperCAmelCase ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : Any ): '''simple docstring''' __UpperCAmelCase : Any = """""".join(__UpperCAmelCase ).strip() return out_string def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCAmelCase : Tuple = input_ids[-self.model_max_length :] return input_ids def lowerCamelCase__ ( self : str , UpperCamelCase : Dict , UpperCamelCase : List[str] = None ): '''simple docstring''' __UpperCAmelCase : Dict = 0 if os.path.isdir(__UpperCAmelCase ): __UpperCAmelCase : int = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : List[str] = os.path.join( __UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: __UpperCAmelCase : int = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) __UpperCAmelCase : List[str] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' """ Please check that the vocabulary is not corrupted!""" ) __UpperCAmelCase : Optional[int] = token_index writer.write(""",""".join(__UpperCAmelCase ) + """\n""" ) index += 1 with open(__UpperCAmelCase , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , __UpperCAmelCase ) return vocab_file, emoji_file class lowerCamelCase__ ( _UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Dict , UpperCamelCase : str , UpperCamelCase : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : str = vocab # same as swe __UpperCAmelCase : Optional[int] = ids_to_tokens # same as bpe __UpperCAmelCase : Optional[Any] = emoji __UpperCAmelCase : Optional[Any] = np.max([len(__UpperCAmelCase ) for w in self.vocab.keys()] ) __UpperCAmelCase : Union[str, Any] = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) __UpperCAmelCase : Any = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) __UpperCAmelCase : Tuple = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) __UpperCAmelCase : Union[str, Any] = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __UpperCAmelCase : Tuple = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) __UpperCAmelCase : Tuple = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) __UpperCAmelCase : Optional[int] = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" __UpperCAmelCase : Any = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" __UpperCAmelCase : Optional[Any] = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self : int ): '''simple docstring''' return len(self.ids_to_tokens ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : int ): '''simple docstring''' __UpperCAmelCase : Any = self.content_repattera.sub("""<URL>""" , __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.content_repattera.sub("""<EMAIL>""" , __UpperCAmelCase ) __UpperCAmelCase : Tuple = self.content_repattera.sub("""<TEL>""" , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.content_repattera.sub("""<DATE>""" , __UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = self.content_repattera.sub("""<DATE>""" , __UpperCAmelCase ) __UpperCAmelCase : Dict = self.content_repattera.sub("""<PRICE>""" , __UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: __UpperCAmelCase : Any = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def lowerCamelCase__ ( self : str , UpperCamelCase : List[Any] , UpperCamelCase : List[str]=False ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = text.replace(""" """ , """<SP>""" ) __UpperCAmelCase : Dict = text.replace(""" """ , """<SP>""" ) __UpperCAmelCase : Optional[Any] = text.replace("""\r\n""" , """<BR>""" ) __UpperCAmelCase : List[str] = text.replace("""\n""" , """<BR>""" ) __UpperCAmelCase : Optional[int] = text.replace("""\r""" , """<BR>""" ) __UpperCAmelCase : Optional[int] = text.replace("""\t""" , """<TAB>""" ) __UpperCAmelCase : Tuple = text.replace("""—""" , """ー""" ) __UpperCAmelCase : Optional[Any] = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: __UpperCAmelCase : List[str] = text.replace(__UpperCAmelCase , __UpperCAmelCase ) if clean: __UpperCAmelCase : Optional[Any] = self.clean_text(__UpperCAmelCase ) def check_simbol(UpperCamelCase : Optional[Any] ): __UpperCAmelCase : Any = x.encode() if len(__UpperCAmelCase ) == 1 and len(__UpperCAmelCase ) == 2: __UpperCAmelCase : Union[str, Any] = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2_A1 and c <= 0xC2_BF) or (c >= 0xC7_80 and c <= 0xC7_83) or (c >= 0xCA_B9 and c <= 0xCB_BF) or (c >= 0xCC_80 and c <= 0xCD_A2) ): return True return False def checkuae(UpperCamelCase : int ): __UpperCAmelCase : List[Any] = x.encode() if len(__UpperCAmelCase ) == 1 and len(__UpperCAmelCase ) == 3: __UpperCAmelCase : Union[str, Any] = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_80_80 and c <= 0xE2_B0_7F: return True return False __UpperCAmelCase : Optional[int] = 0 __UpperCAmelCase : List[Any] = [] while pos < len(__UpperCAmelCase ): __UpperCAmelCase : Dict = min(len(__UpperCAmelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 __UpperCAmelCase : Union[str, Any] = [] # (token_id, token, pos) for e in range(__UpperCAmelCase , __UpperCAmelCase , -1 ): __UpperCAmelCase : Dict = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(__UpperCAmelCase ) > 2: __UpperCAmelCase : Any = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(__UpperCAmelCase ) > 0: # the smallest token_id is adopted __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : int = sorted(__UpperCAmelCase , key=lambda UpperCamelCase : x[0] )[0] result.append(__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = e else: __UpperCAmelCase : Optional[int] = pos + 1 __UpperCAmelCase : Optional[int] = text[pos:end] if check_simbol(__UpperCAmelCase ): result.append("""<KIGOU>""" ) elif checkuae(__UpperCAmelCase ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) __UpperCAmelCase : Optional[int] = end return result def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase : Optional[int] , UpperCamelCase : str="\n" ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : Optional[int] = [] __UpperCAmelCase : List[str] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(__UpperCAmelCase ) > 0: words.append(bytearray(__UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) ) __UpperCAmelCase : Optional[Any] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(__UpperCAmelCase ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(__UpperCAmelCase ) if len(__UpperCAmelCase ) > 0: words.append(bytearray(__UpperCAmelCase ).decode("""utf-8""" , errors="""replace""" ) ) __UpperCAmelCase : Union[str, Any] = """""".join(__UpperCAmelCase ) return text
115
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": a_ = '''hopper-medium-v2''' a_ = gym.make(env_name) a_ = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) a_ = env.reset() a_ = 0 a_ = 0 a_ = 1000 a_ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ = pipeline(obs, planning_horizon=32) # execute action in environment a_, a_, a_, a_ = env.step(denorm_actions) a_ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F"Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:" F" {total_score}" ) # save observations for rendering rollout.append(next_observation.copy()) a_ = next_observation except KeyboardInterrupt: pass print(F"Total reward: {total_reward}")
340
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: lowercase_ = None lowercase_ = logging.get_logger(__name__) lowercase_ = "▁" lowercase_ = {"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": {"google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model"}, "tokenizer_file": { "google/pegasus-xsum": "https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json" }, } lowercase_ = { "google/pegasus-xsum": 512, } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = PegasusTokenizer lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self : Any,lowercase_ : Optional[int]=None,lowercase_ : Union[str, Any]=None,lowercase_ : Union[str, Any]="<pad>",lowercase_ : List[str]="</s>",lowercase_ : str="<unk>",lowercase_ : Union[str, Any]="<mask_2>",lowercase_ : int="<mask_1>",lowercase_ : Any=None,lowercase_ : Optional[int]=1_0_3,**lowercase_ : Tuple,)-> str: '''simple docstring''' A__ = offset if additional_special_tokens is not None: if not isinstance(lowercase_,lowercase_ ): raise TypeError( F'additional_special_tokens should be of type {type(lowercase_ )}, but is' F' {type(lowercase_ )}' ) A__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F'<unk_{i}>' for i in range(len(lowercase_ ),self.offset - 1 ) ] if len(set(lowercase_ ) ) != len(lowercase_ ): raise ValueError( 'Please make sure that the provided additional_special_tokens do not contain an incorrectly' F' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) A__ = additional_special_tokens_extended else: A__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F'<unk_{i}>' for i in range(2,self.offset )] super().__init__( lowercase_,tokenizer_file=lowercase_,pad_token=lowercase_,eos_token=lowercase_,unk_token=lowercase_,mask_token=lowercase_,mask_token_sent=lowercase_,offset=lowercase_,additional_special_tokens=lowercase_,**lowercase_,) A__ = vocab_file A__ = False if not self.vocab_file else True def snake_case__ ( self : str,lowercase_ : List[str] )-> Optional[Any]: '''simple docstring''' A__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( 'There should be 3 special tokens: mask_token, pad_token, and eos_token +' F' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def snake_case__ ( self : Tuple,lowercase_ : List,lowercase_ : Optional[List] = None,lowercase_ : bool = False )-> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(lowercase_ ) elif token_ids_a is None: return self._special_token_mask(lowercase_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def snake_case__ ( self : Tuple,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any]=None )-> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def snake_case__ ( self : Dict,lowercase_ : str,lowercase_ : Optional[str] = None )-> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase_ ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase_,(filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file,lowercase_ ) return (out_vocab_file,)
282
import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class A ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] )-> List[str]: '''simple docstring''' super().__init__() A__ = nn.Linear(3,4 ) A__ = nn.BatchNormad(4 ) A__ = nn.Linear(4,5 ) def snake_case__ ( self : Dict,lowercase_ : Union[str, Any] )-> Tuple: '''simple docstring''' return self.lineara(self.batchnorm(self.lineara(lowercase_ ) ) ) class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[str] )-> Any: '''simple docstring''' A__ = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_,model.state_dict() ) A__ = os.path.join(lowercase_,'index.json' ) self.assertTrue(os.path.isfile(lowercase_ ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: A__ = os.path.join(lowercase_,F'{key}.dat' ) self.assertTrue(os.path.isfile(lowercase_ ) ) # TODO: add tests on the fact weights are properly loaded def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' A__ = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: A__ = torch.randn(2,3,dtype=lowercase_ ) with TemporaryDirectory() as tmp_dir: A__ = offload_weight(lowercase_,'weight',lowercase_,{} ) A__ = os.path.join(lowercase_,'weight.dat' ) self.assertTrue(os.path.isfile(lowercase_ ) ) self.assertDictEqual(lowercase_,{'weight': {'shape': [2, 3], 'dtype': str(lowercase_ ).split('.' )[1]}} ) A__ = load_offloaded_weight(lowercase_,index['weight'] ) self.assertTrue(torch.equal(lowercase_,lowercase_ ) ) def snake_case__ ( self : Optional[int] )-> Optional[Any]: '''simple docstring''' A__ = ModelForTest() A__ = model.state_dict() A__ = {k: v for k, v in state_dict.items() if 'linear2' not in k} A__ = {k: v for k, v in state_dict.items() if 'linear2' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_,lowercase_ ) A__ = OffloadedWeightsLoader(state_dict=lowercase_,save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ),sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_,weight_map[key] ) ) A__ = {k: v for k, v in state_dict.items() if 'weight' in k} A__ = {k: v for k, v in state_dict.items() if 'weight' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_,lowercase_ ) A__ = OffloadedWeightsLoader(state_dict=lowercase_,save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ),sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_,weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(lowercase_,lowercase_ ) # Duplicates are removed A__ = OffloadedWeightsLoader(state_dict=lowercase_,save_folder=lowercase_ ) # Every key is there with the right value self.assertEqual(sorted(lowercase_ ),sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(lowercase_,weight_map[key] ) ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = {'a.1': 0, 'a.10': 1, 'a.2': 2} A__ = extract_submodules_state_dict(lowercase_,['a.1', 'a.2'] ) self.assertDictEqual(lowercase_,{'a.1': 0, 'a.2': 2} ) A__ = {'a.1.a': 0, 'a.10.a': 1, 'a.2.a': 2} A__ = extract_submodules_state_dict(lowercase_,['a.1', 'a.2'] ) self.assertDictEqual(lowercase_,{'a.1.a': 0, 'a.2.a': 2} )
282
1
import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __lowerCamelCase : str = '''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine''' def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: SCREAMING_SNAKE_CASE_ : Any = get_sagemaker_input() else: SCREAMING_SNAKE_CASE_ : Optional[Any] = get_cluster_input() return config def _snake_case ( lowerCAmelCase : Tuple=None ): """simple docstring""" if subparsers is not None: SCREAMING_SNAKE_CASE_ : Tuple = subparsers.add_parser("config" , description=lowerCAmelCase_ ) else: SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser("Accelerate config command" , description=lowerCAmelCase_ ) parser.add_argument( "--config_file" , default=lowerCAmelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have " "such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed " "with \'huggingface\'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def _snake_case ( lowerCAmelCase : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = get_user_input() if args.config_file is not None: SCREAMING_SNAKE_CASE_ : List[Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : str = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(f'accelerate configuration saved at {config_file}' ) def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = config_command_parser() SCREAMING_SNAKE_CASE_ : List[Any] = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
18
'''simple docstring''' __lowerCAmelCase = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> list[str]: _a : List[Any] = set() # keep track of all the paths to be checked _a : Any = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _a : Tuple = queue.pop(0 ) # get the last node from the path _a : Tuple = path[-1] if node not in explored: _a : Optional[Any] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _a : Any = list(lowerCAmelCase_ ) new_path.append(lowerCAmelCase_ ) queue.append(lowerCAmelCase_ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase_ ) # in case there's no path between the 2 nodes return [] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _a : Optional[int] = [start] _a : Dict = set(lowerCAmelCase_ ) # Keep tab on distances from `start` node. _a : Dict = {start: 0, target: -1} while queue: _a : List[str] = queue.pop(0 ) if node == target: _a : Any = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase_ ) queue.append(lowerCAmelCase_ ) _a : Any = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
89
0
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCamelCase__ = 256 class __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ :int = ["melgan"] def __init__( self : Union[str, Any] , __a : SpectrogramNotesEncoder , __a : SpectrogramContEncoder , __a : TaFilmDecoder , __a : DDPMScheduler , __a : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN _UpperCamelCase : Tuple = math.log(1e-5 ) # Matches MelGAN training. _UpperCamelCase : Union[str, Any] = 4.0 # Largest value for most examples _UpperCamelCase : str = 128 self.register_modules( notes_encoder=__a , continuous_encoder=__a , decoder=__a , scheduler=__a , melgan=__a , ) def __SCREAMING_SNAKE_CASE ( self : Any , __a : Union[str, Any] , __a : int=(-1.0, 1.0) , __a : Union[str, Any]=False ) -> int: _UpperCamelCase, _UpperCamelCase : List[str] = output_range if clip: _UpperCamelCase : int = torch.clip(__a , self.min_value , self.max_value ) # Scale to [0, 1]. _UpperCamelCase : Union[str, Any] = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] , __a : List[str] , __a : Tuple=(-1.0, 1.0) , __a : Dict=False ) -> Optional[int]: _UpperCamelCase, _UpperCamelCase : int = input_range _UpperCamelCase : Optional[Any] = torch.clip(__a , __a , __a ) if clip else outputs # Scale to [0, 1]. _UpperCamelCase : List[str] = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def __SCREAMING_SNAKE_CASE ( self : Tuple , __a : List[Any] , __a : str , __a : Dict ) -> str: _UpperCamelCase : str = input_tokens > 0 _UpperCamelCase, _UpperCamelCase : List[Any] = self.notes_encoder( encoder_input_tokens=__a , encoder_inputs_mask=__a ) _UpperCamelCase, _UpperCamelCase : Tuple = self.continuous_encoder( encoder_inputs=__a , encoder_inputs_mask=__a ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def __SCREAMING_SNAKE_CASE ( self : Optional[int] , __a : Dict , __a : Optional[int] , __a : int ) -> Optional[int]: _UpperCamelCase : List[str] = noise_time if not torch.is_tensor(__a ): _UpperCamelCase : Optional[int] = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(__a ) and len(timesteps.shape ) == 0: _UpperCamelCase : Any = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _UpperCamelCase : Optional[int] = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _UpperCamelCase : Union[str, Any] = self.decoder( encodings_and_masks=__a , decoder_input_tokens=__a , decoder_noise_time=__a ) return logits @torch.no_grad() def __call__( self : Tuple , __a : List[List[int]] , __a : Optional[torch.Generator] = None , __a : int = 100 , __a : bool = True , __a : str = "numpy" , __a : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __a : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__a , __a ) or callback_steps <= 0) ): raise ValueError( F'''`callback_steps` has to be a positive integer but is {callback_steps} of type''' F''' {type(__a )}.''' ) _UpperCamelCase : List[Any] = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _UpperCamelCase : int = np.zeros([1, 0, self.n_dims] , np.floataa ) _UpperCamelCase : Optional[Any] = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=__a , device=self.device ) for i, encoder_input_tokens in enumerate(__a ): if i == 0: _UpperCamelCase : Optional[int] = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _UpperCamelCase : Union[str, Any] = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=__a , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _UpperCamelCase : Dict = ones _UpperCamelCase : str = self.scale_features( __a , output_range=[-1.0, 1.0] , clip=__a ) _UpperCamelCase : Dict = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=__a , continuous_mask=__a , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _UpperCamelCase : int = randn_tensor( shape=encoder_continuous_inputs.shape , generator=__a , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(__a ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _UpperCamelCase : Optional[Any] = self.decode( encodings_and_masks=__a , input_tokens=__a , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _UpperCamelCase : List[str] = self.scheduler.step(__a , __a , __a , generator=__a ).prev_sample _UpperCamelCase : Tuple = self.scale_to_features(__a , input_range=[-1.0, 1.0] ) _UpperCamelCase : Optional[Any] = mel[:1] _UpperCamelCase : int = mel.cpu().float().numpy() _UpperCamelCase : int = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__a , __a ) logger.info("Generated segment" , __a ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": _UpperCamelCase : Dict = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _UpperCamelCase : List[Any] = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=__a )
310
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCamelCase__ = "\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n" class __SCREAMING_SNAKE_CASE ( unittest.TestCase , _UpperCamelCase ): '''simple docstring''' def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> Union[str, Any]: _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : Union[str, Any] = load_tool("text-question-answering" , remote=__a ) def __SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: _UpperCamelCase : Dict = self.tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> Union[str, Any]: _UpperCamelCase : List[str] = self.remote_tool(__a , "What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]: _UpperCamelCase : Dict = self.tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" ) def __SCREAMING_SNAKE_CASE ( self : Dict ) -> str: _UpperCamelCase : List[Any] = self.remote_tool(text=__a , question="What did Hugging Face do in April 2021?" ) self.assertEqual(__a , "launched the BigScience Research Workshop" )
310
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel lowerCAmelCase__ : Optional[Any] = False lowerCAmelCase__ : Any = True lowerCAmelCase__ : Any = False if __name__ == "__main__": lowerCAmelCase__ : Tuple = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') lowerCAmelCase__ : Tuple = parser.parse_args() lowerCAmelCase__ : str = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } lowerCAmelCase__ : Any = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } lowerCAmelCase__ : Union[str, Any] = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: lowerCAmelCase__ : Optional[Any] = reader.read() lowerCAmelCase__ : List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): lowerCAmelCase__ : List[Any] = UNetaDModel(**config) else: lowerCAmelCase__ : Tuple = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel lowerCAmelCase__ : str = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) lowerCAmelCase__ : List[Any] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: lowerCAmelCase__ : List[Any] = config[key] del config[key] lowerCAmelCase__ : Union[str, Any] = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] lowerCAmelCase__ : Tuple = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: lowerCAmelCase__ : int = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) lowerCAmelCase__ : Union[str, Any] = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue lowerCAmelCase__ : Any = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: lowerCAmelCase__ : int = param_value lowerCAmelCase__ : Tuple = True if not has_changed: lowerCAmelCase__ : int = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
143
'''simple docstring''' import math def __lowerCamelCase ( lowerCAmelCase_ ) -> bool: _a : Optional[int] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowerCAmelCase_ ) def __lowerCamelCase ( lowerCAmelCase_ = 1 / 12345 ) -> int: _a : int = 0 _a : Optional[Any] = 0 _a : int = 3 while True: _a : Tuple = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowerCAmelCase_ ): _a : Union[str, Any] = int(lowerCAmelCase_ ) total_partitions += 1 if check_partition_perfect(lowerCAmelCase_ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowerCAmelCase_ ) integer += 1 if __name__ == "__main__": print(f"""{solution() = }""")
89
0
"""simple docstring""" import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case__ : List[str] = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def _snake_case ( _snake_case : List[Any] ): config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def _snake_case ( _snake_case : Union[str, Any] ): from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_snake_case ) def _snake_case ( _snake_case : Optional[int] ): from transformers.testing_utils import pytest_terminal_summary_main lowerCAmelCase : Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(_snake_case , id=_snake_case ) def _snake_case ( _snake_case : str , _snake_case : Any ): # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowerCAmelCase : Tuple = 0 # Doctest custom flag to ignore output. snake_case__ : List[Any] = doctest.register_optionflag('''IGNORE_RESULT''') snake_case__ : Dict = doctest.OutputChecker class snake_case_( a__ ): def lowerCamelCase__ ( self : int , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] ): if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) snake_case__ : Any = CustomOutputChecker snake_case__ : Any = HfDoctestModule snake_case__ : List[Any] = HfDocTestParser
353
"""simple docstring""" import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _snake_case ( _snake_case : List[str] ): lowerCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: lowerCAmelCase : Union[str, Any] = 6 lowerCAmelCase : Any = 128 lowerCAmelCase : List[Any] = (2, 2, 18, 2) lowerCAmelCase : Any = (4, 8, 16, 32) elif "large" in model_name: lowerCAmelCase : Tuple = 12 lowerCAmelCase : Dict = 192 lowerCAmelCase : List[str] = (2, 2, 18, 2) lowerCAmelCase : Union[str, Any] = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) lowerCAmelCase : Optional[int] = window_size lowerCAmelCase : Any = embed_dim lowerCAmelCase : Optional[Any] = depths lowerCAmelCase : int = num_heads return config def _snake_case ( _snake_case : Union[str, Any] ): if "encoder.mask_token" in name: lowerCAmelCase : Dict = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: lowerCAmelCase : Optional[Any] = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: lowerCAmelCase : Optional[Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowerCAmelCase : List[str] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowerCAmelCase : List[str] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowerCAmelCase : Optional[int] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowerCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowerCAmelCase : Optional[int] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": lowerCAmelCase : Tuple = '''layernorm.weight''' if name == "encoder.norm.bias": lowerCAmelCase : str = '''layernorm.bias''' if "decoder" in name: pass else: lowerCAmelCase : Optional[Any] = '''swin.''' + name return name def _snake_case ( _snake_case : Optional[Any] , _snake_case : Optional[int] ): for key in orig_state_dict.copy().keys(): lowerCAmelCase : Optional[Any] = orig_state_dict.pop(_snake_case ) if "attn_mask" in key: pass elif "qkv" in key: lowerCAmelCase : List[Any] = key.split('''.''' ) lowerCAmelCase : Dict = int(key_split[2] ) lowerCAmelCase : Optional[Any] = int(key_split[4] ) lowerCAmelCase : List[str] = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCAmelCase : Dict = val[:dim, :] lowerCAmelCase : Dict = val[ dim : dim * 2, : ] lowerCAmelCase : int = val[-dim:, :] else: lowerCAmelCase : str = val[ :dim ] lowerCAmelCase : List[str] = val[ dim : dim * 2 ] lowerCAmelCase : Optional[Any] = val[ -dim: ] else: lowerCAmelCase : str = val return orig_state_dict def _snake_case ( _snake_case : List[str] , _snake_case : int , _snake_case : Dict , _snake_case : str ): lowerCAmelCase : List[str] = torch.load(_snake_case , map_location='''cpu''' )['''model'''] lowerCAmelCase : List[Any] = get_swin_config(_snake_case ) lowerCAmelCase : List[Any] = SwinForMaskedImageModeling(_snake_case ) model.eval() lowerCAmelCase : int = convert_state_dict(_snake_case , _snake_case ) model.load_state_dict(_snake_case ) lowerCAmelCase : str = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) lowerCAmelCase : Union[str, Any] = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) lowerCAmelCase : str = image_processor(images=_snake_case , return_tensors='''pt''' ) with torch.no_grad(): lowerCAmelCase : Optional[Any] = model(**_snake_case ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": snake_case__ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''swin-base-simmim-window6-192''', type=str, choices=['''swin-base-simmim-window6-192''', '''swin-large-simmim-window12-192'''], help='''Name of the Swin SimMIM model you\'d like to convert.''', ) parser.add_argument( '''--checkpoint_path''', default='''/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth''', type=str, help='''Path to the original PyTorch checkpoint (.pth file).''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) snake_case__ : Dict = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
314
0
'''simple docstring''' import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _a ( UpperCamelCase_ , unittest.TestCase ): __a : Any = DebertaTokenizer __a : Optional[int] = True __a : Tuple = DebertaTokenizerFast def A ( self : List[Any] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCAmelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''[UNK]''', ] UpperCAmelCase = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) UpperCAmelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCAmelCase = {'''unk_token''': '''[UNK]'''} UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(__SCREAMING_SNAKE_CASE ) ) def A ( self : str , **lowercase : Union[str, Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def A ( self : str , lowercase : Optional[Any] ): '''simple docstring''' UpperCAmelCase = '''lower newer''' UpperCAmelCase = '''lower newer''' return input_text, output_text def A ( self : Any ): '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = '''lower newer''' UpperCAmelCase = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCAmelCase = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokens + [tokenizer.unk_token] UpperCAmelCase = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = tokenizer('''Hello''' , '''World''' ) UpperCAmelCase = [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['''token_type_ids'''] , __SCREAMING_SNAKE_CASE ) @slow def A ( self : Dict ): '''simple docstring''' UpperCAmelCase = self.tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase = tokenizer.encode('''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokenizer.encode( '''sequence builders''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokenizer.encode( '''sequence builders''' , '''multi-sequence build''' , add_special_tokens=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE ) UpperCAmelCase = tokenizer.build_inputs_with_special_tokens(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def A ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = [self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: UpperCAmelCase = tokenizer_class.from_pretrained('''microsoft/deberta-base''' ) UpperCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] UpperCAmelCase = tokenizer(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE ) UpperCAmelCase = [tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) for seq in encoding['''input_ids''']] # fmt: off UpperCAmelCase = { '''input_ids''': [ [1, 2_118, 11_126, 565, 35, 83, 25_191, 163, 18_854, 13, 12_156, 12, 16_101, 25_376, 13_807, 9, 22_205, 27_893, 1_635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2_118, 11_126, 565, 24_536, 80, 43_797, 4_878, 7_373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3_724, 1_538, 33_183, 11_303, 43_797, 1_938, 4, 870, 24_165, 29_105, 5, 739, 32_644, 33_183, 11_303, 36_173, 88, 80, 650, 7_821, 45_940, 6, 52, 2_559, 5, 1_836, 9, 5, 7_397, 13_171, 31, 5, 1_836, 9, 32_644, 33_183, 11_303, 4, 2] ], '''token_type_ids''': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on UpperCAmelCase = [ '''ALBERT: A Lite BERT for Self-supervised Learning of Language Representations''', '''ALBERT incorporates two parameter reduction techniques''', '''The first one is a factorized embedding parameterization. By decomposing the large vocabulary''' ''' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of''' ''' vocabulary embedding.''', ] self.assertDictEqual(encoding.data , __SCREAMING_SNAKE_CASE ) for expected, decoded in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
34
lowercase__ : Optional[int] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def SCREAMING_SNAKE_CASE_ ( ) -> None: lowerCAmelCase = input('''Enter message: ''' ) lowerCAmelCase = input('''Enter key [alphanumeric]: ''' ) lowerCAmelCase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): lowerCAmelCase = '''encrypt''' lowerCAmelCase = encrypt_message(snake_case__ , snake_case__ ) elif mode.lower().startswith('''d''' ): lowerCAmelCase = '''decrypt''' lowerCAmelCase = decrypt_message(snake_case__ , snake_case__ ) print(f"\n{mode.title()}ed message:" ) print(snake_case__ ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str: return translate_message(snake_case__ , snake_case__ , '''encrypt''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ) -> str: return translate_message(snake_case__ , snake_case__ , '''decrypt''' ) def SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ , snake_case__ ) -> str: lowerCAmelCase = [] lowerCAmelCase = 0 lowerCAmelCase = key.upper() for symbol in message: lowerCAmelCase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(snake_case__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(snake_case__ ): lowerCAmelCase = 0 else: translated.append(snake_case__ ) return "".join(snake_case__ ) if __name__ == "__main__": main()
338
0
def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : int = len(snake_case_ ) _A : str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): _A : Optional[int] = True # sum is not zero and set is empty then false for i in range(1,required_sum + 1 ): _A : Optional[int] = False for i in range(1,arr_len + 1 ): for j in range(1,required_sum + 1 ): if arr[i - 1] > j: _A : List[str] = subset[i - 1][j] if arr[i - 1] <= j: _A : Optional[int] = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
356
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowercase : def __init__( self , _a , _a=13 , _a=30 , _a=2 , _a=3 , _a=True , _a=True , _a=32 , _a=5 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=10 , _a=0.02 , _a=None , ) -> Union[str, Any]: _A : Optional[int] = parent _A : Dict = batch_size _A : Any = image_size _A : Optional[int] = patch_size _A : Optional[int] = num_channels _A : List[Any] = is_training _A : Optional[Any] = use_labels _A : Any = hidden_size _A : Any = num_hidden_layers _A : List[Any] = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Optional[int] = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Any = type_sequence_label_size _A : str = initializer_range _A : Tuple = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _A : List[Any] = (image_size // patch_size) ** 2 _A : str = num_patches + 1 def a__ ( self ) -> Dict: _A : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _A : List[str] = None if self.use_labels: _A : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : List[Any] = self.get_config() return config, pixel_values, labels def a__ ( self ) -> Union[str, Any]: return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def a__ ( self , _a , _a , _a ) -> Dict: _A : List[str] = ViTMSNModel(config=_a ) model.to(_a ) model.eval() _A : List[str] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self , _a , _a , _a ) -> List[str]: _A : Union[str, Any] = self.type_sequence_label_size _A : Tuple = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : Optional[int] = model(_a , labels=_a ) print("""Pixel and labels shape: {pixel_values.shape}, {labels.shape}""" ) print("""Labels: {labels}""" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _A : Dict = 1 _A : str = ViTMSNForImageClassification(_a ) model.to(_a ) model.eval() _A : int = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _A : int = model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self ) -> Any: _A : Optional[int] = self.prepare_config_and_inputs() _A , _A , _A : Dict = config_and_inputs _A : List[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class lowercase ( UpperCamelCase__,UpperCamelCase__,unittest.TestCase ): _a = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () _a = ( {"feature-extraction": ViTMSNModel, "image-classification": ViTMSNForImageClassification} if is_torch_available() else {} ) _a = False _a = False _a = False _a = False def a__ ( self ) -> Tuple: _A : Tuple = ViTMSNModelTester(self ) _A : List[Any] = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 ) def a__ ( self ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMSN does not use inputs_embeds""" ) def a__ ( self ) -> int: pass def a__ ( self ) -> Any: _A , _A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Tuple = model_class(_a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _A : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_a , nn.Linear ) ) def a__ ( self ) -> str: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(_a ) _A : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : str = [*signature.parameters.keys()] _A : Optional[int] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _a ) def a__ ( self ) -> List[Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def a__ ( self ) -> Any: _A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @slow def a__ ( self ) -> int: for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : int = ViTMSNModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def lowerCAmelCase_ ( ): _A : Dict = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class lowercase ( unittest.TestCase ): @cached_property def a__ ( self ) -> int: return ViTImageProcessor.from_pretrained("""facebook/vit-msn-small""" ) if is_vision_available() else None @slow def a__ ( self ) -> Optional[int]: torch.manual_seed(2 ) _A : Tuple = ViTMSNForImageClassification.from_pretrained("""facebook/vit-msn-small""" ).to(_a ) _A : Tuple = self.default_image_processor _A : Dict = prepare_img() _A : Optional[Any] = image_processor(images=_a , return_tensors="""pt""" ).to(_a ) # forward pass with torch.no_grad(): _A : int = model(**_a ) # verify the logits _A : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , _a ) _A : Optional[int] = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1e-4 ) )
343
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase : Optional[Any] = logging.get_logger(__name__) _lowerCamelCase : List[Any] = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } _lowerCamelCase : str = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } _lowerCamelCase : Dict = {'''facebook/blenderbot-3B''': 128} class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : str = ["input_ids", "attention_mask"] _UpperCAmelCase : Dict = BlenderbotTokenizer def __init__( self : List[Any] , lowercase : int=None , lowercase : Any=None , lowercase : Tuple=None , lowercase : Dict="replace" , lowercase : Optional[int]="<s>" , lowercase : Optional[Any]="</s>" , lowercase : Any="</s>" , lowercase : List[Any]="<s>" , lowercase : List[Any]="<unk>" , lowercase : Any="<pad>" , lowercase : List[str]="<mask>" , lowercase : List[str]=False , lowercase : Optional[int]=True , **lowercase : Optional[Any] , ): '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) _snake_case = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , lowercase ) != add_prefix_space: _snake_case = getattr(lowercase , pre_tok_state.pop('type' ) ) _snake_case = add_prefix_space _snake_case = pre_tok_class(**lowercase ) _snake_case = add_prefix_space _snake_case = 'post_processor' _snake_case = getattr(self.backend_tokenizer , lowercase , lowercase ) if tokenizer_component_instance: _snake_case = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case = tuple(state['sep'] ) if "cls" in state: _snake_case = tuple(state['cls'] ) _snake_case = False if state.get('add_prefix_space' , lowercase ) != add_prefix_space: _snake_case = add_prefix_space _snake_case = True if state.get('trim_offsets' , lowercase ) != trim_offsets: _snake_case = trim_offsets _snake_case = True if changes_to_apply: _snake_case = getattr(lowercase , state.pop('type' ) ) _snake_case = component_class(**lowercase ) setattr(self.backend_tokenizer , lowercase , lowercase ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def A ( self : Any ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def A ( self : Optional[Any] , lowercase : int ): '''simple docstring''' _snake_case = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase ) if isinstance(lowercase , lowercase ) else value _snake_case = value def A ( self : int , *lowercase : Any , **lowercase : Optional[Any] ): '''simple docstring''' _snake_case = kwargs.get('is_split_into_words' , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase , **lowercase ) def A ( self : Dict , *lowercase : List[Any] , **lowercase : List[str] ): '''simple docstring''' _snake_case = kwargs.get('is_split_into_words' , lowercase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase , **lowercase ) def A ( self : List[Any] , lowercase : str , lowercase : Optional[str] = None ): '''simple docstring''' _snake_case = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase ) def A ( self : Optional[Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A ( self : List[Any] , lowercase : List[int] , lowercase : Optional[List[int]] = None ): '''simple docstring''' return token_ids_a + [self.eos_token_id] def A ( self : Tuple , lowercase : "Conversation" ): '''simple docstring''' _snake_case = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(' ' + text ) else: # Generated responses should contain them already. inputs.append(lowercase ) _snake_case = ' '.join(lowercase ) _snake_case = self.encode(lowercase ) if len(lowercase ) > self.model_max_length: _snake_case = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
282
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class SCREAMING_SNAKE_CASE__ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] , lowercase : int = 16 , lowercase : int = 88 , lowercase : Optional[int] = None , lowercase : int = 1 , lowercase : float = 0.0 , lowercase : int = 32 , lowercase : Optional[int] = None , lowercase : bool = False , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : str = "geglu" , lowercase : Optional[int] = None , ): '''simple docstring''' super().__init__() _snake_case = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowercase , attention_head_dim=lowercase , in_channels=lowercase , num_layers=lowercase , dropout=lowercase , norm_num_groups=lowercase , cross_attention_dim=lowercase , attention_bias=lowercase , sample_size=lowercase , num_vector_embeds=lowercase , activation_fn=lowercase , num_embeds_ada_norm=lowercase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference _snake_case = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` _snake_case = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` _snake_case = [1, 0] def A ( self : Optional[int] , lowercase : Optional[int] , lowercase : List[Any] , lowercase : List[str]=None , lowercase : Tuple=None , lowercase : Dict=None , lowercase : bool = True , ): '''simple docstring''' _snake_case = hidden_states _snake_case = [] _snake_case = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens _snake_case = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] _snake_case = self.transformer_index_for_condition[i] _snake_case = self.transformers[transformer_index]( lowercase , encoder_hidden_states=lowercase , timestep=lowercase , cross_attention_kwargs=lowercase , return_dict=lowercase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] _snake_case = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) _snake_case = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowercase )
282
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } __UpperCamelCase = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "token_type_ids"] SCREAMING_SNAKE_CASE_ = FNetTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, lowerCAmelCase__=True, lowerCAmelCase__=True, lowerCAmelCase__="<unk>", lowerCAmelCase__="[SEP]", lowerCAmelCase__="<pad>", lowerCAmelCase__="[CLS]", lowerCAmelCase__="[MASK]", **lowerCAmelCase__, ) -> int: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. snake_case_ = ( AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__, normalized=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token ) super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, do_lower_case=lowerCAmelCase__, remove_space=lowerCAmelCase__, keep_accents=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = do_lower_case snake_case_ = remove_space snake_case_ = keep_accents snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
364
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = {'''configuration_mmbt''': ['''MMBTConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = ['''MMBTForClassification''', '''MMBTModel''', '''ModalEmbeddings'''] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
312
0
from typing import Dict, List, Optional, Union import numpy as np from transformers.utils import is_vision_available from transformers.utils.generic import TensorType from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import logging if is_vision_available(): import PIL __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> List[List[ImageInput]]: """simple docstring""" if isinstance(_lowercase , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(_lowercase , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(_lowercase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class __lowerCamelCase (_a ): _lowercase = ["""pixel_values"""] def __init__( self: Optional[Any],A_: bool = True,A_: Dict[str, int] = None,A_: PILImageResampling = PILImageResampling.BILINEAR,A_: bool = True,A_: Dict[str, int] = None,A_: bool = True,A_: Union[int, float] = 1 / 255,A_: bool = True,A_: bool = True,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,**A_: Union[str, Any],): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = size if size is not None else {'shortest_edge': 256} __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) __UpperCamelCase = crop_size if crop_size is not None else {'height': 224, 'width': 224} __UpperCamelCase = get_size_dict(A_,param_name='crop_size' ) __UpperCamelCase = do_resize __UpperCamelCase = size __UpperCamelCase = do_center_crop __UpperCamelCase = crop_size __UpperCamelCase = resample __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = offset __UpperCamelCase = do_normalize __UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case_ ( self: Dict,A_: np.ndarray,A_: Dict[str, int],A_: PILImageResampling = PILImageResampling.BILINEAR,A_: Optional[Union[str, ChannelDimension]] = None,**A_: int,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) if "shortest_edge" in size: __UpperCamelCase = get_resize_output_image_size(A_,size['shortest_edge'],default_to_square=A_ ) elif "height" in size and "width" in size: __UpperCamelCase = (size['height'], size['width']) else: raise ValueError(F'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(A_,size=A_,resample=A_,data_format=A_,**A_ ) def snake_case_ ( self: Tuple,A_: np.ndarray,A_: Dict[str, int],A_: Optional[Union[str, ChannelDimension]] = None,**A_: Tuple,): '''simple docstring''' __UpperCamelCase = get_size_dict(A_ ) if "height" not in size or "width" not in size: raise ValueError(F'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(A_,size=(size['height'], size['width']),data_format=A_,**A_ ) def snake_case_ ( self: List[str],A_: np.ndarray,A_: Union[int, float],A_: bool = True,A_: Optional[Union[str, ChannelDimension]] = None,**A_: Optional[Any],): '''simple docstring''' __UpperCamelCase = image.astype(np.floataa ) if offset: __UpperCamelCase = image - (scale / 2) return rescale(A_,scale=A_,data_format=A_,**A_ ) def snake_case_ ( self: List[str],A_: np.ndarray,A_: Union[float, List[float]],A_: Union[float, List[float]],A_: Optional[Union[str, ChannelDimension]] = None,**A_: List[str],): '''simple docstring''' return normalize(A_,mean=A_,std=A_,data_format=A_,**A_ ) def snake_case_ ( self: Union[str, Any],A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: Dict[str, int] = None,A_: bool = None,A_: float = None,A_: bool = None,A_: bool = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[ChannelDimension] = ChannelDimension.FIRST,): '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) if offset and not do_rescale: raise ValueError('For offset, do_rescale must also be set to True.' ) # All transformations expect numpy arrays. __UpperCamelCase = to_numpy_array(A_ ) if do_resize: __UpperCamelCase = self.resize(image=A_,size=A_,resample=A_ ) if do_center_crop: __UpperCamelCase = self.center_crop(A_,size=A_ ) if do_rescale: __UpperCamelCase = self.rescale(image=A_,scale=A_,offset=A_ ) if do_normalize: __UpperCamelCase = self.normalize(image=A_,mean=A_,std=A_ ) __UpperCamelCase = to_channel_dimension_format(A_,A_ ) return image def snake_case_ ( self: List[str],A_: ImageInput,A_: bool = None,A_: Dict[str, int] = None,A_: PILImageResampling = None,A_: bool = None,A_: Dict[str, int] = None,A_: bool = None,A_: float = None,A_: bool = None,A_: bool = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[float, List[float]]] = None,A_: Optional[Union[str, TensorType]] = None,A_: ChannelDimension = ChannelDimension.FIRST,**A_: List[Any],): '''simple docstring''' __UpperCamelCase = do_resize if do_resize is not None else self.do_resize __UpperCamelCase = resample if resample is not None else self.resample __UpperCamelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = offset if offset is not None else self.offset __UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCamelCase = image_mean if image_mean is not None else self.image_mean __UpperCamelCase = image_std if image_std is not None else self.image_std __UpperCamelCase = size if size is not None else self.size __UpperCamelCase = get_size_dict(A_,default_to_square=A_ ) __UpperCamelCase = crop_size if crop_size is not None else self.crop_size __UpperCamelCase = get_size_dict(A_,param_name='crop_size' ) if not valid_images(A_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) __UpperCamelCase = make_batched(A_ ) __UpperCamelCase = [ [ self._preprocess_image( image=A_,do_resize=A_,size=A_,resample=A_,do_center_crop=A_,crop_size=A_,do_rescale=A_,rescale_factor=A_,offset=A_,do_normalize=A_,image_mean=A_,image_std=A_,data_format=A_,) for img in video ] for video in videos ] __UpperCamelCase = {'pixel_values': videos} return BatchFeature(data=A_,tensor_type=A_ )
310
import torch from transformers import AutoModel class __lowerCamelCase (torch.nn.Module ): def __init__( self: Union[str, Any],A_: Tuple="sayef/fsner-bert-base-uncased" ): '''simple docstring''' super(A_,self ).__init__() __UpperCamelCase = AutoModel.from_pretrained(A_,return_dict=A_ ) __UpperCamelCase = torch.nn.CosineSimilarity(3,1E-08 ) __UpperCamelCase = torch.nn.Softmax(dim=1 ) def snake_case_ ( self: Tuple,**A_: Union[str, Any] ): '''simple docstring''' return self.bert(**A_ ).last_hidden_state def snake_case_ ( self: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' return token_embeddings.sum(2,keepdim=A_ ) def snake_case_ ( self: List[str],A_: Dict,A_: Union[str, Any],A_: Union[str, Any]=1 ): '''simple docstring''' return self.softmax(T * self.cos(A_,A_ ) ) def snake_case_ ( self: Optional[int],A_: Union[str, Any],A_: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = W_supports['sizes'].tolist() __UpperCamelCase = W_supports['start_token_id'].item() __UpperCamelCase = W_supports['end_token_id'].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = self.BERT(**A_ ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = W_supports['input_ids'] == start_token_id __UpperCamelCase = W_supports['input_ids'] == end_token_id for i, size in enumerate(A_ ): if i == 0: __UpperCamelCase = 0 else: __UpperCamelCase = support_sizes[i - 1] __UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]] __UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]] __UpperCamelCase = torch.matmul(q[i],s_start.T ).sum(1 ).softmax(0 ) __UpperCamelCase = torch.matmul(q[i],s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: __UpperCamelCase = torch.vstack((p_starts, p_start) ) __UpperCamelCase = torch.vstack((p_ends, p_end) ) else: __UpperCamelCase = p_start __UpperCamelCase = p_end return p_starts, p_ends
310
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
230
"""simple docstring""" import baseaa def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> bytes: return baseaa.aaaencode(string.encode("utf-8" ) ) def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> str: return baseaa.aaadecode(lowercase_ ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
230
