code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import json import os import tempfile import datasets from utils import generate_example_dataset, get_duration __lowerCamelCase : Any = 5_00_00 __lowerCamelCase : Tuple = 50_00 __lowerCamelCase , __lowerCamelCase : List[str] = os.path.split(__file__) __lowerCamelCase : List[str] = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def _snake_case ( lowerCAmelCase : datasets.Dataset , lowerCAmelCase : Any ): """simple docstring""" for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Tuple = dataset[i] @get_duration def _snake_case ( lowerCAmelCase : datasets.Dataset , lowerCAmelCase : Optional[int] , lowerCAmelCase : str ): """simple docstring""" for i in range(0 , len(__UpperCamelCase ) , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Dict = dataset[i : i + batch_size] @get_duration def _snake_case ( lowerCAmelCase : datasets.Dataset , lowerCAmelCase : str , lowerCAmelCase : Optional[Any] ): """simple docstring""" with dataset.formatted_as(type=__UpperCamelCase ): for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = dataset[i] @get_duration def _snake_case ( lowerCAmelCase : datasets.Dataset , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] ): """simple docstring""" with dataset.formatted_as(type=__UpperCamelCase ): for i in range(0 , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ : str = dataset[i : i + batch_size] def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {'num examples': SPEED_TEST_N_EXAMPLES} SCREAMING_SNAKE_CASE_ : str = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0_0}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted, {'type': 'pandas', 'length': SMALL_TEST}), (read_formatted, {'type': 'torch', 'length': SMALL_TEST}), (read_formatted, {'type': 'tensorflow', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0_0_0}), ] SCREAMING_SNAKE_CASE_ : List[str] = [ (read, {'length': SMALL_TEST}), (read, {'length': SPEED_TEST_N_EXAMPLES}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0}), (read_batch, {'length': SPEED_TEST_N_EXAMPLES, 'batch_size': 1_0_0_0}), (read_formatted, {'type': 'numpy', 'length': SMALL_TEST}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0}), (read_formatted_batch, {'type': 'numpy', 'length': SMALL_TEST, 'batch_size': 1_0_0_0}), ] with tempfile.TemporaryDirectory() as tmp_dir: print("generating dataset" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = datasets.Features( {"list": datasets.Sequence(datasets.Value("float32" ) ), "numbers": datasets.Value("float32" )} ) SCREAMING_SNAKE_CASE_ : str = generate_example_dataset( os.path.join(__UpperCamelCase , "dataset.arrow" ) , __UpperCamelCase , num_examples=__UpperCamelCase , seq_shapes={"list": (1_0_0,)} , ) print("first set of iterations" ) for func, kwargs in functions: print(func.__name__ , str(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = func(__UpperCamelCase , **__UpperCamelCase ) print("shuffling dataset" ) SCREAMING_SNAKE_CASE_ : str = dataset.shuffle() print("Second set of iterations (after shuffling" ) for func, kwargs in functions_shuffled: print("shuffled " , func.__name__ , str(__UpperCamelCase ) ) SCREAMING_SNAKE_CASE_ : Optional[int] = func( __UpperCamelCase , **__UpperCamelCase ) with open(__UpperCamelCase , "wb" ) as f: f.write(json.dumps(__UpperCamelCase ).encode("utf-8" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_iterating()
18
'''simple docstring''' from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. UpperCamelCase_ = 2_0_0 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. UpperCamelCase_ = 5_0 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. UpperCamelCase_ = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_0_0_0)) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = len([g for position, g in enumerate(__UpperCamelCase ) if g == main_target[position]] ) return (item, float(__UpperCamelCase )) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: str ): """simple docstring""" SCREAMING_SNAKE_CASE : int = random.randint(0 ,len(__UpperCamelCase ) - 1 ) SCREAMING_SNAKE_CASE : List[str] = parent_a[:random_slice] + parent_a[random_slice:] SCREAMING_SNAKE_CASE : Tuple = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: list[str] ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = list(__UpperCamelCase ) if random.uniform(0 ,1 ) < MUTATION_PROBABILITY: SCREAMING_SNAKE_CASE : Optional[Any] = random.choice(__UpperCamelCase ) return "".join(__UpperCamelCase ) def lowercase__( __UpperCamelCase: tuple[str, float] ,__UpperCamelCase: list[tuple[str, float]] ,__UpperCamelCase: list[str] ,): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = [] # Generate more children proportionally to the fitness score. SCREAMING_SNAKE_CASE : Optional[Any] = int(parent_a[1] * 1_00 ) + 1 SCREAMING_SNAKE_CASE : Optional[Any] = 10 if child_n >= 10 else child_n for _ in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = population_score[random.randint(0 ,__UpperCamelCase )][0] SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = crossover(parent_a[0] ,__UpperCamelCase ) # Append new string to the population list. pop.append(mutate(__UpperCamelCase ,__UpperCamelCase ) ) pop.append(mutate(__UpperCamelCase ,__UpperCamelCase ) ) return pop def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: list[str] ,__UpperCamelCase: bool = True ): """simple docstring""" if N_POPULATION < N_SELECTED: SCREAMING_SNAKE_CASE : List[str] = f"{N_POPULATION} must be bigger than {N_SELECTED}" raise ValueError(__UpperCamelCase ) # Verify that the target contains no genes besides the ones inside genes variable. SCREAMING_SNAKE_CASE : List[Any] = sorted({c for c in target if c not in genes} ) if not_in_genes_list: SCREAMING_SNAKE_CASE : List[Any] = f"{not_in_genes_list} is not in genes list, evolution cannot converge" raise ValueError(__UpperCamelCase ) # Generate random starting population. SCREAMING_SNAKE_CASE : Optional[Any] = [] for _ in range(__UpperCamelCase ): population.append(''.join([random.choice(__UpperCamelCase ) for i in range(len(__UpperCamelCase ) )] ) ) # Just some logs to know what the algorithms is doing. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(__UpperCamelCase ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. SCREAMING_SNAKE_CASE : Optional[int] = [evaluate(__UpperCamelCase ,__UpperCamelCase ) for item in population] # Check if there is a matching evolution. SCREAMING_SNAKE_CASE : Union[str, Any] = sorted(__UpperCamelCase ,key=lambda __UpperCamelCase : x[1] ,reverse=__UpperCamelCase ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( f"\nGeneration: {generation}" f"\nTotal Population:{total_population}" f"\nBest score: {population_score[0][1]}" f"\nBest string: {population_score[0][0]}" ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. SCREAMING_SNAKE_CASE : int = population[: int(N_POPULATION / 3 )] population.clear() population.extend(__UpperCamelCase ) # Normalize population score to be between 0 and 1. SCREAMING_SNAKE_CASE : str = [ (item, score / len(__UpperCamelCase )) for item, score in population_score ] # This is selection for i in range(__UpperCamelCase ): population.extend(select(population_score[int(__UpperCamelCase )] ,__UpperCamelCase ,__UpperCamelCase ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(__UpperCamelCase ) > N_POPULATION: break if __name__ == "__main__": UpperCamelCase_ = ( "This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!" ) UpperCamelCase_ = list( " ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm" "nopqrstuvwxyz.,;!?+-*#@^'èéòà€ù=)(&%$£/\\" ) UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ = basic(target_str, genes_list) print( F"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}""" )
251
0
from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
197
import warnings from ..trainer import Trainer from ..utils import logging lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) class a__ ( __snake_case ): def __init__( self , UpperCAmelCase=None , **UpperCAmelCase ) -> Any: warnings.warn( '`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` ' 'instead.' , UpperCAmelCase , ) super().__init__(args=UpperCAmelCase , **UpperCAmelCase )
197
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _a ( __a , unittest.TestCase ): __a : Any = KandinskyVaaImgaImgPipeline __a : Optional[int] = ["""image_embeds""", """negative_image_embeds""", """image"""] __a : int = [ """image_embeds""", """negative_image_embeds""", """image""", ] __a : Any = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] __a : Union[str, Any] = False @property def A ( self : List[Any] ): '''simple docstring''' return 32 @property def A ( self : Dict ): '''simple docstring''' return 32 @property def A ( self : str ): '''simple docstring''' return self.time_input_dim @property def A ( self : Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def A ( self : Optional[int] ): '''simple docstring''' return 100 @property def A ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = { '''in_channels''': 4, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } UpperCAmelCase = UNetaDConditionModel(**lowercase ) return model @property def A ( self : Any ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = self.dummy_unet UpperCAmelCase = self.dummy_movq UpperCAmelCase = { '''num_train_timesteps''': 1_000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_0085, '''beta_end''': 0.012, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } UpperCAmelCase = DDIMScheduler(**lowercase ) UpperCAmelCase = { '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def A ( self : Optional[int] , lowercase : int , lowercase : List[Any]=0 ): '''simple docstring''' UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase ) ).to(lowercase ) UpperCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase ) # create init_image UpperCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase ) ).to(lowercase ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowercase ) ).convert('''RGB''' ).resize((256, 256) ) if str(lowercase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowercase ) else: UpperCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) UpperCAmelCase = { '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def A ( self : Tuple ): '''simple docstring''' UpperCAmelCase = '''cpu''' UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowercase ) UpperCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) ) UpperCAmelCase = output.images UpperCAmelCase = pipe( **self.get_dummy_inputs(lowercase ) , return_dict=lowercase , )[0] UpperCAmelCase = image[0, -3:, -3:, -1] UpperCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) UpperCAmelCase = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_slice.flatten()}" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}" @slow @require_torch_gpu class _a ( unittest.TestCase ): def A ( self : List[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : int ): '''simple docstring''' UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_img2img_frog.npy''' ) UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) UpperCAmelCase = '''A red cartoon frog, 4k''' UpperCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase ) UpperCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-decoder''' , torch_dtype=torch.floataa ) UpperCAmelCase = pipeline.to(lowercase ) pipeline.set_progress_bar_config(disable=lowercase ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase , UpperCAmelCase = pipe_prior( lowercase , generator=lowercase , num_inference_steps=5 , negative_prompt='''''' , ).to_tuple() UpperCAmelCase = pipeline( image=lowercase , image_embeds=lowercase , negative_image_embeds=lowercase , generator=lowercase , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='''np''' , ) UpperCAmelCase = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase , lowercase )
34
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": lowercase__ : List[Any] = pd.read_csv('''sample_data.csv''', header=None) lowercase__ : Union[str, Any] = df.shape[:1][0] # If you're using some other dataset input the target column lowercase__ : Any = df.iloc[:, 1:2] lowercase__ : int = actual_data.values.reshape(len_data, 1) lowercase__ : int = MinMaxScaler().fit_transform(actual_data) lowercase__ : Dict = 10 lowercase__ : List[str] = 5 lowercase__ : Dict = 20 lowercase__ : Dict = len_data - periods * look_back lowercase__ : Any = actual_data[:division] lowercase__ : Optional[int] = actual_data[division - look_back :] lowercase__ , lowercase__ : Optional[Any] = [], [] lowercase__ , lowercase__ : Tuple = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) lowercase__ : List[Any] = np.array(train_x) lowercase__ : List[Any] = np.array(test_x) lowercase__ : str = np.array([list(i.ravel()) for i in train_y]) lowercase__ : Any = np.array([list(i.ravel()) for i in test_y]) lowercase__ : Optional[Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') lowercase__ : Tuple = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) lowercase__ : int = model.predict(x_test)
190
0
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler a__ = 16 a__ = 32 def __UpperCAmelCase ( __a : Accelerator ,__a : int = 16 ,__a : str = "bert-base-cased" ) -> int: """simple docstring""" _a : int = AutoTokenizer.from_pretrained(__a ) _a : Optional[Any] = load_dataset('''glue''' ,'''mrpc''' ) def tokenize_function(__a : List[str] ): # max_length=None => use the model max length (it's actually the default) _a : int = tokenizer(examples['''sentence1'''] ,examples['''sentence2'''] ,truncation=__a ,max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset _a : Optional[Any] = datasets.map( __a ,batched=__a ,remove_columns=['''idx''', '''sentence1''', '''sentence2'''] ,load_from_cache_file=__a ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _a : Union[str, Any] = tokenized_datasets.rename_column('''label''' ,'''labels''' ) def collate_fn(__a : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(__a ,padding='''max_length''' ,max_length=128 ,return_tensors='''pt''' ) return tokenizer.pad(__a ,padding='''longest''' ,return_tensors='''pt''' ) # Instantiate dataloaders. _a : Dict = DataLoader( tokenized_datasets['''train'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a ) _a : List[str] = DataLoader( tokenized_datasets['''validation'''] ,shuffle=__a ,collate_fn=__a ,batch_size=__a ) return train_dataloader, eval_dataloader def __UpperCAmelCase ( __a : str ,__a : Tuple ) -> List[str]: """simple docstring""" _a : Tuple = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _a : Optional[int] = config['''lr'''] _a : Optional[int] = int(config['''num_epochs'''] ) _a : Optional[Any] = int(config['''seed'''] ) _a : Union[str, Any] = int(config['''batch_size'''] ) _a : List[str] = args.model_name_or_path set_seed(__a ) _a : List[Any] = get_dataloaders(__a ,__a ,__a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _a : str = AutoModelForSequenceClassification.from_pretrained(__a ,return_dict=__a ) # Instantiate optimizer _a : Dict = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) _a : Union[str, Any] = optimizer_cls(params=model.parameters() ,lr=__a ) if accelerator.state.deepspeed_plugin is not None: _a : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: _a : str = 1 _a : Optional[Any] = (len(__a ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): _a : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=__a ,num_warmup_steps=0 ,num_training_steps=__a ,) else: _a : Optional[int] = DummyScheduler(__a ,total_num_steps=__a ,warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _a : str = accelerator.prepare( __a ,__a ,__a ,__a ,__a ) # We need to keep track of how many total steps we have iterated over _a : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly _a : Dict = 0 # Now we train the model _a : Dict = evaluate.load('''glue''' ,'''mrpc''' ) _a : Union[str, Any] = 0 _a : int = {} for epoch in range(__a ,__a ): model.train() for step, batch in enumerate(__a ): _a : List[Any] = model(**__a ) _a : Any = outputs.loss _a : Optional[int] = loss / gradient_accumulation_steps accelerator.backward(__a ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() _a : Dict = 0 for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _a : Union[str, Any] = model(**__a ) _a : Dict = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times _a : Tuple = accelerator.gather( (predictions, batch['''labels''']) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(__a ) - 1: _a : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] _a : List[str] = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=__a ,references=__a ,) _a : List[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"""epoch {epoch}:""" ,__a ) _a : List[Any] = eval_metric['''accuracy'''] if best_performance < eval_metric["accuracy"]: _a : Union[str, Any] = eval_metric['''accuracy'''] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F"""Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}""" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir ,'''all_results.json''' ) ,'''w''' ) as f: json.dump(__a ,__a ) def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" _a : int = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' ,type=__a ,default='''bert-base-cased''' ,help='''Path to pretrained model or model identifier from huggingface.co/models.''' ,required=__a ,) parser.add_argument( '''--output_dir''' ,type=__a ,default='''.''' ,help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' ,) parser.add_argument( '''--performance_lower_bound''' ,type=__a ,default=__a ,help='''Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.''' ,) parser.add_argument( '''--num_epochs''' ,type=__a ,default=3 ,help='''Number of train epochs.''' ,) _a : Union[str, Any] = parser.parse_args() _a : Optional[int] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(__a ,__a ) if __name__ == "__main__": main()
367
import argparse import os import torch from transformers.utils import WEIGHTS_NAME a__ = ['''small''', '''medium''', '''large'''] a__ = '''lm_head.decoder.weight''' a__ = '''lm_head.weight''' def __UpperCAmelCase ( __a : str ,__a : str ) -> List[str]: """simple docstring""" _a : Any = torch.load(__a ) _a : List[str] = d.pop(__a ) os.makedirs(__a ,exist_ok=__a ) torch.save(__a ,os.path.join(__a ,__a ) ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--dialogpt_path''', default='''.''', type=str) a__ = parser.parse_args() for MODEL in DIALOGPT_MODELS: a__ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') a__ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
15
0
import pytest import datasets # Import fixture modules as plugins lowercase__ : Any = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def lowerCamelCase__ ( _A , _A ): '''simple docstring''' for item in items: if any(marker in item.keywords for marker in ["integration", "unit"] ): continue item.add_marker(pytest.mark.unit ) def lowerCamelCase__ ( _A ): '''simple docstring''' config.addinivalue_line("markers" , "torchaudio_latest: mark test to run with torchaudio>=0.12" ) @pytest.fixture(autouse=_A ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = tmp_path_factory.getbasetemp() / "cache" snake_case_ = test_hf_cache_home / "datasets" snake_case_ = test_hf_cache_home / "metrics" snake_case_ = test_hf_cache_home / "modules" monkeypatch.setattr("datasets.config.HF_DATASETS_CACHE" , str(_A ) ) monkeypatch.setattr("datasets.config.HF_METRICS_CACHE" , str(_A ) ) monkeypatch.setattr("datasets.config.HF_MODULES_CACHE" , str(_A ) ) snake_case_ = test_hf_datasets_cache / "downloads" monkeypatch.setattr("datasets.config.DOWNLOADED_DATASETS_PATH" , str(_A ) ) snake_case_ = test_hf_datasets_cache / "downloads" / "extracted" monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(_A ) ) @pytest.fixture(autouse=_A , scope="session" ) def lowerCamelCase__ ( ): '''simple docstring''' datasets.disable_progress_bar() @pytest.fixture(autouse=_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' monkeypatch.setattr("datasets.config.HF_UPDATE_DOWNLOAD_COUNTS" , _A ) @pytest.fixture def lowerCamelCase__ ( _A ): '''simple docstring''' monkeypatch.setattr("sqlalchemy.util.deprecations.SILENCE_UBER_WARNING" , _A )
187
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase__ ( _A , _A , _A , _A , _A=True , _A="pt" ): '''simple docstring''' snake_case_ = {"add_prefix_space": True} if isinstance(_A , _A ) and not line.startswith(" " ) else {} snake_case_ = padding_side return tokenizer( [line] , max_length=_A , padding="max_length" if pad_to_max_length else None , truncation=_A , return_tensors=_A , add_special_tokens=_A , **_A , ) def lowerCamelCase__ ( _A , _A , _A=None , ): '''simple docstring''' snake_case_ = input_ids.ne(_A ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : int , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : List[Any] , __lowercase : str , __lowercase : Tuple="train" , __lowercase : List[str]=None , __lowercase : List[Any]=None , __lowercase : Optional[Any]=None , __lowercase : Union[str, Any]="" , ): """simple docstring""" super().__init__() snake_case_ = Path(__lowercase ).joinpath(type_path + ".source" ) snake_case_ = Path(__lowercase ).joinpath(type_path + ".target" ) snake_case_ = self.get_char_lens(self.src_file ) snake_case_ = max_source_length snake_case_ = max_target_length assert min(self.src_lens ) > 0, f"found empty line in {self.src_file}" snake_case_ = tokenizer snake_case_ = prefix if n_obs is not None: snake_case_ = self.src_lens[:n_obs] snake_case_ = src_lang snake_case_ = tgt_lang def __len__( self : List[Any] ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[Any] , __lowercase : Dict ): """simple docstring""" snake_case_ = index + 1 # linecache starts at 1 snake_case_ = self.prefix + linecache.getline(str(self.src_file ) , __lowercase ).rstrip("\n" ) snake_case_ = linecache.getline(str(self.tgt_file ) , __lowercase ).rstrip("\n" ) assert source_line, f"empty source line for index {index}" assert tgt_line, f"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right snake_case_ = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __lowercase ) else self.tokenizer ) snake_case_ = self.tokenizer.generator if isinstance(self.tokenizer , __lowercase ) else self.tokenizer snake_case_ = encode_line(__lowercase , __lowercase , self.max_source_length , "right" ) snake_case_ = encode_line(__lowercase , __lowercase , self.max_target_length , "right" ) snake_case_ = source_inputs["input_ids"].squeeze() snake_case_ = target_inputs["input_ids"].squeeze() snake_case_ = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def snake_case__ ( __lowercase : Optional[int] ): """simple docstring""" return [len(__lowercase ) for x in Path(__lowercase ).open().readlines()] def snake_case__ ( self : Dict , __lowercase : Union[str, Any] ): """simple docstring""" snake_case_ = torch.stack([x["input_ids"] for x in batch] ) snake_case_ = torch.stack([x["attention_mask"] for x in batch] ) snake_case_ = torch.stack([x["decoder_input_ids"] for x in batch] ) snake_case_ = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __lowercase ) else self.tokenizer.pad_token_id ) snake_case_ = trim_batch(__lowercase , __lowercase ) snake_case_ , snake_case_ = trim_batch(__lowercase , __lowercase , attention_mask=__lowercase ) snake_case_ = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch lowercase__ : str = getLogger(__name__) def lowerCamelCase__ ( _A ): '''simple docstring''' return list(itertools.chain.from_iterable(_A ) ) def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = get_git_info() save_json(_A , os.path.join(_A , "git_log.json" ) ) def lowerCamelCase__ ( _A , _A , _A=4 , **_A ): '''simple docstring''' with open(_A , "w" ) as f: json.dump(_A , _A , indent=_A , **_A ) def lowerCamelCase__ ( _A ): '''simple docstring''' with open(_A ) as f: return json.load(_A ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = git.Repo(search_parent_directories=_A ) snake_case_ = { "repo_id": str(_A ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return list(map(_A , _A ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' with open(_A , "wb" ) as f: return pickle.dump(_A , _A ) def lowerCamelCase__ ( _A ): '''simple docstring''' def remove_articles(_A ): return re.sub(R"\b(a|an|the)\b" , " " , _A ) def white_space_fix(_A ): return " ".join(text.split() ) def remove_punc(_A ): snake_case_ = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_A ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_A ) ) ) ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' snake_case_ = normalize_answer(_A ).split() snake_case_ = normalize_answer(_A ).split() snake_case_ = Counter(_A ) & Counter(_A ) snake_case_ = sum(common.values() ) if num_same == 0: return 0 snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = 1.0 * num_same / len(_A ) snake_case_ = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase__ ( _A , _A ): '''simple docstring''' return normalize_answer(_A ) == normalize_answer(_A ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' assert len(_A ) == len(_A ) snake_case_ = 0 for hypo, pred in zip(_A , _A ): em += exact_match_score(_A , _A ) if len(_A ) > 0: em /= len(_A ) return {"em": em} def lowerCamelCase__ ( _A ): '''simple docstring''' return model_prefix.startswith("rag" ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead snake_case_ = "dropout_rate" for p in extra_params: if getattr(_A , _A , _A ): if not hasattr(_A , _A ) and not hasattr(_A , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_A ) ) delattr(_A , _A ) continue snake_case_ = p if hasattr(_A , _A ) else equivalent_param[p] setattr(_A , _A , getattr(_A , _A ) ) delattr(_A , _A ) return hparams, config
187
1
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input SCREAMING_SNAKE_CASE_ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def __SCREAMING_SNAKE_CASE ( ) -> Any: _UpperCAmelCase : List[Any] = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: _UpperCAmelCase : Union[str, Any] = get_sagemaker_input() else: _UpperCAmelCase : Any = get_cluster_input() return config def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int=None ) -> Optional[Any]: if subparsers is not None: _UpperCAmelCase : Any = subparsers.add_parser("config" , description=lowerCAmelCase ) else: _UpperCAmelCase : List[str] = argparse.ArgumentParser("Accelerate config command" , description=lowerCAmelCase ) parser.add_argument( "--config_file" , default=lowerCAmelCase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase ) return parser def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] ) -> List[Any]: _UpperCAmelCase : Any = get_user_input() if args.config_file is not None: _UpperCAmelCase : Union[str, Any] = args.config_file else: if not os.path.isdir(lowerCAmelCase ): os.makedirs(lowerCAmelCase ) _UpperCAmelCase : Dict = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(lowerCAmelCase ) else: config.to_yaml_file(lowerCAmelCase ) print(F'accelerate configuration saved at {config_file}' ) def __SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: _UpperCAmelCase : List[str] = config_command_parser() _UpperCAmelCase : Tuple = parser.parse_args() config_command(lowerCAmelCase ) if __name__ == "__main__": main()
189
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Optional[Any] , lowerCAmelCase: int=False ) -> Optional[Any]: _UpperCAmelCase : Union[str, Any] = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight') ) rename_keys.append((F'patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias', F'vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias') ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'blocks.{i}.norm1.weight', F'vit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'blocks.{i}.norm1.bias', F'vit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append((F'blocks.{i}.attn.proj.weight', F'vit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append((F'blocks.{i}.attn.proj.bias', F'vit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'blocks.{i}.norm2.weight', F'vit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'blocks.{i}.norm2.bias', F'vit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc1.weight', F'vit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc1.bias', F'vit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'blocks.{i}.mlp.fc2.weight', F'vit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'blocks.{i}.mlp.fc2.bias', F'vit.encoder.layer.{i}.output.dense.bias') ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _UpperCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Dict , lowerCAmelCase: Union[str, Any] , lowerCAmelCase: List[str]=False ) -> int: for i in range(config.num_hidden_layers ): if base_model: _UpperCAmelCase : Optional[Any] = "" else: _UpperCAmelCase : Dict = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _UpperCAmelCase : List[str] = state_dict.pop(F'blocks.{i}.attn.qkv.weight' ) _UpperCAmelCase : Tuple = state_dict.pop(F'blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase : List[str] = in_proj_weight[ : config.hidden_size, : ] _UpperCAmelCase : Dict = in_proj_bias[: config.hidden_size] _UpperCAmelCase : Optional[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _UpperCAmelCase : Optional[int] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _UpperCAmelCase : Optional[int] = in_proj_weight[ -config.hidden_size :, : ] _UpperCAmelCase : int = in_proj_bias[-config.hidden_size :] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int ) -> Optional[int]: _UpperCAmelCase : Dict = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(lowerCAmelCase , lowerCAmelCase ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: Optional[int] , lowerCAmelCase: Dict ) -> Tuple: _UpperCAmelCase : str = dct.pop(lowerCAmelCase ) _UpperCAmelCase : Any = val def __SCREAMING_SNAKE_CASE ( ) -> List[Any]: _UpperCAmelCase : Tuple = "http://images.cocodataset.org/val2017/000000039769.jpg" _UpperCAmelCase : Tuple = Image.open(requests.get(lowerCAmelCase , stream=lowerCAmelCase ).raw ) return im @torch.no_grad() def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Tuple , lowerCAmelCase: int , lowerCAmelCase: List[Any]=False ) -> Any: _UpperCAmelCase : List[Any] = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=lowerCAmelCase , ) _UpperCAmelCase : Optional[Any] = ViTHybridConfig(backbone_config=lowerCAmelCase , image_size=384 , num_labels=1000 ) _UpperCAmelCase : str = False # load original model from timm _UpperCAmelCase : Optional[Any] = timm.create_model(lowerCAmelCase , pretrained=lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys _UpperCAmelCase : str = timm_model.state_dict() if base_model: remove_classification_head_(lowerCAmelCase ) _UpperCAmelCase : str = create_rename_keys(lowerCAmelCase , lowerCAmelCase ) for src, dest in rename_keys: rename_key(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) read_in_q_k_v(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) _UpperCAmelCase : str = "huggingface/label-files" _UpperCAmelCase : Tuple = "imagenet-1k-id2label.json" _UpperCAmelCase : Union[str, Any] = json.load(open(hf_hub_download(lowerCAmelCase , lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _UpperCAmelCase : Any = {int(lowerCAmelCase ): v for k, v in idalabel.items()} _UpperCAmelCase : Dict = idalabel _UpperCAmelCase : Dict = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": _UpperCAmelCase : Union[str, Any] = ViTHybridModel(lowerCAmelCase ).eval() else: _UpperCAmelCase : Optional[Any] = ViTHybridForImageClassification(lowerCAmelCase ).eval() model.load_state_dict(lowerCAmelCase ) # create image processor _UpperCAmelCase : Any = create_transform(**resolve_data_config({} , model=lowerCAmelCase ) ) _UpperCAmelCase : Tuple = transform.transforms _UpperCAmelCase : Tuple = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } _UpperCAmelCase : Any = ViTHybridImageProcessor( do_resize=lowerCAmelCase , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=lowerCAmelCase , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=lowerCAmelCase , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) _UpperCAmelCase : List[str] = prepare_img() _UpperCAmelCase : List[Any] = transform(lowerCAmelCase ).unsqueeze(0 ) _UpperCAmelCase : Optional[Any] = processor(lowerCAmelCase , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(lowerCAmelCase , lowerCAmelCase ) # verify logits with torch.no_grad(): _UpperCAmelCase : Union[str, Any] = model(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: _UpperCAmelCase : List[Any] = timm_model.forward_features(lowerCAmelCase ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(lowerCAmelCase , outputs.pooler_output , atol=1E-3 ) else: _UpperCAmelCase : Any = timm_model(lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(lowerCAmelCase , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase ).mkdir(exist_ok=lowerCAmelCase ) print(F'Saving model {vit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase ) print(F'Saving processor to {pytorch_dump_folder_path}' ) processor.save_pretrained(lowerCAmelCase ) if push_to_hub: print(F'Pushing model and processor to the hub {vit_name}' ) model.push_to_hub(F'ybelkada/{vit_name}' ) processor.push_to_hub(F'ybelkada/{vit_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--vit_name', default='vit_base_r50_s16_384', type=str, help='Name of the hybrid ViT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) SCREAMING_SNAKE_CASE_ = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
189
1
from __future__ import annotations snake_case : List[Any] = tuple[int, int, int] snake_case : Union[str, Any] = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase snake_case : Optional[Any] = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- snake_case : Optional[Any] = '''EGZWVONAHDCLFQMSIPJBYUKXTR''' snake_case : str = '''FOBHMDKEXQNRAULPGSJVTYICZW''' snake_case : List[Any] = '''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- snake_case : Dict = { '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- snake_case : int = '''RMDJXFUWGISLHVTCQNKYPBEZOA''' snake_case : int = '''SGLCPQWZHKXAREONTFBVIYJUDM''' snake_case : List[str] = '''HVSICLTYKQUBXDWAJZOMFGPREN''' snake_case : Any = '''RZWQHFMVDBKICJLNTUXAGYPSOE''' snake_case : int = '''LFKIJODBEGAMQPXVUHYSTCZRWN''' snake_case : Dict = '''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def __lowerCamelCase ( UpperCAmelCase_ : RotorPositionT , UpperCAmelCase_ : RotorSelectionT , UpperCAmelCase_ : str ): """simple docstring""" if (unique_rotsel := len(set(UpperCAmelCase_ ) )) < 3: a :str = F'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(UpperCAmelCase_ ) # Checks if rotor positions are valid a , a , a :Optional[int] = rotpos if not 0 < rotorposa <= len(UpperCAmelCase_ ): a :int = F'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(UpperCAmelCase_ ) if not 0 < rotorposa <= len(UpperCAmelCase_ ): a :int = F'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(UpperCAmelCase_ ) if not 0 < rotorposa <= len(UpperCAmelCase_ ): a :Optional[Any] = F'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(UpperCAmelCase_ ) # Validates string and returns dict a :Dict = _plugboard(UpperCAmelCase_ ) return rotpos, rotsel, pbdict def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" if not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): a :str = F'''Plugboard setting isn\'t type string ({type(UpperCAmelCase_ )})''' raise TypeError(UpperCAmelCase_ ) elif len(UpperCAmelCase_ ) % 2 != 0: a :Any = F'''Odd number of symbols ({len(UpperCAmelCase_ )})''' raise Exception(UpperCAmelCase_ ) elif pbstring == "": return {} pbstring.replace(''' ''' , '''''' ) # Checks if all characters are unique a :Tuple = set() for i in pbstring: if i not in abc: a :Dict = F'''\'{i}\' not in list of symbols''' raise Exception(UpperCAmelCase_ ) elif i in tmppbl: a :List[Any] = F'''Duplicate symbol ({i})''' raise Exception(UpperCAmelCase_ ) else: tmppbl.add(UpperCAmelCase_ ) del tmppbl # Created the dictionary a :Optional[Any] = {} for j in range(0 , len(UpperCAmelCase_ ) - 1 , 2 ): a :Any = pbstring[j + 1] a :Optional[int] = pbstring[j] return pb def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : RotorPositionT , UpperCAmelCase_ : RotorSelectionT = (rotora, rotora, rotora) , UpperCAmelCase_ : str = "" , ): """simple docstring""" a :Tuple = text.upper() a , a , a :Union[str, Any] = _validator( UpperCAmelCase_ , UpperCAmelCase_ , plugb.upper() ) a , a , a :Optional[Any] = rotor_position a , a , a :List[str] = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 a :Union[str, Any] = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: a :List[str] = plugboard[symbol] # rotor ra -------------------------- a :Dict = abc.index(UpperCAmelCase_ ) + rotorposa a :List[str] = rotora[index % len(UpperCAmelCase_ )] # rotor rb -------------------------- a :List[str] = abc.index(UpperCAmelCase_ ) + rotorposa a :Tuple = rotora[index % len(UpperCAmelCase_ )] # rotor rc -------------------------- a :List[Any] = abc.index(UpperCAmelCase_ ) + rotorposa a :List[Any] = rotora[index % len(UpperCAmelCase_ )] # reflector -------------------------- # this is the reason you don't need another machine to decipher a :Optional[Any] = reflector[symbol] # 2nd rotors a :Dict = abc[rotora.index(UpperCAmelCase_ ) - rotorposa] a :Any = abc[rotora.index(UpperCAmelCase_ ) - rotorposa] a :Optional[int] = abc[rotora.index(UpperCAmelCase_ ) - rotorposa] # 2nd plugboard if symbol in plugboard: a :Optional[Any] = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(UpperCAmelCase_ ): a :str = 0 rotorposa += 1 if rotorposa >= len(UpperCAmelCase_ ): a :List[str] = 0 rotorposa += 1 if rotorposa >= len(UpperCAmelCase_ ): a :Any = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(UpperCAmelCase_ ) return "".join(UpperCAmelCase_ ) if __name__ == "__main__": snake_case : int = '''This is my Python script that emulates the Enigma machine from WWII.''' snake_case : Union[str, Any] = (1, 1, 1) snake_case : Union[str, Any] = '''pictures''' snake_case : Optional[int] = (rotora, rotora, rotora) snake_case : Dict = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
94
snake_case : str = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' snake_case : List[Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] snake_case : int = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
94
1
from importlib import import_module from .logging import get_logger _lowerCamelCase : str = get_logger(__name__) class __UpperCAmelCase : def __init__( self : str, __A : str, __A : Any=None ): UpperCAmelCase : str = attrs or [] if module is not None: for key in module.__dict__: if key in attrs or not key.startswith('''__''' ): setattr(self, SCREAMING_SNAKE_CASE_, getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase : List[Any] = module._original_module if isinstance(SCREAMING_SNAKE_CASE_, _PatchedModuleObj ) else module class __UpperCAmelCase : UpperCamelCase = [] def __init__( self : List[str], __A : Dict, __A : Union[str, Any], __A : Tuple, __A : str=None ): UpperCAmelCase : Dict = obj UpperCAmelCase : Any = target UpperCAmelCase : Any = new UpperCAmelCase : Optional[Any] = target.split('''.''' )[0] UpperCAmelCase : int = {} UpperCAmelCase : List[str] = attrs or [] def __enter__( self : List[str] ): UpperCAmelCase : int = self.target.split('''.''' ) # Patch modules: # it's used to patch attributes of submodules like "os.path.join"; # in this case we need to patch "os" and "os.path" for i in range(len(SCREAMING_SNAKE_CASE_ ) ): try: UpperCAmelCase : int = import_module('''.'''.join(submodules[: i + 1] ) ) except ModuleNotFoundError: continue # We iterate over all the globals in self.obj in case we find "os" or "os.path" for attr in self.obj.__dir__(): UpperCAmelCase : Tuple = getattr(self.obj, SCREAMING_SNAKE_CASE_ ) # We don't check for the name of the global, but rather if its value *is* "os" or "os.path". # This allows to patch renamed modules like "from os import path as ospath". if obj_attr is submodule or ( (isinstance(SCREAMING_SNAKE_CASE_, _PatchedModuleObj ) and obj_attr._original_module is submodule) ): UpperCAmelCase : Optional[Any] = obj_attr # patch at top level setattr(self.obj, SCREAMING_SNAKE_CASE_, _PatchedModuleObj(SCREAMING_SNAKE_CASE_, attrs=self.attrs ) ) UpperCAmelCase : Optional[Any] = getattr(self.obj, SCREAMING_SNAKE_CASE_ ) # construct lower levels patches for key in submodules[i + 1 :]: setattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, _PatchedModuleObj(getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), attrs=self.attrs ) ) UpperCAmelCase : Any = getattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # finally set the target attribute setattr(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, self.new ) # Patch attribute itself: # it's used for builtins like "open", # and also to patch "os.path.join" we may also need to patch "join" # itself if it was imported as "from os.path import join". if submodules: # if it's an attribute of a submodule like "os.path.join" try: UpperCAmelCase : Union[str, Any] = getattr(import_module('''.'''.join(SCREAMING_SNAKE_CASE_ ) ), SCREAMING_SNAKE_CASE_ ) except (AttributeError, ModuleNotFoundError): return # We iterate over all the globals in self.obj in case we find "os.path.join" for attr in self.obj.__dir__(): # We don't check for the name of the global, but rather if its value *is* "os.path.join". # This allows to patch renamed attributes like "from os.path import join as pjoin". if getattr(self.obj, SCREAMING_SNAKE_CASE_ ) is attr_value: UpperCAmelCase : Union[str, Any] = getattr(self.obj, SCREAMING_SNAKE_CASE_ ) setattr(self.obj, SCREAMING_SNAKE_CASE_, self.new ) elif target_attr in globals()["__builtins__"]: # if it'a s builtin like "open" UpperCAmelCase : str = globals()["""__builtins__"""][target_attr] setattr(self.obj, SCREAMING_SNAKE_CASE_, self.new ) else: raise RuntimeError(F'''Tried to patch attribute {target_attr} instead of a submodule.''' ) def __exit__( self : List[str], *__A : str ): for attr in list(self.original ): setattr(self.obj, SCREAMING_SNAKE_CASE_, self.original.pop(SCREAMING_SNAKE_CASE_ ) ) def __magic_name__ ( self : Optional[Any] ): self.__enter__() self._active_patches.append(self ) def __magic_name__ ( self : Optional[Any] ): try: self._active_patches.remove(self ) except ValueError: # If the patch hasn't been started this will fail return None return self.__exit__()
355
from __future__ import annotations import queue class __UpperCAmelCase : def __init__( self : str, __A : Union[str, Any] ): UpperCAmelCase : Dict = data UpperCAmelCase : Tuple = None UpperCAmelCase : Any = None def a__ ( ) -> TreeNode: print('''\n********Press N to stop entering at any point of time********\n''' ) UpperCAmelCase : Any = input('''Enter the value of the root node: ''' ).strip().lower() UpperCAmelCase : queue.Queue = queue.Queue() UpperCAmelCase : Tuple = TreeNode(int(UpperCAmelCase ) ) q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = q.get() UpperCAmelCase : Union[str, Any] = f'''Enter the left node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : List[str] = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : List[str] = left_node q.put(UpperCAmelCase ) UpperCAmelCase : List[Any] = f'''Enter the right node of {node_found.data}: ''' UpperCAmelCase : List[Any] = input(UpperCAmelCase ).strip().lower() or '''n''' if check == "n": return tree_node UpperCAmelCase : Dict = TreeNode(int(UpperCAmelCase ) ) UpperCAmelCase : Dict = right_node q.put(UpperCAmelCase ) raise def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return print(node.data , end=''',''' ) pre_order(node.left ) pre_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=''',''' ) in_order(node.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=''',''' ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : List[Any] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : queue.Queue = queue.Queue() q.put(UpperCAmelCase ) while not q.empty(): UpperCAmelCase : int = [] while not q.empty(): UpperCAmelCase : List[str] = q.get() print(node_dequeued.data , end=''',''' ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(UpperCAmelCase ) def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : List[str] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=''',''' ) stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left # end of while means current node doesn't have left child UpperCAmelCase : Union[str, Any] = stack.pop() # start to traverse its right child UpperCAmelCase : List[str] = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase : list[TreeNode] = [] UpperCAmelCase : Any = node while n or stack: while n: stack.append(UpperCAmelCase ) UpperCAmelCase : Dict = n.left UpperCAmelCase : Optional[int] = stack.pop() print(n.data , end=''',''' ) UpperCAmelCase : Any = n.right def a__ ( UpperCAmelCase : TreeNode ) -> None: if not isinstance(UpperCAmelCase , UpperCAmelCase ) or not node: return UpperCAmelCase , UpperCAmelCase : Dict = [], [] UpperCAmelCase : Any = node stacka.append(UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 UpperCAmelCase : Union[str, Any] = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=''',''' ) def a__ ( UpperCAmelCase : str = "" , UpperCAmelCase : int=50 , UpperCAmelCase : Union[str, Any]="*" ) -> str: if not s: return "\n" + width * char UpperCAmelCase , UpperCAmelCase : int = divmod(width - len(UpperCAmelCase ) - 2 , 2 ) return f'''{left * char} {s} {(left + extra) * char}''' if __name__ == "__main__": import doctest doctest.testmod() print(prompt("Binary Tree Traversals")) _lowerCamelCase : TreeNode = build_tree() print(prompt("Pre Order Traversal")) pre_order(node) print(prompt() + "\n") print(prompt("In Order Traversal")) in_order(node) print(prompt() + "\n") print(prompt("Post Order Traversal")) post_order(node) print(prompt() + "\n") print(prompt("Level Order Traversal")) level_order(node) print(prompt() + "\n") print(prompt("Actual Level Order Traversal")) level_order_actual(node) print("*" * 5_0 + "\n") print(prompt("Pre Order Traversal - Iteration Version")) pre_order_iter(node) print(prompt() + "\n") print(prompt("In Order Traversal - Iteration Version")) in_order_iter(node) print(prompt() + "\n") print(prompt("Post Order Traversal - Iteration Version")) post_order_iter(node) print(prompt())
99
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class _A : def __init__( self , __lowerCAmelCase , ): """simple docstring""" lowercase = parent lowercase = 13 lowercase = 7 lowercase = True lowercase = True lowercase = True lowercase = 99 lowercase = 32 lowercase = 2 lowercase = 4 lowercase = 37 lowercase = """gelu""" lowercase = 0.1 lowercase = 0.1 lowercase = 512 lowercase = 16 lowercase = 2 lowercase = 0.0_2 lowercase = 3 lowercase = 4 lowercase = None def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): """simple docstring""" ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = self.prepare_config_and_inputs() lowercase = True lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowercase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFEsmModel(config=__lowerCAmelCase ) lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase = model(__lowerCAmelCase ) lowercase = [input_ids, input_mask] lowercase = model(__lowerCAmelCase ) lowercase = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ): """simple docstring""" lowercase = True lowercase = TFEsmModel(config=__lowerCAmelCase ) lowercase = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowercase = model(__lowerCAmelCase ) lowercase = [input_ids, input_mask] lowercase = model(__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase ) # Also check the case where encoder outputs are not passed lowercase = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = TFEsmForMaskedLM(config=__lowerCAmelCase ) lowercase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = TFEsmForTokenClassification(config=__lowerCAmelCase ) lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowercase = model(__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): snake_case__ : Optional[Any] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) snake_case__ : Dict = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) snake_case__ : List[Any] = False snake_case__ : Optional[int] = False def A__ ( self ): """simple docstring""" lowercase = TFEsmModelTester(self ) lowercase = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def A__ ( self ): """simple docstring""" for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = TFEsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def A__ ( self ): """simple docstring""" pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def A__ ( self ): """simple docstring""" pass def A__ ( self ): """simple docstring""" lowercase , lowercase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase = model_class(__lowerCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowercase = model.get_bias() assert isinstance(__lowerCAmelCase , __lowerCAmelCase ) for k, v in name.items(): assert isinstance(__lowerCAmelCase , tf.Variable ) else: lowercase = model.get_output_embeddings() assert x is None lowercase = model.get_bias() assert name is None @require_tf class _A ( unittest.TestCase ): @slow def A__ ( self ): """simple docstring""" lowercase = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase = model(__lowerCAmelCase )[0] lowercase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , __lowerCAmelCase ) # compare the actual values for a slice. lowercase = tf.constant( [ [ [8.9_2_1_5_1_8, -1_0.5_8_9_8_1_4, -6.4_6_7_1_3_0_7], [-6.3_9_6_7_1_5_6, -1_3.9_1_1_3_7_7, -1.1_2_1_1_9_1_5], [-7.7_8_1_2_4_7, -1_3.9_5_1_5_5_7, -3.7_4_0_5_9_2], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) ) @slow def A__ ( self ): """simple docstring""" lowercase = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowercase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowercase = model(__lowerCAmelCase )[0] # compare the actual values for a slice. lowercase = tf.constant( [ [ [0.1_4_4_4_3_0_9_2, 0.5_4_1_2_5_3_2_7, 0.3_2_4_7_7_3_9], [0.3_0_3_4_0_4_8_4, 0.0_0_5_2_6_6_7_6, 0.3_1_0_7_7_7_2_2], [0.3_2_2_7_8_0_4_3, -0.2_4_9_8_7_0_9_6, 0.3_4_1_4_6_2_8], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