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a_ = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _SCREAMING_SNAKE_CASE : str = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def UpperCAmelCase_ ( _A ): '''simple docstring''' if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' return max(metric_fn(_A , _A ) for gt in ground_truths ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE__ = pd.read_csv(_A , sep='''\t''' , header=_A ) for answer_list in data[1]: SCREAMING_SNAKE_CASE__ = ast.literal_eval(_A ) answers.append(_A ) else: SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [[reference] for reference in references] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for prediction, ground_truths in zip(_A , _A ): total += 1 em += metric_max_over_ground_truths(_A , _A , _A ) fa += metric_max_over_ground_truths(_A , _A , _A ) SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total SCREAMING_SNAKE_CASE__ = 1_0_0.0 * fa / total logger.info(F'''F1: {fa:.2f}''' ) logger.info(F'''EM: {em:.2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = args.k SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = [line.strip() for line in open(_A , '''r''' ).readlines()] SCREAMING_SNAKE_CASE__ = SCREAMING_SNAKE_CASE__ = 0 for hypo, reference in zip(_A , _A ): SCREAMING_SNAKE_CASE__ = set(hypo.split('''\t''' )[:k] ) SCREAMING_SNAKE_CASE__ = set(reference.split('''\t''' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE__ = 1_0_0.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''' ) def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' def strip_title(_A ): if title.startswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[1:] if title.endswith('''"''' ): SCREAMING_SNAKE_CASE__ = title[:-1] return title SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.rag.question_encoder(_A ) SCREAMING_SNAKE_CASE__ = question_enc_outputs[0] SCREAMING_SNAKE_CASE__ = rag_model.retriever( _A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE__ = [] for docs in all_docs: SCREAMING_SNAKE_CASE__ = [strip_title(_A ) for title in docs['''title''']] provenance_strings.append('''\t'''.join(_A ) ) return provenance_strings def UpperCAmelCase_ ( _A , _A , _A ): '''simple docstring''' with torch.no_grad(): SCREAMING_SNAKE_CASE__ = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( _A , return_tensors='''pt''' , padding=_A , truncation=_A ) SCREAMING_SNAKE_CASE__ = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE__ = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE__ = rag_model.generate( # rag_model overwrites generate _A , attention_mask=_A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=_A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE__ = rag_model.retriever.generator_tokenizer.batch_decode(_A , skip_special_tokens=_A ) if args.print_predictions: for q, a in zip(_A , _A ): logger.info('''Q: {} - A: {}'''.format(_A , _A ) ) return answers def UpperCAmelCase_ ( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=_A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=_A , choices=['''exact''', '''compressed''', '''legacy'''] , type=_A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=_A , type=_A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=_A , help='''Number of retrieved docs''' ) parser.add_argument( '''--model_name_or_path''' , default=_A , type=_A , required=_A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=_A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=_A , help='''k for the precision@k calculation''' ) parser.add_argument( '''--evaluation_set''' , default=_A , type=_A , required=_A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=_A , type=_A , required=_A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=_A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=_A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=_A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=_A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=_A , help='''Min length of the generated answers''' ) parser.add_argument('''--max_length''' , default=50 , type=_A , help='''Max length of the generated answers''' ) parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) SCREAMING_SNAKE_CASE__ = parser.parse_args() SCREAMING_SNAKE_CASE__ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) return args def UpperCAmelCase_ ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {} if args.model_type is None: SCREAMING_SNAKE_CASE__ = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE__ = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE__ = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE__ = args.index_path else: SCREAMING_SNAKE_CASE__ = BartForConditionalGeneration SCREAMING_SNAKE_CASE__ = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , _A ) SCREAMING_SNAKE_CASE__ = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE__ = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) ) score_fn(_A , args.predictions_path , args.gold_data_path ) continue logger.info('''***** Running evaluation for {} *****'''.format(_A ) ) logger.info(''' Batch size = %d''' , args.eval_batch_size ) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) ) if args.model_type.startswith('''rag''' ): SCREAMING_SNAKE_CASE__ = RagRetriever.from_pretrained(_A , **_A ) SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , retriever=_A , **_A ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE__ = model_class.from_pretrained(_A , **_A ) model.to(args.device ) with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file: SCREAMING_SNAKE_CASE__ = [] for line in tqdm(_A ): questions.append(line.strip() ) if len(_A ) == args.eval_batch_size: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) + '''\n''' ) preds_file.flush() SCREAMING_SNAKE_CASE__ = [] if len(_A ) > 0: SCREAMING_SNAKE_CASE__ = evaluate_batch_fn(_A , _A , _A ) preds_file.write('''\n'''.join(_A ) ) preds_file.flush() score_fn(_A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE : int = get_args() main(args)
314
0
'''simple docstring''' import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets lowercase__ = '''\ @inproceedings{snover-etal-2006-study, title = "A Study of Translation Edit Rate with Targeted Human Annotation", author = "Snover, Matthew and Dorr, Bonnie and Schwartz, Rich and Micciulla, Linnea and Makhoul, John", booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers", month = aug # " 8-12", year = "2006", address = "Cambridge, Massachusetts, USA", publisher = "Association for Machine Translation in the Americas", url = "https://aclanthology.org/2006.amta-papers.25", pages = "223--231", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' lowercase__ = '''\ TER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a hypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu (https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found here: https://github.com/jhclark/tercom. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information. ''' lowercase__ = ''' Produces TER scores alongside the number of edits and reference length. Args: predictions (list of str): The system stream (a sequence of segments). references (list of list of str): A list of one or more reference streams (each a sequence of segments). normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`. support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters, as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana. Only applies if `normalized = True`. Defaults to `False`. case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`. Returns: \'score\' (float): TER score (num_edits / sum_ref_lengths * 100) \'num_edits\' (int): The cumulative number of edits \'ref_length\' (float): The cumulative average reference length Examples: Example 1: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0} Example 2: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... case_sensitive=True) >>> print(results) {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0} Example 3: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... normalized=True, ... case_sensitive=True) >>> print(results) {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5} Example 4: >>> predictions = ["does this sentence match??", ... "what about this sentence?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0} Example 5: >>> predictions = ["does this sentence match??", ... "what about this sentence?", ... "What did the TER metric user say to the developer?"] >>> references = [["does this sentence match", "does this sentence match!?!"], ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"], ... ["Your jokes are...", "...TERrible"]] >>> ter = datasets.load_metric("ter") >>> results = ter.compute(predictions=predictions, ... references=references, ... ignore_punct=True, ... case_sensitive=False) >>> print(results) {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE (datasets.Metric ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' if version.parse(scb.__version__) < version.parse('1.4.12'): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.') return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='http://www.cs.umd.edu/~snover/tercom/' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Sequence(datasets.Value('string' , id='sequence') , id='references'), }) , codebase_urls=['https://github.com/mjpost/sacreBLEU#ter'] , reference_urls=[ 'https://github.com/jhclark/tercom', ] , ) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = False , ): '''simple docstring''' __A : Union[str, Any] = len(references[0]) if any(len(_UpperCAmelCase) != references_per_prediction for refs in references): raise ValueError('Sacrebleu requires the same number of references for each prediction') __A : Optional[Any] = [[refs[i] for refs in references] for i in range(_UpperCAmelCase)] __A : List[str] = TER( normalized=_UpperCAmelCase , no_punct=_UpperCAmelCase , asian_support=_UpperCAmelCase , case_sensitive=_UpperCAmelCase , ) __A : Union[str, Any] = sb_ter.corpus_score(_UpperCAmelCase , _UpperCAmelCase) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
369
'''simple docstring''' from math import pi, sqrt, tan def _lowerCAmelCase ( __snake_case : float ) -> float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def _lowerCAmelCase ( __snake_case : float ) -> float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def _lowerCAmelCase ( __snake_case : float ) -> float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) __A : Union[str, Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(__snake_case , 2 ) * torus_radius * tube_radius def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def _lowerCAmelCase ( __snake_case : float ) -> float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) __A : int = (sidea + sidea + sidea) / 2 __A : Tuple = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def _lowerCAmelCase ( __snake_case : float , __snake_case : float , __snake_case : float ) -> float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def _lowerCAmelCase ( __snake_case : float ) -> float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def _lowerCAmelCase ( __snake_case : float , __snake_case : float ) -> float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def _lowerCAmelCase ( __snake_case : int , __snake_case : float ) -> float: if not isinstance(__snake_case , __snake_case ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(f"""Rectangle: {area_rectangle(10, 20) = }""") print(f"""Square: {area_square(10) = }""") print(f"""Triangle: {area_triangle(10, 10) = }""") print(f"""Triangle: {area_triangle_three_sides(5, 12, 13) = }""") print(f"""Parallelogram: {area_parallelogram(10, 20) = }""") print(f"""Rhombus: {area_rhombus(10, 20) = }""") print(f"""Trapezium: {area_trapezium(10, 20, 30) = }""") print(f"""Circle: {area_circle(20) = }""") print(f"""Ellipse: {area_ellipse(10, 20) = }""") print('''\nSurface Areas of various geometric shapes: \n''') print(f"""Cube: {surface_area_cube(20) = }""") print(f"""Cuboid: {surface_area_cuboid(10, 20, 30) = }""") print(f"""Sphere: {surface_area_sphere(20) = }""") print(f"""Hemisphere: {surface_area_hemisphere(20) = }""") print(f"""Cone: {surface_area_cone(10, 20) = }""") print(f"""Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }""") print(f"""Cylinder: {surface_area_cylinder(10, 20) = }""") print(f"""Torus: {surface_area_torus(20, 10) = }""") print(f"""Equilateral Triangle: {area_reg_polygon(3, 10) = }""") print(f"""Square: {area_reg_polygon(4, 10) = }""") print(f"""Reqular Pentagon: {area_reg_polygon(5, 10) = }""")
190
0
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue_model_parallelism.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """roberta-large""", """instance_type""": """ml.p3dn.24xlarge""", """results""": {"""train_runtime""": 1600, """eval_accuracy""": 0.3, """eval_loss""": 1.2}, }, ] ) class UpperCamelCase ( unittest.TestCase ): def _lowercase (self : Tuple) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='utf-8' , check=lowerCamelCase_ , ) assert hasattr(self , 'env') def _lowercase (self : Any , _A : List[str]) -> str: __snake_case : List[str] = { 'enabled': True, 'processes_per_host': 8, } __snake_case : Tuple = { 'enabled': True, 'parameters': { 'microbatches': 4, 'placement_strategy': 'spread', 'pipeline': 'interleaved', 'optimize': 'speed', 'partitions': 4, 'ddp': True, }, } __snake_case : Optional[Any] = {'smdistributed': {'modelparallel': smp_options}, 'mpi': mpi_options} __snake_case : Union[str, Any] = 'trainer' if self.script == 'run_glue.py' else 'smtrainer' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=lowerCamelCase_ , instance_type=self.instance_type , debugger_hook_config=lowerCamelCase_ , hyperparameters={ **self.env.hyperparameters, 'model_name_or_path': self.model_name_or_path, 'max_steps': 5_00, } , metric_definitions=self.env.metric_definitions , distribution=lowerCamelCase_ , py_version='py36' , ) def _lowercase (self : List[str] , _A : List[Any]) -> Dict: TrainingJobAnalytics(lowerCamelCase_).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv") @parameterized.expand([(1,)]) def _lowercase (self : Union[str, Any] , _A : int) -> str: __snake_case : Optional[int] = self.create_estimator(lowerCamelCase_) # run training estimator.fit() # result dataframe __snake_case : int = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis __snake_case : Optional[Any] = list(result_metrics_df[result_metrics_df.metric_name == 'eval_accuracy']['value']) __snake_case : Any = list(result_metrics_df[result_metrics_df.metric_name == 'eval_loss']['value']) # get train time from SageMaker job, this includes starting, preprocessing, stopping __snake_case : int = ( Session().describe_training_job(estimator.latest_training_job.name).get('TrainingTimeInSeconds' , 99_99_99) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['eval_accuracy'] for t in eval_accuracy) assert all(t <= self.results['eval_loss'] for t in eval_loss) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , 'w') as outfile: json.dump({'train_time': train_runtime, 'eval_accuracy': eval_accuracy, 'eval_loss': eval_loss} , lowerCamelCase_)
172
from __future__ import annotations import copy import inspect import json import math import os import tempfile import unittest from importlib import import_module import numpy as np from transformers import ViTMAEConfig from transformers.file_utils import cached_property, is_tf_available, is_vision_available from transformers.testing_utils import require_tf, require_vision, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTMAEForPreTraining, TFViTMAEModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=13 , lowerCamelCase_ : str=30 , lowerCamelCase_ : List[str]=2 , lowerCamelCase_ : Union[str, Any]=3 , lowerCamelCase_ : Any=True , lowerCamelCase_ : int=True , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[Any]=2 , lowerCamelCase_ : int=4 , lowerCamelCase_ : str=37 , lowerCamelCase_ : Optional[Any]="gelu" , lowerCamelCase_ : Optional[int]=0.1 , lowerCamelCase_ : List[Any]=0.1 , lowerCamelCase_ : List[Any]=10 , lowerCamelCase_ : List[Any]=0.0_2 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : List[Any]=0.6 , lowerCamelCase_ : Optional[Any]=None , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = mask_ratio UpperCamelCase = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , decoder_hidden_size=self.hidden_size , decoder_num_hidden_layers=self.num_hidden_layers , decoder_num_attention_heads=self.num_attention_heads , decoder_intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowerCamelCase_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Any , lowerCamelCase_ : Union[str, Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModel(config=lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self : List[str] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : str ): """simple docstring""" UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) # expected sequence length = num_patches UpperCamelCase = (self.image_size // self.patch_size) ** 2 UpperCamelCase = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFViTMAEForPreTraining(lowerCamelCase_ ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(lowerCamelCase_ , training=lowerCamelCase_ ) UpperCamelCase = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() ((UpperCamelCase) , (UpperCamelCase) , (UpperCamelCase)) = config_and_inputs UpperCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): __lowerCAmelCase = (TFViTMAEModel, TFViTMAEForPreTraining) if is_tf_available() else () __lowerCAmelCase = {"""feature-extraction""": TFViTMAEModel} if is_tf_available() else {} __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFViTMAEModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=lowerCamelCase_ , has_text_modality=lowerCamelCase_ , hidden_size=37 ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def lowerCamelCase_ ( self : str ): """simple docstring""" pass def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , tf.keras.layers.Layer ) ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = copy.deepcopy(self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = outputs_dict[0].numpy() UpperCamelCase = outputs_keywords[0].numpy() self.assertLess(np.sum(np.abs(output_dict - output_keywords ) ) , 1E-6 ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) def prepare_numpy_arrays(lowerCamelCase_ : List[Any] ): UpperCamelCase = {} for k, v in inputs_dict.items(): if tf.is_tensor(lowerCamelCase_ ): UpperCamelCase = v.numpy() else: UpperCamelCase = np.array(lowerCamelCase_ ) return inputs_np_dict for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = prepare_numpy_arrays(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = int((tf_model.config.image_size // tf_model.config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.constant(lowerCamelCase_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument UpperCamelCase = tf_noise super().check_pt_tf_models(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = { module_member for model_class in self.all_model_classes for module in (import_module(model_class.__module__ ),) for module_member_name in dir(lowerCamelCase_ ) if module_member_name.endswith("""MainLayer""" ) # This condition is required, since `modeling_tf_clip.py` has 3 classes whose names end with `MainLayer`. and module_member_name[: -len("""MainLayer""" )] == model_class.__name__[: -len("""Model""" )] for module_member in (getattr(lowerCamelCase_ , lowerCamelCase_ ),) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) and tf.keras.layers.Layer in module_member.__bases__ and getattr(lowerCamelCase_ , """_keras_serializable""" , lowerCamelCase_ ) } UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) UpperCamelCase = tf.convert_to_tensor(lowerCamelCase_ ) inputs_dict.update({"""noise""": noise} ) for main_layer_class in tf_main_layer_classes: UpperCamelCase = main_layer_class(lowerCamelCase_ ) UpperCamelCase = { name: tf.keras.Input(tensor.shape[1:] , dtype=tensor.dtype ) for name, tensor in inputs_dict.items() } UpperCamelCase = tf.keras.Model(lowerCamelCase_ , outputs=main_layer(lowerCamelCase_ ) ) UpperCamelCase = model(lowerCamelCase_ ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(lowerCamelCase_ , """keras_model.h5""" ) model.save(lowerCamelCase_ ) UpperCamelCase = tf.keras.models.load_model( lowerCamelCase_ , custom_objects={main_layer_class.__name__: main_layer_class} ) assert isinstance(lowerCamelCase_ , tf.keras.Model ) UpperCamelCase = model(lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @slow def lowerCamelCase_ ( self : Dict ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = outputs.last_hidden_state.numpy() UpperCamelCase = 0 else: UpperCamelCase = outputs.logits.numpy() UpperCamelCase = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCamelCase_ , saved_model=lowerCamelCase_ ) UpperCamelCase = model_class.from_pretrained(lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) if model_class.__name__ == "TFViTMAEModel": UpperCamelCase = after_outputs["""last_hidden_state"""].numpy() UpperCamelCase = 0 else: UpperCamelCase = after_outputs["""logits"""].numpy() UpperCamelCase = 0 UpperCamelCase = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(lowerCamelCase_ , 1E-5 ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase = int((config.image_size // config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) for model_class in self.all_model_classes: UpperCamelCase = model_class(lowerCamelCase_ ) UpperCamelCase = self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) UpperCamelCase = model(lowerCamelCase_ , noise=lowerCamelCase_ ) UpperCamelCase = model.get_config() # make sure that returned config is jsonifiable, which is required by keras json.dumps(lowerCamelCase_ ) UpperCamelCase = model_class.from_config(model.get_config() ) # make sure it also accepts a normal config UpperCamelCase = model_class.from_config(model.config ) UpperCamelCase = new_model(lowerCamelCase_ ) # Build model new_model.set_weights(model.get_weights() ) UpperCamelCase = new_model(lowerCamelCase_ , noise=lowerCamelCase_ ) self.assert_outputs_same(lowerCamelCase_ , lowerCamelCase_ ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def lowerCamelCase_ ( self : int ): """simple docstring""" pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" pass @slow def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" UpperCamelCase = TFViTMAEModel.from_pretrained("""google/vit-base-patch16-224""" ) self.assertIsNotNone(lowerCamelCase_ ) def lowercase( ) -> int: '''simple docstring''' UpperCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): @cached_property def lowerCamelCase_ ( self : Dict ): """simple docstring""" return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def lowerCamelCase_ ( self : List[str] ): """simple docstring""" np.random.seed(2 ) UpperCamelCase = TFViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=lowerCamelCase_ , return_tensors="""tf""" ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) UpperCamelCase = ViTMAEConfig() UpperCamelCase = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) UpperCamelCase = np.random.uniform(size=(1, num_patches) ) # forward pass UpperCamelCase = model(**lowerCamelCase_ , noise=lowerCamelCase_ ) # verify the logits UpperCamelCase = tf.convert_to_tensor([1, 196, 768] ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) UpperCamelCase = tf.convert_to_tensor( [[-0.0_5_4_8, -1.7_0_2_3, -0.9_3_2_5], [0.3_7_2_1, -0.5_6_7_0, -0.2_2_3_3], [0.8_2_3_5, -1.3_8_7_8, -0.3_5_2_4]] ) tf.debugging.assert_near(outputs.logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 )
343
0
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase__ : str = 16 lowercase__ : Any = 32 def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase = 16) -> Dict: a = AutoTokenizer.from_pretrained("bert-base-cased") a = load_dataset("glue" , "mrpc") def tokenize_function(__UpperCamelCase): # max_length=None => use the model max length (it's actually the default) a = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=__UpperCamelCase , max_length=__UpperCamelCase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): a = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a = tokenized_datasets.rename_column("label" , "labels") def collate_fn(__UpperCamelCase): # On TPU it's best to pad everything to the same length or training will be very slow. a = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": a = 16 elif accelerator.mixed_precision != "no": a = 8 else: a = None return tokenizer.pad( __UpperCamelCase , padding="longest" , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors="pt" , ) # Instantiate dataloaders. a = DataLoader( tokenized_datasets["train"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase) a = DataLoader( tokenized_datasets["validation"] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase__ : Tuple = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase , __UpperCamelCase) -> Optional[Any]: # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , __UpperCamelCase) == "1": a = 2 # New Code # a = int(args.gradient_accumulation_steps) a = int(args.local_sgd_steps) # Initialize accelerator a = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError("LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)") # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a = config['lr'] a = int(config["num_epochs"]) a = int(config["seed"]) a = int(config["batch_size"]) a = evaluate.load("glue" , "mrpc") set_seed(__UpperCamelCase) a = get_dataloaders(__UpperCamelCase , __UpperCamelCase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=__UpperCamelCase) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). a = model.to(accelerator.device) # Instantiate optimizer a = AdamW(params=model.parameters() , lr=__UpperCamelCase) # Instantiate scheduler a = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase) # Now we train the model for epoch in range(__UpperCamelCase): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None) as local_sgd: for step, batch in enumerate(__UpperCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase): a = model(**__UpperCamelCase) a = output.loss accelerator.backward(__UpperCamelCase) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): a = model(**__UpperCamelCase) a = outputs.logits.argmax(dim=-1) a = accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __UpperCamelCase) def SCREAMING_SNAKE_CASE ( ) -> Dict: a = argparse.ArgumentParser(description="Simple example of training script.") parser.add_argument( "--mixed_precision" , type=__UpperCamelCase , default=__UpperCamelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=__UpperCamelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument( "--local_sgd_steps" , type=__UpperCamelCase , default=8 , help="Number of local SGD steps or None to disable local SGD") parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU.") a = parser.parse_args() a = {'lr': 2e-5, 'num_epochs': 3, 'seed': 42, 'batch_size': 16} training_function(__UpperCamelCase , __UpperCamelCase) if __name__ == "__main__": main()
356
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase__ : Optional[Any] = logging.get_logger(__name__) lowercase__ : str = { "microsoft/table-transformer-detection": ( "https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json" ), } class a__ ( UpperCamelCase__ ): a : Optional[int] = """table-transformer""" a : Tuple = ["""past_key_values"""] a : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , A=True , A=None , A=3 , A=100 , A=6 , A=2048 , A=8 , A=6 , A=2048 , A=8 , A=0.0 , A=0.0 , A=True , A="relu" , A=256 , A=0.1 , A=0.0 , A=0.0 , A=0.0_2 , A=1.0 , A=False , A="sine" , A="resnet50" , A=True , A=False , A=1 , A=5 , A=2 , A=1 , A=1 , A=5 , A=2 , A=0.1 , **A , ) -> List[str]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) a = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(A , A ): a = backbone_config.get("model_type" ) a = CONFIG_MAPPING[backbone_model_type] a = config_class.from_dict(A ) # set timm attributes to None a , a , a = None, None, None a = use_timm_backbone a = backbone_config a = num_channels a = num_queries a = d_model a = encoder_ffn_dim a = encoder_layers a = encoder_attention_heads a = decoder_ffn_dim a = decoder_layers a = decoder_attention_heads a = dropout a = attention_dropout a = activation_dropout a = activation_function a = init_std a = init_xavier_std a = encoder_layerdrop a = decoder_layerdrop a = encoder_layers a = auxiliary_loss a = position_embedding_type a = backbone a = use_pretrained_backbone a = dilation # Hungarian matcher a = class_cost a = bbox_cost a = giou_cost # Loss coefficients a = mask_loss_coefficient a = dice_loss_coefficient a = bbox_loss_coefficient a = giou_loss_coefficient a = eos_coefficient super().__init__(is_encoder_decoder=A , **A ) @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.encoder_attention_heads @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self.d_model class a__ ( UpperCamelCase__ ): a : Any = version.parse("""1.11""" ) @property def lowerCAmelCase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def lowerCAmelCase_ ( self ) -> float: '''simple docstring''' return 1e-5 @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return 12
180
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging _a = logging.get_logger(__name__) _a = { 'Salesforce/codegen-350M-nl': 'https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json', 'Salesforce/codegen-350M-multi': 'https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json', 'Salesforce/codegen-350M-mono': 'https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json', 'Salesforce/codegen-2B-nl': 'https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json', 'Salesforce/codegen-2B-multi': 'https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json', 'Salesforce/codegen-2B-mono': 'https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json', 'Salesforce/codegen-6B-nl': 'https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json', 'Salesforce/codegen-6B-multi': 'https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json', 'Salesforce/codegen-6B-mono': 'https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json', 'Salesforce/codegen-16B-nl': 'https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json', 'Salesforce/codegen-16B-multi': 'https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json', 'Salesforce/codegen-16B-mono': 'https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json', } class A_ ( snake_case_ ): _lowercase : Optional[Any] = 'codegen' _lowercase : int = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Tuple , UpperCAmelCase : str=5_0_4_0_0 , UpperCAmelCase : str=2_0_4_8 , UpperCAmelCase : Optional[Any]=2_0_4_8 , UpperCAmelCase : Tuple=4_0_9_6 , UpperCAmelCase : str=2_8 , UpperCAmelCase : int=1_6 , UpperCAmelCase : int=6_4 , UpperCAmelCase : Union[str, Any]=None , UpperCAmelCase : Optional[Any]="gelu_new" , UpperCAmelCase : str=0.0 , UpperCAmelCase : int=0.0 , UpperCAmelCase : Dict=0.0 , UpperCAmelCase : str=1E-5 , UpperCAmelCase : Optional[int]=0.02 , UpperCAmelCase : int=True , UpperCAmelCase : Union[str, Any]=5_0_2_5_6 , UpperCAmelCase : Dict=5_0_2_5_6 , UpperCAmelCase : Dict=False , **UpperCAmelCase : Any , ) -> Tuple: __lowerCAmelCase: Optional[Any] = vocab_size __lowerCAmelCase: Optional[Any] = n_ctx __lowerCAmelCase: int = n_positions __lowerCAmelCase: Optional[Any] = n_embd __lowerCAmelCase: str = n_layer __lowerCAmelCase: Tuple = n_head __lowerCAmelCase: List[Any] = n_inner __lowerCAmelCase: int = rotary_dim __lowerCAmelCase: Tuple = activation_function __lowerCAmelCase: int = resid_pdrop __lowerCAmelCase: Dict = embd_pdrop __lowerCAmelCase: Dict = attn_pdrop __lowerCAmelCase: Optional[int] = layer_norm_epsilon __lowerCAmelCase: List[str] = initializer_range __lowerCAmelCase: Dict = use_cache __lowerCAmelCase: List[Any] = bos_token_id __lowerCAmelCase: Optional[Any] = eos_token_id super().__init__( bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , tie_word_embeddings=UpperCAmelCase , **UpperCAmelCase ) class A_ ( snake_case_ ): def __init__( self : Optional[int] , UpperCAmelCase : PretrainedConfig , UpperCAmelCase : str = "default" , UpperCAmelCase : List[PatchingSpec] = None , UpperCAmelCase : bool = False , ) -> Any: super().__init__(UpperCAmelCase , task=UpperCAmelCase , patching_specs=UpperCAmelCase , use_past=UpperCAmelCase ) if not getattr(self._config , 'pad_token_id' , UpperCAmelCase ): # TODO: how to do that better? __lowerCAmelCase: List[Any] = 0 @property def UpperCAmelCase ( self : Dict ) -> Any: __lowerCAmelCase: Any = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(UpperCAmelCase , direction='inputs' ) __lowerCAmelCase: List[str] = {0: 'batch', 1: 'past_sequence + sequence'} else: __lowerCAmelCase: str = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: return self._config.n_layer @property def UpperCAmelCase ( self : Optional[Any] ) -> Optional[int]: return self._config.n_head def UpperCAmelCase ( self : Optional[int] , UpperCAmelCase : PreTrainedTokenizer , UpperCAmelCase : int = -1 , UpperCAmelCase : int = -1 , UpperCAmelCase : bool = False , UpperCAmelCase : Optional[TensorType] = None , ) -> List[Any]: __lowerCAmelCase: Union[str, Any] = super(UpperCAmelCase , self ).generate_dummy_inputs( UpperCAmelCase , batch_size=UpperCAmelCase , seq_length=UpperCAmelCase , is_pair=UpperCAmelCase , framework=UpperCAmelCase ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase: str = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCAmelCase , __lowerCAmelCase: Optional[Any] = common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowerCAmelCase: Dict = seqlen + 2 __lowerCAmelCase: str = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase: Optional[Any] = [ (torch.zeros(UpperCAmelCase ), torch.zeros(UpperCAmelCase )) for _ in range(self.num_layers ) ] __lowerCAmelCase: Optional[int] = common_inputs['attention_mask'] if self.use_past: __lowerCAmelCase: Any = ordered_inputs['attention_mask'].dtype __lowerCAmelCase: List[Any] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(UpperCAmelCase , UpperCAmelCase , dtype=UpperCAmelCase )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase ( self : str ) -> int: return 1_3
322
import functools from typing import Any def __snake_case ( __UpperCamelCase : str ,__UpperCamelCase : list[str] ): """simple docstring""" if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or len(__UpperCamelCase ) == 0: raise ValueError("the string should be not empty string" ) if not isinstance(__UpperCamelCase ,__UpperCamelCase ) or not all( isinstance(__UpperCamelCase ,__UpperCamelCase ) and len(__UpperCamelCase ) > 0 for item in words ): raise ValueError("the words should be a list of non-empty strings" ) # Build trie A_ = {} A_ = "WORD_KEEPER" for word in words: A_ = trie for c in word: if c not in trie_node: A_ = {} A_ = trie_node[c] A_ = True A_ = len(__UpperCamelCase ) # Dynamic programming method @functools.cache def is_breakable(__UpperCamelCase : int ) -> bool: if index == len_string: return True A_ = trie for i in range(__UpperCamelCase ,__UpperCamelCase ): A_ = trie_node.get(string[i] ,__UpperCamelCase ) if trie_node is None: return False if trie_node.get(__UpperCamelCase ,__UpperCamelCase ) and is_breakable(i + 1 ): return True return False return is_breakable(0 ) if __name__ == "__main__": import doctest doctest.testmod()
312
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowercase__ = None lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowercase__ = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowercase__ = { """google/rembert""": 256, } lowercase__ = """▁""" class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : List[Any] = VOCAB_FILES_NAMES a_ : Dict = PRETRAINED_VOCAB_FILES_MAP a_ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[str] = RemBertTokenizer def __init__( self : Optional[int] , a_ : Union[str, Any]=None , a_ : Any=None , a_ : Dict=True , a_ : List[Any]=True , a_ : List[Any]=False , a_ : int="[CLS]" , a_ : Any="[SEP]" , a_ : str="<unk>" , a_ : Dict="[SEP]" , a_ : Tuple="<pad>" , a_ : Optional[Any]="[CLS]" , a_ : List[str]="[MASK]" , **a_ : Optional[Any] , ): # Mask token behave like a normal word, i.e. include the space before it lowerCAmelCase_ : List[str] = AddedToken(a_ , lstrip=a_ , rstrip=a_ ) if isinstance(a_ , a_ ) else mask_token super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , remove_space=a_ , keep_accents=a_ , bos_token=a_ , eos_token=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , **a_ , ) lowerCAmelCase_ : str = do_lower_case lowerCAmelCase_ : str = remove_space lowerCAmelCase_ : Any = keep_accents lowerCAmelCase_ : Dict = vocab_file lowerCAmelCase_ : int = False if not self.vocab_file else True def lowerCamelCase ( self : Tuple , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Optional[Any] = [self.sep_token_id] lowerCAmelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCamelCase ( self : str , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1] def lowerCamelCase ( self : Any , a_ : List[int] , a_ : Optional[List[int]] = None ): lowerCAmelCase_ : Dict = [self.sep_token_id] lowerCAmelCase_ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase ( self : Optional[int] , a_ : str , a_ : Optional[str] = None ): if not os.path.isdir(a_ ): logger.error("Vocabulary path ({}) should be a directory".format(a_ ) ) return lowerCAmelCase_ : List[Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) return (out_vocab_file,)
161
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : Any = """dandelin/vilt-b32-finetuned-vqa""" a_ : List[str] = ( """This is a tool that answers a question about an image. It takes an input named `image` which should be the """ """image containing the information, as well as a `question` which should be the question in English. It """ """returns a text that is the answer to the question.""" ) a_ : Dict = """image_qa""" a_ : Tuple = AutoProcessor a_ : Optional[int] = AutoModelForVisualQuestionAnswering a_ : Tuple = ["""image""", """text"""] a_ : Optional[int] = ["""text"""] def __init__( self : Dict , *a_ : List[Any] , **a_ : Tuple ): requires_backends(self , ["vision"] ) super().__init__(*a_ , **a_ ) def lowerCamelCase ( self : int , a_ : "Image" , a_ : str ): return self.pre_processor(a_ , a_ , return_tensors="pt" ) def lowerCamelCase ( self : List[Any] , a_ : Optional[int] ): with torch.no_grad(): return self.model(**a_ ).logits def lowerCamelCase ( self : List[Any] , a_ : Optional[Any] ): lowerCAmelCase_ : List[str] = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
161
1
import importlib import inspect import json import os import re import shutil import sys from pathlib import Path from typing import Dict, Optional, Union from urllib import request from huggingface_hub import HfFolder, cached_download, hf_hub_download, model_info from packaging import version from .. import __version__ from . import DIFFUSERS_DYNAMIC_MODULE_NAME, HF_MODULES_CACHE, logging A__ = ( '''https://raw.githubusercontent.com/huggingface/diffusers/{revision}/examples/community/{pipeline}.py''' ) A__ = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( ) -> Union[str, Any]: """simple docstring""" snake_case__ : List[str] = '''https://pypi.org/pypi/diffusers/json''' snake_case__ : str = json.loads(request.urlopen(__lowerCAmelCase ).read() )['''releases'''].keys() return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : version.Version(__lowerCAmelCase ) ) def _lowerCAmelCase ( ) -> Optional[int]: """simple docstring""" if HF_MODULES_CACHE in sys.path: return sys.path.append(__lowerCAmelCase ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) snake_case__ : int = Path(__lowerCAmelCase ) / '''__init__.py''' if not init_path.exists(): init_path.touch() def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" init_hf_modules() snake_case__ : Dict = Path(__lowerCAmelCase ) / name # If the parent module does not exist yet, recursively create it. if not dynamic_module_path.parent.exists(): create_dynamic_module(dynamic_module_path.parent ) os.makedirs(__lowerCAmelCase , exist_ok=__lowerCAmelCase ) snake_case__ : List[str] = dynamic_module_path / '''__init__.py''' if not init_path.exists(): init_path.touch() def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: snake_case__ : int = f.read() # Imports of the form `import .xxx` snake_case__ : List[str] = re.findall('''^\s*import\s+\.(\S+)\s*$''' , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from .xxx import yyy` relative_imports += re.findall('''^\s*from\s+\.(\S+)\s+import''' , __lowerCAmelCase , flags=re.MULTILINE ) # Unique-ify return list(set(__lowerCAmelCase ) ) def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = False snake_case__ : Dict = [module_file] snake_case__ : Optional[Any] = [] # Let's recurse through all relative imports while not no_change: snake_case__ : int = [] for f in files_to_check: new_imports.extend(get_relative_imports(__lowerCAmelCase ) ) snake_case__ : Union[str, Any] = Path(__lowerCAmelCase ).parent snake_case__ : List[Any] = [str(module_path / m ) for m in new_imports] snake_case__ : Optional[int] = [f for f in new_import_files if f not in all_relative_imports] snake_case__ : int = [f"""{f}.py""" for f in new_import_files] snake_case__ : Dict = len(__lowerCAmelCase ) == 0 all_relative_imports.extend(__lowerCAmelCase ) return all_relative_imports def _lowerCAmelCase ( __lowerCAmelCase ) -> Dict: """simple docstring""" with open(__lowerCAmelCase , '''r''' , encoding='''utf-8''' ) as f: snake_case__ : Optional[int] = f.read() # Imports of the form `import xxx` snake_case__ : str = re.findall('''^\s*import\s+(\S+)\s*$''' , __lowerCAmelCase , flags=re.MULTILINE ) # Imports of the form `from xxx import yyy` imports += re.findall('''^\s*from\s+(\S+)\s+import''' , __lowerCAmelCase , flags=re.MULTILINE ) # Only keep the top-level module snake_case__ : str = [imp.split('''.''' )[0] for imp in imports if not imp.startswith('''.''' )] # Unique-ify and test we got them all snake_case__ : Optional[Any] = list(set(__lowerCAmelCase ) ) snake_case__ : int = [] for imp in imports: try: importlib.import_module(__lowerCAmelCase ) except ImportError: missing_packages.append(__lowerCAmelCase ) if len(__lowerCAmelCase ) > 0: raise ImportError( '''This modeling file requires the following packages that were not found in your environment: ''' f"""{', '.join(__lowerCAmelCase )}. Run `pip install {' '.join(__lowerCAmelCase )}`""" ) return get_relative_imports(__lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : Optional[int] = module_path.replace(os.path.sep , '''.''' ) snake_case__ : Dict = importlib.import_module(__lowerCAmelCase ) if class_name is None: return find_pipeline_class(__lowerCAmelCase ) return getattr(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase ) -> Any: """simple docstring""" from ..pipelines import DiffusionPipeline snake_case__ : List[Any] = dict(inspect.getmembers(__lowerCAmelCase , inspect.isclass ) ) snake_case__ : Optional[int] = None for cls_name, cls in cls_members.items(): if ( cls_name != DiffusionPipeline.__name__ and issubclass(cls , __lowerCAmelCase ) and cls.__module__.split('''.''' )[0] != "diffusers" ): if pipeline_class is not None: raise ValueError( f"""Multiple classes that inherit from {DiffusionPipeline.__name__} have been found:""" f""" {pipeline_class.__name__}, and {cls_name}. Please make sure to define only one in""" f""" {loaded_module}.""" ) snake_case__ : List[Any] = cls return pipeline_class def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> int: """simple docstring""" snake_case__ : List[str] = str(__lowerCAmelCase ) snake_case__ : List[Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if os.path.isfile(__lowerCAmelCase ): snake_case__ : List[str] = module_file_or_url snake_case__ : Union[str, Any] = '''local''' elif pretrained_model_name_or_path.count('''/''' ) == 0: snake_case__ : Any = get_diffusers_versions() # cut ".dev0" snake_case__ : int = '''v''' + '''.'''.join(__version__.split('''.''' )[:3] ) # retrieve github version that matches if revision is None: snake_case__ : List[str] = latest_version if latest_version[1:] in available_versions else '''main''' logger.info(f"""Defaulting to latest_version: {revision}.""" ) elif revision in available_versions: snake_case__ : str = f"""v{revision}""" elif revision == "main": snake_case__ : List[Any] = revision else: raise ValueError( f"""`custom_revision`: {revision} does not exist. Please make sure to choose one of""" f""" {', '.join(available_versions + ['main'] )}.""" ) # community pipeline on GitHub snake_case__ : List[str] = COMMUNITY_PIPELINES_URL.format(revision=__lowerCAmelCase , pipeline=__lowerCAmelCase ) try: snake_case__ : List[str] = cached_download( __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) snake_case__ : int = '''git''' snake_case__ : Union[str, Any] = pretrained_model_name_or_path + '''.py''' except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise else: try: # Load from URL or cache if already cached snake_case__ : Any = hf_hub_download( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , proxies=__lowerCAmelCase , resume_download=__lowerCAmelCase , local_files_only=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , ) snake_case__ : List[Any] = os.path.join('''local''' , '''--'''.join(pretrained_model_name_or_path.split('''/''' ) ) ) except EnvironmentError: logger.error(f"""Could not locate the {module_file} inside {pretrained_model_name_or_path}.""" ) raise # Check we have all the requirements in our environment snake_case__ : Optional[int] = check_imports(__lowerCAmelCase ) # Now we move the module inside our cached dynamic modules. snake_case__ : Any = DIFFUSERS_DYNAMIC_MODULE_NAME + os.path.sep + submodule create_dynamic_module(__lowerCAmelCase ) snake_case__ : Dict = Path(__lowerCAmelCase ) / full_submodule if submodule == "local" or submodule == "git": # We always copy local files (we could hash the file to see if there was a change, and give them the name of # that hash, to only copy when there is a modification but it seems overkill for now). # The only reason we do the copy is to avoid putting too many folders in sys.path. shutil.copy(__lowerCAmelCase , submodule_path / module_file ) for module_needed in modules_needed: snake_case__ : List[Any] = f"""{module_needed}.py""" shutil.copy(os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , submodule_path / module_needed ) else: # Get the commit hash # TODO: we will get this info in the etag soon, so retrieve it from there and not here. if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : str = use_auth_token elif use_auth_token is True: snake_case__ : Tuple = HfFolder.get_token() else: snake_case__ : Dict = None snake_case__ : Optional[Any] = model_info(__lowerCAmelCase , revision=__lowerCAmelCase , token=__lowerCAmelCase ).sha # The module file will end up being placed in a subfolder with the git hash of the repo. This way we get the # benefit of versioning. snake_case__ : int = submodule_path / commit_hash snake_case__ : str = full_submodule + os.path.sep + commit_hash create_dynamic_module(__lowerCAmelCase ) if not (submodule_path / module_file).exists(): shutil.copy(__lowerCAmelCase , submodule_path / module_file ) # Make sure we also have every file with relative for module_needed in modules_needed: if not (submodule_path / module_needed).exists(): get_cached_module_file( __lowerCAmelCase , f"""{module_needed}.py""" , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return os.path.join(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , **__lowerCAmelCase , ) -> Dict: """simple docstring""" snake_case__ : List[str] = get_cached_module_file( __lowerCAmelCase , __lowerCAmelCase , cache_dir=__lowerCAmelCase , force_download=__lowerCAmelCase , resume_download=__lowerCAmelCase , proxies=__lowerCAmelCase , use_auth_token=__lowerCAmelCase , revision=__lowerCAmelCase , local_files_only=__lowerCAmelCase , ) return get_class_in_module(__lowerCAmelCase , final_module.replace('''.py''' , '''''' ) )
230
import coval # From: git+https://github.com/ns-moosavi/coval.git # noqa: F401 from coval.conll import reader, util from coval.eval import evaluator import datasets A__ = datasets.logging.get_logger(__name__) A__ = '''\ @InProceedings{moosavi2019minimum, author = { Nafise Sadat Moosavi, Leo Born, Massimo Poesio and Michael Strube}, title = {Using Automatically Extracted Minimum Spans to Disentangle Coreference Evaluation from Boundary Detection}, year = {2019}, booktitle = {Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)}, publisher = {Association for Computational Linguistics}, address = {Florence, Italy}, } @inproceedings{10.3115/1072399.1072405, author = {Vilain, Marc and Burger, John and Aberdeen, John and Connolly, Dennis and Hirschman, Lynette}, title = {A Model-Theoretic Coreference Scoring Scheme}, year = {1995}, isbn = {1558604022}, publisher = {Association for Computational Linguistics}, address = {USA}, url = {https://doi.org/10.3115/1072399.1072405}, doi = {10.3115/1072399.1072405}, booktitle = {Proceedings of the 6th Conference on Message Understanding}, pages = {45–52}, numpages = {8}, location = {Columbia, Maryland}, series = {MUC6 ’95} } @INPROCEEDINGS{Bagga98algorithmsfor, author = {Amit Bagga and Breck Baldwin}, title = {Algorithms for Scoring Coreference Chains}, booktitle = {In The First International Conference on Language Resources and Evaluation Workshop on Linguistics Coreference}, year = {1998}, pages = {563--566} } @INPROCEEDINGS{Luo05oncoreference, author = {Xiaoqiang Luo}, title = {On coreference resolution performance metrics}, booktitle = {In Proc. of HLT/EMNLP}, year = {2005}, pages = {25--32}, publisher = {URL} } @inproceedings{moosavi-strube-2016-coreference, title = "Which Coreference Evaluation Metric Do You Trust? A Proposal for a Link-based Entity Aware Metric", author = "Moosavi, Nafise Sadat and Strube, Michael", booktitle = "Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = aug, year = "2016", address = "Berlin, Germany", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/P16-1060", doi = "10.18653/v1/P16-1060", pages = "632--642", } ''' A__ = '''\ CoVal is a coreference evaluation tool for the CoNLL and ARRAU datasets which implements of the common evaluation metrics including MUC [Vilain et al, 1995], B-cubed [Bagga and Baldwin, 1998], CEAFe [Luo et al., 2005], LEA [Moosavi and Strube, 2016] and the averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) [Denis and Baldridge, 2009a; Pradhan et al., 2011]. This wrapper of CoVal currently only work with CoNLL line format: The CoNLL format has one word per line with all the annotation for this word in column separated by spaces: Column Type Description 1 Document ID This is a variation on the document filename 2 Part number Some files are divided into multiple parts numbered as 000, 001, 002, ... etc. 3 Word number 4 Word itself This is the token as segmented/tokenized in the Treebank. Initially the *_skel file contain the placeholder [WORD] which gets replaced by the actual token from the Treebank which is part of the OntoNotes release. 5 Part-of-Speech 6 Parse bit This is the bracketed structure broken before the first open parenthesis in the parse, and the word/part-of-speech leaf replaced with a *. The full parse can be created by substituting the asterix with the "([pos] [word])" string (or leaf) and concatenating the items in the rows of that column. 7 Predicate lemma The predicate lemma is mentioned for the rows for which we have semantic role information. All other rows are marked with a "-" 8 Predicate Frameset ID This is the PropBank frameset ID of the predicate in Column 7. 9 Word sense This is the word sense of the word in Column 3. 10 Speaker/Author This is the speaker or author name where available. Mostly in Broadcast Conversation and Web Log data. 11 Named Entities These columns identifies the spans representing various named entities. 12:N Predicate Arguments There is one column each of predicate argument structure information for the predicate mentioned in Column 7. N Coreference Coreference chain information encoded in a parenthesis structure. More informations on the format can be found here (section "*_conll File Format"): http://www.conll.cemantix.org/2012/data.html Details on the evaluation on CoNLL can be found here: https://github.com/ns-moosavi/coval/blob/master/conll/README.md CoVal code was written by @ns-moosavi. Some parts are borrowed from https://github.com/clarkkev/deep-coref/blob/master/evaluation.py The test suite is taken from https://github.com/conll/reference-coreference-scorers/ Mention evaluation and the test suite are added by @andreasvc. Parsing CoNLL files is developed by Leo Born. ''' A__ = ''' Calculates coreference evaluation metrics. Args: predictions: list of sentences. Each sentence is a list of word predictions to score in the CoNLL format. Each prediction is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. references: list of sentences. Each sentence is a list of word reference to score in the CoNLL format. Each reference is a word with its annotations as a string made of columns joined with spaces. Only columns 4, 5, 6 and the last column are used (word, POS, Pars and coreference annotation) See the details on the format in the description of the metric. keep_singletons: After extracting all mentions of key or system files, mentions whose corresponding coreference chain is of size one, are considered as singletons. The default evaluation mode will include singletons in evaluations if they are included in the key or the system files. By setting \'keep_singletons=False\', all singletons in the key and system files will be excluded from the evaluation. NP_only: Most of the recent coreference resolvers only resolve NP mentions and leave out the resolution of VPs. By setting the \'NP_only\' option, the scorer will only evaluate the resolution of NPs. min_span: By setting \'min_span\', the scorer reports the results based on automatically detected minimum spans. Minimum spans are determined using the MINA algorithm. Returns: \'mentions\': mentions \'muc\': MUC metric [Vilain et al, 1995] \'bcub\': B-cubed [Bagga and Baldwin, 1998] \'ceafe\': CEAFe [Luo et al., 2005] \'lea\': LEA [Moosavi and Strube, 2016] \'conll_score\': averaged CoNLL score (the average of the F1 values of MUC, B-cubed and CEAFe) Examples: >>> coval = datasets.load_metric(\'coval\') >>> words = [\'bc/cctv/00/cctv_0005 0 0 Thank VBP (TOP(S(VP* thank 01 1 Xu_li * (V*) * -\', ... \'bc/cctv/00/cctv_0005 0 1 you PRP (NP*) - - - Xu_li * (ARG1*) (ARG0*) (116)\', ... \'bc/cctv/00/cctv_0005 0 2 everyone NN (NP*) - - - Xu_li * (ARGM-DIS*) * (116)\', ... \'bc/cctv/00/cctv_0005 0 3 for IN (PP* - - - Xu_li * (ARG2* * -\', ... \'bc/cctv/00/cctv_0005 0 4 watching VBG (S(VP*)))) watch 01 1 Xu_li * *) (V*) -\', ... \'bc/cctv/00/cctv_0005 0 5 . . *)) - - - Xu_li * * * -\'] >>> references = [words] >>> predictions = [words] >>> results = coval.compute(predictions=predictions, references=references) >>> print(results) # doctest:+ELLIPSIS {\'mentions/recall\': 1.0,[...] \'conll_score\': 100.0} ''' def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False , __lowerCAmelCase=False , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="dummy_doc" ) -> int: """simple docstring""" snake_case__ : Dict = {doc: key_lines} snake_case__ : Any = {doc: sys_lines} snake_case__ : Dict = {} snake_case__ : List[str] = 0 snake_case__ : Optional[Any] = 0 snake_case__ : Optional[Any] = 0 snake_case__ : Dict = 0 snake_case__ : List[Any] = 0 snake_case__ : List[Any] = 0 snake_case__ , snake_case__ : Tuple = reader.get_doc_mentions(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase ) key_singletons_num += singletons_num if NP_only or min_span: snake_case__ : str = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ , snake_case__ : int = reader.get_doc_mentions(__lowerCAmelCase , sys_doc_lines[doc] , __lowerCAmelCase ) sys_singletons_num += singletons_num if NP_only or min_span: snake_case__ : Union[str, Any] = reader.set_annotated_parse_trees(__lowerCAmelCase , key_doc_lines[doc] , __lowerCAmelCase , __lowerCAmelCase ) if remove_nested: snake_case__ , snake_case__ : Dict = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) key_nested_coref_num += nested_mentions key_removed_nested_clusters += removed_clusters snake_case__ , snake_case__ : Optional[int] = reader.remove_nested_coref_mentions(__lowerCAmelCase , __lowerCAmelCase ) sys_nested_coref_num += nested_mentions sys_removed_nested_clusters += removed_clusters snake_case__ : Any = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : Optional[int] = reader.get_mention_assignments(__lowerCAmelCase , __lowerCAmelCase ) snake_case__ : List[Any] = (key_clusters, sys_clusters, key_mention_sys_cluster, sys_mention_key_cluster) if remove_nested: logger.info( '''Number of removed nested coreferring mentions in the key ''' f"""annotation: {key_nested_coref_num}; and system annotation: {sys_nested_coref_num}""" ) logger.info( '''Number of resulting singleton clusters in the key ''' f"""annotation: {key_removed_nested_clusters}; and system annotation: {sys_removed_nested_clusters}""" ) if not keep_singletons: logger.info( f"""{key_singletons_num:d} and {sys_singletons_num:d} singletons are removed from the key and system """ '''files, respectively''' ) return doc_coref_infos def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Optional[Any] = get_coref_infos(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) snake_case__ : str = {} snake_case__ : Optional[int] = 0 snake_case__ : List[Any] = 0 for name, metric in metrics: snake_case__ , snake_case__ , snake_case__ : Any = evaluator.evaluate_documents(__lowerCAmelCase , __lowerCAmelCase , beta=1 ) if name in ["muc", "bcub", "ceafe"]: conll += fa conll_subparts_num += 1 output_scores.update({f"""{name}/recall""": recall, f"""{name}/precision""": precision, f"""{name}/f1""": fa} ) logger.info( name.ljust(10 ) , f"""Recall: {recall * 100:.2f}""" , f""" Precision: {precision * 100:.2f}""" , f""" F1: {fa * 100:.2f}""" , ) if conll_subparts_num == 3: snake_case__ : int = (conll / 3) * 100 logger.info(f"""CoNLL score: {conll:.2f}""" ) output_scores.update({'''conll_score''': conll} ) return output_scores def _lowerCAmelCase ( __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : str = False for line in key_lines: if not line.startswith('''#''' ): if len(line.split() ) > 6: snake_case__ : List[Any] = line.split()[5] if not parse_col == "-": snake_case__ : Optional[Any] = True break else: break return has_gold_parse @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def __lowerCamelCase ( self :Dict ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''string''' ) ), '''references''': datasets.Sequence(datasets.Value('''string''' ) ), } ) ,codebase_urls=['''https://github.com/ns-moosavi/coval'''] ,reference_urls=[ '''https://github.com/ns-moosavi/coval''', '''https://www.aclweb.org/anthology/P16-1060''', '''http://www.conll.cemantix.org/2012/data.html''', ] ,) def __lowerCamelCase ( self :Any ,__lowercase :List[Any] ,__lowercase :int ,__lowercase :str=True ,__lowercase :Optional[int]=False ,__lowercase :Optional[Any]=False ,__lowercase :Tuple=False ): snake_case__ : Optional[Any] = [ ('''mentions''', evaluator.mentions), ('''muc''', evaluator.muc), ('''bcub''', evaluator.b_cubed), ('''ceafe''', evaluator.ceafe), ('''lea''', evaluator.lea), ] if min_span: snake_case__ : Optional[int] = util.check_gold_parse_annotation(__lowercase ) if not has_gold_parse: raise NotImplementedError('''References should have gold parse annotation to use \'min_span\'.''' ) # util.parse_key_file(key_file) # key_file = key_file + ".parsed" snake_case__ : Any = evaluate( key_lines=__lowercase ,sys_lines=__lowercase ,metrics=__lowercase ,NP_only=__lowercase ,remove_nested=__lowercase ,keep_singletons=__lowercase ,min_span=__lowercase ,) return score
230
1
'''simple docstring''' import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _snake_case ( lowerCAmelCase_ , unittest.TestCase ): lowerCAmelCase_ : Dict = XLMProphetNetTokenizer lowerCAmelCase_ : Optional[int] = False lowerCAmelCase_ : Dict = True def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case_ = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = "[PAD]" snake_case_ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 1_012 ) def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_012 ) def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' snake_case_ = XLMProphetNetTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) snake_case_ = tokenizer.tokenize("This is a test" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) snake_case_ = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case_ = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) snake_case_ = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def lowerCAmelCase__ ( self ) -> int: '''simple docstring''' snake_case_ = "Hello World!" snake_case_ = [35_389, 6_672, 49, 2] self.assertListEqual(__SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(__SCREAMING_SNAKE_CASE ) ) @slow def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = {"input_ids": [[11_073, 82_783, 18, 26, 82_783, 549, 51_540, 248, 17_209, 1_301, 217, 20, 215_186, 1_325, 147, 17_209, 1_301, 217, 20, 56_370, 53, 122_020, 20, 16_477, 27, 87_355, 4_548, 20, 4_728, 78_392, 17, 159_969, 18, 26, 24_491, 629, 15, 538, 22_704, 5_439, 15, 2_788, 24_491, 9_885, 15, 43_534, 605, 15, 814, 18_403, 33_200, 29, 15, 43_534, 24_458, 12_410, 111, 24_966, 83_669, 9_637, 144_068, 26, 850, 22_346, 27, 147, 24_966, 83_669, 83_490, 26, 39_113, 735, 27, 689, 656, 2_800, 1_339, 4_600, 53, 122_020, 115_785, 34, 816, 1_339, 46_887, 18, 147, 53_905, 1_951, 42_238, 41_170, 17_732, 834, 436, 15, 27_523, 98_733, 217, 147, 5_542, 4_981, 930, 17_347, 16, 2], [20_091, 629, 94, 82_786, 58, 490, 20, 1_528, 84, 53_905, 344, 80_592, 110_128, 18_822, 5_267, 1_306, 62, 152_537, 308, 7_997, 401, 124_427, 549, 35_442, 225, 109, 15_055, 25_748, 147, 7_119, 43_712, 34, 767, 135_366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63_784, 119_466, 17, 147_808, 88_214, 18, 656, 81, 32, 3_296, 10_280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
352
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _SCREAMING_SNAKE_CASE : Optional[int] = { "configuration_canine": ["CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP", "CanineConfig"], "tokenization_canine": ["CanineTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : Dict = [ "CANINE_PRETRAINED_MODEL_ARCHIVE_LIST", "CanineForMultipleChoice", "CanineForQuestionAnswering", "CanineForSequenceClassification", "CanineForTokenClassification", "CanineLayer", "CanineModel", "CaninePreTrainedModel", "load_tf_weights_in_canine", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _SCREAMING_SNAKE_CASE : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
92
0
import numpy as np class __A : """simple docstring""" def __init__( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" self.set_matricies(red=_UpperCAmelCase , green=_UpperCAmelCase , blue=_UpperCAmelCase , red_edge=_UpperCAmelCase , nir=_UpperCAmelCase ) def __lowercase ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" if red is not None: __UpperCamelCase : Dict =red if green is not None: __UpperCamelCase : List[Any] =green if blue is not None: __UpperCamelCase : Optional[Any] =blue if red_edge is not None: __UpperCamelCase : Optional[Any] =red_edge if nir is not None: __UpperCamelCase : Optional[Any] =nir return True def __lowercase ( self , lowerCamelCase__="" , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" self.set_matricies(red=_UpperCAmelCase , green=_UpperCAmelCase , blue=_UpperCAmelCase , red_edge=_UpperCAmelCase , nir=_UpperCAmelCase ) __UpperCamelCase : Optional[int] ={ 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print('Index not in the list!' ) return False def __lowercase ( self ): """simple docstring""" return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def __lowercase ( self ): """simple docstring""" return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def __lowercase ( self ): """simple docstring""" return self.nir * (self.red / (self.green**2)) def __lowercase ( self ): """simple docstring""" return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def __lowercase ( self ): """simple docstring""" return (self.nir - self.red) / (self.nir + self.red) def __lowercase ( self ): """simple docstring""" return (self.nir - self.blue) / (self.nir + self.blue) def __lowercase ( self ): """simple docstring""" return (self.redEdge - self.red) / (self.redEdge + self.red) def __lowercase ( self ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green) def __lowercase ( self ): """simple docstring""" return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def __lowercase ( self ): """simple docstring""" return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def __lowercase ( self ): """simple docstring""" return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def __lowercase ( self ): """simple docstring""" return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def __lowercase ( self , lowerCamelCase__=0.08 , lowerCamelCase__=1.22 , lowerCamelCase__=0.03 ): """simple docstring""" return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def __lowercase ( self ): """simple docstring""" return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def __lowercase ( self ): """simple docstring""" return (self.nir / self.green) - 1 def __lowercase ( self ): """simple docstring""" return (self.nir / self.redEdge) - 1 def __lowercase ( self ): """simple docstring""" return (self.red - self.blue) / self.red def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def __lowercase ( self ): """simple docstring""" return self.nir - self.green def __lowercase ( self ): """simple docstring""" return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =(2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def __lowercase ( self , lowerCamelCase__=0.16 ): """simple docstring""" return (self.nir - self.green) / (self.nir + self.green + y) def __lowercase ( self , lowerCamelCase__=0.5 ): """simple docstring""" return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def __lowercase ( self ): """simple docstring""" return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def __lowercase ( self , lowerCamelCase__=None , lowerCamelCase__=None ): """simple docstring""" return (self.nir - b) / (a * self.red) def __lowercase ( self ): """simple docstring""" return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def __lowercase ( self ): """simple docstring""" return (self.red + self.green + self.blue) / 30.5 def __lowercase ( self ): """simple docstring""" return self.nir / self.red def __lowercase ( self ): """simple docstring""" return (self.rvi() - 1) / (self.rvi() + 1) def __lowercase ( self ): """simple docstring""" return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def __lowercase ( self ): """simple docstring""" return self.green / (self.nir + self.red + self.green) def __lowercase ( self ): """simple docstring""" return self.nir / (self.nir + self.red + self.green) def __lowercase ( self ): """simple docstring""" return self.red / (self.nir + self.red + self.green) def __lowercase ( self ): """simple docstring""" return (self.green - self.red) / (self.green + self.red) def __lowercase ( self ): """simple docstring""" return (self.red - self.green) / (self.red + self.green) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) __UpperCamelCase : Dict =np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def __lowercase ( self ): """simple docstring""" return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def __lowercase ( self ): """simple docstring""" return self.nir / self.red def __lowercase ( self ): """simple docstring""" return (self.ndvi() + 0.5) ** (1 / 2) def __lowercase ( self ): """simple docstring""" return (self.nir - self.redEdge) / (self.nir + self.redEdge)
71
'''simple docstring''' import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class SCREAMING_SNAKE_CASE (a__ ): def __init__( self , _UpperCAmelCase = "▁" , _UpperCAmelCase = True , _UpperCAmelCase = "<unk>" , _UpperCAmelCase = "</s>" , _UpperCAmelCase = "<pad>" , ): '''simple docstring''' __A : Dict = { 'pad': {'id': 0, 'token': pad_token}, 'eos': {'id': 1, 'token': eos_token}, 'unk': {'id': 2, 'token': unk_token}, } __A : List[Any] = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): __A : List[str] = token_dict['token'] __A : str = Tokenizer(Unigram()) __A : Dict = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(' {2,}') , ' '), normalizers.Lowercase(), ]) __A : Union[str, Any] = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase), pre_tokenizers.Digits(individual_digits=_UpperCAmelCase), pre_tokenizers.Punctuation(), ]) __A : Any = decoders.Metaspace(replacement=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase) __A : Dict = TemplateProcessing( single=F'$A {self.special_tokens["eos"]["token"]}' , special_tokens=[(self.special_tokens['eos']['token'], self.special_tokens['eos']['id'])] , ) __A : Any = { 'model': 'SentencePieceUnigram', 'replacement': replacement, 'add_prefix_space': add_prefix_space, } super().__init__(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = 8000 , _UpperCAmelCase = True , ): '''simple docstring''' __A : str = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : Union[str, Any] = [files] self._tokenizer.train(_UpperCAmelCase , trainer=_UpperCAmelCase) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = 8000 , _UpperCAmelCase = True , ): '''simple docstring''' __A : Dict = trainers.UnigramTrainer( vocab_size=_UpperCAmelCase , special_tokens=self.special_tokens_list , show_progress=_UpperCAmelCase , ) self._tokenizer.train_from_iterator(_UpperCAmelCase , trainer=_UpperCAmelCase) self.add_unk_id() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = json.loads(self._tokenizer.to_str()) __A : Union[str, Any] = self.special_tokens['unk']['id'] __A : str = Tokenizer.from_str(json.dumps(_UpperCAmelCase))
190
0
import argparse from collections import defaultdict import yaml __lowerCAmelCase = '''docs/source/en/_toctree.yml''' def snake_case_ ( snake_case ) -> Dict: lowercase__: List[str] = defaultdict(snake_case ) lowercase__: Dict = [] lowercase__: Optional[int] = [] for doc in doc_list: if "local" in doc: counts[doc["local"]] += 1 if doc["title"].lower() == "overview": overview_doc.append({'local': doc['local'], 'title': doc['title']} ) else: new_doc_list.append(snake_case ) lowercase__: str = new_doc_list lowercase__: int = [key for key, value in counts.items() if value > 1] lowercase__: str = [] for duplicate_key in duplicates: lowercase__: Dict = list({doc['title'] for doc in doc_list if doc['local'] == duplicate_key} ) if len(snake_case ) > 1: raise ValueError( f'{duplicate_key} is present several times in the documentation table of content at ' '`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the ' 'others.' ) # Only add this once new_doc.append({'local': duplicate_key, 'title': titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in doc_list if 'local' not in counts or counts[doc['local']] == 1] ) lowercase__: str = sorted(snake_case , key=lambda snake_case : s["title"].lower() ) # "overview" gets special treatment and is always first if len(snake_case ) > 1: raise ValueError('{doc_list} has two \'overview\' docs which is not allowed.' ) overview_doc.extend(snake_case ) # Sort return overview_doc def snake_case_ ( snake_case=False ) -> Union[str, Any]: with open(snake_case , encoding='utf-8' ) as f: lowercase__: str = yaml.safe_load(f.read() ) # Get to the API doc lowercase__: List[str] = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__: Union[str, Any] = content[api_idx]['sections'] # Then to the model doc lowercase__: Optional[int] = 0 while api_doc[scheduler_idx]["title"] != "Schedulers": scheduler_idx += 1 lowercase__: str = api_doc[scheduler_idx]['sections'] lowercase__: Optional[int] = clean_doc_toc(snake_case ) lowercase__: Tuple = False if new_scheduler_doc != scheduler_doc: lowercase__: int = True if overwrite: lowercase__: Union[str, Any] = new_scheduler_doc if diff: if overwrite: lowercase__: Any = api_doc with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) def snake_case_ ( snake_case=False ) -> int: with open(snake_case , encoding='utf-8' ) as f: lowercase__: Dict = yaml.safe_load(f.read() ) # Get to the API doc lowercase__: Dict = 0 while content[api_idx]["title"] != "API": api_idx += 1 lowercase__: Dict = content[api_idx]['sections'] # Then to the model doc lowercase__: Dict = 0 while api_doc[pipeline_idx]["title"] != "Pipelines": pipeline_idx += 1 lowercase__: Union[str, Any] = False lowercase__: Dict = api_doc[pipeline_idx]['sections'] lowercase__: Optional[int] = [] # sort sub pipeline docs for pipeline_doc in pipeline_docs: if "section" in pipeline_doc: lowercase__: str = pipeline_doc['section'] lowercase__: Any = clean_doc_toc(snake_case ) if overwrite: lowercase__: List[Any] = new_sub_pipeline_doc new_pipeline_docs.append(snake_case ) # sort overall pipeline doc lowercase__: str = clean_doc_toc(snake_case ) if new_pipeline_docs != pipeline_docs: lowercase__: Union[str, Any] = True if overwrite: lowercase__: List[str] = new_pipeline_docs if diff: if overwrite: lowercase__: Any = api_doc with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(yaml.dump(snake_case , allow_unicode=snake_case ) ) else: raise ValueError( 'The model doc part of the table of content is not properly sorted, run `make style` to fix this.' ) if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __lowerCAmelCase = parser.parse_args() check_scheduler_doc(args.fix_and_overwrite) check_pipeline_doc(args.fix_and_overwrite)
288
import sacrebleu as scb from packaging import version from sacrebleu import CHRF import datasets __lowerCAmelCase = '''\ @inproceedings{popovic-2015-chrf, title = "chr{F}: character n-gram {F}-score for automatic {MT} evaluation", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Tenth Workshop on Statistical Machine Translation", month = sep, year = "2015", address = "Lisbon, Portugal", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W15-3049", doi = "10.18653/v1/W15-3049", pages = "392--395", } @inproceedings{popovic-2017-chrf, title = "chr{F}++: words helping character n-grams", author = "Popovi{\'c}, Maja", booktitle = "Proceedings of the Second Conference on Machine Translation", month = sep, year = "2017", address = "Copenhagen, Denmark", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/W17-4770", doi = "10.18653/v1/W17-4770", pages = "612--618", } @inproceedings{post-2018-call, title = "A Call for Clarity in Reporting {BLEU} Scores", author = "Post, Matt", booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers", month = oct, year = "2018", address = "Belgium, Brussels", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W18-6319", pages = "186--191", } ''' __lowerCAmelCase = '''\ ChrF and ChrF++ are two MT evaluation metrics. They both use the F-score statistic for character n-gram matches, and ChrF++ adds word n-grams as well which correlates more strongly with direct assessment. We use the implementation that is already present in sacrebleu. The implementation here is slightly different from sacrebleu in terms of the required input format. The length of the references and hypotheses lists need to be the same, so you may need to transpose your references compared to sacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534 See the README.md file at https://github.com/mjpost/sacreBLEU#chrf--chrf for more information. ''' __lowerCAmelCase = ''' Produces ChrF(++) scores for hypotheses given reference translations. Args: predictions (list of str): The predicted sentences. references (list of list of str): The references. There should be one reference sub-list for each prediction sentence. char_order (int): Character n-gram order. Defaults to `6`. word_order (int): Word n-gram order. If equals to `2`, the metric is referred to as chrF++. Defaults to `0`. beta (int): Determine the importance of recall w.r.t precision. Defaults to `2`. lowercase (bool): if `True`, enables case-insensitivity. Defaults to `False`. whitespace (bool): If `True`, include whitespaces when extracting character n-grams. eps_smoothing (bool): If `True`, applies epsilon smoothing similar to reference chrF++.py, NLTK and Moses implementations. If `False`, it takes into account effective match order similar to sacreBLEU < 2.0.0. Defaults to `False`. Returns: \'score\' (float): The chrF (chrF++) score, \'char_order\' (int): The character n-gram order, \'word_order\' (int): The word n-gram order. If equals to 2, the metric is referred to as chrF++, \'beta\' (int): Determine the importance of recall w.r.t precision Examples: Example 1--a simple example of calculating chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, references=reference) >>> print(results) {\'score\': 84.64214891738334, \'char_order\': 6, \'word_order\': 0, \'beta\': 2} Example 2--the same example, but with the argument word_order=2, to calculate chrF++ instead of chrF: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2) >>> print(results) {\'score\': 82.87263732906315, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} Example 3--the same chrF++ example as above, but with `lowercase=True` to normalize all case: >>> prediction = ["The relationship between cats and dogs is not exactly friendly.", "a good bookshop is just a genteel black hole that knows how to read."] >>> reference = [["The relationship between dogs and cats is not exactly friendly."], ["A good bookshop is just a genteel Black Hole that knows how to read."]] >>> chrf = datasets.load_metric("chrf") >>> results = chrf.compute(predictions=prediction, ... references=reference, ... word_order=2, ... lowercase=True) >>> print(results) {\'score\': 92.12853119829202, \'char_order\': 6, \'word_order\': 2, \'beta\': 2} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __a ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if version.parse(scb.__version__ ) < version.parse('1.4.12' ): raise ImportWarning( 'To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n' 'You can install it with `pip install "sacrebleu>=1.4.12"`.' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/mjpost/sacreBLEU#chrf--chrf' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=['https://github.com/mjpost/sacreBLEU#chrf--chrf'] , reference_urls=[ 'https://github.com/m-popovic/chrF', ] , ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = CHRF.CHAR_ORDER , lowerCAmelCase__ = CHRF.WORD_ORDER , lowerCAmelCase__ = CHRF.BETA , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = False , ) -> List[Any]: '''simple docstring''' lowercase__: str = len(references[0] ) if any(len(lowerCAmelCase__ ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) lowercase__: List[str] = [[refs[i] for refs in references] for i in range(lowerCAmelCase__ )] lowercase__: Union[str, Any] = CHRF(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: str = sb_chrf.corpus_score(lowerCAmelCase__ , lowerCAmelCase__ ) return { "score": output.score, "char_order": output.char_order, "word_order": output.word_order, "beta": output.beta, }
288
1
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase = OrderedDict() for key, value in state_dict.items(): if key.startswith("""module.encoder""" ): lowerCAmelCase = key.replace("""module.encoder""" , """glpn.encoder""" ) if key.startswith("""module.decoder""" ): lowerCAmelCase = key.replace("""module.decoder""" , """decoder.stages""" ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 lowerCAmelCase = key[key.find("""patch_embed""" ) + len("""patch_embed""" )] lowerCAmelCase = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(SCREAMING_SNAKE_CASE )-1}' ) if "norm" in key: lowerCAmelCase = key.replace("""norm""" , """layer_norm""" ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 lowerCAmelCase = key[key.find("""glpn.encoder.layer_norm""" ) + len("""glpn.encoder.layer_norm""" )] lowerCAmelCase = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(SCREAMING_SNAKE_CASE )-1}' ) if "layer_norm1" in key: lowerCAmelCase = key.replace("""layer_norm1""" , """layer_norm_1""" ) if "layer_norm2" in key: lowerCAmelCase = key.replace("""layer_norm2""" , """layer_norm_2""" ) if "block" in key: # replace for example block1 by block.0 lowerCAmelCase = key[key.find("""block""" ) + len("""block""" )] lowerCAmelCase = key.replace(F'block{idx}' , F'block.{int(SCREAMING_SNAKE_CASE )-1}' ) if "attn.q" in key: lowerCAmelCase = key.replace("""attn.q""" , """attention.self.query""" ) if "attn.proj" in key: lowerCAmelCase = key.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in key: lowerCAmelCase = key.replace("""attn""" , """attention.self""" ) if "fc1" in key: lowerCAmelCase = key.replace("""fc1""" , """dense1""" ) if "fc2" in key: lowerCAmelCase = key.replace("""fc2""" , """dense2""" ) if "linear_pred" in key: lowerCAmelCase = key.replace("""linear_pred""" , """classifier""" ) if "linear_fuse" in key: lowerCAmelCase = key.replace("""linear_fuse.conv""" , """linear_fuse""" ) lowerCAmelCase = key.replace("""linear_fuse.bn""" , """batch_norm""" ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 lowerCAmelCase = key[key.find("""linear_c""" ) + len("""linear_c""" )] lowerCAmelCase = key.replace(F'linear_c{idx}' , F'linear_c.{int(SCREAMING_SNAKE_CASE )-1}' ) if "bot_conv" in key: lowerCAmelCase = key.replace("""bot_conv""" , """0.convolution""" ) if "skip_conv1" in key: lowerCAmelCase = key.replace("""skip_conv1""" , """1.convolution""" ) if "skip_conv2" in key: lowerCAmelCase = key.replace("""skip_conv2""" , """2.convolution""" ) if "fusion1" in key: lowerCAmelCase = key.replace("""fusion1""" , """1.fusion""" ) if "fusion2" in key: lowerCAmelCase = key.replace("""fusion2""" , """2.fusion""" ) if "fusion3" in key: lowerCAmelCase = key.replace("""fusion3""" , """3.fusion""" ) if "fusion" in key and "conv" in key: lowerCAmelCase = key.replace("""conv""" , """convolutional_layer""" ) if key.startswith("""module.last_layer_depth""" ): lowerCAmelCase = key.replace("""module.last_layer_depth""" , """head.head""" ) lowerCAmelCase = value return new_state_dict def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) lowerCAmelCase = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict lowerCAmelCase = kv_weight[ : config.hidden_sizes[i], : ] lowerCAmelCase = kv_bias[: config.hidden_sizes[i]] lowerCAmelCase = kv_weight[ config.hidden_sizes[i] :, : ] lowerCAmelCase = kv_bias[config.hidden_sizes[i] :] def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowerCAmelCase = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ) return image @torch.no_grad() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any]=False , SCREAMING_SNAKE_CASE : Union[str, Any]=None ): '''simple docstring''' lowerCAmelCase = GLPNConfig(hidden_sizes=[64, 1_28, 3_20, 5_12] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) lowerCAmelCase = GLPNImageProcessor() # prepare image lowerCAmelCase = prepare_img() lowerCAmelCase = image_processor(images=SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values logger.info("""Converting model...""" ) # load original state dict lowerCAmelCase = torch.load(SCREAMING_SNAKE_CASE , map_location=torch.device("""cpu""" ) ) # rename keys lowerCAmelCase = rename_keys(SCREAMING_SNAKE_CASE ) # key and value matrices need special treatment read_in_k_v(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # create HuggingFace model and load state dict lowerCAmelCase = GLPNForDepthEstimation(SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) model.eval() # forward pass lowerCAmelCase = model(SCREAMING_SNAKE_CASE ) lowerCAmelCase = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: lowerCAmelCase = torch.tensor( [[4.41_47, 4.08_73, 4.06_73], [3.78_90, 3.28_81, 3.15_25], [3.76_74, 3.54_23, 3.49_13]] ) elif "kitti" in model_name: lowerCAmelCase = torch.tensor( [[3.42_91, 2.78_65, 2.51_51], [3.28_41, 2.70_21, 2.35_02], [3.11_47, 2.46_25, 2.24_81]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) lowerCAmelCase = torch.Size([1, 4_80, 6_40] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-4 ) print("""Looks ok!""" ) # finally, push to hub if required if push_to_hub: logger.info("""Pushing model and image processor to the hub...""" ) model.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add model""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) image_processor.push_to_hub( repo_path_or_name=Path(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , organization="""nielsr""" , commit_message="""Add image processor""" , use_temp_dir=SCREAMING_SNAKE_CASE , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) parser.add_argument( "--model_name", default="glpn-kitti", type=str, help="Name of the model in case you're pushing to the hub.", ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
46
import collections import importlib.util import os import re from pathlib import Path _SCREAMING_SNAKE_CASE = 'src/transformers' # Matches is_xxx_available() _SCREAMING_SNAKE_CASE = re.compile(R'is\_([a-z_]*)_available()') # Catches a one-line _import_struct = {xxx} _SCREAMING_SNAKE_CASE = re.compile(R'^_import_structure\s+=\s+\{([^\}]+)\}') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'\s+"\S*":\s+\[([^\]]*)\]') # Catches a line if not is_foo_available _SCREAMING_SNAKE_CASE = re.compile(R'^\s*if\s+not\s+is\_[a-z_]*\_available\(\)') # Catches a line _import_struct["bla"].append("foo") _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] _SCREAMING_SNAKE_CASE = re.compile(R'^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]') # Catches a line with an object between quotes and a comma: "MyModel", _SCREAMING_SNAKE_CASE = re.compile('^\s+"([^"]+)",') # Catches a line with objects between brackets only: ["foo", "bar"], _SCREAMING_SNAKE_CASE = re.compile('^\s+\[([^\]]+)\]') # Catches a line with from foo import bar, bla, boo _SCREAMING_SNAKE_CASE = re.compile(R'\s+from\s+\S*\s+import\s+([^\(\s].*)\n') # Catches a line with try: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*try:') # Catches a line with else: _SCREAMING_SNAKE_CASE = re.compile(R'^\s*else:') def snake_case ( snake_case__ :Optional[Any]) -> List[str]: if _re_test_backend.search(snake_case__) is None: return None _A = [b[0] for b in _re_backend.findall(snake_case__)] backends.sort() return "_and_".join(snake_case__) def snake_case ( snake_case__ :Any) -> Any: with open(snake_case__ , """r""" , encoding="""utf-8""" , newline="""\n""") as f: _A = f.readlines() _A = 0 while line_index < len(snake_case__) and not lines[line_index].startswith("""_import_structure = {"""): line_index += 1 # If this is a traditional init, just return. if line_index >= len(snake_case__): return None # First grab the objects without a specific backend in _import_structure _A = [] while not lines[line_index].startswith("""if TYPE_CHECKING""") and find_backend(lines[line_index]) is None: _A = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(snake_case__): _A = _re_one_line_import_struct.search(snake_case__).groups()[0] _A = re.findall("""\[([^\]]+)\]""" , snake_case__) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(""", """)]) line_index += 1 continue _A = _re_import_struct_key_value.search(snake_case__) if single_line_import_search is not None: _A = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """) if len(snake_case__) > 0] objects.extend(snake_case__) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("""if TYPE_CHECKING"""): # If the line is an if not is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 4): _A = lines[line_index] if _re_import_struct_add_one.search(snake_case__) is not None: objects.append(_re_import_struct_add_one.search(snake_case__).groups()[0]) elif _re_import_struct_add_many.search(snake_case__) is not None: _A = _re_import_struct_add_many.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_between_brackets.search(snake_case__) is not None: _A = _re_between_brackets.search(snake_case__).groups()[0].split(""", """) _A = [obj[1:-1] for obj in imports if len(snake_case__) > 0] objects.extend(snake_case__) elif _re_quote_object.search(snake_case__) is not None: objects.append(_re_quote_object.search(snake_case__).groups()[0]) elif line.startswith(""" """ * 8 + """\""""): objects.append(line[9:-3]) elif line.startswith(""" """ * 12 + """\""""): objects.append(line[13:-3]) line_index += 1 _A = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend _A = [] while ( line_index < len(snake_case__) and find_backend(lines[line_index]) is None and not lines[line_index].startswith("""else""") ): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 8): objects.append(line[8:-2]) line_index += 1 _A = {"""none""": objects} # Let's continue with backend-specific objects while line_index < len(snake_case__): # If the line is an if is_backend_available, we grab all objects associated. _A = find_backend(lines[line_index]) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1]) is None: _A = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index]) is None: line_index += 1 line_index += 1 _A = [] # Until we unindent, add backend objects to the list while len(lines[line_index]) <= 1 or lines[line_index].startswith(""" """ * 8): _A = lines[line_index] _A = _re_import.search(snake_case__) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(""", """)) elif line.startswith(""" """ * 12): objects.append(line[12:-2]) line_index += 1 _A = objects else: line_index += 1 return import_dict_objects, type_hint_objects def snake_case ( snake_case__ :Dict , snake_case__ :int) -> List[Any]: def find_duplicates(snake_case__ :Union[str, Any]): return [k for k, v in collections.Counter(snake_case__).items() if v > 1] if list(import_dict_objects.keys()) != list(type_hint_objects.keys()): return ["Both sides of the init do not have the same backends!"] _A = [] for key in import_dict_objects.keys(): _A = find_duplicates(import_dict_objects[key]) if duplicate_imports: errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''') _A = find_duplicates(type_hint_objects[key]) if duplicate_type_hints: errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''') if sorted(set(import_dict_objects[key])) != sorted(set(type_hint_objects[key])): _A = """base imports""" if key == """none""" else F'''{key} backend''' errors.append(F'''Differences for {name}:''') for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''') for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''') return errors def snake_case ( ) -> int: _A = [] for root, _, files in os.walk(snake_case__): if "__init__.py" in files: _A = os.path.join(snake_case__ , """__init__.py""") _A = parse_init(snake_case__) if objects is not None: _A = analyze_results(*snake_case__) if len(snake_case__) > 0: _A = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}''' failures.append("""\n""".join(snake_case__)) if len(snake_case__) > 0: raise ValueError("""\n\n""".join(snake_case__)) def snake_case ( ) -> Optional[Any]: _A = [] for path, directories, files in os.walk(snake_case__): for folder in directories: # Ignore private modules if folder.startswith("""_"""): directories.remove(snake_case__) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(snake_case__) / folder).glob("""*.py"""))) == 0: continue _A = str((Path(snake_case__) / folder).relative_to(snake_case__)) _A = short_path.replace(os.path.sep , """.""") submodules.append(snake_case__) for fname in files: if fname == "__init__.py": continue _A = str((Path(snake_case__) / fname).relative_to(snake_case__)) _A = short_path.replace(""".py""" , """""").replace(os.path.sep , """.""") if len(submodule.split(""".""")) == 1: submodules.append(snake_case__) return submodules _SCREAMING_SNAKE_CASE = [ 'convert_pytorch_checkpoint_to_tf2', 'modeling_flax_pytorch_utils', ] def snake_case ( ) -> Union[str, Any]: # This is to make sure the transformers module imported is the one in the repo. _A = importlib.util.spec_from_file_location( """transformers""" , os.path.join(snake_case__ , """__init__.py""") , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) _A = spec.loader.load_module() _A = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(snake_case__) > 0: _A = """\n""".join(F'''- {module}''' for module in module_not_registered) raise ValueError( """The following submodules are not properly registered in the main init of Transformers:\n""" F'''{list_of_modules}\n''' """Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""") if __name__ == "__main__": check_all_inits() check_submodules()
180
0
'''simple docstring''' import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( lowerCamelCase_ :Dict , lowerCamelCase_ :Optional[int] , lowerCamelCase_ :Tuple=None ): '''simple docstring''' # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ : Optional[Any] = nn.Parameter(lowerCamelCase_ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ : List[str] = nn.Parameter(lowerCamelCase_ ) def UpperCAmelCase ( lowerCamelCase_ :str , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : Optional[Any] = np.asarray(weights[0] ) snake_case_ : int = np.asarray(weights[1] ) snake_case_ : Any = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[Any] , lowerCamelCase_ :Optional[Any] ): '''simple docstring''' # set torch weights for 1-to-1 comparison snake_case_ : List[Any] = np.asarray(weights[0] ) snake_case_ : Optional[int] = np.asarray(weights[1] ) snake_case_ : Union[str, Any] = np.asarray(weights[2] ) snake_case_ : int = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase_ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase_ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase_ ).view(-1 , lowerCamelCase_ ).contiguous().transpose(0 , 1 ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :List[str] , lowerCamelCase_ :Optional[int] ): '''simple docstring''' # layernorm 1 snake_case_ : str = weights[0][0][0] snake_case_ : int = np.asarray(layer_norm_a[0] ) snake_case_ : Optional[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # lsh weights + output snake_case_ : Tuple = weights[0][1] if len(lowerCamelCase_ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) else: set_layer_weights_in_torch_local(lowerCamelCase_ , torch_block.attention , lowerCamelCase_ ) # intermediate weighs snake_case_ : str = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase_ ) == 4: snake_case_ : List[Any] = intermediate_weights[2] # layernorm 2 snake_case_ : Tuple = np.asarray(intermediate_weights[0][0] ) snake_case_ : Optional[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # intermediate dense snake_case_ : Any = np.asarray(intermediate_weights[1][0] ) snake_case_ : List[Any] = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) # intermediate out snake_case_ : List[Any] = np.asarray(intermediate_weights[4][0] ) snake_case_ : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Union[str, Any] , lowerCamelCase_ :str , lowerCamelCase_ :Any ): '''simple docstring''' # reformer model snake_case_ : Dict = torch_model.reformer # word embeds snake_case_ : List[Any] = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase_ ) , ) if isinstance(weights[3] , lowerCamelCase_ ): snake_case_ : Tuple = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ : Dict = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ : Optional[Any] = nn.Parameter(torch.tensor(lowerCamelCase_ ) ) snake_case_ : List[Any] = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase_ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ : str = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # output layer norm snake_case_ : Optional[Any] = np.asarray(weights[7][0] ) snake_case_ : List[Any] = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase_ ) , torch.tensor(lowerCamelCase_ ) , ) # output embeddings snake_case_ : Optional[int] = np.asarray(weights[9][0] ) snake_case_ : Any = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase_ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase_ ) , ) def UpperCAmelCase ( lowerCamelCase_ :Any , lowerCamelCase_ :Dict , lowerCamelCase_ :List[Any] ): '''simple docstring''' # Initialise PyTorch model snake_case_ : List[str] = ReformerConfig.from_json_file(lowerCamelCase_ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ : str = ReformerModelWithLMHead(lowerCamelCase_ ) with open(lowerCamelCase_ , """rb""" ) as f: snake_case_ : List[Any] = pickle.load(lowerCamelCase_ )["""weights"""] set_model_weights_in_torch(lowerCamelCase_ , lowerCamelCase_ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , lowerCamelCase_ ) if __name__ == "__main__": __A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--trax_model_pkl_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained Reformer model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __A : List[Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
'''simple docstring''' from __future__ import annotations from collections.abc import Callable def UpperCAmelCase ( lowerCamelCase_ :Callable[[int | float], int | float] , lowerCamelCase_ :int | float , lowerCamelCase_ :int | float , lowerCamelCase_ :int = 1_00 , ): '''simple docstring''' snake_case_ : Tuple = x_start snake_case_ : Optional[int] = fnc(lowerCamelCase_ ) snake_case_ : Optional[int] = 0.0 for _ in range(lowerCamelCase_ ): # Approximates small segments of curve as linear and solve # for trapezoidal area snake_case_ : int = (x_end - x_start) / steps + xa snake_case_ : Union[str, Any] = fnc(lowerCamelCase_ ) area += abs(fxa + fxa ) * (xa - xa) / 2 # Increment step snake_case_ : Any = xa snake_case_ : str = fxa return area if __name__ == "__main__": def UpperCAmelCase ( lowerCamelCase_ :Any ): '''simple docstring''' return x**3 + x**2 print('f(x) = x^3 + x^2') print('The area between the curve, x = -5, x = 5 and the x axis is:') __A : List[str] = 10 while i <= 100_000: print(F'with {i} steps: {trapezoidal_area(f, -5, 5, i)}') i *= 10
8
1
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : Union[str, Any] = 'dandelin/vilt-b32-finetuned-vqa' UpperCAmelCase__ : Any = ( 'This is a tool that answers a question about an image. It takes an input named `image` which should be the ' 'image containing the information, as well as a `question` which should be the question in English. It ' 'returns a text that is the answer to the question.' ) UpperCAmelCase__ : List[Any] = 'image_qa' UpperCAmelCase__ : List[str] = AutoProcessor UpperCAmelCase__ : List[str] = AutoModelForVisualQuestionAnswering UpperCAmelCase__ : Optional[int] = ['image', 'text'] UpperCAmelCase__ : Tuple = ['text'] def __init__( self :Any , *_A :int , **_A :List[Any] ) -> List[str]: '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_A , **_A ) def lowercase_ ( self :Tuple , _A :"Image" , _A :str ) -> int: '''simple docstring''' return self.pre_processor(_A , _A , return_tensors='pt' ) def lowercase_ ( self :Optional[Any] , _A :List[Any] ) -> Optional[Any]: '''simple docstring''' with torch.no_grad(): return self.model(**_A ).logits def lowercase_ ( self :Tuple , _A :str ) -> List[Any]: '''simple docstring''' __A = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
161
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCamelCase__ ( SCREAMING_SNAKE_CASE , unittest.TestCase): UpperCAmelCase__ : str = KandinskyImgaImgPipeline UpperCAmelCase__ : Optional[int] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image'] UpperCAmelCase__ : Union[str, Any] = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', ] UpperCAmelCase__ : Union[str, Any] = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] UpperCAmelCase__ : Any = False @property def lowercase_ ( self :Tuple ) -> Any: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[int] ) -> str: '''simple docstring''' return 32 @property def lowercase_ ( self :Optional[Any] ) -> str: '''simple docstring''' return self.time_input_dim @property def lowercase_ ( self :Optional[Any] ) -> Any: '''simple docstring''' return self.time_input_dim * 4 @property def lowercase_ ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' return 100 @property def lowercase_ ( self :Tuple ) -> Tuple: '''simple docstring''' __A = XLMRobertaTokenizerFast.from_pretrained('YiYiXu/tiny-random-mclip-base' ) return tokenizer @property def lowercase_ ( self :Union[str, Any] ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) __A = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_005 , ) __A = MultilingualCLIP(_A ) __A = text_encoder.eval() return text_encoder @property def lowercase_ ( self :Optional[int] ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) __A = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'text_image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'text_image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } __A = UNetaDConditionModel(**_A ) return model @property def lowercase_ ( self :Optional[Any] ) -> Optional[Any]: '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowercase_ ( self :Optional[int] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) __A = VQModel(**self.dummy_movq_kwargs ) return model def lowercase_ ( self :List[str] ) -> str: '''simple docstring''' __A = self.dummy_text_encoder __A = self.dummy_tokenizer __A = self.dummy_unet __A = self.dummy_movq __A = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } __A = DDIMScheduler(**_A ) __A = { 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def lowercase_ ( self :Dict , _A :Union[str, Any] , _A :Optional[int]=0 ) -> str: '''simple docstring''' __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(_A ) ).to(_A ) __A = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(_A ) # create init_image __A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_A ) ).to(_A ) __A = image.cpu().permute(0 , 2 , 3 , 1 )[0] __A = Image.fromarray(np.uinta(_A ) ).convert('RGB' ).resize((256, 256) ) if str(_A ).startswith('mps' ): __A = torch.manual_seed(_A ) else: __A = torch.Generator(device=_A ).manual_seed(_A ) __A = { 'prompt': 'horse', 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def lowercase_ ( self :Optional[Any] ) -> Optional[int]: '''simple docstring''' __A = 'cpu' __A = self.get_dummy_components() __A = self.pipeline_class(**_A ) __A = pipe.to(_A ) pipe.set_progress_bar_config(disable=_A ) __A = pipe(**self.get_dummy_inputs(_A ) ) __A = output.images __A = pipe( **self.get_dummy_inputs(_A ) , return_dict=_A , )[0] __A = image[0, -3:, -3:, -1] __A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __A = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): def lowercase_ ( self :Union[str, Any] ) -> Dict: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self :Dict ) -> Optional[int]: '''simple docstring''' __A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/kandinsky_img2img_frog.npy' ) __A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) __A = 'A red cartoon frog, 4k' __A = KandinskyPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1-prior' , torch_dtype=torch.floataa ) pipe_prior.to(_A ) __A = KandinskyImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-1' , torch_dtype=torch.floataa ) __A = pipeline.to(_A ) pipeline.set_progress_bar_config(disable=_A ) __A = torch.Generator(device='cpu' ).manual_seed(0 ) __A , __A = pipe_prior( _A , generator=_A , num_inference_steps=5 , negative_prompt='' , ).to_tuple() __A = pipeline( _A , image=_A , image_embeds=_A , negative_image_embeds=_A , generator=_A , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) __A = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(_A , _A )
161
1
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class __snake_case : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=False , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ) -> Tuple: '''simple docstring''' UpperCAmelCase : Optional[int] =parent UpperCAmelCase : Union[str, Any] =batch_size UpperCAmelCase : Union[str, Any] =seq_length UpperCAmelCase : Optional[Any] =is_training UpperCAmelCase : Tuple =use_input_mask UpperCAmelCase : List[str] =use_token_type_ids UpperCAmelCase : List[str] =use_labels UpperCAmelCase : int =vocab_size UpperCAmelCase : Optional[int] =hidden_size UpperCAmelCase : Optional[int] =num_hidden_layers UpperCAmelCase : Optional[Any] =num_attention_heads UpperCAmelCase : Tuple =intermediate_size UpperCAmelCase : List[str] =hidden_act UpperCAmelCase : Optional[int] =hidden_dropout_prob UpperCAmelCase : Union[str, Any] =attention_probs_dropout_prob UpperCAmelCase : str =max_position_embeddings UpperCAmelCase : Optional[Any] =type_vocab_size UpperCAmelCase : Optional[int] =type_sequence_label_size UpperCAmelCase : List[str] =initializer_range UpperCAmelCase : str =num_labels UpperCAmelCase : Any =num_choices UpperCAmelCase : int =scope def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' UpperCAmelCase : str =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase : List[str] =None if self.use_input_mask: UpperCAmelCase : Optional[Any] =random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase : Any =None if self.use_token_type_ids: UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase : Dict =None UpperCAmelCase : Any =None UpperCAmelCase : Optional[Any] =None if self.use_labels: UpperCAmelCase : Union[str, Any] =ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase : Any =ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase : str =self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[int] =BioGptModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : Union[str, Any] =model(snake_case__ , attention_mask=snake_case__ ) UpperCAmelCase : Any =model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =BioGptForCausalLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : int =model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ ) -> str: '''simple docstring''' UpperCAmelCase : Union[str, Any] =BioGptModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # create attention mask UpperCAmelCase : Any =torch.ones(input_ids.shape , dtype=torch.long , device=snake_case__ ) UpperCAmelCase : Optional[int] =self.seq_length // 2 UpperCAmelCase : Union[str, Any] =0 # first forward pass UpperCAmelCase , UpperCAmelCase : List[Any] =model(snake_case__ , attention_mask=snake_case__ ).to_tuple() # create hypothetical next token and extent to next_input_ids UpperCAmelCase : Any =ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids UpperCAmelCase : Any =ids_tensor((1,) , snake_case__ ).item() + 1 UpperCAmelCase : str =ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) UpperCAmelCase : Tuple =random_other_next_tokens # append to next input_ids and attn_mask UpperCAmelCase : Optional[Any] =torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Union[str, Any] =torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=snake_case__ )] , dim=1 , ) # get two different outputs UpperCAmelCase : Dict =model(snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] UpperCAmelCase : Optional[int] =model(snake_case__ , past_key_values=snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] # select random slice UpperCAmelCase : str =ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : int =output_from_no_past[:, -1, random_slice_idx].detach() UpperCAmelCase : Optional[int] =output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ ) -> int: '''simple docstring''' UpperCAmelCase : Optional[int] =BioGptModel(config=snake_case__ ).to(snake_case__ ).eval() UpperCAmelCase : Union[str, Any] =torch.ones(input_ids.shape , dtype=torch.long , device=snake_case__ ) # first forward pass UpperCAmelCase : Union[str, Any] =model(snake_case__ , attention_mask=snake_case__ , use_cache=snake_case__ ) UpperCAmelCase , UpperCAmelCase : List[str] =outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids UpperCAmelCase : Tuple =ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCAmelCase : List[Any] =ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and UpperCAmelCase : Tuple =torch.cat([input_ids, next_tokens] , dim=-1 ) UpperCAmelCase : Any =torch.cat([attention_mask, next_attn_mask] , dim=-1 ) UpperCAmelCase : str =model(snake_case__ , attention_mask=snake_case__ )['''last_hidden_state'''] UpperCAmelCase : Union[str, Any] =model(snake_case__ , attention_mask=snake_case__ , past_key_values=snake_case__ )[ '''last_hidden_state''' ] # select random slice UpperCAmelCase : int =ids_tensor((1,) , output_from_past.shape[-1] ).item() UpperCAmelCase : Any =output_from_no_past[:, -3:, random_slice_idx].detach() UpperCAmelCase : List[Any] =output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(snake_case__ , snake_case__ , atol=1e-3 ) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ , snake_case__=False ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] =BioGptForCausalLM(snake_case__ ) model.to(snake_case__ ) if gradient_checkpointing: model.gradient_checkpointing_enable() UpperCAmelCase : int =model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def UpperCAmelCase__ ( self , snake_case__ , *snake_case__ ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : str =BioGptModel(snake_case__ ) UpperCAmelCase : int =model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , *snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : Any =self.num_labels UpperCAmelCase : int =BioGptForTokenClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : int =model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : Optional[Any] =config_and_inputs UpperCAmelCase : Any ={'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __snake_case ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : Union[str, Any] = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) __lowerCamelCase : Optional[Any] = (BioGptForCausalLM,) if is_torch_available() else () __lowerCamelCase : int = ( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Optional[int] = False def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : List[Any] =BioGptModelTester(self ) UpperCAmelCase : str =ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase : Optional[Any] =type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*snake_case__ , gradient_checkpointing=snake_case__ ) def UpperCAmelCase__ ( self ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*snake_case__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*snake_case__ ) @slow def UpperCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase : int =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(snake_case__ ) UpperCAmelCase : Optional[int] =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase : Dict ='''left''' # Define PAD Token = EOS Token = 50256 UpperCAmelCase : int =tokenizer.eos_token UpperCAmelCase : Any =model.config.eos_token_id # use different length sentences to test batching UpperCAmelCase : Optional[Any] =[ '''Hello, my dog is a little''', '''Today, I''', ] UpperCAmelCase : Union[str, Any] =tokenizer(snake_case__ , return_tensors='''pt''' , padding=snake_case__ ) UpperCAmelCase : Tuple =inputs['''input_ids'''].to(snake_case__ ) UpperCAmelCase : Union[str, Any] =model.generate( input_ids=snake_case__ , attention_mask=inputs['''attention_mask'''].to(snake_case__ ) , ) UpperCAmelCase : Tuple =tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(snake_case__ ) UpperCAmelCase : Dict =model.generate(input_ids=snake_case__ ) UpperCAmelCase : Union[str, Any] =inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() UpperCAmelCase : Optional[Any] =tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(snake_case__ ) UpperCAmelCase : Any =model.generate(input_ids=snake_case__ , max_length=model.config.max_length - num_paddings ) UpperCAmelCase : List[str] =tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ ) UpperCAmelCase : Optional[Any] =tokenizer.decode(output_non_padded[0] , skip_special_tokens=snake_case__ ) UpperCAmelCase : Optional[Any] =tokenizer.decode(output_padded[0] , skip_special_tokens=snake_case__ ) UpperCAmelCase : Tuple =[ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(snake_case__ , snake_case__ ) self.assertListEqual(snake_case__ , [non_padded_sentence, padded_sentence] ) @slow def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase : Union[str, Any] =BioGptModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : List[str] =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : Optional[Any] =3 UpperCAmelCase : Dict =input_dict['''input_ids'''] UpperCAmelCase : List[str] =input_ids.ne(1 ).to(snake_case__ ) UpperCAmelCase : Dict =ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) UpperCAmelCase : Optional[Any] =BioGptForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : Optional[int] =model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase : str =3 UpperCAmelCase : Tuple ='''multi_label_classification''' UpperCAmelCase : Union[str, Any] =input_dict['''input_ids'''] UpperCAmelCase : str =input_ids.ne(1 ).to(snake_case__ ) UpperCAmelCase : List[Any] =ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) UpperCAmelCase : Any =BioGptForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase : List[str] =model(snake_case__ , attention_mask=snake_case__ , labels=snake_case__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class __snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Any =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase : Optional[int] =torch.tensor([[2, 4805, 9, 656, 21]] ) UpperCAmelCase : str =model(snake_case__ )[0] UpperCAmelCase : Any =4_2384 UpperCAmelCase : Union[str, Any] =torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase : int =torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] =BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) UpperCAmelCase : List[str] =BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' ) model.to(snake_case__ ) torch.manual_seed(0 ) UpperCAmelCase : str =tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(snake_case__ ) UpperCAmelCase : Dict =model.generate( **snake_case__ , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=snake_case__ , ) UpperCAmelCase : Dict =tokenizer.decode(output_ids[0] , skip_special_tokens=snake_case__ ) UpperCAmelCase : int =( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(snake_case__ , snake_case__ )