197
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __lowerCAmelCase : Dict =version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""") def UpperCAmelCase__ ( lowerCAmelCase__ :int , lowerCAmelCase__ :tuple , lowerCAmelCase__ :Path , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Any , lowerCAmelCase__ :List[str]=False , ) -> Union[str, Any]: '''simple docstring''' output_path.parent.mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , use_external_data_format=lowerCAmelCase__ , enable_onnx_checker=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) else: export( lowerCAmelCase__ , lowerCAmelCase__ , f=output_path.as_posix() , input_names=lowerCAmelCase__ , output_names=lowerCAmelCase__ , dynamic_axes=lowerCAmelCase__ , do_constant_folding=lowerCAmelCase__ , opset_version=lowerCAmelCase__ , ) @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :str , lowerCAmelCase__ :int , lowerCAmelCase__ :bool = False ) -> str: '''simple docstring''' lowercase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): lowercase = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: lowercase = """cpu""" lowercase = Path(lowerCAmelCase__ ) # VAE DECODER lowercase = AutoencoderKL.from_pretrained(model_path + """/vae""" ) lowercase = vae_decoder.config.latent_channels # forward only through the decoder part lowercase = vae_decoder.decode onnx_export( lowerCAmelCase__ , model_args=( torch.randn(1 , lowerCAmelCase__ , 2_5 , 2_5 ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ), False, ) , output_path=output_path / """vae_decoder""" / """model.onnx""" , ordered_input_names=["""latent_sample""", """return_dict"""] , output_names=["""sample"""] , dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } , opset=lowerCAmelCase__ , ) del vae_decoder if __name__ == "__main__": __lowerCAmelCase : Tuple =argparse.ArgumentParser() parser.add_argument( """--model_path""", type=str, required=True, help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""", ) parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--opset""", default=1_4, type=int, help="""The version of the ONNX operator set to use.""", ) parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""") __lowerCAmelCase : Dict =parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("""SD: Done: ONNX""")
197
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu __UpperCAmelCase = get_tests_dir() + '/test_data/fsmt/fsmt_val_data.json' with io.open(filename, 'r', encoding='utf-8') as f: __UpperCAmelCase = json.load(f) @require_torch class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self , __A ) -> List[Any]: return FSMTTokenizer.from_pretrained(__A ) def __lowerCAmelCase ( self , __A ) -> Any: lowerCAmelCase_ :Any = FSMTForConditionalGeneration.from_pretrained(__A ).to(__A ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def __lowerCAmelCase ( self , __A , __A ) -> Dict: # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality lowerCAmelCase_ :int = f"""facebook/wmt19-{pair}""" lowerCAmelCase_ :List[str] = self.get_tokenizer(__A ) lowerCAmelCase_ :Union[str, Any] = self.get_model(__A ) lowerCAmelCase_ :Optional[Any] = bleu_data[pair]["""src"""] lowerCAmelCase_ :List[Any] = bleu_data[pair]["""tgt"""] lowerCAmelCase_ :int = tokenizer(__A , return_tensors="""pt""" , truncation=__A , padding="""longest""" ).to(__A ) lowerCAmelCase_ :Dict = model.generate( input_ids=batch.input_ids , num_beams=8 , ) lowerCAmelCase_ :Tuple = tokenizer.batch_decode( __A , skip_special_tokens=__A , clean_up_tokenization_spaces=__A ) lowerCAmelCase_ :List[str] = calculate_bleu(__A , __A ) print(__A ) self.assertGreaterEqual(scores["""bleu"""] , __A )
359
"""simple docstring""" import warnings from ...utils import logging from .image_processing_clip import CLIPImageProcessor __UpperCAmelCase = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE ( A__ ): def __init__( self , *__A , **__A ) -> None: warnings.warn( """The class CLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use CLIPImageProcessor instead.""" , __A , ) super().__init__(*__A , **__A )
1
0
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowercase = logging.get_logger(__name__) __lowercase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __lowercase = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __lowercase = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class lowerCamelCase_ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP a__ : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Tuple = ["""input_ids""", """attention_mask"""] a__ : List[Any] = BartTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , __lowercase=True , **__lowercase , ) -> Dict: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase , **__lowercase , ) __UpperCamelCase :List[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :Any = getattr(__lowercase , pre_tok_state.pop('''type''')) __UpperCamelCase :int = add_prefix_space __UpperCamelCase :Optional[Any] = pre_tok_class(**__lowercase) __UpperCamelCase :Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` __UpperCamelCase :Dict = '''post_processor''' __UpperCamelCase :List[Any] = getattr(self.backend_tokenizer , __lowercase , __lowercase) if tokenizer_component_instance: __UpperCamelCase :Optional[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase :Any = tuple(state['''sep''']) if "cls" in state: __UpperCamelCase :List[Any] = tuple(state['''cls''']) __UpperCamelCase :Optional[Any] = False if state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :Any = add_prefix_space __UpperCamelCase :Optional[int] = True if state.get('''trim_offsets''' , __lowercase) != trim_offsets: __UpperCamelCase :Tuple = trim_offsets __UpperCamelCase :Optional[int] = True if changes_to_apply: __UpperCamelCase :Any = getattr(__lowercase , state.pop('''type''')) __UpperCamelCase :Tuple = component_class(**__lowercase) setattr(self.backend_tokenizer , __lowercase , __lowercase) @property def UpperCamelCase__ ( self) -> Dict: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def UpperCamelCase__ ( self , __lowercase) -> Optional[Any]: __UpperCamelCase :Any = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else value __UpperCamelCase :int = value def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> str: __UpperCamelCase :Dict = kwargs.get('''is_split_into_words''' , __lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._batch_encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> Dict: __UpperCamelCase :Optional[int] = kwargs.get('''is_split_into_words''' , __lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''') return super()._encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> str: __UpperCamelCase :int = self._tokenizer.model.save(__lowercase , name=__lowercase) return tuple(__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase=None) -> List[str]: __UpperCamelCase :Dict = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[Any]: __UpperCamelCase :Dict = [self.sep_token_id] __UpperCamelCase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
43
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel SCREAMING_SNAKE_CASE :Union[str, Any] = False SCREAMING_SNAKE_CASE :Any = True SCREAMING_SNAKE_CASE :Tuple = False if __name__ == "__main__": SCREAMING_SNAKE_CASE :Tuple = argparse.ArgumentParser() parser.add_argument( '--repo_path', default=None, type=str, required=True, help='The config json file corresponding to the architecture.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() SCREAMING_SNAKE_CASE :Dict = { 'image_size': 'sample_size', 'num_res_blocks': 'layers_per_block', 'block_channels': 'block_out_channels', 'down_blocks': 'down_block_types', 'up_blocks': 'up_block_types', 'downscale_freq_shift': 'freq_shift', 'resnet_num_groups': 'norm_num_groups', 'resnet_act_fn': 'act_fn', 'resnet_eps': 'norm_eps', 'num_head_channels': 'attention_head_dim', } SCREAMING_SNAKE_CASE :Optional[int] = { 'time_steps': 'time_proj', 'mid': 'mid_block', 'downsample_blocks': 'down_blocks', 'upsample_blocks': 'up_blocks', } SCREAMING_SNAKE_CASE :int = '' if has_file(args.repo_path, 'config.json') else 'unet' with open(os.path.join(args.repo_path, subfolder, 'config.json'), 'r', encoding='utf-8') as reader: SCREAMING_SNAKE_CASE :Dict = reader.read() SCREAMING_SNAKE_CASE :List[str] = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, 'config.json'): SCREAMING_SNAKE_CASE :Optional[int] = UNetaDModel(**config) else: SCREAMING_SNAKE_CASE :Optional[Any] = UNetaDConditionModel if 'ldm-text2im-large-256' in args.repo_path else UNetaDModel SCREAMING_SNAKE_CASE :List[str] = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) SCREAMING_SNAKE_CASE :List[str] = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: SCREAMING_SNAKE_CASE :Optional[Any] = config[key] del config[key] SCREAMING_SNAKE_CASE :Optional[Any] = [k.replace('UNetRes', '') for k in config['down_block_types']] SCREAMING_SNAKE_CASE :List[Any] = [k.replace('UNetRes', '') for k in config['up_block_types']] if do_only_weights: SCREAMING_SNAKE_CASE :Tuple = torch.load(os.path.join(args.repo_path, subfolder, 'diffusion_pytorch_model.bin')) SCREAMING_SNAKE_CASE :Any = {} for param_key, param_value in state_dict.items(): if param_key.endswith('.op.bias') or param_key.endswith('.op.weight'): continue SCREAMING_SNAKE_CASE :List[str] = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('.')[0] == key: SCREAMING_SNAKE_CASE :List[Any] = param_value SCREAMING_SNAKE_CASE :str = True if not has_changed: SCREAMING_SNAKE_CASE :List[str] = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
15
0
def snake_case ( snake_case__ :str) -> int: _A = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""") _A = hex_num[0] == """-""" if is_negative: _A = hex_num[1:] try: _A = int(snake_case__ , 16) except ValueError: raise ValueError("""Invalid value was passed to the function""") _A = """""" while int_num > 0: _A = str(int_num % 2) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str) if __name__ == "__main__": import doctest doctest.testmod()
81
import os from glob import glob import imageio import torch import torchvision import wandb from img_processing import custom_to_pil, loop_post_process, preprocess, preprocess_vqgan from loaders import load_vqgan from PIL import Image from torch import nn from transformers import CLIPModel, CLIPTokenizerFast from utils import get_device, get_timestamp, show_pil class a : """simple docstring""" def __init__( self , lowerCAmelCase_ = "cpu" , lowerCAmelCase_ = "openai/clip-vit-large-patch14" ) -> None: _A = device _A = CLIPTokenizerFast.from_pretrained(lowerCAmelCase_ ) _A = [0.4814_5466, 0.457_8275, 0.4082_1073] _A = [0.2686_2954, 0.2613_0258, 0.2757_7711] _A = torchvision.transforms.Normalize(self.image_mean , self.image_std ) _A = torchvision.transforms.Resize(2_24 ) _A = torchvision.transforms.CenterCrop(2_24 ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> Tuple: _A = self.resize(lowerCAmelCase_ ) _A = self.center_crop(lowerCAmelCase_ ) _A = self.normalize(lowerCAmelCase_ ) return images def __call__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ) -> Tuple: _A = self.tokenizer(text=lowerCAmelCase_ , **lowerCAmelCase_ ) _A = self.preprocess_img(lowerCAmelCase_ ) _A = {key: value.to(self.device ) for (key, value) in encoding.items()} return encoding class a ( nn.Module ): """simple docstring""" def __init__( self , lowerCAmelCase_=10 , lowerCAmelCase_=0.01 , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_="image" , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=False , lowerCAmelCase_=False , ) -> None: super().__init__() _A = None _A = device if device else get_device() if vqgan: _A = vqgan else: _A = load_vqgan(self.device , conf_path=lowerCAmelCase_ , ckpt_path=lowerCAmelCase_ ) self.vqgan.eval() if clip: _A = clip else: _A = CLIPModel.from_pretrained("""openai/clip-vit-base-patch32""" ) self.clip.to(self.device ) _A = ProcessorGradientFlow(device=self.device ) _A = iterations _A = lr _A = log _A = make_grid _A = return_val _A = quantize _A = self.vqgan.decoder.z_shape def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=5 , lowerCAmelCase_=True ) -> Any: _A = [] if output_path is None: _A = """./animation.gif""" if input_path is None: _A = self.save_path _A = sorted(glob(input_path + """/*""" ) ) if not len(lowerCAmelCase_ ): raise ValueError( """No images found in save path, aborting (did you pass save_intermediate=True to the generate""" """ function?)""" ) if len(lowerCAmelCase_ ) == 1: print("""Only one image found in save path, (did you pass save_intermediate=True to the generate function?)""" ) _A = total_duration / len(lowerCAmelCase_ ) _A = [frame_duration] * len(lowerCAmelCase_ ) if extend_frames: _A = 1.5 _A = 3 for file_name in paths: if file_name.endswith(""".png""" ): images.append(imageio.imread(lowerCAmelCase_ ) ) imageio.mimsave(lowerCAmelCase_ , lowerCAmelCase_ , duration=lowerCAmelCase_ ) print(F'''gif saved to {output_path}''' ) def UpperCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> str: if not (path or img): raise ValueError("""Input either path or tensor""" ) if img is not None: raise NotImplementedError _A = preprocess(Image.open(lowerCAmelCase_ ) , target_image_size=2_56 ).to(self.device ) _A = preprocess_vqgan(lowerCAmelCase_ ) _A , *_A = self.vqgan.encode(lowerCAmelCase_ ) return z def UpperCAmelCase ( self , lowerCAmelCase_ ) -> List[Any]: _A = self.latent.detach().requires_grad_() _A = base_latent + transform_vector if self.quantize: _A , *_A = self.vqgan.quantize(lowerCAmelCase_ ) else: _A = trans_latent return self.vqgan.decode(lowerCAmelCase_ ) def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Union[str, Any]: _A = self.clip_preprocessor(text=lowerCAmelCase_ , images=lowerCAmelCase_ , return_tensors="""pt""" , padding=lowerCAmelCase_ ) _A = self.clip(**lowerCAmelCase_ ) _A = clip_outputs.logits_per_image if weights is not None: _A = similarity_logits * weights return similarity_logits.sum() def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Union[str, Any]: _A = self._get_clip_similarity(pos_prompts["""prompts"""] , lowerCAmelCase_ , weights=(1 / pos_prompts["""weights"""]) ) if neg_prompts: _A = self._get_clip_similarity(neg_prompts["""prompts"""] , lowerCAmelCase_ , weights=neg_prompts["""weights"""] ) else: _A = torch.tensor([1] , device=self.device ) _A = -torch.log(lowerCAmelCase_ ) + torch.log(lowerCAmelCase_ ) return loss def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> int: _A = torch.randn_like(self.latent , requires_grad=lowerCAmelCase_ , device=self.device ) _A = torch.optim.Adam([vector] , lr=self.lr ) for i in range(self.iterations ): optim.zero_grad() _A = self._add_vector(lowerCAmelCase_ ) _A = loop_post_process(lowerCAmelCase_ ) _A = self._get_CLIP_loss(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) print("""CLIP loss""" , lowerCAmelCase_ ) if self.log: wandb.log({"""CLIP Loss""": clip_loss} ) clip_loss.backward(retain_graph=lowerCAmelCase_ ) optim.step() if self.return_val == "image": yield custom_to_pil(transformed_img[0] ) else: yield vector def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> List[str]: wandb.init(reinit=lowerCAmelCase_ , project="""face-editor""" ) wandb.config.update({"""Positive Prompts""": positive_prompts} ) wandb.config.update({"""Negative Prompts""": negative_prompts} ) wandb.config.update({"""lr""": self.lr, """iterations""": self.iterations} ) if image_path: _A = Image.open(lowerCAmelCase_ ) _A = image.resize((2_56, 2_56) ) wandb.log("""Original Image""" , wandb.Image(lowerCAmelCase_ ) ) def UpperCAmelCase ( self , lowerCAmelCase_ ) -> int: if not prompts: return [] _A = [] _A = [] if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _A = [prompt.strip() for prompt in prompts.split("""|""" )] for prompt in prompts: if isinstance(lowerCAmelCase_ , (tuple, list) ): _A = prompt[0] _A = float(prompt[1] ) elif ":" in prompt: _A , _A = prompt.split(""":""" ) _A = float(lowerCAmelCase_ ) else: _A = prompt _A = 1.0 processed_prompts.append(lowerCAmelCase_ ) weights.append(lowerCAmelCase_ ) return { "prompts": processed_prompts, "weights": torch.tensor(lowerCAmelCase_ , device=self.device ), } def UpperCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=None , ) -> str: if image_path: _A = self._get_latent(lowerCAmelCase_ ) else: _A = torch.randn(self.latent_dim , device=self.device ) if self.log: self._init_logging(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) assert pos_prompts, "You must provide at least one positive prompt." _A = self.process_prompts(lowerCAmelCase_ ) _A = self.process_prompts(lowerCAmelCase_ ) if save_final and save_path is None: _A = os.path.join("""./outputs/""" , """_""".join(pos_prompts["""prompts"""] ) ) if not os.path.exists(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) else: _A = save_path + """_""" + get_timestamp() os.makedirs(lowerCAmelCase_ ) _A = save_path _A = self.vqgan.decode(self.latent )[0] if show_intermediate: print("""Original Image""" ) show_pil(custom_to_pil(lowerCAmelCase_ ) ) _A = loop_post_process(lowerCAmelCase_ ) for iter, transformed_img in enumerate(self._optimize_CLIP(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ): if show_intermediate: show_pil(lowerCAmelCase_ ) if save_intermediate: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}.png''' ) ) if self.log: wandb.log({"""Image""": wandb.Image(lowerCAmelCase_ )} ) if show_final: show_pil(lowerCAmelCase_ ) if save_final: transformed_img.save(os.path.join(self.save_path , F'''iter_{iter:03d}_final.png''' ) )
81
1
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": lowerCamelCase : Union[str, Any] =argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '''--original_config_file''', default=None, type=str, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--scheduler_type''', default='''pndm''', type=str, help='''Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']''', ) parser.add_argument( '''--pipeline_type''', default=None, type=str, help=( '''The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'''' '''. If `None` pipeline will be automatically inferred.''' ), ) parser.add_argument( '''--image_size''', default=None, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--prediction_type''', default=None, type=str, help=( '''The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable''' ''' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') parser.add_argument( '''--stable_unclip''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.''', ) parser.add_argument( '''--stable_unclip_prior''', type=str, default=None, required=False, help='''Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.''', ) parser.add_argument( '''--clip_stats_path''', type=str, help='''Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.''', required=False, ) parser.add_argument( '''--controlnet''', action='''store_true''', default=None, help='''Set flag if this is a controlnet checkpoint.''' ) parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--vae_path''', type=str, default=None, required=False, help='''Set to a path, hub id to an already converted vae to not convert it again.''', ) lowerCamelCase : Union[str, Any] =parser.parse_args() lowerCamelCase : Any =download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
189
from math import factorial class __a : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Tuple = real if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Union[str, Any] = [1] * rank else: UpperCamelCase__ : int = rank def __repr__( self : Tuple ): '''simple docstring''' return ( F'{self.real}+' F'{"+".join(str(SCREAMING_SNAKE_CASE )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , SCREAMING_SNAKE_CASE ) def __add__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): return Dual(self.real + other , self.duals ) UpperCamelCase__ : Optional[int] = self.duals.copy() UpperCamelCase__ : Any = other.duals.copy() if len(SCREAMING_SNAKE_CASE ) > len(SCREAMING_SNAKE_CASE ): o_dual.extend([1] * (len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE )) ) elif len(SCREAMING_SNAKE_CASE ) < len(SCREAMING_SNAKE_CASE ): s_dual.extend([1] * (len(SCREAMING_SNAKE_CASE ) - len(SCREAMING_SNAKE_CASE )) ) UpperCamelCase__ : Optional[int] = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Dict = __add__ def __sub__( self : Tuple , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return self + other * -1 def __mul__( self : int , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , SCREAMING_SNAKE_CASE ) _lowerCAmelCase : Union[str, Any] = __mul__ def __truediv__( self : List[Any] , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : str = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , SCREAMING_SNAKE_CASE ) raise ValueError def __floordiv__( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : Dict = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , SCREAMING_SNAKE_CASE ) raise ValueError def __pow__( self : str , SCREAMING_SNAKE_CASE : int ): '''simple docstring''' if n < 0 or isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self UpperCamelCase__ : str = self for _ in range(n - 1 ): x *= self return x def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: if not callable(__lowerCAmelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(__lowerCAmelCase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise ValueError("differentiate() requires an int as input for order" ) UpperCamelCase__ : Optional[Any] = Dual(__lowerCAmelCase , 1 ) UpperCamelCase__ : Any = func(__lowerCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(__lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
189
1
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCamelCase_ ( _lowerCamelCase ): return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=__A ) lowerCamelCase__ : Optional[Any] = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(__A ) EnvironmentCommand.register_subcommand(__A ) TestCommand.register_subcommand(__A ) RunBeamCommand.register_subcommand(__A ) DummyDataCommand.register_subcommand(__A ) # Parse args lowerCamelCase__ , lowerCamelCase__ : Dict = parser.parse_known_args() if not hasattr(__A , 'func' ): parser.print_help() exit(1 ) lowerCamelCase__ : str = parse_unknown_args(__A ) # Run lowerCamelCase__ : List[Any] = args.func(__A , **__A ) service.run() if __name__ == "__main__": main()
357
"""simple docstring""" def lowerCamelCase_ ( ): lowerCamelCase__ : Optional[Any] = [] lowerCamelCase__ : List[Any] = 1 while len(_lowerCamelCase ) < 1e6: constant.append(str(_lowerCamelCase ) ) i += 1 lowerCamelCase__ : str = ''.join(_lowerCamelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
316
0
"""simple docstring""" import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase__ : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right UpperCAmelCase__ : str = 2_5_0_0_0_4 UpperCAmelCase__ : List[str] = 2_5_0_0_2_0 @require_sentencepiece @require_tokenizers class lowerCAmelCase_ (a__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Tuple = MBartaaTokenizer __UpperCamelCase : Any = MBartaaTokenizerFast __UpperCamelCase : Union[str, Any] = True __UpperCamelCase : Tuple = True def __magic_name__ (self ) -> List[str]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ : Optional[Any] = MBartaaTokenizer(SCREAMING_SNAKE_CASE__ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = """<s>""" SCREAMING_SNAKE_CASE__ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 10_54 ) def __magic_name__ (self ) -> Optional[int]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_54 ) def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = MBartaaTokenizer(SCREAMING_SNAKE_CASE__ , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = {"""input_ids""": [[25_00_04, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [25_00_04, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_00_04, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def __magic_name__ (self ) -> List[str]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return SCREAMING_SNAKE_CASE__ : Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): SCREAMING_SNAKE_CASE__ : List[str] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) SCREAMING_SNAKE_CASE__ : List[Any] = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ : Dict = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=True SCREAMING_SNAKE_CASE__ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Any = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ : Optional[int] = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Tuple = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) # Save tokenizer rust, legacy_format=False SCREAMING_SNAKE_CASE__ : Optional[int] = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : Tuple = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE__ , legacy_format=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way SCREAMING_SNAKE_CASE__ : str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Dict = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE__ ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = '''facebook/mbart-large-50-one-to-many-mmt''' __UpperCamelCase : int = [ ''' UN Chief Says There Is No Military Solution in Syria''', ''' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.''', ] __UpperCamelCase : Tuple = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', '''Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei''' ''' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor''' ''' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.''', ] __UpperCamelCase : Tuple = [EN_CODE, 8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2] @classmethod def __magic_name__ (cls ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) SCREAMING_SNAKE_CASE__ : Tuple = 1 return cls def __magic_name__ (self ) -> Tuple: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 25_00_20 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 25_00_38 ) def __magic_name__ (self ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> List[str]: """simple docstring""" self.assertIn(SCREAMING_SNAKE_CASE__ , self.tokenizer.all_special_ids ) SCREAMING_SNAKE_CASE__ : int = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] SCREAMING_SNAKE_CASE__ : List[Any] = self.tokenizer.decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = 10 SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.tokenizer(SCREAMING_SNAKE_CASE__ , max_length=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ ).input_ids[0] self.assertEqual(ids[0] , SCREAMING_SNAKE_CASE__ ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __magic_name__ (self ) -> int: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [25_00_53, 25_00_01] ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = tempfile.mkdtemp() SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = MBartaaTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE__ ) @require_torch def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def __magic_name__ (self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) SCREAMING_SNAKE_CASE__ : Any = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) SCREAMING_SNAKE_CASE__ : int = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE__ ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def __magic_name__ (self ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=3 , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : int = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE__ , truncation=SCREAMING_SNAKE_CASE__ , max_length=10 , return_tensors="""pt""" ) SCREAMING_SNAKE_CASE__ : Tuple = targets["""input_ids"""] SCREAMING_SNAKE_CASE__ : List[str] = shift_tokens_right(SCREAMING_SNAKE_CASE__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __magic_name__ (self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE__ ) , { # en_XX, A, test, EOS """input_ids""": [[25_00_04, 62, 30_34, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 25_00_01, } , )
25
import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowercase , 'hidden_sizes')) self.parent.assertTrue(hasattr(lowercase , 'num_attention_heads')) self.parent.assertTrue(hasattr(lowercase , 'num_encoder_blocks')) class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=3 , lowercase=4 , lowercase=[2, 2, 2, 2] , lowercase=[8, 4, 2, 1] , lowercase=[16, 32, 64, 128] , lowercase=[1, 4, 8, 16] , lowercase=[1, 2, 4, 8] , lowercase=True , lowercase=True , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=0.02 , lowercase=3 , lowercase=None , ) -> Tuple: '''simple docstring''' a__ : Optional[Any] = parent a__ : int = batch_size a__ : Tuple = image_size a__ : Union[str, Any] = num_channels a__ : str = num_encoder_blocks a__ : Dict = sr_ratios a__ : Dict = depths a__ : Union[str, Any] = hidden_sizes a__ : str = downsampling_rates a__ : Tuple = num_attention_heads a__ : Optional[Any] = is_training a__ : Union[str, Any] = use_labels a__ : Any = hidden_act a__ : Optional[int] = hidden_dropout_prob a__ : int = attention_probs_dropout_prob a__ : Optional[Any] = initializer_range a__ : Tuple = num_labels a__ : Union[str, Any] = scope def __lowercase ( self) -> Any: '''simple docstring''' a__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : str = None if self.use_labels: a__ : Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) a__ : Any = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Any: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> Dict: '''simple docstring''' a__ : Dict = SegformerModel(config=lowercase) model.to(lowercase) model.eval() a__ : Optional[Any] = model(lowercase) a__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def __lowercase ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' a__ : Optional[Any] = self.num_labels a__ : List[str] = SegformerForSemanticSegmentation(lowercase) model.to(lowercase) model.eval() a__ : List[str] = model(lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) a__ : int = model(lowercase , labels=lowercase) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self , lowercase , lowercase , lowercase) -> Optional[int]: '''simple docstring''' a__ : Union[str, Any] = 1 a__ : Optional[int] = SegformerForSemanticSegmentation(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowercase) a__ : Optional[Any] = model(lowercase , labels=lowercase) self.parent.assertGreater(result.loss , 0.0) def __lowercase ( self) -> int: '''simple docstring''' a__ : Any = self.prepare_config_and_inputs() a__ , a__ , a__ : str = config_and_inputs a__ : Optional[int] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Any = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) __A : List[str] = ( { '''feature-extraction''': SegformerModel, '''image-classification''': SegformerForImageClassification, '''image-segmentation''': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) __A : List[str] = True __A : Any = False __A : Any = False __A : str = False def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Union[str, Any] = SegformerModelTester(self) a__ : Optional[Any] = SegformerConfigTester(self , config_class=lowercase) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowercase) @unittest.skip('SegFormer does not use inputs_embeds') def __lowercase ( self) -> Tuple: '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods') def __lowercase ( self) -> str: '''simple docstring''' pass def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = model_class(lowercase) a__ : Dict = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[int] = [*signature.parameters.keys()] a__ : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> str: '''simple docstring''' a__ , a__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: a__ : str = True a__ : List[str] = False a__ : int = True a__ : List[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[Any] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions a__ : Dict = sum(self.model_tester.depths) self.assertEqual(len(lowercase) , lowercase) # check that output_attentions also work using config del inputs_dict["output_attentions"] a__ : Dict = True a__ : int = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : Optional[int] = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Optional[Any] = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : Tuple = (self.model_tester.image_size // 4) ** 2 a__ : List[str] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) a__ : str = (self.model_tester.image_size // 32) ** 2 a__ : Optional[int] = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) a__ : Dict = len(lowercase) # Check attention is always last and order is fine a__ : List[Any] = True a__ : Any = True a__ : Dict = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) self.assertEqual(out_len + 1 , len(lowercase)) a__ : int = outputs.attentions self.assertEqual(len(lowercase) , lowercase) # verify the first attentions (first block, first layer) a__ : List[Any] = (self.model_tester.image_size // 4) ** 2 a__ : Union[str, Any] = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def __lowercase ( self) -> List[Any]: '''simple docstring''' def check_hidden_states_output(lowercase , lowercase , lowercase): a__ : Optional[Any] = model_class(lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__ : int = model(**self._prepare_for_class(lowercase , lowercase)) a__ : Union[str, Any] = outputs.hidden_states a__ : Any = self.model_tester.num_encoder_blocks self.assertEqual(len(lowercase) , lowercase) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) a__ , a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : List[str] = True check_hidden_states_output(lowercase , lowercase , lowercase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a__ : int = True check_hidden_states_output(lowercase , lowercase , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' if not self.model_tester.is_training: return a__ , a__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: if model_class in get_values(lowercase): continue a__ : Dict = model_class(lowercase) model.to(lowercase) model.train() a__ : str = self._prepare_for_class(lowercase , lowercase , return_labels=lowercase) a__ : Optional[int] = model(**lowercase).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' pass @slow def __lowercase ( self) -> Tuple: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = SegformerModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class A__ ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : int = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Optional[int] = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[int] = model(lowercase) a__ : Union[str, Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Dict = torch.tensor( [ [[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]], [[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]], [[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-4)) @slow def __lowercase ( self) -> Union[str, Any]: '''simple docstring''' a__ : Dict = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024').to(lowercase) a__ : Dict = prepare_img() a__ : Optional[int] = image_processor(images=lowercase , return_tensors='pt') a__ : List[str] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Optional[Any] = model(lowercase) a__ : List[Any] = torch.Size((1, model.config.num_labels, 128, 128)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Optional[Any] = torch.tensor( [ [[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]], [[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]], [[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]], ]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowercase , atol=1e-1)) @slow def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=lowercase , align=lowercase , do_random_crop=lowercase) a__ : List[str] = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512').to( lowercase) a__ : Any = prepare_img() a__ : Optional[Any] = image_processor(images=lowercase , return_tensors='pt') a__ : Optional[int] = encoded_inputs.pixel_values.to(lowercase) with torch.no_grad(): a__ : Union[str, Any] = model(lowercase) a__ : int = outputs.logits.detach().cpu() a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=lowercase , target_sizes=[(500, 300)]) a__ : Optional[Any] = torch.Size((500, 300)) self.assertEqual(segmentation[0].shape , lowercase) a__ : Any = image_processor.post_process_semantic_segmentation(outputs=lowercase) a__ : Union[str, Any] = torch.Size((128, 128)) self.assertEqual(segmentation[0].shape , lowercase)
99
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case ) -> List[Any]: lowercase__: str = set() lowercase__: Tuple = [] def parse_line(snake_case ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowercase__: Dict = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE_ ) > 0: lowercase__: Any = '\n'.join(SCREAMING_SNAKE_CASE_ ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE_ ) buffer.clear() continue else: lowercase__: Tuple = line.strip() buffer.append(SCREAMING_SNAKE_CASE_ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE_ ): lowercase__: List[str] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE_ ) as fp: parse_line(SCREAMING_SNAKE_CASE_ ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case_ ( snake_case , snake_case ) -> str: lowercase__: int = set() lowercase__: List[Any] = [os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for p in os.listdir(SCREAMING_SNAKE_CASE_ ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) return selected_warnings if __name__ == "__main__": def snake_case_ ( snake_case ) -> Union[str, Any]: return values.split(',' ) __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __lowerCAmelCase = extract_warnings(args.output_dir, args.targets) __lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
366
from collections import deque from math import floor from random import random from time import time class __a : def __init__( self ) -> Dict: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase__: int = [[w, v]] if not self.graph.get(lowerCAmelCase__ ): lowercase__: Union[str, Any] = [] def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' if s == d: return [] lowercase__: Tuple = [] lowercase__: Tuple = [] if s == -2: lowercase__: Any = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[int] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if c == -1: lowercase__: int = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: str = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Dict: '''simple docstring''' lowercase__: int = deque() lowercase__: Dict = [] if s == -2: lowercase__: Optional[int] = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: Tuple = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> Optional[Any]: '''simple docstring''' lowercase__: Tuple = [] lowercase__: str = [] if s == -2: lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: List[Any] = s lowercase__: Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: List[str] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Dict = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowerCAmelCase__ ) != 0: lowercase__: int = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return sorted_nodes def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: List[Any] = [] lowercase__: int = [] lowercase__: List[str] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Union[str, Any] = [] lowercase__: List[str] = s lowercase__: Dict = False lowercase__: Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: List[Any] = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Any = True if len(lowerCAmelCase__ ) != 0: lowercase__: Optional[Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Union[str, Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: int = s lowercase__: str = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Optional[Any]: '''simple docstring''' lowercase__: Any = [] lowercase__: int = [] lowercase__: Dict = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Optional[int] = -2 lowercase__: List[Any] = [] lowercase__: List[str] = s lowercase__: List[Any] = False lowercase__: str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Dict = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: Optional[Any] = True if len(lowerCAmelCase__ ) != 0: lowercase__: Any = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Dict = s lowercase__: Dict = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Dict: '''simple docstring''' lowercase__: Union[str, Any] = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: Optional[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[str]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin class __a : def __init__( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=1 ) -> List[Any]: '''simple docstring''' # check if the u exists if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase__: str = [[w, v]] # add the other way if self.graph.get(lowerCAmelCase__ ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase__: Union[str, Any] = [[w, u]] def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> str: '''simple docstring''' if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowerCAmelCase__ ) # the other way round if self.graph.get(lowerCAmelCase__ ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> List[str]: '''simple docstring''' if s == d: return [] lowercase__: str = [] lowercase__: int = [] if s == -2: lowercase__: Tuple = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: int = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowerCAmelCase__ ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowerCAmelCase__ ) != 0: lowercase__: Union[str, Any] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Optional[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-1 ) -> Optional[Any]: '''simple docstring''' if c == -1: lowercase__: Any = floor(random() * 10_000 ) + 10 for i in range(lowerCAmelCase__ ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase__: Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(lowerCAmelCase__ , lowerCAmelCase__ , 1 ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = deque() lowercase__: List[Any] = [] if s == -2: lowercase__: str = list(self.graph )[0] d.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) while d: lowercase__: Union[str, Any] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return len(self.graph[u] ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' lowercase__: str = [] lowercase__: Dict = [] lowercase__: Optional[int] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Dict = -2 lowercase__: Dict = [] lowercase__: List[Any] = s lowercase__: Union[str, Any] = False lowercase__: List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Any = len(lowerCAmelCase__ ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: str = True if len(lowerCAmelCase__ ) != 0: lowercase__: Dict = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: int = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Tuple = s lowercase__: List[Any] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return list(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Any: '''simple docstring''' lowercase__: Tuple = [] lowercase__: Optional[int] = [] lowercase__: Optional[Any] = list(self.graph )[0] stack.append(lowerCAmelCase__ ) visited.append(lowerCAmelCase__ ) lowercase__: Tuple = -2 lowercase__: Any = [] lowercase__: int = s lowercase__: Optional[int] = False lowercase__: List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase__: Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase__: Union[str, Any] = len(lowerCAmelCase__ ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase__: Any = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase__: List[str] = True if len(lowerCAmelCase__ ) != 0: lowercase__: List[str] = stack[len(lowerCAmelCase__ ) - 1] else: lowercase__: Dict = False indirect_parents.append(lowerCAmelCase__ ) lowercase__: Optional[Any] = s lowercase__: Optional[int] = ss # check if se have reached the starting point if len(lowerCAmelCase__ ) == 0: return False def SCREAMING_SNAKE_CASE__ ( self ) -> List[Any]: '''simple docstring''' return list(self.graph ) def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 , lowerCAmelCase__=-1 ) -> Union[str, Any]: '''simple docstring''' lowercase__: Dict = time() self.dfs(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase__: List[Any] = time() return end - begin def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__=-2 ) -> List[Any]: '''simple docstring''' lowercase__: str = time() self.bfs(lowerCAmelCase__ ) lowercase__: List[str] = time() return end - begin
288
0
"""simple docstring""" import pandas as pd from matplotlib import pyplot as plt from sklearn.linear_model import LinearRegression # Splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split # Fitting Polynomial Regression to the dataset from sklearn.preprocessing import PolynomialFeatures # Importing the dataset SCREAMING_SNAKE_CASE__ = pd.read_csv( "https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/" "position_salaries.csv" ) SCREAMING_SNAKE_CASE__ = dataset.iloc[:, 1:2].values SCREAMING_SNAKE_CASE__ = dataset.iloc[:, 2].values SCREAMING_SNAKE_CASE__ = train_test_split(X, y, test_size=0.2, random_state=0) SCREAMING_SNAKE_CASE__ = PolynomialFeatures(degree=4) SCREAMING_SNAKE_CASE__ = poly_reg.fit_transform(X) SCREAMING_SNAKE_CASE__ = LinearRegression() pol_reg.fit(X_poly, y) def lowerCAmelCase__ ( ) -> Tuple: """simple docstring""" plt.scatter(snake_case_ , snake_case_ , color='red' ) plt.plot(snake_case_ , pol_reg.predict(poly_reg.fit_transform(snake_case_ ) ) , color='blue' ) plt.title('Truth or Bluff (Linear Regression)' ) plt.xlabel('Position level' ) plt.ylabel('Salary' ) plt.show() if __name__ == "__main__": viz_polymonial() # Predicting a new result with Polymonial Regression pol_reg.predict(poly_reg.fit_transform([[5.5]])) # output should be 132148.43750003
150
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : int ) -> str: '''simple docstring''' if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] # remove the leading "0b" UpperCAmelCase_ = str(bin(snake_case_ ) )[2:] UpperCAmelCase_ = max(len(snake_case_ ) , len(snake_case_ ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(snake_case_ ) , b_binary.zfill(snake_case_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
1
0