78
import colorsys from PIL import Image # type: ignore def lowerCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> float: '''simple docstring''' UpperCAmelCase : Any =x UpperCAmelCase : List[str] =y for step in range(__lowerCAmelCase ): # noqa: B007 UpperCAmelCase : int =a * a - b * b + x UpperCAmelCase : Union[str, Any] =2 * a * b + y UpperCAmelCase : Optional[int] =a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def lowerCAmelCase_ ( __lowerCAmelCase )-> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return (2_55, 2_55, 2_55) def lowerCAmelCase_ ( __lowerCAmelCase )-> tuple: '''simple docstring''' if distance == 1: return (0, 0, 0) else: return tuple(round(i * 2_55 ) for i in colorsys.hsv_to_rgb(__lowerCAmelCase , 1 , 1 ) ) def lowerCAmelCase_ ( __lowerCAmelCase = 8_00 , __lowerCAmelCase = 6_00 , __lowerCAmelCase = -0.6 , __lowerCAmelCase = 0 , __lowerCAmelCase = 3.2 , __lowerCAmelCase = 50 , __lowerCAmelCase = True , )-> Image.Image: '''simple docstring''' UpperCAmelCase : Dict =Image.new('''RGB''' , (image_width, image_height) ) UpperCAmelCase : str =img.load() # loop through the image-coordinates for image_x in range(__lowerCAmelCase ): for image_y in range(__lowerCAmelCase ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase : Union[str, Any] =figure_width / image_width * image_height UpperCAmelCase : Dict =figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase : str =figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase : int =get_distance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase : Any =get_color_coded_rgb(__lowerCAmelCase ) else: UpperCAmelCase : Optional[int] =get_black_and_white_rgb(__lowerCAmelCase ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure __snake_case = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
78
1
"""simple docstring""" def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int = 1000 ) -> int: _lowerCAmelCase , _lowerCAmelCase : Tuple = 1, 1 _lowerCAmelCase : Optional[Any] = 2 while True: _lowerCAmelCase : Any = 0 _lowerCAmelCase : str = fa + fa _lowerCAmelCase , _lowerCAmelCase : Any = fa, f index += 1 for _ in str(_lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
44
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def _a ( SCREAMING_SNAKE_CASE_ : Optional[Any] ): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set() ) @pytest.fixture def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): class a__ : def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = metric_id class a__ : _a : Optional[int] = [MetricMock(snake_case__ ) for metric_id in ["""accuracy""", """mse""", """precision""", """codeparrot/apps_metric"""]] def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock() ) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))] ) def _a ( SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ): if "tmp_path" in args: __lowerCAmelCase = tuple(arg if arg != "tmp_path" else tmp_path for arg in args ) with pytest.warns(SCREAMING_SNAKE_CASE_ , match="https://huggingface.co/docs/evaluate" ): func(*SCREAMING_SNAKE_CASE_ )
92
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : str = { '''configuration_lxmert''': ['''LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LxmertConfig'''], '''tokenization_lxmert''': ['''LxmertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ['''LxmertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ '''LxmertEncoder''', '''LxmertForPreTraining''', '''LxmertForQuestionAnswering''', '''LxmertModel''', '''LxmertPreTrainedModel''', '''LxmertVisualFeatureEncoder''', '''LxmertXLayer''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : int = [ '''TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFLxmertForPreTraining''', '''TFLxmertMainLayer''', '''TFLxmertModel''', '''TFLxmertPreTrainedModel''', '''TFLxmertVisualFeatureEncoder''', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys UpperCAmelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
357
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : int = 1000 ) -> int: """simple docstring""" return sum(e for e in range(3 , __magic_name__ ) if e % 3 == 0 or e % 5 == 0 ) if __name__ == "__main__": print(F'''{solution() = }''')
62
0
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class lowerCAmelCase__ ( A_ , A_ , unittest.TestCase ): __a = VQModel __a = """sample""" @property def lowercase ( self : Optional[int] , _lowerCamelCase : str=(32, 32) ): _snake_case = 4 _snake_case = 3 _snake_case = floats_tensor((batch_size, num_channels) + sizes ).to(_lowerCamelCase ) return {"sample": image} @property def lowercase ( self : List[Any] ): return (3, 32, 32) @property def lowercase ( self : List[Any] ): return (3, 32, 32) def lowercase ( self : Dict ): _snake_case = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 3, } _snake_case = self.dummy_input return init_dict, inputs_dict def lowercase ( self : Union[str, Any] ): pass def lowercase ( self : Any ): pass def lowercase ( self : Optional[int] ): _snake_case , _snake_case = VQModel.from_pretrained('''fusing/vqgan-dummy''' , output_loading_info=_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) , 0 ) model.to(_lowerCamelCase ) _snake_case = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def lowercase ( self : Dict ): _snake_case = VQModel.from_pretrained('''fusing/vqgan-dummy''' ) model.to(_lowerCamelCase ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) _snake_case = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) _snake_case = image.to(_lowerCamelCase ) with torch.no_grad(): _snake_case = model(_lowerCamelCase ).sample _snake_case = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off _snake_case = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3] ) # fmt: on self.assertTrue(torch.allclose(_lowerCamelCase , _lowerCamelCase , atol=1e-3 ) )
288
"""simple docstring""" def _UpperCAmelCase ( __lowerCamelCase : int = 1_00_00_00 ) -> int: _snake_case = limit + 1 _snake_case = [0] * limit for first_term in range(1 , __lowerCamelCase ): for n in range(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): _snake_case = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _snake_case = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"{solution() = }")
288
1
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE ) -> list: if len(_SCREAMING_SNAKE_CASE ) <= 1: return [tuple(_SCREAMING_SNAKE_CASE )] snake_case_ = [] def generate(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , _SCREAMING_SNAKE_CASE ) for i in range(k - 1 ): if k % 2 == 0: # k is even snake_case_ , snake_case_ = arr[k - 1], arr[i] else: # k is odd snake_case_ , snake_case_ = arr[k - 1], arr[0] generate(k - 1 , _SCREAMING_SNAKE_CASE ) generate(len(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) return res if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[Any] = input('Enter numbers separated by a comma:\n').strip() __SCREAMING_SNAKE_CASE : str = [int(item) for item in user_input.split(',')] print(heaps(arr))
233
"""simple docstring""" import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __SCREAMING_SNAKE_CASE : Tuple = 16 __SCREAMING_SNAKE_CASE : int = 32 def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = 16 , _SCREAMING_SNAKE_CASE = "bert-base-cased" ) -> Optional[Any]: snake_case_ = AutoTokenizer.from_pretrained(_SCREAMING_SNAKE_CASE ) snake_case_ = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(_SCREAMING_SNAKE_CASE ): # max_length=None => use the model max length (it's actually the default) snake_case_ = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset snake_case_ = datasets.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_SCREAMING_SNAKE_CASE ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case_ = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(_SCREAMING_SNAKE_CASE ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(_SCREAMING_SNAKE_CASE , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. snake_case_ = DataLoader( tokenized_datasets["""train"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) snake_case_ = DataLoader( tokenized_datasets["""validation"""] , shuffle=_SCREAMING_SNAKE_CASE , collate_fn=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE ) return train_dataloader, eval_dataloader def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: # Initialize accelerator snake_case_ = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case_ = config["""lr"""] snake_case_ = int(config["""num_epochs"""] ) snake_case_ = int(config["""seed"""] ) snake_case_ = int(config["""batch_size"""] ) snake_case_ = args.model_name_or_path set_seed(_SCREAMING_SNAKE_CASE ) snake_case_ , snake_case_ = get_dataloaders(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case_ = AutoModelForSequenceClassification.from_pretrained(_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE ) # Instantiate optimizer snake_case_ = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) snake_case_ = optimizer_cls(params=model.parameters() , lr=_SCREAMING_SNAKE_CASE ) if accelerator.state.deepspeed_plugin is not None: snake_case_ = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: snake_case_ = 1 snake_case_ = (len(_SCREAMING_SNAKE_CASE ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): snake_case_ = get_linear_schedule_with_warmup( optimizer=_SCREAMING_SNAKE_CASE , num_warmup_steps=0 , num_training_steps=_SCREAMING_SNAKE_CASE , ) else: snake_case_ = DummyScheduler(_SCREAMING_SNAKE_CASE , total_num_steps=_SCREAMING_SNAKE_CASE , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = accelerator.prepare( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # We need to keep track of how many total steps we have iterated over snake_case_ = 0 # We also need to keep track of the stating epoch so files are named properly snake_case_ = 0 # Now we train the model snake_case_ = evaluate.load("""glue""" , """mrpc""" ) snake_case_ = 0 snake_case_ = {} for epoch in range(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): model.train() for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.loss snake_case_ = loss / gradient_accumulation_steps accelerator.backward(_SCREAMING_SNAKE_CASE ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() snake_case_ = 0 for step, batch in enumerate(_SCREAMING_SNAKE_CASE ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case_ = model(**_SCREAMING_SNAKE_CASE ) snake_case_ = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times snake_case_ , snake_case_ = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_SCREAMING_SNAKE_CASE ) - 1: snake_case_ = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case_ = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE , ) snake_case_ = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f"""epoch {epoch}:""" , _SCREAMING_SNAKE_CASE ) snake_case_ = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: snake_case_ = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), f"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""" ) , """w""" ) as f: json.dump(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _a ( ) -> int: snake_case_ = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=_SCREAMING_SNAKE_CASE , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_SCREAMING_SNAKE_CASE , ) parser.add_argument( """--output_dir""" , type=_SCREAMING_SNAKE_CASE , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_SCREAMING_SNAKE_CASE , default=3 , help="""Number of train epochs.""" , ) snake_case_ = parser.parse_args() snake_case_ = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
233
1
import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=None ): # set parameter of one layer assert torch_layer.weight.shape == weight.shape, F'''{torch_layer} layer.weight does not match''' snake_case_ = nn.Parameter(SCREAMING_SNAKE_CASE__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'''{torch_layer} layer.bias does not match''' snake_case_ = nn.Parameter(SCREAMING_SNAKE_CASE__ ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # set torch weights for 1-to-1 comparison snake_case_ = np.asarray(weights[0] ) snake_case_ = np.asarray(weights[1] ) snake_case_ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 , SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 , 1 ) , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # set torch weights for 1-to-1 comparison snake_case_ = np.asarray(weights[0] ) snake_case_ = np.asarray(weights[1] ) snake_case_ = np.asarray(weights[2] ) snake_case_ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(1 , 2 ).contiguous().view(-1 , SCREAMING_SNAKE_CASE__ ) , ) set_param( torch_layer.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).view(-1 , SCREAMING_SNAKE_CASE__ ).contiguous().transpose(0 , 1 ) , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # layernorm 1 snake_case_ = weights[0][0][0] snake_case_ = np.asarray(layer_norm_a[0] ) snake_case_ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # lsh weights + output snake_case_ = weights[0][1] if len(SCREAMING_SNAKE_CASE__ ) < 4: set_layer_weights_in_torch_lsh(SCREAMING_SNAKE_CASE__ , torch_block.attention , SCREAMING_SNAKE_CASE__ ) else: set_layer_weights_in_torch_local(SCREAMING_SNAKE_CASE__ , torch_block.attention , SCREAMING_SNAKE_CASE__ ) # intermediate weighs snake_case_ = weights[2][0][1][2] # Chunked Feed Forward if len(SCREAMING_SNAKE_CASE__ ) == 4: snake_case_ = intermediate_weights[2] # layernorm 2 snake_case_ = np.asarray(intermediate_weights[0][0] ) snake_case_ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # intermediate dense snake_case_ = np.asarray(intermediate_weights[1][0] ) snake_case_ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # intermediate out snake_case_ = np.asarray(intermediate_weights[4][0] ) snake_case_ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # reformer model snake_case_ = torch_model.reformer # word embeds snake_case_ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) if isinstance(weights[3] , SCREAMING_SNAKE_CASE__ ): snake_case_ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case_ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'''{position_embeddings[emb_idx]} emb does not match''' snake_case_ = nn.Parameter(torch.tensor(SCREAMING_SNAKE_CASE__ ) ) snake_case_ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( SCREAMING_SNAKE_CASE__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case_ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # output layer norm snake_case_ = np.asarray(weights[7][0] ) snake_case_ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(SCREAMING_SNAKE_CASE__ ) , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) # output embeddings snake_case_ = np.asarray(weights[9][0] ) snake_case_ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(SCREAMING_SNAKE_CASE__ ).transpose(0 , 1 ).contiguous() , torch.tensor(SCREAMING_SNAKE_CASE__ ) , ) def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): # Initialise PyTorch model snake_case_ = ReformerConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(F'''Building PyTorch model from configuration: {config}''' ) snake_case_ = ReformerModelWithLMHead(SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , '''rb''' ) as f: snake_case_ = pickle.load(SCREAMING_SNAKE_CASE__ )['''weights'''] set_model_weights_in_torch(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , config.hidden_size ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--trax_model_pkl_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained Reformer model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCAmelCase_ = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
8
from typing import Optional import pyspark from .. import Features, NamedSplit from ..download import DownloadMode from ..packaged_modules.spark.spark import Spark from .abc import AbstractDatasetReader class snake_case_ ( __A ): '''simple docstring''' def __init__( self : int , _UpperCamelCase : pyspark.sql.DataFrame , _UpperCamelCase : Optional[NamedSplit] = None , _UpperCamelCase : Optional[Features] = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = None , _UpperCamelCase : bool = False , _UpperCamelCase : str = None , _UpperCamelCase : bool = True , _UpperCamelCase : str = "arrow" , **_UpperCamelCase : Tuple , ) ->str: super().__init__( split=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , keep_in_memory=_UpperCamelCase , streaming=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = load_from_cache_file snake_case_ = file_format snake_case_ = Spark( df=_UpperCamelCase , features=_UpperCamelCase , cache_dir=_UpperCamelCase , working_dir=_UpperCamelCase , **_UpperCamelCase , ) def snake_case__( self : int ) ->Tuple: if self.streaming: return self.builder.as_streaming_dataset(split=self.split ) snake_case_ = None if self._load_from_cache_file else DownloadMode.FORCE_REDOWNLOAD self.builder.download_and_prepare( download_mode=_UpperCamelCase , file_format=self._file_format , ) return self.builder.as_dataset(split=self.split )
8
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowercase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["GPTSw3Tokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowercase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
11
"""simple docstring""" import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : str = ['image_processor', 'tokenizer'] __UpperCAmelCase : str = 'LayoutLMv3ImageProcessor' __UpperCAmelCase : Optional[int] = ('LayoutLMv3Tokenizer', 'LayoutLMv3TokenizerFast') def __init__( self , _a=None , _a=None , **_a ): __a = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , _a , ) __a = kwargs.pop('''feature_extractor''' ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(_a , _a ) def __call__( self , _a , _a = None , _a = None , _a = None , _a = None , _a = True , _a = False , _a = None , _a = None , _a = 0 , _a = None , _a = None , _a = None , _a = False , _a = False , _a = False , _a = False , _a = True , _a = None , **_a , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( '''You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True.''' ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( '''You cannot provide word labels if you initialized the image processor with apply_ocr set to True.''' ) # first, apply the image processor __a = self.image_processor(images=_a , return_tensors=_a ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(_a , _a ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features['''words'''] __a = self.tokenizer( text=text if text is not None else features['''words'''] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features['''boxes'''] , word_labels=_a , add_special_tokens=_a , padding=_a , truncation=_a , max_length=_a , stride=_a , pad_to_multiple_of=_a , return_token_type_ids=_a , return_attention_mask=_a , return_overflowing_tokens=_a , return_special_tokens_mask=_a , return_offsets_mapping=_a , return_length=_a , verbose=_a , return_tensors=_a , **_a , ) # add pixel values __a = features.pop('''pixel_values''' ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(_a , encoded_inputs['''overflow_to_sample_mapping'''] ) __a = images return encoded_inputs def __UpperCAmelCase ( self , _a , _a ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(_a ) != len(_a ): raise ValueError( '''Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got''' f''' {len(_a )} and {len(_a )}''' ) return images_with_overflow def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.batch_decode(*_a , **_a ) def __UpperCAmelCase ( self , *_a , **_a ): return self.tokenizer.decode(*_a , **_a ) @property def __UpperCAmelCase ( self ): return ["input_ids", "bbox", "attention_mask", "pixel_values"] @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , _a , ) return self.image_processor_class @property def __UpperCAmelCase ( self ): warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , _a , ) return self.image_processor
11
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available snake_case_ = { """configuration_ernie""": ["""ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ErnieConfig""", """ErnieOnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ """ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST""", """ErnieForCausalLM""", """ErnieForMaskedLM""", """ErnieForMultipleChoice""", """ErnieForNextSentencePrediction""", """ErnieForPreTraining""", """ErnieForQuestionAnswering""", """ErnieForSequenceClassification""", """ErnieForTokenClassification""", """ErnieModel""", """ErniePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """microsoft/beit-base-patch16-224-pt22k""": ( """https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json""" ), # See all BEiT models at https://huggingface.co/models?filter=beit } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = """beit""" def __init__( self :List[str] , lowercase_ :List[Any]=81_92 , lowercase_ :str=7_68 , lowercase_ :List[str]=12 , lowercase_ :Optional[int]=12 , lowercase_ :Dict=30_72 , lowercase_ :Tuple="gelu" , lowercase_ :Any=0.0 , lowercase_ :Optional[int]=0.0 , lowercase_ :Dict=0.02 , lowercase_ :int=1E-12 , lowercase_ :List[Any]=2_24 , lowercase_ :Dict=16 , lowercase_ :List[Any]=3 , lowercase_ :List[str]=False , lowercase_ :Optional[Any]=False , lowercase_ :Optional[Any]=False , lowercase_ :Optional[Any]=False , lowercase_ :Union[str, Any]=0.1 , lowercase_ :str=0.1 , lowercase_ :str=True , lowercase_ :List[str]=[3, 5, 7, 11] , lowercase_ :Optional[int]=[1, 2, 3, 6] , lowercase_ :str=True , lowercase_ :int=0.4 , lowercase_ :Union[str, Any]=2_56 , lowercase_ :int=1 , lowercase_ :Tuple=False , lowercase_ :Optional[int]=2_55 , **lowercase_ :str , ) -> Any: super().__init__(**lowercase_ ) UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = initializer_range UpperCAmelCase = layer_norm_eps UpperCAmelCase = image_size UpperCAmelCase = patch_size UpperCAmelCase = num_channels UpperCAmelCase = use_mask_token UpperCAmelCase = use_absolute_position_embeddings UpperCAmelCase = use_relative_position_bias UpperCAmelCase = use_shared_relative_position_bias UpperCAmelCase = layer_scale_init_value UpperCAmelCase = drop_path_rate UpperCAmelCase = use_mean_pooling # decode head attributes (semantic segmentation) UpperCAmelCase = out_indices UpperCAmelCase = pool_scales # auxiliary head attributes (semantic segmentation) UpperCAmelCase = use_auxiliary_head UpperCAmelCase = auxiliary_loss_weight UpperCAmelCase = auxiliary_channels UpperCAmelCase = auxiliary_num_convs UpperCAmelCase = auxiliary_concat_input UpperCAmelCase = semantic_loss_ignore_index class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = version.parse("""1.11""" ) @property def UpperCAmelCase__ ( self :Dict ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def UpperCAmelCase__ ( self :Tuple ) -> float: return 1E-4
78
1
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = IFInpaintingPipeline __A = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} __A = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS __A = PipelineTesterMixin.required_optional_params - {"latents"} def lowercase__ ( self : int ): """simple docstring""" return self._get_dummy_components() def lowercase__ ( self : Optional[int] , lowercase : List[str] , lowercase : str=0 ): """simple docstring""" if str(lowercase ).startswith("mps" ): lowercase_ :Any = torch.manual_seed(lowercase ) else: lowercase_ :int = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowercase_ :str = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) lowercase_ :List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowercase ) ).to(lowercase ) lowercase_ :Dict = { "prompt": "A painting of a squirrel eating a burger", "image": image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowercase__ ( self : str ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def lowercase__ ( self : Any ): """simple docstring""" self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def lowercase__ ( self : str ): """simple docstring""" super().test_save_load_floataa(expected_max_diff=1e-1 ) def lowercase__ ( self : Optional[int] ): """simple docstring""" self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" self._test_save_load_local() def lowercase__ ( self : Dict ): """simple docstring""" self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
147
'''simple docstring''' from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a_ : def __init__( self : int , lowercase : Optional[int] , lowercase : List[Any]=13 , lowercase : Dict=30 , lowercase : Dict=2 , lowercase : Tuple=3 , lowercase : Dict=True , lowercase : Dict=True , lowercase : Tuple=32 , lowercase : List[Any]=2 , lowercase : List[str]=4 , lowercase : List[Any]=37 , lowercase : Union[str, Any]="gelu" , lowercase : List[str]=0.1 , lowercase : List[Any]=0.1 , lowercase : List[str]=10 , lowercase : Any=0.02 , lowercase : Union[str, Any]=3 , lowercase : Tuple=None , lowercase : List[str]=2 , ): """simple docstring""" lowercase_ :Union[str, Any] = parent lowercase_ :Optional[int] = batch_size lowercase_ :Tuple = image_size lowercase_ :Any = patch_size lowercase_ :List[Any] = num_channels lowercase_ :Optional[Any] = is_training lowercase_ :str = use_labels lowercase_ :Any = hidden_size lowercase_ :Optional[int] = num_hidden_layers lowercase_ :List[Any] = num_attention_heads lowercase_ :str = intermediate_size lowercase_ :Optional[int] = hidden_act lowercase_ :List[Any] = hidden_dropout_prob lowercase_ :Optional[Any] = attention_probs_dropout_prob lowercase_ :Any = type_sequence_label_size lowercase_ :Dict = initializer_range lowercase_ :List[Any] = scope lowercase_ :List[str] = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) lowercase_ :str = (image_size // patch_size) ** 2 lowercase_ :Any = num_patches + 2 def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase_ :Optional[Any] = None if self.use_labels: lowercase_ :Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ :Any = self.get_config() return config, pixel_values, labels def lowercase__ ( self : List[Any] ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def lowercase__ ( self : Tuple , lowercase : int , lowercase : str , lowercase : Tuple ): """simple docstring""" lowercase_ :Optional[int] = TFDeiTModel(config=lowercase ) lowercase_ :str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : str , lowercase : str , lowercase : Optional[Any] , lowercase : str ): """simple docstring""" lowercase_ :List[str] = TFDeiTForMaskedImageModeling(config=lowercase ) lowercase_ :Optional[int] = model(lowercase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowercase_ :List[str] = 1 lowercase_ :List[str] = TFDeiTForMaskedImageModeling(lowercase ) lowercase_ :Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ :List[str] = model(lowercase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase__ ( self : List[str] , lowercase : Any , lowercase : Union[str, Any] , lowercase : Union[str, Any] ): """simple docstring""" lowercase_ :Tuple = self.type_sequence_label_size lowercase_ :str = TFDeiTForImageClassification(lowercase ) lowercase_ :str = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowercase_ :Optional[int] = 1 lowercase_ :Optional[int] = TFDeiTForImageClassification(lowercase ) lowercase_ :List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowercase_ :int = model(lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase__ ( self : Dict ): """simple docstring""" lowercase_ :Tuple = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ :Tuple = config_and_inputs lowercase_ :Tuple = {"pixel_values": pixel_values} return config, inputs_dict @require_tf class a_ ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): __A = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) __A = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) __A = False __A = False __A = False __A = False def lowercase__ ( self : Optional[int] ): """simple docstring""" lowercase_ :List[Any] = TFDeiTModelTester(self ) lowercase_ :List[Any] = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37 ) def lowercase__ ( self : Tuple ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def lowercase__ ( self : Optional[int] ): """simple docstring""" pass def lowercase__ ( self : Tuple ): """simple docstring""" lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Optional[Any] = model_class(lowercase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) lowercase_ :Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , tf.keras.layers.Dense ) ) def lowercase__ ( self : Any ): """simple docstring""" lowercase_ , lowercase_ :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ :Tuple = model_class(lowercase ) lowercase_ :Optional[int] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ :Tuple = [*signature.parameters.keys()] lowercase_ :Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase ) def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def lowercase__ ( self : str ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase ) def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase ) def lowercase__ ( self : List[Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : Any=False ): """simple docstring""" lowercase_ :Dict = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def lowercase__ ( self : List[Any] ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ :List[Any] = TFDeiTModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) def UpperCAmelCase_ ( ): lowercase_ :List[str] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): @cached_property def lowercase__ ( self : Dict ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def lowercase__ ( self : Optional[Any] ): """simple docstring""" lowercase_ :Optional[int] = TFDeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ) lowercase_ :Optional[int] = self.default_image_processor lowercase_ :Union[str, Any] = prepare_img() lowercase_ :Dict = image_processor(images=lowercase , return_tensors="tf" ) # forward pass lowercase_ :Union[str, Any] = model(**lowercase ) # verify the logits lowercase_ :Union[str, Any] = tf.TensorShape((1, 1_000) ) self.assertEqual(outputs.logits.shape , lowercase ) lowercase_ :Dict = tf.constant([-1.02_66, 0.19_12, -1.28_61] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4 ) )
147
1
def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = 1 while len(SCREAMING_SNAKE_CASE__ ) < 1E6: constant.append(str(SCREAMING_SNAKE_CASE__ ) ) i += 1 __lowerCamelCase = """""".join(SCREAMING_SNAKE_CASE__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[99999] ) * int(constant[999999] ) ) if __name__ == "__main__": print(solution())
12
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _A = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
62
0
'''simple docstring''' import pytest import datasets # Import fixture modules as plugins __UpperCAmelCase :Tuple = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def _a ( _lowercase : Tuple , _lowercase : int ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def _a ( _lowercase : Dict ): '''simple docstring''' config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=_lowercase ) def _a ( _lowercase : Optional[int] , _lowercase : List[Any] ): '''simple docstring''' __UpperCAmelCase : Dict = tmp_path_factory.getbasetemp() / '''cache''' __UpperCAmelCase : Any = test_hf_cache_home / '''datasets''' __UpperCAmelCase : Tuple = test_hf_cache_home / '''metrics''' __UpperCAmelCase : Tuple = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(_lowercase ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(_lowercase ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(_lowercase ) ) __UpperCAmelCase : Dict = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(_lowercase ) ) __UpperCAmelCase : int = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(_lowercase ) ) @pytest.fixture(autouse=_lowercase , scope='''session''' ) def _a ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=_lowercase ) def _a ( _lowercase : Optional[Any] ): '''simple docstring''' monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , _lowercase ) @pytest.fixture def _a ( _lowercase : List[str] ): '''simple docstring''' monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , _lowercase )
240
'''simple docstring''' def _a ( _lowercase : List[str] ): '''simple docstring''' __UpperCAmelCase : str = 1 __UpperCAmelCase : List[str] = 2 while i * i <= n: __UpperCAmelCase : Optional[Any] = 0 while n % i == 0: n //= i multiplicity += 1 n_divisors *= multiplicity + 1 i += 1 if n > 1: n_divisors *= 2 return n_divisors def _a ( ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : List[Any] = 1 while True: i += 1 t_num += i if count_divisors(_lowercase ) > 500: break return t_num if __name__ == "__main__": print(solution())
240
1
import argparse import torch from transformers import ( UniSpeechSatConfig, UniSpeechSatForAudioFrameClassification, UniSpeechSatForSequenceClassification, UniSpeechSatForXVector, WavaVecaFeatureExtractor, logging, ) logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) def snake_case_ ( lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[int] ): __lowercase : Optional[int] = UniSpeechSatForSequenceClassification.from_pretrained(lowerCAmelCase_ , config=lowerCAmelCase_ ) __lowercase : str = downstream_dict["""projector.weight"""] __lowercase : Any = downstream_dict["""projector.bias"""] __lowercase : Dict = downstream_dict["""model.post_net.linear.weight"""] __lowercase : int = downstream_dict["""model.post_net.linear.bias"""] return model def snake_case_ ( lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): __lowercase : Dict = UniSpeechSatForAudioFrameClassification.from_pretrained(lowerCAmelCase_ , config=lowerCAmelCase_ ) __lowercase : List[str] = downstream_dict["""model.linear.weight"""] __lowercase : Optional[int] = downstream_dict["""model.linear.bias"""] return model def snake_case_ ( lowerCAmelCase_ : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] ): __lowercase : Union[str, Any] = UniSpeechSatForXVector.from_pretrained(lowerCAmelCase_ , config=lowerCAmelCase_ ) __lowercase : Tuple = downstream_dict["""connector.weight"""] __lowercase : Dict = downstream_dict["""connector.bias"""] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): __lowercase : Optional[Any] = downstream_dict[ F"model.framelevel_feature_extractor.module.{i}.kernel.weight" ] __lowercase : Dict = downstream_dict[F"model.framelevel_feature_extractor.module.{i}.kernel.bias"] __lowercase : str = downstream_dict["""model.utterancelevel_feature_extractor.linear1.weight"""] __lowercase : Optional[int] = downstream_dict["""model.utterancelevel_feature_extractor.linear1.bias"""] __lowercase : Union[str, Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.weight"""] __lowercase : Optional[Any] = downstream_dict["""model.utterancelevel_feature_extractor.linear2.bias"""] __lowercase : Optional[int] = downstream_dict["""objective.W"""] return model @torch.no_grad() def snake_case_ ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int ): __lowercase : int = torch.load(lowerCAmelCase_ , map_location="""cpu""" ) __lowercase : Optional[int] = checkpoint["""Downstream"""] __lowercase : List[str] = UniSpeechSatConfig.from_pretrained(lowerCAmelCase_ ) __lowercase : int = WavaVecaFeatureExtractor.from_pretrained( lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , do_normalize=lowerCAmelCase_ ) __lowercase : int = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): __lowercase : Any = convert_classification(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) elif arch.endswith("""ForAudioFrameClassification""" ): __lowercase : List[str] = convert_diarization(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) elif arch.endswith("""ForXVector""" ): __lowercase : List[str] = convert_xvector(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: raise NotImplementedError(F"S3PRL weights conversion is not supported for {arch}" ) if hf_config.use_weighted_layer_sum: __lowercase : List[Any] = checkpoint["""Featurizer"""]["""weights"""] hf_feature_extractor.save_pretrained(lowerCAmelCase_ ) hf_model.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--base_model_name''', default=None, type=str, help='''Name of the huggingface pretrained base model.''' ) parser.add_argument('''--config_path''', default=None, type=str, help='''Path to the huggingface classifier config.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to the s3prl checkpoint.''') parser.add_argument('''--model_dump_path''', default=None, type=str, help='''Path to the final converted model.''') lowerCamelCase : List[str] = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
233
# flake8: noqa # Lint as: python3 lowerCamelCase : Optional[Any] = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
233
1
from __future__ import annotations from random import choice def A__ ( SCREAMING_SNAKE_CASE__) -> Optional[Any]: return choice(UpperCAmelCase_) def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> int: __snake_case: Optional[int] = random_pivot(UpperCAmelCase_) # partition based on pivot # linear time __snake_case: List[Any] = [e for e in lst if e < pivot] __snake_case: Any = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(UpperCAmelCase_) == k - 1: return pivot # pivot is in elements bigger than k elif len(UpperCAmelCase_) < k - 1: return kth_number(UpperCAmelCase_ , k - len(UpperCAmelCase_) - 1) # pivot is in elements smaller than k else: return kth_number(UpperCAmelCase_ , UpperCAmelCase_) if __name__ == "__main__": import doctest doctest.testmod()
357
import warnings from diffusers import StableDiffusionImgaImgPipeline # noqa F401 warnings.warn( "The `image_to_image.py` script is outdated. Please use directly `from diffusers import" " StableDiffusionImg2ImgPipeline` instead." )
293
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available lowerCAmelCase__ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['GPTSw3Tokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
11
import collections import inspect import unittest from typing import Dict, List, Tuple from transformers import MaskFormerSwinConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, torch_device from transformers.utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MaskFormerSwinBackbone from transformers.models.maskformer import MaskFormerSwinModel class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=3 , __lowerCamelCase=1_6 , __lowerCamelCase=[1, 2, 1] , __lowerCamelCase=[2, 2, 4] , __lowerCamelCase=2 , __lowerCamelCase=2.0 , __lowerCamelCase=True , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=0.1 , __lowerCamelCase="gelu" , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=0.0_2 , __lowerCamelCase=1e-5 , __lowerCamelCase=True , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=1_0 , __lowerCamelCase=8 , __lowerCamelCase=["stage1", "stage2", "stage3"] , __lowerCamelCase=[1, 2, 3] , ) -> Optional[Any]: _A : int = parent _A : Optional[Any] = batch_size _A : str = image_size _A : Tuple = patch_size _A : Tuple = num_channels _A : Optional[int] = embed_dim _A : Dict = depths _A : Any = num_heads _A : Any = window_size _A : int = mlp_ratio _A : Any = qkv_bias _A : Union[str, Any] = hidden_dropout_prob _A : Optional[Any] = attention_probs_dropout_prob _A : Dict = drop_path_rate _A : List[Any] = hidden_act _A : Any = use_absolute_embeddings _A : Optional[int] = patch_norm _A : Tuple = layer_norm_eps _A : List[str] = initializer_range _A : Optional[int] = is_training _A : Optional[Any] = scope _A : Optional[int] = use_labels _A : Dict = type_sequence_label_size _A : str = encoder_stride _A : Optional[int] = out_features _A : Optional[int] = out_indices def _lowerCamelCase ( self) -> Union[str, Any]: _A : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _A : Optional[Any] = None if self.use_labels: _A : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) _A : Optional[int] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self) -> Union[str, Any]: return MaskFormerSwinConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> List[Any]: _A : Dict = MaskFormerSwinModel(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : int = model(__lowerCamelCase) _A : Any = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths) - 1)) _A : List[str] = int(config.embed_dim * 2 ** (len(config.depths) - 1)) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim)) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : Dict = model(__lowerCamelCase) # verify feature maps self.parent.assertEqual(len(result.feature_maps) , len(config.out_features)) self.parent.assertListEqual(list(result.feature_maps[0].shape) , [1_3, 1_6, 1_6, 1_6]) # verify channels self.parent.assertEqual(len(model.channels) , len(config.out_features)) self.parent.assertListEqual(model.channels , [1_6, 3_2, 6_4]) # verify ValueError with self.parent.assertRaises(__lowerCamelCase): _A : Union[str, Any] = ["stem"] _A : Union[str, Any] = MaskFormerSwinBackbone(config=__lowerCamelCase) def _lowerCamelCase ( self) -> Dict: _A : Any = self.prepare_config_and_inputs() _A , _A , _A : List[Any] = config_and_inputs _A : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase): '''simple docstring''' __SCREAMING_SNAKE_CASE = ( ( MaskFormerSwinModel, MaskFormerSwinBackbone, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = {"feature-extraction": MaskFormerSwinModel} if is_torch_available() else {} __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def _lowerCamelCase ( self) -> str: _A : Union[str, Any] = MaskFormerSwinModelTester(self) _A : Optional[int] = ConfigTester(self , config_class=__lowerCamelCase , embed_dim=3_7) @require_torch_multi_gpu @unittest.skip( reason=( "`MaskFormerSwinModel` outputs `hidden_states_spatial_dimensions` which doesn't work well with" " `nn.DataParallel`" )) def _lowerCamelCase ( self) -> Union[str, Any]: pass def _lowerCamelCase ( self) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCamelCase ( self) -> str: return def _lowerCamelCase ( self) -> List[Any]: _A : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase) def _lowerCamelCase ( self) -> Union[str, Any]: _A : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowerCamelCase) @unittest.skip("Swin does not use inputs_embeds") def _lowerCamelCase ( self) -> str: pass @unittest.skip("Swin does not support feedforward chunking") def _lowerCamelCase ( self) -> List[Any]: pass def _lowerCamelCase ( self) -> Optional[int]: _A , _A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : Union[str, Any] = model_class(__lowerCamelCase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) _A : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear)) def _lowerCamelCase ( self) -> Any: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A : int = model_class(__lowerCamelCase) _A : Optional[int] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A : int = [*signature.parameters.keys()] _A : Optional[int] = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase) @unittest.skip(reason="MaskFormerSwin is only used as backbone and doesn't support output_attentions") def _lowerCamelCase ( self) -> Tuple: pass @unittest.skip(reason="MaskFormerSwin is only used as an internal backbone") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Optional[int]: _A : Any = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() with torch.no_grad(): _A : str = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase)) _A : Tuple = outputs.hidden_states _A : Any = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths) + 1) self.assertEqual(len(__lowerCamelCase) , __lowerCamelCase) # Swin has a different seq_length _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : str = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:]) , [num_patches, self.model_tester.embed_dim] , ) def _lowerCamelCase ( self) -> Dict: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Any = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Optional[int] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) def _lowerCamelCase ( self) -> Tuple: _A , _A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() _A : Optional[int] = 3 _A : Dict = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable) else (self.model_tester.image_size, self.model_tester.image_size) ) _A : Optional[int] = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable) else (config.patch_size, config.patch_size) ) _A : int = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) _A : Dict = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: _A : List[Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _A : Union[str, Any] = True self.check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , (padded_height, padded_width)) @unittest.skip(reason="MaskFormerSwin doesn't have pretrained checkpoints") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> List[str]: pass @unittest.skip(reason="This will be fixed once MaskFormerSwin is replaced by native Swin") def _lowerCamelCase ( self) -> str: pass def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : Any = self.model_tester.prepare_config_and_inputs_for_common() def set_nan_tensor_to_zero(__lowerCamelCase): _A : Optional[int] = 0 return t def check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase={}): with torch.no_grad(): _A : Any = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase) _A : int = model(**__lowerCamelCase , return_dict=__lowerCamelCase , **__lowerCamelCase).to_tuple() def recursive_check(__lowerCamelCase , __lowerCamelCase): if isinstance(__lowerCamelCase , (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(__lowerCamelCase , __lowerCamelCase): recursive_check(__lowerCamelCase , __lowerCamelCase) elif isinstance(__lowerCamelCase , __lowerCamelCase): for tuple_iterable_value, dict_iterable_value in zip( tuple_object.values() , dict_object.values()): recursive_check(__lowerCamelCase , __lowerCamelCase) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(__lowerCamelCase) , set_nan_tensor_to_zero(__lowerCamelCase) , atol=1e-5) , msg=( "Tuple and dict output are not equal. Difference:" F" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" F" {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}. Dict has" F" `nan`: {torch.isnan(__lowerCamelCase).any()} and `inf`: {torch.isinf(__lowerCamelCase)}." ) , ) recursive_check(__lowerCamelCase , __lowerCamelCase) for model_class in self.all_model_classes: _A : List[Any] = model_class(__lowerCamelCase) model.to(__lowerCamelCase) model.eval() _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : Tuple = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : Any = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase) _A : List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) _A : str = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) _A : Union[str, Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) _A : Optional[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase) check_equivalence(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , {"output_hidden_states": True}) @require_torch class lowerCAmelCase__ ( unittest.TestCase , a): '''simple docstring''' __SCREAMING_SNAKE_CASE = (MaskFormerSwinBackbone,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = MaskFormerSwinConfig def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = MaskFormerSwinModelTester(self) def _lowerCamelCase ( self) -> Optional[Any]: _A , _A : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() _A : Union[str, Any] = inputs_dict["pixel_values"].shape[0] for backbone_class in self.all_model_classes: _A : Optional[Any] = backbone_class(__lowerCamelCase) backbone.to(__lowerCamelCase) backbone.eval() _A : List[Any] = backbone(**__lowerCamelCase) # Test default outputs and verify feature maps self.assertIsInstance(outputs.feature_maps , __lowerCamelCase) self.assertTrue(len(outputs.feature_maps) == len(backbone.channels)) for feature_map, n_channels in zip(outputs.feature_maps , backbone.channels): self.assertTrue(feature_map.shape[:2] , (batch_size, n_channels)) self.assertIsNone(outputs.hidden_states) self.assertIsNone(outputs.attentions) # Test output_hidden_states=True _A : List[str] = backbone(**__lowerCamelCase , output_hidden_states=__lowerCamelCase) self.assertIsNotNone(outputs.hidden_states) self.assertTrue(len(outputs.hidden_states) , len(backbone.stage_names)) # We skip the stem layer for hidden_states, n_channels in zip(outputs.hidden_states[1:] , backbone.channels): for hidden_state in hidden_states: # Hidden states are in the format (batch_size, (height * width), n_channels) _A , _A , _A : List[str] = hidden_state.shape self.assertTrue((h_batch_size, h_n_channels) , (batch_size, n_channels)) # Test output_attentions=True if self.has_attentions: _A : int = backbone(**__lowerCamelCase , output_attentions=__lowerCamelCase) self.assertIsNotNone(outputs.attentions)
11
1
'''simple docstring''' from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time lowerCAmelCase__ = Lock() def _A ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __lowercase = min(__a , __a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __lowercase = max(__a , __a ) # after all swaps are performed, send the values back to main result_pipe[1].send(__a ) def _A ( A__ ): """simple docstring""" __lowercase = [] __lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __lowercase = Pipe() __lowercase = Pipe() process_array_.append( Process( target=__a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __lowercase = temp_rs __lowercase = temp_rr for i in range(1 , len(__a ) - 1 ): __lowercase = Pipe() __lowercase = Pipe() process_array_.append( Process( target=__a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __lowercase = temp_rs __lowercase = temp_rr process_array_.append( Process( target=__a , args=( len(__a ) - 1, arr[len(__a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__a ) ): __lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def _A ( ): """simple docstring""" __lowercase = list(range(10 , 0 , -1 ) ) print('''Initial List''' ) print(*__a ) __lowercase = odd_even_transposition(__a ) print('''Sorted List\n''' ) print(*__a ) if __name__ == "__main__": main()
355
'''simple docstring''' lowerCAmelCase__ = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def _A ( ): """simple docstring""" __lowercase = input('''Enter message: ''' ) __lowercase = input('''Enter key [alphanumeric]: ''' ) __lowercase = input('''Encrypt/Decrypt [e/d]: ''' ) if mode.lower().startswith('''e''' ): __lowercase = '''encrypt''' __lowercase = encrypt_message(A__ , A__ ) elif mode.lower().startswith('''d''' ): __lowercase = '''decrypt''' __lowercase = decrypt_message(A__ , A__ ) print(F"\n{mode.title()}ed message:" ) print(A__ ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''encrypt''' ) def _A ( A__ , A__ ): """simple docstring""" return translate_message(A__ , A__ , '''decrypt''' ) def _A ( A__ , A__ , A__ ): """simple docstring""" __lowercase = [] __lowercase = 0 __lowercase = key.upper() for symbol in message: __lowercase = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(A__ ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(A__ ): __lowercase = 0 else: translated.append(A__ ) return "".join(A__ ) if __name__ == "__main__": main()
52
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Optional[int] = {'configuration_wavlm': ['WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WavLMConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : Dict = [ 'WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'WavLMForAudioFrameClassification', 'WavLMForCTC', 'WavLMForSequenceClassification', 'WavLMForXVector', 'WavLMModel', 'WavLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys a : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
147
import os # Precomputes a list of the 100 first triangular numbers a : Optional[Any] = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: Any = os.path.dirname(os.path.realpath(lowerCAmelCase__ ) ) UpperCAmelCase_: List[Any] = os.path.join(lowerCAmelCase__ , """words.txt""" ) UpperCAmelCase_: int = """""" with open(lowerCAmelCase__ ) as f: UpperCAmelCase_: str = f.readline() UpperCAmelCase_: Optional[int] = [word.strip("""\"""" ) for word in words.strip("""\r\n""" ).split(""",""" )] UpperCAmelCase_: Union[str, Any] = [ word for word in [sum(ord(lowerCAmelCase__ ) - 6_4 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(lowerCAmelCase__ ) if __name__ == "__main__": print(solution())
147
1
from math import pi, sqrt def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Union[str, Any]: if num <= 0: raise ValueError("math domain error" ) if num > 171.5: raise OverflowError("math range error" ) elif num - int(__SCREAMING_SNAKE_CASE ) not in (0, 0.5): raise NotImplementedError("num must be an integer or a half-integer" ) elif num == 0.5: return sqrt(__SCREAMING_SNAKE_CASE ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def SCREAMING_SNAKE_CASE ( ) -> str: assert gamma(0.5 ) == sqrt(__SCREAMING_SNAKE_CASE ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() lowerCamelCase : Dict =1.0 while num: lowerCamelCase : List[str] =float(input('''Gamma of: ''')) print(F"""gamma({num}) = {gamma(num)}""") print('''\nEnter 0 to exit...''')