import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset lowerCAmelCase : Union[str, Any] ='''bert-base-cased''' lowerCAmelCase : Optional[Any] ='''google/pegasus-xsum''' lowerCAmelCase : Optional[int] =[''' Sam ate lunch today.''', '''Sams lunch ingredients.'''] lowerCAmelCase : str =['''A very interesting story about what I ate for lunch.''', '''Avocado, celery, turkey, coffee'''] lowerCAmelCase : List[str] ='''patrickvonplaten/t5-tiny-random''' lowerCAmelCase : Union[str, Any] ='''sshleifer/bart-tiny-random''' lowerCAmelCase : Union[str, Any] ='''sshleifer/tiny-mbart''' lowerCAmelCase : Any ='''sshleifer/tiny-marian-en-de''' def UpperCAmelCase_ ( __lowerCamelCase : Path ,__lowerCamelCase : list ): lowercase_ :Optional[int] = "\n".join(__lowerCamelCase ) Path(__lowerCamelCase ).open("w" ).writelines(__lowerCamelCase ) def UpperCAmelCase_ ( __lowerCamelCase : List[Any] ): for split in ["train", "val", "test"]: _dump_articles(os.path.join(__lowerCamelCase ,F'{split}.source' ) ,__lowerCamelCase ) _dump_articles(os.path.join(__lowerCamelCase ,F'{split}.target' ) ,__lowerCamelCase ) return tmp_dir class a_ ( _lowerCAmelCase ): @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def lowercase__ ( self : Optional[int] , lowercase : str ): """simple docstring""" lowercase_ :Any = AutoTokenizer.from_pretrained(lowercase ) lowercase_ :Union[str, Any] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase_ :Optional[int] = max(len(tokenizer.encode(lowercase ) ) for a in ARTICLES ) lowercase_ :Tuple = max(len(tokenizer.encode(lowercase ) ) for a in SUMMARIES ) lowercase_ :Any = 4 lowercase_ :Any = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated lowercase_ :str = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. lowercase_ :Dict = SeqaSeqDataset( lowercase , data_dir=lowercase , type_path="train" , max_source_length=lowercase , max_target_length=lowercase , src_lang=lowercase , tgt_lang=lowercase , ) lowercase_ :Any = DataLoader(lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(lowercase , lowercase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place lowercase_ :Optional[Any] = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def lowercase__ ( self : Tuple , lowercase : Any ): """simple docstring""" lowercase_ :int = AutoTokenizer.from_pretrained(lowercase ) lowercase_ :List[str] = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) lowercase_ :Tuple = max(len(tokenizer.encode(lowercase ) ) for a in ARTICLES ) lowercase_ :Dict = max(len(tokenizer.encode(lowercase ) ) for a in SUMMARIES ) lowercase_ :Optional[Any] = 4 lowercase_ :Union[str, Any] = LegacySeqaSeqDataset( lowercase , data_dir=lowercase , type_path="train" , max_source_length=20 , max_target_length=lowercase , ) lowercase_ :Tuple = DataLoader(lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :Any = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) lowercase_ :str = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) lowercase_ :Optional[int] = tmp_dir.joinpath("train.source" ).open().readlines() lowercase_ :Optional[int] = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(lowercase , lowercase , 128 , lowercase ) lowercase_ :Optional[int] = {x.name for x in tmp_dir.iterdir()} lowercase_ :Optional[int] = {x.name for x in save_dir.iterdir()} lowercase_ :Union[str, Any] = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(lowercase ) < len(lowercase ) assert len(lowercase ) == 1 assert len(packed_examples[0] ) == sum(len(lowercase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def lowercase__ ( self : Optional[int] ): """simple docstring""" if not FAIRSEQ_AVAILABLE: return lowercase_ :Any = self._get_dataset(max_len=64 ) lowercase_ :Tuple = 64 lowercase_ :Dict = ds.make_dynamic_sampler(lowercase , required_batch_size_multiple=lowercase ) lowercase_ :List[str] = [len(lowercase ) for x in batch_sampler] assert len(set(lowercase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(lowercase ) == len(lowercase ) # no dropped or added examples lowercase_ :Dict = DataLoader(lowercase , batch_sampler=lowercase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase_ :int = [] lowercase_ :Optional[int] = [] for batch in data_loader: lowercase_ :List[Any] = batch["input_ids"].shape lowercase_ :Dict = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple lowercase_ :Optional[Any] = np.product(batch["input_ids"].shape ) num_src_per_batch.append(lowercase ) if num_src_tokens > (max_tokens * 1.1): failures.append(lowercase ) assert num_src_per_batch[0] == max(lowercase ) if failures: raise AssertionError(F'too many tokens in {len(lowercase )} batches' ) def lowercase__ ( self : int ): """simple docstring""" lowercase_ :int = self._get_dataset(max_len=512 ) lowercase_ :Tuple = 2 lowercase_ :Optional[int] = ds.make_sortish_sampler(lowercase , shuffle=lowercase ) lowercase_ :List[Any] = DataLoader(lowercase , batch_size=lowercase , collate_fn=ds.collate_fn , num_workers=2 ) lowercase_ :Dict = DataLoader(lowercase , batch_size=lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=lowercase ) lowercase_ :int = tokenizer.pad_token_id def count_pad_tokens(lowercase : Union[str, Any] , lowercase : int="input_ids" ): return [batch[k].eq(lowercase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(lowercase , k="labels" ) ) < sum(count_pad_tokens(lowercase , k="labels" ) ) assert sum(count_pad_tokens(lowercase ) ) < sum(count_pad_tokens(lowercase ) ) assert len(lowercase ) == len(lowercase ) def lowercase__ ( self : Any , lowercase : Optional[int]=1_000 , lowercase : List[str]=128 ): """simple docstring""" if os.getenv("USE_REAL_DATA" , lowercase ): lowercase_ :Dict = "examples/seq2seq/wmt_en_ro" lowercase_ :str = max_len * 2 * 64 if not Path(lowercase ).joinpath("train.len" ).exists(): save_len_file(lowercase , lowercase ) else: lowercase_ :str = "examples/seq2seq/test_data/wmt_en_ro" lowercase_ :int = max_len * 4 save_len_file(lowercase , lowercase ) lowercase_ :Any = AutoTokenizer.from_pretrained(lowercase ) lowercase_ :List[str] = SeqaSeqDataset( lowercase , data_dir=lowercase , type_path="train" , max_source_length=lowercase , max_target_length=lowercase , n_obs=lowercase , ) return ds, max_tokens, tokenizer def lowercase__ ( self : List[Any] ): """simple docstring""" lowercase_ :str = self._get_dataset() lowercase_ :Optional[Any] = set(DistributedSortishSampler(lowercase , 256 , num_replicas=2 , rank=0 , add_extra_examples=lowercase ) ) lowercase_ :Any = set(DistributedSortishSampler(lowercase , 256 , num_replicas=2 , rank=1 , add_extra_examples=lowercase ) ) assert idsa.intersection(lowercase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def lowercase__ ( self : str , lowercase : List[Any] ): """simple docstring""" lowercase_ :Optional[int] = AutoTokenizer.from_pretrained(lowercase , use_fast=lowercase ) if tok_name == MBART_TINY: lowercase_ :Dict = SeqaSeqDataset( lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) lowercase_ :str = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: lowercase_ :List[Any] = SeqaSeqDataset( lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) lowercase_ :Union[str, Any] = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(lowercase ) == 1 if tok_name == BART_TINY else len(lowercase ) == 0
369
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging lowerCAmelCase : Optional[int] =logging.get_logger(__name__) class a_ ( _lowerCAmelCase ): __A = ["input_features"] def __init__( self : Any , lowercase : Tuple=80 , lowercase : Optional[int]=16_000 , lowercase : Optional[Any]=160 , lowercase : Optional[int]=30 , lowercase : List[Any]=400 , lowercase : Dict=0.0 , lowercase : Tuple=False , **lowercase : Optional[int] , ): """simple docstring""" super().__init__( feature_size=lowercase , sampling_rate=lowercase , padding_value=lowercase , return_attention_mask=lowercase , **lowercase , ) lowercase_ :Optional[int] = n_fft lowercase_ :List[Any] = hop_length lowercase_ :Tuple = chunk_length lowercase_ :List[str] = chunk_length * sampling_rate lowercase_ :Optional[Any] = self.n_samples // hop_length lowercase_ :Any = sampling_rate lowercase_ :List[Any] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 , num_mel_filters=lowercase , min_frequency=0.0 , max_frequency=80_00.0 , sampling_rate=lowercase , norm="slaney" , mel_scale="slaney" , ) def lowercase__ ( self : str , lowercase : np.array ): """simple docstring""" lowercase_ :Any = spectrogram( lowercase , window_function(self.n_fft , "hann" ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel="log10" , ) lowercase_ :Any = log_spec[:, :-1] lowercase_ :List[Any] = np.maximum(lowercase , log_spec.max() - 8.0 ) lowercase_ :Dict = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowercase__ ( lowercase : List[np.ndarray] , lowercase : List[np.ndarray] , lowercase : float = 0.0 ): """simple docstring""" if attention_mask is not None: lowercase_ :Optional[int] = np.array(lowercase , np.intaa ) lowercase_ :Any = [] for vector, length in zip(lowercase , attention_mask.sum(-1 ) ): lowercase_ :Dict = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: lowercase_ :List[Any] = padding_value normed_input_values.append(lowercase ) else: lowercase_ :List[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def __call__( self : Tuple , lowercase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase : bool = True , lowercase : Optional[int] = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : Optional[bool] = None , lowercase : Optional[str] = "max_length" , lowercase : Optional[int] = None , lowercase : Optional[int] = None , lowercase : Optional[bool] = None , **lowercase : Union[str, Any] , ): """simple docstring""" if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a' F' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input' F' was sampled with {self.sampling_rate} and not {sampling_rate}.' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) lowercase_ :List[str] = isinstance(lowercase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'Only mono-channel audio is supported for input to {self}' ) lowercase_ :Optional[Any] = is_batched_numpy or ( isinstance(lowercase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowercase_ :Any = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(lowercase , np.ndarray ): lowercase_ :List[Any] = np.asarray(lowercase , dtype=np.floataa ) elif isinstance(lowercase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowercase_ :Union[str, Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowercase_ :Optional[int] = [np.asarray([raw_speech] ).T] lowercase_ :int = BatchFeature({"input_features": raw_speech} ) # convert into correct format for padding lowercase_ :Tuple = self.pad( lowercase , padding=lowercase , max_length=max_length if max_length else self.n_samples , truncation=lowercase , pad_to_multiple_of=lowercase , return_attention_mask=return_attention_mask or do_normalize , ) # zero-mean and unit-variance normalization if do_normalize: lowercase_ :Union[str, Any] = self.zero_mean_unit_var_norm( padded_inputs["input_features"] , attention_mask=padded_inputs["attention_mask"] , padding_value=self.padding_value , ) lowercase_ :List[Any] = np.stack(padded_inputs["input_features"] , axis=0 ) # make sure list is in array format lowercase_ :Union[str, Any] = padded_inputs.get("input_features" ).transpose(2 , 0 , 1 ) lowercase_ :List[str] = [self._np_extract_fbank_features(lowercase ) for waveform in input_features[0]] if isinstance(input_features[0] , lowercase ): lowercase_ :Tuple = [np.asarray(lowercase , dtype=np.floataa ) for feature in input_features] else: lowercase_ :Union[str, Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) lowercase_ :Dict = padded_inputs["attention_mask"][:, :: self.hop_length] if return_tensors is not None: lowercase_ :Tuple = padded_inputs.convert_to_tensors(lowercase ) return padded_inputs def lowercase__ ( self : List[str] ): """simple docstring""" lowercase_ :Union[str, Any] = copy.deepcopy(self.__dict__ ) lowercase_ :List[str] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
147
0
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore lowerCamelCase_ : Union[str, Any] = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" lowerCamelCase_ : Dict = [file for file in filepaths if file != file.lower()] if upper_files: print(F'{len(upper_files)} files contain uppercase characters:') print("""\n""".join(upper_files) + """\n""") lowerCamelCase_ : Any = [file for file in filepaths if """ """ in file] if space_files: print(F'{len(space_files)} files contain space characters:') print("""\n""".join(space_files) + """\n""") lowerCamelCase_ : Dict = [file for file in filepaths if """-""" in file] if hyphen_files: print(F'{len(hyphen_files)} files contain hyphen characters:') print("""\n""".join(hyphen_files) + """\n""") lowerCamelCase_ : Union[str, Any] = [file for file in filepaths if os.sep not in file] if nodir_files: print(F'{len(nodir_files)} files are not in a directory:') print("""\n""".join(nodir_files) + """\n""") lowerCamelCase_ : Optional[int] = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
81
"""simple docstring""" import copy from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : Any = { """microsoft/conditional-detr-resnet-50""": ( """https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json""" ), } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "conditional_detr" __lowerCAmelCase = ["past_key_values"] __lowerCAmelCase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __A=True , __A=None , __A=3 , __A=300 , __A=6 , __A=2048 , __A=8 , __A=6 , __A=2048 , __A=8 , __A=0.0 , __A=0.0 , __A=True , __A="relu" , __A=256 , __A=0.1 , __A=0.0 , __A=0.0 , __A=0.02 , __A=1.0 , __A=False , __A="sine" , __A="resnet50" , __A=True , __A=False , __A=2 , __A=5 , __A=2 , __A=1 , __A=1 , __A=2 , __A=5 , __A=2 , __A=0.25 , **__A , ) -> List[Any]: if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) a =CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(__A , __A ): a =backbone_config.get('''model_type''' ) a =CONFIG_MAPPING[backbone_model_type] a =config_class.from_dict(__A ) a =use_timm_backbone a =backbone_config a =num_channels a =num_queries a =d_model a =encoder_ffn_dim a =encoder_layers a =encoder_attention_heads a =decoder_ffn_dim a =decoder_layers a =decoder_attention_heads a =dropout a =attention_dropout a =activation_dropout a =activation_function a =init_std a =init_xavier_std a =encoder_layerdrop a =decoder_layerdrop a =encoder_layers a =auxiliary_loss a =position_embedding_type a =backbone a =use_pretrained_backbone a =dilation # Hungarian matcher a =class_cost a =bbox_cost a =giou_cost # Loss coefficients a =mask_loss_coefficient a =dice_loss_coefficient a =cls_loss_coefficient a =bbox_loss_coefficient a =giou_loss_coefficient a =focal_alpha super().__init__(is_encoder_decoder=__A , **__A ) @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self.encoder_attention_heads @property def SCREAMING_SNAKE_CASE ( self ) -> int: return self.d_model def SCREAMING_SNAKE_CASE ( self ) -> Tuple: a =copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: a =self.backbone_config.to_dict() a =self.__class__.model_type return output class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = version.parse("1.11" ) @property def SCREAMING_SNAKE_CASE ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def SCREAMING_SNAKE_CASE ( self ) -> float: return 1E-5 @property def SCREAMING_SNAKE_CASE ( self ) -> int: return 12
81
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A__ : def __init__( self : Optional[int] , _a : Any , ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =parent _SCREAMING_SNAKE_CASE =13 _SCREAMING_SNAKE_CASE =7 _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =False _SCREAMING_SNAKE_CASE =True _SCREAMING_SNAKE_CASE =99 _SCREAMING_SNAKE_CASE =32 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =37 _SCREAMING_SNAKE_CASE ='gelu' _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =0.1 _SCREAMING_SNAKE_CASE =512 _SCREAMING_SNAKE_CASE =16 _SCREAMING_SNAKE_CASE =2 _SCREAMING_SNAKE_CASE =0.02 _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =4 _SCREAMING_SNAKE_CASE =None def A ( self : List[str] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE =None if self.use_input_mask: _SCREAMING_SNAKE_CASE =random_attention_mask([self.batch_size, self.seq_length] ) _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None _SCREAMING_SNAKE_CASE =None if self.use_labels: _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] , self.num_choices ) _SCREAMING_SNAKE_CASE =DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Any , _a : int , _a : str , _a : List[str] , _a : Union[str, Any] , _a : List[str] , _a : Tuple ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFDistilBertModel(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} _SCREAMING_SNAKE_CASE =model(_a ) _SCREAMING_SNAKE_CASE =[input_ids, input_mask] _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[Any] , _a : int , _a : List[Any] , _a : Dict , _a : Tuple , _a : List[Any] , _a : Tuple ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFDistilBertForMaskedLM(config=_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : Dict , _a : List[str] , _a : Optional[int] , _a : List[str] , _a : int , _a : Tuple , _a : str ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFDistilBertForQuestionAnswering(config=_a ) _SCREAMING_SNAKE_CASE ={ 'input_ids': input_ids, 'attention_mask': input_mask, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : Union[str, Any] , _a : Optional[int] , _a : Optional[int] , _a : Optional[int] , _a : List[str] , _a : Optional[int] , _a : List[Any] ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFDistilBertForSequenceClassification(_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Optional[int] , _a : List[str] , _a : Dict , _a : str , _a : Dict , _a : Any , _a : int ) -> Optional[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_choices _SCREAMING_SNAKE_CASE =TFDistilBertForMultipleChoice(_a ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE =tf.tile(tf.expand_dims(_a , 1 ) , (1, self.num_choices, 1) ) _SCREAMING_SNAKE_CASE ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : str , _a : str , _a : Tuple , _a : Any , _a : Union[str, Any] , _a : str , _a : Tuple ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.num_labels _SCREAMING_SNAKE_CASE =TFDistilBertForTokenClassification(_a ) _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} _SCREAMING_SNAKE_CASE =model(_a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Dict ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() ((_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE) , (_SCREAMING_SNAKE_CASE)) =config_and_inputs _SCREAMING_SNAKE_CASE ={'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class A__ ( A__ , A__ , unittest.TestCase ): A__ = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) A__ = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) A__ = False A__ = False def A ( self : Union[str, Any] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFDistilBertModelTester(self ) _SCREAMING_SNAKE_CASE =ConfigTester(self , config_class=_a , dim=37 ) def A ( self : Optional[int] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def A ( self : Union[str, Any] ) -> str: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*_a ) def A ( self : int ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*_a ) def A ( self : int ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*_a ) def A ( self : int ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*_a ) def A ( self : Any ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*_a ) def A ( self : Tuple ) -> Any: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*_a ) @slow def A ( self : int ) -> str: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): _SCREAMING_SNAKE_CASE =TFDistilBertModel.from_pretrained(_a ) self.assertIsNotNone(_a ) @require_tf class A__ ( unittest.TestCase ): @slow def A ( self : List[Any] ) -> Dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) _SCREAMING_SNAKE_CASE =tf.constant([[0, 1, 2, 3, 4, 5]] ) _SCREAMING_SNAKE_CASE =model(_a )[0] _SCREAMING_SNAKE_CASE =[1, 6, 768] self.assertEqual(output.shape , _a ) _SCREAMING_SNAKE_CASE =tf.constant( [ [ [0.19_26_18_85, -0.13_73_29_55, 0.4_11_97_99], [0.22_15_01_56, -0.07_42_26_61, 0.39_03_72_04], [0.22_75_60_18, -0.0_89_64_14, 0.3_70_14_67], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _a , atol=1e-4 )
114
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase : List[str] = {"UserAgent": UserAgent().random} def _lowerCAmelCase ( _UpperCamelCase : str ) -> dict: """simple docstring""" _SCREAMING_SNAKE_CASE =script.contents[0] _SCREAMING_SNAKE_CASE =json.loads(data[data.find('{"config"' ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class A__ : def __init__( self : int , _a : List[Any] ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =f"https://www.instagram.com/{username}/" _SCREAMING_SNAKE_CASE =self.get_json() def A ( self : Optional[int] ) -> dict: '''simple docstring''' _SCREAMING_SNAKE_CASE =requests.get(self.url , headers=_a ).text _SCREAMING_SNAKE_CASE =BeautifulSoup(_a , 'html.parser' ).find_all('script' ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : str ) -> str: '''simple docstring''' return f"{self.__class__.__name__}('{self.username}')" def __str__( self : Optional[int] ) -> str: '''simple docstring''' return f"{self.fullname} ({self.username}) is {self.biography}" @property def A ( self : List[Any] ) -> str: '''simple docstring''' return self.user_data["username"] @property def A ( self : str ) -> str: '''simple docstring''' return self.user_data["full_name"] @property def A ( self : Any ) -> str: '''simple docstring''' return self.user_data["biography"] @property def A ( self : Optional[Any] ) -> str: '''simple docstring''' return self.user_data["business_email"] @property def A ( self : Tuple ) -> str: '''simple docstring''' return self.user_data["external_url"] @property def A ( self : Optional[int] ) -> int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def A ( self : Union[str, Any] ) -> int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def A ( self : List[str] ) -> int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def A ( self : Union[str, Any] ) -> str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def A ( self : Dict ) -> bool: '''simple docstring''' return self.user_data["is_verified"] @property def A ( self : Tuple ) -> bool: '''simple docstring''' return self.user_data["is_private"] def _lowerCAmelCase ( _UpperCamelCase : str = "github" ) -> None: """simple docstring""" import os if os.environ.get('CI' ): return # test failing on GitHub Actions _SCREAMING_SNAKE_CASE =InstagramUser(_UpperCamelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , _UpperCamelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 1_50 assert instagram_user.number_of_followers > 12_00_00 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith('https://instagram.' ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase : Optional[int] = InstagramUser("github") print(instagram_user) print(f'''{instagram_user.number_of_posts = }''') print(f'''{instagram_user.number_of_followers = }''') print(f'''{instagram_user.number_of_followings = }''') print(f'''{instagram_user.email = }''') print(f'''{instagram_user.website = }''') print(f'''{instagram_user.profile_picture_url = }''') print(f'''{instagram_user.is_verified = }''') print(f'''{instagram_user.is_private = }''')
114
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = BlipImageProcessor() __UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) __UpperCamelCase = BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCamelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(__UpperCAmelCase , return_tensors='np' ) __UpperCamelCase = processor(images=__UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = 'lower newer' __UpperCamelCase = processor(text=__UpperCAmelCase ) __UpperCamelCase = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = 'lower newer' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase = processor.batch_decode(__UpperCAmelCase ) __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = 'lower newer' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup _lowercase : List[Any] = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowerCamelCase ( UpperCAmelCase__ : str = "mumbai" ): lowercase_ : List[Any] = BeautifulSoup(requests.get(url + location ).content , """html.parser""" ) # This attribute finds out all the specifics listed in a job for job in soup.find_all("""div""" , attrs={"""data-tn-component""": """organicJob"""} ): lowercase_ : Optional[int] = job.find("""a""" , attrs={"""data-tn-element""": """jobTitle"""} ).text.strip() lowercase_ : Union[str, Any] = job.find("""span""" , {"""class""": """company"""} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs("Bangalore"), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
366
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm _lowercase : int = logging.get_logger(__name__) @dataclass class __magic_name__ ( _UpperCAmelCase): UpperCamelCase__ = [ '''no_inference''', '''no_cuda''', '''no_tpu''', '''no_speed''', '''no_memory''', '''no_env_print''', '''no_multi_process''', ] def __init__( self : Optional[Any] , **lowercase_ : int ): for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowercase_ : Optional[int] = deprecated_arg[3:] setattr(self , lowercase_ , not kwargs.pop(lowercase_ ) ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no_{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowercase_ : Tuple = kwargs.pop("""torchscript""" , self.torchscript ) lowercase_ : List[Any] = kwargs.pop("""torch_xla_tpu_print_metrics""" , self.torch_xla_tpu_print_metrics ) lowercase_ : List[Any] = kwargs.pop("""fp16_opt_level""" , self.fpaa_opt_level ) super().__init__(**lowercase_ ) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Trace the models using torchscript'''}) UpperCamelCase__ = field(default=_UpperCAmelCase, metadata={'''help''': '''Print Xla/PyTorch tpu metrics'''}) UpperCamelCase__ = field( default='''O1''', metadata={ '''help''': ( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\']. ''' '''See details at https://nvidia.github.io/apex/amp.html''' ) }, ) @cached_property def SCREAMING_SNAKE_CASE_ ( self : Tuple ): requires_backends(self , ["""torch"""] ) logger.info("""PyTorch: setting up devices""" ) if not self.cuda: lowercase_ : Optional[Any] = torch.device("""cpu""" ) lowercase_ : Tuple = 0 elif is_torch_tpu_available(): lowercase_ : Optional[int] = xm.xla_device() lowercase_ : str = 0 else: lowercase_ : int = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) lowercase_ : str = torch.cuda.device_count() return device, n_gpu @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return is_torch_tpu_available() and self.tpu @property def SCREAMING_SNAKE_CASE_ ( self : List[str] ): requires_backends(self , ["""torch"""] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): requires_backends(self , ["""torch"""] ) return self._setup_devices[0] @property def SCREAMING_SNAKE_CASE_ ( self : int ): requires_backends(self , ["""torch"""] ) return self._setup_devices[1] @property def SCREAMING_SNAKE_CASE_ ( self : int ): return self.n_gpu > 0
21
0
'''simple docstring''' import torch from torch import nn class lowerCamelCase_ (nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , A : Dict , A : Tuple , A : Optional[Any] , A : Tuple , A : Union[str, Any]=1 , A : str=False ): super().__init__() _UpperCAmelCase : Union[str, Any] = n_token _UpperCAmelCase : List[Any] = d_embed _UpperCAmelCase : List[str] = d_proj _UpperCAmelCase : Union[str, Any] = cutoffs + [n_token] _UpperCAmelCase : str = [0] + self.cutoffs _UpperCAmelCase : Dict = div_val _UpperCAmelCase : Tuple = self.cutoffs[0] _UpperCAmelCase : Tuple = len(self.cutoffs ) - 1 _UpperCAmelCase : Tuple = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase : Any = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase : Optional[int] = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase : str = nn.ModuleList() _UpperCAmelCase : Dict = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(A , A ) ) ) else: self.out_projs.append(A ) self.out_layers.append(nn.Linear(A , A ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Tuple = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(A , A ) ) ) self.out_layers.append(nn.Linear(A , r_idx - l_idx ) ) _UpperCAmelCase : Dict = keep_order def _A ( self : Optional[int] , A : Optional[int] , A : List[str] , A : Optional[Any] , A : List[str] ): if proj is None: _UpperCAmelCase : Optional[int] = nn.functional.linear(A , A , bias=A ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase : Optional[int] = nn.functional.linear(A , proj.t().contiguous() ) _UpperCAmelCase : str = nn.functional.linear(A , A , bias=A ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def _A ( self : Optional[int] , A : Tuple , A : Union[str, Any]=None , A : Any=False ): if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase : Union[str, Any] = hidden[..., :-1, :].contiguous() _UpperCAmelCase : str = labels[..., 1:].contiguous() _UpperCAmelCase : Any = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase : str = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: _UpperCAmelCase : Union[str, Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase : Any = self._compute_logit(A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase : Optional[int] = labels != -100 _UpperCAmelCase : List[str] = torch.zeros_like(A , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase : List[str] = ( -nn.functional.log_softmax(A , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase : str = nn.functional.log_softmax(A , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase : Dict = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Any = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase : Optional[int] = self.out_layers[i].weight _UpperCAmelCase : Dict = self.out_layers[i].bias if i == 0: _UpperCAmelCase : int = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase : Union[str, Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(A ) biases.append(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : List[str] = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase : Dict = self._compute_logit(A , A , A , A ) _UpperCAmelCase : List[str] = nn.functional.log_softmax(A , dim=1 ) if labels is None: _UpperCAmelCase : int = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase : int = torch.zeros_like(A , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase : Dict = 0 _UpperCAmelCase : Any = [0] + self.cutoffs for i in range(len(A ) - 1 ): _UpperCAmelCase , _UpperCAmelCase : str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase : List[Any] = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase : Any = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase : Union[str, Any] = labels.index_select(0 , A ) - l_idx _UpperCAmelCase : Any = head_logprob.index_select(0 , A ) _UpperCAmelCase : Dict = hidden.index_select(0 , A ) else: _UpperCAmelCase : List[Any] = hidden if i == 0: if labels is not None: _UpperCAmelCase : str = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase : Optional[Any] = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase : Optional[Any] = self._compute_logit(A , A , A , A ) _UpperCAmelCase : Optional[int] = nn.functional.log_softmax(A , dim=1 ) _UpperCAmelCase : Tuple = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase : Union[str, Any] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase : str = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase : Optional[Any] = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , A , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def _A ( self : Optional[int] , A : str ): if self.n_clusters == 0: _UpperCAmelCase : List[str] = self._compute_logit(A , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(A , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase : List[Any] = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase : Union[str, Any] = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase : List[Any] = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase : int = self.out_layers[i].weight _UpperCAmelCase : List[str] = self.out_layers[i].bias if i == 0: _UpperCAmelCase : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase : Any = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(A ) biases.append(A ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[int] = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase : Optional[Any] = self._compute_logit(A , A , A , A ) _UpperCAmelCase : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase : Any = nn.functional.log_softmax(A , dim=1 ) _UpperCAmelCase : Optional[Any] = [0] + self.cutoffs for i in range(len(A ) - 1 ): _UpperCAmelCase , _UpperCAmelCase : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase : str = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Tuple = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase : int = self._compute_logit(A , A , A , A ) _UpperCAmelCase : List[str] = nn.functional.log_softmax(A , dim=1 ) _UpperCAmelCase : Optional[Any] = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase : Any = logprob_i return out
31
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : Any ): _snake_case = tempfile.mkdtemp() # fmt: off _snake_case = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on _snake_case = dict(zip(_lowerCamelCase , range(len(_lowerCamelCase ) ) ) ) _snake_case = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] _snake_case = {'''unk_token''': '''<unk>'''} _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(_lowerCamelCase ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(_lowerCamelCase ) ) _snake_case = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _snake_case = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Tuple , **_lowerCamelCase : Any ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : str , **_lowerCamelCase : Any ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : int , **_lowerCamelCase : Optional[int] ): return CLIPImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def lowercase ( self : Any ): _snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _snake_case = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Optional[Any] ): _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = self.get_image_processor() _snake_case = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) _snake_case = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _snake_case = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) _snake_case = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def lowercase ( self : int ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = self.prepare_image_inputs() _snake_case = image_processor(_lowerCamelCase , return_tensors='''np''' ) _snake_case = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : Any ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = processor(text=_lowerCamelCase ) _snake_case = tokenizer(_lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Any ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def lowercase ( self : List[str] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case = processor.batch_decode(_lowerCamelCase ) _snake_case = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[Any] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = CLIPProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
288
0
'''simple docstring''' import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __snake_case : Union[str, Any] = logging.getLogger(__name__) def __lowerCamelCase ( __snake_case : torch.nn.Module, __snake_case : BnbQuantizationConfig, __snake_case : Union[str, os.PathLike] = None, __snake_case : Optional[Dict[str, Union[int, str, torch.device]]] = None, __snake_case : Optional[List[str]] = None, __snake_case : Optional[Dict[Union[int, str], Union[int, str]]] = None, __snake_case : Optional[Union[str, os.PathLike]] = None, __snake_case : bool = False, ) -> Optional[Any]: """simple docstring""" A__ : int =bnb_quantization_config.load_in_abit A__ : List[Any] =bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""" ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""" ) A__ : Optional[Any] =[] # custom device map if isinstance(A__, A__ ) and len(device_map.keys() ) > 1: A__ : str =[key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: A__ : Any =get_keys_to_not_convert(A__ ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(A__ ) A__ : str =bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: A__ : Any =[] A__ : Optional[Any] =bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(A__ ) # compatibility with peft A__ : List[str] =load_in_abit A__ : Tuple =load_in_abit A__ : Dict =get_parameter_device(A__ ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""" ) A__ : List[str] =replace_with_bnb_layers(A__, A__, modules_to_not_convert=A__ ) # convert param to the right dtype A__ : Optional[int] =bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: A__ : int =name.replace(""".weight""", """""" ).replace(""".bias""", """""" ) A__ : Optional[Any] =getattr(A__, A__, A__ ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(A__ ): param.to(A__ ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info( f"The model device type is {model_device.type}. However, cuda is needed for quantization." """We move the model to cuda.""" ) return model elif weights_location is None: raise RuntimeError( f"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): A__ : str =replace_with_bnb_layers( A__, A__, modules_to_not_convert=A__ ) A__ : List[str] =get_quantized_model_device_map( A__, A__, A__, max_memory=A__, no_split_module_classes=A__, ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): A__ : Any =True A__ : Union[str, Any] =any(x in list(device_map.values() ) for x in ["""cpu""", """disk"""] ) load_checkpoint_in_model( A__, A__, A__, dtype=bnb_quantization_config.torch_dtype, offload_folder=A__, offload_state_dict=A__, keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules, offload_abit_bnb=load_in_abit and offload, ) return dispatch_model(A__, device_map=A__, offload_dir=A__ ) def __lowerCamelCase ( __snake_case : Tuple, __snake_case : Any, __snake_case : Tuple=None, __snake_case : List[Any]=None, __snake_case : Any=None ) -> Tuple: """simple docstring""" if device_map is None: if torch.cuda.is_available(): A__ : Dict ={"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""" ) logger.info("""The device_map was not initialized.""" """Setting device_map to `{'':torch.cuda.current_device()}`.""" ) if isinstance(A__, A__ ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or """ """'sequential'.""" ) A__ : List[str] ={} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) A__ : Optional[int] ={} A__ : Optional[Any] =special_dtypes A__ : Any =no_split_module_classes A__ : Any =bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": A__ : Any =get_balanced_memory( A__, low_zero=(device_map == """balanced_low_0"""), max_memory=A__, **A__, ) A__ : List[str] =max_memory A__ : Optional[int] =infer_auto_device_map(A__, **A__ ) if isinstance(A__, A__ ): # check if don't have any quantized module on the cpu A__ : int =bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules A__ : List[Any] ={ key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """ Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. """ ) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""" ) del device_map_without_some_modules return device_map def __lowerCamelCase ( __snake_case : Dict, __snake_case : Optional[Any], __snake_case : Any=None, __snake_case : Any=None ) -> List[str]: """simple docstring""" if modules_to_not_convert is None: A__ : Optional[Any] =[] A__ : List[str] =_replace_with_bnb_layers( A__, A__, A__, A__ ) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""" ) return model def __lowerCamelCase ( __snake_case : Union[str, Any], __snake_case : List[str], __snake_case : Optional[Any]=None, __snake_case : Dict=None, ) -> Any: """simple docstring""" A__ : int =False for name, module in model.named_children(): if current_key_name is None: A__ : List[str] =[] current_key_name.append(A__ ) if isinstance(A__, nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` A__ : Tuple =""".""".join(A__ ) A__ : Any =True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: A__ : str =False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: A__ : Optional[Any] =bnb.nn.LinearabitLt( module.in_features, module.out_features, module.bias is not None, has_fpaa_weights=A__, threshold=bnb_quantization_config.llm_inta_threshold, ) elif bnb_quantization_config.load_in_abit: A__ : Dict =bnb.nn.Linearabit( module.in_features, module.out_features, module.bias is not None, bnb_quantization_config.bnb_abit_compute_dtype, compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant, quant_type=bnb_quantization_config.bnb_abit_quant_type, ) else: raise ValueError("""load_in_8bit and load_in_4bit can't be both False""" ) A__ : Dict =module.weight.data if module.bias is not None: A__ : Tuple =module.bias.data bnb_module.requires_grad_(A__ ) setattr(A__, A__, A__ ) A__ : Any =True if len(list(module.children() ) ) > 0: A__ : Optional[Any] =_replace_with_bnb_layers( A__, A__, A__, A__ ) A__ : Optional[Any] =has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def __lowerCamelCase ( __snake_case : List[str] ) -> Optional[Any]: """simple docstring""" with init_empty_weights(): A__ : Dict =deepcopy(A__ ) # this has 0 cost since it is done inside `init_empty_weights` context manager` A__ : Tuple =find_tied_parameters(A__ ) # For compatibility with Accelerate < 0.18 if isinstance(A__, A__ ): A__ : Union[str, Any] =sum(list(tied_params.values() ), [] ) + list(tied_params.keys() ) else: A__ : Union[str, Any] =sum(A__, [] ) A__ : Optional[Any] =len(A__ ) > 0 # Check if it is a base model A__ : List[Any] =False if hasattr(A__, """base_model_prefix""" ): A__ : Optional[Any] =not hasattr(A__, model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head A__ : str =list(model.named_children() ) A__ : List[str] =[list_modules[-1][0]] # add last module together with tied weights A__ : List[Any] =set(A__ ) - set(A__ ) A__ : List[str] =list(set(A__ ) ) + list(A__ ) # remove ".weight" from the keys A__ : Optional[Any] =[""".weight""", """.bias"""] A__ : Any =[] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: A__ : int =name.replace(A__, """""" ) filtered_module_names.append(A__ ) return filtered_module_names def __lowerCamelCase ( __snake_case : Optional[Any] ) -> str: """simple docstring""" for m in model.modules(): if isinstance(A__, bnb.nn.Linearabit ): return True return False def __lowerCamelCase ( __snake_case : nn.Module ) -> Union[str, Any]: """simple docstring""" return next(parameter.parameters() ).device def __lowerCamelCase ( __snake_case : List[Any], __snake_case : Optional[int], __snake_case : Union[str, Any], __snake_case : Dict, __snake_case : Union[str, Any], __snake_case : Optional[Any], __snake_case : Optional[int] ) -> int: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(A__, A__, 0, dtype=A__, value=A__ ) A__ : List[str] =param_name A__ : int =model if "." in tensor_name: A__ : Optional[int] =tensor_name.split(""".""" ) for split in splits[:-1]: A__ : str =getattr(A__, A__ ) if new_module is None: raise ValueError(f"{module} has no attribute {split}." ) A__ : int =new_module A__ : List[Any] =splits[-1] # offload weights A__ : Dict =False offload_weight(module._parameters[tensor_name], A__, A__, index=A__ ) if hasattr(module._parameters[tensor_name], """SCB""" ): offload_weight( module._parameters[tensor_name].SCB, param_name.replace("""weight""", """SCB""" ), A__, index=A__, ) else: offload_weight(A__, A__, A__, index=A__ ) offload_weight(A__, param_name.replace("""weight""", """SCB""" ), A__, index=A__ ) set_module_tensor_to_device(A__, A__, """meta""", dtype=A__, value=torch.empty(*param.size() ) )
351
'''simple docstring''' import math __snake_case : List[Any] = 10 __snake_case : Dict = 7 __snake_case : str = BALLS_PER_COLOUR * NUM_COLOURS def __lowerCamelCase ( __snake_case : int = 20 ) -> str: """simple docstring""" A__ : Union[str, Any] =math.comb(__snake_case, __snake_case ) A__ : str =math.comb(NUM_BALLS - BALLS_PER_COLOUR, __snake_case ) A__ : Optional[int] =NUM_COLOURS * (1 - missing_colour / total) return f"{result:.9f}" if __name__ == "__main__": print(solution(20))
136
0
'''simple docstring''' import numpy as np def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : np.ndarray ,_UpperCAmelCase : np.ndarray ,_UpperCAmelCase : float = 1e-12 ,_UpperCAmelCase : int = 100 ,) -> Dict: assert np.shape(lowerCAmelCase__ )[0] == np.shape(lowerCAmelCase__ )[1] # Ensure proper dimensionality. assert np.shape(lowerCAmelCase__ )[0] == np.shape(lowerCAmelCase__ )[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCAmelCase__ ) == np.iscomplexobj(lowerCAmelCase__ ) _a : Union[str, Any] =np.iscomplexobj(lowerCAmelCase__ ) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCAmelCase__ ,input_matrix.conj().T ) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. _a : List[str] =False _a : Any =0 _a : int =0 _a : Union[str, Any] =1e12 while not convergence: # Multiple matrix by the vector. _a : Tuple =np.dot(lowerCAmelCase__ ,lowerCAmelCase__ ) # Normalize the resulting output vector. _a : Dict =w / np.linalg.norm(lowerCAmelCase__ ) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) _a : int =vector.conj().T if is_complex else vector.T _a : int =np.dot(lowerCAmelCase__ ,np.dot(lowerCAmelCase__ ,lowerCAmelCase__ ) ) # Check convergence. _a : Tuple =np.abs(lambda_ - lambda_previous ) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: _a : Optional[Any] =True _a : List[str] =lambda_ if is_complex: _a : str =np.real(lambda_ ) return lambda_, vector def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: _a : Optional[int] =np.array([[41, 4, 20], [4, 26, 30], [20, 30, 50]] ) _a : Tuple =np.array([41, 4, 20] ) _a : Optional[int] =real_input_matrix.astype(np.complexaaa ) _a : Tuple =np.triu(1J * complex_input_matrix ,1 ) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T _a : str =np.array([41, 4, 20] ).astype(np.complexaaa ) for problem_type in ["real", "complex"]: if problem_type == "real": _a : List[Any] =real_input_matrix _a : List[Any] =real_vector elif problem_type == "complex": _a : Tuple =complex_input_matrix _a : Optional[Any] =complex_vector # Our implementation. _a : List[Any] =power_iteration(lowerCAmelCase__ ,lowerCAmelCase__ ) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). _a : List[Any] =np.linalg.eigh(lowerCAmelCase__ ) # Last eigenvalue is the maximum one. _a : List[Any] =eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. _a : Tuple =eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max ) <= 1e-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCAmelCase__ ) - np.abs(lowerCAmelCase__ ) ) <= 1e-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
276
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging a : Union[str, Any] = logging.get_logger(__name__) a : Optional[Any] = '▁' a : List[Any] = {'vocab_file': 'sentencepiece.bpe.model'} a : Optional[Any] = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } a : Any = { 'facebook/xglm-564M': 2_048, } class _a ( _lowerCAmelCase ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['''input_ids''', '''attention_mask'''] def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCAmelCase_: Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCAmelCase_: Optional[int] = 7 UpperCAmelCase_: Dict = [f'<madeupword{i}>' for i in range(self.num_madeup_words )] UpperCAmelCase_: List[Any] = kwargs.get("""additional_special_tokens""", [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCAmelCase_: Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: List[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_: Dict = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_: Any = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCAmelCase_: Union[str, Any] = len(self.sp_model ) UpperCAmelCase_: Optional[int] = {f'<madeupword{i}>': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__(self ) -> Any: UpperCAmelCase_: List[Any] = self.__dict__.copy() UpperCAmelCase_: List[Any] = None UpperCAmelCase_: Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__(self, SCREAMING_SNAKE_CASE_ ) -> Dict: UpperCAmelCase_: List[Any] = d # for backward compatibility if not hasattr(self, """sp_model_kwargs""" ): UpperCAmelCase_: int = {} UpperCAmelCase_: List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCAmelCase_: List[str] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCAmelCase_: str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def __snake_case (self ) -> Tuple: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: Tuple = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_: str = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> List[Any]: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __snake_case (self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: int = """""".join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, """ """ ).strip() return out_string def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase_: List[Any] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, """wb""" ) as fi: UpperCAmelCase_: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
147
0
from __future__ import annotations def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> int: '''simple docstring''' if len(UpperCamelCase_ ) <= 1 or n <= 1: return insert_next(UpperCamelCase_ , n - 1 ) rec_insertion_sort(UpperCamelCase_ , n - 1 ) def _lowercase ( UpperCamelCase_ , UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' if index >= len(UpperCamelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = ( collection[index], collection[index - 1], ) insert_next(UpperCamelCase_ , index + 1 ) if __name__ == "__main__": __snake_case = input("""Enter integers separated by spaces: """) __snake_case = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
169
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP __snake_case = False try: __snake_case = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowercase__ : def __init__( self : Optional[Any] , UpperCAmelCase_ : str = None , UpperCAmelCase_ : list = [] ): SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = choices SCREAMING_SNAKE_CASE__ = prompt if sys.platform == "win32": SCREAMING_SNAKE_CASE__ = '*' else: SCREAMING_SNAKE_CASE__ = '➔ ' def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCAmelCase_ ) else: forceWrite(self.choices[index] , UpperCAmelCase_ ) def A_ ( self : List[str] , UpperCAmelCase_ : int ): if index == self.position: forceWrite(F' {self.arrow_char} ' ) self.write_choice(UpperCAmelCase_ ) else: forceWrite(F' {self.choices[index]}' ) reset_cursor() def A_ ( self : List[Any] , UpperCAmelCase_ : Direction , UpperCAmelCase_ : int = 1 ): SCREAMING_SNAKE_CASE__ = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCAmelCase_ ) move_cursor(UpperCAmelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def A_ ( self : Optional[Any] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def A_ ( self : List[Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def A_ ( self : Dict ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def A_ ( self : Optional[Any] ): move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCAmelCase_ )] for number in range(10 )] ) def A_ ( self : Dict ): SCREAMING_SNAKE_CASE__ = int(chr(self.current_selection ) ) SCREAMING_SNAKE_CASE__ = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCAmelCase_ ) else: return else: return def A_ ( self : Optional[int] , UpperCAmelCase_ : int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) SCREAMING_SNAKE_CASE__ = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCAmelCase_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: SCREAMING_SNAKE_CASE__ = int(builtins.input() ) except ValueError: SCREAMING_SNAKE_CASE__ = default_choice else: SCREAMING_SNAKE_CASE__ = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(UpperCAmelCase_ , '\n' ) return choice
169
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : int = logging.get_logger(__name__) a : Optional[Any] = { "hustvl/yolos-small": "https://huggingface.co/hustvl/yolos-small/resolve/main/config.json", # See all YOLOS models at https://huggingface.co/models?filter=yolos } class a ( lowercase__ ): """simple docstring""" a : Dict = 'yolos' def __init__( self : int , __lowercase : Optional[Any]=768 , __lowercase : List[str]=12 , __lowercase : List[Any]=12 , __lowercase : Optional[Any]=3072 , __lowercase : Any="gelu" , __lowercase : List[Any]=0.0 , __lowercase : Tuple=0.0 , __lowercase : List[str]=0.02 , __lowercase : Any=1e-1_2 , __lowercase : Optional[Any]=[512, 864] , __lowercase : str=16 , __lowercase : Optional[Any]=3 , __lowercase : int=True , __lowercase : Optional[Any]=100 , __lowercase : str=True , __lowercase : str=False , __lowercase : Dict=1 , __lowercase : List[str]=5 , __lowercase : Dict=2 , __lowercase : Optional[Any]=5 , __lowercase : int=2 , __lowercase : List[Any]=0.1 , **__lowercase : Optional[int] , ) -> Union[str, Any]: super().__init__(**__lowercase ) __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : Union[str, Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : List[str] = hidden_act __UpperCAmelCase : List[Any] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Union[str, Any] = layer_norm_eps __UpperCAmelCase : Optional[Any] = image_size __UpperCAmelCase : Union[str, Any] = patch_size __UpperCAmelCase : List[Any] = num_channels __UpperCAmelCase : List[str] = qkv_bias __UpperCAmelCase : str = num_detection_tokens __UpperCAmelCase : int = use_mid_position_embeddings __UpperCAmelCase : Optional[Any] = auxiliary_loss # Hungarian matcher __UpperCAmelCase : Dict = class_cost __UpperCAmelCase : Any = bbox_cost __UpperCAmelCase : List[str] = giou_cost # Loss coefficients __UpperCAmelCase : Dict = bbox_loss_coefficient __UpperCAmelCase : List[str] = giou_loss_coefficient __UpperCAmelCase : Union[str, Any] = eos_coefficient class a ( lowercase__ ): """simple docstring""" a : Tuple = version.parse('1.11' ) @property def UpperCAmelCase ( self : Optional[int] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self : Optional[Any] ) -> float: return 1e-4 @property def UpperCAmelCase ( self : str ) -> int: return 12
114
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np a : Dict = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 a : Any = typing.Union[np.floataa, int, float] # noqa: UP007 def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return np.sqrt(np.sum((np.asarray(__lowerCamelCase ) - np.asarray(__lowerCamelCase )) ** 2 ) ) def lowerCamelCase__ ( __lowerCamelCase : Vector , __lowerCamelCase : Vector ): return sum((va - va) ** 2 for va, va in zip(__lowerCamelCase , __lowerCamelCase ) ) ** (1 / 2) if __name__ == "__main__": def lowerCamelCase__ ( ): from timeit import timeit print("""Without Numpy""" ) print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) print("""With Numpy""" ) print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10000 , globals=globals() , ) ) benchmark()
114
1
"""simple docstring""" import warnings from .state import AcceleratorState, GradientState warnings.filterwarnings("ignore", category=UserWarning, module="torch.optim.lr_scheduler") class __lowerCAmelCase : '''simple docstring''' def __init__( self , _a , _a , _a = True , _a = False ): __a = scheduler __a = optimizers if isinstance(_a , (list, tuple) ) else [optimizers] __a = split_batches __a = step_with_optimizer __a = GradientState() def __UpperCAmelCase ( self , *_a , **_a ): if not self.step_with_optimizer: # No link between scheduler and optimizer -> just step self.scheduler.step(*_a , **_a ) return # Otherwise, first make sure the optimizer was stepped. if not self.gradient_state.sync_gradients: if self.gradient_state.adjust_scheduler: self.scheduler._step_count += 1 return for opt in self.optimizers: if opt.step_was_skipped: return if self.split_batches: # Split batches -> the training dataloader batch size is not changed so one step per training step self.scheduler.step(*_a , **_a ) else: # Otherwise the training dataloader batch size was multiplied by `num_processes`, so we need to do # num_processes steps per training step __a = AcceleratorState().num_processes for _ in range(_a ): # Special case when using OneCycle and `drop_last` was not used if hasattr(self.scheduler , '''total_steps''' ): if self.scheduler._step_count <= self.scheduler.total_steps: self.scheduler.step(*_a , **_a ) else: self.scheduler.step(*_a , **_a ) def __UpperCAmelCase ( self ): return self.scheduler.get_last_lr() def __UpperCAmelCase ( self ): return self.scheduler.state_dict() def __UpperCAmelCase ( self , _a ): self.scheduler.load_state_dict(_a ) def __UpperCAmelCase ( self ): return self.scheduler.get_lr() def __UpperCAmelCase ( self , *_a , **_a ): return self.scheduler.print_lr(*_a , **_a )
354
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self , **_a ): super().__init__(**_a ) if self.framework != "pt": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) # No specific FOR_XXX available yet def __call__( self , _a , **_a ): return super().__call__(_a , **_a ) def __UpperCAmelCase ( self , **_a ): __a = {} if "candidate_labels" in kwargs: __a = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: __a = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def __UpperCAmelCase ( self , _a , _a=None , _a="This is a sound of {}." ): if isinstance(_a , _a ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png __a = requests.get(_a ).content else: with open(_a , '''rb''' ) as f: __a = f.read() if isinstance(_a , _a ): __a = ffmpeg_read(_a , self.feature_extractor.sampling_rate ) if not isinstance(_a , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) __a = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) __a = candidate_labels __a = [hypothesis_template.format(_a ) for x in candidate_labels] __a = self.tokenizer(_a , return_tensors=self.framework , padding=_a ) __a = [text_inputs] return inputs def __UpperCAmelCase ( self , _a ): __a = model_inputs.pop('''candidate_labels''' ) __a = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , _a ): __a = text_inputs[0] else: # Batching case. __a = text_inputs[0][0] __a = self.model(**_a , **_a ) __a = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def __UpperCAmelCase ( self , _a ): __a = model_outputs.pop('''candidate_labels''' ) __a = model_outputs['''logits'''][0] if self.framework == "pt": __a = logits.softmax(dim=0 ) __a = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) __a = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(_a , _a ) , key=lambda _a : -x[0] ) ] return result
11
0
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Tuple , __magic_name__ : List[Any] ) -> str: """simple docstring""" UpperCamelCase :int = set() UpperCamelCase :Optional[Any] = [] def parse_line(__magic_name__ : Any ): for line in fp: if isinstance(__magic_name__ , __magic_name__ ): UpperCamelCase :Tuple = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(__magic_name__ ) > 0: UpperCamelCase :List[Any] = """\n""".join(__magic_name__ ) # Only keep the warnings specified in `targets` if any(f""": {x}: """ in warning for x in targets ): selected_warnings.add(__magic_name__ ) buffer.clear() continue else: UpperCamelCase :Any = line.strip() buffer.append(__magic_name__ ) if from_gh: for filename in os.listdir(__magic_name__ ): UpperCamelCase :Tuple = os.path.join(__magic_name__ , __magic_name__ ) if not os.path.isdir(__magic_name__ ): # read the file if filename != "warnings.txt": continue with open(__magic_name__ ) as fp: parse_line(__magic_name__ ) else: try: with zipfile.ZipFile(__magic_name__ ) as z: for filename in z.namelist(): if not os.path.isdir(__magic_name__ ): # read the file if filename != "warnings.txt": continue with z.open(__magic_name__ ) as fp: parse_line(__magic_name__ ) except Exception: logger.warning( f"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : List[str] ) -> Dict: """simple docstring""" UpperCamelCase :Optional[int] = set() UpperCamelCase :Optional[int] = [os.path.join(__magic_name__ , __magic_name__ ) for p in os.listdir(__magic_name__ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__magic_name__ , __magic_name__ ) ) return selected_warnings if __name__ == "__main__": def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Optional[Any] ) -> Tuple: """simple docstring""" return values.split(""",""" ) UpperCAmelCase_ : str = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) UpperCAmelCase_ : Optional[int] = parser.parse_args() UpperCAmelCase_ : List[str] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase_ : List[str] = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase_ : Any = extract_warnings(args.output_dir, args.targets) UpperCAmelCase_ : str = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
38
from __future__ import annotations from math import ceil, floor, sqrt def UpperCamelCase_( lowerCamelCase_ = 200_0000 ) -> int: _lowercase : list[int] = [0] _lowercase : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _lowercase : int = 0 # the area corresponding to the grid that gives the product closest to target _lowercase : int = 0 # an estimate of b, using the quadratic formula _lowercase : float # the largest integer less than b_estimate _lowercase : int # the largest integer less than b_estimate _lowercase : int # the triangle number corresponding to b_floor _lowercase : int # the triangle number corresponding to b_ceil _lowercase : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _lowercase : Optional[int] = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _lowercase : List[str] = floor(lowerCamelCase_ ) _lowercase : Dict = ceil(lowerCamelCase_ ) _lowercase : List[str] = triangle_numbers[b_floor] _lowercase : List[str] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _lowercase : Union[str, Any] = triangle_b_first_guess * triangle_a _lowercase : Union[str, Any] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _lowercase : Any = triangle_b_second_guess * triangle_a _lowercase : Optional[Any] = idx_a * b_ceil return area if __name__ == "__main__": print(F"{solution() = }")
21
0
"""simple docstring""" import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def _lowerCamelCase ( _UpperCamelCase = 3 ): '''simple docstring''' if isinstance(_UpperCamelCase , _UpperCamelCase ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(_UpperCamelCase ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 10: raise ValueError("number of qubits too large to simulate(>10)." ) __lowerCAmelCase = QuantumRegister(_UpperCamelCase , "qr" ) __lowerCAmelCase = ClassicalRegister(_UpperCamelCase , "cr" ) __lowerCAmelCase = QuantumCircuit(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = number_of_qubits for i in range(_UpperCamelCase ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(_UpperCamelCase ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , _UpperCamelCase , _UpperCamelCase ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(_UpperCamelCase , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(_UpperCamelCase , _UpperCamelCase ) # simulate with 10000 shots __lowerCAmelCase = Aer.get_backend("qasm_simulator" ) __lowerCAmelCase = execute(_UpperCamelCase , _UpperCamelCase , shots=1_0000 ) return job.result().get_counts(_UpperCamelCase ) if __name__ == "__main__": print( f'''Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}''' )
353
"""simple docstring""" import math from ...configuration_utils import PretrainedConfig from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Tuple = { "facebook/data2vec-base-960h": "https://huggingface.co/facebook/data2vec-audio-base-960h/resolve/main/config.json", # See all Data2VecAudio models at https://huggingface.co/models?filter=data2vec-audio } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : str ="""data2vec-audio""" def __init__( self , __a=32 , __a=7_68 , __a=12 , __a=12 , __a=30_72 , __a="gelu" , __a=0.1 , __a=0.1 , __a=0.1 , __a=0.0 , __a=0.1 , __a=0.1 , __a=0.0_2 , __a=1e-5 , __a="gelu" , __a=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , __a=(5, 2, 2, 2, 2, 2, 2) , __a=(10, 3, 3, 3, 3, 2, 2) , __a=False , __a=16 , __a=19 , __a=5 , __a=0.0_5 , __a=10 , __a=2 , __a=0.0 , __a=10 , __a=0 , __a="sum" , __a=False , __a=False , __a=2_56 , __a=(5_12, 5_12, 5_12, 5_12, 15_00) , __a=(5, 3, 3, 1, 1) , __a=(1, 2, 3, 1, 1) , __a=5_12 , __a=0 , __a=1 , __a=2 , __a=False , __a=3 , __a=2 , __a=3 , __a=None , **__a , ): super().__init__(**__a , pad_token_id=__a , bos_token_id=__a , eos_token_id=__a ) __lowerCAmelCase = hidden_size __lowerCAmelCase = feat_extract_activation __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = conv_bias __lowerCAmelCase = num_conv_pos_embeddings __lowerCAmelCase = num_conv_pos_embedding_groups __lowerCAmelCase = conv_pos_kernel_size __lowerCAmelCase = len(self.conv_dim ) __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = feat_proj_dropout __lowerCAmelCase = final_dropout __lowerCAmelCase = layerdrop __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = initializer_range __lowerCAmelCase = vocab_size __lowerCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`," f" `len(config.conv_kernel) = {len(self.conv_kernel )}`." ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __lowerCAmelCase = mask_time_prob __lowerCAmelCase = mask_time_length __lowerCAmelCase = mask_time_min_masks __lowerCAmelCase = mask_feature_prob __lowerCAmelCase = mask_feature_length __lowerCAmelCase = mask_feature_min_masks # ctc loss __lowerCAmelCase = ctc_loss_reduction __lowerCAmelCase = ctc_zero_infinity # adapter __lowerCAmelCase = add_adapter __lowerCAmelCase = adapter_kernel_size __lowerCAmelCase = adapter_stride __lowerCAmelCase = num_adapter_layers __lowerCAmelCase = output_hidden_size or hidden_size # SequenceClassification-specific parameter. Feel free to ignore for other classes. __lowerCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = list(__a ) __lowerCAmelCase = xvector_output_dim @property def snake_case ( self ): return math.prod(self.conv_stride )
259
0
"""simple docstring""" def __lowerCAmelCase (_UpperCamelCase = 1000 ): __lowerCAmelCase , __lowerCAmelCase : Optional[int] = 1, 1 __lowerCAmelCase : int = 2 while True: __lowerCAmelCase : Optional[int] = 0 __lowerCAmelCase : List[str] = fa + fa __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = fa, f index += 1 for _ in str(_UpperCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
86
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets UpperCAmelCase : Tuple = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" UpperCAmelCase : Optional[int] = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" UpperCAmelCase : List[str] = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Dict: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): lowercase_ = new_id # turn into Numpy arrays lowercase_ = np.array(__lowerCAmelCase ) lowercase_ = np.array(__lowerCAmelCase ) if reduce_labels: lowercase_ = 2_55 lowercase_ = label - 1 lowercase_ = 2_55 lowercase_ = label != ignore_index lowercase_ = np.not_equal(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = pred_label[mask] lowercase_ = np.array(__lowerCAmelCase )[mask] lowercase_ = pred_label[pred_label == label] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = np.histogram(__lowerCAmelCase , bins=__lowerCAmelCase , range=(0, num_labels - 1) )[0] lowercase_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Optional[Any]: '''simple docstring''' lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) lowercase_ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(__lowerCAmelCase , __lowerCAmelCase ): lowercase_ , lowercase_ , lowercase_ , lowercase_ = intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Any: '''simple docstring''' lowercase_ , lowercase_ , lowercase_ , lowercase_ = total_intersect_and_union( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # compute metrics lowercase_ = {} lowercase_ = total_area_intersect.sum() / total_area_label.sum() lowercase_ = total_area_intersect / total_area_union lowercase_ = total_area_intersect / total_area_label lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = np.nanmean(__lowerCAmelCase ) lowercase_ = all_acc lowercase_ = iou lowercase_ = acc if nan_to_num is not None: lowercase_ = {metric: np.nan_to_num(__lowerCAmelCase , nan=__lowerCAmelCase ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16"""))), }) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def _UpperCAmelCase ( self : Tuple , lowerCAmelCase_ : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int , lowerCAmelCase_ : bool , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Dict[int, int]] = None , lowerCAmelCase_ : bool = False , ): """simple docstring""" lowercase_ = mean_iou( results=lowerCAmelCase_ , gt_seg_maps=lowerCAmelCase_ , num_labels=lowerCAmelCase_ , ignore_index=lowerCAmelCase_ , nan_to_num=lowerCAmelCase_ , label_map=lowerCAmelCase_ , reduce_labels=lowerCAmelCase_ , ) return iou_result
136
0
'''simple docstring''' import unittest import numpy as np from transformers import RoFormerConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roformer.modeling_flax_roformer import ( FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, ) class _snake_case ( unittest.TestCase ): def __init__( self , _lowerCamelCase , _lowerCamelCase=13 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=99 , _lowerCamelCase=32 , _lowerCamelCase=5 , _lowerCamelCase=4 , _lowerCamelCase=37 , _lowerCamelCase="gelu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=512 , _lowerCamelCase=16 , _lowerCamelCase=2 , _lowerCamelCase=0.02 , _lowerCamelCase=4 , ): UpperCAmelCase__ : Union[str, Any] = parent UpperCAmelCase__ : str = batch_size UpperCAmelCase__ : Tuple = seq_length UpperCAmelCase__ : Any = is_training UpperCAmelCase__ : Tuple = use_attention_mask UpperCAmelCase__ : Optional[Any] = use_token_type_ids UpperCAmelCase__ : Optional[Any] = use_labels UpperCAmelCase__ : str = vocab_size UpperCAmelCase__ : Dict = hidden_size UpperCAmelCase__ : int = num_hidden_layers UpperCAmelCase__ : Optional[int] = num_attention_heads UpperCAmelCase__ : Optional[int] = intermediate_size UpperCAmelCase__ : Tuple = hidden_act UpperCAmelCase__ : Optional[Any] = hidden_dropout_prob UpperCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob UpperCAmelCase__ : List[Any] = max_position_embeddings UpperCAmelCase__ : Optional[int] = type_vocab_size UpperCAmelCase__ : str = type_sequence_label_size UpperCAmelCase__ : Optional[int] = initializer_range UpperCAmelCase__ : str = num_choices def snake_case__ ( self): UpperCAmelCase__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) UpperCAmelCase__ : Union[str, Any] = None if self.use_attention_mask: UpperCAmelCase__ : Tuple = random_attention_mask([self.batch_size, self.seq_length]) UpperCAmelCase__ : Dict = None if self.use_token_type_ids: UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) UpperCAmelCase__ : Optional[Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def snake_case__ ( self): UpperCAmelCase__ : List[Any] = self.prepare_config_and_inputs() UpperCAmelCase__ : Optional[Any] = config_and_inputs UpperCAmelCase__ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :Optional[int] = True lowerCAmelCase :Any = ( ( FlaxRoFormerModel, FlaxRoFormerForMaskedLM, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, ) if is_flax_available() else () ) def snake_case__ ( self): UpperCAmelCase__ : List[str] = FlaxRoFormerModelTester(self) @slow def snake_case__ ( self): for model_class_name in self.all_model_classes: UpperCAmelCase__ : List[str] = model_class_name.from_pretrained("""junnyu/roformer_chinese_small""" , from_pt=_lowerCamelCase) UpperCAmelCase__ : Dict = model(np.ones((1, 1))) self.assertIsNotNone(_lowerCamelCase) @require_flax class _snake_case ( unittest.TestCase ): @slow def snake_case__ ( self): UpperCAmelCase__ : Any = FlaxRoFormerForMaskedLM.from_pretrained("""junnyu/roformer_chinese_base""") UpperCAmelCase__ : int = jnp.array([[0, 1, 2, 3, 4, 5]]) UpperCAmelCase__ : Optional[int] = model(_lowerCamelCase)[0] UpperCAmelCase__ : Union[str, Any] = 5_0000 UpperCAmelCase__ : Any = (1, 6, vocab_size) self.assertEqual(output.shape , _lowerCamelCase) UpperCAmelCase__ : Union[str, Any] = jnp.array( [[[-0.1205, -1.0265, 0.2922], [-1.5134, 0.1974, 0.1519], [-5.0135, -3.9003, -0.8404]]]) self.assertTrue(jnp.allclose(output[:, :3, :3] , _lowerCamelCase , atol=1e-4))
369
'''simple docstring''' import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __A , __A , __A =False, False, False @dataclass class _snake_case : lowerCAmelCase :Optional[int] = None lowerCAmelCase :bool = True lowerCAmelCase :bool = True lowerCAmelCase :Optional[str] = None # Automatically constructed lowerCAmelCase :ClassVar[str] = "dict" lowerCAmelCase :ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()} ) lowerCAmelCase :str = field(default='''Audio''' , init=a__ , repr=a__ ) def __call__( self): return self.pa_type def snake_case__ ( self , _lowerCamelCase): try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError("""To support encoding audio data, please install 'soundfile'.""") from err if isinstance(_lowerCamelCase , _lowerCamelCase): return {"bytes": None, "path": value} elif isinstance(_lowerCamelCase , _lowerCamelCase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes UpperCAmelCase__ : Optional[int] = BytesIO() sf.write(_lowerCamelCase , value["""array"""] , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} elif value.get("""path""") is not None and os.path.isfile(value["""path"""]): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith("""pcm"""): # "PCM" only has raw audio bytes if value.get("""sampling_rate""") is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError("""To use PCM files, please specify a 'sampling_rate' in Audio object""") if value.get("""bytes"""): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) UpperCAmelCase__ : Tuple = np.frombuffer(value["""bytes"""] , dtype=np.intaa).astype(np.floataa) / 3_2767 else: UpperCAmelCase__ : List[str] = np.memmap(value["""path"""] , dtype="""h""" , mode="""r""").astype(np.floataa) / 3_2767 UpperCAmelCase__ : List[str] = BytesIO(bytes()) sf.write(_lowerCamelCase , _lowerCamelCase , value["""sampling_rate"""] , format="""wav""") return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get("""path""")} elif value.get("""bytes""") is not None or value.get("""path""") is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get("""bytes"""), "path": value.get("""path""")} else: raise ValueError( f'''An audio sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.''') def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = None): if not self.decode: raise RuntimeError("""Decoding is disabled for this feature. Please use Audio(decode=True) instead.""") UpperCAmelCase__ , UpperCAmelCase__ : Tuple = (value["""path"""], BytesIO(value["""bytes"""])) if value["""bytes"""] is not None else (value["""path"""], None) if path is None and file is None: raise ValueError(f'''An audio sample should have one of \'path\' or \'bytes\' but both are None in {value}.''') try: import librosa import soundfile as sf except ImportError as err: raise ImportError("""To support decoding audio files, please install 'librosa' and 'soundfile'.""") from err UpperCAmelCase__ : Dict = xsplitext(_lowerCamelCase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( """Decoding 'opus' files requires system library 'libsndfile'>=1.0.31, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( """Decoding 'mp3' files requires system library 'libsndfile'>=1.1.0, """ """You can try to update `soundfile` python library: `pip install \"soundfile>=0.12.1\"`. """) if file is None: UpperCAmelCase__ : int = token_per_repo_id or {} UpperCAmelCase__ : Optional[int] = path.split("""::""")[-1] try: UpperCAmelCase__ : Dict = string_to_dict(_lowerCamelCase , config.HUB_DATASETS_URL)["""repo_id"""] UpperCAmelCase__ : Dict = token_per_repo_id[repo_id] except (ValueError, KeyError): UpperCAmelCase__ : List[Any] = None with xopen(_lowerCamelCase , """rb""" , use_auth_token=_lowerCamelCase) as f: UpperCAmelCase__ , UpperCAmelCase__ : List[str] = sf.read(_lowerCamelCase) else: UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = sf.read(_lowerCamelCase) UpperCAmelCase__ : str = array.T if self.mono: UpperCAmelCase__ : List[Any] = librosa.to_mono(_lowerCamelCase) if self.sampling_rate and self.sampling_rate != sampling_rate: UpperCAmelCase__ : int = librosa.resample(_lowerCamelCase , orig_sr=_lowerCamelCase , target_sr=self.sampling_rate) UpperCAmelCase__ : Tuple = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def snake_case__ ( self): from .features import Value if self.decode: raise ValueError("""Cannot flatten a decoded Audio feature.""") return { "bytes": Value("""binary"""), "path": Value("""string"""), } def snake_case__ ( self , _lowerCamelCase): if pa.types.is_string(storage.type): UpperCAmelCase__ : Dict = pa.array([None] * len(_lowerCamelCase) , type=pa.binary()) UpperCAmelCase__ : Tuple = pa.StructArray.from_arrays([bytes_array, storage] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): UpperCAmelCase__ : Optional[int] = pa.array([None] * len(_lowerCamelCase) , type=pa.string()) UpperCAmelCase__ : str = pa.StructArray.from_arrays([storage, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices("""array"""): UpperCAmelCase__ : Optional[Any] = pa.array([Audio().encode_example(_lowerCamelCase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index("""bytes""") >= 0: UpperCAmelCase__ : int = storage.field("""bytes""") else: UpperCAmelCase__ : List[str] = pa.array([None] * len(_lowerCamelCase) , type=pa.binary()) if storage.type.get_field_index("""path""") >= 0: UpperCAmelCase__ : List[Any] = storage.field("""path""") else: UpperCAmelCase__ : Optional[int] = pa.array([None] * len(_lowerCamelCase) , type=pa.string()) UpperCAmelCase__ : Optional[int] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=storage.is_null()) return array_cast(_lowerCamelCase , self.pa_type) def snake_case__ ( self , _lowerCamelCase): @no_op_if_value_is_null def path_to_bytes(_lowerCamelCase): with xopen(_lowerCamelCase , """rb""") as f: UpperCAmelCase__ : int = f.read() return bytes_ UpperCAmelCase__ : Optional[Any] = pa.array( [ (path_to_bytes(x["""path"""]) if x["""bytes"""] is None else x["""bytes"""]) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCAmelCase__ : Optional[Any] = pa.array( [os.path.basename(_lowerCamelCase) if path is not None else None for path in storage.field("""path""").to_pylist()] , type=pa.string() , ) UpperCAmelCase__ : List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ["""bytes""", """path"""] , mask=bytes_array.is_null()) return array_cast(_lowerCamelCase , self.pa_type)
283
0
def lowerCAmelCase ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): """simple docstring""" if index == r: for j in range(_lowerCAmelCase ): print(data[j] , end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase__ = arr[i] combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , index + 1 , _lowerCAmelCase , i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : Tuple ): """simple docstring""" UpperCAmelCase__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , 0 , _lowerCAmelCase , 0 ) if __name__ == "__main__": # Driver code to check the function above _lowerCAmelCase : List[str] = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
169
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import torch from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available @dataclass class _UpperCamelCase ( lowerCAmelCase ): UpperCAmelCase_ = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_text_to_video_synth import TextToVideoSDPipeline from .pipeline_text_to_video_synth_imgaimg import VideoToVideoSDPipeline # noqa: F401 from .pipeline_text_to_video_zero import TextToVideoZeroPipeline
169
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: UpperCamelCase = None UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = '▁' UpperCamelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} UpperCamelCase = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } UpperCamelCase = { 'google/pegasus-xsum': 512, } class __lowerCamelCase ( UpperCamelCase__ ): """simple docstring""" snake_case__ = VOCAB_FILES_NAMES snake_case__ = PRETRAINED_VOCAB_FILES_MAP snake_case__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ = PegasusTokenizer snake_case__ = ["input_ids", "attention_mask"] def __init__( self : Any , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Any="<pad>" , SCREAMING_SNAKE_CASE__ : Any="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : Union[str, Any]="<mask_2>" , SCREAMING_SNAKE_CASE__ : int="<mask_1>" , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : str=103 , **SCREAMING_SNAKE_CASE__ : Tuple , ) -> str: lowerCAmelCase__ = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError( f'additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE__ )}, but is' f' {type(SCREAMING_SNAKE_CASE__ )}' ) lowerCAmelCase__ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f'<unk_{i}>' for i in range(len(SCREAMING_SNAKE_CASE__ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE__ ) ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f' shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.' ) lowerCAmelCase__ = additional_special_tokens_extended else: lowerCAmelCase__ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f'<unk_{i}>' for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , mask_token_sent=SCREAMING_SNAKE_CASE__ , offset=SCREAMING_SNAKE_CASE__ , additional_special_tokens=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowerCAmelCase__ = vocab_file lowerCAmelCase__ = False if not self.vocab_file else True def a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase__ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f' {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}' ) return [1 if x in all_special_ids else 0 for x in seq] def a ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List , SCREAMING_SNAKE_CASE__ : Optional[List] = None , SCREAMING_SNAKE_CASE__ : bool = False ) -> List[int]: if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE__ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE__ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[int]=None ) -> List[int]: if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def a ( self : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCAmelCase__ = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
221
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class __lowerCamelCase : """simple docstring""" def __init__( self : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Optional[Any]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : List[str]=32 , SCREAMING_SNAKE_CASE__ : Tuple=2 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=37 , SCREAMING_SNAKE_CASE__ : List[Any]="gelu" , SCREAMING_SNAKE_CASE__ : int=0.1 , SCREAMING_SNAKE_CASE__ : Dict=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=512 , SCREAMING_SNAKE_CASE__ : List[Any]=16 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[int]=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : str=0 , ) -> List[Any]: lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = projection_dim def a ( self : Any ) -> Any: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , ) lowerCAmelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: lowerCAmelCase__ = TFDPRContextEncoder(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: lowerCAmelCase__ = TFDPRQuestionEncoder(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , token_type_ids=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: lowerCAmelCase__ = TFDPRReader(config=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def a ( self : Optional[int] ) -> Union[str, Any]: lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"input_ids": input_ids} return config, inputs_dict @require_tf class __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) snake_case__ = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def a ( self : Dict ) -> int: lowerCAmelCase__ = TFDPRModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def a ( self : List[Any] ) -> List[Any]: self.config_tester.run_common_tests() def a ( self : Tuple ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*SCREAMING_SNAKE_CASE__ ) def a ( self : List[Any] ) -> Dict: lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*SCREAMING_SNAKE_CASE__ ) @slow def a ( self : List[str] ) -> Union[str, Any]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRReader.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) @require_tf class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" @slow def a ( self : Optional[Any] ) -> List[str]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base" ) lowerCAmelCase__ = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase__ = model(SCREAMING_SNAKE_CASE__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase__ = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
221
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Optional[int] = logging.get_logger(__name__) A : int = { "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase : Any ="""xlm""" __UpperCAmelCase : int ={ """hidden_size""": """emb_dim""", """num_attention_heads""": """n_heads""", """num_hidden_layers""": """n_layers""", """n_words""": """vocab_size""", # For backward compatibility } def __init__( self , __a=3_01_45 , __a=20_48 , __a=12 , __a=16 , __a=0.1 , __a=0.1 , __a=True , __a=False , __a=False , __a=False , __a=1 , __a=True , __a=5_12 , __a=20_48**-0.5 , __a=1e-1_2 , __a=0.0_2 , __a=0 , __a=1 , __a=2 , __a=3 , __a=5 , __a=True , __a="first" , __a=True , __a=None , __a=True , __a=0.1 , __a=5 , __a=5 , __a=0 , __a=0 , __a=2 , __a=0 , **__a , ): __lowerCAmelCase = vocab_size __lowerCAmelCase = emb_dim __lowerCAmelCase = n_layers __lowerCAmelCase = n_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = gelu_activation __lowerCAmelCase = sinusoidal_embeddings __lowerCAmelCase = causal __lowerCAmelCase = asm __lowerCAmelCase = n_langs __lowerCAmelCase = use_lang_emb __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = bos_index __lowerCAmelCase = eos_index __lowerCAmelCase = pad_index __lowerCAmelCase = unk_index __lowerCAmelCase = mask_index __lowerCAmelCase = is_encoder __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = embed_init_std __lowerCAmelCase = init_std __lowerCAmelCase = summary_type __lowerCAmelCase = summary_use_proj __lowerCAmelCase = summary_activation __lowerCAmelCase = summary_proj_to_labels __lowerCAmelCase = summary_first_dropout __lowerCAmelCase = start_n_top __lowerCAmelCase = end_n_top __lowerCAmelCase = mask_token_id __lowerCAmelCase = lang_id if "n_words" in kwargs: __lowerCAmelCase = kwargs["n_words"] super().__init__(pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , **__lowerCamelCase ) class _UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' @property def snake_case ( self ): if self.task == "multiple-choice": __lowerCAmelCase = {0: "batch", 1: "choice", 2: "sequence"} else: __lowerCAmelCase = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
57
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowerCAmelCase__ ( unittest.TestCase): '''simple docstring''' def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: for model_result in results.values(): for batch_size, sequence_length in zip(model_result["bs"] , model_result["ss"]): _A : Optional[int] = model_result["result"][batch_size][sequence_length] self.assertIsNotNone(__lowerCamelCase) def _lowerCamelCase ( self) -> int: _A : Optional[int] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase) _A : Optional[Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Dict: _A : int = "sgugger/tiny-distilbert-classification" _A : str = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , only_pretrain_model=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Optional[Any]: _A : Tuple = "sshleifer/tiny-gpt2" _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , torchscript=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase) _A : List[str] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision") def _lowerCamelCase ( self) -> int: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , fpaa=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Any = PyTorchBenchmark(__lowerCamelCase) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> Any: _A : Union[str, Any] = "sshleifer/tiny-gpt2" _A : Any = AutoConfig.from_pretrained(__lowerCamelCase) # set architectures equal to `None` _A : Dict = None _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Union[str, Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : List[Any] = "sshleifer/tiny-gpt2" _A : int = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase) _A : int = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) @unittest.skipIf(torch_device == "cpu" , "Can't do half precision") def _lowerCamelCase ( self) -> Optional[Any]: _A : Any = "sshleifer/tiny-gpt2" _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , fpaa=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : List[Any] = PyTorchBenchmark(__lowerCamelCase) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> str: _A : List[str] = "sshleifer/tiny-gpt2" _A : Union[str, Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Any = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Optional[Any] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Tuple = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> int: _A : Tuple = "sshleifer/tinier_bart" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[int] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Dict = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Optional[int] = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result) self.check_results_dict_not_empty(results.memory_inference_result) def _lowerCamelCase ( self) -> str: _A : List[Any] = "sshleifer/tiny-gpt2" _A : Optional[Any] = AutoConfig.from_pretrained(__lowerCamelCase) _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : List[str] = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Dict = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> int: _A : int = "sshleifer/tinier_bart" _A : str = AutoConfig.from_pretrained(__lowerCamelCase) _A : Tuple = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase , configs=[config]) _A : Union[str, Any] = benchmark.run() self.check_results_dict_not_empty(results.time_train_result) self.check_results_dict_not_empty(results.memory_train_result) def _lowerCamelCase ( self) -> Dict: _A : List[str] = "sshleifer/tiny-gpt2" with tempfile.TemporaryDirectory() as tmp_dir: _A : Optional[Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , save_to_csv=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(__lowerCamelCase , "inf_time.csv") , train_memory_csv_file=os.path.join(__lowerCamelCase , "train_mem.csv") , inference_memory_csv_file=os.path.join(__lowerCamelCase , "inf_mem.csv") , train_time_csv_file=os.path.join(__lowerCamelCase , "train_time.csv") , env_info_csv_file=os.path.join(__lowerCamelCase , "env.csv") , multi_process=__lowerCamelCase , ) _A : Tuple = PyTorchBenchmark(__lowerCamelCase) benchmark.run() self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_time.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "inf_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "train_mem.csv")).exists()) self.assertTrue(Path(os.path.join(__lowerCamelCase , "env.csv")).exists()) def _lowerCamelCase ( self) -> int: _A : Dict = "sshleifer/tiny-gpt2" def _check_summary_is_not_empty(__lowerCamelCase): self.assertTrue(hasattr(__lowerCamelCase , "sequential")) self.assertTrue(hasattr(__lowerCamelCase , "cumulative")) self.assertTrue(hasattr(__lowerCamelCase , "current")) self.assertTrue(hasattr(__lowerCamelCase , "total")) with tempfile.TemporaryDirectory() as tmp_dir: _A : Union[str, Any] = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=__lowerCamelCase , inference=__lowerCamelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(__lowerCamelCase , "log.txt") , log_print=__lowerCamelCase , trace_memory_line_by_line=__lowerCamelCase , multi_process=__lowerCamelCase , ) _A : Optional[int] = PyTorchBenchmark(__lowerCamelCase) _A : Dict = benchmark.run() _check_summary_is_not_empty(result.inference_summary) _check_summary_is_not_empty(result.train_summary) self.assertTrue(Path(os.path.join(__lowerCamelCase , "log.txt")).exists())
11
0
"""simple docstring""" import math import random def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Optional[int] = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __A : Dict = 0.02 def lowercase ( _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' _UpperCAmelCase = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(A_ ): # Forward propagation _UpperCAmelCase = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? _UpperCAmelCase = (expected / 100) - layer_a # Error delta _UpperCAmelCase = layer_1_error * sigmoid_function(A_ , A_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() __A : Optional[Any] = int(input("Expected value: ")) __A : Optional[Any] = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
358
"""simple docstring""" import argparse from copy import deepcopy import numpy as np from datasets import ClassLabel, DatasetDict, load_dataset from evaluate import load from transformers import ( AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, Trainer, TrainerCallback, TrainingArguments, set_seed, ) def lowercase ( ): '''simple docstring''' _UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_ckpt''' , type=_SCREAMING_SNAKE_CASE , default='''microsoft/unixcoder-base-nine''' ) parser.add_argument('''--num_epochs''' , type=_SCREAMING_SNAKE_CASE , default=5 ) parser.add_argument('''--batch_size''' , type=_SCREAMING_SNAKE_CASE , default=6 ) parser.add_argument('''--gradient_accumulation_steps''' , type=_SCREAMING_SNAKE_CASE , default=1 ) parser.add_argument('''--freeze''' , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE ) parser.add_argument('''--learning_rate''' , type=_SCREAMING_SNAKE_CASE , default=5E-4 ) parser.add_argument('''--seed''' , type=_SCREAMING_SNAKE_CASE , default=0 ) parser.add_argument('''--lr_scheduler_type''' , type=_SCREAMING_SNAKE_CASE , default='''cosine''' ) parser.add_argument('''--num_warmup_steps''' , type=_SCREAMING_SNAKE_CASE , default=10 ) parser.add_argument('''--weight_decay''' , type=_SCREAMING_SNAKE_CASE , default=0.01 ) parser.add_argument('''--output_dir''' , type=_SCREAMING_SNAKE_CASE , default='''./results''' ) return parser.parse_args() __A : Union[str, Any] = load("accuracy") def lowercase ( _SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase = eval_pred _UpperCAmelCase = np.argmax(_SCREAMING_SNAKE_CASE , axis=1 ) return metric.compute(predictions=_SCREAMING_SNAKE_CASE , references=_SCREAMING_SNAKE_CASE ) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : str , __UpperCamelCase : Union[str, Any] )->None: super().__init__() _UpperCAmelCase = trainer def lowercase__ ( self : str , __UpperCamelCase : str , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] , **__UpperCamelCase : List[str] )->Any: if control.should_evaluate: _UpperCAmelCase = deepcopy(__UpperCamelCase ) self._trainer.evaluate(eval_dataset=self._trainer.train_dataset , metric_key_prefix='''train''' ) return control_copy def lowercase ( ): '''simple docstring''' _UpperCAmelCase = get_args() set_seed(args.seed ) _UpperCAmelCase = load_dataset('''codeparrot/codecomplex''' , split='''train''' ) _UpperCAmelCase = dataset.train_test_split(test_size=0.2 ) _UpperCAmelCase = train_test['''test'''].train_test_split(test_size=0.5 ) _UpperCAmelCase = DatasetDict( { '''train''': train_test['''train'''], '''test''': test_validation['''train'''], '''valid''': test_validation['''test'''], } ) print('''Loading tokenizer and model''' ) _UpperCAmelCase = AutoTokenizer.from_pretrained(args.model_ckpt ) _UpperCAmelCase = tokenizer.eos_token _UpperCAmelCase = AutoModelForSequenceClassification.from_pretrained(args.model_ckpt , num_labels=7 ) _UpperCAmelCase = model.config.eos_token_id if args.freeze: for param in model.roberta.parameters(): _UpperCAmelCase = False _UpperCAmelCase = ClassLabel(num_classes=7 , names=list(set(train_test_validation['''train''']['''complexity'''] ) ) ) def tokenize(_SCREAMING_SNAKE_CASE : Any ): _UpperCAmelCase = tokenizer(example['''src'''] , truncation=_SCREAMING_SNAKE_CASE , max_length=1024 ) _UpperCAmelCase = labels.straint(example['''complexity'''] ) return { "input_ids": inputs["input_ids"], "attention_mask": inputs["attention_mask"], "label": label, } _UpperCAmelCase = train_test_validation.map( _SCREAMING_SNAKE_CASE , batched=_SCREAMING_SNAKE_CASE , remove_columns=train_test_validation['''train'''].column_names , ) _UpperCAmelCase = DataCollatorWithPadding(tokenizer=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = TrainingArguments( output_dir=args.output_dir , learning_rate=args.learning_rate , lr_scheduler_type=args.lr_scheduler_type , evaluation_strategy='''epoch''' , save_strategy='''epoch''' , logging_strategy='''epoch''' , per_device_train_batch_size=args.batch_size , per_device_eval_batch_size=args.batch_size , num_train_epochs=args.num_epochs , gradient_accumulation_steps=args.gradient_accumulation_steps , weight_decay=0.01 , metric_for_best_model='''accuracy''' , run_name='''complexity-java''' , report_to='''wandb''' , ) _UpperCAmelCase = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=tokenized_datasets['''train'''] , eval_dataset=tokenized_datasets['''valid'''] , tokenizer=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , ) print('''Training...''' ) trainer.add_callback(CustomCallback(_SCREAMING_SNAKE_CASE ) ) trainer.train() if __name__ == "__main__": main()