370
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Any = len(__lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ : Optional[int] = i + 1 else: UpperCamelCase__ : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
196
0
import json import logging import os import re import sys from dataclasses import dataclass, field from typing import Any, Dict, List, Optional, Union import datasets import numpy as np import torch import torchaudio from packaging import version from torch import nn import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaProcessor, is_apex_available, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process if is_apex_available(): from apex import amp if version.parse(version.parse(torch.__version__).base_version) >= version.parse('''1.6'''): snake_case : Union[str, Any] = True from torch.cuda.amp import autocast snake_case : Optional[int] = logging.getLogger(__name__) def __lowercase ( __lowerCAmelCase : int=None , __lowerCAmelCase : Any=None ): return field(default_factory=lambda: default , metadata=__lowerCAmelCase ) @dataclass class snake_case_ : UpperCAmelCase__ : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) UpperCAmelCase__ : Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) UpperCAmelCase__ : Optional[bool] = field( default=lowerCamelCase_ , metadata={'''help''': '''Whether to freeze the feature extractor layers of the model.'''} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for the attention probabilities.'''} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout ratio for activations inside the fully connected layer.'''} ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={ '''help''': '''The dropout probabilitiy for all fully connected layers in the embeddings, encoder, and pooler.''' } , ) UpperCAmelCase__ : Optional[float] = field( default=0.1 , metadata={'''help''': '''The dropout probabilitiy for all 1D convolutional layers in feature extractor.'''} , ) UpperCAmelCase__ : Optional[float] = field( default=0.0_5 , metadata={ '''help''': ( '''Propability of each feature vector along the time axis to be chosen as the start of the vector''' '''span to be masked. Approximately ``mask_time_prob * sequence_length // mask_time_length`` feature''' '''vectors will be masked along the time axis. This is only relevant if ``apply_spec_augment is True``.''' ) } , ) UpperCAmelCase__ : Optional[float] = field(default=0.0 , metadata={'''help''': '''The LayerDrop probability.'''} ) @dataclass class snake_case_ : UpperCAmelCase__ : Optional[str] = field( default=lowerCamelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase__ : Optional[str] = field( default='''train+validation''' , metadata={ '''help''': '''The name of the training data set split to use (via the datasets library). Defaults to \'train\'''' } , ) UpperCAmelCase__ : bool = field( default=lowerCamelCase_ , metadata={'''help''': '''Overwrite the cached preprocessed datasets or not.'''} ) UpperCAmelCase__ : Optional[int] = field( default=lowerCamelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) UpperCAmelCase__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ : Optional[int] = field( default=lowerCamelCase_ , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of validation examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase__ : List[str] = list_field( default=[''',''', '''?''', '''.''', '''!''', '''-''', ''';''', ''':''', '''""''', '''%''', '''\'''', '''"''', '''�'''] , metadata={'''help''': '''A list of characters to remove from the transcripts.'''} , ) @dataclass class snake_case_ : UpperCAmelCase__ : WavaVecaProcessor UpperCAmelCase__ : Union[bool, str] = True UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None UpperCAmelCase__ : Optional[int] = None def __call__( self :Dict ,__snake_case :List[Dict[str, Union[List[int], torch.Tensor]]] ) -> Dict[str, torch.Tensor]: # split inputs and labels since they have to be of different lenghts and need # different padding methods a__ = [{'input_values': feature['input_values']} for feature in features] a__ = [{'input_ids': feature['labels']} for feature in features] a__ = self.processor.pad( __snake_case ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='pt' ,) a__ = self.processor.pad( labels=__snake_case ,padding=self.padding ,max_length=self.max_length_labels ,pad_to_multiple_of=self.pad_to_multiple_of_labels ,return_tensors='pt' ,) # replace padding with -100 to ignore loss correctly a__ = labels_batch['input_ids'].masked_fill(labels_batch.attention_mask.ne(1 ) ,-1_00 ) a__ = labels return batch class snake_case_ (lowerCamelCase_ ): def lowerCamelCase__( self :Optional[Any] ,__snake_case :nn.Module ,__snake_case :Dict[str, Union[torch.Tensor, Any]] ) -> torch.Tensor: model.train() a__ = self._prepare_inputs(__snake_case ) if self.use_amp: with autocast(): a__ = self.compute_loss(__snake_case ,__snake_case ) else: a__ = self.compute_loss(__snake_case ,__snake_case ) if self.args.n_gpu > 1: if model.module.config.ctc_loss_reduction == "mean": a__ = loss.mean() elif model.module.config.ctc_loss_reduction == "sum": a__ = loss.sum() / (inputs['labels'] >= 0).sum() else: raise ValueError(F'{model.config.ctc_loss_reduction} is not valid. Choose one of [\'mean\', \'sum\']' ) if self.args.gradient_accumulation_steps > 1: a__ = loss / self.args.gradient_accumulation_steps if self.use_amp: self.scaler.scale(__snake_case ).backward() elif self.use_apex: with amp.scale_loss(__snake_case ,self.optimizer ) as scaled_loss: scaled_loss.backward() elif self.deepspeed: self.deepspeed.backward(__snake_case ) else: loss.backward() return loss.detach() def __lowercase ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. a__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. a__ , a__ , a__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: a__ , a__ , a__ = parser.parse_args_into_dataclasses() # Detecting last checkpoint. a__ = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: a__ = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' , __lowerCAmelCase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: a__ = datasets.load_dataset( 'common_voice' , data_args.dataset_config_name , split=data_args.train_split_name ) a__ = datasets.load_dataset('common_voice' , data_args.dataset_config_name , split='test' ) # Create and save tokenizer a__ = F'[{"".join(data_args.chars_to_ignore )}]' def remove_special_characters(__lowerCAmelCase : Dict ): a__ = re.sub(__lowerCAmelCase , '' , batch['sentence'] ).lower() + ' ' return batch a__ = train_dataset.map(__lowerCAmelCase , remove_columns=['sentence'] ) a__ = eval_dataset.map(__lowerCAmelCase , remove_columns=['sentence'] ) def extract_all_chars(__lowerCAmelCase : List[str] ): a__ = ' '.join(batch['text'] ) a__ = list(set(__lowerCAmelCase ) ) return {"vocab": [vocab], "all_text": [all_text]} a__ = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , batch_size=-1 , keep_in_memory=__lowerCAmelCase , remove_columns=train_dataset.column_names , ) a__ = train_dataset.map( __lowerCAmelCase , batched=__lowerCAmelCase , batch_size=-1 , keep_in_memory=__lowerCAmelCase , remove_columns=eval_dataset.column_names , ) a__ = list(set(vocab_train['vocab'][0] ) | set(vocab_test['vocab'][0] ) ) a__ = {v: k for k, v in enumerate(__lowerCAmelCase )} a__ = vocab_dict[' '] del vocab_dict[" "] a__ = len(__lowerCAmelCase ) a__ = len(__lowerCAmelCase ) with open('vocab.json' , 'w' ) as vocab_file: json.dump(__lowerCAmelCase , __lowerCAmelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. a__ = WavaVecaCTCTokenizer( 'vocab.json' , unk_token='[UNK]' , pad_token='[PAD]' , word_delimiter_token='|' , ) a__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6_0_0_0 , padding_value=0.0 , do_normalize=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase ) a__ = WavaVecaProcessor(feature_extractor=__lowerCAmelCase , tokenizer=__lowerCAmelCase ) a__ = WavaVecaForCTC.from_pretrained( model_args.model_name_or_path , cache_dir=model_args.cache_dir , activation_dropout=model_args.activation_dropout , attention_dropout=model_args.attention_dropout , hidden_dropout=model_args.hidden_dropout , feat_proj_dropout=model_args.feat_proj_dropout , mask_time_prob=model_args.mask_time_prob , gradient_checkpointing=training_args.gradient_checkpointing , layerdrop=model_args.layerdrop , ctc_loss_reduction='mean' , pad_token_id=processor.tokenizer.pad_token_id , vocab_size=len(processor.tokenizer ) , ) if data_args.max_train_samples is not None: a__ = min(len(__lowerCAmelCase ) , data_args.max_train_samples ) a__ = train_dataset.select(range(__lowerCAmelCase ) ) if data_args.max_val_samples is not None: a__ = eval_dataset.select(range(data_args.max_val_samples ) ) a__ = torchaudio.transforms.Resample(4_8_0_0_0 , 1_6_0_0_0 ) # Preprocessing the datasets. # We need to read the aduio files as arrays and tokenize the targets. def speech_file_to_array_fn(__lowerCAmelCase : List[str] ): a__ , a__ = torchaudio.load(batch['path'] ) a__ = resampler(__lowerCAmelCase ).squeeze().numpy() a__ = 1_6_0_0_0 a__ = batch['text'] return batch a__ = train_dataset.map( __lowerCAmelCase , remove_columns=train_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) a__ = eval_dataset.map( __lowerCAmelCase , remove_columns=eval_dataset.column_names , num_proc=data_args.preprocessing_num_workers , ) def prepare_dataset(__lowerCAmelCase : Optional[int] ): # check that all files have the correct sampling rate assert ( len(set(batch['sampling_rate'] ) ) == 1 ), F'Make sure all inputs have the same sampling rate of {processor.feature_extractor.sampling_rate}.' a__ = processor( audio=batch['speech'] , text=batch['target_text'] , sampling_rate=batch['sampling_rate'][0] ) batch.update(__lowerCAmelCase ) return batch a__ = train_dataset.map( __lowerCAmelCase , remove_columns=train_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) a__ = eval_dataset.map( __lowerCAmelCase , remove_columns=eval_dataset.column_names , batch_size=training_args.per_device_train_batch_size , batched=__lowerCAmelCase , num_proc=data_args.preprocessing_num_workers , ) # Metric a__ = datasets.load_metric('wer' ) def compute_metrics(__lowerCAmelCase : Optional[Any] ): a__ = pred.predictions a__ = np.argmax(__lowerCAmelCase , axis=-1 ) a__ = processor.tokenizer.pad_token_id a__ = processor.batch_decode(__lowerCAmelCase ) # we do not want to group tokens when computing the metrics a__ = processor.batch_decode(pred.label_ids , group_tokens=__lowerCAmelCase ) a__ = wer_metric.compute(predictions=__lowerCAmelCase , references=__lowerCAmelCase ) return {"wer": wer} if model_args.freeze_feature_extractor: model.freeze_feature_extractor() # Data collator a__ = DataCollatorCTCWithPadding(processor=__lowerCAmelCase , padding=__lowerCAmelCase ) # Initialize our Trainer a__ = CTCTrainer( model=__lowerCAmelCase , data_collator=__lowerCAmelCase , args=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , tokenizer=processor.feature_extractor , ) # Training if training_args.do_train: if last_checkpoint is not None: a__ = last_checkpoint elif os.path.isdir(model_args.model_name_or_path ): a__ = model_args.model_name_or_path else: a__ = None # Save the feature_extractor and the tokenizer if is_main_process(training_args.local_rank ): processor.save_pretrained(training_args.output_dir ) a__ = trainer.train(resume_from_checkpoint=__lowerCAmelCase ) trainer.save_model() a__ = train_result.metrics a__ = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(__lowerCAmelCase ) ) a__ = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics('train' , __lowerCAmelCase ) trainer.save_metrics('train' , __lowerCAmelCase ) trainer.save_state() # Evaluation a__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) a__ = trainer.evaluate() a__ = data_args.max_val_samples if data_args.max_val_samples is not None else len(__lowerCAmelCase ) a__ = min(__lowerCAmelCase , len(__lowerCAmelCase ) ) trainer.log_metrics('eval' , __lowerCAmelCase ) trainer.save_metrics('eval' , __lowerCAmelCase ) return results if __name__ == "__main__": main()
240
def __lowercase ( __lowerCAmelCase : int , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float(moles / volume ) * nfactor ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def __lowercase ( __lowerCAmelCase : float , __lowerCAmelCase : float , __lowerCAmelCase : float ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
240
1
'''simple docstring''' from __future__ import annotations import bisect def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : int = 0 , __lowercase : int = -1 ) -> int: '''simple docstring''' if hi < 0: _UpperCAmelCase = len(__lowercase ) while lo < hi: _UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _UpperCAmelCase = mid + 1 else: _UpperCAmelCase = mid return lo def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : int = 0 , __lowercase : int = -1 ) -> int: '''simple docstring''' if hi < 0: _UpperCAmelCase = len(__lowercase ) while lo < hi: _UpperCAmelCase = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _UpperCAmelCase = mid + 1 else: _UpperCAmelCase = mid return lo def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : int = 0 , __lowercase : int = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_left(__lowercase , __lowercase , __lowercase , __lowercase ) , __lowercase ) def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : int = 0 , __lowercase : int = -1 ) -> None: '''simple docstring''' sorted_collection.insert(bisect_right(__lowercase , __lowercase , __lowercase , __lowercase ) , __lowercase ) def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int ) -> int | None: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = len(__lowercase ) - 1 while left <= right: _UpperCAmelCase = left + (right - left) // 2 _UpperCAmelCase = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _UpperCAmelCase = midpoint - 1 else: _UpperCAmelCase = midpoint + 1 return None def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int ) -> int | None: '''simple docstring''' _UpperCAmelCase = bisect.bisect_left(__lowercase , __lowercase ) if index != len(__lowercase ) and sorted_collection[index] == item: return index return None def UpperCAmelCase_ ( __lowercase : list[int] , __lowercase : int , __lowercase : int , __lowercase : int ) -> int | None: '''simple docstring''' if right < left: return None _UpperCAmelCase = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(__lowercase , __lowercase , __lowercase , midpoint - 1 ) else: return binary_search_by_recursion(__lowercase , __lowercase , midpoint + 1 , __lowercase ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :Tuple = input('''Enter numbers separated by comma:\n''').strip() __SCREAMING_SNAKE_CASE :List[Any] = sorted(int(item) for item in user_input.split(''',''')) __SCREAMING_SNAKE_CASE :Dict = int(input('''Enter a single number to be found in the list:\n''')) __SCREAMING_SNAKE_CASE :Tuple = binary_search(collection, target) if result is None: print(F"{target} was not found in {collection}.") else: print(F"{target} was found at position {result} in {collection}.")
156
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE :Dict = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE :Optional[int] = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys __SCREAMING_SNAKE_CASE :List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
156
1
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness __lowerCAmelCase : Tuple = '\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n' __lowerCAmelCase : str = '\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper "Evaluating Large Language Models Trained on Code"\n(https://arxiv.org/abs/2107.03374).\n' __lowerCAmelCase : Optional[int] = '\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric("code_eval")\n >>> test_cases = ["assert add(2,3)==5"]\n >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {\'pass@1\': 0.5, \'pass@2\': 1.0}\n' __lowerCAmelCase : Dict = '\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe "code_eval" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper "Evaluating Large\nLanguage Models Trained on Code" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ["HF_ALLOW_CODE_EVAL"] = "1"\n\n################################################################################\\n' __lowerCAmelCase : Union[str, Any] = 'The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the "Software"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE.' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): '''simple docstring''' def _lowercase ( self : Any ) -> str: """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""string""" ) ), """references""": datasets.Value("""string""" ), } ) , homepage="""https://github.com/openai/human-eval""" , codebase_urls=["""https://github.com/openai/human-eval"""] , reference_urls=["""https://github.com/openai/human-eval"""] , license=_LICENSE , ) def _lowercase ( self : Tuple , UpperCamelCase__ : List[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any]=[1, 10, 100] , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : Optional[Any]=3.0 ) -> List[str]: """simple docstring""" if os.getenv("""HF_ALLOW_CODE_EVAL""" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("""This metric is currently not supported on Windows.""" ) with ThreadPoolExecutor(max_workers=UpperCamelCase__ ) as executor: __magic_name__ = [] __magic_name__ = Counter() __magic_name__ = 0 __magic_name__ = defaultdict(UpperCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ ) ): for candidate in candidates: __magic_name__ = candidate + """\n""" + test_case __magic_name__ = (test_program, timeout, task_id, completion_id[task_id]) __magic_name__ = executor.submit(UpperCamelCase__ , *UpperCamelCase__ ) futures.append(UpperCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(UpperCamelCase__ ): __magic_name__ = future.result() results[result["task_id"]].append((result["""completion_id"""], result) ) __magic_name__ , __magic_name__ = [], [] for result in results.values(): result.sort() __magic_name__ = [r[1]["""passed"""] for r in result] total.append(len(UpperCamelCase__ ) ) correct.append(sum(UpperCamelCase__ ) ) __magic_name__ = np.array(UpperCamelCase__ ) __magic_name__ = np.array(UpperCamelCase__ ) __magic_name__ = k __magic_name__ = {F'''pass@{k}''': estimate_pass_at_k(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def a__ ( A_, A_, A_ ): '''simple docstring''' def estimator(A_, A_, A_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1, n + 1 ) ) if isinstance(A_, A_ ): __magic_name__ = itertools.repeat(A_, len(A_ ) ) else: assert len(A_ ) == len(A_ ) __magic_name__ = iter(A_ ) return np.array([estimator(int(A_ ), int(A_ ), A_ ) for n, c in zip(A_, A_ )] )
88
"""simple docstring""" import math def __A (_SCREAMING_SNAKE_CASE ) ->int: """simple docstring""" if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): lowerCAmelCase__ :Dict = F"Input value of [number={number}] must be an integer" raise TypeError(_SCREAMING_SNAKE_CASE ) if number < 1: lowerCAmelCase__ :Dict = F"Input value of [number={number}] must be > 0" raise ValueError(_SCREAMING_SNAKE_CASE ) elif number == 1: return 3 elif number == 2: return 5 else: lowerCAmelCase__ :Union[str, Any] = int(math.log(number // 3 , 2 ) ) + 2 lowerCAmelCase__ :Optional[Any] = [3, 5] lowerCAmelCase__ :Optional[Any] = 2 lowerCAmelCase__ :List[str] = 3 for block in range(1 , _SCREAMING_SNAKE_CASE ): for _ in range(_SCREAMING_SNAKE_CASE ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): __A = 0 try: __A = proth(number) except ValueError: print(F'''ValueError: there is no {number}th Proth number''') continue print(F'''The {number}th Proth number: {value}''')
293
0
import random import sys import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import ListedColormap _A = 'Usage of script: script_name <size_of_canvas:int>' _A = [0] * 100 + [1] * 10 random.shuffle(choice) def lowerCamelCase__ ( a__ : Optional[Any] ) -> list[list[bool]]: UpperCamelCase_ = [[False for i in range(__snake_case )] for j in range(__snake_case )] return canvas def lowerCamelCase__ ( a__ : Any ) -> None: for i, row in enumerate(__snake_case ): for j, _ in enumerate(__snake_case ): UpperCamelCase_ = bool(random.getrandbits(1 ) ) def lowerCamelCase__ ( a__ : Optional[int] ) -> list[list[bool]]: UpperCamelCase_ = np.array(__snake_case ) UpperCamelCase_ = np.array(create_canvas(current_canvas.shape[0] ) ) for r, row in enumerate(__snake_case ): for c, pt in enumerate(__snake_case ): UpperCamelCase_ = __judge_point( __snake_case , current_canvas[r - 1 : r + 2, c - 1 : c + 2] ) UpperCamelCase_ = next_gen_canvas del next_gen_canvas # cleaning memory as we move on. UpperCamelCase_ = current_canvas.tolist() return return_canvas def lowerCamelCase__ ( a__ : int , a__ : Optional[int] ) -> bool: UpperCamelCase_ = 0 UpperCamelCase_ = 0 # finding dead or alive neighbours count. for i in neighbours: for status in i: if status: alive += 1 else: dead += 1 # handling duplicate entry for focus pt. if pt: alive -= 1 else: dead -= 1 # running the rules of game here. UpperCamelCase_ = pt if pt: if alive < 2: UpperCamelCase_ = False elif alive == 2 or alive == 3: UpperCamelCase_ = True elif alive > 3: UpperCamelCase_ = False else: if alive == 3: UpperCamelCase_ = True return state if __name__ == "__main__": if len(sys.argv) != 2: raise Exception(usage_doc) _A = int(sys.argv[1]) # main working structure of this module. _A = create_canvas(canvas_size) seed(c) _A = plt.subplots() fig.show() _A = ListedColormap(['''w''', '''k''']) try: while True: _A = run(c) ax.matshow(c, cmap=cmap) fig.canvas.draw() ax.cla() except KeyboardInterrupt: # do nothing. pass
364
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging _A = logging.get_logger(__name__) _A = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : List[str] = """align_text_model""" def __init__( self , __UpperCamelCase=3_0_5_2_2 , __UpperCamelCase=7_6_8 , __UpperCamelCase=1_2 , __UpperCamelCase=1_2 , __UpperCamelCase=3_0_7_2 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=5_1_2 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1e-12 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = initializer_range UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Optional[int] = """align_vision_model""" def __init__( self , __UpperCamelCase = 3 , __UpperCamelCase = 6_0_0 , __UpperCamelCase = 2.0 , __UpperCamelCase = 3.1 , __UpperCamelCase = 8 , __UpperCamelCase = [3, 3, 5, 3, 5, 5, 3] , __UpperCamelCase = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __UpperCamelCase = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __UpperCamelCase = [] , __UpperCamelCase = [1, 2, 2, 2, 1, 2, 1] , __UpperCamelCase = [1, 2, 2, 3, 3, 4, 1] , __UpperCamelCase = [1, 6, 6, 6, 6, 6, 6] , __UpperCamelCase = 0.25 , __UpperCamelCase = "swish" , __UpperCamelCase = 2_5_6_0 , __UpperCamelCase = "mean" , __UpperCamelCase = 0.02 , __UpperCamelCase = 0.001 , __UpperCamelCase = 0.99 , __UpperCamelCase = 0.2 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) UpperCamelCase_ = num_channels UpperCamelCase_ = image_size UpperCamelCase_ = width_coefficient UpperCamelCase_ = depth_coefficient UpperCamelCase_ = depth_divisor UpperCamelCase_ = kernel_sizes UpperCamelCase_ = in_channels UpperCamelCase_ = out_channels UpperCamelCase_ = depthwise_padding UpperCamelCase_ = strides UpperCamelCase_ = num_block_repeats UpperCamelCase_ = expand_ratios UpperCamelCase_ = squeeze_expansion_ratio UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_dim UpperCamelCase_ = pooling_type UpperCamelCase_ = initializer_range UpperCamelCase_ = batch_norm_eps UpperCamelCase_ = batch_norm_momentum UpperCamelCase_ = drop_connect_rate UpperCamelCase_ = sum(__UpperCamelCase ) * 4 @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" cls._set_token_in_kwargs(__UpperCamelCase ) UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(__UpperCamelCase , **__UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": UpperCamelCase_ = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(__UpperCamelCase , **__UpperCamelCase ) class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = """align""" A__ : int = True def __init__( self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=6_4_0 , __UpperCamelCase=1.0 , __UpperCamelCase=0.02 , **__UpperCamelCase , ): """simple docstring""" super().__init__(**__UpperCamelCase ) if text_config is None: UpperCamelCase_ = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: UpperCamelCase_ = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) UpperCamelCase_ = AlignTextConfig(**__UpperCamelCase ) UpperCamelCase_ = AlignVisionConfig(**__UpperCamelCase ) UpperCamelCase_ = projection_dim UpperCamelCase_ = temperature_init_value UpperCamelCase_ = initializer_range @classmethod def lowerCamelCase_ ( cls , __UpperCamelCase , __UpperCamelCase , **__UpperCamelCase ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
261
0
'''simple docstring''' from __future__ import annotations import typing from collections import Counter def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : typing.Counter[int] = Counter() for base in range(1 , max_perimeter + 1 ): for perpendicular in range(snake_case__ , max_perimeter + 1 ): A : Union[str, Any] = (base * base + perpendicular * perpendicular) ** 0.5 if hypotenuse == int(snake_case__ ): A : Optional[int] = int(base + perpendicular + hypotenuse ) if perimeter > max_perimeter: continue triplets[perimeter] += 1 return triplets def lowerCAmelCase_ ( snake_case__ = 1000 ): '''simple docstring''' A : str = pythagorean_triple(snake_case__ ) return triplets.most_common(1 )[0][0] if __name__ == "__main__": print(f'''Perimeter {solution()} has maximum solutions''')
3
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyInpaintPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :List[str] = KandinskyInpaintPipeline _UpperCAmelCase :List[str] = ['prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image'] _UpperCAmelCase :Dict = [ 'prompt', 'negative_prompt', 'image_embeds', 'negative_image_embeds', 'image', 'mask_image', ] _UpperCAmelCase :Optional[int] = [ 'generator', 'height', 'width', 'latents', 'guidance_scale', 'negative_prompt', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] _UpperCAmelCase :int = False @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return 32 @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim @property def __UpperCamelCase( self ): '''simple docstring''' return self.time_input_dim * 4 @property def __UpperCamelCase( self ): '''simple docstring''' return 100 @property def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[int] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) UpperCamelCase : Optional[int] = MultilingualCLIP(A_ ) UpperCamelCase : Union[str, Any] = text_encoder.eval() return text_encoder @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : Optional[int] = { "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCamelCase : List[Any] = UNetaDConditionModel(**A_ ) return model @property def __UpperCamelCase( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __UpperCamelCase( self ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase : List[str] = VQModel(**self.dummy_movq_kwargs ) return model def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.dummy_text_encoder UpperCamelCase : str = self.dummy_tokenizer UpperCamelCase : List[Any] = self.dummy_unet UpperCamelCase : Optional[Any] = self.dummy_movq UpperCamelCase : Union[str, Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=A_ , set_alpha_to_one=A_ , steps_offset=1 , prediction_type="epsilon" , thresholding=A_ , ) UpperCamelCase : Optional[Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __UpperCamelCase( self , A_ , A_=0 ): '''simple docstring''' UpperCamelCase : Dict = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(A_ ) # create init_image UpperCamelCase : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) UpperCamelCase : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCamelCase : List[Any] = Image.fromarray(np.uinta(A_ ) ).convert("RGB" ).resize((256, 256) ) # create mask UpperCamelCase : str = np.ones((64, 64) , dtype=np.floataa ) UpperCamelCase : str = 0 if str(A_ ).startswith("mps" ): UpperCamelCase : int = torch.manual_seed(A_ ) else: UpperCamelCase : Tuple = torch.Generator(device=A_ ).manual_seed(A_ ) UpperCamelCase : Union[str, Any] = { "prompt": "horse", "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = "cpu" UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : str = self.pipeline_class(**A_ ) UpperCamelCase : Tuple = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) UpperCamelCase : Any = pipe(**self.get_dummy_inputs(A_ ) ) UpperCamelCase : List[Any] = output.images UpperCamelCase : List[Any] = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] UpperCamelCase : Any = image_from_tuple[0, -3:, -3:, -1] print(F"""image.shape {image.shape}""" ) assert image.shape == (1, 64, 64, 3) UpperCamelCase : Union[str, Any] = np.array( [0.8_32_69_19, 0.73_79_04_67, 0.20_91_85_81, 0.9_30_96_12, 0.5_51_17_91, 0.43_71_33_28, 0.5_51_33_21, 0.49_92_29_34, 0.59_49_77_86] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" def __UpperCamelCase( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class A__ ( unittest.TestCase ): def __UpperCamelCase( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_inpaint_cat_with_hat_fp16.npy" ) UpperCamelCase : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCamelCase : Dict = np.ones((768, 768) , dtype=np.floataa ) UpperCamelCase : str = 0 UpperCamelCase : List[Any] = "a hat" UpperCamelCase : Tuple = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) UpperCamelCase : Union[str, Any] = KandinskyInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-inpaint" , torch_dtype=torch.floataa ) UpperCamelCase : Optional[Any] = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) UpperCamelCase : List[Any] = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCamelCase , UpperCamelCase : Optional[Any] = pipe_prior( A_ , generator=A_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCamelCase : Dict = pipeline( A_ , image=A_ , mask_image=A_ , image_embeds=A_ , negative_image_embeds=A_ , generator=A_ , num_inference_steps=100 , height=768 , width=768 , output_type="np" , ) UpperCamelCase : List[str] = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(A_ , A_ )
52
0
"""simple docstring""" def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase = 100 ) -> int: '''simple docstring''' lowerCAmelCase : Any = 0 lowerCAmelCase : int = 0 for i in range(1, n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(F'{solution() = }')
352
from math import pi, sqrt, tan def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) lowerCAmelCase : Optional[int] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_UpperCAmelCase, 2 ) * torus_radius * tube_radius def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) lowerCAmelCase : Optional[Any] = (sidea + sidea + sidea) / 2 lowerCAmelCase : Any = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> float: '''simple docstring''' if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> float: '''simple docstring''' if not isinstance(_UpperCAmelCase, _UpperCAmelCase ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('''[DEMO] Areas of various geometric shapes: \n''') print(F'Rectangle: {area_rectangle(10, 20) = }') print(F'Square: {area_square(10) = }') print(F'Triangle: {area_triangle(10, 10) = }') print(F'Triangle: {area_triangle_three_sides(5, 12, 13) = }') print(F'Parallelogram: {area_parallelogram(10, 20) = }') print(F'Rhombus: {area_rhombus(10, 20) = }') print(F'Trapezium: {area_trapezium(10, 20, 30) = }') print(F'Circle: {area_circle(20) = }') print(F'Ellipse: {area_ellipse(10, 20) = }') print('''\nSurface Areas of various geometric shapes: \n''') print(F'Cube: {surface_area_cube(20) = }') print(F'Cuboid: {surface_area_cuboid(10, 20, 30) = }') print(F'Sphere: {surface_area_sphere(20) = }') print(F'Hemisphere: {surface_area_hemisphere(20) = }') print(F'Cone: {surface_area_cone(10, 20) = }') print(F'Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }') print(F'Cylinder: {surface_area_cylinder(10, 20) = }') print(F'Torus: {surface_area_torus(20, 10) = }') print(F'Equilateral Triangle: {area_reg_polygon(3, 10) = }') print(F'Square: {area_reg_polygon(4, 10) = }') print(F'Reqular Pentagon: {area_reg_polygon(5, 10) = }')
323
0
"""simple docstring""" from math import loga def __UpperCAmelCase ( __lowerCamelCase ) -> int: if a < 0: raise ValueError('''Input value must be a positive integer''' ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): raise TypeError('''Input value must be a \'int\' type''' ) return 0 if (a == 0) else int(loga(a & -a ) ) if __name__ == "__main__": import doctest doctest.testmod()
16
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: int = {} if "candidate_labels" in kwargs: lowercase__: Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowercase__: List[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="This is a photo of {}." ) -> int: '''simple docstring''' lowercase__: Optional[int] = load_image(lowerCAmelCase__ ) lowercase__: Dict = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__: Tuple = candidate_labels lowercase__: List[str] = [hypothesis_template.format(lowerCAmelCase__ ) for x in candidate_labels] lowercase__: Optional[Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework , padding=lowerCAmelCase__ ) lowercase__: str = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: str = model_inputs.pop('candidate_labels' ) lowercase__: List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCAmelCase__ ): lowercase__: Any = text_inputs[0] else: # Batching case. lowercase__: Optional[int] = text_inputs[0][0] lowercase__: Tuple = self.model(**lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Any = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = model_outputs.pop('candidate_labels' ) lowercase__: Dict = model_outputs['logits'][0] if self.framework == "pt": lowercase__: Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__: Dict = probs.tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Dict = [scores] elif self.framework == "tf": lowercase__: Optional[int] = stable_softmax(lowerCAmelCase__ , axis=-1 ) lowercase__: Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowercase__: List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : -x[0] ) ] return result
196
0
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowercase__ : Optional[int] = HfApi() lowercase__ : Dict = {} # fmt: off lowercase__ : List[str] = torch.tensor([ -0.7515, -1.6883, 0.2420, 0.0300, 0.6347, 1.3433, -1.1743, -3.7467, 1.2342, -2.2485, 0.4636, 0.8076, -0.7991, 0.3969, 0.8498, 0.9189, -1.8887, -3.3522, 0.7639, 0.2040, 0.6271, -2.7148, -1.6316, 3.0839, 0.3186, 0.2721, -0.9759, -1.2461, 2.6257, 1.3557 ]) lowercase__ : Tuple = torch.tensor([ -2.3639, -2.5344, 0.0054, -0.6674, 1.5990, 1.0158, 0.3124, -2.1436, 1.8795, -2.5429, -0.1566, -0.3973, 1.2490, 2.6447, 1.2283, -0.5208, -2.8154, -3.5119, 2.3838, 1.2033, 1.7201, -2.1256, -1.4576, 2.7948, 2.4204, -0.9752, -1.2546, 0.8027, 3.2758, 3.1365 ]) lowercase__ : Optional[Any] = torch.tensor([ -0.6531, -0.6891, -0.3172, -0.5375, -0.9140, -0.5367, -0.1175, -0.7869, -0.3808, -0.4513, -0.2098, -0.0083, 0.3183, 0.5140, 0.2247, -0.1304, -0.1302, -0.2802, -0.2084, -0.2025, -0.4967, -0.4873, -0.0861, 0.6925, 0.0250, 0.1290, -0.1543, 0.6316, 1.0460, 1.4943 ]) lowercase__ : List[Any] = torch.tensor([ 0.0911, 0.1107, 0.0182, 0.0435, -0.0805, -0.0608, 0.0381, 0.2172, -0.0280, 0.1327, -0.0299, -0.0255, -0.0050, -0.1170, -0.1046, 0.0309, 0.1367, 0.1728, -0.0533, -0.0748, -0.0534, 0.1624, 0.0384, -0.1805, -0.0707, 0.0642, 0.0220, -0.0134, -0.1333, -0.1505 ]) lowercase__ : Dict = torch.tensor([ 0.1321, 0.1337, 0.0440, 0.0622, -0.0591, -0.0370, 0.0503, 0.2133, -0.0177, 0.1415, -0.0116, -0.0112, 0.0044, -0.0980, -0.0789, 0.0395, 0.1502, 0.1785, -0.0488, -0.0514, -0.0404, 0.1539, 0.0454, -0.1559, -0.0665, 0.0659, 0.0383, -0.0005, -0.1266, -0.1386 ]) lowercase__ : Optional[int] = torch.tensor([ 0.1154, 0.1218, 0.0307, 0.0526, -0.0711, -0.0541, 0.0366, 0.2078, -0.0267, 0.1317, -0.0226, -0.0193, -0.0014, -0.1055, -0.0902, 0.0330, 0.1391, 0.1709, -0.0562, -0.0693, -0.0560, 0.1482, 0.0381, -0.1683, -0.0681, 0.0661, 0.0331, -0.0046, -0.1268, -0.1431 ]) lowercase__ : List[Any] = torch.tensor([ 0.1192, 0.1240, 0.0414, 0.0606, -0.0557, -0.0412, 0.0430, 0.2042, -0.0200, 0.1385, -0.0115, -0.0132, 0.0017, -0.0965, -0.0802, 0.0398, 0.1433, 0.1747, -0.0458, -0.0533, -0.0407, 0.1545, 0.0419, -0.1574, -0.0645, 0.0626, 0.0341, -0.0010, -0.1199, -0.1390 ]) lowercase__ : List[str] = torch.tensor([ 0.1075, 0.1074, 0.0205, 0.0431, -0.0774, -0.0607, 0.0298, 0.2042, -0.0320, 0.1267, -0.0281, -0.0250, -0.0064, -0.1091, -0.0946, 0.0290, 0.1328, 0.1650, -0.0580, -0.0738, -0.0586, 0.1440, 0.0337, -0.1746, -0.0712, 0.0605, 0.0250, -0.0099, -0.1316, -0.1473 ]) lowercase__ : Dict = torch.tensor([ -1.4572, -2.0481, -0.0414, -0.6005, 1.4136, 0.5848, 0.4028, -2.7330, 1.2212, -2.1228, 0.2155, 0.4039, 0.7662, 2.0535, 0.7477, -0.3243, -2.1758, -2.7648, 1.6947, 0.7026, 1.2338, -1.6078, -0.8682, 2.2810, 1.8574, -0.5718, -0.5586, -0.0186, 2.3415, 2.1251]) lowercase__ : Optional[int] = torch.tensor([ -1.3690, -1.9720, -0.4090, -0.6966, 1.4660, 0.9938, -0.1385, -2.7324, 0.7736, -1.8917, 0.2923, 0.4293, 0.1693, 1.4112, 1.1887, -0.3181, -2.2160, -2.6381, 1.3170, 0.8163, 0.9240, -1.6544, -0.6099, 2.5259, 1.6430, -0.9090, -0.9392, -0.0126, 2.4268, 2.3266 ]) lowercase__ : List[str] = torch.tensor([ -1.3525, -1.9628, -0.3956, -0.6860, 1.4664, 1.0014, -0.1259, -2.7212, 0.7772, -1.8811, 0.2996, 0.4388, 0.1704, 1.4029, 1.1701, -0.3027, -2.2053, -2.6287, 1.3350, 0.8131, 0.9274, -1.6292, -0.6098, 2.5131, 1.6505, -0.8958, -0.9298, -0.0151, 2.4257, 2.3355 ]) lowercase__ : Optional[int] = torch.tensor([ -2.0585, -2.7897, -0.2850, -0.8940, 1.9052, 0.5702, 0.6345, -3.8959, 1.5932, -3.2319, 0.1974, 0.0287, 1.7566, 2.6543, 0.8387, -0.5351, -3.2736, -4.3375, 2.9029, 1.6390, 1.4640, -2.1701, -1.9013, 2.9341, 3.4981, -0.6255, -1.1644, -0.1591, 3.7097, 3.2066 ]) lowercase__ : int = torch.tensor([ -2.3139, -2.5594, -0.0197, -0.6785, 1.7001, 1.1606, 0.3075, -2.1740, 1.8071, -2.5630, -0.0926, -0.3811, 1.2116, 2.6246, 1.2731, -0.5398, -2.8153, -3.6140, 2.3893, 1.3262, 1.6258, -2.1856, -1.3267, 2.8395, 2.3779, -1.0623, -1.2468, 0.8959, 3.3367, 3.2243 ]) lowercase__ : int = torch.tensor([ -2.0628, -2.7667, -0.2089, -0.8263, 2.0539, 0.5992, 0.6495, -3.8336, 1.6025, -3.2817, 0.1721, -0.0633, 1.7516, 2.7039, 0.8100, -0.5908, -3.2113, -4.4343, 2.9257, 1.3632, 1.5562, -2.1489, -1.9894, 3.0560, 3.3396, -0.7328, -1.0417, 0.0383, 3.7093, 3.2343 ]) lowercase__ : List[Any] = torch.tensor([ -1.4574, -2.0569, -0.0473, -0.6117, 1.4018, 0.5769, 0.4129, -2.7344, 1.2241, -2.1397, 0.2000, 0.3937, 0.7616, 2.0453, 0.7324, -0.3391, -2.1746, -2.7744, 1.6963, 0.6921, 1.2187, -1.6172, -0.8877, 2.2439, 1.8471, -0.5839, -0.5605, -0.0464, 2.3250, 2.1219 ]) # fmt: on lowercase__ : str = api.list_models(filter='''diffusers''') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowercase__ : int = '''/home/patrick/google_checkpoints/''' + mod.modelId.split('''/''')[-1] print(f"""Started running {mod.modelId}!!!""") if mod.modelId.startswith('''CompVis'''): lowercase__ : Optional[Any] = UNetaDModel.from_pretrained(local_checkpoint, subfolder='''unet''') else: lowercase__ : Tuple = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowercase__ : List[str] = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowercase__ : int = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowercase__ : Tuple = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['''_'''.join('''_'''.join(mod.modelId.split('''/''')).split('''-'''))], atol=1e-3 ) print(f"""{mod.modelId} has passed successfully!!!""")