326
0
'''simple docstring''' import requests lowerCAmelCase: Optional[Any] = 'https://newsapi.org/v1/articles?source=bbc-news&sortBy=top&apiKey=' def lowerCamelCase__ ( _A ): # fetching a list of articles in json format a : Tuple = requests.get(_NEWS_API + bbc_news_api_key ).json() # each article in the list is a dict for i, article in enumerate(bbc_news_page['articles'] , 1 ): print(f"""{i}.) {article["title"]}""" ) if __name__ == "__main__": fetch_bbc_news(bbc_news_api_key='<Your BBC News API key goes here>')
297
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase_ : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=2 , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=16 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=32 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[0, 1, 2, 3] , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=37 , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=[1, 384, 24, 24] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=None , ) -> int: UpperCamelCase :List[Any] = parent UpperCamelCase :List[str] = batch_size UpperCamelCase :Optional[Any] = image_size UpperCamelCase :Optional[Any] = patch_size UpperCamelCase :Optional[Any] = num_channels UpperCamelCase :Union[str, Any] = is_training UpperCamelCase :Dict = use_labels UpperCamelCase :List[Any] = hidden_size UpperCamelCase :Optional[int] = num_hidden_layers UpperCamelCase :Any = backbone_out_indices UpperCamelCase :int = num_attention_heads UpperCamelCase :Union[str, Any] = intermediate_size UpperCamelCase :List[str] = hidden_act UpperCamelCase :Optional[int] = hidden_dropout_prob UpperCamelCase :int = attention_probs_dropout_prob UpperCamelCase :Optional[Any] = initializer_range UpperCamelCase :List[Any] = num_labels UpperCamelCase :Any = backbone_featmap_shape UpperCamelCase :Optional[int] = scope UpperCamelCase :Optional[int] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) UpperCamelCase :Tuple = (image_size // patch_size) ** 2 UpperCamelCase :int = num_patches + 1 def UpperCAmelCase ( self ) -> str: UpperCamelCase :Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase :int = None if self.use_labels: UpperCamelCase :str = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase :Any = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :Tuple = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=SCREAMING_SNAKE_CASE_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCamelCase :Optional[int] = DPTModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: UpperCamelCase :Tuple = self.num_labels UpperCamelCase :Any = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Tuple: UpperCamelCase :int = self.num_labels UpperCamelCase :str = DPTForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCamelCase :List[str] = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def UpperCAmelCase ( self ) -> Dict: UpperCamelCase :List[Any] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = config_and_inputs UpperCamelCase :List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( lowercase, lowercase, unittest.TestCase ): """simple docstring""" UpperCamelCase_ : Tuple =(DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () UpperCamelCase_ : Optional[Any] =( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : List[Any] =False UpperCamelCase_ : Optional[int] =False UpperCamelCase_ : Union[str, Any] =False def UpperCAmelCase ( self ) -> int: UpperCamelCase :Optional[Any] = DPTModelTester(self ) UpperCamelCase :List[Any] = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def UpperCAmelCase ( self ) -> Union[str, Any]: self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Optional[int]: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) UpperCamelCase :Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def UpperCAmelCase ( self ) -> int: UpperCamelCase , UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase :Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase :Tuple = [*signature.parameters.keys()] UpperCamelCase :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Optional[Any]: UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Tuple: UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Any: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :int = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ): continue UpperCamelCase :Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCamelCase :Union[str, Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Dict = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Optional[int]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue UpperCamelCase , UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Union[str, Any] = False UpperCamelCase :Dict = True if model_class in get_values(SCREAMING_SNAKE_CASE_ ) or not model_class.supports_gradient_checkpointing: continue UpperCamelCase :Tuple = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.train() UpperCamelCase :List[Any] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def UpperCAmelCase ( self ) -> Dict: UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Dict = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: UpperCamelCase :Tuple = model_class(config=SCREAMING_SNAKE_CASE_ ) # Skip the check for the backbone UpperCamelCase :List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": UpperCamelCase :Tuple = [F'''{name}.{key}''' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def UpperCAmelCase ( self ) -> Tuple: pass @slow def UpperCAmelCase ( self ) -> Any: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: UpperCamelCase :int = DPTModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type UpperCamelCase , UpperCamelCase :int = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase :Optional[Any] = '''add''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): UpperCamelCase :int = DPTForDepthEstimation(SCREAMING_SNAKE_CASE_ ) def _A ( ): UpperCamelCase :List[Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> str: UpperCamelCase :Any = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) UpperCamelCase :int = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = prepare_img() UpperCamelCase :Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): UpperCamelCase :Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = outputs.predicted_depth # verify the predicted depth UpperCamelCase :List[str] = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :str = torch.tensor( [[[5.6437, 5.6146, 5.6511], [5.4371, 5.5649, 5.5958], [5.5215, 5.5184, 5.5293]]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
259
0
"""simple docstring""" __UpperCamelCase : int = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
350
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE (_UpperCAmelCase : str , _UpperCAmelCase : list[str] | None = None ): lowerCAmelCase = word_bank or [] # create a table lowerCAmelCase = len(_UpperCAmelCase ) + 1 lowerCAmelCase = [] for _ in range(_UpperCAmelCase ): table.append([] ) # seed value lowerCAmelCase = [[]] # because empty string has empty combination # iterate through the indices for i in range(_UpperCAmelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(_UpperCAmelCase )] == word: lowerCAmelCase = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(_UpperCAmelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(_UpperCAmelCase )]: combination.reverse() return table[len(_UpperCAmelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
309
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: torch.manual_seed(0 ) A = UNetaDModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=3 ,out_channels=3 ,down_block_types=('DownBlock2D', 'AttnDownBlock2D') ,up_block_types=('AttnUpBlock2D', 'UpBlock2D') ,) return model def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: A = self.dummy_uncond_unet A = ScoreSdeVeScheduler() A = ScoreSdeVePipeline(unet=__A ,scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) A = torch.manual_seed(0 ) A = sde_ve(num_inference_steps=2 ,output_type='numpy' ,generator=__A ).images A = torch.manual_seed(0 ) A = sde_ve(num_inference_steps=2 ,output_type='numpy' ,generator=__A ,return_dict=__A )[ 0 ] A = image[0, -3:, -3:, -1] A = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) A = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[int]: A = "google/ncsnpp-church-256" A = UNetaDModel.from_pretrained(__A ) A = ScoreSdeVeScheduler.from_pretrained(__A ) A = ScoreSdeVePipeline(unet=__A ,scheduler=__A ) sde_ve.to(__A ) sde_ve.set_progress_bar_config(disable=__A ) A = torch.manual_seed(0 ) A = sde_ve(num_inference_steps=10 ,output_type='numpy' ,generator=__A ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) A = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
74
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.whisper import WhisperForConditionalGeneration, WhisperProcessor from .base import PipelineTool class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' __A : Dict = "openai/whisper-base" __A : str = ( "This is a tool that transcribes an audio into text. It takes an input named `audio` and returns the " "transcribed text." ) __A : Any = "transcriber" __A : Any = WhisperProcessor __A : int = WhisperForConditionalGeneration __A : Any = ["audio"] __A : List[str] = ["text"] def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor(__A , return_tensors="pt" ).input_features def _snake_case ( self , __A ): """simple docstring""" return self.model.generate(inputs=__A ) def _snake_case ( self , __A ): """simple docstring""" return self.pre_processor.batch_decode(__A , skip_special_tokens=__A )[0]
283
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": _UpperCamelCase = pd.read_csv('''sample_data.csv''', header=None) _UpperCamelCase = df.shape[:1][0] # If you're using some other dataset input the target column _UpperCamelCase = df.iloc[:, 1:2] _UpperCamelCase = actual_data.values.reshape(len_data, 1) _UpperCamelCase = MinMaxScaler().fit_transform(actual_data) _UpperCamelCase = 10 _UpperCamelCase = 5 _UpperCamelCase = 20 _UpperCamelCase = len_data - periods * look_back _UpperCamelCase = actual_data[:division] _UpperCamelCase = actual_data[division - look_back :] _UpperCamelCase = [], [] _UpperCamelCase = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) _UpperCamelCase = np.array(train_x) _UpperCamelCase = np.array(test_x) _UpperCamelCase = np.array([list(i.ravel()) for i in train_y]) _UpperCamelCase = np.array([list(i.ravel()) for i in test_y]) _UpperCamelCase = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss='''mean_squared_error''', optimizer='''adam''') _UpperCamelCase = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) _UpperCamelCase = model.predict(x_test)
370
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) _UpperCamelCase = { '''configuration_owlvit''': [ '''OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''OwlViTConfig''', '''OwlViTOnnxConfig''', '''OwlViTTextConfig''', '''OwlViTVisionConfig''', ], '''processing_owlvit''': ['''OwlViTProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ['''OwlViTFeatureExtractor'''] _UpperCamelCase = ['''OwlViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ '''OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''OwlViTModel''', '''OwlViTPreTrainedModel''', '''OwlViTTextModel''', '''OwlViTVisionModel''', '''OwlViTForObjectDetection''', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
16
0
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" for param in module.parameters(): A__ = False def UpperCAmelCase ( ): """simple docstring""" A__ = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): A__ = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def UpperCAmelCase ( UpperCamelCase__ ): """simple docstring""" A__ = plt.imshow(UpperCamelCase__ ) fig.axes.get_xaxis().set_visible(UpperCamelCase__ ) fig.axes.get_yaxis().set_visible(UpperCamelCase__ ) plt.show() def UpperCAmelCase ( ): """simple docstring""" A__ = datetime.now() A__ = current_time.strftime('%H:%M:%S' ) return timestamp
221
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class UpperCamelCase__: def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase=13 ,__UpperCAmelCase=7 ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=True ,__UpperCAmelCase=99 ,__UpperCAmelCase=32 ,__UpperCAmelCase=2 ,__UpperCAmelCase=4 ,__UpperCAmelCase=37 ,__UpperCAmelCase="gelu" ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=0.1 ,__UpperCAmelCase=5_12 ,__UpperCAmelCase=16 ,__UpperCAmelCase=2 ,__UpperCAmelCase=0.0_2 ,__UpperCAmelCase=3 ,__UpperCAmelCase=4 ,__UpperCAmelCase=None ,__UpperCAmelCase=0 ,) -> Dict: A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = projection_dim def snake_case__ ( self ) -> Optional[Any]: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) A__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) A__ = ids_tensor([self.batch_size] ,self.num_choices ) A__ = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__UpperCAmelCase ,initializer_range=self.initializer_range ,) A__ = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: A__ = TFDPRContextEncoder(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Union[str, Any]: A__ = TFDPRQuestionEncoder(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,token_type_ids=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: A__ = TFDPRReader(config=__UpperCAmelCase ) A__ = model(__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def snake_case__ ( self ) -> int: A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids} return config, inputs_dict @require_tf class UpperCamelCase__( __A , __A , unittest.TestCase ): lowerCAmelCase__ : Optional[int] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCAmelCase__ : List[str] = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : int = False lowerCAmelCase__ : str = False def snake_case__ ( self ) -> str: A__ = TFDPRModelTester(self ) A__ = ConfigTester(self ,config_class=__UpperCAmelCase ,hidden_size=37 ) def snake_case__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def snake_case__ ( self ) -> int: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__UpperCAmelCase ) def snake_case__ ( self ) -> Optional[Any]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__UpperCAmelCase ) def snake_case__ ( self ) -> List[str]: A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__UpperCAmelCase ) @slow def snake_case__ ( self ) -> int: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRQuestionEncoder.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRReader.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class UpperCamelCase__( unittest.TestCase ): @slow def snake_case__ ( self ) -> Optional[Any]: A__ = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) A__ = tf.constant( [[1_01, 75_92, 10_10, 20_03, 20_26, 38_99, 1_01_40, 10_29, 1_02]] ) # [CLS] hello, is my dog cute? [SEP] A__ = model(__UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A__ = tf.constant( [ [ 0.0_3_2_3_6_2_5_3, 0.1_2_7_5_3_3_3_5, 0.1_6_8_1_8_5_0_9, 0.0_0_2_7_9_7_8_6, 0.3_8_9_6_9_3_3, 0.2_4_2_6_4_9_4_5, 0.2_1_7_8_9_7_1, -0.0_2_3_3_5_2_2_7, -0.0_8_4_8_1_9_5_9, -0.1_4_3_2_4_1_1_7, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
221
1
from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCAmelCase : Dict = True except (ImportError, AttributeError): UpperCAmelCase : Any = object def __lowerCamelCase ( *lowerCamelCase__ : Union[str, Any] , **lowerCamelCase__ : str ): '''simple docstring''' pass UpperCAmelCase : Optional[int] = False UpperCAmelCase : int = logging.get_logger("transformers-cli/serving") def __lowerCamelCase ( lowerCamelCase__ : Namespace ): '''simple docstring''' lowerCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(lowerCamelCase__ , args.host , args.port , args.workers ) class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : dict class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : List[str] UpperCamelCase : Optional[List[int]] class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : str class __lowercase ( a_ ): """simple docstring""" UpperCamelCase : Any class __lowercase ( a_ ): """simple docstring""" @staticmethod def __A ( A ) -> List[str]: '''simple docstring''' lowerCamelCase = parser.add_parser( """serve""" , help="""CLI tool to run inference requests through REST and GraphQL endpoints.""" ) serve_parser.add_argument( """--task""" , type=A , choices=get_supported_tasks() , help="""The task to run the pipeline on""" , ) serve_parser.add_argument("""--host""" , type=A , default="""localhost""" , help="""Interface the server will listen on.""" ) serve_parser.add_argument("""--port""" , type=A , default=88_88 , help="""Port the serving will listen to.""" ) serve_parser.add_argument("""--workers""" , type=A , default=1 , help="""Number of http workers""" ) serve_parser.add_argument("""--model""" , type=A , help="""Model's name or path to stored model.""" ) serve_parser.add_argument("""--config""" , type=A , help="""Model's config name or path to stored model.""" ) serve_parser.add_argument("""--tokenizer""" , type=A , help="""Tokenizer name to use.""" ) serve_parser.add_argument( """--device""" , type=A , default=-1 , help="""Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)""" , ) serve_parser.set_defaults(func=A ) def __init__( self , A , A , A , A ) -> Tuple: '''simple docstring''' lowerCamelCase = pipeline lowerCamelCase = host lowerCamelCase = port lowerCamelCase = workers if not _serve_dependencies_installed: raise RuntimeError( """Using serve command requires FastAPI and uvicorn. """ """Please install transformers with [serving]: pip install \"transformers[serving]\".""" """Or install FastAPI and uvicorn separately.""" ) else: logger.info(F'Serving model over {host}:{port}' ) lowerCamelCase = FastAPI( routes=[ APIRoute( """/""" , self.model_info , response_model=A , response_class=A , methods=["""GET"""] , ), APIRoute( """/tokenize""" , self.tokenize , response_model=A , response_class=A , methods=["""POST"""] , ), APIRoute( """/detokenize""" , self.detokenize , response_model=A , response_class=A , methods=["""POST"""] , ), APIRoute( """/forward""" , self.forward , response_model=A , response_class=A , methods=["""POST"""] , ), ] , timeout=6_00 , ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def __A ( self ) -> Optional[Any]: '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def __A ( self , A = Body(A , embed=A ) , A = Body(A , embed=A ) ) -> Dict: '''simple docstring''' try: lowerCamelCase = self._pipeline.tokenizer.tokenize(A ) if return_ids: lowerCamelCase = self._pipeline.tokenizer.convert_tokens_to_ids(A ) return ServeTokenizeResult(tokens=A , tokens_ids=A ) else: return ServeTokenizeResult(tokens=A ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(A )} ) def __A ( self , A = Body(A , embed=A ) , A = Body(A , embed=A ) , A = Body(A , embed=A ) , ) -> Optional[int]: '''simple docstring''' try: lowerCamelCase = self._pipeline.tokenizer.decode(A , A , A ) return ServeDeTokenizeResult(model="""""" , text=A ) except Exception as e: raise HTTPException(status_code=5_00 , detail={"""model""": """""", """error""": str(A )} ) async def __A ( self , A=Body(A , embed=A ) ) -> str: '''simple docstring''' if len(A ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model lowerCamelCase = self._pipeline(A ) return ServeForwardResult(output=A ) except Exception as e: raise HTTPException(5_00 , {"""error""": str(A )} )
353
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) UpperCAmelCase : int = {"vocab_file": "spiece.model"} UpperCAmelCase : Optional[int] = { "vocab_file": { "TsinghuaAI/CPM-Generate": "https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model", } } class __lowercase ( a_ ): """simple docstring""" def __init__( self , A , A=False , A=True , A=False , A="<s>" , A="</s>" , A="<unk>" , A="<sep>" , A="<pad>" , A="<cls>" , A="<mask>" , A=["<eop>", "<eod>"] , A = None , **A , ) -> None: '''simple docstring''' lowerCamelCase = AddedToken(A , lstrip=A , rstrip=A ) if isinstance(A , A ) else mask_token lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , additional_special_tokens=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase = 3 lowerCamelCase = do_lower_case lowerCamelCase = remove_space lowerCamelCase = keep_accents lowerCamelCase = vocab_file lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( """You need to install jieba to use CpmTokenizer or CpmTokenizerFast. """ """See https://pypi.org/project/jieba/ for installation.""" ) lowerCamelCase = jieba lowerCamelCase = str.maketrans(""" \n""" , """\u2582\u2583""" ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __A ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.__dict__.copy() lowerCamelCase = None return state def __setstate__( self , A ) -> int: '''simple docstring''' lowerCamelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowerCamelCase = {} lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , A ) -> Any: '''simple docstring''' if self.remove_space: lowerCamelCase = """ """.join(inputs.strip().split() ) else: lowerCamelCase = inputs lowerCamelCase = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: lowerCamelCase = unicodedata.normalize("""NFKD""" , A ) lowerCamelCase = """""".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: lowerCamelCase = outputs.lower() return outputs def __A ( self , A ) -> List[str]: '''simple docstring''' lowerCamelCase = self.preprocess_text(A ) lowerCamelCase = self.sp_model.encode(A , out_type=A ) lowerCamelCase = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): lowerCamelCase = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase = cur_pieces[1:] else: lowerCamelCase = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def __A ( self , A ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.PieceToId(A ) def __A ( self , A ) -> int: '''simple docstring''' return self.sp_model.IdToPiece(A ) def __A ( self , A ) -> Optional[int]: '''simple docstring''' lowerCamelCase = """""".join(A ).replace(A , """ """ ).strip() return out_string def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __A ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return ([0] * len(A )) + [1] + ([0] * len(A )) + [1, 1] return ([0] * len(A )) + [1, 1] def __A ( self , A , A = None ) -> List[int]: '''simple docstring''' lowerCamelCase = [self.sep_token_id] lowerCamelCase = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __A ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: lowerCamelCase = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,) def __A ( self , *A , **A ) -> int: '''simple docstring''' lowerCamelCase = super()._decode(*A , **A ) lowerCamelCase = text.replace(""" """ , """""" ).replace("""\u2582""" , """ """ ).replace("""\u2583""" , """\n""" ) return text
66
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPanoramaPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() @skip_mps class lowerCAmelCase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase: Tuple = StableDiffusionPanoramaPipeline _lowerCamelCase: int = TEXT_TO_IMAGE_PARAMS _lowerCamelCase: List[str] = TEXT_TO_IMAGE_BATCH_PARAMS _lowerCamelCase: Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowerCamelCase: List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=1 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') ,up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') ,cross_attention_dim=32 ,) A = DDIMScheduler() torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] ,up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] ,latent_channels=4 ,) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1e-05 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1000 ,) A = CLIPTextModel(A_ ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any] ,A_ : List[Any]=0 ) -> List[str]: A = torch.manual_seed(A_ ) A = { 'prompt': 'a photo of the dolomites', 'generator': generator, # Setting height and width to None to prevent OOMs on CPU. 'height': None, 'width': None, 'num_inference_steps': 1, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.61_86, 0.53_74, 0.49_15, 0.41_35, 0.41_14, 0.45_63, 0.51_28, 0.49_77, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Any ) -> Dict: super().test_inference_batch_consistent(batch_sizes=[1, 2] ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: super().test_inference_batch_single_identical(batch_size=2 ,expected_max_diff=3.25e-3 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = 'french fries' A = sd_pipe(**A_ ,negative_prompt=A_ ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ,view_batch_size=2 ) A = output.images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.61_87, 0.53_75, 0.49_15, 0.41_36, 0.41_14, 0.45_63, 0.51_28, 0.49_76, 0.47_57] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = EulerAncestralDiscreteScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ) A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.40_24, 0.65_10, 0.49_01, 0.53_78, 0.58_13, 0.56_22, 0.47_95, 0.44_67, 0.49_52] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Optional[Any]: A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = PNDMScheduler( beta_start=0.0_00_85 ,beta_end=0.0_12 ,beta_schedule='scaled_linear' ,skip_prk_steps=A_ ) A = StableDiffusionPanoramaPipeline(**A_ ) A = sd_pipe.to(A_ ) sd_pipe.set_progress_bar_config(disable=A_ ) A = self.get_dummy_inputs(A_ ) A = sd_pipe(**A_ ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A = np.array([0.63_91, 0.62_91, 0.48_61, 0.51_34, 0.55_52, 0.45_78, 0.50_32, 0.50_23, 0.45_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : int ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Union[str, Any]=0 ) -> int: A = torch.manual_seed(A_ ) A = { 'prompt': 'a photo of the dolomites', 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[Any]: A = 'stabilityai/stable-diffusion-2-base' A = DDIMScheduler.from_pretrained(A_ ,subfolder='scheduler' ) A = StableDiffusionPanoramaPipeline.from_pretrained(A_ ,scheduler=A_ ,safety_checker=A_ ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) A = np.array( [ 0.36_96_83_92, 0.27_02_53_72, 0.32_44_67_66, 0.28_37_93_87, 0.36_36_32_74, 0.30_73_33_47, 0.27_10_00_27, 0.27_05_41_25, 0.25_53_60_96, ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self : Any ) -> str: A = StableDiffusionPanoramaPipeline.from_pretrained( 'stabilityai/stable-diffusion-2-base' ,safety_checker=A_ ) A = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() A = pipe(**A_ ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 2048, 3) A = np.array( [ [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, ] ] ) assert np.abs(expected_slice - image_slice ).max() < 1e-3 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Any: A = 0 def callback_fn(A_ : int ,A_ : int ,A_ : torch.FloatTensor ) -> None: A = True nonlocal number_of_steps number_of_steps += 1 if step == 1: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) A = latents[0, -3:, -3:, -1] A = np.array( [ 0.18_68_18_69, 0.33_90_78_16, 0.5_36_12_76, 0.14_43_28_65, -0.02_85_66_11, -0.73_94_11_23, 0.23_39_79_87, 0.47_32_26_82, -0.37_82_31_64, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 elif step == 2: A = latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 256) A = latents[0, -3:, -3:, -1] A = np.array( [ 0.18_53_96_45, 0.33_98_72_48, 0.5_37_85_59, 0.14_43_71_42, -0.02_45_52_61, -0.7_33_83_17, 0.23_99_07_55, 0.47_35_62_72, -0.3_78_65_05, ] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5e-2 A = False A = 'stabilityai/stable-diffusion-2-base' A = DDIMScheduler.from_pretrained(A_ ,subfolder='scheduler' ) A = StableDiffusionPanoramaPipeline.from_pretrained(A_ ,scheduler=A_ ,safety_checker=A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing() A = self.get_inputs() pipe(**A_ ,callback=A_ ,callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() A = 'stabilityai/stable-diffusion-2-base' A = DDIMScheduler.from_pretrained(A_ ,subfolder='scheduler' ) A = StableDiffusionPanoramaPipeline.from_pretrained(A_ ,scheduler=A_ ,safety_checker=A_ ) A = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() A = self.get_inputs() A = pipe(**A_ ) A = torch.cuda.max_memory_allocated() # make sure that less than 5.2 GB is allocated assert mem_bytes < 5.5 * 10**9
74
import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCAmelCase__( lowercase : Dict ) -> str: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCAmelCase__( ) -> List[Any]: with parallel_backend("spark" ): assert ParallelBackendConfig.backend_name == "spark" __snake_case : Any = [1, 2, 3] with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=2 ) with pytest.raises(lowercase ): with parallel_backend("unsupported backend" ): map_nested(lowercase , lowercase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("num_proc" , [2, -1] ) def lowerCAmelCase__( lowercase : Dict ) -> Dict: __snake_case : Any = [1, 2] __snake_case : Dict = {"a": 1, "b": 2} __snake_case : Optional[int] = {"a": [1, 2], "b": [3, 4]} __snake_case : int = {"a": {"1": 1}, "b": 2} __snake_case : str = {"a": 1, "b": 2, "c": 3, "d": 4} __snake_case : Dict = [2, 3] __snake_case : Tuple = {"a": 2, "b": 3} __snake_case : int = {"a": [2, 3], "b": [4, 5]} __snake_case : Dict = {"a": {"1": 2}, "b": 3} __snake_case : str = {"a": 2, "b": 3, "c": 4, "d": 5} with parallel_backend("spark" ): assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa assert map_nested(lowercase , lowercase , num_proc=lowercase ) == expected_map_nested_sa
326
0
from abc import ABC, abstractmethod from typing import Optional, Union from .. import Dataset, DatasetDict, Features, IterableDataset, IterableDatasetDict, NamedSplit from ..utils.typing import NestedDataStructureLike, PathLike class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , lowerCAmelCase__ : Optional[NestedDataStructureLike[PathLike]] = None , lowerCAmelCase__ : Optional[NamedSplit] = None , lowerCAmelCase__ : Optional[Features] = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[int] = None , **lowerCAmelCase__ : str , ): SCREAMING_SNAKE_CASE_: Tuple = path_or_paths SCREAMING_SNAKE_CASE_: List[str] = split if split or isinstance(lowerCAmelCase__ , lowerCAmelCase__) else "train" SCREAMING_SNAKE_CASE_: Dict = features SCREAMING_SNAKE_CASE_: str = cache_dir SCREAMING_SNAKE_CASE_: Tuple = keep_in_memory SCREAMING_SNAKE_CASE_: Optional[Any] = streaming SCREAMING_SNAKE_CASE_: Optional[int] = num_proc SCREAMING_SNAKE_CASE_: Tuple = kwargs @abstractmethod def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): pass class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Dict , lowerCAmelCase__ : Optional[Features] = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : bool = False , lowerCAmelCase__ : Optional[int] = None , **lowerCAmelCase__ : Optional[int] , ): SCREAMING_SNAKE_CASE_: Optional[int] = features SCREAMING_SNAKE_CASE_: Any = cache_dir SCREAMING_SNAKE_CASE_: Optional[Any] = keep_in_memory SCREAMING_SNAKE_CASE_: Union[str, Any] = streaming SCREAMING_SNAKE_CASE_: Optional[Any] = num_proc SCREAMING_SNAKE_CASE_: Optional[int] = kwargs @abstractmethod def _SCREAMING_SNAKE_CASE ( self : Tuple): pass
367
def A_ ( _UpperCAmelCase , _UpperCAmelCase ): if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
127
0
import os import unittest from transformers.models.bartpho.tokenization_bartpho import VOCAB_FILES_NAMES, BartphoTokenizer from transformers.testing_utils import get_tests_dir from ...test_tokenization_common import TokenizerTesterMixin _snake_case = get_tests_dir("fixtures/test_sentencepiece_bpe.model") class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = BartphoTokenizer lowerCamelCase__ = False lowerCamelCase__ = True def snake_case__ ( self): '''simple docstring''' super().setUp() _lowerCAmelCase : str = ["▁This", "▁is", "▁a", "▁t", "est"] _lowerCAmelCase : List[str] = dict(zip(__a, range(len(__a)))) _lowerCAmelCase : Optional[Any] = {"unk_token": "<unk>"} _lowerCAmelCase : Optional[int] = os.path.join(self.tmpdirname, VOCAB_FILES_NAMES["monolingual_vocab_file"]) with open(self.monolingual_vocab_file, "w", encoding="utf-8") as fp: for token in vocab_tokens: fp.write(f"{token} {vocab_tokens[token]}\n") _lowerCAmelCase : Optional[Any] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self, **__a): '''simple docstring''' kwargs.update(self.special_tokens_map) return BartphoTokenizer.from_pretrained(self.tmpdirname, **__a) def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = "This is a là test" _lowerCAmelCase : Optional[int] = "This is a<unk><unk> test" return input_text, output_text def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = BartphoTokenizer(__a, self.monolingual_vocab_file, **self.special_tokens_map) _lowerCAmelCase : List[Any] = "This is a là test" _lowerCAmelCase : str = "▁This ▁is ▁a ▁l à ▁t est".split() _lowerCAmelCase : str = tokenizer.tokenize(__a) self.assertListEqual(__a, __a) _lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] _lowerCAmelCase : List[str] = [4, 5, 6, 3, 3, 7, 8, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(__a), __a)
36
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = {"""configuration_focalnet""": ["""FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FocalNetConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ """FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FocalNetForImageClassification""", """FocalNetForMaskedImageModeling""", """FocalNetBackbone""", """FocalNetModel""", """FocalNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
309
0
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" while b: UpperCamelCase_ , UpperCamelCase_ = b, a % b return a def lowerCAmelCase( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )-> int: """simple docstring""" return a if b == 0 else euclidean_gcd_recursive(a__ , a % b ) def lowerCAmelCase( )-> Optional[int]: """simple docstring""" print(f"euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}" ) print(f"euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}" ) print(f"euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}" ) print(f"euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}" ) print(f"euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}" ) print(f"euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}" ) print(f"euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}" ) print(f"euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}" ) print(f"euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}" ) if __name__ == "__main__": main()
360
def lowerCAmelCase( SCREAMING_SNAKE_CASE_ )-> list: """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) <= 1: return lst UpperCamelCase_ = 1 while i < len(SCREAMING_SNAKE_CASE_ ): if lst[i - 1] <= lst[i]: i += 1 else: UpperCamelCase_ , UpperCamelCase_ = lst[i], lst[i - 1] i -= 1 if i == 0: UpperCamelCase_ = 1 return lst if __name__ == "__main__": SCREAMING_SNAKE_CASE :Union[str, Any] = input("""Enter numbers separated by a comma:\n""").strip() SCREAMING_SNAKE_CASE :Optional[int] = [int(item) for item in user_input.split(""",""")] print(gnome_sort(unsorted))
60
0
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") SCREAMING_SNAKE_CASE : List[str] = logging.getLogger(__name__) @dataclass class _lowerCamelCase: lowercase_ : Optional[int] = field( default=1_28, metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) }, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Overwrite the cached preprocessed datasets or not."""} ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) }, ) lowercase_ : Optional[int] = field( default=_a, metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of prediction examples to this """ """value if set.""" ) }, ) @dataclass class _lowerCamelCase: lowercase_ : str = field( default=_a, metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) lowercase_ : str = field( default=_a, metadata={"""help""": """Evaluation language. Also train language if `train_language` is set to None."""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Train language if it is different from the evaluation language."""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) lowercase_ : Optional[str] = field( default=_a, metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""}, ) lowercase_ : Optional[bool] = field( default=_a, metadata={"""help""": """arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"""}, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""}, ) lowercase_ : str = field( default="""main""", metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""}, ) lowercase_ : bool = field( default=_a, metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) }, ) lowercase_ : bool = field( default=_a, metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""}, ) def UpperCamelCase_( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _lowercase : Any = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _lowercase , _lowercase , _lowercase : int = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_xnli' , lowerCamelCase_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _lowercase : Optional[Any] = training_args.get_process_log_level() logger.setLevel(lowerCamelCase_ ) datasets.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.set_verbosity(lowerCamelCase_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _lowercase : int = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowercase : Union[str, Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: _lowercase : str = load_dataset( 'xnli' , model_args.language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) else: _lowercase : List[str] = load_dataset( 'xnli' , model_args.train_language , split='train' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : str = train_dataset.features['label'].names if training_args.do_eval: _lowercase : Optional[int] = load_dataset( 'xnli' , model_args.language , split='validation' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : List[Any] = eval_dataset.features['label'].names if training_args.do_predict: _lowercase : int = load_dataset( 'xnli' , model_args.language , split='test' , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : str = predict_dataset.features['label'].names # Labels _lowercase : Dict = len(lowerCamelCase_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowercase : int = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=lowerCamelCase_ , idalabel={str(lowerCamelCase_ ): label for i, label in enumerate(lowerCamelCase_ )} , labelaid={label: i for i, label in enumerate(lowerCamelCase_ )} , finetuning_task='xnli' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _lowercase : List[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=lowerCamelCase_ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: _lowercase : List[Any] = 'max_length' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowercase : Optional[Any] = False def preprocess_function(lowerCamelCase_ ): # Tokenize the texts return tokenizer( examples['premise'] , examples['hypothesis'] , padding=lowerCamelCase_ , max_length=data_args.max_seq_length , truncation=lowerCamelCase_ , ) if training_args.do_train: if data_args.max_train_samples is not None: _lowercase : List[Any] = min(len(lowerCamelCase_ ) , data_args.max_train_samples ) _lowercase : str = train_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='train dataset map pre-processing' ): _lowercase : Optional[Any] = train_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on train dataset' , ) # Log a few random samples from the training set: for index in random.sample(range(len(lowerCamelCase_ ) ) , 3 ): logger.info(F'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: _lowercase : Optional[Any] = min(len(lowerCamelCase_ ) , data_args.max_eval_samples ) _lowercase : Optional[int] = eval_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='validation dataset map pre-processing' ): _lowercase : int = eval_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on validation dataset' , ) if training_args.do_predict: if data_args.max_predict_samples is not None: _lowercase : int = min(len(lowerCamelCase_ ) , data_args.max_predict_samples ) _lowercase : str = predict_dataset.select(range(lowerCamelCase_ ) ) with training_args.main_process_first(desc='prediction dataset map pre-processing' ): _lowercase : Tuple = predict_dataset.map( lowerCamelCase_ , batched=lowerCamelCase_ , load_from_cache_file=not data_args.overwrite_cache , desc='Running tokenizer on prediction dataset' , ) # Get the metric function _lowercase : List[Any] = evaluate.load('xnli' ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(lowerCamelCase_ ): _lowercase : List[str] = p.predictions[0] if isinstance(p.predictions , lowerCamelCase_ ) else p.predictions _lowercase : List[Any] = np.argmax(lowerCamelCase_ , axis=1 ) return metric.compute(predictions=lowerCamelCase_ , references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowercase : str = default_data_collator elif training_args.fpaa: _lowercase : Optional[int] = DataCollatorWithPadding(lowerCamelCase_ , pad_to_multiple_of=8 ) else: _lowercase : Any = None # Initialize our Trainer _lowercase : str = Trainer( model=lowerCamelCase_ , args=lowerCamelCase_ , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=lowerCamelCase_ , tokenizer=lowerCamelCase_ , data_collator=lowerCamelCase_ , ) # Training if training_args.do_train: _lowercase : Union[str, Any] = None if training_args.resume_from_checkpoint is not None: _lowercase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowercase : int = last_checkpoint _lowercase : List[str] = trainer.train(resume_from_checkpoint=lowerCamelCase_ ) _lowercase : Tuple = train_result.metrics _lowercase : List[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(lowerCamelCase_ ) ) _lowercase : int = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('train' , lowerCamelCase_ ) trainer.save_metrics('train' , lowerCamelCase_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) _lowercase : List[Any] = trainer.evaluate(eval_dataset=lowerCamelCase_ ) _lowercase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(lowerCamelCase_ ) _lowercase : int = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('eval' , lowerCamelCase_ ) trainer.save_metrics('eval' , lowerCamelCase_ ) # Prediction if training_args.do_predict: logger.info('*** Predict ***' ) _lowercase , _lowercase , _lowercase : List[Any] = trainer.predict(lowerCamelCase_ , metric_key_prefix='predict' ) _lowercase : Tuple = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(lowerCamelCase_ ) ) _lowercase : Union[str, Any] = min(lowerCamelCase_ , len(lowerCamelCase_ ) ) trainer.log_metrics('predict' , lowerCamelCase_ ) trainer.save_metrics('predict' , lowerCamelCase_ ) _lowercase : List[str] = np.argmax(lowerCamelCase_ , axis=1 ) _lowercase : Optional[Any] = os.path.join(training_args.output_dir , 'predictions.txt' ) if trainer.is_world_process_zero(): with open(lowerCamelCase_ , 'w' ) as writer: writer.write('index\tprediction\n' ) for index, item in enumerate(lowerCamelCase_ ): _lowercase : Union[str, Any] = label_list[item] writer.write(F'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
21
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase_ = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
16
0
from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { '''Salesforce/codegen-350M-nl''': '''https://huggingface.co/Salesforce/codegen-350M-nl/resolve/main/config.json''', '''Salesforce/codegen-350M-multi''': '''https://huggingface.co/Salesforce/codegen-350M-multi/resolve/main/config.json''', '''Salesforce/codegen-350M-mono''': '''https://huggingface.co/Salesforce/codegen-350M-mono/resolve/main/config.json''', '''Salesforce/codegen-2B-nl''': '''https://huggingface.co/Salesforce/codegen-2B-nl/resolve/main/config.json''', '''Salesforce/codegen-2B-multi''': '''https://huggingface.co/Salesforce/codegen-2B-multi/resolve/main/config.json''', '''Salesforce/codegen-2B-mono''': '''https://huggingface.co/Salesforce/codegen-2B-mono/resolve/main/config.json''', '''Salesforce/codegen-6B-nl''': '''https://huggingface.co/Salesforce/codegen-6B-nl/resolve/main/config.json''', '''Salesforce/codegen-6B-multi''': '''https://huggingface.co/Salesforce/codegen-6B-multi/resolve/main/config.json''', '''Salesforce/codegen-6B-mono''': '''https://huggingface.co/Salesforce/codegen-6B-mono/resolve/main/config.json''', '''Salesforce/codegen-16B-nl''': '''https://huggingface.co/Salesforce/codegen-16B-nl/resolve/main/config.json''', '''Salesforce/codegen-16B-multi''': '''https://huggingface.co/Salesforce/codegen-16B-multi/resolve/main/config.json''', '''Salesforce/codegen-16B-mono''': '''https://huggingface.co/Salesforce/codegen-16B-mono/resolve/main/config.json''', } class _a ( _lowercase): _a : Tuple = '''codegen''' _a : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _SCREAMING_SNAKE_CASE : Dict=5_0400 , _SCREAMING_SNAKE_CASE : Dict=2048 , _SCREAMING_SNAKE_CASE : Tuple=2048 , _SCREAMING_SNAKE_CASE : Any=4096 , _SCREAMING_SNAKE_CASE : Dict=28 , _SCREAMING_SNAKE_CASE : str=16 , _SCREAMING_SNAKE_CASE : List[Any]=64 , _SCREAMING_SNAKE_CASE : List[str]=None , _SCREAMING_SNAKE_CASE : str="gelu_new" , _SCREAMING_SNAKE_CASE : str=0.0 , _SCREAMING_SNAKE_CASE : Any=0.0 , _SCREAMING_SNAKE_CASE : Any=0.0 , _SCREAMING_SNAKE_CASE : Union[str, Any]=1E-5 , _SCREAMING_SNAKE_CASE : List[Any]=0.02 , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : Optional[Any]=5_0256 , _SCREAMING_SNAKE_CASE : Optional[int]=5_0256 , _SCREAMING_SNAKE_CASE : List[str]=False , **_SCREAMING_SNAKE_CASE : List[str] , )-> Dict: lowerCAmelCase__ : Tuple = vocab_size lowerCAmelCase__ : Optional[int] = n_ctx lowerCAmelCase__ : str = n_positions lowerCAmelCase__ : Optional[int] = n_embd lowerCAmelCase__ : int = n_layer lowerCAmelCase__ : List[str] = n_head lowerCAmelCase__ : str = n_inner lowerCAmelCase__ : List[Any] = rotary_dim lowerCAmelCase__ : List[Any] = activation_function lowerCAmelCase__ : Optional[Any] = resid_pdrop lowerCAmelCase__ : List[Any] = embd_pdrop lowerCAmelCase__ : List[Any] = attn_pdrop lowerCAmelCase__ : List[str] = layer_norm_epsilon lowerCAmelCase__ : Union[str, Any] = initializer_range lowerCAmelCase__ : List[Any] = use_cache lowerCAmelCase__ : Union[str, Any] = bos_token_id lowerCAmelCase__ : List[str] = eos_token_id super().__init__( bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , tie_word_embeddings=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) class _a ( _lowercase): def __init__( self : Dict , _SCREAMING_SNAKE_CASE : PretrainedConfig , _SCREAMING_SNAKE_CASE : str = "default" , _SCREAMING_SNAKE_CASE : List[PatchingSpec] = None , _SCREAMING_SNAKE_CASE : bool = False , )-> Union[str, Any]: super().__init__(_SCREAMING_SNAKE_CASE , task=_SCREAMING_SNAKE_CASE , patching_specs=_SCREAMING_SNAKE_CASE , use_past=_SCREAMING_SNAKE_CASE ) if not getattr(self._config , '''pad_token_id''' , _SCREAMING_SNAKE_CASE ): # TODO: how to do that better? lowerCAmelCase__ : Dict = 0 @property def UpperCAmelCase__( self : Optional[Any] )-> Mapping[str, Mapping[int, str]]: lowerCAmelCase__ : Dict = OrderedDict({'''input_ids''': {0: '''batch''', 1: '''sequence'''}} ) if self.use_past: self.fill_with_past_key_values_(_SCREAMING_SNAKE_CASE , direction='''inputs''' ) lowerCAmelCase__ : str = {0: '''batch''', 1: '''past_sequence + sequence'''} else: lowerCAmelCase__ : List[str] = {0: '''batch''', 1: '''sequence'''} return common_inputs @property def UpperCAmelCase__( self : int )-> int: return self._config.n_layer @property def UpperCAmelCase__( self : Any )-> int: return self._config.n_head def UpperCAmelCase__( self : List[Any] , _SCREAMING_SNAKE_CASE : PreTrainedTokenizer , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : int = -1 , _SCREAMING_SNAKE_CASE : bool = False , _SCREAMING_SNAKE_CASE : Optional[TensorType] = None , )-> Mapping[str, Any]: lowerCAmelCase__ : Optional[Any] = super(_SCREAMING_SNAKE_CASE , self ).generate_dummy_inputs( _SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , seq_length=_SCREAMING_SNAKE_CASE , is_pair=_SCREAMING_SNAKE_CASE , framework=_SCREAMING_SNAKE_CASE ) # We need to order the input in the way they appears in the forward() lowerCAmelCase__ : Union[str, Any] = OrderedDict({'''input_ids''': common_inputs['''input_ids''']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase__ : Dict = seqlen + 2 lowerCAmelCase__ : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCAmelCase__ : Any = [ (torch.zeros(_SCREAMING_SNAKE_CASE ), torch.zeros(_SCREAMING_SNAKE_CASE )) for _ in range(self.num_layers ) ] lowerCAmelCase__ : Optional[int] = common_inputs['''attention_mask'''] if self.use_past: lowerCAmelCase__ : Any = ordered_inputs['''attention_mask'''].dtype lowerCAmelCase__ : List[Any] = torch.cat( [ordered_inputs['''attention_mask'''], torch.ones(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE )] , dim=1 ) return ordered_inputs @property def UpperCAmelCase__( self : Tuple )-> int: return 13
211
import math class _a : def __init__( self : List[Any] , _SCREAMING_SNAKE_CASE : Any=0 )-> Optional[Any]: # a graph with Node 0,1,...,N-1 lowerCAmelCase__ : Optional[int] = n lowerCAmelCase__ : List[Any] = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # adjacency matrix for weight lowerCAmelCase__ : str = [ [math.inf for j in range(0 , _SCREAMING_SNAKE_CASE )] for i in range(0 , _SCREAMING_SNAKE_CASE ) ] # dp[i][j] stores minimum distance from i to j def UpperCAmelCase__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : str )-> List[str]: lowerCAmelCase__ : Optional[int] = w def UpperCAmelCase__( self : List[Any] )-> Optional[int]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase__ : Dict = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCAmelCase__( self : str , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : str )-> str: return self.dp[u][v] if __name__ == "__main__": lowerCamelCase = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
211
1
import argparse import re import torch from CLAP import create_model from transformers import AutoFeatureExtractor, ClapConfig, ClapModel a__ : Tuple = { '''text_branch''': '''text_model''', '''audio_branch''': '''audio_model.audio_encoder''', '''attn''': '''attention.self''', '''self.proj''': '''output.dense''', '''attention.self_mask''': '''attn_mask''', '''mlp.fc1''': '''intermediate.dense''', '''mlp.fc2''': '''output.dense''', '''norm1''': '''layernorm_before''', '''norm2''': '''layernorm_after''', '''bn0''': '''batch_norm''', } a__ : Tuple = AutoFeatureExtractor.from_pretrained('''laion/clap-htsat-unfused''', truncation='''rand_trunc''') def UpperCAmelCase_( a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : int = create_model( '''HTSAT-tiny''' , '''roberta''' , _lowercase , precision='''fp32''' , device='''cuda:0''' if torch.cuda.is_available() else '''cpu''' , enable_fusion=_lowercase , fusion_type='''aff_2d''' if enable_fusion else None , ) return model, model_cfg def UpperCAmelCase_( a__ ): """simple docstring""" SCREAMING_SNAKE_CASE : str = {} SCREAMING_SNAKE_CASE : Optional[int] = r""".*sequential.(\d+).*""" SCREAMING_SNAKE_CASE : Union[str, Any] = r""".*_projection.(\d+).*""" for key, value in state_dict.items(): # check if any key needs to be modified for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: SCREAMING_SNAKE_CASE : Tuple = key.replace(_lowercase , _lowercase ) if re.match(_lowercase , _lowercase ): # replace sequential layers with list SCREAMING_SNAKE_CASE : Union[str, Any] = re.match(_lowercase , _lowercase ).group(1 ) SCREAMING_SNAKE_CASE : Optional[int] = key.replace(F"""sequential.{sequential_layer}.""" , F"""layers.{int(_lowercase )//3}.linear.""" ) elif re.match(_lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = int(re.match(_lowercase , _lowercase ).group(1 ) ) # Because in CLAP they use `nn.Sequential`... SCREAMING_SNAKE_CASE : List[Any] = 1 if projecton_layer == 0 else 2 SCREAMING_SNAKE_CASE : Optional[Any] = key.replace(F"""_projection.{projecton_layer}.""" , F"""_projection.linear{transformers_projection_layer}.""" ) if "audio" and "qkv" in key: # split qkv into query key and value SCREAMING_SNAKE_CASE : Dict = value SCREAMING_SNAKE_CASE : str = mixed_qkv.size(0 ) // 3 SCREAMING_SNAKE_CASE : List[Any] = mixed_qkv[:qkv_dim] SCREAMING_SNAKE_CASE : List[Any] = mixed_qkv[qkv_dim : qkv_dim * 2] SCREAMING_SNAKE_CASE : Dict = mixed_qkv[qkv_dim * 2 :] SCREAMING_SNAKE_CASE : Tuple = query_layer SCREAMING_SNAKE_CASE : Optional[Any] = key_layer SCREAMING_SNAKE_CASE : Any = value_layer else: SCREAMING_SNAKE_CASE : Any = value return model_state_dict def UpperCAmelCase_( a__ , a__ , a__ , a__=False ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = init_clap(_lowercase , enable_fusion=_lowercase ) clap_model.eval() SCREAMING_SNAKE_CASE : Any = clap_model.state_dict() SCREAMING_SNAKE_CASE : Dict = rename_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = ClapConfig() SCREAMING_SNAKE_CASE : Optional[int] = enable_fusion SCREAMING_SNAKE_CASE : Dict = ClapModel(_lowercase ) # ignore the spectrogram embedding layer model.load_state_dict(_lowercase , strict=_lowercase ) model.save_pretrained(_lowercase ) transformers_config.save_pretrained(_lowercase ) if __name__ == "__main__": a__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument('''--enable_fusion''', action='''store_true''', help='''Whether to enable fusion or not''') a__ : List[Any] = parser.parse_args() convert_clap_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.enable_fusion)
313
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a = { "configuration_altclip": [ "ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "AltCLIPConfig", "AltCLIPTextConfig", "AltCLIPVisionConfig", ], "processing_altclip": ["AltCLIPProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "AltCLIPPreTrainedModel", "AltCLIPModel", "AltCLIPTextModel", "AltCLIPVisionModel", ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
0
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def lowerCamelCase_ ( _UpperCamelCase ): """simple docstring""" snake_case_ : int = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: snake_case_ : str = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: snake_case_ : str = 4 snake_case_ : Tuple = 48 snake_case_ : Union[str, Any] = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: snake_case_ : Optional[Any] = [6, 6, 6, 6] snake_case_ : Any = 60 snake_case_ : List[str] = [6, 6, 6, 6] snake_case_ : str = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: snake_case_ : Any = 4 snake_case_ : Optional[int] = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: snake_case_ : Optional[int] = 1 snake_case_ : int = 1 snake_case_ : str = 126 snake_case_ : Optional[Any] = 7 snake_case_ : List[Any] = 255.0 snake_case_ : Tuple = '''''' return config def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: snake_case_ : Optional[Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: snake_case_ : Dict = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: snake_case_ : Optional[int] = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: snake_case_ : int = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: snake_case_ : Union[str, Any] = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case_ : int = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case_ : Any = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case_ : Union[str, Any] = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case_ : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case_ : Tuple = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: snake_case_ : Union[str, Any] = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: snake_case_ : Dict = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: snake_case_ : Any = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: snake_case_ : Optional[Any] = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: snake_case_ : Optional[Any] = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": snake_case_ : List[str] = '''layernorm.weight''' if name == "norm.bias": snake_case_ : Optional[Any] = '''layernorm.bias''' if "conv_first" in name: snake_case_ : int = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: snake_case_ : Optional[int] = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: snake_case_ : Dict = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: snake_case_ : List[str] = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: snake_case_ : Union[str, Any] = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) snake_case_ : List[Any] = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": snake_case_ : str = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) snake_case_ : Tuple = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: snake_case_ : Optional[Any] = '''swin2sr.''' + name return name def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase ): """simple docstring""" for key in orig_state_dict.copy().keys(): snake_case_ : List[str] = orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: snake_case_ : List[str] = key.split('''.''' ) snake_case_ : Optional[int] = int(key_split[1] ) snake_case_ : List[str] = int(key_split[4] ) snake_case_ : Optional[int] = config.embed_dim if "weight" in key: snake_case_ : str = val[:dim, :] snake_case_ : Dict = val[dim : dim * 2, :] snake_case_ : int = val[-dim:, :] else: snake_case_ : List[Any] = val[:dim] snake_case_ : Dict = val[dim : dim * 2] snake_case_ : Optional[Any] = val[-dim:] pass else: snake_case_ : Dict = val return orig_state_dict def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): """simple docstring""" snake_case_ : Optional[Any] = get_config(_UpperCamelCase ) snake_case_ : Dict = SwinaSRForImageSuperResolution(_UpperCamelCase ) model.eval() snake_case_ : List[str] = torch.hub.load_state_dict_from_url(_UpperCamelCase , map_location='''cpu''' ) snake_case_ : Any = convert_state_dict(_UpperCamelCase , _UpperCamelCase ) snake_case_ : List[str] = model.load_state_dict(_UpperCamelCase , strict=_UpperCamelCase ) if len(_UpperCamelCase ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(_UpperCamelCase ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values snake_case_ : Optional[int] = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' snake_case_ : List[Any] = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ).convert('''RGB''' ) snake_case_ : List[Any] = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values snake_case_ : Any = 126 if '''Jpeg''' in checkpoint_url else 256 snake_case_ : List[Any] = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) snake_case_ : List[Any] = transforms(_UpperCamelCase ).unsqueeze(0 ) if config.num_channels == 1: snake_case_ : Any = pixel_values[:, 0, :, :].unsqueeze(1 ) snake_case_ : Union[str, Any] = model(_UpperCamelCase ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: snake_case_ : Optional[Any] = torch.Size([1, 3, 512, 512] ) snake_case_ : List[Any] = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: snake_case_ : Dict = torch.Size([1, 3, 1_024, 1_024] ) snake_case_ : str = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here snake_case_ : Union[str, Any] = torch.Size([1, 3, 1_024, 1_024] ) snake_case_ : Dict = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: snake_case_ : Any = torch.Size([1, 3, 512, 512] ) snake_case_ : Dict = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: snake_case_ : Dict = torch.Size([1, 3, 1_024, 1_024] ) snake_case_ : Optional[int] = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _UpperCamelCase , atol=1E-3 ) print('''Looks ok!''' ) snake_case_ : List[str] = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } snake_case_ : int = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_UpperCamelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(_UpperCamelCase ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''', type=str, help='''URL of the original Swin2SR checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''') lowerCAmelCase_ = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
358
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class __lowerCAmelCase ( _a ): lowerCamelCase_ : Optional[Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ : List[Any] = '''BlipImageProcessor''' lowerCamelCase_ : Union[str, Any] = '''AutoTokenizer''' def __init__(self , __magic_name__ , __magic_name__ , __magic_name__ ) -> Dict: '''simple docstring''' super().__init__(__magic_name__ , __magic_name__ ) # add QFormer tokenizer snake_case_ : Optional[Any] = qformer_tokenizer def __call__(self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ) -> BatchFeature: '''simple docstring''' if images is None and text is None: raise ValueError('''You have to specify at least images or text.''' ) snake_case_ : Tuple = BatchFeature() if text is not None: snake_case_ : Tuple = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) encoding.update(__magic_name__ ) snake_case_ : Optional[Any] = self.qformer_tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_token_type_ids=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) snake_case_ : Optional[int] = qformer_text_encoding.pop('''input_ids''' ) snake_case_ : Tuple = qformer_text_encoding.pop('''attention_mask''' ) if images is not None: snake_case_ : Any = self.image_processor(__magic_name__ , return_tensors=__magic_name__ ) encoding.update(__magic_name__ ) return encoding def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def lowerCamelCase (self ) -> Any: '''simple docstring''' snake_case_ : Optional[Any] = self.tokenizer.model_input_names snake_case_ : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def lowerCamelCase (self , __magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' if os.path.isfile(__magic_name__ ): raise ValueError(F'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) snake_case_ : Any = os.path.join(__magic_name__ , '''qformer_tokenizer''' ) self.qformer_tokenizer.save_pretrained(__magic_name__ ) return super().save_pretrained(__magic_name__ , **__magic_name__ ) @classmethod def lowerCamelCase (cls , __magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Any = AutoTokenizer.from_pretrained(__magic_name__ , subfolder='''qformer_tokenizer''' ) snake_case_ : str = cls._get_arguments_from_pretrained(__magic_name__ , **__magic_name__ ) args.append(__magic_name__ ) return cls(*__magic_name__ )
279
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : int = { """salesforce/blip2-opt-2.7b""": """https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json""", } class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''blip_2_vision_model''' def __init__( self : Optional[Any] , UpperCAmelCase__ : Any=1_408 , UpperCAmelCase__ : Optional[int]=6_144 , UpperCAmelCase__ : List[str]=39 , UpperCAmelCase__ : str=16 , UpperCAmelCase__ : int=224 , UpperCAmelCase__ : List[str]=14 , UpperCAmelCase__ : Any="gelu" , UpperCAmelCase__ : Dict=0.00001 , UpperCAmelCase__ : str=0.0 , UpperCAmelCase__ : Dict=1e-10 , UpperCAmelCase__ : Optional[int]=True , **UpperCAmelCase__ : Union[str, Any] , ) ->Tuple: '''simple docstring''' super().__init__(**UpperCAmelCase__) A__ = hidden_size A__ = intermediate_size A__ = num_hidden_layers A__ = num_attention_heads A__ = patch_size A__ = image_size A__ = initializer_range A__ = attention_dropout A__ = layer_norm_eps A__ = hidden_act A__ = qkv_bias @classmethod def SCREAMING_SNAKE_CASE ( cls : Optional[int] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : Tuple) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the vision config dict if we are loading from Blip2Config if config_dict.get('''model_type''') == "blip-2": A__ = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''blip_2_qformer''' def __init__( self : Optional[int] , UpperCAmelCase__ : List[str]=30_522 , UpperCAmelCase__ : Union[str, Any]=768 , UpperCAmelCase__ : List[Any]=12 , UpperCAmelCase__ : str=12 , UpperCAmelCase__ : Any=3_072 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Optional[Any]=0.1 , UpperCAmelCase__ : Tuple=512 , UpperCAmelCase__ : Optional[Any]=0.02 , UpperCAmelCase__ : Tuple=1e-12 , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : Union[str, Any]="absolute" , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : str=1_408 , **UpperCAmelCase__ : Optional[int] , ) ->Union[str, Any]: '''simple docstring''' super().__init__(pad_token_id=UpperCAmelCase__ , **UpperCAmelCase__) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = cross_attention_frequency A__ = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE ( cls : Union[str, Any] , UpperCAmelCase__ : Union[str, os.PathLike] , **UpperCAmelCase__ : str) ->"PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(UpperCAmelCase__) A__ , A__ = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('''model_type''') == "blip-2": A__ = config_dict['''qformer_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''') and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict["model_type"]} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""") return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' UpperCAmelCase__ = '''blip-2''' UpperCAmelCase__ = True def __init__( self : Union[str, Any] , UpperCAmelCase__ : str=None , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None , UpperCAmelCase__ : str=32 , **UpperCAmelCase__ : Tuple) ->List[str]: '''simple docstring''' super().__init__(**UpperCAmelCase__) if vision_config is None: A__ = {} logger.info('''vision_config is None. initializing the Blip2VisionConfig with default values.''') if qformer_config is None: A__ = {} logger.info('''qformer_config is None. Initializing the Blip2QFormerConfig with default values.''') if text_config is None: A__ = {} logger.info('''text_config is None. Initializing the text config with default values (`OPTConfig`).''') A__ = BlipaVisionConfig(**UpperCAmelCase__) A__ = BlipaQFormerConfig(**UpperCAmelCase__) A__ = text_config['''model_type'''] if '''model_type''' in text_config else '''opt''' A__ = CONFIG_MAPPING[text_model_type](**UpperCAmelCase__) A__ = self.text_config.tie_word_embeddings A__ = self.text_config.is_encoder_decoder A__ = num_query_tokens A__ = self.vision_config.hidden_size A__ = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES A__ = 1.0 A__ = 0.02 @classmethod def SCREAMING_SNAKE_CASE ( cls : int , UpperCAmelCase__ : BlipaVisionConfig , UpperCAmelCase__ : BlipaQFormerConfig , UpperCAmelCase__ : PretrainedConfig , **UpperCAmelCase__ : Dict , ) ->Union[str, Any]: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : str) ->Any: '''simple docstring''' A__ = copy.deepcopy(self.__dict__) A__ = self.vision_config.to_dict() A__ = self.qformer_config.to_dict() A__ = self.text_config.to_dict() A__ = self.__class__.model_type return output
14
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ): """simple docstring""" snake_case = [1] for i in range(2 ,UpperCamelCase_ ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" snake_case = [] snake_case = list(range(UpperCamelCase_ ) ) # Find permutation while factorials: snake_case = factorials.pop() snake_case , snake_case = divmod(UpperCamelCase_ ,UpperCamelCase_ ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
127
0
'''simple docstring''' import argparse import collections import os import re from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_table.py _lowercase : Union[str, Any] = "src/transformers" _lowercase : str = "docs/source/en" _lowercase : Union[str, Any] = "." def lowerCamelCase ( UpperCAmelCase__ : Dict , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] ) -> int: with open(UpperCAmelCase__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: lowercase_ : Union[str, Any] = f.readlines() # Find the start prompt. lowercase_ : Optional[Any] = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowercase_ : int = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # Add here suffixes that are used to identify models, separated by | _lowercase : int = "Model|Encoder|Decoder|ForConditionalGeneration" # Regexes that match TF/Flax/PT model names. _lowercase : str = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") _lowercase : Optional[Any] = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _lowercase : int = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)") # This is to make sure the transformers module imported is the one in the repo. _lowercase : Optional[Any] = direct_transformers_import(TRANSFORMERS_PATH) def lowerCamelCase ( UpperCAmelCase__ : int ) -> Any: lowercase_ : str = re.finditer(""".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)""" , UpperCAmelCase__ ) return [m.group(0 ) for m in matches] def lowerCamelCase ( UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple ) -> List[Any]: lowercase_ : Dict = 2 if text == """✅""" or text == """❌""" else len(UpperCAmelCase__ ) lowercase_ : List[str] = (width - text_length) // 2 lowercase_ : Dict = width - text_length - left_indent return " " * left_indent + text + " " * right_indent def lowerCamelCase ( ) -> Any: lowercase_ : int = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES lowercase_ : Any = { name: config_maping_names[code] for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if code in config_maping_names } lowercase_ : int = {name: config.replace("""Config""" , """""" ) for name, config in model_name_to_config.items()} # Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax. lowercase_ : List[Any] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : List[str] = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Any = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Tuple = collections.defaultdict(UpperCAmelCase__ ) lowercase_ : Optional[int] = collections.defaultdict(UpperCAmelCase__ ) # Let's lookup through all transformers object (once). for attr_name in dir(UpperCAmelCase__ ): lowercase_ : Union[str, Any] = None if attr_name.endswith("""Tokenizer""" ): lowercase_ : Optional[int] = slow_tokenizers lowercase_ : Union[str, Any] = attr_name[:-9] elif attr_name.endswith("""TokenizerFast""" ): lowercase_ : Optional[Any] = fast_tokenizers lowercase_ : Dict = attr_name[:-13] elif _re_tf_models.match(UpperCAmelCase__ ) is not None: lowercase_ : str = tf_models lowercase_ : str = _re_tf_models.match(UpperCAmelCase__ ).groups()[0] elif _re_flax_models.match(UpperCAmelCase__ ) is not None: lowercase_ : List[str] = flax_models lowercase_ : int = _re_flax_models.match(UpperCAmelCase__ ).groups()[0] elif _re_pt_models.match(UpperCAmelCase__ ) is not None: lowercase_ : Tuple = pt_models lowercase_ : Optional[int] = _re_pt_models.match(UpperCAmelCase__ ).groups()[0] if lookup_dict is not None: while len(UpperCAmelCase__ ) > 0: if attr_name in model_name_to_prefix.values(): lowercase_ : int = True break # Try again after removing the last word in the name lowercase_ : Optional[Any] = """""".join(camel_case_split(UpperCAmelCase__ )[:-1] ) # Let's build that table! lowercase_ : Dict = list(model_name_to_config.keys() ) model_names.sort(key=str.lower ) lowercase_ : Optional[Any] = ["""Model""", """Tokenizer slow""", """Tokenizer fast""", """PyTorch support""", """TensorFlow support""", """Flax Support"""] # We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side). lowercase_ : Union[str, Any] = [len(UpperCAmelCase__ ) + 2 for c in columns] lowercase_ : int = max([len(UpperCAmelCase__ ) for name in model_names] ) + 2 # Build the table per se lowercase_ : Tuple = """|""" + """|""".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for c, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + """|\n""" # Use ":-----:" format to center-aligned table cell texts table += "|" + "|".join([""":""" + """-""" * (w - 2) + """:""" for w in widths] ) + "|\n" lowercase_ : int = {True: """✅""", False: """❌"""} for name in model_names: lowercase_ : str = model_name_to_prefix[name] lowercase_ : Any = [ name, check[slow_tokenizers[prefix]], check[fast_tokenizers[prefix]], check[pt_models[prefix]], check[tf_models[prefix]], check[flax_models[prefix]], ] table += "|" + "|".join([_center_text(UpperCAmelCase__ , UpperCAmelCase__ ) for l, w in zip(UpperCAmelCase__ , UpperCAmelCase__ )] ) + "|\n" return table def lowerCamelCase ( UpperCAmelCase__ : Union[str, Any]=False ) -> str: lowercase_ : List[str] = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , """index.md""" ) , start_prompt="""<!--This table is updated automatically from the auto modules""" , end_prompt="""<!-- End table-->""" , ) lowercase_ : Dict = get_model_table_from_auto_modules() if current_table != new_table: if overwrite: with open(os.path.join(UpperCAmelCase__ , """index.md""" ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_table] + lines[end_index:] ) else: raise ValueError( """The model table in the `index.md` has not been updated. Run `make fix-copies` to fix this.""" ) if __name__ == "__main__": _lowercase : Any = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _lowercase : Optional[Any] = parser.parse_args() check_model_table(args.fix_and_overwrite)
369
'''simple docstring''' from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def lowerCamelCase ( UpperCAmelCase__ : int ) -> int: lowercase_ : Any = prime_factors(UpperCAmelCase__ ) if is_square_free(UpperCAmelCase__ ): return -1 if len(UpperCAmelCase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
21
0
from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging __lowerCamelCase : Dict = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class A__ ( __snake_case ): def __init__( self , A_ = 101 ): '''simple docstring''' UpperCamelCase : Dict = length def __len__( self ): '''simple docstring''' return self.length def __getitem__( self , A_ ): '''simple docstring''' return i class A__ : def __call__( self , A_ ): '''simple docstring''' return {"input_ids": torch.tensor(A_ ), "labels": torch.tensor(A_ )} class A__ ( nn.Module ): def __init__( self ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. UpperCamelCase : Optional[int] = nn.Linear(120 , 80 ) def __UpperCamelCase( self , A_ , A_=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0 , device=input_ids.device ), input_ids else: return input_ids class A__ ( __snake_case ): @require_torch_neuroncore def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = F"""--nproc_per_node=2 --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() UpperCamelCase : Optional[int] = self.get_auto_remove_tmp_dir() UpperCamelCase : List[str] = F"""--output_dir {output_dir}""".split() UpperCamelCase : Optional[int] = ["torchrun"] + distributed_args + args execute_subprocess_async(A_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class A__ ( __snake_case ): @require_torch_multi_gpu def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = F"""--nproc_per_node={torch.cuda.device_count()} --master_port={get_torch_dist_unique_port()} {self.test_file_dir}/test_trainer_distributed.py """.split() UpperCamelCase : Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase : List[str] = F"""--output_dir {output_dir}""".split() UpperCamelCase : Optional[Any] = ["torchrun"] + distributed_args + args execute_subprocess_async(A_ , env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py __lowerCamelCase : List[str] = HfArgumentParser((TrainingArguments,)) __lowerCamelCase : List[str] = parser.parse_args_into_dataclasses()[0] logger.warning( f"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, """ f"""distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}""" ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [101, 40, 7]: __lowerCamelCase : str = DummyDataset(dataset_length) def A_ ( _lowerCAmelCase ) -> Dict: UpperCamelCase : Optional[Any] = list(range(len(_lowerCAmelCase ) ) ) UpperCamelCase : List[Any] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( "Predictions and/or labels do not match expected results:\n - predictions: " F"""{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}""" ) return {"success": success} __lowerCamelCase : str = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) __lowerCamelCase : Any = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCamelCase : List[Any] = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCamelCase : Optional[int] = 2 __lowerCamelCase : Tuple = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) __lowerCamelCase : Tuple = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) __lowerCamelCase : Dict = None
52
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() snake_case__ : Any = logging.get_logger(__name__) def _snake_case ( _snake_case : List[Any] , _snake_case : Tuple=False ): lowerCAmelCase : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''blocks.{i}.norm1.weight''', f'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''blocks.{i}.norm1.bias''', f'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((f'''blocks.{i}.attn.proj.weight''', f'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.attn.proj.bias''', f'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''blocks.{i}.norm2.weight''', f'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''blocks.{i}.norm2.bias''', f'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.weight''', f'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc1.bias''', f'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.weight''', f'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''blocks.{i}.mlp.fc2.bias''', f'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ('''pre_logits.fc.weight''', '''pooler.dense.weight'''), ('''pre_logits.fc.bias''', '''pooler.dense.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCAmelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _snake_case ( _snake_case : Tuple , _snake_case : List[Any] , _snake_case : Tuple=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase : Optional[int] = '''''' else: lowerCAmelCase : Union[str, Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase : List[Any] = state_dict.pop(f'''blocks.{i}.attn.qkv.weight''' ) lowerCAmelCase : Tuple = state_dict.pop(f'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase : Optional[Any] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase : Tuple = in_proj_bias[: config.hidden_size] lowerCAmelCase : Tuple = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase : List[Any] = in_proj_bias[-config.hidden_size :] def _snake_case ( _snake_case : Tuple ): lowerCAmelCase : List[Any] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any , _snake_case : List[Any] ): lowerCAmelCase : Optional[int] = dct.pop(_snake_case ) lowerCAmelCase : Union[str, Any] = val def _snake_case ( ): lowerCAmelCase : Any = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase : Any = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def _snake_case ( _snake_case : Optional[int] , _snake_case : Optional[Any] ): lowerCAmelCase : Any = ViTConfig() lowerCAmelCase : Any = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": lowerCAmelCase : List[str] = True lowerCAmelCase : int = int(vit_name[-12:-10] ) lowerCAmelCase : List[Any] = int(vit_name[-9:-6] ) else: lowerCAmelCase : str = 1000 lowerCAmelCase : Optional[int] = '''huggingface/label-files''' lowerCAmelCase : Any = '''imagenet-1k-id2label.json''' lowerCAmelCase : Optional[Any] = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) ) lowerCAmelCase : Optional[Any] = {int(_snake_case ): v for k, v in idalabel.items()} lowerCAmelCase : Dict = idalabel lowerCAmelCase : List[Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase : List[str] = int(vit_name[-6:-4] ) lowerCAmelCase : int = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith('''tiny''' ): lowerCAmelCase : str = 192 lowerCAmelCase : int = 768 lowerCAmelCase : List[str] = 12 lowerCAmelCase : str = 3 elif vit_name[9:].startswith('''small''' ): lowerCAmelCase : List[str] = 384 lowerCAmelCase : Optional[int] = 1536 lowerCAmelCase : int = 12 lowerCAmelCase : str = 6 else: pass else: if vit_name[4:].startswith('''small''' ): lowerCAmelCase : List[str] = 768 lowerCAmelCase : Dict = 2304 lowerCAmelCase : Dict = 8 lowerCAmelCase : Tuple = 8 elif vit_name[4:].startswith('''base''' ): pass elif vit_name[4:].startswith('''large''' ): lowerCAmelCase : Union[str, Any] = 1024 lowerCAmelCase : List[Any] = 4096 lowerCAmelCase : Union[str, Any] = 24 lowerCAmelCase : Any = 16 elif vit_name[4:].startswith('''huge''' ): lowerCAmelCase : Any = 1280 lowerCAmelCase : str = 5120 lowerCAmelCase : Tuple = 32 lowerCAmelCase : Tuple = 16 # load original model from timm lowerCAmelCase : Any = timm.create_model(_snake_case , pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase : int = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) lowerCAmelCase : Optional[Any] = create_rename_keys(_snake_case , _snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": lowerCAmelCase : Any = ViTModel(_snake_case ).eval() else: lowerCAmelCase : Any = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: lowerCAmelCase : Dict = DeiTImageProcessor(size=config.image_size ) else: lowerCAmelCase : Union[str, Any] = ViTImageProcessor(size=config.image_size ) lowerCAmelCase : Union[str, Any] = image_processor(images=prepare_img() , return_tensors='''pt''' ) lowerCAmelCase : Dict = encoding['''pixel_values'''] lowerCAmelCase : List[Any] = model(_snake_case ) if base_model: lowerCAmelCase : Dict = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case , outputs.pooler_output , atol=1E-3 ) else: lowerCAmelCase : Dict = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f'''Saving model {vit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": snake_case__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--vit_name''', default='''vit_base_patch16_224''', type=str, help='''Name of the ViT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) snake_case__ : int = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
60
0
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __UpperCAmelCase = logging.get_logger(__name__) def lowercase__ ( __snake_case : Union[str, Any] , __snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : int = b.T UpperCAmelCase_ : Dict = np.sum(np.square(__lowerCAmelCase ) , axis=1 ) UpperCAmelCase_ : Dict = np.sum(np.square(__lowerCAmelCase ) , axis=0 ) UpperCAmelCase_ : Optional[int] = np.matmul(__lowerCAmelCase , __lowerCAmelCase ) UpperCAmelCase_ : Any = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase__ ( __snake_case : List[Any] , __snake_case : str ): '''simple docstring''' UpperCAmelCase_ : List[str] = x.reshape(-1 , 3 ) UpperCAmelCase_ : Optional[Any] = squared_euclidean_distance(__lowerCAmelCase , __lowerCAmelCase ) return np.argmin(__lowerCAmelCase , axis=1 ) class lowerCamelCase (lowerCamelCase_ ): '''simple docstring''' _snake_case : Optional[Any] = ['''pixel_values'''] def __init__( self , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = True , **_UpperCamelCase , ) -> None: super().__init__(**__snake_case ) UpperCAmelCase_ : Tuple = size if size is not None else {'height': 2_5_6, 'width': 2_5_6} UpperCAmelCase_ : List[str] = get_size_dict(__snake_case ) UpperCAmelCase_ : List[Any] = np.array(__snake_case ) if clusters is not None else None UpperCAmelCase_ : Optional[Any] = do_resize UpperCAmelCase_ : Optional[int] = size UpperCAmelCase_ : Dict = resample UpperCAmelCase_ : List[str] = do_normalize UpperCAmelCase_ : List[Any] = do_color_quantize def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: UpperCAmelCase_ : Tuple = get_size_dict(__snake_case ) if "height" not in size or "width" not in size: raise ValueError(f"Size dictionary must contain both height and width keys. Got {size.keys()}" ) return resize( __snake_case , size=(size['height'], size['width']) , resample=__snake_case , data_format=__snake_case , **__snake_case ) def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , ) -> np.ndarray: UpperCAmelCase_ : str = rescale(image=__snake_case , scale=1 / 1_2_7.5 , data_format=__snake_case ) UpperCAmelCase_ : int = image - 1 return image def __UpperCAmelCase ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> PIL.Image.Image: UpperCAmelCase_ : List[Any] = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_ : str = size if size is not None else self.size UpperCAmelCase_ : Dict = get_size_dict(__snake_case ) UpperCAmelCase_ : Any = resample if resample is not None else self.resample UpperCAmelCase_ : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_ : List[str] = do_color_quantize if do_color_quantize is not None else self.do_color_quantize UpperCAmelCase_ : List[Any] = clusters if clusters is not None else self.clusters UpperCAmelCase_ : str = np.array(__snake_case ) UpperCAmelCase_ : int = make_list_of_images(__snake_case ) if not valid_images(__snake_case ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_color_quantize and clusters is None: raise ValueError('Clusters must be specified if do_color_quantize is True.' ) # All transformations expect numpy arrays. UpperCAmelCase_ : Optional[int] = [to_numpy_array(__snake_case ) for image in images] if do_resize: UpperCAmelCase_ : List[Any] = [self.resize(image=__snake_case , size=__snake_case , resample=__snake_case ) for image in images] if do_normalize: UpperCAmelCase_ : Optional[Any] = [self.normalize(image=__snake_case ) for image in images] if do_color_quantize: UpperCAmelCase_ : List[str] = [to_channel_dimension_format(__snake_case , ChannelDimension.LAST ) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) UpperCAmelCase_ : List[str] = np.array(__snake_case ) UpperCAmelCase_ : Dict = color_quantize(__snake_case , __snake_case ).reshape(images.shape[:-1] ) # flatten to (batch_size, height*width) UpperCAmelCase_ : List[Any] = images.shape[0] UpperCAmelCase_ : Tuple = images.reshape(__snake_case , -1 ) # We need to convert back to a list of images to keep consistent behaviour across processors. UpperCAmelCase_ : str = list(__snake_case ) else: UpperCAmelCase_ : Union[str, Any] = [to_channel_dimension_format(__snake_case , __snake_case ) for image in images] UpperCAmelCase_ : List[str] = {'input_ids': images} return BatchFeature(data=__snake_case , tensor_type=__snake_case )
371
from collections import defaultdict from math import ceil, sqrt def lowercase__ ( __snake_case : int = 1_000_000 , __snake_case : int = 10 ): '''simple docstring''' UpperCAmelCase_ : defaultdict = defaultdict(__snake_case ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: UpperCAmelCase_ : Union[str, Any] = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: UpperCAmelCase_ : int = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(__snake_case , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(F'{solution() = }')
145
0
'''simple docstring''' import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowercase_ = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" " (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582" } def lowerCAmelCase (__A = "dhaka" , __A = 5): """simple docstring""" _a = min(__A , 50) # Prevent abuse! _a = { '''q''': query, '''tbm''': '''isch''', '''hl''': '''en''', '''ijn''': '''0''', } _a = requests.get('''https://www.google.com/search''' , params=__A , headers=__A) _a = BeautifulSoup(html.text , '''html.parser''') _a = ''''''.join( re.findall(r'''AF_initDataCallback\(([^<]+)\);''' , str(soup.select('''script''')))) _a = json.dumps(__A) _a = json.loads(__A) _a = re.findall( r'''\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",''' , __A , ) if not matched_google_image_data: return 0 _a = re.sub( r'''\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]''' , '''''' , str(__A) , ) _a = re.findall( r'''(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]''' , __A , ) for index, fixed_full_res_image in enumerate(__A): if index >= max_images: return index _a = bytes(__A , '''ascii''').decode( '''unicode-escape''') _a = bytes(__A , '''ascii''').decode( '''unicode-escape''') _a = urllib.request.build_opener() _a = [ ( '''User-Agent''', '''Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36''' ''' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582''', ) ] urllib.request.install_opener(__A) _a = F'''query_{query.replace(' ' , '_')}''' if not os.path.exists(__A): os.makedirs(__A) urllib.request.urlretrieve( # noqa: S310 __A , F'''{path_name}/original_size_img_{index}.jpg''') return index if __name__ == "__main__": try: lowercase_ = download_images_from_google_query(sys.argv[1]) print(F"""{image_count} images were downloaded to disk.""") except IndexError: print("Please provide a search term.") raise
211
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder lowercase_ = datasets.utils.logging.get_logger(__name__) class __A ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' __lowerCamelCase : bool = None __lowerCamelCase : bool = None class __A ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' __lowerCamelCase : int = datasets.Audio() __lowerCamelCase : str = 'audio' __lowerCamelCase : Optional[Any] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Union[str, Any] = AudioClassification(audio_column='audio' , label_column='label' ) lowercase_ = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] lowercase_ = AUDIO_EXTENSIONS
211
1
def SCREAMING_SNAKE_CASE ( ) -> Any: UpperCamelCase__ : Optional[int] = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] UpperCamelCase__ : List[Any] = 6 UpperCamelCase__ : Optional[int] = 1 UpperCamelCase__ : List[Any] = 1901 UpperCamelCase__ : str = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 UpperCamelCase__ : int = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 UpperCamelCase__ : Tuple = day - 29 else: if day > days_per_month[month - 1]: month += 1 UpperCamelCase__ : Dict = day - days_per_month[month - 2] if month > 12: year += 1 UpperCamelCase__ : Tuple = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
371
def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> list: UpperCamelCase__ : Tuple = False while is_sorted is False: # Until all the indices are traversed keep looping UpperCamelCase__ : Tuple = True for i in range(0 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Dict = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[str] = False for i in range(1 , len(__lowerCAmelCase ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: UpperCamelCase__ , UpperCamelCase__ : Optional[int] = input_list[i + 1], input_list[i] # swapping if elements not in order UpperCamelCase__ : List[Any] = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCamelCase : Any =[int(x) for x in input().split()] # inputing elements of the list in one line lowerCamelCase : Optional[int] =odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
196
0
from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging a_ = logging.get_logger(__name__) class __lowerCAmelCase : lowerCAmelCase__ = 42 lowerCAmelCase__ = None @staticmethod def lowerCamelCase ( ): '''simple docstring''' raise NotImplementedError def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' raise NotImplementedError def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' raise NotImplementedError def lowerCamelCase ( self ): '''simple docstring''' if not self.is_available(): raise RuntimeError( F"""You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.""" ) @classmethod def lowerCamelCase ( cls ): '''simple docstring''' return F"""`pip install {cls.pip_package or cls.name}`""" class __lowerCAmelCase ( _a ): lowerCAmelCase__ = '''optuna''' @staticmethod def lowerCamelCase ( ): '''simple docstring''' return is_optuna_available() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return run_hp_search_optuna(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return default_hp_space_optuna(__UpperCAmelCase ) class __lowerCAmelCase ( _a ): lowerCAmelCase__ = '''ray''' lowerCAmelCase__ = '''\'ray[tune]\'''' @staticmethod def lowerCamelCase ( ): '''simple docstring''' return is_ray_available() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return run_hp_search_ray(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return default_hp_space_ray(__UpperCAmelCase ) class __lowerCAmelCase ( _a ): lowerCAmelCase__ = '''sigopt''' @staticmethod def lowerCamelCase ( ): '''simple docstring''' return is_sigopt_available() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return run_hp_search_sigopt(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return default_hp_space_sigopt(__UpperCAmelCase ) class __lowerCAmelCase ( _a ): lowerCAmelCase__ = '''wandb''' @staticmethod def lowerCamelCase ( ): '''simple docstring''' return is_wandb_available() def lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return run_hp_search_wandb(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def lowerCamelCase ( self , __UpperCAmelCase ): '''simple docstring''' return default_hp_space_wandb(__UpperCAmelCase ) a_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def a__ ( ): __lowerCamelCase = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(_UpperCamelCase ) > 0: __lowerCamelCase = available_backends[0].name if len(_UpperCamelCase ) > 1: logger.info( F"""{len(_UpperCamelCase )} hyperparameter search backends available. Using {name} as the default.""" ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( F""" - To install {backend.name} run {backend.pip_install()}""" for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
330
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __lowerCAmelCase ( _a, unittest.TestCase ): lowerCamelCase_ : Any = BioGptTokenizer lowerCamelCase_ : Optional[Any] = False def lowerCamelCase (self ) -> List[Any]: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case_ : Optional[Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] snake_case_ : Union[str, Any] = dict(zip(__magic_name__ , range(len(__magic_name__ ) ) ) ) snake_case_ : Union[str, Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] snake_case_ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case_ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(__magic_name__ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(__magic_name__ ) ) def lowerCamelCase (self , __magic_name__ ) -> int: '''simple docstring''' snake_case_ : str = '''lower newer''' snake_case_ : Dict = '''lower newer''' return input_text, output_text def lowerCamelCase (self ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) snake_case_ : Union[str, Any] = '''lower''' snake_case_ : Optional[int] = ['''low''', '''er</w>'''] snake_case_ : Any = tokenizer.tokenize(__magic_name__ ) self.assertListEqual(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = tokens + ['''<unk>'''] snake_case_ : List[str] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(__magic_name__ ) , __magic_name__ ) @slow def lowerCamelCase (self ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[int] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) snake_case_ : List[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=__magic_name__ ) snake_case_ : str = tokenizer.encode('''multi-sequence build''' , add_special_tokens=__magic_name__ ) snake_case_ : str = tokenizer.build_inputs_with_special_tokens(__magic_name__ ) snake_case_ : List[str] = tokenizer.build_inputs_with_special_tokens(__magic_name__ , __magic_name__ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
279
0