190
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int | str] ) -> None: create_state_space_tree(__snake_case , [] , 0 , [0 for i in range(len(__snake_case ) )] ) def _lowerCAmelCase ( __snake_case : list[int | str] , __snake_case : list[int | str] , __snake_case : int , __snake_case : list[int] , ) -> None: if index == len(__snake_case ): print(__snake_case ) return for i in range(len(__snake_case ) ): if not index_used[i]: current_sequence.append(sequence[i] ) __A : Any = True create_state_space_tree(__snake_case , __snake_case , index + 1 , __snake_case ) current_sequence.pop() __A : Any = False lowercase__ : list[int | str] = [3, 1, 2, 4] generate_all_permutations(sequence) lowercase__ : list[int | str] = ["A", "B", "C"] generate_all_permutations(sequence_a)
190
1
class __lowerCAmelCase : """simple docstring""" def __init__( self : str , _snake_case : int , _snake_case : str , _snake_case : Optional[int] ): __lowercase : Tuple = None __lowercase : Dict = None __lowercase : Any = graph self._normalize_graph(_snake_case , _snake_case ) __lowercase : Optional[Any] = len(_snake_case ) __lowercase : str = None def snake_case_ ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : int ): if sources is int: __lowercase : Optional[int] = [sources] if sinks is int: __lowercase : Tuple = [sinks] if len(_snake_case ) == 0 or len(_snake_case ) == 0: return __lowercase : int = sources[0] __lowercase : Any = sinks[0] # make fake vertex if there are more # than one source or sink if len(_snake_case ) > 1 or len(_snake_case ) > 1: __lowercase : str = 0 for i in sources: max_input_flow += sum(self.graph[i] ) __lowercase : str = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: __lowercase : Union[str, Any] = max_input_flow __lowercase : List[str] = 0 __lowercase : List[Any] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: __lowercase : Union[str, Any] = max_input_flow __lowercase : Tuple = size - 1 def snake_case_ ( self : int ): if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def snake_case_ ( self : Any , _snake_case : Union[str, Any] ): __lowercase : Dict = algorithm(self ) class __lowerCAmelCase : """simple docstring""" def __init__( self : int , _snake_case : int ): __lowercase : List[str] = flow_network __lowercase : Tuple = flow_network.verticesCount __lowercase : Tuple = flow_network.sourceIndex __lowercase : int = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __lowercase : Union[str, Any] = flow_network.graph __lowercase : Any = False def snake_case_ ( self : List[Any] ): if not self.executed: self._algorithm() __lowercase : int = True def snake_case_ ( self : List[str] ): pass class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : str ): super().__init__(_snake_case ) # use this to save your result __lowercase : List[str] = -1 def snake_case_ ( self : Optional[Any] ): if not self.executed: raise Exception('''You should execute algorithm before using its result!''' ) return self.maximum_flow class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Dict , _snake_case : int ): super().__init__(_snake_case ) __lowercase : int = [[0] * self.verticies_count for i in range(self.verticies_count )] __lowercase : Union[str, Any] = [0] * self.verticies_count __lowercase : Union[str, Any] = [0] * self.verticies_count def snake_case_ ( self : str ): __lowercase : Dict = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __lowercase : int = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list __lowercase : Any = 0 while i < len(_snake_case ): __lowercase : Dict = vertices_list[i] __lowercase : Dict = self.heights[vertex_index] self.process_vertex(_snake_case ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_snake_case ) ) __lowercase : Dict = 0 else: i += 1 __lowercase : List[Any] = sum(self.preflow[self.source_index] ) def snake_case_ ( self : Any , _snake_case : Optional[int] ): while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_snake_case , _snake_case ) self.relabel(_snake_case ) def snake_case_ ( self : Optional[int] , _snake_case : Optional[Any] , _snake_case : Any ): __lowercase : int = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def snake_case_ ( self : List[Any] , _snake_case : Tuple ): __lowercase : Dict = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __lowercase : Any = self.heights[to_index] if min_height is not None: __lowercase : List[Any] = min_height + 1 if __name__ == "__main__": __lowerCAmelCase : List[Any] = [0] __lowerCAmelCase : str = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCAmelCase : Union[str, Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCAmelCase : Dict = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCAmelCase : Optional[Any] = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
156
import numpy as np from PIL import Image def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[int] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : Optional[int] = 0 __lowercase : Union[str, Any] = 0 __lowercase : Optional[Any] = 0 __lowercase : str = 0 # compute the shape of the output matrix __lowercase : Optional[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape maxpool_shape __lowercase : List[str] = np.zeros((maxpool_shape, maxpool_shape) ) while i < arr.shape[0]: if i + size > arr.shape[0]: # if the end of the matrix is reached, break break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the maximum of the pooling matrix __lowercase : Optional[int] = np.max(arr[i : i + size, j : j + size] ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : Any = 0 __lowercase : List[Any] = 0 return updated_arr def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> np.ndarray: __lowercase : Optional[Any] = np.array(__lowerCAmelCase ) if arr.shape[0] != arr.shape[1]: raise ValueError('''The input array is not a square matrix''' ) __lowercase : int = 0 __lowercase : str = 0 __lowercase : List[str] = 0 __lowercase : Dict = 0 # compute the shape of the output matrix __lowercase : List[Any] = (arr.shape[0] - size) // stride + 1 # initialize the output matrix with zeros of shape avgpool_shape __lowercase : Union[str, Any] = np.zeros((avgpool_shape, avgpool_shape) ) while i < arr.shape[0]: # if the end of the matrix is reached, break if i + size > arr.shape[0]: break while j < arr.shape[1]: # if the end of the matrix is reached, break if j + size > arr.shape[1]: break # compute the average of the pooling matrix __lowercase : str = int(np.average(arr[i : i + size, j : j + size] ) ) # shift the pooling matrix by stride of column pixels j += stride mat_j += 1 # shift the pooling matrix by stride of row pixels i += stride mat_i += 1 # reset the column index to 0 __lowercase : int = 0 __lowercase : Tuple = 0 return updated_arr # Main Function if __name__ == "__main__": from doctest import testmod testmod(name="avgpooling", verbose=True) # Loading the image __lowerCAmelCase : List[Any] = Image.open("path_to_image") # Converting the image to numpy array and maxpooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(maxpooling(np.array(image), size=3, stride=2)).show() # Converting the image to numpy array and averagepooling, displaying the result # Ensure that the image is a square matrix Image.fromarray(avgpooling(np.array(image), size=3, stride=2)).show()
156
1
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( A ): """simple docstring""" lowerCamelCase_ = (IPNDMScheduler,) lowerCamelCase_ = (('''num_inference_steps''', 50),) def lowerCAmelCase_ ( self : Dict , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = {"num_train_timesteps": 1_0_0_0} config.update(**__lowerCamelCase ) return config def lowerCAmelCase_ ( self : Dict , __lowerCamelCase : Tuple=0 , **__lowerCamelCase : Union[str, Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[:] if time_step is None: _SCREAMING_SNAKE_CASE = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase ) new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals _SCREAMING_SNAKE_CASE = dummy_past_residuals[:] _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : List[str] ): """simple docstring""" pass def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCamelCase : Optional[int]=0 , **__lowerCamelCase : Any ): """simple docstring""" _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[:] if time_step is None: _SCREAMING_SNAKE_CASE = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = scheduler_class.from_pretrained(__lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(__lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) _SCREAMING_SNAKE_CASE = dummy_past_residuals[:] _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample _SCREAMING_SNAKE_CASE = new_scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self : Union[str, Any] , **__lowerCamelCase : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.scheduler_classes[0] _SCREAMING_SNAKE_CASE = self.get_scheduler_config(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = 1_0 _SCREAMING_SNAKE_CASE = self.dummy_model() _SCREAMING_SNAKE_CASE = self.dummy_sample_deter scheduler.set_timesteps(__lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): _SCREAMING_SNAKE_CASE = model(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ).prev_sample return sample def lowerCAmelCase_ ( self : Optional[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = dict(self.forward_default_kwargs ) _SCREAMING_SNAKE_CASE = kwargs.pop("num_inference_steps" , __lowerCamelCase ) for scheduler_class in self.scheduler_classes: _SCREAMING_SNAKE_CASE = self.get_scheduler_config() _SCREAMING_SNAKE_CASE = scheduler_class(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = self.dummy_sample _SCREAMING_SNAKE_CASE = 0.1 * sample if num_inference_steps is not None and hasattr(__lowerCamelCase , "set_timesteps" ): scheduler.set_timesteps(__lowerCamelCase ) elif num_inference_steps is not None and not hasattr(__lowerCamelCase , "set_timesteps" ): _SCREAMING_SNAKE_CASE = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _SCREAMING_SNAKE_CASE = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] _SCREAMING_SNAKE_CASE = dummy_past_residuals[:] _SCREAMING_SNAKE_CASE = scheduler.timesteps[5] _SCREAMING_SNAKE_CASE = scheduler.timesteps[6] _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample _SCREAMING_SNAKE_CASE = scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self : Any ): """simple docstring""" for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__lowerCamelCase , time_step=__lowerCamelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): """simple docstring""" for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=__lowerCamelCase , time_step=__lowerCamelCase ) def lowerCAmelCase_ ( self : List[Any] ): """simple docstring""" _SCREAMING_SNAKE_CASE = self.full_loop() _SCREAMING_SNAKE_CASE = torch.mean(torch.abs(__lowerCamelCase ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
111
'''simple docstring''' def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: if n == 1 or not isinstance(__A , __A ): return 0 elif n == 2: return 1 else: _SCREAMING_SNAKE_CASE = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: _SCREAMING_SNAKE_CASE = 0 _SCREAMING_SNAKE_CASE = 2 while digits < n: index += 1 _SCREAMING_SNAKE_CASE = len(str(fibonacci(__A ) ) ) return index def SCREAMING_SNAKE_CASE_ ( __A : int = 10_00 ) -> int: return fibonacci_digits_index(__A ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
111
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : str = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class __snake_case ( a ): UpperCAmelCase__ : List[str] = '''bert''' def __init__( self : List[str] , _snake_case : int=30522 , _snake_case : List[Any]=768 , _snake_case : Union[str, Any]=12 , _snake_case : Optional[Any]=12 , _snake_case : Dict=3072 , _snake_case : Union[str, Any]="gelu" , _snake_case : Optional[int]=0.1 , _snake_case : str=0.1 , _snake_case : int=512 , _snake_case : int=2 , _snake_case : int=0.0_2 , _snake_case : Tuple=1e-12 , _snake_case : Dict=0 , _snake_case : int="absolute" , _snake_case : Any=True , _snake_case : List[str]=None , **_snake_case : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=_snake_case , **_snake_case) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class __snake_case ( a ): @property def lowerCamelCase ( self : Tuple): """simple docstring""" if self.task == "multiple-choice": UpperCAmelCase_ = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCAmelCase_ = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ])
51
"""simple docstring""" import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin SCREAMING_SNAKE_CASE__:Any = random.Random() if is_torch_available(): import torch def _lowerCamelCase( a , a=1.0 , a=None , a=None ): if rng is None: __a = global_rng __a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class snake_case__ ( unittest.TestCase ): def __init__( self , lowerCamelCase , lowerCamelCase=7 , lowerCamelCase=400 , lowerCamelCase=2000 , lowerCamelCase=1 , lowerCamelCase=0.0 , lowerCamelCase=16000 , lowerCamelCase=True , lowerCamelCase=True , ): __a = parent __a = batch_size __a = min_seq_length __a = max_seq_length __a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) __a = feature_size __a = padding_value __a = sampling_rate __a = return_attention_mask __a = do_normalize def a__ ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def a__ ( self , lowerCamelCase=False , lowerCamelCase=False ): def _flatten(lowerCamelCase ): return list(itertools.chain(*lowerCamelCase ) ) if equal_length: __a = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size __a = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: __a = [np.asarray(lowerCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class snake_case__ ( snake_case_, unittest.TestCase ): _snake_case : str = ASTFeatureExtractor def a__ ( self ): __a = ASTFeatureExtractionTester(self ) def a__ ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 __a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] __a = [np.asarray(lowerCamelCase ) for speech_input in speech_inputs] # Test not batched input __a = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values __a = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test batched __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , padding=lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. __a = [floats_list((1, x) )[0] for x in (800, 800, 800)] __a = np.asarray(lowerCamelCase ) __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values __a = feat_extract(lowerCamelCase , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(lowerCamelCase , lowerCamelCase ): self.assertTrue(np.allclose(lowerCamelCase , lowerCamelCase , atol=1E-3 ) ) @require_torch def a__ ( self ): import torch __a = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) __a = np.random.rand(100 ).astype(np.floataa ) __a = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) __a = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def a__ ( self , lowerCamelCase ): from datasets import load_dataset __a = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech __a = ds.sort("id" ).select(range(lowerCamelCase ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def a__ ( self ): # fmt: off __a = torch.tensor( [-0.9894, -1.2776, -0.9066, -1.2776, -0.9349, -1.2609, -1.0386, -1.2776, -1.1561, -1.2776, -1.2052, -1.2723, -1.2190, -1.2132, -1.2776, -1.1133, -1.1953, -1.1343, -1.1584, -1.2203, -1.1770, -1.2474, -1.2381, -1.1936, -0.9270, -0.8317, -0.8049, -0.7706, -0.7565, -0.7869] ) # fmt: on __a = self._load_datasamples(1 ) __a = ASTFeatureExtractor() __a = feature_extractor(lowerCamelCase , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , lowerCamelCase , atol=1E-4 ) )
261
0
'''simple docstring''' import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCAmelCase_ ( snake_case_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = [ "encoder.version", "decoder.version", "model.encoder.version", "model.decoder.version", "decoder.output_projection.weight", "_float_tensor", "encoder.embed_positions._float_tensor", "decoder.embed_positions._float_tensor", ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def lowerCAmelCase_ ( snake_case_ : Tuple ) -> int: '''simple docstring''' UpperCAmelCase_ = emb.weight.shape UpperCAmelCase_ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) UpperCAmelCase_ = emb.weight.data return lin_layer def lowerCAmelCase_ ( snake_case_ : Union[str, Any] , snake_case_ : Optional[int]=None ) -> Dict: '''simple docstring''' UpperCAmelCase_ = {} for old_key in state_dict.keys(): UpperCAmelCase_ = old_key if "moe_layer.experts." in key: if expert_idx is not None: UpperCAmelCase_ = key.replace("moe_layer.experts.0" , f"""ffn.experts.expert_{expert_idx}""" ) else: UpperCAmelCase_ = key.replace("moe_layer.experts." , "ffn.experts.expert_" ) if "gate" in key: UpperCAmelCase_ = key.replace(".moe_layer.gate.wg" , ".ffn.router.classifier" ) if "fc2" and "experts" not in key: UpperCAmelCase_ = key.replace(".fc2." , ".ffn.fc2." ) if "fc1" and "experts" not in key: UpperCAmelCase_ = key.replace(".fc1." , ".ffn.fc1." ) if ".encoder_attn." in key: UpperCAmelCase_ = key.replace(".encoder_attn." , ".cross_attention." ) if "encoder_attn_layer_norm" in key: UpperCAmelCase_ = key.replace("encoder_attn_layer_norm" , "cross_attention_layer_norm" ) if "final_layer_norm" in key: UpperCAmelCase_ = key.replace("final_layer_norm" , "ff_layer_norm" ) UpperCAmelCase_ = state_dict[old_key] return new_dict def lowerCAmelCase_ ( snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Any = WEIGHTS_NAME ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = 0 os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) for expert in range(__lowerCamelCase ): UpperCAmelCase_ = switch_checkpoint_path + f"""-rank-{expert}.pt""" if os.path.isfile(__lowerCamelCase ): UpperCAmelCase_ = torch.load(__lowerCamelCase )["model"] remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase_ = os.path.join( __lowerCamelCase , weights_name.replace(".bin" , f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) torch.save(__lowerCamelCase , __lowerCamelCase ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(__lowerCamelCase )[0]].dtype ) # Add the last block UpperCAmelCase_ = os.path.join(__lowerCamelCase , weights_name.replace(".bin" , f"""-{len(__lowerCamelCase )+1:05d}-of-???.bin""" ) ) UpperCAmelCase_ = torch.load(switch_checkpoint_path + "-shared.pt" )["model"] remove_ignore_keys_(__lowerCamelCase ) UpperCAmelCase_ = rename_fairseq_keys(__lowerCamelCase , __lowerCamelCase ) UpperCAmelCase_ = shared_weights["decoder.embed_tokens.weight"] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(__lowerCamelCase ) == 1: UpperCAmelCase_ = os.path.join(__lowerCamelCase , __lowerCamelCase ) torch.save(__lowerCamelCase , __lowerCamelCase ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(__lowerCamelCase , __lowerCamelCase ) # Otherwise, let's build the index UpperCAmelCase_ = {} for idx, shard in enumerate(__lowerCamelCase ): UpperCAmelCase_ = weights_name.replace(".bin" , f"""-{idx+1:05d}-of-{len(__lowerCamelCase ):05d}.bin""" ) UpperCAmelCase_ = os.path.join(__lowerCamelCase , weights_name.replace(".bin" , f"""-{idx+1:05d}-of-???.bin""" ) ) os.rename(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) for key in shard: UpperCAmelCase_ = shard_file # Add the metadata UpperCAmelCase_ = {"total_size": total_size} UpperCAmelCase_ = {"metadata": metadata, "weight_map": weight_map} with open(os.path.join(__lowerCamelCase , __lowerCamelCase ) , "w" , encoding="utf-8" ) as f: UpperCAmelCase_ = json.dumps(__lowerCamelCase , indent=2 , sort_keys=__lowerCamelCase ) + "\n" f.write(__lowerCamelCase ) return metadata, index if __name__ == "__main__": SCREAMING_SNAKE_CASE_: str =argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) SCREAMING_SNAKE_CASE_: Optional[Any] =parser.parse_args() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: Optional[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 1_28, args.dtype, ) SCREAMING_SNAKE_CASE_: Any =NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=1_28 ) config.save_pretrained(args.pytorch_dump_folder_path) SCREAMING_SNAKE_CASE_: Tuple =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
351
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available SCREAMING_SNAKE_CASE_: int ={ 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =['MaskFormerFeatureExtractor'] SCREAMING_SNAKE_CASE_: Union[str, Any] =['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =[ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] SCREAMING_SNAKE_CASE_: List[str] =[ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure)
106
0
"""simple docstring""" def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if index == r: for j in range(SCREAMING_SNAKE_CASE ): print(data[j] , end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase = arr[i] combination_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index + 1 , SCREAMING_SNAKE_CASE , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' lowerCAmelCase = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , SCREAMING_SNAKE_CASE , 0 ) if __name__ == "__main__": # Driver code to check the function above SCREAMING_SNAKE_CASE__ = [10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
46
'''simple docstring''' from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCamelCase_ : Optional[NamedSplit] = None , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Optional[Any] , ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = path_or_paths SCREAMING_SNAKE_CASE : List[Any] = split if split or isinstance(lowerCamelCase_ , lowerCamelCase_ ) else """train""" SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : Union[str, Any] = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Union[str, Any] = streaming SCREAMING_SNAKE_CASE : Optional[int] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass class UpperCamelCase__ ( lowercase_ ): """simple docstring""" def __init__( self : str , lowerCamelCase_ : Optional[Features] = None , lowerCamelCase_ : str = None , lowerCamelCase_ : bool = False , lowerCamelCase_ : bool = False , lowerCamelCase_ : Optional[int] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = features SCREAMING_SNAKE_CASE : int = cache_dir SCREAMING_SNAKE_CASE : Dict = keep_in_memory SCREAMING_SNAKE_CASE : Tuple = streaming SCREAMING_SNAKE_CASE : Union[str, Any] = num_proc SCREAMING_SNAKE_CASE : Union[str, Any] = kwargs @abstractmethod def lowerCamelCase_ ( self : Dict ): '''simple docstring''' pass
323
0
'''simple docstring''' def _a( UpperCamelCase__ : str, UpperCamelCase__ : int ): '''simple docstring''' return [sentence[i : i + ngram_size] for i in range(len(UpperCamelCase__ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
359
'''simple docstring''' from datetime import datetime as dt import os from github import Github a_ = [ 'good first issue', 'good second issue', 'good difficult issue', 'feature request', 'new model', 'wip', ] def _a( ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] =Github(os.environ['''GITHUB_TOKEN'''] ) SCREAMING_SNAKE_CASE__ : List[Any] =g.get_repo('''huggingface/transformers''' ) SCREAMING_SNAKE_CASE__ : List[Any] =repo.get_issues(state='''open''' ) for issue in open_issues: SCREAMING_SNAKE_CASE__ : List[Any] =sorted([comment for comment in issue.get_comments()], key=lambda UpperCamelCase__ : i.created_at, reverse=UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =comments[0] if len(UpperCamelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state='''closed''' ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) if __name__ == "__main__": main()
222
0
'''simple docstring''' import unittest from parameterized import parameterized from transformers import AutoTokenizer, GPTNeoXConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, GPTNeoXModel, ) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase , _UpperCAmelCase=13 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=99 , _UpperCAmelCase=64 , _UpperCAmelCase=5 , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=512 , _UpperCAmelCase=16 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ): '''simple docstring''' __A : Any = parent __A : Dict = batch_size __A : Optional[int] = seq_length __A : List[Any] = is_training __A : Optional[Any] = use_input_mask __A : List[str] = use_token_type_ids __A : List[Any] = use_labels __A : Union[str, Any] = vocab_size __A : str = hidden_size __A : Optional[Any] = num_hidden_layers __A : Optional[Any] = num_attention_heads __A : List[Any] = intermediate_size __A : str = hidden_act __A : List[str] = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[Any] = max_position_embeddings __A : List[Any] = type_vocab_size __A : Tuple = type_sequence_label_size __A : Union[str, Any] = initializer_range __A : List[str] = num_labels __A : Union[str, Any] = num_choices __A : List[Any] = scope __A : str = vocab_size - 1 def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __A : int = None if self.use_input_mask: __A : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length]) __A : Optional[Any] = None if self.use_labels: __A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __A : str = self.get_config() return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return GPTNeoXConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , pad_token_id=self.pad_token_id , ) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : List[Any] = self.prepare_config_and_inputs() __A : str = True return config, input_ids, input_mask, token_labels def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = GPTNeoXModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase) __A : Any = model(_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = True __A : Optional[Any] = GPTNeoXModel(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : str = GPTNeoXForCausalLM(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : int = self.num_labels __A : Any = GPTNeoXForQuestionAnswering(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Any = self.num_labels __A : Optional[Any] = GPTNeoXForSequenceClassification(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) __A : Dict = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : List[str] = self.num_labels __A : Union[str, Any] = GPTNeoXForTokenClassification(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() __A : Any = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : Union[str, Any] = True __A : str = GPTNeoXForCausalLM(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() # first forward pass __A : Optional[Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase) __A : str = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __A : int = ids_tensor((self.batch_size, 3) , config.vocab_size) __A : Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and __A : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __A : Optional[int] = torch.cat([input_mask, next_mask] , dim=-1) __A : int = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase) __A : Tuple = output_from_no_past['hidden_states'][0] __A : Any = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , output_hidden_states=_UpperCAmelCase , )['hidden_states'][0] # select random slice __A : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1]).item() __A : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __A : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.prepare_config_and_inputs() __A ,__A ,__A ,__A : Any = config_and_inputs __A : str = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE (a__ , a__ , a__ , unittest.TestCase ): lowerCAmelCase = ( ( GPTNeoXModel, GPTNeoXForCausalLM, GPTNeoXForQuestionAnswering, GPTNeoXForSequenceClassification, GPTNeoXForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase = (GPTNeoXForCausalLM,) if is_torch_available() else () lowerCAmelCase = ( { '''feature-extraction''': GPTNeoXModel, '''question-answering''': GPTNeoXForQuestionAnswering, '''text-classification''': GPTNeoXForSequenceClassification, '''text-generation''': GPTNeoXForCausalLM, '''token-classification''': GPTNeoXForTokenClassification, '''zero-shot''': GPTNeoXForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False lowerCAmelCase = False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = GPTNeoXModelTester(self) __A : Union[str, Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=64 , num_attention_heads=8) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : str = self.model_tester.prepare_config_and_inputs_for_decoder() __A : Dict = None self.model_tester.create_and_check_model_as_decoder(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A ,__A ,__A ,__A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase) @unittest.skip(reason='Feed forward chunking is not implemented') def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' pass @parameterized.expand([('linear',), ('dynamic',)]) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A ,__A : Any = self.model_tester.prepare_config_and_inputs_for_common() __A : Tuple = ids_tensor([1, 10] , config.vocab_size) __A : Tuple = ids_tensor([1, int(config.max_position_embeddings * 1.5)] , config.vocab_size) set_seed(42) # Fixed seed at init time so the two models get the same random weights __A : Union[str, Any] = GPTNeoXModel(_UpperCAmelCase) original_model.to(_UpperCAmelCase) original_model.eval() __A : Tuple = original_model(_UpperCAmelCase).last_hidden_state __A : Optional[int] = original_model(_UpperCAmelCase).last_hidden_state set_seed(42) # Fixed seed at init time so the two models get the same random weights __A : Union[str, Any] = {'type': scaling_type, 'factor': 10.0} __A : int = GPTNeoXModel(_UpperCAmelCase) scaled_model.to(_UpperCAmelCase) scaled_model.eval() __A : List[str] = scaled_model(_UpperCAmelCase).last_hidden_state __A : Any = scaled_model(_UpperCAmelCase).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5)) else: self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5)) # The output should be different for long inputs self.assertFalse(torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1e-5)) @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = AutoTokenizer.from_pretrained('EleutherAI/pythia-410m-deduped') for checkpointing in [True, False]: __A : Dict = GPTNeoXForCausalLM.from_pretrained('EleutherAI/pythia-410m-deduped') if checkpointing: model.gradient_checkpointing_enable() else: model.gradient_checkpointing_disable() model.to(_UpperCAmelCase) __A : List[str] = tokenizer('My favorite food is' , return_tensors='pt').to(_UpperCAmelCase) # The hub repo. is updated on 2023-04-04, resulting in poor outputs. # See: https://github.com/huggingface/transformers/pull/24193 __A : Any = 'My favorite food is a good old-fashioned, old-fashioned, old-fashioned.\n\nI\'m not sure' __A : Optional[int] = model.generate(**_UpperCAmelCase , do_sample=_UpperCAmelCase , max_new_tokens=20) __A : Tuple = tokenizer.batch_decode(_UpperCAmelCase)[0] self.assertEqual(_UpperCAmelCase , _UpperCAmelCase)
190
'''simple docstring''' from itertools import product from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[int] ) -> List[str]: __A : List[str] = k_size // 2 __A ,__A : List[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center] __A : List[Any] = 1 / (2 * pi * sigma) * exp(-(square(__snake_case ) + square(__snake_case )) / (2 * square(__snake_case )) ) return g def _lowerCAmelCase ( __snake_case : List[str] , __snake_case : List[str] , __snake_case : int ) -> Union[str, Any]: __A ,__A : Tuple = image.shape[0], image.shape[1] # dst image height and width __A : Tuple = height - k_size + 1 __A : Optional[Any] = width - k_size + 1 # im2col, turn the k_size*k_size pixels into a row and np.vstack all rows __A : str = zeros((dst_height * dst_width, k_size * k_size) ) __A : Optional[Any] = 0 for i, j in product(range(__snake_case ) , range(__snake_case ) ): __A : int = ravel(image[i : i + k_size, j : j + k_size] ) __A : List[str] = window row += 1 # turn the kernel into shape(k*k, 1) __A : List[Any] = gen_gaussian_kernel(__snake_case , __snake_case ) __A : Any = ravel(__snake_case ) # reshape and get the dst image __A : Dict = dot(__snake_case , __snake_case ).reshape(__snake_case , __snake_case ).astype(__snake_case ) return dst if __name__ == "__main__": # read original image lowercase__ : List[Any] = imread(r'''../image_data/lena.jpg''') # turn image in gray scale value lowercase__ : Dict = cvtColor(img, COLOR_BGR2GRAY) # get values with two different mask size lowercase__ : Any = gaussian_filter(gray, 3, sigma=1) lowercase__ : str = gaussian_filter(gray, 5, sigma=0.8) # show result images imshow('''gaussian filter with 3x3 mask''', gaussianaxa) imshow('''gaussian filter with 5x5 mask''', gaussianaxa) waitKey()
190
1
import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler lowercase_ = 16 lowercase_ = 32 def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' return int(x / 2**2_0 ) class SCREAMING_SNAKE_CASE__ : def __enter__( self : Optional[int] ): gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero __snake_case : Dict = torch.cuda.memory_allocated() return self def __exit__( self : List[str] , *_lowerCAmelCase : Union[str, Any] ): gc.collect() torch.cuda.empty_cache() __snake_case : Tuple = torch.cuda.memory_allocated() __snake_case : List[Any] = torch.cuda.max_memory_allocated() __snake_case : Union[str, Any] = bamb(self.end - self.begin ) __snake_case : Optional[Any] = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Union[str, Any] = 1_6 , __SCREAMING_SNAKE_CASE : List[str] = "bert-base-cased" , __SCREAMING_SNAKE_CASE : Optional[int] = 3_2_0 , __SCREAMING_SNAKE_CASE : Tuple = 1_6_0 , ): '''simple docstring''' __snake_case : Optional[int] = AutoTokenizer.from_pretrained(a_ ) __snake_case : int = load_dataset( """glue""" , """mrpc""" , split={"""train""": F'''train[:{n_train}]''', """validation""": F'''validation[:{n_val}]'''} ) def tokenize_function(__SCREAMING_SNAKE_CASE : Optional[Any] ): # max_length=None => use the model max length (it's actually the default) __snake_case : Any = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=a_ , max_length=a_ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case : int = datasets.map( a_ , batched=a_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=a_ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __snake_case : Any = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__SCREAMING_SNAKE_CASE : int ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(a_ , padding="""max_length""" , max_length=1_2_8 , return_tensors="""pt""" ) return tokenizer.pad(a_ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __snake_case : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) __snake_case : Any = DataLoader( tokenized_datasets["""validation"""] , shuffle=a_ , collate_fn=a_ , batch_size=a_ ) return train_dataloader, eval_dataloader def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' # Initialize accelerator __snake_case : Any = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __snake_case : int = config["""lr"""] __snake_case : Optional[int] = int(config["""num_epochs"""] ) __snake_case : Tuple = int(config["""seed"""] ) __snake_case : Optional[Any] = int(config["""batch_size"""] ) __snake_case : List[str] = args.model_name_or_path set_seed(a_ ) __snake_case , __snake_case : List[str] = get_dataloaders(a_ , a_ , a_ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __snake_case : str = AutoModelForSequenceClassification.from_pretrained(a_ , return_dict=a_ ) # Instantiate optimizer __snake_case : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __snake_case : int = optimizer_cls(params=model.parameters() , lr=a_ ) if accelerator.state.deepspeed_plugin is not None: __snake_case : Tuple = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __snake_case : Optional[int] = 1 __snake_case : Any = (len(a_ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __snake_case : Dict = get_linear_schedule_with_warmup( optimizer=a_ , num_warmup_steps=0 , num_training_steps=a_ , ) else: __snake_case : List[Any] = DummyScheduler(a_ , total_num_steps=a_ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Dict = accelerator.prepare( a_ , a_ , a_ , a_ , a_ ) # We need to keep track of how many total steps we have iterated over __snake_case : Dict = 0 # We also need to keep track of the stating epoch so files are named properly __snake_case : str = 0 # Now we train the model __snake_case : int = {} for epoch in range(a_ , a_ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(a_ ): __snake_case : List[str] = model(**a_ ) __snake_case : Dict = outputs.loss __snake_case : Dict = loss / gradient_accumulation_steps accelerator.backward(a_ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print("""Memory before entering the train : {}""".format(bamb(tracemalloc.begin ) ) ) accelerator.print("""Memory consumed at the end of the train (end-begin): {}""".format(tracemalloc.used ) ) accelerator.print("""Peak Memory consumed during the train (max-begin): {}""".format(tracemalloc.peaked ) ) accelerator.print( """Total Peak Memory consumed during the train (max): {}""".format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) __snake_case : Any = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'''epoch-{epoch}'''] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """peak_memory_utilization.json""" ) , """w""" ) as f: json.dump(a_ , a_ ) def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=a_ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=a_ , ) parser.add_argument( """--output_dir""" , type=a_ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--peak_memory_upper_bound""" , type=a_ , default=a_ , help="""The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.""" , ) parser.add_argument( """--n_train""" , type=a_ , default=3_2_0 , help="""Number of training examples to use.""" , ) parser.add_argument( """--n_val""" , type=a_ , default=1_6_0 , help="""Number of validation examples to use.""" , ) parser.add_argument( """--num_epochs""" , type=a_ , default=1 , help="""Number of train epochs.""" , ) __snake_case : Tuple = parser.parse_args() __snake_case : Optional[Any] = {"""lr""": 2E-5, """num_epochs""": args.num_epochs, """seed""": 4_2, """batch_size""": 1_6} training_function(a_ , a_ ) if __name__ == "__main__": main()
364
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel lowercase_ = { "text_branch": "text_model", "audio_branch": "audio_model.audio_encoder", "attn": "attention.self", "self.proj": "output.dense", "attention.self_mask": "attn_mask", "mlp.fc1": "intermediate.dense", "mlp.fc2": "output.dense", "norm1": "layernorm_before", "norm2": "layernorm_after", "bn0": "batch_norm", } lowercase_ = AutoFeatureExtractor.from_pretrained("laion/clap-htsat-unfused", truncation="rand_trunc") def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Union[str, Any]=False ): '''simple docstring''' __snake_case , __snake_case : str = create_model( """HTSAT-tiny""" , """roberta""" , __SCREAMING_SNAKE_CASE , precision="""fp32""" , device="""cuda:0""" if torch.cuda.is_available() else """cpu""" , enable_fusion=__SCREAMING_SNAKE_CASE , fusion_type="""aff_2d""" if enable_fusion else None , ) return model, model_cfg def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : int ): '''simple docstring''' __snake_case : Union[str, Any] = {} __snake_case : List[Any] = R""".*sequential.(\d+).*""" __snake_case : Union[str, Any] = R""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: __snake_case : Optional[Any] = key.replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # replace sequential layers with list __snake_case : Optional[Any] = re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) __snake_case : Dict = key.replace(F'''sequential.{sequential_layer}.''' , F'''layers.{int(__SCREAMING_SNAKE_CASE )//3}.linear.''' ) elif re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case : str = int(re.match(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... __snake_case : List[Any] = 1 if projecton_layer == 0 else 2 __snake_case : Tuple = key.replace(F'''_projection.{projecton_layer}.''' , F'''_projection.linear{transformers_projection_layer}.''' ) if "audio" and "qkv" in key: # split qkv into query key and value __snake_case : Optional[int] = value __snake_case : Any = mixed_qkv.size(0 ) // 3 __snake_case : List[Any] = mixed_qkv[:qkv_dim] __snake_case : Tuple = mixed_qkv[qkv_dim : qkv_dim * 2] __snake_case : List[Any] = mixed_qkv[qkv_dim * 2 :] __snake_case : Any = query_layer __snake_case : Dict = key_layer __snake_case : Optional[Any] = value_layer else: __snake_case : List[str] = value return model_state_dict def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=False ): '''simple docstring''' __snake_case , __snake_case : List[str] = init_clap(__SCREAMING_SNAKE_CASE , enable_fusion=__SCREAMING_SNAKE_CASE ) clap_model.eval() __snake_case : Tuple = clap_model.state_dict() __snake_case : Union[str, Any] = rename_state_dict(__SCREAMING_SNAKE_CASE ) __snake_case : List[Any] = ClapConfig() __snake_case : Tuple = enable_fusion __snake_case : Any = ClapModel(__SCREAMING_SNAKE_CASE ) # ignore the spectrogram embedding layer model.load_state_dict(__SCREAMING_SNAKE_CASE , strict=__SCREAMING_SNAKE_CASE ) model.save_pretrained(__SCREAMING_SNAKE_CASE ) transformers_config.save_pretrained(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument("--enable_fusion", action="store_true", help="Whether to enable fusion or not") lowercase_ = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
20
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase : Optional[int] = logging.get_logger(__name__) __UpperCAmelCase : Optional[int] = { "kssteven/ibert-roberta-base": "https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json", "kssteven/ibert-roberta-large": "https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json", "kssteven/ibert-roberta-large-mnli": ( "https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json" ), } class __snake_case ( __lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = """ibert""" def __init__( self : Dict , A : Union[str, Any]=30_522 , A : List[Any]=768 , A : List[Any]=12 , A : Optional[int]=12 , A : Optional[Any]=3_072 , A : int="gelu" , A : str=0.1 , A : List[Any]=0.1 , A : Optional[Any]=512 , A : int=2 , A : Union[str, Any]=0.02 , A : List[str]=1E-12 , A : Optional[int]=1 , A : Optional[int]=0 , A : List[str]=2 , A : str="absolute" , A : Any=False , A : Optional[Any]="none" , **A : Any , ): super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) __snake_case: List[Any] = vocab_size __snake_case: Optional[Any] = hidden_size __snake_case: List[str] = num_hidden_layers __snake_case: Tuple = num_attention_heads __snake_case: List[str] = hidden_act __snake_case: Optional[Any] = intermediate_size __snake_case: Tuple = hidden_dropout_prob __snake_case: List[str] = attention_probs_dropout_prob __snake_case: Any = max_position_embeddings __snake_case: int = type_vocab_size __snake_case: List[str] = initializer_range __snake_case: List[Any] = layer_norm_eps __snake_case: Optional[int] = position_embedding_type __snake_case: str = quant_mode __snake_case: Optional[int] = force_dequant class __snake_case ( __lowerCamelCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Tuple ): if self.task == "multiple-choice": __snake_case: List[Any] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case: List[str] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
111
from statistics import mean import numpy as np def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list: __snake_case: List[Any] = 0 # Number of processes finished __snake_case: Union[str, Any] = 0 # Displays the finished process. # If it is 0, the performance is completed if it is 1, before the performance. __snake_case: Dict = [0] * no_of_process # List to include calculation results __snake_case: Tuple = [0] * no_of_process # Sort by arrival time. __snake_case: int = [burst_time[i] for i in np.argsort(SCREAMING_SNAKE_CASE__)] __snake_case: Any = [process_name[i] for i in np.argsort(SCREAMING_SNAKE_CASE__)] arrival_time.sort() while no_of_process > finished_process_count: __snake_case: Tuple = 0 while finished_process[i] == 1: i += 1 if current_time < arrival_time[i]: __snake_case: Any = arrival_time[i] __snake_case: List[Any] = 0 # Index showing the location of the process being performed __snake_case: Union[str, Any] = 0 # Saves the current response ratio. __snake_case: Optional[Any] = 0 for i in range(0 , SCREAMING_SNAKE_CASE__): if finished_process[i] == 0 and arrival_time[i] <= current_time: __snake_case: Tuple = (burst_time[i] + (current_time - arrival_time[i])) / burst_time[ i ] if response_ratio < temp: __snake_case: Union[str, Any] = temp __snake_case: Optional[int] = i # Calculate the turn around time __snake_case: Optional[Any] = current_time + burst_time[loc] - arrival_time[loc] current_time += burst_time[loc] # Indicates that the process has been performed. __snake_case: Optional[int] = 1 # Increase finished_process_count by 1 finished_process_count += 1 return turn_around_time def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) -> list: __snake_case: Union[str, Any] = [0] * no_of_process for i in range(0 , SCREAMING_SNAKE_CASE__): __snake_case: Optional[int] = turn_around_time[i] - burst_time[i] return waiting_time if __name__ == "__main__": __UpperCAmelCase : Optional[Any] = 5 __UpperCAmelCase : Tuple = ["A", "B", "C", "D", "E"] __UpperCAmelCase : str = [1, 2, 3, 4, 5] __UpperCAmelCase : Dict = [1, 2, 3, 4, 5] __UpperCAmelCase : List[str] = calculate_turn_around_time( process_name, arrival_time, burst_time, no_of_process ) __UpperCAmelCase : List[str] = calculate_waiting_time( process_name, turn_around_time, burst_time, no_of_process ) print("Process name \tArrival time \tBurst time \tTurn around time \tWaiting time") for i in range(0, no_of_process): print( f'{process_name[i]}\t\t{arrival_time[i]}\t\t{burst_time[i]}\t\t' f'{turn_around_time[i]}\t\t\t{waiting_time[i]}' ) print(f'average waiting time : {mean(waiting_time):.5f}') print(f'average turn around time : {mean(turn_around_time):.5f}')
111
1
"""simple docstring""" import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __UpperCamelCase ( _A ): def wrapper(*_A , **_A ): lowerCAmelCase_ = timeit.default_timer() lowerCAmelCase_ = func(*UpperCAmelCase_ , **UpperCAmelCase_ ) lowerCAmelCase_ = timeit.default_timer() - starttime return delta lowerCAmelCase_ = func.__name__ return wrapper def __UpperCamelCase ( _A , _A=100 , _A=None ): lowerCAmelCase_ = [] lowerCAmelCase_ = seq_shapes or {} for i in range(UpperCAmelCase_ ): lowerCAmelCase_ = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(UpperCAmelCase_ , _ArrayXD ): lowerCAmelCase_ = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(UpperCAmelCase_ , datasets.Value ): if v.dtype == "string": lowerCAmelCase_ = '''The small grey turtle was surprisingly fast when challenged.''' else: lowerCAmelCase_ = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(UpperCAmelCase_ , datasets.Sequence ): while isinstance(UpperCAmelCase_ , datasets.Sequence ): lowerCAmelCase_ = v.feature lowerCAmelCase_ = seq_shapes[k] lowerCAmelCase_ = np.random.rand(*UpperCAmelCase_ ).astype(v.dtype ) lowerCAmelCase_ = data dummy_data.append((i, example) ) return dummy_data def __UpperCamelCase ( _A , _A , _A=100 , _A=None ): lowerCAmelCase_ = generate_examples(UpperCAmelCase_ , num_examples=UpperCAmelCase_ , seq_shapes=UpperCAmelCase_ ) with ArrowWriter(features=UpperCAmelCase_ , path=UpperCAmelCase_ ) as writer: for key, record in dummy_data: lowerCAmelCase_ = features.encode_example(UpperCAmelCase_ ) writer.write(UpperCAmelCase_ ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) lowerCAmelCase_ = datasets.Dataset.from_file(filename=UpperCAmelCase_ , info=datasets.DatasetInfo(features=UpperCAmelCase_ ) ) return dataset
353
import string def __UpperCamelCase ( _A ): for key in range(len(string.ascii_uppercase ) ): lowerCAmelCase_ = '''''' for symbol in message: if symbol in string.ascii_uppercase: lowerCAmelCase_ = string.ascii_uppercase.find(_A ) lowerCAmelCase_ = num - key if num < 0: lowerCAmelCase_ = num + len(string.ascii_uppercase ) lowerCAmelCase_ = translated + string.ascii_uppercase[num] else: lowerCAmelCase_ = translated + symbol print(f"Decryption using Key #{key}: {translated}" ) def __UpperCamelCase ( ): lowerCAmelCase_ = input('''Encrypted message: ''' ) lowerCAmelCase_ = message.upper() decrypt(_A ) if __name__ == "__main__": import doctest doctest.testmod() main()
167
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: if isinstance(SCREAMING_SNAKE_CASE__ , torch.Tensor ): return image elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): lowercase : Tuple = [image] if isinstance(image[0] , PIL.Image.Image ): lowercase : List[str] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowercase : Optional[Any] = np.concatenate(SCREAMING_SNAKE_CASE__ , axis=0 ) lowercase : Optional[int] = np.array(SCREAMING_SNAKE_CASE__ ).astype(np.floataa ) / 255.0 lowercase : Tuple = image.transpose(0 , 3 , 1 , 2 ) lowercase : Dict = 2.0 * image - 1.0 lowercase : Optional[Any] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ) elif isinstance(image[0] , torch.Tensor ): lowercase : Any = torch.cat(SCREAMING_SNAKE_CASE__ , dim=0 ) return image def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=0.9995 ) -> Any: if not isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): lowercase : Optional[Any] = True lowercase : Any = va.device lowercase : Tuple = va.cpu().numpy() lowercase : Dict = va.cpu().numpy() lowercase : Any = np.sum(va * va / (np.linalg.norm(SCREAMING_SNAKE_CASE__ ) * np.linalg.norm(SCREAMING_SNAKE_CASE__ )) ) if np.abs(SCREAMING_SNAKE_CASE__ ) > DOT_THRESHOLD: lowercase : Any = (1 - t) * va + t * va else: lowercase : int = np.arccos(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = np.sin(SCREAMING_SNAKE_CASE__ ) lowercase : str = theta_a * t lowercase : List[Any] = np.sin(SCREAMING_SNAKE_CASE__ ) lowercase : int = np.sin(theta_a - theta_t ) / sin_theta_a lowercase : int = sin_theta_t / sin_theta_a lowercase : Dict = sa * va + sa * va if inputs_are_torch: lowercase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) return va def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> int: lowercase : Union[str, Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) lowercase : List[Any] = F.normalize(SCREAMING_SNAKE_CASE__ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: for param in model.parameters(): lowercase : List[str] = value class __snake_case ( lowerCAmelCase ): def __init__( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ,snake_case=None ,snake_case=None ,): '''simple docstring''' super().__init__() self.register_modules( vae=snake_case ,text_encoder=snake_case ,clip_model=snake_case ,tokenizer=snake_case ,unet=snake_case ,scheduler=snake_case ,feature_extractor=snake_case ,coca_model=snake_case ,coca_tokenizer=snake_case ,coca_transform=snake_case ,) lowercase : Optional[int] = ( feature_extractor.size if isinstance(feature_extractor.size ,snake_case ) else feature_extractor.size["""shortest_edge"""] ) lowercase : Dict = transforms.Normalize(mean=feature_extractor.image_mean ,std=feature_extractor.image_std ) set_requires_grad(self.text_encoder ,snake_case ) set_requires_grad(self.clip_model ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowercase : List[Any] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.enable_attention_slicing(snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.vae ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.vae ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.unet ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' set_requires_grad(self.unet ,snake_case ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = min(int(num_inference_steps * strength ) ,snake_case ) lowercase : List[Any] = max(num_inference_steps - init_timestep ,0 ) lowercase : int = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case=None ): '''simple docstring''' if not isinstance(snake_case ,torch.Tensor ): raise ValueError(f"`image` has to be of type `torch.Tensor` but is {type(snake_case )}" ) lowercase : List[str] = image.to(device=snake_case ,dtype=snake_case ) if isinstance(snake_case ,snake_case ): lowercase : Optional[int] = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case ) ] lowercase : Tuple = torch.cat(snake_case ,dim=0 ) else: lowercase : List[str] = self.vae.encode(snake_case ).latent_dist.sample(snake_case ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase : Any = 0.18_215 * init_latents lowercase : Dict = init_latents.repeat_interleave(snake_case ,dim=0 ) lowercase : List[str] = randn_tensor(init_latents.shape ,generator=snake_case ,device=snake_case ,dtype=snake_case ) # get latents lowercase : Optional[int] = self.scheduler.add_noise(snake_case ,snake_case ,snake_case ) lowercase : Optional[Any] = init_latents return latents def _SCREAMING_SNAKE_CASE ( self ,snake_case ): '''simple docstring''' lowercase : Dict = self.coca_transform(snake_case ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): lowercase : List[Any] = self.coca_model.generate(transformed_image.to(device=self.device ,dtype=self.coca_model.dtype ) ) lowercase : int = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" ,"""""" ).rstrip(""" .,""" ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ): '''simple docstring''' lowercase : Optional[int] = self.feature_extractor.preprocess(snake_case ) lowercase : Optional[int] = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() lowercase : List[Any] = self.clip_model.get_image_features(snake_case ) lowercase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=snake_case ) lowercase : Tuple = image_embeddings_clip.repeat_interleave(snake_case ,dim=0 ) return image_embeddings_clip @torch.enable_grad() def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Optional[int] = latents.detach().requires_grad_() lowercase : Optional[int] = self.scheduler.scale_model_input(snake_case ,snake_case ) # predict the noise residual lowercase : Optional[int] = self.unet(snake_case ,snake_case ,encoder_hidden_states=snake_case ).sample if isinstance(self.scheduler ,(PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): lowercase : Optional[int] = self.scheduler.alphas_cumprod[timestep] lowercase : Union[str, Any] = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase : Tuple = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 lowercase : int = torch.sqrt(snake_case ) lowercase : Any = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler ,snake_case ): lowercase : Dict = self.scheduler.sigmas[index] lowercase : Tuple = latents - sigma * noise_pred else: raise ValueError(f"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase : Optional[Any] = 1 / 0.18_215 * sample lowercase : Union[str, Any] = self.vae.decode(snake_case ).sample lowercase : str = (image / 2 + 0.5).clamp(0 ,1 ) lowercase : int = transforms.Resize(self.feature_extractor_size )(snake_case ) lowercase : Tuple = self.normalize(snake_case ).to(latents.dtype ) lowercase : Tuple = self.clip_model.get_image_features(snake_case ) lowercase : List[str] = image_embeddings_clip / image_embeddings_clip.norm(p=2 ,dim=-1 ,keepdim=snake_case ) lowercase : str = spherical_dist_loss(snake_case ,snake_case ).mean() * clip_guidance_scale lowercase : List[Any] = -torch.autograd.grad(snake_case ,snake_case )[0] if isinstance(self.scheduler ,snake_case ): lowercase : Any = latents.detach() + grads * (sigma**2) lowercase : Optional[Any] = noise_pred_original else: lowercase : int = noise_pred_original - torch.sqrt(snake_case ) * grads return noise_pred, latents @torch.no_grad() def __call__( self ,snake_case ,snake_case ,snake_case = None ,snake_case = None ,snake_case = 512 ,snake_case = 512 ,snake_case = 0.6 ,snake_case = 50 ,snake_case = 7.5 ,snake_case = 1 ,snake_case = 0.0 ,snake_case = 100 ,snake_case = None ,snake_case = "pil" ,snake_case = True ,snake_case = 0.8 ,snake_case = 0.1 ,snake_case = 0.1 ,): '''simple docstring''' if isinstance(snake_case ,snake_case ) and len(snake_case ) != batch_size: raise ValueError(f"You have passed {batch_size} batch_size, but only {len(snake_case )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(snake_case ,torch.Generator ) and batch_size > 1: lowercase : str = [generator] + [None] * (batch_size - 1) lowercase : Union[str, Any] = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] lowercase : Optional[int] = [x[0] for x in coca_is_none if x[1]] lowercase : int = """, """.join(snake_case ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(snake_case ): raise ValueError( f"Content prompt is None and CoCa [{coca_is_none_str}] is None." f"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) lowercase : Optional[int] = self.get_image_description(snake_case ) if style_prompt is None: if len(snake_case ): raise ValueError( f"Style prompt is None and CoCa [{coca_is_none_str}] is None." f" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) lowercase : str = self.get_image_description(snake_case ) # get prompt text embeddings for content and style lowercase : List[Any] = self.tokenizer( snake_case ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=snake_case ,return_tensors="""pt""" ,) lowercase : List[Any] = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] lowercase : Optional[int] = self.tokenizer( snake_case ,padding="""max_length""" ,max_length=self.tokenizer.model_max_length ,truncation=snake_case ,return_tensors="""pt""" ,) lowercase : Tuple = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] lowercase : Optional[Any] = slerp(snake_case ,snake_case ,snake_case ) # duplicate text embeddings for each generation per prompt lowercase : str = text_embeddings.repeat_interleave(snake_case ,dim=0 ) # set timesteps lowercase : str = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) lowercase : Tuple = {} if accepts_offset: lowercase : int = 1 self.scheduler.set_timesteps(snake_case ,**snake_case ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) lowercase , lowercase : Optional[int] = self.get_timesteps(snake_case ,snake_case ,self.device ) lowercase : Tuple = timesteps[:1].repeat(snake_case ) # Preprocess image lowercase : str = preprocess(snake_case ,snake_case ,snake_case ) lowercase : int = self.prepare_latents( snake_case ,snake_case ,snake_case ,text_embeddings.dtype ,self.device ,snake_case ) lowercase : List[Any] = preprocess(snake_case ,snake_case ,snake_case ) lowercase : Tuple = self.prepare_latents( snake_case ,snake_case ,snake_case ,text_embeddings.dtype ,self.device ,snake_case ) lowercase : List[str] = slerp(snake_case ,snake_case ,snake_case ) if clip_guidance_scale > 0: lowercase : Union[str, Any] = self.get_clip_image_embeddings(snake_case ,snake_case ) lowercase : Optional[int] = self.get_clip_image_embeddings(snake_case ,snake_case ) lowercase : Optional[int] = slerp( snake_case ,snake_case ,snake_case ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowercase : str = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowercase : List[str] = content_text_input.input_ids.shape[-1] lowercase : Optional[Any] = self.tokenizer([""""""] ,padding="""max_length""" ,max_length=snake_case ,return_tensors="""pt""" ) lowercase : Any = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt lowercase : Any = uncond_embeddings.repeat_interleave(snake_case ,dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowercase : List[str] = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowercase : Tuple = (batch_size, self.unet.config.in_channels, height // 8, width // 8) lowercase : Tuple = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps lowercase : str = torch.randn(snake_case ,generator=snake_case ,device="""cpu""" ,dtype=snake_case ).to( self.device ) else: lowercase : Optional[int] = torch.randn(snake_case ,generator=snake_case ,device=self.device ,dtype=snake_case ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowercase : Any = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowercase : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase : Union[str, Any] = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase : str = {} if accepts_eta: lowercase : str = eta # check if the scheduler accepts generator lowercase : Optional[Any] = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: lowercase : Tuple = generator with self.progress_bar(total=snake_case ): for i, t in enumerate(snake_case ): # expand the latents if we are doing classifier free guidance lowercase : Optional[Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowercase : Optional[int] = self.scheduler.scale_model_input(snake_case ,snake_case ) # predict the noise residual lowercase : Dict = self.unet(snake_case ,snake_case ,encoder_hidden_states=snake_case ).sample # perform classifier free guidance if do_classifier_free_guidance: lowercase , lowercase : str = noise_pred.chunk(2 ) lowercase : Optional[int] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: lowercase : int = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) lowercase , lowercase : Union[str, Any] = self.cond_fn( snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,) # compute the previous noisy sample x_t -> x_t-1 lowercase : Any = self.scheduler.step(snake_case ,snake_case ,snake_case ,**snake_case ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor lowercase : Optional[Any] = 1 / 0.18_215 * latents lowercase : Any = self.vae.decode(snake_case ).sample lowercase : Optional[Any] = (image / 2 + 0.5).clamp(0 ,1 ) lowercase : Optional[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": lowercase : List[str] = self.numpy_to_pil(snake_case ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=snake_case ,nsfw_content_detected=snake_case )