'''simple docstring''' import logging import os from typing import List, TextIO, Union from conllu import parse_incr from utils_ner import InputExample, Split, TokenClassificationTask snake_case__ : Optional[int] = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self , snake_case_=-1 ): '''simple docstring''' UpperCAmelCase_ : List[Any] = label_idx def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : Optional[Any] = mode.value UpperCAmelCase_ : List[str] = os.path.join(snake_case_ , F'''{mode}.txt''' ) UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : Any = [] with open(snake_case_ , encoding='utf-8' ) as f: UpperCAmelCase_ : Tuple = [] UpperCAmelCase_ : Union[str, Any] = [] for line in f: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=snake_case_ , labels=snake_case_ ) ) guid_index += 1 UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Tuple = [] else: UpperCAmelCase_ : List[Any] = line.split(' ' ) words.append(splits[0] ) if len(snake_case_ ) > 1: labels.append(splits[self.label_idx].replace('\n' , '' ) ) else: # Examples could have no label for mode = "test" labels.append('O' ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=snake_case_ , labels=snake_case_ ) ) return examples def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = 0 for line in test_input_reader: if line.startswith('-DOCSTART-' ) or line == "" or line == "\n": writer.write(snake_case_ ) if not preds_list[example_id]: example_id += 1 elif preds_list[example_id]: UpperCAmelCase_ : List[Any] = line.split()[0] + ' ' + preds_list[example_id].pop(0 ) + '\n' writer.write(snake_case_ ) else: logger.warning('Maximum sequence length exceeded: No prediction for \'%s\'.' , line.split()[0] ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if path: with open(snake_case_ , 'r' ) as f: UpperCAmelCase_ : Optional[int] = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ : Dict = ['O'] + labels return labels else: return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"] class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def __init__( self ): '''simple docstring''' super().__init__(label_idx=-2 ) def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if path: with open(snake_case_ , 'r' ) as f: UpperCAmelCase_ : int = f.read().splitlines() if "O" not in labels: UpperCAmelCase_ : Tuple = ['O'] + labels return labels else: return [ "O", "B-ADVP", "B-INTJ", "B-LST", "B-PRT", "B-NP", "B-SBAR", "B-VP", "B-ADJP", "B-CONJP", "B-PP", "I-ADVP", "I-INTJ", "I-LST", "I-PRT", "I-NP", "I-SBAR", "I-VP", "I-ADJP", "I-CONJP", "I-PP", ] class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def _UpperCamelCase ( self , snake_case_ , snake_case_ ): '''simple docstring''' if isinstance(snake_case_ , snake_case_ ): UpperCAmelCase_ : int = mode.value UpperCAmelCase_ : List[Any] = os.path.join(snake_case_ , F'''{mode}.txt''' ) UpperCAmelCase_ : Optional[int] = 1 UpperCAmelCase_ : List[Any] = [] with open(snake_case_ , encoding='utf-8' ) as f: for sentence in parse_incr(snake_case_ ): UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : Optional[int] = [] for token in sentence: words.append(token['form'] ) labels.append(token['upos'] ) assert len(snake_case_ ) == len(snake_case_ ) if words: examples.append(InputExample(guid=F'''{mode}-{guid_index}''' , words=snake_case_ , labels=snake_case_ ) ) guid_index += 1 return examples def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : str = 0 for sentence in parse_incr(snake_case_ ): UpperCAmelCase_ : List[Any] = preds_list[example_id] UpperCAmelCase_ : Dict = '' for token in sentence: out += F'''{token['form']} ({token['upos']}|{s_p.pop(0 )}) ''' out += "\n" writer.write(snake_case_ ) example_id += 1 def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' if path: with open(snake_case_ , 'r' ) as f: return f.read().splitlines() else: return [ "ADJ", "ADP", "ADV", "AUX", "CCONJ", "DET", "INTJ", "NOUN", "NUM", "PART", "PRON", "PROPN", "PUNCT", "SCONJ", "SYM", "VERB", "X", ]
274
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' @register_to_config def __init__( self , snake_case_ = 7_6_8 , ): '''simple docstring''' super().__init__() UpperCAmelCase_ : int = nn.Parameter(torch.zeros(1 , snake_case_ ) ) UpperCAmelCase_ : str = nn.Parameter(torch.ones(1 , snake_case_ ) ) def _UpperCamelCase ( self , snake_case_ = None , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : int = nn.Parameter(self.mean.to(snake_case_ ).to(snake_case_ ) ) UpperCAmelCase_ : Tuple = nn.Parameter(self.std.to(snake_case_ ).to(snake_case_ ) ) return self def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Dict = (embeds - self.mean) * 1.0 / self.std return embeds def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[Any] = (embeds * self.std) + self.mean return embeds
274
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ :Tuple = logging.get_logger(__name__) def lowerCAmelCase__ ( a__: Optional[Any] ) -> int: '''simple docstring''' if "resnet-50" in model_name: _UpperCAmelCase = ResNetConfig.from_pretrained('microsoft/resnet-50' ) elif "resnet-101" in model_name: _UpperCAmelCase = ResNetConfig.from_pretrained('microsoft/resnet-101' ) else: raise ValueError('Model name should include either resnet50 or resnet101' ) _UpperCAmelCase = DetrConfig(use_timm_backbone=lowerCamelCase_ , backbone_config=lowerCamelCase_ ) # set label attributes _UpperCAmelCase = 'panoptic' in model_name if is_panoptic: _UpperCAmelCase = 2_5_0 else: _UpperCAmelCase = 9_1 _UpperCAmelCase = 'huggingface/label-files' _UpperCAmelCase = 'coco-detection-id2label.json' _UpperCAmelCase = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _UpperCAmelCase = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _UpperCAmelCase = idalabel _UpperCAmelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def lowerCAmelCase__ ( a__: Optional[Any] ) -> List[Any]: '''simple docstring''' _UpperCAmelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.conv1.weight', 'backbone.conv_encoder.model.embedder.embedder.convolution.weight') ) rename_keys.append(('backbone.0.body.bn1.weight', 'backbone.conv_encoder.model.embedder.embedder.normalization.weight') ) rename_keys.append(('backbone.0.body.bn1.bias', 'backbone.conv_encoder.model.embedder.embedder.normalization.bias') ) rename_keys.append(('backbone.0.body.bn1.running_mean', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_mean') ) rename_keys.append(('backbone.0.body.bn1.running_var', 'backbone.conv_encoder.model.embedder.embedder.normalization.running_var') ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', ) ) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''') ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', ) ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('input_proj.weight', 'input_projection.weight'), ('input_proj.bias', 'input_projection.bias'), ('query_embed.weight', 'query_position_embeddings.weight'), ('transformer.decoder.norm.weight', 'decoder.layernorm.weight'), ('transformer.decoder.norm.bias', 'decoder.layernorm.bias'), ('class_embed.weight', 'class_labels_classifier.weight'), ('class_embed.bias', 'class_labels_classifier.bias'), ('bbox_embed.layers.0.weight', 'bbox_predictor.layers.0.weight'), ('bbox_embed.layers.0.bias', 'bbox_predictor.layers.0.bias'), ('bbox_embed.layers.1.weight', 'bbox_predictor.layers.1.weight'), ('bbox_embed.layers.1.bias', 'bbox_predictor.layers.1.bias'), ('bbox_embed.layers.2.weight', 'bbox_predictor.layers.2.weight'), ('bbox_embed.layers.2.bias', 'bbox_predictor.layers.2.bias'), ] ) return rename_keys def lowerCAmelCase__ ( a__: Any , a__: Optional[int] , a__: Optional[Any] ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) _UpperCAmelCase = val def lowerCAmelCase__ ( a__: str , a__: Union[str, Any]=False ) -> int: '''simple docstring''' _UpperCAmelCase = '' if is_panoptic: _UpperCAmelCase = 'detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) _UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:2_5_6, :] _UpperCAmelCase = in_proj_bias[:2_5_6] _UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight[-2_5_6:, :] _UpperCAmelCase = in_proj_bias[-2_5_6:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention _UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''' ) _UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict _UpperCAmelCase = in_proj_weight[:2_5_6, :] _UpperCAmelCase = in_proj_bias[:2_5_6] _UpperCAmelCase = in_proj_weight[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight[-2_5_6:, :] _UpperCAmelCase = in_proj_bias[-2_5_6:] # read in weights + bias of input projection layer of cross-attention _UpperCAmelCase = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''' ) _UpperCAmelCase = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) of cross-attention to the state dict _UpperCAmelCase = in_proj_weight_cross_attn[:2_5_6, :] _UpperCAmelCase = in_proj_bias_cross_attn[:2_5_6] _UpperCAmelCase = in_proj_weight_cross_attn[2_5_6:5_1_2, :] _UpperCAmelCase = in_proj_bias_cross_attn[2_5_6:5_1_2] _UpperCAmelCase = in_proj_weight_cross_attn[-2_5_6:, :] _UpperCAmelCase = in_proj_bias_cross_attn[-2_5_6:] def lowerCAmelCase__ ( ) -> int: '''simple docstring''' _UpperCAmelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' _UpperCAmelCase = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) return im @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[Any] , a__: Any=None , a__: Dict=False ) -> Optional[Any]: '''simple docstring''' _UpperCAmelCase = get_detr_config(lowerCamelCase_ ) # load original model from torch hub _UpperCAmelCase = { 'detr-resnet-50': 'detr_resnet50', 'detr-resnet-101': 'detr_resnet101', } logger.info(F'''Converting model {model_name}...''' ) _UpperCAmelCase = torch.hub.load('facebookresearch/detr' , model_name_to_original_name[model_name] , pretrained=lowerCamelCase_ ).eval() _UpperCAmelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(lowerCamelCase_ ): if is_panoptic: _UpperCAmelCase = 'detr.' + src rename_key(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(lowerCamelCase_ , is_panoptic=lowerCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them _UpperCAmelCase = 'detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): _UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) _UpperCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: _UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) _UpperCAmelCase = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: _UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) _UpperCAmelCase = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): _UpperCAmelCase = state_dict.pop(lowerCamelCase_ ) _UpperCAmelCase = val # finally, create HuggingFace model and load state dict _UpperCAmelCase = DetrForSegmentation(lowerCamelCase_ ) if is_panoptic else DetrForObjectDetection(lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() # verify our conversion on an image _UpperCAmelCase = 'coco_panoptic' if is_panoptic else 'coco_detection' _UpperCAmelCase = DetrImageProcessor(format=lowerCamelCase_ ) _UpperCAmelCase = processor(images=prepare_img() , return_tensors='pt' ) _UpperCAmelCase = encoding['pixel_values'] _UpperCAmelCase = detr(lowerCamelCase_ ) _UpperCAmelCase = model(lowerCamelCase_ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(lowerCamelCase_ ).mkdir(exist_ok=lowerCamelCase_ ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: # Upload model and image processor to the hub logger.info('Uploading PyTorch model and image processor to the hub...' ) model.push_to_hub(F'''nielsr/{model_name}''' ) processor.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": lowerCAmelCase__ :Dict = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') lowerCAmelCase__ :List[str] = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
329
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class _lowerCamelCase( _a ): def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCamelCase, 'width_multiplier')) class _lowerCamelCase: def __init__( self, lowerCamelCase, lowerCamelCase=13, lowerCamelCase=64, lowerCamelCase=2, lowerCamelCase=3, lowerCamelCase="swish", lowerCamelCase=3, lowerCamelCase=32, lowerCamelCase=0.1, lowerCamelCase=0.0_2, lowerCamelCase=True, lowerCamelCase=True, lowerCamelCase=10, lowerCamelCase=None, lowerCamelCase=0.2_5, lowerCamelCase=0.0, lowerCamelCase=0.0, ) -> Any: """simple docstring""" _lowercase : Any = parent _lowercase : Optional[int] = batch_size _lowercase : Dict = image_size _lowercase : str = patch_size _lowercase : Optional[int] = num_channels _lowercase : Optional[Any] = make_divisible(5_12 * width_multiplier, divisor=8) _lowercase : str = hidden_act _lowercase : Dict = conv_kernel_size _lowercase : int = output_stride _lowercase : Optional[Any] = classifier_dropout_prob _lowercase : Tuple = use_labels _lowercase : int = is_training _lowercase : Optional[Any] = num_labels _lowercase : Dict = initializer_range _lowercase : List[str] = scope _lowercase : Tuple = width_multiplier _lowercase : List[str] = ffn_dropout _lowercase : Dict = attn_dropout def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowercase : Dict = None _lowercase : Optional[int] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size], self.num_labels) _lowercase : str = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels) _lowercase : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" return MobileViTVaConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_act=self.hidden_act, conv_kernel_size=self.conv_kernel_size, output_stride=self.output_stride, classifier_dropout_prob=self.classifier_dropout_prob, initializer_range=self.initializer_range, width_multiplier=self.width_multiplier, ffn_dropout=self.ffn_dropout_prob, attn_dropout=self.attn_dropout_prob, ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Any: """simple docstring""" _lowercase : Optional[int] = MobileViTVaModel(config=lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.last_hidden_state.shape, ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> Optional[int]: """simple docstring""" _lowercase : int = self.num_labels _lowercase : Optional[int] = MobileViTVaForImageClassification(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels)) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase) -> int: """simple docstring""" _lowercase : Any = self.num_labels _lowercase : Union[str, Any] = MobileViTVaForSemanticSegmentation(lowerCamelCase) model.to(lowerCamelCase) model.eval() _lowercase : Optional[int] = model(lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) _lowercase : List[Any] = model(lowerCamelCase, labels=lowerCamelCase) self.parent.assertEqual( result.logits.shape, ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : str = self.prepare_config_and_inputs() _lowercase , _lowercase , _lowercase , _lowercase : int = config_and_inputs _lowercase : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class _lowerCamelCase( _a, _a, unittest.TestCase ): lowercase_ : List[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) lowercase_ : Dict = ( { """feature-extraction""": MobileViTVaModel, """image-classification""": MobileViTVaForImageClassification, """image-segmentation""": MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) lowercase_ : List[Any] = False lowercase_ : Optional[int] = False lowercase_ : List[Any] = False lowercase_ : Tuple = False def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Union[str, Any] = MobileViTVaModelTester(self) _lowercase : Tuple = MobileViTVaConfigTester(self, config_class=lowerCamelCase, has_text_modality=lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='MobileViTV2 does not use inputs_embeds') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not support input and output embeddings') def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" pass @unittest.skip(reason='MobileViTV2 does not output attentions') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason='Got `CUDA error: misaligned address` for tests after this one being run.') def UpperCamelCase ( self) -> int: """simple docstring""" pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def UpperCamelCase ( self) -> List[Any]: """simple docstring""" pass def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : List[Any] = model_class(lowerCamelCase) _lowercase : Tuple = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowercase : Any = [*signature.parameters.keys()] _lowercase : Union[str, Any] = ['pixel_values'] self.assertListEqual(arg_names[:1], lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" def check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase): _lowercase : Optional[Any] = model_class(lowerCamelCase) model.to(lowerCamelCase) model.eval() with torch.no_grad(): _lowercase : Optional[int] = model(**self._prepare_for_class(lowerCamelCase, lowerCamelCase)) _lowercase : List[Any] = outputs.hidden_states _lowercase : Tuple = 5 self.assertEqual(len(lowerCamelCase), lowerCamelCase) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. _lowercase : Optional[int] = 2 for i in range(len(lowerCamelCase)): self.assertListEqual( list(hidden_states[i].shape[-2:]), [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor], ) divisor *= 2 self.assertEqual(self.model_tester.output_stride, divisor // 2) _lowercase , _lowercase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowercase : Tuple = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowercase : Optional[Any] = True check_hidden_states_output(lowerCamelCase, lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Union[str, Any]: """simple docstring""" _lowercase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase) def UpperCamelCase ( self) -> List[str]: """simple docstring""" _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*lowerCamelCase) @slow def UpperCamelCase ( self) -> List[str]: """simple docstring""" for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : str = MobileViTVaModel.from_pretrained(lowerCamelCase) self.assertIsNotNone(lowerCamelCase) def UpperCamelCase_( ) -> Dict: _lowercase : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class _lowerCamelCase( unittest.TestCase ): @cached_property def UpperCamelCase ( self) -> List[str]: """simple docstring""" return ( MobileViTImageProcessor.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256') if is_vision_available() else None ) @slow def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : List[str] = MobileViTVaForImageClassification.from_pretrained('apple/mobilevitv2-1.0-imagenet1k-256').to( lowerCamelCase) _lowercase : Dict = self.default_image_processor _lowercase : Union[str, Any] = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Tuple = model(**lowerCamelCase) # verify the logits _lowercase : Optional[int] = torch.Size((1, 10_00)) self.assertEqual(outputs.logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01]).to(lowerCamelCase) self.assertTrue(torch.allclose(outputs.logits[0, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Optional[int] = model.to(lowerCamelCase) _lowercase : Optional[int] = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Union[str, Any] = prepare_img() _lowercase : Tuple = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : List[Any] = model(**lowerCamelCase) _lowercase : str = outputs.logits # verify the logits _lowercase : Tuple = torch.Size((1, 21, 32, 32)) self.assertEqual(logits.shape, lowerCamelCase) _lowercase : Union[str, Any] = torch.tensor( [ [[7.0_8_6_3, 7.1_5_2_5, 6.8_2_0_1], [6.6_9_3_1, 6.8_7_7_0, 6.8_9_3_3], [6.2_9_7_8, 7.0_3_6_6, 6.9_6_3_6]], [[-3.7_1_3_4, -3.6_7_1_2, -3.6_6_7_5], [-3.5_8_2_5, -3.3_5_4_9, -3.4_7_7_7], [-3.3_4_3_5, -3.3_9_7_9, -3.2_8_5_7]], [[-2.9_3_2_9, -2.8_0_0_3, -2.7_3_6_9], [-3.0_5_6_4, -2.4_7_8_0, -2.0_2_0_7], [-2.6_8_8_9, -1.9_2_9_8, -1.7_6_4_0]], ], device=lowerCamelCase, ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3], lowerCamelCase, atol=1E-4)) @slow def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[str] = MobileViTVaForSemanticSegmentation.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : Tuple = model.to(lowerCamelCase) _lowercase : str = MobileViTImageProcessor.from_pretrained('shehan97/mobilevitv2-1.0-voc-deeplabv3') _lowercase : int = prepare_img() _lowercase : Dict = image_processor(images=lowerCamelCase, return_tensors='pt').to(lowerCamelCase) # forward pass with torch.no_grad(): _lowercase : Union[str, Any] = model(**lowerCamelCase) _lowercase : Any = outputs.logits.detach().cpu() _lowercase : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase, target_sizes=[(50, 60)]) _lowercase : Any = torch.Size((50, 60)) self.assertEqual(segmentation[0].shape, lowerCamelCase) _lowercase : Optional[Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase) _lowercase : Optional[int] = torch.Size((32, 32)) self.assertEqual(segmentation[0].shape, lowerCamelCase)
21
0
def _UpperCamelCase (a__ :List[str] ): """simple docstring""" UpperCamelCase__ = [False] * len(lowercase__ ) UpperCamelCase__ = [-1] * len(lowercase__ ) def dfs(a__ :Optional[int] , a__ :str ): UpperCamelCase__ = True UpperCamelCase__ = c for u in graph[v]: if not visited[u]: dfs(lowercase__ , 1 - c ) for i in range(len(lowercase__ ) ): if not visited[i]: dfs(lowercase__ , 0 ) for i in range(len(lowercase__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph UpperCamelCase__ = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
362
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask UpperCamelCase__ = logging.getLogger(__name__) class __SCREAMING_SNAKE_CASE ( _a ): snake_case : str = """token-classification""" def __init__( self , __lowerCAmelCase ): if type(__lowerCAmelCase ) == dict: UpperCamelCase__ = Namespace(**__lowerCAmelCase ) UpperCamelCase__ = import_module("""tasks""" ) try: UpperCamelCase__ = getattr(__lowerCAmelCase , hparams.task_type ) UpperCamelCase__ = token_classification_task_clazz() except AttributeError: raise ValueError( f"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ f"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) UpperCamelCase__ = self.token_classification_task.get_labels(hparams.labels ) UpperCamelCase__ = CrossEntropyLoss().ignore_index super().__init__(__lowerCAmelCase , len(self.labels ) , self.mode ) def _lowerCamelCase ( self , **__lowerCAmelCase ): return self.model(**__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**__lowerCAmelCase ) UpperCamelCase__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def _lowerCamelCase ( self ): UpperCamelCase__ = self.hparams for mode in ["train", "dev", "test"]: UpperCamelCase__ = self._feature_file(__lowerCAmelCase ) if os.path.exists(__lowerCAmelCase ) and not args.overwrite_cache: logger.info("""Loading features from cached file %s""" , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase ) else: logger.info("""Creating features from dataset file at %s""" , args.data_dir ) UpperCamelCase__ = self.token_classification_task.read_examples_from_file(args.data_dir , __lowerCAmelCase ) UpperCamelCase__ = self.token_classification_task.convert_examples_to_features( __lowerCAmelCase , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ["""xlnet"""] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ["""xlnet"""] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=__lowerCAmelCase , pad_on_left=bool(self.config.model_type in ["""xlnet"""] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info("""Saving features into cached file %s""" , __lowerCAmelCase ) torch.save(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False ): UpperCamelCase__ = self._feature_file(__lowerCAmelCase ) logger.info("""Loading features from cached file %s""" , __lowerCAmelCase ) UpperCamelCase__ = torch.load(__lowerCAmelCase ) UpperCamelCase__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) UpperCamelCase__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: UpperCamelCase__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: UpperCamelCase__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) UpperCamelCase__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) , batch_size=__lowerCAmelCase ) def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase ): """Compute validation""" "" UpperCamelCase__ = {"""input_ids""": batch[0], """attention_mask""": batch[1], """labels""": batch[3]} if self.config.model_type != "distilbert": UpperCamelCase__ = ( batch[2] if self.config.model_type in ["""bert""", """xlnet"""] else None ) # XLM and RoBERTa don"t use token_type_ids UpperCamelCase__ = self(**__lowerCAmelCase ) UpperCamelCase__ , UpperCamelCase__ = outputs[:2] UpperCamelCase__ = logits.detach().cpu().numpy() UpperCamelCase__ = inputs["""labels"""].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def _lowerCamelCase ( self , __lowerCAmelCase ): UpperCamelCase__ = torch.stack([x["""val_loss"""] for x in outputs] ).mean() UpperCamelCase__ = np.concatenate([x["""pred"""] for x in outputs] , axis=0 ) UpperCamelCase__ = np.argmax(__lowerCAmelCase , axis=2 ) UpperCamelCase__ = np.concatenate([x["""target"""] for x in outputs] , axis=0 ) UpperCamelCase__ = dict(enumerate(self.labels ) ) UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] UpperCamelCase__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) UpperCamelCase__ = { """val_loss""": val_loss_mean, """accuracy_score""": accuracy_score(__lowerCAmelCase , __lowerCAmelCase ), """precision""": precision_score(__lowerCAmelCase , __lowerCAmelCase ), """recall""": recall_score(__lowerCAmelCase , __lowerCAmelCase ), """f1""": fa_score(__lowerCAmelCase , __lowerCAmelCase ), } UpperCamelCase__ = dict(results.items() ) UpperCamelCase__ = results return ret, preds_list, out_label_list def _lowerCamelCase ( self , __lowerCAmelCase ): # when stable UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(__lowerCAmelCase ) UpperCamelCase__ = ret["""log"""] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def _lowerCamelCase ( self , __lowerCAmelCase ): # updating to test_epoch_end instead of deprecated test_end UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self._eval_end(__lowerCAmelCase ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 UpperCamelCase__ = ret["""log"""] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def _lowerCamelCase ( __lowerCAmelCase , __lowerCAmelCase ): # Add NER specific options BaseTransformer.add_model_specific_args(__lowerCAmelCase , __lowerCAmelCase ) parser.add_argument( """--task_type""" , default="""NER""" , type=__lowerCAmelCase , help="""Task type to fine tune in training (e.g. NER, POS, etc)""" ) parser.add_argument( """--max_seq_length""" , default=128 , type=__lowerCAmelCase , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--labels""" , default="""""" , type=__lowerCAmelCase , help="""Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.""" , ) parser.add_argument( """--gpus""" , default=0 , type=__lowerCAmelCase , help="""The number of GPUs allocated for this, it is by default 0 meaning none""" , ) parser.add_argument( """--overwrite_cache""" , action="""store_true""" , help="""Overwrite the cached training and evaluation sets""" ) return parser if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) UpperCamelCase__ = NERTransformer.add_model_specific_args(parser, os.getcwd()) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = NERTransformer(args) UpperCamelCase__ = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 UpperCamelCase__ = sorted(glob.glob(os.path.join(args.output_dir, "checkpoint-epoch=*.ckpt"), recursive=True)) UpperCamelCase__ = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
87
0
"""simple docstring""" import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class SCREAMING_SNAKE_CASE ( a_ , a_ ): """simple docstring""" @register_to_config def __init__( self : Optional[int] ,lowercase_ : int = 1_2_8 ,lowercase_ : int = 2_5_6 ,lowercase_ : float = 2000.0 ,lowercase_ : int = 7_6_8 ,lowercase_ : int = 1_2 ,lowercase_ : int = 1_2 ,lowercase_ : int = 6_4 ,lowercase_ : int = 2_0_4_8 ,lowercase_ : float = 0.1 ,): super().__init__() lowerCAmelCase__ : str = nn.Sequential( nn.Linear(lowercase_ ,d_model * 4 ,bias=lowercase_ ) ,nn.SiLU() ,nn.Linear(d_model * 4 ,d_model * 4 ,bias=lowercase_ ) ,nn.SiLU() ,) lowerCAmelCase__ : List[str] = nn.Embedding(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[int] = False lowerCAmelCase__ : int = nn.Linear(lowercase_ ,lowercase_ ,bias=lowercase_ ) lowerCAmelCase__ : List[Any] = nn.Dropout(p=lowercase_ ) lowerCAmelCase__ : int = nn.ModuleList() for lyr_num in range(lowercase_ ): # FiLM conditional T5 decoder lowerCAmelCase__ : List[Any] = DecoderLayer(d_model=lowercase_ ,d_kv=lowercase_ ,num_heads=lowercase_ ,d_ff=lowercase_ ,dropout_rate=lowercase_ ) self.decoders.append(lowercase_ ) lowerCAmelCase__ : Dict = TaLayerNorm(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = nn.Dropout(p=lowercase_ ) lowerCAmelCase__ : Optional[int] = nn.Linear(lowercase_ ,lowercase_ ,bias=lowercase_ ) def __lowerCAmelCase ( self : Any ,lowercase_ : Union[str, Any] ,lowercase_ : int ): lowerCAmelCase__ : Dict = torch.mul(query_input.unsqueeze(-1 ) ,key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def __lowerCAmelCase ( self : List[str] ,lowercase_ : Union[str, Any] ,lowercase_ : Any ,lowercase_ : Any ): lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ : Any = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. lowerCAmelCase__ : int = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time ,embedding_dim=self.config.d_model ,max_period=self.config.max_decoder_noise_time ,).to(dtype=self.dtype ) lowerCAmelCase__ : str = self.conditioning_emb(lowercase_ ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) lowerCAmelCase__ : Dict = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. lowerCAmelCase__ : Tuple = torch.broadcast_to( torch.arange(lowercase_ ,device=decoder_input_tokens.device ) ,(batch, seq_length) ,) lowerCAmelCase__ : Tuple = self.position_encoding(lowercase_ ) lowerCAmelCase__ : Dict = self.continuous_inputs_projection(lowercase_ ) inputs += position_encodings lowerCAmelCase__ : List[Any] = self.dropout(lowercase_ ) # decoder: No padding present. lowerCAmelCase__ : Optional[Any] = torch.ones( decoder_input_tokens.shape[:2] ,device=decoder_input_tokens.device ,dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. lowerCAmelCase__ : Tuple = [(x, self.encoder_decoder_mask(lowercase_ ,lowercase_ )) for x, y in encodings_and_masks] # cross attend style: concat encodings lowerCAmelCase__ : Optional[int] = torch.cat([x[0] for x in encodings_and_encdec_masks] ,dim=1 ) lowerCAmelCase__ : int = torch.cat([x[1] for x in encodings_and_encdec_masks] ,dim=-1 ) for lyr in self.decoders: lowerCAmelCase__ : Any = lyr( lowercase_ ,conditioning_emb=lowercase_ ,encoder_hidden_states=lowercase_ ,encoder_attention_mask=lowercase_ ,)[0] lowerCAmelCase__ : Optional[Any] = self.decoder_norm(lowercase_ ) lowerCAmelCase__ : Optional[int] = self.post_dropout(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.spec_out(lowercase_ ) return spec_out class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] ,lowercase_ : Tuple ,lowercase_ : Tuple ,lowercase_ : List[str] ,lowercase_ : Any ,lowercase_ : str ,lowercase_ : Dict=1E-6 ): super().__init__() lowerCAmelCase__ : List[str] = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=lowercase_ ,d_kv=lowercase_ ,num_heads=lowercase_ ,dropout_rate=lowercase_ ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=lowercase_ ,d_kv=lowercase_ ,num_heads=lowercase_ ,dropout_rate=lowercase_ ,layer_norm_epsilon=lowercase_ ,) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=lowercase_ ,d_ff=lowercase_ ,dropout_rate=lowercase_ ,layer_norm_epsilon=lowercase_ ) ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : Any ,lowercase_ : Dict=None ,lowercase_ : Union[str, Any]=None ,lowercase_ : List[Any]=None ,lowercase_ : Tuple=None ,lowercase_ : List[str]=None ,): lowerCAmelCase__ : List[Any] = self.layer[0]( lowercase_ ,conditioning_emb=lowercase_ ,attention_mask=lowercase_ ,) if encoder_hidden_states is not None: lowerCAmelCase__ : Optional[Any] = torch.where(encoder_attention_mask > 0 ,0 ,-1E10 ).to( encoder_hidden_states.dtype ) lowerCAmelCase__ : Tuple = self.layer[1]( lowercase_ ,key_value_states=lowercase_ ,attention_mask=lowercase_ ,) # Apply Film Conditional Feed Forward layer lowerCAmelCase__ : int = self.layer[-1](lowercase_ ,lowercase_ ) return (hidden_states,) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : str ,lowercase_ : Tuple ,lowercase_ : Tuple ,lowercase_ : Dict ,lowercase_ : Tuple ): super().__init__() lowerCAmelCase__ : str = TaLayerNorm(lowercase_ ) lowerCAmelCase__ : Any = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowercase_ ) lowerCAmelCase__ : Any = Attention(query_dim=lowercase_ ,heads=lowercase_ ,dim_head=lowercase_ ,out_bias=lowercase_ ,scale_qk=lowercase_ ) lowerCAmelCase__ : Tuple = nn.Dropout(lowercase_ ) def __lowerCAmelCase ( self : int ,lowercase_ : List[Any] ,lowercase_ : Any=None ,lowercase_ : List[str]=None ,): # pre_self_attention_layer_norm lowerCAmelCase__ : str = self.layer_norm(lowercase_ ) if conditioning_emb is not None: lowerCAmelCase__ : Any = self.FiLMLayer(lowercase_ ,lowercase_ ) # Self-attention block lowerCAmelCase__ : int = self.attention(lowercase_ ) lowerCAmelCase__ : str = hidden_states + self.dropout(lowercase_ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : str ,lowercase_ : List[Any] ,lowercase_ : Union[str, Any] ,lowercase_ : Tuple ,lowercase_ : List[Any] ): super().__init__() lowerCAmelCase__ : Tuple = Attention(query_dim=lowercase_ ,heads=lowercase_ ,dim_head=lowercase_ ,out_bias=lowercase_ ,scale_qk=lowercase_ ) lowerCAmelCase__ : str = TaLayerNorm(lowercase_ ,eps=lowercase_ ) lowerCAmelCase__ : Dict = nn.Dropout(lowercase_ ) def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : Tuple ,lowercase_ : str=None ,lowercase_ : Any=None ,): lowerCAmelCase__ : int = self.layer_norm(lowercase_ ) lowerCAmelCase__ : int = self.attention( lowercase_ ,encoder_hidden_states=lowercase_ ,attention_mask=attention_mask.squeeze(1 ) ,) lowerCAmelCase__ : Optional[Any] = hidden_states + self.dropout(lowercase_ ) return layer_output class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Any ,lowercase_ : Any ,lowercase_ : int ,lowercase_ : int ,lowercase_ : str ): super().__init__() lowerCAmelCase__ : Tuple = TaDenseGatedActDense(d_model=lowercase_ ,d_ff=lowercase_ ,dropout_rate=lowercase_ ) lowerCAmelCase__ : Optional[int] = TaFiLMLayer(in_features=d_model * 4 ,out_features=lowercase_ ) lowerCAmelCase__ : str = TaLayerNorm(lowercase_ ,eps=lowercase_ ) lowerCAmelCase__ : str = nn.Dropout(lowercase_ ) def __lowerCAmelCase ( self : str ,lowercase_ : Optional[Any] ,lowercase_ : Optional[int]=None ): lowerCAmelCase__ : Any = self.layer_norm(lowercase_ ) if conditioning_emb is not None: lowerCAmelCase__ : str = self.film(lowercase_ ,lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.DenseReluDense(lowercase_ ) lowerCAmelCase__ : Any = hidden_states + self.dropout(lowercase_ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Union[str, Any] ,lowercase_ : Any ,lowercase_ : str ,lowercase_ : List[Any] ): super().__init__() lowerCAmelCase__ : List[Any] = nn.Linear(lowercase_ ,lowercase_ ,bias=lowercase_ ) lowerCAmelCase__ : str = nn.Linear(lowercase_ ,lowercase_ ,bias=lowercase_ ) lowerCAmelCase__ : Optional[int] = nn.Linear(lowercase_ ,lowercase_ ,bias=lowercase_ ) lowerCAmelCase__ : Optional[int] = nn.Dropout(lowercase_ ) lowerCAmelCase__ : Dict = NewGELUActivation() def __lowerCAmelCase ( self : Dict ,lowercase_ : Any ): lowerCAmelCase__ : Union[str, Any] = self.act(self.wi_a(lowercase_ ) ) lowerCAmelCase__ : Any = self.wi_a(lowercase_ ) lowerCAmelCase__ : List[str] = hidden_gelu * hidden_linear lowerCAmelCase__ : List[str] = self.dropout(lowercase_ ) lowerCAmelCase__ : Union[str, Any] = self.wo(lowercase_ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : Tuple ,lowercase_ : Optional[int] ,lowercase_ : Union[str, Any]=1E-6 ): super().__init__() lowerCAmelCase__ : str = nn.Parameter(torch.ones(lowercase_ ) ) lowerCAmelCase__ : int = eps def __lowerCAmelCase ( self : List[str] ,lowercase_ : str ): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 lowerCAmelCase__ : Union[str, Any] = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 ,keepdim=lowercase_ ) lowerCAmelCase__ : Tuple = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: lowerCAmelCase__ : str = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __lowerCAmelCase ( self : Tuple ,lowercase_ : torch.Tensor ): return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.04_4715 * torch.pow(lowercase_ ,3.0 )) )) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" def __init__( self : List[Any] ,lowercase_ : Optional[Any] ,lowercase_ : Union[str, Any] ): super().__init__() lowerCAmelCase__ : Dict = nn.Linear(lowercase_ ,out_features * 2 ,bias=lowercase_ ) def __lowerCAmelCase ( self : Dict ,lowercase_ : Dict ,lowercase_ : List[Any] ): lowerCAmelCase__ : Any = self.scale_bias(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = torch.chunk(lowercase_ ,2 ,-1 ) lowerCAmelCase__ : int = x * (1 + scale) + shift return x
106
'''simple docstring''' import heapq as hq import math from collections.abc import Iterator class A__ : """simple docstring""" def __init__( self : Any , lowerCAmelCase__ : Any ) -> Dict: """simple docstring""" _UpperCAmelCase : Union[str, Any] = str(id_ ) _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : Dict = None _UpperCAmelCase : Tuple = [] _UpperCAmelCase : int = {} # {vertex:distance} def __lt__( self : List[str] , lowerCAmelCase__ : str ) -> List[str]: """simple docstring""" return self.key < other.key def __repr__( self : int ) -> Any: """simple docstring""" return self.id def _lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase__ : Optional[Any] ) -> Any: """simple docstring""" self.neighbors.append(lowerCAmelCase__ ) def _lowerCAmelCase ( self : Any , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] ) -> Tuple: """simple docstring""" _UpperCAmelCase : Optional[Any] = weight def __UpperCAmelCase ( a_: Any, a_: Optional[Any], a_: Optional[Any], a_: List[str] ): # add the neighbors: graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1], a_ ) graph[b - 1].add_edge(graph[a - 1], a_ ) def __UpperCAmelCase ( a_: list, a_: Vertex ): _UpperCAmelCase : Optional[int] = [] for u in graph: _UpperCAmelCase : Dict = math.inf _UpperCAmelCase : Any = None _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = graph[:] while q: _UpperCAmelCase : List[Any] = min(a_ ) q.remove(a_ ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): _UpperCAmelCase : Optional[Any] = u _UpperCAmelCase : List[Any] = u.edges[v.id] for i in range(1, len(a_ ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def __UpperCAmelCase ( a_: list, a_: Vertex ): for u in graph: _UpperCAmelCase : Optional[Any] = math.inf _UpperCAmelCase : str = None _UpperCAmelCase : Optional[Any] = 0 _UpperCAmelCase : List[str] = list(a_ ) hq.heapify(a_ ) while h: _UpperCAmelCase : str = hq.heappop(a_ ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): _UpperCAmelCase : Any = u _UpperCAmelCase : Optional[int] = u.edges[v.id] hq.heapify(a_ ) for i in range(1, len(a_ ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def __UpperCAmelCase ( ): pass if __name__ == "__main__": import doctest doctest.testmod()
145
0
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging UpperCAmelCase_ = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> Union[str, Any]: '''simple docstring''' if "xprophetnet" in prophetnet_checkpoint_path: _snake_case = XLMProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = XLMProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) else: _snake_case = ProphetNetForConditionalGenerationOld.from_pretrained(UpperCamelCase__ ) _snake_case , _snake_case = ProphetNetForConditionalGeneration.from_pretrained( UpperCamelCase__ , output_loading_info=UpperCamelCase__ ) _snake_case = ['key_proj', 'value_proj', 'query_proj'] _snake_case = { 'self_attn': 'ngram_self_attn', 'cross_attn': 'encoder_attn', 'cross_attn_layer_norm': 'encoder_attn_layer_norm', 'feed_forward_layer_norm': 'final_layer_norm', 'feed_forward': '', 'intermediate': 'fc1', 'output': 'fc2', 'key_proj': 'k_proj', 'query_proj': 'q_proj', 'value_proj': 'v_proj', 'word_embeddings': 'embed_tokens', 'embeddings_layer_norm': 'emb_layer_norm', 'relative_pos_embeddings': 'relative_linear', 'ngram_embeddings': 'ngram_input_embed', 'position_embeddings': 'embed_positions', } for key in loading_info["missing_keys"]: _snake_case = key.split('.' ) if attributes[0] == "lm_head": _snake_case = prophet _snake_case = prophet_old else: _snake_case = prophet.prophetnet _snake_case = prophet_old.model _snake_case = False for attribute in attributes: if attribute in mapping: _snake_case = mapping[attribute] if not hasattr(UpperCamelCase__ , UpperCamelCase__ ) and len(UpperCamelCase__ ) > 0: _snake_case = attribute elif hasattr(UpperCamelCase__ , UpperCamelCase__ ): _snake_case = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" _snake_case = old_model.weight logger.info(F'''{attribute} is initialized.''' ) _snake_case = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" _snake_case = old_model.bias logger.info(F'''{attribute} is initialized''' ) _snake_case = True break elif attribute in special_keys and hasattr(UpperCamelCase__ , 'in_proj_weight' ): _snake_case = old_model.in_proj_weight.shape[0] // 3 _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": _snake_case = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) _snake_case = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) _snake_case = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 512, "We want 512 position_embeddings." _snake_case = nn.Parameter(old_model.embed_positions.weight[:512, :] ) _snake_case = True break if attribute.isdigit(): _snake_case = model[int(UpperCamelCase__ )] _snake_case = old_model[int(UpperCamelCase__ )] else: _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if old_attribute == "": _snake_case = old_model else: if not hasattr(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError(F'''{old_model} does not have {old_attribute}''' ) _snake_case = getattr(UpperCamelCase__ , UpperCamelCase__ ) if not is_key_init: raise ValueError(F'''{key} was not correctly initialized!''' ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) prophet.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--prophetnet_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) UpperCAmelCase_ = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
295
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def lowerCamelCase__ ( UpperCamelCase__ : int ) -> List[str]: '''simple docstring''' _snake_case = VideoMAEConfig() set_architecture_configs(UpperCamelCase__ , UpperCamelCase__ ) if "finetuned" not in model_name: _snake_case = False if "finetuned" in model_name: _snake_case = 'huggingface/label-files' if "kinetics" in model_name: _snake_case = 400 _snake_case = 'kinetics400-id2label.json' elif "ssv2" in model_name: _snake_case = 174 _snake_case = 'something-something-v2-id2label.json' else: raise ValueError('Model name should either contain \'kinetics\' or \'ssv2\' in case it\'s fine-tuned.' ) _snake_case = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type='dataset' ) , 'r' ) ) _snake_case = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} _snake_case = idalabel _snake_case = {v: k for k, v in idalabel.items()} return config def lowerCamelCase__ ( UpperCamelCase__ : str , UpperCamelCase__ : Dict ) -> int: '''simple docstring''' if "small" in model_name: _snake_case = 384 _snake_case = 1_536 _snake_case = 12 _snake_case = 16 _snake_case = 12 _snake_case = 3 _snake_case = 192 _snake_case = 768 elif "large" in model_name: _snake_case = 1_024 _snake_case = 4_096 _snake_case = 24 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 512 _snake_case = 2_048 elif "huge" in model_name: _snake_case = 1_280 _snake_case = 5_120 _snake_case = 32 _snake_case = 16 _snake_case = 12 _snake_case = 8 _snake_case = 640 _snake_case = 2_560 elif "base" not in model_name: raise ValueError('Model name should include either "small", "base", "large", or "huge"' ) def lowerCamelCase__ ( UpperCamelCase__ : Any ) -> Tuple: '''simple docstring''' if "encoder." in name: _snake_case = name.replace('encoder.' , '' ) if "cls_token" in name: _snake_case = name.replace('cls_token' , 'videomae.embeddings.cls_token' ) if "decoder_pos_embed" in name: _snake_case = name.replace('decoder_pos_embed' , 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: _snake_case = name.replace('pos_embed' , 'videomae.embeddings.position_embeddings' ) if "patch_embed.proj" in name: _snake_case = name.replace('patch_embed.proj' , 'videomae.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _snake_case = name.replace('patch_embed.norm' , 'videomae.embeddings.norm' ) if "decoder.blocks" in name: _snake_case = name.replace('decoder.blocks' , 'decoder.decoder_layers' ) if "blocks" in name: _snake_case = name.replace('blocks' , 'videomae.encoder.layer' ) if "attn.proj" in name: _snake_case = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "bias" not in name: _snake_case = name.replace('attn' , 'attention.self' ) if "attn" in name: _snake_case = name.replace('attn' , 'attention.attention' ) if "norm1" in name: _snake_case = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _snake_case = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _snake_case = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _snake_case = name.replace('mlp.fc2' , 'output.dense' ) if "decoder_embed" in name: _snake_case = name.replace('decoder_embed' , 'decoder.decoder_embed' ) if "decoder_norm" in name: _snake_case = name.replace('decoder_norm' , 'decoder.decoder_norm' ) if "decoder_pred" in name: _snake_case = name.replace('decoder_pred' , 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.weight' , 'videomae.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: _snake_case = name.replace('norm.bias' , 'videomae.layernorm.bias' ) if "head" in name and "decoder" not in name: _snake_case = name.replace('head' , 'classifier' ) return name def lowerCamelCase__ ( UpperCamelCase__ : Any , UpperCamelCase__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): _snake_case = orig_state_dict.pop(UpperCamelCase__ ) if key.startswith('encoder.' ): _snake_case = key.replace('encoder.' , '' ) if "qkv" in key: _snake_case = key.split('.' ) if key.startswith('decoder.blocks' ): _snake_case = config.decoder_hidden_size _snake_case = int(key_split[2] ) _snake_case = 'decoder.decoder_layers.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = config.hidden_size _snake_case = int(key_split[1] ) _snake_case = 'videomae.encoder.layer.' if "weight" in key: _snake_case = val[:dim, :] _snake_case = val[dim : dim * 2, :] _snake_case = val[-dim:, :] else: _snake_case = val return orig_state_dict def lowerCamelCase__ ( ) -> Union[str, Any]: '''simple docstring''' _snake_case = hf_hub_download( repo_id='hf-internal-testing/spaghetti-video' , filename='eating_spaghetti.npy' , repo_type='dataset' ) _snake_case = np.load(UpperCamelCase__ ) return list(UpperCamelCase__ ) def lowerCamelCase__ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' _snake_case = get_videomae_config(UpperCamelCase__ ) if "finetuned" in model_name: _snake_case = VideoMAEForVideoClassification(UpperCamelCase__ ) else: _snake_case = VideoMAEForPreTraining(UpperCamelCase__ ) # download original checkpoint, hosted on Google Drive _snake_case = 'pytorch_model.bin' gdown.cached_download(UpperCamelCase__ , UpperCamelCase__ , quiet=UpperCamelCase__ ) _snake_case = torch.load(UpperCamelCase__ , map_location='cpu' ) if "model" in files: _snake_case = files['model'] else: _snake_case = files['module'] _snake_case = convert_state_dict(UpperCamelCase__ , UpperCamelCase__ ) model.load_state_dict(UpperCamelCase__ ) model.eval() # verify model on basic input _snake_case = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) _snake_case = prepare_video() _snake_case = image_processor(UpperCamelCase__ , return_tensors='pt' ) if "finetuned" not in model_name: _snake_case = hf_hub_download(repo_id='hf-internal-testing/bool-masked-pos' , filename='bool_masked_pos.pt' ) _snake_case = torch.load(UpperCamelCase__ ) _snake_case = model(**UpperCamelCase__ ) _snake_case = outputs.logits _snake_case = [ 'videomae-small-finetuned-kinetics', 'videomae-small-finetuned-ssv2', # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) 'videomae-base-short', 'videomae-base-short-finetuned-kinetics', 'videomae-base', 'videomae-base-finetuned-kinetics', 'videomae-large', 'videomae-large-finetuned-kinetics', 'videomae-huge-finetuned-kinetics', # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) 'videomae-base-short-ssv2', 'videomae-base-short-finetuned-ssv2', 'videomae-base-ssv2', 'videomae-base-finetuned-ssv2', ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one _snake_case = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": _snake_case = torch.Size([1, 400] ) _snake_case = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": _snake_case = torch.Size([1, 1_408, 1_536] ) _snake_case = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": _snake_case = torch.Size([1, 174] ) _snake_case = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'''Model name not supported. Should be one of {model_names}''' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) else: print('Logits:' , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , UpperCamelCase__ , atol=1e-4 ) print('Logits ok!' ) # verify loss, if applicable if model_name == "videomae-base-short": _snake_case = outputs.loss assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ , atol=1e-4 ) print('Loss ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCamelCase__ ) model.save_pretrained(UpperCamelCase__ ) if push_to_hub: print('Pushing to the hub...' ) model.push_to_hub(UpperCamelCase__ , organization='nielsr' ) if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4""", type=str, help=( """URL of the original PyTorch checkpoint (on Google Drive) you'd like to convert. Should be a direct""" """ download link.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default="""/Users/nielsrogge/Documents/VideoMAE/Test""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--model_name""", default="""videomae-base""", type=str, help="""Name of the model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) UpperCAmelCase_ = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