20
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __UpperCamelCase : Tuple = TypeVar('''T''') class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" lowercase__ = 42 # Cache store of keys lowercase__ = 42 # References of the keys in cache lowercase__ = 10 # Maximum capacity of cache def __init__( self : Dict ,lowercase_ : int ): lowerCAmelCase__ : str = deque() lowerCAmelCase__ : Any = set() if not n: lowerCAmelCase__ : Optional[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: lowerCAmelCase__ : int = n def __lowerCAmelCase ( self : str ,lowercase_ : T ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowerCAmelCase__ : Any = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __lowerCAmelCase ( self : int ): for k in self.dq_store: print(lowercase_ ) def __repr__( self : Tuple ): return F'LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}' if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
106
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_xlnet import XLNetTokenizer else: _UpperCamelCase = None _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} _UpperCamelCase = { '''vocab_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/spiece.model''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/tokenizer.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/tokenizer.json''', }, } _UpperCamelCase = { '''xlnet-base-cased''': None, '''xlnet-large-cased''': None, } _UpperCamelCase = '''▁''' # Segments (not really needed) _UpperCamelCase = 0 _UpperCamelCase = 1 _UpperCamelCase = 2 _UpperCamelCase = 3 _UpperCamelCase = 4 class lowercase ( _UpperCamelCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = """left""" __SCREAMING_SNAKE_CASE = XLNetTokenizer def __init__(self , __a=None , __a=None , __a=False , __a=True , __a=False , __a="<s>" , __a="</s>" , __a="<unk>" , __a="<sep>" , __a="<pad>" , __a="<cls>" , __a="<mask>" , __a=["<eop>", "<eod>"] , **__a , ) -> List[str]: """simple docstring""" UpperCAmelCase__ = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token super().__init__( vocab_file=lowercase_ , tokenizer_file=lowercase_ , do_lower_case=lowercase_ , remove_space=lowercase_ , keep_accents=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , pad_token=lowercase_ , cls_token=lowercase_ , mask_token=lowercase_ , additional_special_tokens=lowercase_ , **lowercase_ , ) UpperCAmelCase__ = 3 UpperCAmelCase__ = do_lower_case UpperCAmelCase__ = remove_space UpperCAmelCase__ = keep_accents UpperCAmelCase__ = vocab_file UpperCAmelCase__ = False if not self.vocab_file else True def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def UpperCamelCase__ (self , __a , __a = None ) -> List[int]: """simple docstring""" UpperCAmelCase__ = [self.sep_token_id] UpperCAmelCase__ = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def UpperCamelCase__ (self , __a , __a = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(lowercase_ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCAmelCase__ = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ): copyfile(self.vocab_file , lowercase_ ) return (out_vocab_file,)
369
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
335
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : Any , lowercase : Dict , lowercase : List[str] ): '''simple docstring''' lowerCamelCase_ = [] lowerCamelCase_ , lowerCamelCase_ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCamelCase_ = result + left + right return input_list def _SCREAMING_SNAKE_CASE ( lowercase : List[Any] ): '''simple docstring''' if len(lowercase ) <= 1: return input_list lowerCamelCase_ = list(lowercase ) # iteration for two-way merging lowerCamelCase_ = 2 while p <= len(lowercase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowercase ) , lowercase ): lowerCamelCase_ = i lowerCamelCase_ = i + p - 1 lowerCamelCase_ = (low + high + 1) // 2 lowerCamelCase_ = merge(lowercase , lowercase , lowercase , lowercase ) # final merge of last two parts if p * 2 >= len(lowercase ): lowerCamelCase_ = i lowerCamelCase_ = merge(lowercase , 0 , lowercase , len(lowercase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": lowerCamelCase : int = input("Enter numbers separated by a comma:\n").strip() if user_input == "": lowerCamelCase : List[Any] = [] else: lowerCamelCase : Tuple = [int(item.strip()) for item in user_input.split(",")] print(iter_merge_sort(unsorted))
204
from random import randint from tempfile import TemporaryFile import numpy as np def A ( lowercase , lowercase , lowercase ) -> str: '''simple docstring''' UpperCamelCase = 0 if start < end: UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase , UpperCamelCase = _in_place_partition(lowercase , lowercase , lowercase ) count += _in_place_quick_sort(lowercase , lowercase , p - 1 ) count += _in_place_quick_sort(lowercase , p + 1 , lowercase ) return count def A ( lowercase , lowercase , lowercase ) -> int: '''simple docstring''' UpperCamelCase = 0 UpperCamelCase = randint(lowercase , lowercase ) UpperCamelCase = a[end] UpperCamelCase = a[pivot] UpperCamelCase = temp UpperCamelCase = start - 1 for index in range(lowercase , lowercase ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCamelCase = new_pivot_index + 1 UpperCamelCase = a[new_pivot_index] UpperCamelCase = a[index] UpperCamelCase = temp UpperCamelCase = a[new_pivot_index + 1] UpperCamelCase = a[end] UpperCamelCase = temp return new_pivot_index + 1, count _UpperCAmelCase : Union[str, Any] = TemporaryFile() _UpperCAmelCase : List[Any] = 100 # 1000 elements are to be sorted _UpperCAmelCase ,_UpperCAmelCase : Any = 0, 1 # mean and standard deviation _UpperCAmelCase : Any = np.random.normal(mu, sigma, p) np.save(outfile, X) print("The array is") print(X) outfile.seek(0) # using the same array _UpperCAmelCase : Any = np.load(outfile) _UpperCAmelCase : str = len(M) - 1 _UpperCAmelCase : List[str] = _in_place_quick_sort(M, 0, r) print( "No of Comparisons for 100 elements selected from a standard normal distribution" "is :" ) print(z)
222
0
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __snake_case = logging.get_logger(__name__) @add_end_docstrings( lowerCamelCase__ , r""" top_k (`int`, defaults to 5): The number of predictions to return. targets (`str` or `List[str]`, *optional*): When passed, the model will limit the scores to the passed targets instead of looking up in the whole vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting token will be used (with a warning, and that might be slower). """ , ) class __snake_case ( lowerCamelCase__ ): def UpperCAmelCase__ ( self , snake_case__ ) -> Tuple: '''simple docstring''' if self.framework == "tf": UpperCAmelCase : int =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": UpperCAmelCase : List[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case ) else: raise ValueError('''Unsupported framework''' ) return masked_index def UpperCAmelCase__ ( self , snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[Any] =self.get_masked_index(_snake_case ) UpperCAmelCase : str =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , f'''No mask_token ({self.tokenizer.mask_token}) found on the input''' , ) def UpperCAmelCase__ ( self , snake_case__ ) -> int: '''simple docstring''' if isinstance(_snake_case , _snake_case ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input['''input_ids'''][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(_snake_case ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None , **snake_case__ ) -> Dict: '''simple docstring''' if return_tensors is None: UpperCAmelCase : List[str] =self.framework UpperCAmelCase : List[str] =self.tokenizer(_snake_case , return_tensors=_snake_case ) self.ensure_exactly_one_mask_token(_snake_case ) return model_inputs def UpperCAmelCase__ ( self , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : Tuple =self.model(**_snake_case ) UpperCAmelCase : List[str] =model_inputs['''input_ids'''] return model_outputs def UpperCAmelCase__ ( self , snake_case__ , snake_case__=5 , snake_case__=None ) -> Dict: '''simple docstring''' if target_ids is not None and target_ids.shape[0] < top_k: UpperCAmelCase : Optional[int] =target_ids.shape[0] UpperCAmelCase : str =model_outputs['''input_ids'''][0] UpperCAmelCase : Tuple =model_outputs['''logits'''] if self.framework == "tf": UpperCAmelCase : str =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] UpperCAmelCase : List[Any] =outputs.numpy() UpperCAmelCase : Any =outputs[0, masked_index, :] UpperCAmelCase : Optional[int] =stable_softmax(_snake_case , axis=-1 ) if target_ids is not None: UpperCAmelCase : List[str] =tf.gather_nd(tf.squeeze(_snake_case , 0 ) , target_ids.reshape(-1 , 1 ) ) UpperCAmelCase : Optional[int] =tf.expand_dims(_snake_case , 0 ) UpperCAmelCase : Union[str, Any] =tf.math.top_k(_snake_case , k=_snake_case ) UpperCAmelCase , UpperCAmelCase : Dict =topk.values.numpy(), topk.indices.numpy() else: UpperCAmelCase : List[str] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=_snake_case ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample UpperCAmelCase : Tuple =outputs[0, masked_index, :] UpperCAmelCase : Dict =logits.softmax(dim=-1 ) if target_ids is not None: UpperCAmelCase : Optional[int] =probs[..., target_ids] UpperCAmelCase , UpperCAmelCase : List[str] =probs.topk(_snake_case ) UpperCAmelCase : Union[str, Any] =[] UpperCAmelCase : Optional[Any] =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): UpperCAmelCase : Dict =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place UpperCAmelCase : str =input_ids.numpy().copy() if target_ids is not None: UpperCAmelCase : Optional[Any] =target_ids[p].tolist() UpperCAmelCase : Optional[int] =p # Filter padding out: UpperCAmelCase : List[Any] =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back UpperCAmelCase : List[str] =self.tokenizer.decode(_snake_case , skip_special_tokens=_snake_case ) UpperCAmelCase : List[str] ={'''score''': v, '''token''': p, '''token_str''': self.tokenizer.decode([p] ), '''sequence''': sequence} row.append(_snake_case ) result.append(_snake_case ) if single_mask: return result[0] return result def UpperCAmelCase__ ( self , snake_case__ , snake_case__=None ) -> Optional[int]: '''simple docstring''' if isinstance(_snake_case , _snake_case ): UpperCAmelCase : Tuple =[targets] try: UpperCAmelCase : Optional[Any] =self.tokenizer.get_vocab() except Exception: UpperCAmelCase : int ={} UpperCAmelCase : int =[] for target in targets: UpperCAmelCase : Optional[Any] =vocab.get(_snake_case , _snake_case ) if id_ is None: UpperCAmelCase : Optional[Any] =self.tokenizer( _snake_case , add_special_tokens=_snake_case , return_attention_mask=_snake_case , return_token_type_ids=_snake_case , max_length=1 , truncation=_snake_case , )['''input_ids'''] if len(_snake_case ) == 0: logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' '''We cannot replace it with anything meaningful, ignoring it''' ) continue UpperCAmelCase : Optional[int] =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( f'''The specified target token `{target}` does not exist in the model vocabulary. ''' f'''Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.''' ) target_ids.append(id_ ) UpperCAmelCase : Optional[int] =list(set(_snake_case ) ) if len(_snake_case ) == 0: raise ValueError('''At least one target must be provided when passed.''' ) UpperCAmelCase : Any =np.array(_snake_case ) return target_ids def UpperCAmelCase__ ( self , snake_case__=None , snake_case__=None ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Optional[Any] ={} if targets is not None: UpperCAmelCase : Dict =self.get_target_ids(_snake_case , _snake_case ) UpperCAmelCase : Union[str, Any] =target_ids if top_k is not None: UpperCAmelCase : Union[str, Any] =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( '''fill-mask''' , self.model.base_model_prefix , '''The tokenizer does not define a `mask_token`.''' ) return {}, {}, postprocess_params def __call__( self , snake_case__ , *snake_case__ , **snake_case__ ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : List[str] =super().__call__(_snake_case , **_snake_case ) if isinstance(_snake_case , _snake_case ) and len(_snake_case ) == 1: return outputs[0] return outputs
357
from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge __snake_case = [ '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the''' ''' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe''' ''' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.''', '''The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal''' ''' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s''' ''' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the''' ''' body.''', '''Amnesty International releases its annual report on the death penalty. The report catalogs the use of''' ''' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the''' ''' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital''' ''' punishment.''', ] __snake_case = [ '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''' ''' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz''' ''' had informed his Lufthansa training school of an episode of severe depression, airline says .''', '''Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .''' ''' Israel and the United States opposed the move, which could open the door to war crimes investigations against''' ''' Israelis .''', '''Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to''' ''' death . Organization claims that governments around the world are using the threat of terrorism to advance''' ''' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death''' ''' sentences up by 28% .''', ] def lowerCAmelCase_ ( )-> Optional[Any]: '''simple docstring''' UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , bootstrap_aggregation=__lowerCAmelCase , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : Any ='''rougeLsum''' UpperCAmelCase : Optional[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] UpperCAmelCase : List[Any] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=[k] )[k] assert score > score_no_sep def lowerCAmelCase_ ( )-> Any: '''simple docstring''' UpperCAmelCase : str =['''rouge1''', '''rouge2''', '''rougeL'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) UpperCAmelCase : Tuple =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase , rouge_keys=__lowerCAmelCase ) assert score_sep == score_no_sep def lowerCAmelCase_ ( )-> Dict: '''simple docstring''' UpperCAmelCase : int =[ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] UpperCAmelCase : Any =[ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) == calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , newline_sep=__lowerCAmelCase ) def lowerCAmelCase_ ( )-> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =[ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] UpperCAmelCase : Optional[Any] =[ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] UpperCAmelCase : Optional[int] =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] , newline_sep=__lowerCAmelCase )['''rougeLsum'''] UpperCAmelCase : int =calculate_rouge(__lowerCAmelCase , __lowerCAmelCase , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def lowerCAmelCase_ ( )-> Optional[int]: '''simple docstring''' UpperCAmelCase : List[Any] =Path('''examples/seq2seq/test_data/wmt_en_ro''' ) UpperCAmelCase : Tuple =calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase : Dict =calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=__lowerCAmelCase ) assert isinstance(__lowerCAmelCase , __lowerCAmelCase )
78
0
from sklearn.metrics import recall_score import datasets lowerCAmelCase : Optional[int] = """ Recall is the fraction of the positive examples that were correctly labeled by the model as positive. It can be computed with the equation: Recall = TP / (TP + FN) Where TP is the true positives and FN is the false negatives. """ lowerCAmelCase : int = """ Args: - **predictions** (`list` of `int`): The predicted labels. - **references** (`list` of `int`): The ground truth labels. - **labels** (`list` of `int`): The set of labels to include when `average` is not set to `binary`, and their order when average is `None`. Labels present in the data can be excluded in this input, for example to calculate a multiclass average ignoring a majority negative class, while labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in y_true and y_pred are used in sorted order. Defaults to None. - **pos_label** (`int`): The class label to use as the 'positive class' when calculating the recall. Defaults to `1`. - **average** (`string`): This parameter is required for multiclass/multilabel targets. If None, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`. - `'binary'`: Only report results for the class specified by `pos_label`. This is applicable only if the target labels and predictions are binary. - `'micro'`: Calculate metrics globally by counting the total true positives, false negatives, and false positives. - `'macro'`: Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account. - `'weighted'`: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. Note that it can result in an F-score that is not between precision and recall. - `'samples'`: Calculate metrics for each instance, and find their average (only meaningful for multilabel classification). - **sample_weight** (`list` of `float`): Sample weights Defaults to `None`. - **zero_division** (): Sets the value to return when there is a zero division. Defaults to . - `'warn'`: If there is a zero division, the return value is `0`, but warnings are also raised. - `0`: If there is a zero division, the return value is `0`. - `1`: If there is a zero division, the return value is `1`. Returns: - **recall** (`float`, or `array` of `float`): Either the general recall score, or the recall scores for individual classes, depending on the values input to `labels` and `average`. Minimum possible value is 0. Maximum possible value is 1. A higher recall means that more of the positive examples have been labeled correctly. Therefore, a higher recall is generally considered better. Examples: Example 1-A simple example with some errors >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1]) >>> print(results) {'recall': 0.6666666666666666} Example 2-The same example as Example 1, but with `pos_label=0` instead of the default `pos_label=1`. >>> recall_metric = datasets.load_metric('recall') >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], pos_label=0) >>> print(results) {'recall': 0.5} Example 3-The same example as Example 1, but with `sample_weight` included. >>> recall_metric = datasets.load_metric('recall') >>> sample_weight = [0.9, 0.2, 0.9, 0.3, 0.8] >>> results = recall_metric.compute(references=[0, 0, 1, 1, 1], predictions=[0, 1, 0, 1, 1], sample_weight=sample_weight) >>> print(results) {'recall': 0.55} Example 4-A multiclass example, using different averages. >>> recall_metric = datasets.load_metric('recall') >>> predictions = [0, 2, 1, 0, 0, 1] >>> references = [0, 1, 2, 0, 1, 2] >>> results = recall_metric.compute(predictions=predictions, references=references, average='macro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='micro') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average='weighted') >>> print(results) {'recall': 0.3333333333333333} >>> results = recall_metric.compute(predictions=predictions, references=references, average=None) >>> print(results) {'recall': array([1., 0., 0.])} """ lowerCAmelCase : Tuple = """ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowercase ( datasets.Metric ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[str]): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32")), "references": datasets.Sequence(datasets.Value("int32")), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32"), "references": datasets.Value("int32"), }) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html"] , ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str=1 , lowerCAmelCase__ : List[str]="binary" , lowerCAmelCase__ : Tuple=None , lowerCAmelCase__ : str="warn" , ): SCREAMING_SNAKE_CASE_: List[str] = recall_score( lowerCAmelCase__ , lowerCAmelCase__ , labels=lowerCAmelCase__ , pos_label=lowerCAmelCase__ , average=lowerCAmelCase__ , sample_weight=lowerCAmelCase__ , zero_division=lowerCAmelCase__ , ) return {"recall": float(lowerCAmelCase__) if score.size == 1 else score}
13
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __snake_case : def __init__( self ,snake_case ,): '''simple docstring''' lowercase : Any = parent lowercase : Tuple = 13 lowercase : str = 7 lowercase : Dict = True lowercase : Dict = True lowercase : str = True lowercase : List[str] = True lowercase : int = True lowercase : Union[str, Any] = False lowercase : Dict = False lowercase : List[Any] = False lowercase : List[Any] = 2 lowercase : Optional[Any] = 99 lowercase : int = 0 lowercase : Tuple = 32 lowercase : int = 2 lowercase : Tuple = 4 lowercase : List[Any] = 0.1 lowercase : Tuple = 0.1 lowercase : List[Any] = 512 lowercase : int = 16 lowercase : Dict = 2 lowercase : int = 0.02 lowercase : Union[str, Any] = 3 lowercase : Any = 4 lowercase : List[Any] = """last""" lowercase : Tuple = True lowercase : List[Any] = None lowercase : Any = 0 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ,dtype=tf.floataa ) lowercase : Tuple = None if self.use_input_lengths: lowercase : List[str] = ( ids_tensor([self.batch_size] ,vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length lowercase : Tuple = None if self.use_token_type_ids: lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.n_langs ) lowercase : List[str] = None lowercase : List[str] = None lowercase : Optional[Any] = None if self.use_labels: lowercase : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) lowercase : List[str] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) lowercase : str = ids_tensor([self.batch_size] ,2 ,dtype=tf.floataa ) lowercase : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) lowercase : str = FlaubertConfig( vocab_size=self.vocab_size ,n_special=self.n_special ,emb_dim=self.hidden_size ,n_layers=self.num_hidden_layers ,n_heads=self.num_attention_heads ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,gelu_activation=self.gelu_activation ,sinusoidal_embeddings=self.sinusoidal_embeddings ,asm=self.asm ,causal=self.causal ,n_langs=self.n_langs ,max_position_embeddings=self.max_position_embeddings ,initializer_range=self.initializer_range ,summary_type=self.summary_type ,use_proj=self.use_proj ,bos_token_id=self.bos_token_id ,) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertModel(config=snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : Optional[Any] = model(snake_case ) lowercase : List[Any] = [input_ids, input_mask] lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : List[Any] = TFFlaubertWithLMHeadModel(snake_case ) lowercase : Optional[Any] = {"""input_ids""": input_ids, """lengths""": input_lengths, """langs""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Tuple = TFFlaubertForQuestionAnsweringSimple(snake_case ) lowercase : Union[str, Any] = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Union[str, Any] = TFFlaubertForSequenceClassification(snake_case ) lowercase : str = {"""input_ids""": input_ids, """lengths""": input_lengths} lowercase : str = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_labels lowercase : List[str] = TFFlaubertForTokenClassification(config=snake_case ) lowercase : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ,): '''simple docstring''' lowercase : Any = self.num_choices lowercase : Dict = TFFlaubertForMultipleChoice(config=snake_case ) lowercase : Any = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Optional[Any] = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Dict = tf.tile(tf.expand_dims(snake_case ,1 ) ,(1, self.num_choices, 1) ) lowercase : Union[str, Any] = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowercase : int = model(snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Any = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) : int = config_and_inputs lowercase : List[str] = { """input_ids""": input_ids, """token_type_ids""": token_type_ids, """langs""": token_type_ids, """lengths""": input_lengths, } return config, inputs_dict @require_tf class __snake_case ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): _a : Dict= ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) _a : Optional[Any]= ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable _a : Any= ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) _a : Tuple= False _a : int= False def _SCREAMING_SNAKE_CASE ( self ,snake_case ,snake_case ,snake_case ,snake_case ,snake_case ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("""Fast""" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = TFFlaubertModelTester(self ) lowercase : List[Any] = ConfigTester(self ,config_class=snake_case ,emb_dim=37 ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*snake_case ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*snake_case ) @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase : Dict = TFFlaubertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowercase : List[Any] = TFFlaubertModel.from_pretrained("""jplu/tf-flaubert-small-cased""" ) lowercase : int = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] ,dtype=tf.intaa ,) # "J'aime flaubert !" lowercase : Dict = model(snake_case )[0] lowercase : Union[str, Any] = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape ,snake_case ) # compare the actual values for a slice. lowercase : Tuple = tf.convert_to_tensor( [ [ [-1.8_768_773, -1.566_555, 0.27_072_418], [-1.6_920_038, -0.5_873_505, 1.9_329_599], [-2.9_563_985, -1.6_993_835, 1.7_972_052], ] ] ,dtype=tf.floataa ,) self.assertTrue(np.allclose(output[:, :3, :3].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
20
0
import logging from transformers import PretrainedConfig lowerCAmelCase = logging.getLogger(__name__) lowerCAmelCase = { 'bertabs-finetuned-cnndm': 'https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json', } class _a ( UpperCamelCase__ ): _lowercase : List[Any] = '''bertabs''' def __init__( self: List[str] , UpperCamelCase_: Dict=30_522 , UpperCamelCase_: Union[str, Any]=512 , UpperCamelCase_: Optional[int]=6 , UpperCamelCase_: int=512 , UpperCamelCase_: Optional[int]=8 , UpperCamelCase_: List[Any]=512 , UpperCamelCase_: Tuple=0.2 , UpperCamelCase_: List[Any]=6 , UpperCamelCase_: Tuple=768 , UpperCamelCase_: List[Any]=8 , UpperCamelCase_: Union[str, Any]=2_048 , UpperCamelCase_: str=0.2 , **UpperCamelCase_: Any , ) -> List[str]: """simple docstring""" super().__init__(**UpperCamelCase_ ) lowercase__ = vocab_size lowercase__ = max_pos lowercase__ = enc_layers lowercase__ = enc_hidden_size lowercase__ = enc_heads lowercase__ = enc_ff_size lowercase__ = enc_dropout lowercase__ = dec_layers lowercase__ = dec_hidden_size lowercase__ = dec_heads lowercase__ = dec_ff_size lowercase__ = dec_dropout
93
from collections.abc import Sequence from queue import Queue class _a : def __init__( self: Tuple , UpperCamelCase_: Optional[int] , UpperCamelCase_: int , UpperCamelCase_: Optional[Any] , UpperCamelCase_: Union[str, Any]=None , UpperCamelCase_: Dict=None ) -> Tuple: """simple docstring""" lowercase__ = start lowercase__ = end lowercase__ = val lowercase__ = (start + end) // 2 lowercase__ = left lowercase__ = right def __repr__( self: Optional[int] ) -> Optional[Any]: """simple docstring""" return f'SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})' class _a : def __init__( self: Any , UpperCamelCase_: Sequence , UpperCamelCase_: Any ) -> List[str]: """simple docstring""" lowercase__ = collection lowercase__ = function if self.collection: lowercase__ = self._build_tree(0 , len(UpperCamelCase_ ) - 1 ) def lowerCamelCase_ ( self: int , UpperCamelCase_: Union[str, Any] , UpperCamelCase_: Union[str, Any] ) -> Union[str, Any]: """simple docstring""" self._update_tree(self.root , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: str , UpperCamelCase_: int , UpperCamelCase_: List[str] ) -> Optional[Any]: """simple docstring""" return self._query_range(self.root , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[str] , UpperCamelCase_: Tuple , UpperCamelCase_: Dict ) -> str: """simple docstring""" if start == end: return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.collection[start] ) lowercase__ = (start + end) // 2 lowercase__ = self._build_tree(UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self._build_tree(mid + 1 , UpperCamelCase_ ) return SegmentTreeNode(UpperCamelCase_ , UpperCamelCase_ , self.fn(left.val , right.val ) , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: Dict , UpperCamelCase_: Tuple , UpperCamelCase_: Union[str, Any] ) -> Dict: """simple docstring""" if node.start == i and node.end == i: lowercase__ = val return if i <= node.mid: self._update_tree(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: self._update_tree(node.right , UpperCamelCase_ , UpperCamelCase_ ) lowercase__ = self.fn(node.left.val , node.right.val ) def lowerCamelCase_ ( self: List[Any] , UpperCamelCase_: str , UpperCamelCase_: Dict , UpperCamelCase_: Dict ) -> List[Any]: """simple docstring""" if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , UpperCamelCase_ , UpperCamelCase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , UpperCamelCase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , UpperCamelCase_ ) , ) else: # range in right child tree return self._query_range(node.right , UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase_ ( self: Optional[int] ) -> str: """simple docstring""" if self.root is not None: lowercase__ = Queue() queue.put(self.root ) while not queue.empty(): lowercase__ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) lowerCAmelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
93
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def lowerCAmelCase_ ( ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = ArgumentParser("Transformers CLI tool", usage="transformers-cli <command> [<args>]" ) UpperCAmelCase__ = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(__A ) DownloadCommand.register_subcommand(__A ) EnvironmentCommand.register_subcommand(__A ) RunCommand.register_subcommand(__A ) ServeCommand.register_subcommand(__A ) UserCommands.register_subcommand(__A ) AddNewModelCommand.register_subcommand(__A ) AddNewModelLikeCommand.register_subcommand(__A ) LfsCommands.register_subcommand(__A ) PTtoTFCommand.register_subcommand(__A ) # Let's go UpperCAmelCase__ = parser.parse_args() if not hasattr(__A, "func" ): parser.print_help() exit(1 ) # Run UpperCAmelCase__ = args.func(__A ) service.run() if __name__ == "__main__": main()
65
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter _lowerCamelCase : Tuple = 'Create a default config file for Accelerate with only a few flags set.' def lowercase_ ( _UpperCAmelCase="no" , _UpperCAmelCase = default_json_config_file , _UpperCAmelCase = False ): """simple docstring""" A_ : str = Path(_UpperCAmelCase ) path.parent.mkdir(parents=_UpperCAmelCase , exist_ok=_UpperCAmelCase ) if path.exists(): print( f"""Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.""" ) return False A_ : Optional[Any] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f"""`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}""" ) A_ : str = { '''compute_environment''': '''LOCAL_MACHINE''', '''mixed_precision''': mixed_precision, } if torch.cuda.is_available(): A_ : int = torch.cuda.device_count() A_ : int = num_gpus A_ : Tuple = False if num_gpus > 1: A_ : Optional[int] = '''MULTI_GPU''' else: A_ : Union[str, Any] = '''NO''' elif is_xpu_available() and use_xpu: A_ : str = torch.xpu.device_count() A_ : Optional[int] = num_xpus A_ : List[str] = False if num_xpus > 1: A_ : Any = '''MULTI_XPU''' else: A_ : Optional[Any] = '''NO''' elif is_npu_available(): A_ : Union[str, Any] = torch.npu.device_count() A_ : Optional[int] = num_npus A_ : Union[str, Any] = False if num_npus > 1: A_ : List[str] = '''MULTI_NPU''' else: A_ : Tuple = '''NO''' else: A_ : Union[str, Any] = 0 A_ : str = True A_ : str = 1 A_ : List[Any] = '''NO''' A_ : Dict = ClusterConfig(**_UpperCAmelCase ) config.to_json_file(_UpperCAmelCase ) return path def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[str] = parser.add_parser('''default''' , parents=_UpperCAmelCase , help=_UpperCAmelCase , formatter_class=_UpperCAmelCase ) parser.add_argument( '''--config_file''' , default=_UpperCAmelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , dest='''save_location''' , ) parser.add_argument( '''--mixed_precision''' , choices=['''no''', '''fp16''', '''bf16'''] , type=_UpperCAmelCase , help='''Whether or not to use mixed precision training. ''' '''Choose between FP16 and BF16 (bfloat16) training. ''' '''BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.''' , default='''no''' , ) parser.set_defaults(func=_UpperCAmelCase ) return parser def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : str = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f"""accelerate configuration saved at {config_file}""" )
167
0
import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py __A : List[str] = 'src/diffusers' __A : Optional[int] = '.' # This is to make sure the diffusers module imported is the one in the repo. __A : str = importlib.util.spec_from_file_location( 'diffusers', os.path.join(DIFFUSERS_PATH, '__init__.py'), submodule_search_locations=[DIFFUSERS_PATH], ) __A : Optional[int] = spec.loader.load_module() def __UpperCamelCase ( _A : Dict , _A : Any ) ->int: """simple docstring""" return line.startswith(_A ) or len(_A ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""" , _A ) is not None def __UpperCamelCase ( _A : Optional[Any] ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =object_name.split(""".""" ) lowerCamelCase_ =0 # First let's find the module where our object lives. lowerCamelCase_ =parts[i] while i < len(_A ) and not os.path.isfile(os.path.join(_A , f'{module}.py' ) ): i += 1 if i < len(_A ): lowerCamelCase_ =os.path.join(_A , parts[i] ) if i >= len(_A ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(_A , f'{module}.py' ) , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ =f.readlines() # Now let's find the class / func in the code! lowerCamelCase_ ="""""" lowerCamelCase_ =0 for name in parts[i + 1 :]: while ( line_index < len(_A ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)' , lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(_A ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). lowerCamelCase_ =line_index while line_index < len(_A ) and _should_continue(lines[line_index] , _A ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ =lines[start_index:line_index] return "".join(_A ) __A : str = re.compile(R'^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)') __A : List[str] = re.compile(R'^\s*(\S+)->(\S+)(\s+.*|$)') __A : Optional[int] = re.compile(R'<FILL\s+[^>]*>') def __UpperCamelCase ( _A : List[str] ) ->Tuple: """simple docstring""" lowerCamelCase_ =code.split("""\n""" ) lowerCamelCase_ =0 while idx < len(_A ) and len(lines[idx] ) == 0: idx += 1 if idx < len(_A ): return re.search(R"""^(\s*)\S""" , lines[idx] ).groups()[0] return "" def __UpperCamelCase ( _A : Optional[int] ) ->Any: """simple docstring""" lowerCamelCase_ =len(get_indent(_A ) ) > 0 if has_indent: lowerCamelCase_ =f'class Bla:\n{code}' lowerCamelCase_ =black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 , preview=_A ) lowerCamelCase_ =black.format_str(_A , mode=_A ) lowerCamelCase_ , lowerCamelCase_ =style_docstrings_in_code(_A ) return result[len("""class Bla:\n""" ) :] if has_indent else result def __UpperCamelCase ( _A : Dict , _A : Dict=False ) ->Union[str, Any]: """simple docstring""" with open(_A , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowerCamelCase_ =f.readlines() lowerCamelCase_ =[] lowerCamelCase_ =0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(_A ): lowerCamelCase_ =_re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ =search.groups() lowerCamelCase_ =find_code_in_diffusers(_A ) lowerCamelCase_ =get_indent(_A ) lowerCamelCase_ =line_index + 1 if indent == theoretical_indent else line_index + 2 lowerCamelCase_ =theoretical_indent lowerCamelCase_ =start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. lowerCamelCase_ =True while line_index < len(_A ) and should_continue: line_index += 1 if line_index >= len(_A ): break lowerCamelCase_ =lines[line_index] lowerCamelCase_ =_should_continue(_A , _A ) and re.search(f'^{indent}# End copy' , _A ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 lowerCamelCase_ =lines[start_index:line_index] lowerCamelCase_ ="""""".join(_A ) # Remove any nested `Copied from` comments to avoid circular copies lowerCamelCase_ =[line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(_A ) is None] lowerCamelCase_ ="""\n""".join(_A ) # Before comparing, use the `replace_pattern` on the original code. if len(_A ) > 0: lowerCamelCase_ =replace_pattern.replace("""with""" , """""" ).split(""",""" ) lowerCamelCase_ =[_re_replace_pattern.search(_A ) for p in patterns] for pattern in patterns: if pattern is None: continue lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ =pattern.groups() lowerCamelCase_ =re.sub(_A , _A , _A ) if option.strip() == "all-casing": lowerCamelCase_ =re.sub(obja.lower() , obja.lower() , _A ) lowerCamelCase_ =re.sub(obja.upper() , obja.upper() , _A ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line lowerCamelCase_ =blackify(lines[start_index - 1] + theoretical_code ) lowerCamelCase_ =theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: lowerCamelCase_ =lines[:start_index] + [theoretical_code] + lines[line_index:] lowerCamelCase_ =start_index + 1 if overwrite and len(_A ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(_A , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(_A ) return diffs def __UpperCamelCase ( _A : bool = False ) ->Optional[int]: """simple docstring""" lowerCamelCase_ =glob.glob(os.path.join(_A , """**/*.py""" ) , recursive=_A ) lowerCamelCase_ =[] for filename in all_files: lowerCamelCase_ =is_copy_consistent(_A , _A ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(_A ) > 0: lowerCamelCase_ ="""\n""".join(_A ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": __A : Optional[int] = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') __A : Union[str, Any] = parser.parse_args() check_copies(args.fix_and_overwrite)
49
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : Any = '▁' __A : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = BertGenerationTokenizer _UpperCamelCase:List[str] = False _UpperCamelCase:List[Any] = True def _snake_case ( self )-> Optional[int]: super().setUp() lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self )-> Any: lowerCamelCase_ ="""<s>""" lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1002 ) def _snake_case ( self )-> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self )-> Any: lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) lowerCamelCase_ =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self )-> str: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def _snake_case ( self )-> Optional[int]: lowerCamelCase_ ="""Hello World!""" lowerCamelCase_ =[1_8536, 2260, 101] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase_ =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _snake_case ( self )-> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase_ =list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase_ =""" """.join(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =BertGenerationConfig() lowerCamelCase_ =BertGenerationEncoder(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: # fmt: off lowerCamelCase_ ={"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
49
1
'''simple docstring''' def _lowerCamelCase ( lowercase : int = 200 ) -> int: _a = [1, 2, 5, 10, 20, 50, 100, 200] _a = [0] * (pence + 1) _a = 1 # base case: 1 way to make 0 pence for coin in coins: for i in range(lowercase , pence + 1 , 1 ): number_of_ways[i] += number_of_ways[i - coin] return number_of_ways[pence] if __name__ == "__main__": assert solution(2_00) == 7_36_82
63
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING import torch from ..models.auto import AutoModelForVisualQuestionAnswering, AutoProcessor from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class a ( _lowerCamelCase ): """simple docstring""" UpperCAmelCase = "dandelin/vilt-b32-finetuned-vqa" UpperCAmelCase = ( "This is a tool that answers a question about an image. It takes an input named `image` which should be the " "image containing the information, as well as a `question` which should be the question in English. It " "returns a text that is the answer to the question." ) UpperCAmelCase = "image_qa" UpperCAmelCase = AutoProcessor UpperCAmelCase = AutoModelForVisualQuestionAnswering UpperCAmelCase = ["image", "text"] UpperCAmelCase = ["text"] def __init__( self: List[str] , *UpperCamelCase: Dict , **UpperCamelCase: List[str] ): """simple docstring""" requires_backends(self , ["""vision"""] ) super().__init__(*UpperCamelCase , **UpperCamelCase ) def UpperCamelCase ( self: str , UpperCamelCase: "Image" , UpperCamelCase: str ): """simple docstring""" return self.pre_processor(UpperCamelCase , UpperCamelCase , return_tensors="""pt""" ) def UpperCamelCase ( self: str , UpperCamelCase: str ): """simple docstring""" with torch.no_grad(): return self.model(**UpperCamelCase ).logits def UpperCamelCase ( self: Union[str, Any] , UpperCamelCase: int ): """simple docstring""" A__ = outputs.argmax(-1 ).item() return self.model.config.idalabel[idx]
335
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class A( unittest.TestCase ): '''simple docstring''' def __init__( self : str , A_ : int , A_ : Any=7 , A_ : Tuple=3 , A_ : Union[str, Any]=18 , A_ : Tuple=30 , A_ : Union[str, Any]=400 , A_ : Optional[int]=True , A_ : List[Any]=None , A_ : Dict=True , A_ : Union[str, Any]=None , A_ : Optional[int]=True , A_ : str=[0.48145466, 0.4578275, 0.40821073] , A_ : Tuple=[0.26862954, 0.26130258, 0.27577711] , A_ : Any=True , ) -> str: """simple docstring""" lowerCamelCase_ = size if size is not None else {'height': 224, 'width': 224} lowerCamelCase_ = crop_size if crop_size is not None else {'height': 18, 'width': 18} lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = num_channels lowerCamelCase_ = image_size lowerCamelCase_ = min_resolution lowerCamelCase_ = max_resolution lowerCamelCase_ = do_resize lowerCamelCase_ = size lowerCamelCase_ = do_center_crop lowerCamelCase_ = crop_size lowerCamelCase_ = do_normalize lowerCamelCase_ = image_mean lowerCamelCase_ = image_std lowerCamelCase_ = do_convert_rgb def a__ ( self : Optional[int] ) -> Tuple: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def a__ ( self : Any , A_ : Any=False , A_ : Dict=False , A_ : str=False ) -> Union[str, Any]: """simple docstring""" assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: lowerCamelCase_ = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 255 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: lowerCamelCase_ = [] for i in range(self.batch_size ): lowerCamelCase_ , lowerCamelCase_ = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(255 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension lowerCamelCase_ = [Image.fromarray(np.moveaxis(A_ , 0 , -1 ) ) for x in image_inputs] if torchify: lowerCamelCase_ = [torch.from_numpy(A_ ) for x in image_inputs] return image_inputs @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : int ) -> Any: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , do_center_crop=A_ ) @property def a__ ( self : str ) -> List[Any]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Any ) -> Any: """simple docstring""" lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 224, 'width': 224} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) lowerCamelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def a__ ( self : List[Any] ) -> List[Any]: """simple docstring""" pass def a__ ( self : str ) -> str: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , numpify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , np.ndarray ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def a__ ( self : str ) -> Dict: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ , torchify=A_ ) for image in image_inputs: self.assertIsInstance(A_ , torch.Tensor ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class A( UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase = ChineseCLIPImageProcessor if is_vision_available() else None def a__ ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=A_ ) lowerCamelCase_ = 3 @property def a__ ( self : Any ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self : Dict ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A_ , 'do_resize' ) ) self.assertTrue(hasattr(A_ , 'size' ) ) self.assertTrue(hasattr(A_ , 'do_center_crop' ) ) self.assertTrue(hasattr(A_ , 'center_crop' ) ) self.assertTrue(hasattr(A_ , 'do_normalize' ) ) self.assertTrue(hasattr(A_ , 'image_mean' ) ) self.assertTrue(hasattr(A_ , 'image_std' ) ) self.assertTrue(hasattr(A_ , 'do_convert_rgb' ) ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" pass def a__ ( self : Union[str, Any] ) -> int: """simple docstring""" lowerCamelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCamelCase_ = self.image_processor_tester.prepare_inputs(equal_resolution=A_ ) for image in image_inputs: self.assertIsInstance(A_ , Image.Image ) # Test not batched input lowerCamelCase_ = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched lowerCamelCase_ = image_processing(A_ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
208
import argparse import os import transformers from .convert_slow_tokenizer import SLOW_TO_FAST_CONVERTERS from .utils import logging logging.set_verbosity_info() lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = {name: getattr(transformers, name + "Fast") for name in SLOW_TO_FAST_CONVERTERS} def _SCREAMING_SNAKE_CASE ( lowercase : Any , lowercase : str , lowercase : int , lowercase : List[Any] ): '''simple docstring''' if tokenizer_name is not None and tokenizer_name not in TOKENIZER_CLASSES: raise ValueError(f"""Unrecognized tokenizer name, should be one of {list(TOKENIZER_CLASSES.keys() )}.""" ) if tokenizer_name is None: lowerCamelCase_ = TOKENIZER_CLASSES else: lowerCamelCase_ = {tokenizer_name: getattr(lowercase , tokenizer_name + 'Fast' )} logger.info(f"""Loading tokenizer classes: {tokenizer_names}""" ) for tokenizer_name in tokenizer_names: lowerCamelCase_ = TOKENIZER_CLASSES[tokenizer_name] lowerCamelCase_ = True if checkpoint_name is None: lowerCamelCase_ = list(tokenizer_class.max_model_input_sizes.keys() ) else: lowerCamelCase_ = [checkpoint_name] logger.info(f"""For tokenizer {tokenizer_class.__class__.__name__} loading checkpoints: {checkpoint_names}""" ) for checkpoint in checkpoint_names: logger.info(f"""Loading {tokenizer_class.__class__.__name__} {checkpoint}""" ) # Load tokenizer lowerCamelCase_ = tokenizer_class.from_pretrained(lowercase , force_download=lowercase ) # Save fast tokenizer logger.info(f"""Save fast tokenizer to {dump_path} with prefix {checkpoint} add_prefix {add_prefix}""" ) # For organization names we create sub-directories if "/" in checkpoint: lowerCamelCase_ , lowerCamelCase_ = checkpoint.split('/' ) lowerCamelCase_ = os.path.join(lowercase , lowercase ) elif add_prefix: lowerCamelCase_ = checkpoint lowerCamelCase_ = dump_path else: lowerCamelCase_ = None lowerCamelCase_ = dump_path logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) if checkpoint in list(tokenizer.pretrained_vocab_files_map.values() )[0]: lowerCamelCase_ = list(tokenizer.pretrained_vocab_files_map.values() )[0][checkpoint] lowerCamelCase_ = file_path.split(lowercase )[-1][0] if next_char == "/": lowerCamelCase_ = os.path.join(lowercase , lowercase ) lowerCamelCase_ = None logger.info(f"""=> {dump_path_full} with prefix {checkpoint_prefix_name}, add_prefix {add_prefix}""" ) lowerCamelCase_ = tokenizer.save_pretrained( lowercase , legacy_format=lowercase , filename_prefix=lowercase ) logger.info(f"""=> File names {file_names}""" ) for file_name in file_names: if not file_name.endswith('tokenizer.json' ): os.remove(lowercase ) logger.info(f"""=> removing {file_name}""" ) if __name__ == "__main__": lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output generated fast tokenizer files." ) parser.add_argument( "--tokenizer_name", default=None, type=str, help=( F"""Optional tokenizer type selected in the list of {list(TOKENIZER_CLASSES.keys())}. If not given, will """ "download and convert all the checkpoints from AWS." ), ) parser.add_argument( "--checkpoint_name", default=None, type=str, help="Optional checkpoint name. If not given, will download and convert the canonical checkpoints from AWS.", ) parser.add_argument( "--force_download", action="store_true", help="Re-download checkpoints.", ) lowerCamelCase : Union[str, Any] = parser.parse_args() convert_slow_checkpoint_to_fast(args.tokenizer_name, args.checkpoint_name, args.dump_path, args.force_download)
208
1
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('''padding_side''' , '''right''' ) _lowercase =kwargs.pop('''return_attention_mask''' , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase ) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase ): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase ): _lowercase ='''tf''' elif is_torch_tensor(UpperCAmelCase ): _lowercase ='''pt''' elif isinstance(UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): _lowercase ='''np''' else: raise ValueError( f"type of {first_element} unknown: {type(UpperCAmelCase )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowercase =to_numpy(UpperCAmelCase ) else: _lowercase =[to_numpy(UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=UpperCAmelCase , max_length=UpperCAmelCase ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(UpperCAmelCase ) if not all(len(UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) _lowercase =[] for i in range(UpperCAmelCase ): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( UpperCAmelCase , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , ) truncated_inputs.append(UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(UpperCAmelCase ): # padding _lowercase =self._pad( truncated_inputs[i] , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa ): _lowercase =value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase ) return BatchFeature(UpperCAmelCase , tensor_type=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase = None , UpperCAmelCase = None , ) -> dict: _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: _lowercase =max_length - len(UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (0, difference) ) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (difference, 0) ) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> List[str]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(UpperCAmelCase ) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['''attention_mask'''][:max_length] return processed_features def __A (self , UpperCAmelCase=False , UpperCAmelCase=None ) -> Dict: # Get padding strategy if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =PaddingStrategy(UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
5
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = list(range(len(lowercase_ ) ) ) UpperCAmelCase = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) UpperCAmelCase = 0 UpperCAmelCase = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: UpperCAmelCase = 1 max_value += value[i] capacity -= weight[i] else: UpperCAmelCase = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
78
0
"""simple docstring""" from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo _lowerCAmelCase : Optional[int] = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' _lowerCAmelCase : Dict = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' _lowerCAmelCase : Optional[int] = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ ( datasets.Metric ): def _lowercase ( self: Any ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ), "references": datasets.Sequence( datasets.Sequence(datasets.Value("string" ,id="token" ) ,id="sequence" ) ,id="references" ), } ) ,) def _lowercase ( self: Tuple ,__lowerCAmelCase: List[List[List[str]]] ,__lowerCAmelCase: List[List[str]] ,__lowerCAmelCase: int = 1 ,__lowerCAmelCase: int = 4 ,): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=__lowerCAmelCase ,hypotheses=__lowerCAmelCase ,min_len=__lowerCAmelCase ,max_len=__lowerCAmelCase ) }
340
"""simple docstring""" import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging _lowerCAmelCase : Dict = logging.get_logger(__name__) class A_ ( _a ): def __init__( self: List[Any] ,__lowerCAmelCase: Union[List[ControlNetModel], Tuple[ControlNetModel]] ): '''simple docstring''' super().__init__() _lowerCamelCase : Tuple = nn.ModuleList(__lowerCAmelCase ) def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: torch.FloatTensor ,__lowerCAmelCase: Union[torch.Tensor, float, int] ,__lowerCAmelCase: torch.Tensor ,__lowerCAmelCase: List[torch.tensor] ,__lowerCAmelCase: List[float] ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[torch.Tensor] = None ,__lowerCAmelCase: Optional[Dict[str, Any]] = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: bool = True ,): '''simple docstring''' for i, (image, scale, controlnet) in enumerate(zip(__lowerCAmelCase ,__lowerCAmelCase ,self.nets ) ): _lowerCamelCase, _lowerCamelCase : Union[str, Any] = controlnet( __lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,__lowerCAmelCase ,) # merge samples if i == 0: _lowerCamelCase, _lowerCamelCase : Optional[Any] = down_samples, mid_sample else: _lowerCamelCase : Optional[int] = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(__lowerCAmelCase ,__lowerCAmelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def _lowercase ( self: Union[str, Any] ,__lowerCAmelCase: Union[str, os.PathLike] ,__lowerCAmelCase: bool = True ,__lowerCAmelCase: Callable = None ,__lowerCAmelCase: bool = False ,__lowerCAmelCase: Optional[str] = None ,): '''simple docstring''' _lowerCamelCase : List[Any] = 0 _lowerCamelCase : str = save_directory for controlnet in self.nets: controlnet.save_pretrained( __lowerCAmelCase ,is_main_process=__lowerCAmelCase ,save_function=__lowerCAmelCase ,safe_serialization=__lowerCAmelCase ,variant=__lowerCAmelCase ,) idx += 1 _lowerCamelCase : int = model_path_to_save + F"""_{idx}""" @classmethod def _lowercase ( cls: Any ,__lowerCAmelCase: Optional[Union[str, os.PathLike]] ,**__lowerCAmelCase: int ): '''simple docstring''' _lowerCamelCase : int = 0 _lowerCamelCase : str = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... _lowerCamelCase : Dict = pretrained_model_path while os.path.isdir(__lowerCAmelCase ): _lowerCamelCase : List[Any] = ControlNetModel.from_pretrained(__lowerCAmelCase ,**__lowerCAmelCase ) controlnets.append(__lowerCAmelCase ) idx += 1 _lowerCamelCase : Tuple = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(__lowerCAmelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(__lowerCAmelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(__lowerCAmelCase )}. Expected at least {pretrained_model_path + '_0'}.""" ) return cls(__lowerCAmelCase )
340
1
'''simple docstring''' import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class lowerCAmelCase__ ( nn.Module ): def __init__( self ): """simple docstring""" super().__init__() lowercase_ : Optional[int] = nn.Linear(3 , 4 ) lowercase_ : Optional[Any] = nn.BatchNormad(4 ) lowercase_ : Dict = nn.Linear(4 , 5 ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.lineara(self.batchnorm(self.lineara(__SCREAMING_SNAKE_CASE ) ) ) class lowerCAmelCase__ ( unittest.TestCase ): def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(__SCREAMING_SNAKE_CASE , model.state_dict() ) lowercase_ : List[str] = os.path.join(__SCREAMING_SNAKE_CASE , '''index.json''' ) self.assertTrue(os.path.isfile(__SCREAMING_SNAKE_CASE ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowercase_ : Any = os.path.join(__SCREAMING_SNAKE_CASE , F'''{key}.dat''' ) self.assertTrue(os.path.isfile(__SCREAMING_SNAKE_CASE ) ) # TODO: add tests on the fact weights are properly loaded def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowercase_ : Optional[int] = torch.randn(2 , 3 , dtype=__SCREAMING_SNAKE_CASE ) with TemporaryDirectory() as tmp_dir: lowercase_ : Optional[Any] = offload_weight(__SCREAMING_SNAKE_CASE , '''weight''' , __SCREAMING_SNAKE_CASE , {} ) lowercase_ : str = os.path.join(__SCREAMING_SNAKE_CASE , '''weight.dat''' ) self.assertTrue(os.path.isfile(__SCREAMING_SNAKE_CASE ) ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''weight''': {'''shape''': [2, 3], '''dtype''': str(__SCREAMING_SNAKE_CASE ).split('''.''' )[1]}} ) lowercase_ : int = load_offloaded_weight(__SCREAMING_SNAKE_CASE , index['''weight'''] ) self.assertTrue(torch.equal(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = ModelForTest() lowercase_ : Any = model.state_dict() lowercase_ : Dict = {k: v for k, v in state_dict.items() if '''linear2''' not in k} lowercase_ : int = {k: v for k, v in state_dict.items() if '''linear2''' in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Dict = OffloadedWeightsLoader(state_dict=__SCREAMING_SNAKE_CASE , save_folder=__SCREAMING_SNAKE_CASE ) # Every key is there with the right value self.assertEqual(sorted(__SCREAMING_SNAKE_CASE ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , weight_map[key] ) ) lowercase_ : Dict = {k: v for k, v in state_dict.items() if '''weight''' in k} lowercase_ : str = {k: v for k, v in state_dict.items() if '''weight''' not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : Any = OffloadedWeightsLoader(state_dict=__SCREAMING_SNAKE_CASE , save_folder=__SCREAMING_SNAKE_CASE ) # Every key is there with the right value self.assertEqual(sorted(__SCREAMING_SNAKE_CASE ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Duplicates are removed lowercase_ : Dict = OffloadedWeightsLoader(state_dict=__SCREAMING_SNAKE_CASE , save_folder=__SCREAMING_SNAKE_CASE ) # Every key is there with the right value self.assertEqual(sorted(__SCREAMING_SNAKE_CASE ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , weight_map[key] ) ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = {'''a.1''': 0, '''a.10''': 1, '''a.2''': 2} lowercase_ : Dict = extract_submodules_state_dict(__SCREAMING_SNAKE_CASE , ['''a.1''', '''a.2'''] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''a.1''': 0, '''a.2''': 2} ) lowercase_ : Any = {'''a.1.a''': 0, '''a.10.a''': 1, '''a.2.a''': 2} lowercase_ : Optional[int] = extract_submodules_state_dict(__SCREAMING_SNAKE_CASE , ['''a.1''', '''a.2'''] ) self.assertDictEqual(__SCREAMING_SNAKE_CASE , {'''a.1.a''': 0, '''a.2.a''': 2} )
93
'''simple docstring''' _lowercase : int = [sum(int(c, 1_0) ** 2 for c in i.__str__()) for i in range(1_0_0_0_0_0)] def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Optional[int] = 0 while number: # Increased Speed Slightly by checking every 5 digits together. sum_of_digits_squared += DIGITS_SQUARED[number % 100000] number //= 100000 return sum_of_digits_squared # There are 2 Chains made, # One ends with 89 with the chain member 58 being the one which when declared first, # there will be the least number of iterations for all the members to be checked. # The other one ends with 1 and has only one element 1. # So 58 and 1 are chosen to be declared at the starting. # Changed dictionary to an array to quicken the solution _lowercase : list[bool | None] = [None] * 1_0_0_0_0_0_0_0 _lowercase : List[str] = True _lowercase : Optional[int] = False def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if CHAINS[number - 1] is not None: return CHAINS[number - 1] # type: ignore lowercase_ : Tuple = chain(next_number(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Union[str, Any] = number_chain while number < 10000000: lowercase_ : int = number_chain number *= 10 return number_chain def snake_case_ ( __SCREAMING_SNAKE_CASE : int = 10000000 ): """simple docstring""" for i in range(1 , __SCREAMING_SNAKE_CASE ): if CHAINS[i] is None: chain(i + 1 ) return CHAINS[:number].count(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() print(f"""{solution() = }""")
93
1
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase ) -> str: snake_case_ = len(UpperCAmelCase ) snake_case_ = len(UpperCAmelCase ) snake_case_ = ( first_str_length if first_str_length > second_str_length else second_str_length ) snake_case_ = [] for char_count in range(UpperCAmelCase ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCAmelCase ) if __name__ == "__main__": print(alternative_string_arrange('''AB''', '''XYZ'''), end=''' ''')
312
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''moussaKam/mbarthez''': 1024, '''moussaKam/barthez''': 1024, '''moussaKam/barthez-orangesum-title''': 1024, } __UpperCamelCase = '''▁''' class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = BarthezTokenizer def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token super().__init__( lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case_ = [self.cls_token_id] snake_case_ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
312
1
import functools def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): __a = len(_UpperCAmelCase ) __a = len(_UpperCAmelCase ) @functools.cache def min_distance(_UpperCAmelCase , _UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa __a = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _UpperCAmelCase ) , 1 + min_distance(_UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
49
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Initialise PyTorch model __a = LxmertConfig.from_json_file(_UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) __a = LxmertForPreTraining(_UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , _UpperCAmelCase ) if __name__ == "__main__": __snake_case :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __snake_case :Optional[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
49
1
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=5 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase="gelu" , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=5_1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=2 , __lowerCamelCase=0.02 , __lowerCamelCase=4 , ) -> List[Any]: _SCREAMING_SNAKE_CASE : Union[str, Any] = parent _SCREAMING_SNAKE_CASE : Optional[int] = batch_size _SCREAMING_SNAKE_CASE : List[Any] = seq_length _SCREAMING_SNAKE_CASE : Dict = is_training _SCREAMING_SNAKE_CASE : List[str] = use_attention_mask _SCREAMING_SNAKE_CASE : Optional[Any] = use_token_type_ids _SCREAMING_SNAKE_CASE : Any = use_labels _SCREAMING_SNAKE_CASE : List[Any] = vocab_size _SCREAMING_SNAKE_CASE : List[str] = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Any = num_attention_heads _SCREAMING_SNAKE_CASE : Any = intermediate_size _SCREAMING_SNAKE_CASE : Any = hidden_act _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Tuple = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : Any = type_vocab_size _SCREAMING_SNAKE_CASE : Optional[int] = type_sequence_label_size _SCREAMING_SNAKE_CASE : Optional[int] = initializer_range _SCREAMING_SNAKE_CASE : int = num_choices def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Any = None if self.use_attention_mask: _SCREAMING_SNAKE_CASE : Dict = random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE : Optional[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=__lowerCamelCase , ) return config, input_ids, attention_mask def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : str = self.prepare_config_and_inputs() _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[Any] = config_and_inputs _SCREAMING_SNAKE_CASE : Optional[int] = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict @require_flax class lowerCAmelCase__( __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Tuple = FlaxDistilBertModelTester(self ) @slow def UpperCamelCase_ ( self ) -> int: for model_class_name in self.all_model_classes: _SCREAMING_SNAKE_CASE : Optional[int] = model_class_name.from_pretrained("distilbert-base-uncased" ) _SCREAMING_SNAKE_CASE : Optional[int] = model(np.ones((1, 1) ) ) self.assertIsNotNone(__lowerCamelCase ) @require_flax class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ) -> Any: _SCREAMING_SNAKE_CASE : Optional[int] = FlaxDistilBertModel.from_pretrained("distilbert-base-uncased" ) _SCREAMING_SNAKE_CASE : Any = np.array([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) _SCREAMING_SNAKE_CASE : str = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _SCREAMING_SNAKE_CASE : int = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Optional[int] = (1, 1_1, 7_6_8) self.assertEqual(output.shape , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = np.array([[[-0.1639, 0.3299, 0.1648], [-0.1746, 0.3289, 0.1710], [-0.1884, 0.3357, 0.1810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , __lowerCamelCase , atol=1E-4 ) )
325
import logging import os from typing import List, Tuple import numpy as np import psutil import torch import torch.distributed as dist from transformers import RagRetriever UpperCamelCase__ =logging.getLogger(__name__) class lowerCAmelCase__( __lowercase ): '''simple docstring''' def __init__( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None ) -> Optional[Any]: super().__init__( __lowerCamelCase , question_encoder_tokenizer=__lowerCamelCase , generator_tokenizer=__lowerCamelCase , index=__lowerCamelCase , init_retrieval=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = None def UpperCamelCase_ ( self , __lowerCamelCase ) -> Any: logger.info("initializing retrieval" ) # initializing a separate process group for retrieval as the default # nccl backend doesn't support gather/scatter operations while gloo # is too slow to replace nccl for the core gpu communication if dist.is_initialized(): logger.info("dist initialized" ) # needs to be set manually _SCREAMING_SNAKE_CASE : List[str] = self._infer_socket_ifname() # avoid clash with the NCCL port _SCREAMING_SNAKE_CASE : List[Any] = str(distributed_port + 1 ) _SCREAMING_SNAKE_CASE : int = dist.new_group(ranks=__lowerCamelCase , backend="gloo" ) # initialize retriever only on the main worker if not dist.is_initialized() or self._is_main(): logger.info("dist not initialized / main" ) self.index.init_index() # all processes wait untill the retriever is initialized by the main process if dist.is_initialized(): torch.distributed.barrier(group=self.process_group ) def UpperCamelCase_ ( self ) -> Optional[Any]: return dist.get_rank(group=self.process_group ) == 0 def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=torch.floataa ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = torch.empty(__lowerCamelCase , dtype=__lowerCamelCase ) dist.scatter(__lowerCamelCase , src=0 , scatter_list=__lowerCamelCase , group=self.process_group ) return target_tensor def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : int = psutil.net_if_addrs() # a hacky way to deal with varying network interface names _SCREAMING_SNAKE_CASE : Any = next((addr for addr in addrs if addr.startswith("e" )) , __lowerCamelCase ) return ifname def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple[np.ndarray, List[dict]]: # single GPU training if not dist.is_initialized(): _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : Dict = self._main_retrieve(__lowerCamelCase , __lowerCamelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__lowerCamelCase ) # distributed training _SCREAMING_SNAKE_CASE : Union[str, Any] = dist.get_world_size(group=self.process_group ) # gather logic _SCREAMING_SNAKE_CASE : Any = None if self._is_main(): _SCREAMING_SNAKE_CASE : Optional[Any] = [torch.empty(question_hidden_states.shape , dtype=torch.floataa ) for _ in range(__lowerCamelCase )] dist.gather(torch.tensor(__lowerCamelCase ) , dst=0 , gather_list=__lowerCamelCase , group=self.process_group ) # scatter logic _SCREAMING_SNAKE_CASE : Optional[int] = question_hidden_states.shape[0] _SCREAMING_SNAKE_CASE : Optional[Any] = [] _SCREAMING_SNAKE_CASE : Optional[int] = [] if self._is_main(): assert len(__lowerCamelCase ) == world_size _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : int = self._main_retrieve(torch.cat(__lowerCamelCase ).numpy() , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = torch.tensor(__lowerCamelCase ), torch.tensor(__lowerCamelCase ) _SCREAMING_SNAKE_CASE : List[str] = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Tuple = self._chunk_tensor(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE : Dict = self._scattered(__lowerCamelCase , [n_queries, n_docs] , target_type=torch.intaa ) _SCREAMING_SNAKE_CASE : Optional[Any] = self._scattered(__lowerCamelCase , [n_queries, n_docs, question_hidden_states.shape[1]] ) return retrieved_doc_embeds.numpy(), doc_ids.numpy(), self.index.get_doc_dicts(__lowerCamelCase )
325
1
'''simple docstring''' import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : """simple docstring""" def __init__( self : Tuple , _a : Optional[Any] , _a : str=13 , _a : Any=7 , _a : str=True , _a : List[Any]=True , _a : str=False , _a : Optional[int]=True , _a : str=99 , _a : Optional[int]=32 , _a : List[Any]=5 , _a : str=4 , _a : Any=37 , _a : Tuple="gelu" , _a : Union[str, Any]=0.1 , _a : Tuple=0.1 , _a : Tuple=512 , _a : Union[str, Any]=16 , _a : Union[str, Any]=2 , _a : str=0.02 , _a : List[str]=3 , _a : List[Any]=4 , _a : Optional[int]=None , ) -> int: __lowerCamelCase : Any = parent __lowerCamelCase : Optional[Any] = batch_size __lowerCamelCase : int = seq_length __lowerCamelCase : Optional[Any] = is_training __lowerCamelCase : str = use_input_mask __lowerCamelCase : Tuple = use_token_type_ids __lowerCamelCase : Any = use_labels __lowerCamelCase : Union[str, Any] = vocab_size __lowerCamelCase : Optional[int] = hidden_size __lowerCamelCase : str = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : int = intermediate_size __lowerCamelCase : Tuple = hidden_act __lowerCamelCase : Optional[int] = hidden_dropout_prob __lowerCamelCase : Optional[int] = attention_probs_dropout_prob __lowerCamelCase : Optional[Any] = max_position_embeddings __lowerCamelCase : Any = type_vocab_size __lowerCamelCase : str = type_sequence_label_size __lowerCamelCase : Optional[Any] = initializer_range __lowerCamelCase : Union[str, Any] = num_labels __lowerCamelCase : Union[str, Any] = num_choices __lowerCamelCase : Tuple = scope def _lowercase ( self : Tuple ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : Optional[Any] = None if self.use_input_mask: __lowerCamelCase : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : Dict = None if self.use_token_type_ids: __lowerCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase : Optional[int] = None __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = None if self.use_labels: __lowerCamelCase : str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCamelCase : Dict = ids_tensor([self.batch_size] , self.num_choices ) __lowerCamelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _lowercase ( self : Optional[Any] ) -> List[str]: return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_a , initializer_range=self.initializer_range , ) def _lowercase ( self : Dict , _a : Any , _a : int , _a : int , _a : Union[str, Any] , _a : Any , _a : Optional[Any] , _a : Any ) -> List[str]: __lowerCamelCase : Optional[Any] = BioGptModel(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : Dict = model(_a , attention_mask=_a ) __lowerCamelCase : Optional[int] = model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self : str , _a : Union[str, Any] , _a : Optional[Any] , _a : Optional[Any] , _a : Tuple , _a : Union[str, Any] , _a : int , _a : Any , _a : List[str] , _a : Tuple , ) -> List[str]: __lowerCamelCase : int = BioGptForCausalLM(config=_a ) model.to(_a ) model.eval() __lowerCamelCase : int = model(_a , attention_mask=_a , token_type_ids=_a , labels=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _lowercase ( self : int , _a : int , _a : Tuple , _a : Union[str, Any] , _a : List[str] , _a : Optional[Any] , *_a : List[Any] ) -> str: __lowerCamelCase : Optional[int] = BioGptModel(config=_a ) model.to(_a ) model.eval() # create attention mask __lowerCamelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=_a ) __lowerCamelCase : List[Any] = self.seq_length // 2 __lowerCamelCase : Optional[Any] = 0 # first forward pass __lowerCamelCase ,__lowerCamelCase : Any = model(_a , attention_mask=_a ).to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ) # change a random masked slice from input_ids __lowerCamelCase : int = ids_tensor((1,) , _a ).item() + 1 __lowerCamelCase : Any = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 ) __lowerCamelCase : Tuple = random_other_next_tokens # append to next input_ids and attn_mask __lowerCamelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase : Tuple = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=_a )] , dim=1 , ) # get two different outputs __lowerCamelCase : Dict = model(_a , attention_mask=_a )['last_hidden_state'] __lowerCamelCase : Optional[Any] = model(_a , past_key_values=_a , attention_mask=_a )['last_hidden_state'] # select random slice __lowerCamelCase : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase : List[Any] = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase : str = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def _lowercase ( self : Union[str, Any] , _a : Optional[Any] , _a : Optional[int] , _a : str , _a : List[str] , _a : Any , *_a : Dict ) -> Optional[Any]: __lowerCamelCase : Tuple = BioGptModel(config=_a ).to(_a ).eval() __lowerCamelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=_a ) # first forward pass __lowerCamelCase : Tuple = model(_a , attention_mask=_a , use_cache=_a ) __lowerCamelCase ,__lowerCamelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __lowerCamelCase : Tuple = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowerCamelCase : Tuple = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __lowerCamelCase : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __lowerCamelCase : int = model(_a , attention_mask=_a )['last_hidden_state'] __lowerCamelCase : List[str] = model(_a , attention_mask=_a , past_key_values=_a )[ 'last_hidden_state' ] # select random slice __lowerCamelCase : Optional[Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __lowerCamelCase : Union[str, Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_a , _a , atol=1e-3 ) ) def _lowercase ( self : List[str] , _a : List[Any] , _a : Any , _a : Dict , _a : int , _a : List[Any] , *_a : List[Any] , _a : Optional[Any]=False ) -> Optional[Any]: __lowerCamelCase : List[Any] = BioGptForCausalLM(_a ) model.to(_a ) if gradient_checkpointing: model.gradient_checkpointing_enable() __lowerCamelCase : Any = model(_a , labels=_a ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) result.loss.backward() def _lowercase ( self : Any , _a : str , *_a : List[Any] ) -> str: __lowerCamelCase : List[Any] = BioGptModel(_a ) __lowerCamelCase : Tuple = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers ) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 ) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 ) def _lowercase ( self : Any , _a : List[Any] , _a : List[Any] , _a : List[str] , _a : List[str] , _a : str , *_a : Optional[Any] ) -> Dict: __lowerCamelCase : List[str] = self.num_labels __lowerCamelCase : Any = BioGptForTokenClassification(_a ) model.to(_a ) model.eval() __lowerCamelCase : str = model(_a , attention_mask=_a , token_type_ids=_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _lowercase ( self : Optional[Any] ) -> int: __lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) ,( __lowerCamelCase ) , ) : List[Any] = config_and_inputs __lowerCamelCase : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): """simple docstring""" a_ =( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) a_ =(BioGptForCausalLM,) if is_torch_available() else () a_ =( { """feature-extraction""": BioGptModel, """text-classification""": BioGptForSequenceClassification, """text-generation""": BioGptForCausalLM, """token-classification""": BioGptForTokenClassification, """zero-shot""": BioGptForSequenceClassification, } if is_torch_available() else {} ) a_ =False def _lowercase ( self : Dict ) -> List[Any]: __lowerCamelCase : Any = BioGptModelTester(self ) __lowerCamelCase : Union[str, Any] = ConfigTester(self , config_class=_a , hidden_size=37 ) def _lowercase ( self : Optional[int] ) -> str: self.config_tester.run_common_tests() def _lowercase ( self : Optional[Any] ) -> List[str]: __lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : Tuple ) -> Dict: __lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __lowerCamelCase : Dict = type self.model_tester.create_and_check_model(*_a ) def _lowercase ( self : Optional[Any] ) -> int: __lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*_a ) def _lowercase ( self : str ) -> Optional[int]: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*_a , gradient_checkpointing=_a ) def _lowercase ( self : Tuple ) -> Dict: __lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*_a ) def _lowercase ( self : str ) -> int: __lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*_a ) def _lowercase ( self : Optional[int] ) -> int: __lowerCamelCase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*_a ) @slow def _lowercase ( self : Optional[int] ) -> int: __lowerCamelCase : Any = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(_a ) __lowerCamelCase : Tuple = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __lowerCamelCase : str = 'left' # Define PAD Token = EOS Token = 50256 __lowerCamelCase : Union[str, Any] = tokenizer.eos_token __lowerCamelCase : int = model.config.eos_token_id # use different length sentences to test batching __lowerCamelCase : int = [ 'Hello, my dog is a little', 'Today, I', ] __lowerCamelCase : Dict = tokenizer(_a , return_tensors='pt' , padding=_a ) __lowerCamelCase : str = inputs['input_ids'].to(_a ) __lowerCamelCase : List[str] = model.generate( input_ids=_a , attention_mask=inputs['attention_mask'].to(_a ) , ) __lowerCamelCase : Tuple = tokenizer(sentences[0] , return_tensors='pt' ).input_ids.to(_a ) __lowerCamelCase : Dict = model.generate(input_ids=_a ) __lowerCamelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['attention_mask'][-1].long().sum().cpu().item() __lowerCamelCase : int = tokenizer(sentences[1] , return_tensors='pt' ).input_ids.to(_a ) __lowerCamelCase : Optional[Any] = model.generate(input_ids=_a , max_length=model.config.max_length - num_paddings ) __lowerCamelCase : Optional[Any] = tokenizer.batch_decode(_a , skip_special_tokens=_a ) __lowerCamelCase : Dict = tokenizer.decode(output_non_padded[0] , skip_special_tokens=_a ) __lowerCamelCase : List[Any] = tokenizer.decode(output_padded[0] , skip_special_tokens=_a ) __lowerCamelCase : Any = [ 'Hello, my dog is a little bit bigger than a little bit.', 'Today, I have a good idea of how to use the information', ] self.assertListEqual(_a , _a ) self.assertListEqual(_a , [non_padded_sentence, padded_sentence] ) @slow def _lowercase ( self : Tuple ) -> int: for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCamelCase : Optional[Any] = BioGptModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def _lowercase ( self : Union[str, Any] ) -> List[str]: __lowerCamelCase ,__lowerCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Union[str, Any] = 3 __lowerCamelCase : Dict = input_dict['input_ids'] __lowerCamelCase : List[Any] = input_ids.ne(1 ).to(_a ) __lowerCamelCase : Optional[int] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __lowerCamelCase : List[str] = BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() __lowerCamelCase : Optional[int] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def _lowercase ( self : List[Any] ) -> Optional[Any]: __lowerCamelCase ,__lowerCamelCase : str = self.model_tester.prepare_config_and_inputs_for_common() __lowerCamelCase : Dict = 3 __lowerCamelCase : List[Any] = 'multi_label_classification' __lowerCamelCase : Union[str, Any] = input_dict['input_ids'] __lowerCamelCase : int = input_ids.ne(1 ).to(_a ) __lowerCamelCase : Optional[int] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __lowerCamelCase : Optional[Any] = BioGptForSequenceClassification(_a ) model.to(_a ) model.eval() __lowerCamelCase : Optional[Any] = model(_a , attention_mask=_a , labels=_a ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self : int ) -> Dict: __lowerCamelCase : Union[str, Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) __lowerCamelCase : Optional[Any] = torch.tensor([[2, 4805, 9, 656, 21]] ) __lowerCamelCase : Optional[int] = model(_a )[0] __lowerCamelCase : int = 4_2384 __lowerCamelCase : Any = torch.Size((1, 5, vocab_size) ) self.assertEqual(output.shape , _a ) __lowerCamelCase : Union[str, Any] = torch.tensor( [[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _a , atol=1e-4 ) ) @slow def _lowercase ( self : Dict ) -> Dict: __lowerCamelCase : Any = BioGptTokenizer.from_pretrained('microsoft/biogpt' ) __lowerCamelCase : Optional[Any] = BioGptForCausalLM.from_pretrained('microsoft/biogpt' ) model.to(_a ) torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = tokenizer('COVID-19 is' , return_tensors='pt' ).to(_a ) __lowerCamelCase : Tuple = model.generate( **_a , min_length=100 , max_length=1024 , num_beams=5 , early_stopping=_a , ) __lowerCamelCase : Optional[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=_a ) __lowerCamelCase : int = ( 'COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the' ' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and' ' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),' ' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and' ' more than 800,000 deaths.' ) self.assertEqual(_a , _a )
208
'''simple docstring''' import argparse import os import pickle import sys import torch from transformers import TransfoXLConfig, TransfoXLLMHeadModel, load_tf_weights_in_transfo_xl from transformers.models.transfo_xl import tokenization_transfo_xl as data_utils from transformers.models.transfo_xl.tokenization_transfo_xl import CORPUS_NAME, VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() # We do this to be able to load python 2 datasets pickles # See e.g. https://stackoverflow.com/questions/2121874/python-pickling-after-changing-a-modules-directory/2121918#2121918 _UpperCamelCase = data_utils.TransfoXLTokenizer _UpperCamelCase = data_utils.TransfoXLCorpus _UpperCamelCase = data_utils _UpperCamelCase = data_utils def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> Optional[Any]: if transfo_xl_dataset_file: # Convert a pre-processed corpus (see original TensorFlow repo) with open(_lowerCAmelCase ,'rb' ) as fp: __lowerCamelCase : Optional[Any] = pickle.load(_lowerCAmelCase ,encoding='latin1' ) # Save vocabulary and dataset cache as Dictionaries (should be better than pickles for the long-term) __lowerCamelCase : Tuple = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['pretrained_vocab_file'] print(F'Save vocabulary to {pytorch_vocab_dump_path}' ) __lowerCamelCase : str = corpus.vocab.__dict__ torch.save(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = corpus.__dict__ corpus_dict_no_vocab.pop('vocab' ,_lowerCAmelCase ) __lowerCamelCase : Optional[Any] = pytorch_dump_folder_path + '/' + CORPUS_NAME print(F'Save dataset to {pytorch_dataset_dump_path}' ) torch.save(_lowerCAmelCase ,_lowerCAmelCase ) if tf_checkpoint_path: # Convert a pre-trained TensorFlow model __lowerCamelCase : int = os.path.abspath(_lowerCAmelCase ) __lowerCamelCase : Any = os.path.abspath(_lowerCAmelCase ) print(F'Converting Transformer XL checkpoint from {tf_path} with config at {config_path}.' ) # Initialise PyTorch model if transfo_xl_config_file == "": __lowerCamelCase : Optional[int] = TransfoXLConfig() else: __lowerCamelCase : Optional[int] = TransfoXLConfig.from_json_file(_lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) __lowerCamelCase : List[str] = TransfoXLLMHeadModel(_lowerCAmelCase ) __lowerCamelCase : Dict = load_tf_weights_in_transfo_xl(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) # Save pytorch-model __lowerCamelCase : List[str] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) print(F'Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}' ) torch.save(model.state_dict() ,_lowerCAmelCase ) print(F'Save configuration file to {os.path.abspath(_lowerCAmelCase )}' ) with open(_lowerCAmelCase ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the folder to store the PyTorch model or dataset/vocab.', ) parser.add_argument( '--tf_checkpoint_path', default='', type=str, help='An optional path to a TensorFlow checkpoint path to be converted.', ) parser.add_argument( '--transfo_xl_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--transfo_xl_dataset_file', default='', type=str, help='An optional dataset file to be converted in a vocabulary.', ) _UpperCamelCase = parser.parse_args() convert_transfo_xl_checkpoint_to_pytorch( args.tf_checkpoint_path, args.transfo_xl_config_file, args.pytorch_dump_folder_path, args.transfo_xl_dataset_file, )
208
1
from itertools import product def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int , lowerCAmelCase: int ) -> list[int]: _UpperCAmelCase : Union[str, Any] = sides_number _UpperCAmelCase : Dict = max_face_number * dice_number _UpperCAmelCase : List[str] = [0] * (max_total + 1) _UpperCAmelCase : str = 1 _UpperCAmelCase : Optional[Any] = range(lowerCAmelCase , max_face_number + 1 ) for dice_numbers in product(lowerCAmelCase , repeat=lowerCAmelCase ): _UpperCAmelCase : Union[str, Any] = sum(lowerCAmelCase ) totals_frequencies[total] += 1 return totals_frequencies def __SCREAMING_SNAKE_CASE ( ) -> float: _UpperCAmelCase : Optional[Any] = total_frequency_distribution( sides_number=4 , dice_number=9 ) _UpperCAmelCase : str = total_frequency_distribution( sides_number=6 , dice_number=6 ) _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : int = 9 _UpperCAmelCase : Any = 4 * 9 _UpperCAmelCase : Any = 6 for peter_total in range(lowerCAmelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) _UpperCAmelCase : str = (4**9) * (6**6) _UpperCAmelCase : str = peter_wins_count / total_games_number _UpperCAmelCase : Dict = round(lowerCAmelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(F'''{solution() = }''')
189
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> int: if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise TypeError("Input value must be an 'int' type" ) _UpperCAmelCase : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
189
1
"""simple docstring""" import os import pytest from transformers.dynamic_module_utils import get_imports A_ : Optional[int] = "\nimport os\n" A_ : Tuple = "\ndef foo():\n import os\n return False\n" A_ : Any = "\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n" A_ : List[Any] = "\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n" A_ : List[str] = "\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n" A_ : Any = "\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n" A_ : Optional[int] = "\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n" A_ : Any = "\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n" A_ : str = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n" A_ : Dict = "\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n" A_ : int = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("""case""" , _SCREAMING_SNAKE_CASE ) def A ( snake_case__ , snake_case__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = os.path.join(_SCREAMING_SNAKE_CASE , """test_file.py""" ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as _tmp_file: _tmp_file.write(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE__ = get_imports(_SCREAMING_SNAKE_CASE ) assert parsed_imports == ["os"]
165
'''simple docstring''' def __SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if discount_rate < 0: raise ValueError("""Discount rate cannot be negative""" ) if not cash_flows: raise ValueError("""Cash flows list cannot be empty""" ) _snake_case = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(_SCREAMING_SNAKE_CASE ) ) return round(_SCREAMING_SNAKE_CASE , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
341
0
'''simple docstring''' import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( snake_case_ , snake_case_ , snake_case_): @register_to_config def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ = False , )-> Optional[Any]: '''simple docstring''' super().__init__() UpperCamelCase = nn.Embedding(A_ , A_ ) UpperCamelCase = nn.Embedding(A_ , A_ ) UpperCamelCase = False UpperCamelCase = nn.Dropout(p=A_ ) UpperCamelCase = TaConfig( vocab_size=A_ , d_model=A_ , num_heads=A_ , d_kv=A_ , d_ff=A_ , dropout_rate=A_ , feed_forward_proj=A_ , is_decoder=A_ , is_encoder_decoder=A_ , ) UpperCamelCase = nn.ModuleList() for lyr_num in range(A_ ): UpperCamelCase = TaBlock(A_ ) self.encoders.append(A_ ) UpperCamelCase = TaLayerNorm(A_ ) UpperCamelCase = nn.Dropout(p=A_ ) def UpperCAmelCase_ ( self , A_ , A_ )-> Tuple: '''simple docstring''' UpperCamelCase = self.token_embedder(A_ ) UpperCamelCase = encoder_input_tokens.shape[1] UpperCamelCase = torch.arange(A_ , device=encoder_input_tokens.device ) x += self.position_encoding(A_ ) UpperCamelCase = self.dropout_pre(A_ ) # inverted the attention mask UpperCamelCase = encoder_input_tokens.size() UpperCamelCase = self.get_extended_attention_mask(A_ , A_ ) for lyr in self.encoders: UpperCamelCase = lyr(A_ , A_ )[0] UpperCamelCase = self.layer_norm(A_ ) return self.dropout_post(A_ ), encoder_inputs_mask
371
'''simple docstring''' lowerCAmelCase : List[Any] = {str(digit): digit**5 for digit in range(10)} def A_( A : int): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(A)) def A_( ): return sum( number for number in range(1000 , 100_0000) if number == digits_fifth_powers_sum(A)) if __name__ == "__main__": print(solution())
251
0
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class _a ( unittest.TestCase ): """simple docstring""" def __A ( self : Optional[int] ): A_ = tempfile.mkdtemp() # fmt: off A_ = ["l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on A_ = dict(zip(UpperCAmelCase , range(len(UpperCAmelCase ) ) ) ) A_ = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] A_ = {"unk_token": "<unk>"} A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(UpperCAmelCase ) ) A_ = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48_145_466, 0.4_578_275, 0.40_821_073], "image_std": [0.26_862_954, 0.26_130_258, 0.27_577_711], } A_ = os.path.join(self.tmpdirname , UpperCAmelCase ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(UpperCAmelCase , UpperCAmelCase ) def __A ( self : int , **UpperCAmelCase : str ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : Optional[Any] , **UpperCAmelCase : Optional[int] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : Optional[Any] , **UpperCAmelCase : Tuple ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def __A ( self : Any ): shutil.rmtree(self.tmpdirname ) def __A ( self : Tuple ): A_ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] A_ = [Image.fromarray(np.moveaxis(UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __A ( self : str ): A_ = self.get_tokenizer() A_ = self.get_rust_tokenizer() A_ = self.get_image_processor() A_ = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_slow.save_pretrained(self.tmpdirname ) A_ = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCAmelCase ) A_ = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) processor_fast.save_pretrained(self.tmpdirname ) A_ = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCAmelCase ) self.assertIsInstance(processor_fast.tokenizer , UpperCAmelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCAmelCase ) self.assertIsInstance(processor_fast.image_processor , UpperCAmelCase ) def __A ( self : int ): A_ = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) A_ = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) A_ = self.get_image_processor(do_normalize=UpperCAmelCase , padding_value=1.0 ) A_ = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCAmelCase ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = self.prepare_image_inputs() A_ = image_processor(UpperCAmelCase , return_tensors="np" ) A_ = processor(images=UpperCAmelCase , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self : Any ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = processor(text=UpperCAmelCase ) A_ = tokenizer(UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self : Tuple ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(UpperCAmelCase ): processor() def __A ( self : int ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] A_ = processor.batch_decode(UpperCAmelCase ) A_ = tokenizer.batch_decode(UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) def __A ( self : List[str] ): A_ = self.get_image_processor() A_ = self.get_tokenizer() A_ = CLIPProcessor(tokenizer=UpperCAmelCase , image_processor=UpperCAmelCase ) A_ = "lower newer" A_ = self.prepare_image_inputs() A_ = processor(text=UpperCAmelCase , images=UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
312
__a :Dict = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
312
1
import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Union[str, Any] = logging.get_logger(__name__) def _lowerCAmelCase ( __snake_case : List[str] ) -> Optional[Any]: __A : str = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' ) if "model" in sd.keys(): __A : Dict = torch.load(SCREAMING_SNAKE_CASE_ , map_location='cpu' )['model'] # pop unnecessary weights __A : Tuple = [ 'decoder.version', 'decoder.output_projection.weight', ] for key in keys_to_delete: if key in sd: sd.pop(SCREAMING_SNAKE_CASE_ ) __A : Any = { 'decoder.project_in_dim.weight': 'decoder.project_in.weight', 'decoder.project_out_dim.weight': 'decoder.project_out.weight', 'decoder.layer_norm.weight': 'decoder.final_layer_norm.weight', 'decoder.layer_norm.bias': 'decoder.final_layer_norm.bias', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: __A : int = sd.pop(SCREAMING_SNAKE_CASE_ ) __A : Any = list(sd.keys() ) for key in keys: if ".qkv_proj." in key: __A : int = sd[key] # We split QKV in separate Q,K,V __A : List[Any] = key.replace('.qkv_proj.' , '.q_proj.' ) __A : int = key.replace('.qkv_proj.' , '.k_proj.' ) __A : Dict = key.replace('.qkv_proj.' , '.v_proj.' ) __A : int = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 __A ,__A ,__A : Optional[Any] = torch.split(SCREAMING_SNAKE_CASE_ , depth // 3 , dim=0 ) __A : Union[str, Any] = q __A : int = k __A : Any = v del sd[key] return sd @torch.no_grad() def _lowerCAmelCase ( __snake_case : str , __snake_case : Tuple , __snake_case : Optional[int]=None ) -> List[Any]: __A : Any = load_checkpoint(SCREAMING_SNAKE_CASE_ ) if config is not None: __A : Any = OPTConfig.from_pretrained(SCREAMING_SNAKE_CASE_ ) else: __A : Dict = OPTConfig() __A : int = OPTModel(SCREAMING_SNAKE_CASE_ ).half().eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Check results Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fairseq_path''', type=str, help=( '''path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:''' ''' https://huggingface.co/models?other=opt_metasq''' ), ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--hf_config''', default=None, type=str, help='''Define HF config.''') lowercase__ : Tuple = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
366
'''simple docstring''' import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class SCREAMING_SNAKE_CASE (a__ ): def __get__( self , _UpperCAmelCase , _UpperCAmelCase=None): '''simple docstring''' if obj is None: return self if self.fget is None: raise AttributeError('unreadable attribute') __A : Optional[Any] = '__cached_' + self.fget.__name__ __A : Union[str, Any] = getattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if cached is None: __A : int = self.fget(_UpperCAmelCase) setattr(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) return cached def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Tuple: __A : Dict = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(f'invalid truth value {val!r}' ) def _lowerCAmelCase ( __snake_case : int ) -> Tuple: if is_torch_fx_proxy(__snake_case ): return True if is_torch_available(): import torch if isinstance(__snake_case , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__snake_case , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__snake_case , (jnp.ndarray, Tracer) ): return True return isinstance(__snake_case , np.ndarray ) def _lowerCAmelCase ( __snake_case : Dict ) -> List[str]: return isinstance(__snake_case , np.ndarray ) def _lowerCAmelCase ( __snake_case : Optional[int] ) -> Any: return _is_numpy(__snake_case ) def _lowerCAmelCase ( __snake_case : int ) -> Union[str, Any]: import torch return isinstance(__snake_case , torch.Tensor ) def _lowerCAmelCase ( __snake_case : str ) -> Optional[int]: return False if not is_torch_available() else _is_torch(__snake_case ) def _lowerCAmelCase ( __snake_case : Any ) -> List[Any]: import torch return isinstance(__snake_case , torch.device ) def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: return False if not is_torch_available() else _is_torch_device(__snake_case ) def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: import torch if isinstance(__snake_case , __snake_case ): if hasattr(__snake_case , __snake_case ): __A : str = getattr(__snake_case , __snake_case ) else: return False return isinstance(__snake_case , torch.dtype ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Any: return False if not is_torch_available() else _is_torch_dtype(__snake_case ) def _lowerCAmelCase ( __snake_case : List[str] ) -> int: import tensorflow as tf return isinstance(__snake_case , tf.Tensor ) def _lowerCAmelCase ( __snake_case : Dict ) -> List[Any]: return False if not is_tf_available() else _is_tensorflow(__snake_case ) def _lowerCAmelCase ( __snake_case : str ) -> List[str]: import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__snake_case , 'is_symbolic_tensor' ): return tf.is_symbolic_tensor(__snake_case ) return type(__snake_case ) == tf.Tensor def _lowerCAmelCase ( __snake_case : Dict ) -> Tuple: return False if not is_tf_available() else _is_tf_symbolic_tensor(__snake_case ) def _lowerCAmelCase ( __snake_case : int ) -> Union[str, Any]: import jax.numpy as jnp # noqa: F811 return isinstance(__snake_case , jnp.ndarray ) def _lowerCAmelCase ( __snake_case : int ) -> List[str]: return False if not is_flax_available() else _is_jax(__snake_case ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Dict: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_py_obj(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return [to_py_obj(__snake_case ) for o in obj] elif is_tf_tensor(__snake_case ): return obj.numpy().tolist() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().tolist() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ).tolist() elif isinstance(__snake_case , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _lowerCAmelCase ( __snake_case : Tuple ) -> Optional[int]: if isinstance(__snake_case , (dict, UserDict) ): return {k: to_numpy(__snake_case ) for k, v in obj.items()} elif isinstance(__snake_case , (list, tuple) ): return np.array(__snake_case ) elif is_tf_tensor(__snake_case ): return obj.numpy() elif is_torch_tensor(__snake_case ): return obj.detach().cpu().numpy() elif is_jax_tensor(__snake_case ): return np.asarray(__snake_case ) else: return obj class SCREAMING_SNAKE_CASE (a__ ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = fields(self) # Safety and consistency checks if not len(_UpperCAmelCase): raise ValueError(F'{self.__class__.__name__} has no fields.') if not all(field.default is None for field in class_fields[1:]): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.') __A : Tuple = getattr(self , class_fields[0].name) __A : Tuple = all(getattr(self , field.name) is None for field in class_fields[1:]) if other_fields_are_none and not is_tensor(_UpperCAmelCase): if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[str] = first_field.items() __A : List[Any] = True else: try: __A : List[Any] = iter(_UpperCAmelCase) __A : Optional[Any] = True except TypeError: __A : List[Any] = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(_UpperCAmelCase): if ( not isinstance(_UpperCAmelCase , (list, tuple)) or not len(_UpperCAmelCase) == 2 or not isinstance(element[0] , _UpperCAmelCase) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute __A : Optional[int] = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).') break setattr(self , element[0] , element[1]) if element[1] is not None: __A : Optional[int] = element[1] elif first_field is not None: __A : Dict = first_field else: for field in class_fields: __A : List[str] = getattr(self , field.name) if v is not None: __A : Union[str, Any] = v def __delitem__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.') def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.') def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.') def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.') def __getitem__( self , _UpperCAmelCase): '''simple docstring''' if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : List[Any] = dict(self.items()) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(_UpperCAmelCase , _UpperCAmelCase) super().__setattr__(_UpperCAmelCase , _UpperCAmelCase) def __setitem__( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' super().__setitem__(_UpperCAmelCase , _UpperCAmelCase) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return tuple(self[k] for k in self.keys()) class SCREAMING_SNAKE_CASE (a__ , a__ ): @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys())}') class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''longest''' lowerCAmelCase = '''max_length''' lowerCAmelCase = '''do_not_pad''' class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''pt''' lowerCAmelCase = '''tf''' lowerCAmelCase = '''np''' lowerCAmelCase = '''jax''' class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = context_managers __A : Optional[int] = ExitStack() def __enter__( self): '''simple docstring''' for context_manager in self.context_managers: self.stack.enter_context(_UpperCAmelCase) def __exit__( self , *_UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' self.stack.__exit__(*_UpperCAmelCase , **_UpperCAmelCase) def _lowerCAmelCase ( __snake_case : List[str] ) -> int: __A : Any = infer_framework(__snake_case ) if framework == "tf": __A : int = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __A : Any = inspect.signature(model_class.forward ) # PyTorch models else: __A : Union[str, Any] = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _lowerCAmelCase ( __snake_case : int ) -> List[Any]: __A : Any = model_class.__name__ __A : Optional[int] = infer_framework(__snake_case ) if framework == "tf": __A : List[str] = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": __A : List[Any] = inspect.signature(model_class.forward ) # PyTorch models else: __A : List[Any] = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _lowerCAmelCase ( __snake_case : MutableMapping , __snake_case : str = "" , __snake_case : str = "." ) -> Union[str, Any]: def _flatten_dict(__snake_case : Tuple , __snake_case : List[Any]="" , __snake_case : Tuple="." ): for k, v in d.items(): __A : List[Any] = str(__snake_case ) + delimiter + str(__snake_case ) if parent_key else k if v and isinstance(__snake_case , __snake_case ): yield from flatten_dict(__snake_case , __snake_case , delimiter=__snake_case ).items() else: yield key, v return dict(_flatten_dict(__snake_case , __snake_case , __snake_case ) ) @contextmanager def _lowerCAmelCase ( __snake_case : Any , __snake_case : bool = False ) -> List[str]: if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _lowerCAmelCase ( __snake_case : Optional[Any] , __snake_case : Optional[Any]=None ) -> int: if is_numpy_array(__snake_case ): return np.transpose(__snake_case , axes=__snake_case ) elif is_torch_tensor(__snake_case ): return array.T if axes is None else array.permute(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.transpose(__snake_case , perm=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.transpose(__snake_case , axes=__snake_case ) else: raise ValueError(f'Type not supported for transpose: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : List[Any] , __snake_case : str ) -> str: if is_numpy_array(__snake_case ): return np.reshape(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.reshape(*__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.reshape(__snake_case , __snake_case ) elif is_jax_tensor(__snake_case ): return jnp.reshape(__snake_case , __snake_case ) else: raise ValueError(f'Type not supported for reshape: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : Tuple , __snake_case : List[str]=None ) -> Any: if is_numpy_array(__snake_case ): return np.squeeze(__snake_case , axis=__snake_case ) elif is_torch_tensor(__snake_case ): return array.squeeze() if axis is None else array.squeeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.squeeze(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.squeeze(__snake_case , axis=__snake_case ) else: raise ValueError(f'Type not supported for squeeze: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : List[Any] ) -> int: if is_numpy_array(__snake_case ): return np.expand_dims(__snake_case , __snake_case ) elif is_torch_tensor(__snake_case ): return array.unsqueeze(dim=__snake_case ) elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.expand_dims(__snake_case , axis=__snake_case ) elif is_jax_tensor(__snake_case ): return jnp.expand_dims(__snake_case , axis=__snake_case ) else: raise ValueError(f'Type not supported for expand_dims: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> Dict: if is_numpy_array(__snake_case ): return np.size(__snake_case ) elif is_torch_tensor(__snake_case ): return array.numel() elif is_tf_tensor(__snake_case ): import tensorflow as tf return tf.size(__snake_case ) elif is_jax_tensor(__snake_case ): return array.size else: raise ValueError(f'Type not supported for expand_dims: {type(__snake_case )}.' ) def _lowerCAmelCase ( __snake_case : str , __snake_case : Tuple ) -> Union[str, Any]: for key, value in auto_map.items(): if isinstance(__snake_case , (tuple, list) ): __A : Tuple = [f'{repo_id}--{v}' if (v is not None and '--' not in v) else v for v in value] elif value is not None and "--" not in value: __A : Dict = f'{repo_id}--{value}' return auto_map def _lowerCAmelCase ( __snake_case : List[str] ) -> int: for base_class in inspect.getmro(__snake_case ): __A : int = base_class.__module__ __A : List[str] = base_class.__name__ if module.startswith('tensorflow' ) or module.startswith('keras' ) or name == "TFPreTrainedModel": return "tf" elif module.startswith('torch' ) or name == "PreTrainedModel": return "pt" elif module.startswith('flax' ) or module.startswith('jax' ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(f'Could not infer framework from class {model_class}.' )
190
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class A__ ( unittest.TestCase ): def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : int=13 , _UpperCAmelCase : int=7 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : int=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : List[str]=5 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Any=37 , _UpperCAmelCase : Optional[int]="gelu" , _UpperCAmelCase : int=0.1 , _UpperCAmelCase : Dict=0.1 , _UpperCAmelCase : str=5_12 , _UpperCAmelCase : Any=16 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : str=4 , ) -> List[Any]: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_attention_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_choices def a__ ( self : Any ) -> Optional[int]: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_attention_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , ) return config, input_ids, attention_mask def a__ ( self : str ) -> Dict: """simple docstring""" __lowercase = self.prepare_config_and_inputs() __lowercase , __lowercase , __lowercase = config_and_inputs __lowercase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A__ ( lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : str = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def a__ ( self : Any ) -> str: """simple docstring""" __lowercase = FlaxDistilBertModelTester(self ) @slow def a__ ( self : Dict ) -> Optional[Any]: """simple docstring""" for model_class_name in self.all_model_classes: __lowercase = model_class_name.from_pretrained('distilbert-base-uncased' ) __lowercase = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class A__ ( unittest.TestCase ): @slow def a__ ( self : Dict ) -> List[Any]: """simple docstring""" __lowercase = FlaxDistilBertModel.from_pretrained('distilbert-base-uncased' ) __lowercase = np.array([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) __lowercase = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = (1, 11, 7_68) self.assertEqual(output.shape , _UpperCAmelCase ) __lowercase = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1e-4 ) )
325
from math import isqrt, loga def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int ) -> list[int]: __lowercase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __lowercase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : int = 800800 , SCREAMING_SNAKE_CASE : int = 800800 ) -> int: __lowercase = degree * loga(SCREAMING_SNAKE_CASE ) __lowercase = int(SCREAMING_SNAKE_CASE ) __lowercase = calculate_prime_numbers(SCREAMING_SNAKE_CASE ) __lowercase = 0 __lowercase = 0 __lowercase = len(SCREAMING_SNAKE_CASE ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(F'''{solution() = }''')
325
1
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class __snake_case( _lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Tuple = "xlm-roberta" def __init__( self , A_=3_0522 , A_=768 , A_=12 , A_=12 , A_=3072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.0_2 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> int: super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout class __snake_case( _lowerCAmelCase ): '''simple docstring''' @property def __snake_case ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
187
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __snake_case( unittest.TestCase ): '''simple docstring''' def __snake_case ( self , A_ ) -> str: lowerCAmelCase = 3 lowerCAmelCase = 250 lowerCAmelCase = ids_tensor((batch_size, length) , A_ ) lowerCAmelCase = torch.ones((batch_size, length) , device=A_ , dtype=torch.float ) / length return input_ids, scores def __snake_case ( self ) -> Any: lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) lowerCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = MaxLengthCriteria(max_length=10 ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) def __snake_case ( self ) -> List[Any]: lowerCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase, lowerCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(A_ , A_ ) ) lowerCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def __snake_case ( self ) -> List[str]: lowerCAmelCase, lowerCAmelCase = self._get_tensors(5 ) lowerCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(A_ , A_ ) ) lowerCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(A_ , A_ ) ) def __snake_case ( self ) -> Optional[int]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(A_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) lowerCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(A_ ) , 1 )
187
1
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __a ( A__ ): def __init__( self : str , *SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : List[Any]=None , **SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = eval_examples UpperCamelCase__ : Dict = post_process_function def __lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Any=None , SCREAMING_SNAKE_CASE : List[Any]=None , SCREAMING_SNAKE_CASE : str = "eval" ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase__ : List[str] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Union[str, Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase__ : int = self.compute_metrics UpperCamelCase__ : Optional[Any] = None UpperCamelCase__ : Any = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase__ : str = time.time() try: UpperCamelCase__ : str = eval_loop( SCREAMING_SNAKE_CASE , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase__ : Optional[Any] = compute_metrics UpperCamelCase__ : Tuple = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCamelCase__ : List[Any] = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , output.predictions ) UpperCamelCase__ : Any = self.compute_metrics(SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): UpperCamelCase__ : int = metrics.pop(SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: UpperCamelCase__ : Any = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase__ : int = self.callback_handler.on_evaluate(self.args , self.state , self.control , SCREAMING_SNAKE_CASE ) return metrics def __lowercase ( self : Dict , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : str = "test" ): '''simple docstring''' UpperCamelCase__ : int = self.get_test_dataloader(SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase__ : List[Any] = self.compute_metrics UpperCamelCase__ : str = None UpperCamelCase__ : List[str] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase__ : Dict = time.time() try: UpperCamelCase__ : Optional[int] = eval_loop( SCREAMING_SNAKE_CASE , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase__ : str = compute_metrics UpperCamelCase__ : Tuple = self.args.eval_batch_size * self.args.world_size if F'{metric_key_prefix}_jit_compilation_time' in output.metrics: start_time += output.metrics[F'{metric_key_prefix}_jit_compilation_time'] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase__ : Any = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , output.predictions , "predict" ) UpperCamelCase__ : Union[str, Any] = self.compute_metrics(SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'{metric_key_prefix}_' ): UpperCamelCase__ : Optional[int] = metrics.pop(SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=SCREAMING_SNAKE_CASE )
189
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class __a ( unittest.TestCase , A__ ): def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Dict = load_tool("text-to-speech" ) self.tool.setup() def __lowercase ( self : Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : Union[str, Any] = self.tool("hey" ) UpperCamelCase__ : Any = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) ) def __lowercase ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__ : List[Any] = self.tool("hey" ) UpperCamelCase__ : int = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3] , torch.tensor([-0.0_0_0_5_9_6_6_6_6_8_8_3_2_1_1_5_8_2_9, -0.0_0_0_3_6_5_7_6_4_0_1_9_0_7_9_5_0_6_4, -0.0_0_0_1_3_4_3_9_5_0_2_7_9_9_8_8_3_4_8_5] ) , ) )
189
1
import os from typing import Dict, List, Tuple, TypeVar, Union __snake_case : Union[str, Any] =TypeVar('T') __snake_case : Tuple =Union[List[T], Tuple[T, ...]] __snake_case : Union[str, Any] =Union[T, List[T], Dict[str, T]] __snake_case : Tuple =Union[str, bytes, os.PathLike]
94
__snake_case : Any ='\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __snake_case : Tuple =[{'type': 'code', 'content': INSTALL_CONTENT}] __snake_case : Tuple ={ '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
94
1