295
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _a = logging.get_logger(__name__) _a = {'''openai-gpt''': '''https://huggingface.co/openai-gpt/resolve/main/config.json'''} class __lowerCamelCase ( __UpperCamelCase): """simple docstring""" UpperCamelCase__ = 'openai-gpt' UpperCamelCase__ = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , UpperCAmelCase=4_0478 , UpperCAmelCase=512 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1e-5 , UpperCAmelCase=0.02 , UpperCAmelCase="cls_index" , UpperCAmelCase=True , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=0.1 , **UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_embd _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = afn _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = summary_type _UpperCAmelCase = summary_use_proj _UpperCAmelCase = summary_activation _UpperCAmelCase = summary_first_dropout _UpperCAmelCase = summary_proj_to_labels super().__init__(**lowerCAmelCase__ )
39
import argparse import random import joblib import numpy as np import torch from igf.igf import ( SecondaryLearner, collect_objective_set, compute_perplexity, generate_datasets, load_gpta, recopy_gpta, set_seed, train_secondary_learner, ) from torch.utils.data import DataLoader, RandomSampler from transformers import GPTaLMHeadModel def snake_case_ ( snake_case=32 , snake_case=10 , snake_case=1_00 , snake_case=10_26 , snake_case=True , snake_case="data/tokenized_stories_train_wikitext103.jbl" , snake_case="igf_context_pairs.jbl" , ) -> Union[str, Any]: set_seed(3 ) # generate train_data and objective_set lowercase__ , lowercase__: List[str] = generate_datasets( snake_case , snake_case , number=snake_case , min_len=10_26 , trim=snake_case ) # keeps model same across runs set_seed(4 ) # model, lm_optimizer, lm_scheduler = recopy_gpt2(model, device, max_steps) # store original model weights # can we train on GPU? lowercase__: Optional[Any] = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) # load pretrained model lowercase__: str = load_gpta('gpt2' ).to(snake_case ) print('computing perplexity on objective set' ) lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ).item() print('perplexity on objective set:' , snake_case ) # collect igf pairs and save to file demo.jbl collect_objective_set(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) # clean up, delete model and data we don't need anymore del model, train_data, objective_set torch.cuda.empty_cache() def snake_case_ ( snake_case , snake_case=15 , snake_case=1_28 , snake_case=1_00 , snake_case="igf_model.pt" , ) -> Optional[Any]: set_seed(42 ) # Load pre-trained model lowercase__: Any = GPTaLMHeadModel.from_pretrained('gpt2' ) # Initialize secondary learner to use embedding weights of model lowercase__: Any = SecondaryLearner(snake_case ) # Train secondary learner lowercase__: Tuple = train_secondary_learner( snake_case , snake_case , max_epochs=snake_case , batch_size=snake_case , eval_freq=1_00 , igf_model_path=snake_case , ) del model, secondary_learner_train_data torch.cuda.empty_cache() return secondary_learner def snake_case_ ( snake_case , snake_case , snake_case , snake_case=32 , snake_case=10_00 , snake_case=16 , snake_case=1.0 , snake_case=recopy_gpta , snake_case=None , snake_case=10 , snake_case="gpt2_finetuned.pt" , ) -> Tuple: lowercase__: Dict = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu' ) lowercase__: Optional[int] = RandomSampler(snake_case ) lowercase__: Optional[int] = DataLoader(snake_case , sampler=snake_case ) lowercase__: int = max_steps // (len(snake_case )) + 1 lowercase__: Union[str, Any] = 0 lowercase__: Optional[Any] = torch.zeros((1, context_len) , dtype=torch.long , device=snake_case ) lowercase__ , lowercase__ , lowercase__: Union[str, Any] = recopy_model(snake_case , snake_case , snake_case ) model.train() if secondary_learner is not None: secondary_learner.to(snake_case ) secondary_learner.eval() lowercase__: List[Any] = [] lowercase__: str = 0 lowercase__: Tuple = [] lowercase__: Dict = [] # Compute the performance of the transformer model at the beginning lowercase__: Optional[Any] = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) for epoch in range(int(snake_case ) ): for step, example in enumerate(snake_case ): torch.cuda.empty_cache() lowercase__: Union[str, Any] = random.randint(0 , example.size(2 ) - context_len - 1 ) lowercase__: Dict = example[0, 0, start : start + context_len] lm_optimizer.zero_grad() lowercase__: Union[str, Any] = model(snake_case , labels=snake_case ) lowercase__: Tuple = True if secondary_learner is not None: lowercase__: Optional[Any] = secondary_learner.forward( torch.tensor(snake_case , dtype=torch.long , device=snake_case ).unsqueeze(0 ) )[0].item() observed_qs.append(float(snake_case ) ) # Here we implement the simple non-constant threshold for the predicted IG(X) value # We will decay the selectivity of our secondary learner filter from # 1 standard deviation above average to 1 below average after 10 batches. if global_step == 10: lowercase__: Optional[Any] = -1 if predicted_q < threshold: lowercase__: str = False # If we passed the filter, add the context to the batch! if do_backprop: contexts.append(np.array(context.cpu() ) ) lowercase__: List[Any] = outputs[0] lm_loss.backward() examples += 1 del outputs # Once the batch is filled with enough contexts, backprop on the batch. if examples == batch_size: torch.cuda.empty_cache() lowercase__: Any = 0 # Do LM backprop torch.nn.utils.clip_grad_norm_(model.parameters() , 3.0 ) lm_optimizer.step() lm_scheduler.step() # Update learning rate schedule global_step += 1 # Compute the performance of the transformer model at this batch if global_step % eval_interval == 0: lowercase__: int = compute_perplexity(snake_case , snake_case , snake_case ) test_perps.append(snake_case ) print('Test perplexity, step' , snake_case , ':' , snake_case ) # Break out of the loop after 60 batches if max_steps > 0 and global_step > 60: break if max_steps > 0 and global_step > 60: break # save finetuned transformer model torch.save(model.state_dict() , snake_case ) torch.cuda.empty_cache() # Do some cleaning up so we can reinitialize for the next run of this function del lm_optimizer del lm_scheduler return model def snake_case_ ( ) -> str: lowercase__: Tuple = argparse.ArgumentParser(description='Fine-tune a transformer model with IGF on a language modeling task' ) # Required parameters parser.add_argument( '--data_dir' , default=snake_case , type=snake_case , required=snake_case , help='The input data dir. Should contain data files for WikiText.' , ) parser.add_argument( '--model_name_or_path' , default=snake_case , type=snake_case , required=snake_case , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--data_file' , type=snake_case , default=snake_case , help=( 'A jbl file containing tokenized data which can be split as objective dataset, ' 'train_dataset and test_dataset.' ) , ) parser.add_argument( '--igf_data_file' , type=snake_case , default=snake_case , help='A jbl file containing the context and information gain pairs to train secondary learner.' , ) parser.add_argument( '--output_dir' , default=snake_case , type=snake_case , required=snake_case , help='The output directory where the final fine-tuned model is stored.' , ) parser.add_argument( '--tokenizer_name' , default=snake_case , type=snake_case , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument('--seed' , type=snake_case , default=snake_case , help='A seed for reproducible training.' ) parser.add_argument( '--context_len' , default=32 , type=snake_case , help=( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) , ) parser.add_argument( '--size_objective_set' , default=1_00 , type=snake_case , help='number of articles that are long enough to be used as our objective set' , ) parser.add_argument( '--eval_freq' , default=1_00 , type=snake_case , help='secondary model evaluation is triggered at eval_freq' ) parser.add_argument('--max_steps' , default=10_00 , type=snake_case , help='To calculate training epochs' ) parser.add_argument( '--secondary_learner_batch_size' , default=1_28 , type=snake_case , help='batch size of training data for secondary learner' , ) parser.add_argument( '--batch_size' , default=16 , type=snake_case , help='batch size of training data of language model(gpt2) ' ) parser.add_argument( '--eval_interval' , default=10 , type=snake_case , help=( 'decay the selectivity of our secondary learner filter from' '1 standard deviation above average to 1 below average after 10 batches' ) , ) parser.add_argument( '--number' , default=1_00 , type=snake_case , help='The number of examples split to be used as objective_set/test_data' ) parser.add_argument( '--min_len' , default=10_26 , type=snake_case , help='The minimum length of the article to be used as objective set' ) parser.add_argument( '--secondary_learner_max_epochs' , default=15 , type=snake_case , help='number of epochs to train secondary learner' ) parser.add_argument('--trim' , default=snake_case , type=snake_case , help='truncate the example if it exceeds context length' ) parser.add_argument( '--threshold' , default=1.0 , type=snake_case , help=( 'The threshold value used by secondary learner to filter the train_data and allow only' ' informative data as input to the model' ) , ) parser.add_argument('--finetuned_model_name' , default='gpt2_finetuned.pt' , type=snake_case , help='finetuned_model_name' ) parser.add_argument( '--recopy_model' , default=snake_case , type=snake_case , help='Reset the model to the original pretrained GPT-2 weights after each iteration' , ) # function calls # Collecting *n* pairs of context and information gain(X, IG(X)) for training the secondary learner generate_n_pairs( context_len=32 , max_steps=10 , size_objective_set=1_00 , min_len=10_26 , trim=snake_case , data_file='data/tokenized_stories_train_wikitext103.jbl' , igf_data_file='igf_context_pairs.jbl' , ) # Load train data for secondary learner lowercase__: Tuple = joblib.load('data/IGF_values.jbl' ) # Train secondary learner lowercase__: List[str] = training_secondary_learner( snake_case , secondary_learner_max_epochs=15 , secondary_learner_batch_size=1_28 , eval_freq=1_00 , igf_model_path='igf_model.pt' , ) # load pretrained gpt2 model lowercase__: Dict = GPTaLMHeadModel.from_pretrained('gpt2' ) set_seed(42 ) # Generate train and test data to train and evaluate gpt2 model lowercase__ , lowercase__: Tuple = generate_datasets( context_len=32 , file='data/tokenized_stories_train_wikitext103.jbl' , number=1_00 , min_len=10_26 , trim=snake_case ) # fine-tuning of the gpt2 model using igf (Information Gain Filtration) finetune( snake_case , snake_case , snake_case , context_len=32 , max_steps=10_00 , batch_size=16 , threshold=1.0 , recopy_model=snake_case , secondary_learner=snake_case , eval_interval=10 , finetuned_model_name='gpt2_finetuned.pt' , ) if __name__ == "__main__": main()
196
0
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class UpperCamelCase ( unittest.TestCase , snake_case ): """simple docstring""" def lowerCamelCase__ ( self ): _lowercase : Union[str, Any] = load_tool("""text-classification""" ) self.tool.setup() _lowercase : Tuple = load_tool("""text-classification""" ,remote=UpperCAmelCase_ ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.remote_tool("""That's quite cool""" ,["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" ) def lowerCamelCase__ ( self ): _lowercase : Any = self.tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" ) def lowerCamelCase__ ( self ): _lowercase : Optional[Any] = self.remote_tool(text="""That's quite cool""" ,labels=["""positive""", """negative"""] ) self.assertEqual(UpperCAmelCase_ ,"""positive""" )
336
"""simple docstring""" import numpy as np import skfuzzy as fuzz if __name__ == "__main__": # Create universe of discourse in Python using linspace () UpperCAmelCase: Optional[Any] = np.linspace(start=0, stop=75, num=75, endpoint=True, retstep=False) # Create two fuzzy sets by defining any membership function # (trapmf(), gbellmf(), gaussmf(), etc). UpperCAmelCase: Tuple = [0, 25, 50] UpperCAmelCase: List[Any] = [25, 50, 75] UpperCAmelCase: Optional[int] = fuzz.membership.trimf(X, abca) UpperCAmelCase: Any = fuzz.membership.trimf(X, abca) # Compute the different operations using inbuilt functions. UpperCAmelCase: List[Any] = np.ones(75) UpperCAmelCase: Any = np.zeros((75,)) # 1. Union = max(µA(x), µB(x)) UpperCAmelCase: str = fuzz.fuzzy_or(X, young, X, middle_aged)[1] # 2. Intersection = min(µA(x), µB(x)) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, middle_aged)[1] # 3. Complement (A) = (1- min(µA(x)) UpperCAmelCase: List[Any] = fuzz.fuzzy_not(young) # 4. Difference (A/B) = min(µA(x),(1- µB(x))) UpperCAmelCase: Optional[int] = fuzz.fuzzy_and(X, young, X, fuzz.fuzzy_not(middle_aged)[1])[1] # 5. Algebraic Sum = [µA(x) + µB(x) – (µA(x) * µB(x))] UpperCAmelCase: int = young + middle_aged - (young * middle_aged) # 6. Algebraic Product = (µA(x) * µB(x)) UpperCAmelCase: int = young * middle_aged # 7. Bounded Sum = min[1,(µA(x), µB(x))] UpperCAmelCase: List[Any] = fuzz.fuzzy_and(X, one, X, young + middle_aged)[1] # 8. Bounded difference = min[0,(µA(x), µB(x))] UpperCAmelCase: int = fuzz.fuzzy_or(X, zero, X, young - middle_aged)[1] # max-min composition # max-product composition # Plot each set A, set B and each operation result using plot() and subplot(). from matplotlib import pyplot as plt plt.figure() plt.subplot(4, 3, 1) plt.plot(X, young) plt.title("""Young""") plt.grid(True) plt.subplot(4, 3, 2) plt.plot(X, middle_aged) plt.title("""Middle aged""") plt.grid(True) plt.subplot(4, 3, 3) plt.plot(X, union) plt.title("""union""") plt.grid(True) plt.subplot(4, 3, 4) plt.plot(X, intersection) plt.title("""intersection""") plt.grid(True) plt.subplot(4, 3, 5) plt.plot(X, complement_a) plt.title("""complement_a""") plt.grid(True) plt.subplot(4, 3, 6) plt.plot(X, difference) plt.title("""difference a/b""") plt.grid(True) plt.subplot(4, 3, 7) plt.plot(X, alg_sum) plt.title("""alg_sum""") plt.grid(True) plt.subplot(4, 3, 8) plt.plot(X, alg_product) plt.title("""alg_product""") plt.grid(True) plt.subplot(4, 3, 9) plt.plot(X, bdd_sum) plt.title("""bdd_sum""") plt.grid(True) plt.subplot(4, 3, 10) plt.plot(X, bdd_difference) plt.title("""bdd_difference""") plt.grid(True) plt.subplots_adjust(hspace=0.5) plt.show()
336
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A : Union[str, Any] = logging.get_logger(__name__) A : int = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCamelCase : Any = '''xlm-roberta''' def __init__( self : Optional[Any] , __lowerCAmelCase : List[Any]=3_05_22 , __lowerCAmelCase : int=7_68 , __lowerCAmelCase : Tuple=12 , __lowerCAmelCase : str=12 , __lowerCAmelCase : Union[str, Any]=30_72 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Optional[int]=0.1 , __lowerCAmelCase : Dict=0.1 , __lowerCAmelCase : List[str]=5_12 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : Dict=0.0_2 , __lowerCAmelCase : List[str]=1e-12 , __lowerCAmelCase : Union[str, Any]=1 , __lowerCAmelCase : str=0 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : Tuple="absolute" , __lowerCAmelCase : Any=True , __lowerCAmelCase : Any=None , **__lowerCAmelCase : str , ) -> Optional[Any]: """simple docstring""" super().__init__(pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = hidden_act A__ = intermediate_size A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = initializer_range A__ = layer_norm_eps A__ = position_embedding_type A__ = use_cache A__ = classifier_dropout class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def a_ ( self : int ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": A__ = {0: """batch""", 1: """choice""", 2: """sequence"""} else: A__ = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
274
import argparse import csv import logging import os import random import numpy as np import torch from torch.utils.data import DataLoader, RandomSampler, SequentialSampler, TensorDataset from tqdm import tqdm, trange from transformers import ( CONFIG_NAME, WEIGHTS_NAME, AdamW, OpenAIGPTDoubleHeadsModel, OpenAIGPTTokenizer, get_linear_schedule_with_warmup, ) logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) A : Tuple = logging.getLogger(__name__) def __lowerCamelCase ( __a :Optional[int] , __a :List[str] ) -> Tuple: """simple docstring""" A__ = np.argmax(__a , axis=1 ) return np.sum(outputs == labels ) def __lowerCamelCase ( __a :Tuple ) -> Dict: """simple docstring""" with open(__a , encoding="""utf_8""" ) as f: A__ = csv.reader(__a ) A__ = [] next(__a ) # skip the first line for line in tqdm(__a ): output.append((""" """.join(line[1:5] ), line[5], line[6], int(line[-1] ) - 1) ) return output def __lowerCamelCase ( __a :Optional[int] , __a :List[Any] , __a :Dict , __a :Optional[Any] , __a :Optional[Any] , __a :int ) -> Union[str, Any]: """simple docstring""" A__ = [] for dataset in encoded_datasets: A__ = len(__a ) A__ = np.zeros((n_batch, 2, input_len) , dtype=np.intaa ) A__ = np.zeros((n_batch, 2) , dtype=np.intaa ) A__ = np.full((n_batch, 2, input_len) , fill_value=-1_0_0 , dtype=np.intaa ) A__ = np.zeros((n_batch,) , dtype=np.intaa ) for ( i, (story, conta, conta, mc_label), ) in enumerate(__a ): A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = [start_token] + story[:cap_length] + [delimiter_token] + conta[:cap_length] + [clf_token] A__ = with_conta A__ = with_conta A__ = len(__a ) - 1 A__ = len(__a ) - 1 A__ = with_conta A__ = with_conta A__ = mc_label A__ = (input_ids, mc_token_ids, lm_labels, mc_labels) tensor_datasets.append(tuple(torch.tensor(__a ) for t in all_inputs ) ) return tensor_datasets def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" A__ = argparse.ArgumentParser() parser.add_argument("""--model_name""" , type=__a , default="""openai-gpt""" , help="""pretrained model name""" ) parser.add_argument("""--do_train""" , action="""store_true""" , help="""Whether to run training.""" ) parser.add_argument("""--do_eval""" , action="""store_true""" , help="""Whether to run eval on the dev set.""" ) parser.add_argument( """--output_dir""" , default=__a , type=__a , required=__a , help="""The output directory where the model predictions and checkpoints will be written.""" , ) parser.add_argument("""--train_dataset""" , type=__a , default="""""" ) parser.add_argument("""--eval_dataset""" , type=__a , default="""""" ) parser.add_argument("""--seed""" , type=__a , default=4_2 ) parser.add_argument("""--num_train_epochs""" , type=__a , default=3 ) parser.add_argument("""--train_batch_size""" , type=__a , default=8 ) parser.add_argument("""--eval_batch_size""" , type=__a , default=1_6 ) parser.add_argument("""--adam_epsilon""" , default=1E-8 , type=__a , help="""Epsilon for Adam optimizer.""" ) parser.add_argument("""--max_grad_norm""" , type=__a , default=1 ) parser.add_argument( """--max_steps""" , default=-1 , type=__a , help=( """If > 0: set total number of training steps to perform. Override num_train_epochs.""" ) , ) parser.add_argument( """--gradient_accumulation_steps""" , type=__a , default=1 , help="""Number of updates steps to accumulate before performing a backward/update pass.""" , ) parser.add_argument("""--learning_rate""" , type=__a , default=6.25E-5 ) parser.add_argument("""--warmup_steps""" , default=0 , type=__a , help="""Linear warmup over warmup_steps.""" ) parser.add_argument("""--lr_schedule""" , type=__a , default="""warmup_linear""" ) parser.add_argument("""--weight_decay""" , type=__a , default=0.01 ) parser.add_argument("""--lm_coef""" , type=__a , default=0.9 ) parser.add_argument("""--n_valid""" , type=__a , default=3_7_4 ) parser.add_argument("""--server_ip""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) parser.add_argument("""--server_port""" , type=__a , default="""""" , help="""Can be used for distant debugging.""" ) A__ = parser.parse_args() print(__a ) if args.server_ip and args.server_port: # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script import ptvsd print("""Waiting for debugger attach""" ) ptvsd.enable_attach(address=(args.server_ip, args.server_port) , redirect_output=__a ) ptvsd.wait_for_attach() random.seed(args.seed ) np.random.seed(args.seed ) torch.manual_seed(args.seed ) torch.cuda.manual_seed_all(args.seed ) A__ = torch.device("""cuda""" if torch.cuda.is_available() else """cpu""" ) A__ = torch.cuda.device_count() logger.info("""device: {}, n_gpu {}""".format(__a , __a ) ) if not args.do_train and not args.do_eval: raise ValueError("""At least one of `do_train` or `do_eval` must be True.""" ) if not os.path.exists(args.output_dir ): os.makedirs(args.output_dir ) # Load tokenizer and model # This loading functions also add new tokens and embeddings called `special tokens` # These new embeddings will be fine-tuned on the RocStories dataset A__ = ["""_start_""", """_delimiter_""", """_classify_"""] A__ = OpenAIGPTTokenizer.from_pretrained(args.model_name ) tokenizer.add_tokens(__a ) A__ = tokenizer.convert_tokens_to_ids(__a ) A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.model_name ) model.resize_token_embeddings(len(__a ) ) model.to(__a ) # Load and encode the datasets def tokenize_and_encode(__a :Tuple ): if isinstance(__a , __a ): return tokenizer.convert_tokens_to_ids(tokenizer.tokenize(__a ) ) elif isinstance(__a , __a ): return obj return [tokenize_and_encode(__a ) for o in obj] logger.info("""Encoding dataset...""" ) A__ = load_rocstories_dataset(args.train_dataset ) A__ = load_rocstories_dataset(args.eval_dataset ) A__ = (train_dataset, eval_dataset) A__ = tokenize_and_encode(__a ) # Compute the max input length for the Transformer A__ = model.config.n_positions // 2 - 2 A__ = max( len(story[:max_length] ) + max(len(conta[:max_length] ) , len(conta[:max_length] ) ) + 3 for dataset in encoded_datasets for story, conta, conta, _ in dataset ) A__ = min(__a , model.config.n_positions ) # Max size of input for the pre-trained model # Prepare inputs tensors and dataloaders A__ = pre_process_datasets(__a , __a , __a , *__a ) A__ , A__ = tensor_datasets[0], tensor_datasets[1] A__ = TensorDataset(*__a ) A__ = RandomSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.train_batch_size ) A__ = TensorDataset(*__a ) A__ = SequentialSampler(__a ) A__ = DataLoader(__a , sampler=__a , batch_size=args.eval_batch_size ) # Prepare optimizer if args.do_train: if args.max_steps > 0: A__ = args.max_steps A__ = args.max_steps // (len(__a ) // args.gradient_accumulation_steps) + 1 else: A__ = len(__a ) // args.gradient_accumulation_steps * args.num_train_epochs A__ = list(model.named_parameters() ) A__ = ["""bias""", """LayerNorm.bias""", """LayerNorm.weight"""] A__ = [ { """params""": [p for n, p in param_optimizer if not any(nd in n for nd in no_decay )], """weight_decay""": args.weight_decay, }, {"""params""": [p for n, p in param_optimizer if any(nd in n for nd in no_decay )], """weight_decay""": 0.0}, ] A__ = AdamW(__a , lr=args.learning_rate , eps=args.adam_epsilon ) A__ = get_linear_schedule_with_warmup( __a , num_warmup_steps=args.warmup_steps , num_training_steps=__a ) if args.do_train: A__ , A__ , A__ = 0, 0, None model.train() for _ in trange(int(args.num_train_epochs ) , desc="""Epoch""" ): A__ = 0 A__ = 0 A__ = tqdm(__a , desc="""Training""" ) for step, batch in enumerate(__a ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch A__ = model(__a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = args.lm_coef * losses[0] + losses[1] loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() tr_loss += loss.item() A__ = ( loss.item() if exp_average_loss is None else 0.7 * exp_average_loss + 0.3 * loss.item() ) nb_tr_steps += 1 A__ = """Training loss: {:.2e} lr: {:.2e}""".format(__a , scheduler.get_lr()[0] ) # Save a trained model if args.do_train: # Save a trained model, configuration and tokenizer A__ = model.module if hasattr(__a , """module""" ) else model # Only save the model itself # If we save using the predefined names, we can load using `from_pretrained` A__ = os.path.join(args.output_dir , __a ) A__ = os.path.join(args.output_dir , __a ) torch.save(model_to_save.state_dict() , __a ) model_to_save.config.to_json_file(__a ) tokenizer.save_vocabulary(args.output_dir ) # Load a trained model and vocabulary that you have fine-tuned A__ = OpenAIGPTDoubleHeadsModel.from_pretrained(args.output_dir ) A__ = OpenAIGPTTokenizer.from_pretrained(args.output_dir ) model.to(__a ) if args.do_eval: model.eval() A__ , A__ = 0, 0 A__ , A__ = 0, 0 for batch in tqdm(__a , desc="""Evaluating""" ): A__ = tuple(t.to(__a ) for t in batch ) A__ , A__ , A__ , A__ = batch with torch.no_grad(): A__ , A__ , A__ , A__ = model( __a , mc_token_ids=__a , lm_labels=__a , mc_labels=__a ) A__ = mc_logits.detach().cpu().numpy() A__ = mc_labels.to("""cpu""" ).numpy() A__ = accuracy(__a , __a ) eval_loss += mc_loss.mean().item() eval_accuracy += tmp_eval_accuracy nb_eval_examples += input_ids.size(0 ) nb_eval_steps += 1 A__ = eval_loss / nb_eval_steps A__ = eval_accuracy / nb_eval_examples A__ = tr_loss / nb_tr_steps if args.do_train else None A__ = {"""eval_loss""": eval_loss, """eval_accuracy""": eval_accuracy, """train_loss""": train_loss} A__ = os.path.join(args.output_dir , """eval_results.txt""" ) with open(__a , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key in sorted(result.keys() ): logger.info(""" %s = %s""" , __a , str(result[key] ) ) writer.write("""%s = %s\n""" % (key, str(result[key] )) ) if __name__ == "__main__": main()
274
1
import math def _snake_case( SCREAMING_SNAKE_CASE__ : int ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase_ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def _snake_case( SCREAMING_SNAKE_CASE__ : int = 10001 ) -> int: '''simple docstring''' try: A__ = int(UpperCAmelCase_ ) except (TypeError, ValueError): raise TypeError('Parameter nth must be int or castable to int.' ) from None if nth <= 0: raise ValueError('Parameter nth must be greater than or equal to one.' ) A__ = [] A__ = 2 while len(UpperCAmelCase_ ) < nth: if is_prime(UpperCAmelCase_ ): primes.append(UpperCAmelCase_ ) num += 1 else: num += 1 return primes[len(UpperCAmelCase_ ) - 1] if __name__ == "__main__": print(f"""{solution() = }""")
357
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class A ( _UpperCAmelCase ): """simple docstring""" lowerCamelCase = 'bart' lowerCamelCase = ['past_key_values'] lowerCamelCase = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : Tuple,lowercase_ : Optional[int]=5_0_2_6_5,lowercase_ : List[str]=1_0_2_4,lowercase_ : Any=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : str=1_6,lowercase_ : int=1_2,lowercase_ : Optional[Any]=4_0_9_6,lowercase_ : Any=1_6,lowercase_ : Any=0.0,lowercase_ : str=0.0,lowercase_ : Optional[Any]="gelu",lowercase_ : List[str]=1_0_2_4,lowercase_ : List[Any]=0.1,lowercase_ : Union[str, Any]=0.0,lowercase_ : Optional[int]=0.0,lowercase_ : List[Any]=0.02,lowercase_ : int=0.0,lowercase_ : Optional[Any]=False,lowercase_ : List[Any]=True,lowercase_ : Union[str, Any]=3,lowercase_ : int=1,lowercase_ : int=0,lowercase_ : List[str]=2,lowercase_ : Optional[int]=True,lowercase_ : Tuple=2,lowercase_ : List[str]=2,**lowercase_ : Dict,)-> List[Any]: '''simple docstring''' A__ = vocab_size A__ = max_position_embeddings A__ = d_model A__ = encoder_ffn_dim A__ = encoder_layers A__ = encoder_attention_heads A__ = decoder_ffn_dim A__ = decoder_layers A__ = decoder_attention_heads A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = activation_function A__ = init_std A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = classifier_dropout A__ = use_cache A__ = encoder_layers A__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=lowercase_,pad_token_id=lowercase_,bos_token_id=lowercase_,eos_token_id=lowercase_,is_encoder_decoder=lowercase_,decoder_start_token_id=lowercase_,forced_eos_token_id=lowercase_,**lowercase_,) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated',lowercase_ ): A__ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' 'The config can simply be saved and uploaded again to be fixed.' ) class A ( _UpperCAmelCase ): """simple docstring""" @property def snake_case__ ( self : Dict )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ = {0: 'batch'} A__ = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: A__ = {0: 'batch', 1: 'decoder_sequence'} A__ = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(lowercase_,direction='inputs' ) elif self.task == "causal-lm": # TODO: figure this case out. A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ] ) if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} else: A__ = OrderedDict( [ ('input_ids', {0: 'batch', 1: 'encoder_sequence'}), ('attention_mask', {0: 'batch', 1: 'encoder_sequence'}), ('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}), ('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}), ] ) return common_inputs @property def snake_case__ ( self : Optional[Any] )-> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super().outputs else: A__ = super(lowercase_,self ).outputs if self.use_past: A__ , A__ = self.num_layers for i in range(lowercase_ ): A__ = {0: 'batch', 2: 'past_sequence + sequence'} A__ = {0: 'batch', 2: 'past_sequence + sequence'} return common_outputs def snake_case__ ( self : Tuple,lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) # Generate decoder inputs A__ = seq_length if not self.use_past else 1 A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) A__ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} A__ = dict(**lowercase_,**lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape A__ = common_inputs['decoder_input_ids'].shape[1] A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = decoder_seq_length + 3 A__ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) A__ = torch.cat( [common_inputs['decoder_attention_mask'], torch.ones(lowercase_,lowercase_ )],dim=1 ) A__ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered A__ , A__ = self.num_layers A__ = min(lowercase_,lowercase_ ) A__ = max(lowercase_,lowercase_ ) - min_num_layers A__ = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder' for _ in range(lowercase_ ): common_inputs["past_key_values"].append( ( torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), torch.zeros(lowercase_ ), ) ) # TODO: test this. A__ = encoder_shape if remaining_side_name == 'encoder' else decoder_shape for _ in range(lowercase_,lowercase_ ): common_inputs["past_key_values"].append((torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) ) return common_inputs def snake_case__ ( self : List[str],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,lowercase_,lowercase_,lowercase_,lowercase_ ) if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch A__ , A__ = common_inputs['input_ids'].shape # Not using the same length for past_key_values A__ = seqlen + 2 A__ , A__ = self.num_layers A__ , A__ = self.num_attention_heads A__ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) A__ = common_inputs['attention_mask'].dtype A__ = torch.cat( [common_inputs['attention_mask'], torch.ones(lowercase_,lowercase_,dtype=lowercase_ )],dim=1 ) A__ = [ (torch.zeros(lowercase_ ), torch.zeros(lowercase_ )) for _ in range(lowercase_ ) ] return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_batch,num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX A__ = tokenizer.num_special_tokens_to_add(lowercase_ ) A__ = compute_effective_axis_dimension( lowercase_,fixed_dimension=OnnxConfig.default_fixed_sequence,num_token_to_add=lowercase_ ) # Generate dummy inputs according to compute batch and sequence A__ = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size A__ = dict(tokenizer(lowercase_,return_tensors=lowercase_ ) ) return common_inputs def snake_case__ ( self : Union[str, Any],lowercase_ : PreTrainedTokenizer,lowercase_ : int = -1,lowercase_ : int = -1,lowercase_ : bool = False,lowercase_ : Optional[TensorType] = None,)-> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) elif self.task == "causal-lm": A__ = self._generate_dummy_inputs_for_causal_lm( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) else: A__ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( lowercase_,batch_size=lowercase_,seq_length=lowercase_,is_pair=lowercase_,framework=lowercase_ ) return common_inputs def snake_case__ ( self : int,lowercase_ : Tuple,lowercase_ : int,lowercase_ : int,lowercase_ : str )-> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: A__ = super()._flatten_past_key_values_(lowercase_,lowercase_,lowercase_,lowercase_ ) else: A__ = super(lowercase_,self )._flatten_past_key_values_( lowercase_,lowercase_,lowercase_,lowercase_ )
282
0
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def lowerCAmelCase_ ( ) -> Optional[Any]: """simple docstring""" lowerCamelCase__: Optional[Any] =argparse.ArgumentParser() parser.add_argument( "-m" , "--pretrained_model_name_or_path" , type=__a , default=__a , required=__a , help="Path to pretrained model or model identifier from huggingface.co/models." , ) parser.add_argument( "-c" , "--caption" , type=__a , default="robotic cat with wings" , help="Text used to generate images." , ) parser.add_argument( "-n" , "--images_num" , type=__a , default=4 , help="How much images to generate." , ) parser.add_argument( "-s" , "--seed" , type=__a , default=42 , help="Seed for random process." , ) parser.add_argument( "-ci" , "--cuda_id" , type=__a , default=0 , help="cuda_id." , ) lowerCamelCase__: Union[str, Any] =parser.parse_args() return args def lowerCAmelCase_ ( __a , __a , __a ) -> Tuple: """simple docstring""" if not len(__a ) == rows * cols: raise ValueError("The specified number of rows and columns are not correct." ) lowerCamelCase__ , lowerCamelCase__: Optional[int] =imgs[0].size lowerCamelCase__: Tuple =Image.new("RGB" , size=(cols * w, rows * h) ) lowerCamelCase__ , lowerCamelCase__: Tuple =grid.size for i, img in enumerate(__a ): grid.paste(__a , box=(i % cols * w, i // cols * h) ) return grid def lowerCAmelCase_ ( __a , __a="robotic cat with wings" , __a=7.5 , __a=50 , __a=1 , __a=42 , ) -> str: """simple docstring""" lowerCamelCase__: List[str] =torch.Generator(pipeline.device ).manual_seed(__a ) lowerCamelCase__: List[Any] =pipeline( __a , guidance_scale=__a , num_inference_steps=__a , generator=__a , num_images_per_prompt=__a , ).images lowerCamelCase__: List[str] =int(math.sqrt(__a ) ) lowerCamelCase__: Dict =image_grid(__a , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __A = parse_args() # Load models and create wrapper for stable diffusion __A = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer") __A = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder") __A = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae") __A = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet") __A = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __A = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, "best_model.pt")): __A = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, "unet", unet) else: __A = unet.to(torch.device("cuda", args.cuda_id)) __A = pipeline.to(unet.device) __A , __A = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, "{}.png".format("_".join(args.caption.split())))) __A = os.path.join(args.pretrained_model_name_or_path, "_".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, "{}.png".format(idx + 1)))
10
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar UpperCamelCase = TypeVar('''T''') class snake_case_ ( Generic[T] ): __A : deque[T] # Cache store of keys __A : set[T] # References of the keys in cache __A : int = 10 # Maximum capacity of cache def __init__( self : Union[str, Any] , lowercase_ : int ) -> None: lowercase__ : int = deque() lowercase__ : str = set() if not n: lowercase__ : str = sys.maxsize elif n < 0: raise ValueError("n should be an integer greater than 0." ) else: lowercase__ : List[Any] = n def __UpperCamelCase ( self : Dict , lowercase_ : T ) -> None: if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: lowercase__ : Dict = self.dq_store.pop() self.key_reference.remove(lowercase_ ) else: self.dq_store.remove(lowercase_ ) self.dq_store.appendleft(lowercase_ ) self.key_reference.add(lowercase_ ) def __UpperCamelCase ( self : Dict ) -> None: for k in self.dq_store: print(lowercase_ ) def __repr__( self : Optional[int] ) -> str: return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
87
0
def _a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): __lowerCAmelCase = [] for data in source_data: for i, el in enumerate(SCREAMING_SNAKE_CASE_ ): if len(SCREAMING_SNAKE_CASE_ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(SCREAMING_SNAKE_CASE_ ) ) return data_lists def _a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = [] for dlist, weight in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = min(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = max(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: __lowerCAmelCase = F"""Invalid weight of {weight:f} provided""" raise ValueError(SCREAMING_SNAKE_CASE_ ) score_lists.append(SCREAMING_SNAKE_CASE_ ) return score_lists def _a ( SCREAMING_SNAKE_CASE_ : list[list[float]] ): __lowerCAmelCase = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = final_scores[j] + ele return final_scores def _a ( SCREAMING_SNAKE_CASE_ : list[list[float]] , SCREAMING_SNAKE_CASE_ : list[int] ): __lowerCAmelCase = get_data(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = calculate_each_score(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = generate_final_scores(SCREAMING_SNAKE_CASE_ ) # append scores to source data for i, ele in enumerate(SCREAMING_SNAKE_CASE_ ): source_data[i].append(SCREAMING_SNAKE_CASE_ ) return source_data
102
import numpy as np import torch from torch.nn import CrossEntropyLoss from transformers import AutoModelForCausalLM, AutoTokenizer import datasets from datasets import logging UpperCamelCase__ = """\ """ UpperCamelCase__ = """ Perplexity (PPL) is one of the most common metrics for evaluating language models. It is defined as the exponentiated average negative log-likelihood of a sequence. For more information, see https://huggingface.co/docs/transformers/perplexity """ UpperCamelCase__ = """ Args: model_id (str): model used for calculating Perplexity NOTE: Perplexity can only be calculated for causal language models. This includes models such as gpt2, causal variations of bert, causal versions of t5, and more (the full list can be found in the AutoModelForCausalLM documentation here: https://huggingface.co/docs/transformers/master/en/model_doc/auto#transformers.AutoModelForCausalLM ) input_texts (list of str): input text, each separate text snippet is one list entry. batch_size (int): the batch size to run texts through the model. Defaults to 16. add_start_token (bool): whether to add the start token to the texts, so the perplexity can include the probability of the first word. Defaults to True. device (str): device to run on, defaults to 'cuda' when available Returns: perplexity: dictionary containing the perplexity scores for the texts in the input list, as well as the mean perplexity. If one of the input texts is longer than the max input length of the model, then it is truncated to the max length for the perplexity computation. Examples: Example 1: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = [\"lorem ipsum\", \"Happy Birthday!\", \"Bienvenue\"] >>> results = perplexity.compute(model_id='gpt2', ... add_start_token=False, ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 78.22 >>> print(round(results[\"perplexities\"][0], 2)) 11.11 Example 2: >>> perplexity = datasets.load_metric(\"perplexity\") >>> input_texts = datasets.load_dataset(\"wikitext\", ... \"wikitext-2-raw-v1\", ... split=\"test\")[\"text\"][:50] # doctest:+ELLIPSIS [...] >>> input_texts = [s for s in input_texts if s!=''] >>> results = perplexity.compute(model_id='gpt2', ... input_texts=input_texts) # doctest:+ELLIPSIS >>> print(list(results.keys())) ['perplexities', 'mean_perplexity'] >>> print(round(results[\"mean_perplexity\"], 2)) 60.35 >>> print(round(results[\"perplexities\"][0], 2)) 81.12 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "input_texts": datasets.Value("string" ), } ) , reference_urls=["https://huggingface.co/docs/transformers/perplexity"] , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A = 1_6 , _A = True , _A=None ): """simple docstring""" if device is not None: assert device in ["gpu", "cpu", "cuda"], "device should be either gpu or cpu." if device == "gpu": __lowerCAmelCase = "cuda" else: __lowerCAmelCase = "cuda" if torch.cuda.is_available() else "cpu" __lowerCAmelCase = AutoModelForCausalLM.from_pretrained(_A ) __lowerCAmelCase = model.to(_A ) __lowerCAmelCase = AutoTokenizer.from_pretrained(_A ) # if batch_size > 1 (which generally leads to padding being required), and # if there is not an already assigned pad_token, assign an existing # special token to also be the padding token if tokenizer.pad_token is None and batch_size > 1: __lowerCAmelCase = list(tokenizer.special_tokens_map_extended.values() ) # check that the model already has at least one special token defined assert ( len(_A ) > 0 ), "If batch_size > 1, model must have at least one special token to use for padding. Please use a different model or set batch_size=1." # assign one of the special tokens to also be the pad token tokenizer.add_special_tokens({"pad_token": existing_special_tokens[0]} ) if add_start_token: # leave room for <BOS> token to be added: assert ( tokenizer.bos_token is not None ), "Input model must already have a BOS token if using add_start_token=True. Please use a different model, or set add_start_token=False" __lowerCAmelCase = model.config.max_length - 1 else: __lowerCAmelCase = model.config.max_length __lowerCAmelCase = tokenizer( _A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , return_tensors="pt" , return_attention_mask=_A , ).to(_A ) __lowerCAmelCase = encodings["input_ids"] __lowerCAmelCase = encodings["attention_mask"] # check that each input is long enough: if add_start_token: assert torch.all(torch.ge(attn_masks.sum(1 ) , 1 ) ), "Each input text must be at least one token long." else: assert torch.all( torch.ge(attn_masks.sum(1 ) , 2 ) ), "When add_start_token=False, each input text must be at least two tokens long. Run with add_start_token=True if inputting strings of only one token, and remove all empty input strings." __lowerCAmelCase = [] __lowerCAmelCase = CrossEntropyLoss(reduction="none" ) for start_index in logging.tqdm(range(0 , len(_A ) , _A ) ): __lowerCAmelCase = min(start_index + batch_size , len(_A ) ) __lowerCAmelCase = encoded_texts[start_index:end_index] __lowerCAmelCase = attn_masks[start_index:end_index] if add_start_token: __lowerCAmelCase = torch.tensor([[tokenizer.bos_token_id]] * encoded_batch.size(dim=0 ) ).to(_A ) __lowerCAmelCase = torch.cat([bos_tokens_tensor, encoded_batch] , dim=1 ) __lowerCAmelCase = torch.cat( [torch.ones(bos_tokens_tensor.size() , dtype=torch.intaa ).to(_A ), attn_mask] , dim=1 ) __lowerCAmelCase = encoded_batch with torch.no_grad(): __lowerCAmelCase = model(_A , attention_mask=_A ).logits __lowerCAmelCase = out_logits[..., :-1, :].contiguous() __lowerCAmelCase = labels[..., 1:].contiguous() __lowerCAmelCase = attn_mask[..., 1:].contiguous() __lowerCAmelCase = torch.expa( (loss_fct(shift_logits.transpose(1 , 2 ) , _A ) * shift_attention_mask_batch).sum(1 ) / shift_attention_mask_batch.sum(1 ) ) ppls += perplexity_batch.tolist() return {"perplexities": ppls, "mean_perplexity": np.mean(_A )}
102
1
from random import randint, random def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ = False , lowercase__ = False , lowercase__ = 5 , ) -> list: '''simple docstring''' __lowercase= [[-1] * number_of_cells] # Create a highway without any car __lowercase= 0 __lowercase= max(lowercase__ , 0 ) while i < number_of_cells: __lowercase= ( randint(0 , lowercase__ ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def _lowerCamelCase( lowercase__ , lowercase__ ) -> int: '''simple docstring''' __lowercase= 0 __lowercase= highway_now[car_index + 1 :] for cell in range(len(lowercase__ ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(lowercase__ , -1 ) def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ ) -> list: '''simple docstring''' __lowercase= len(lowercase__ ) # Beforce calculations, the highway is empty __lowercase= [-1] * number_of_cells for car_index in range(lowercase__ ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed __lowercase= min(highway_now[car_index] + 1 , lowercase__ ) # Number of empty cell before the next car __lowercase= get_distance(lowercase__ , lowercase__ ) - 1 # We can't have the car causing an accident __lowercase= min(next_highway[car_index] , lowercase__ ) if random() < probability: # Randomly, a driver will slow down __lowercase= max(next_highway[car_index] - 1 , 0 ) return next_highway def _lowerCamelCase( lowercase__ , lowercase__ , lowercase__ , lowercase__ ) -> list: '''simple docstring''' __lowercase= len(highway[0] ) for i in range(lowercase__ ): __lowercase= update(highway[i] , lowercase__ , lowercase__ ) __lowercase= [-1] * number_of_cells for car_index in range(lowercase__ ): __lowercase= next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) __lowercase= (car_index + speed) % number_of_cells # Commit the change of position __lowercase= speed highway.append(lowercase__ ) return highway if __name__ == "__main__": import doctest doctest.testmod()
295
def _lowerCamelCase( lowercase__ , lowercase__ = " " ) -> list: '''simple docstring''' __lowercase= [] __lowercase= 0 for index, char in enumerate(lowercase__ ): if char == separator: split_words.append(string[last_index:index] ) __lowercase= index + 1 elif index + 1 == len(lowercase__ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
295
1
'''simple docstring''' from pathlib import Path import numpy as np from PIL import Image def __UpperCamelCase ( UpperCAmelCase ) -> Union[str, Any]: lowercase__ : str = rgb[:, :, 0], rgb[:, :, 1], rgb[:, :, 2] return 0.2_9_8_9 * r + 0.5_8_7_0 * g + 0.1_1_4_0 * b def __UpperCamelCase ( UpperCAmelCase ) -> Optional[int]: return (gray > 127) & (gray <= 255) def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: lowercase__ : List[Any] = np.zeros_like(UpperCAmelCase ) lowercase__ : Dict = np.zeros( (image.shape[0] + kernel.shape[0] - 1, image.shape[1] + kernel.shape[1] - 1) ) # Copy image to padded image lowercase__ : str = image # Iterate over image & apply kernel for x in range(image.shape[1] ): for y in range(image.shape[0] ): lowercase__ : Optional[int] = ( kernel * image_padded[y : y + kernel.shape[0], x : x + kernel.shape[1]] ).sum() lowercase__ : Optional[Any] = int(summation > 0 ) return output if __name__ == "__main__": # read original image __a: List[str] = Path(__file__).resolve().parent / """image_data""" / """lena.jpg""" __a: int = np.array(Image.open(lena_path)) # kernel to be applied __a: Tuple = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]]) __a: Union[str, Any] = dilation(gray_to_binary(rgb_to_gray(lena)), structuring_element) # Save the output image __a: Optional[int] = Image.fromarray(output).convert("""RGB""") pil_img.save("""result_dilation.png""")
365
'''simple docstring''' import qiskit def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Dict = qiskit.Aer.get_backend('''aer_simulator''' ) # Create a Quantum Circuit acting on the q register lowercase__ : Any = qiskit.QuantumCircuit(UpperCAmelCase , UpperCAmelCase ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator lowercase__ : Any = qiskit.execute(UpperCAmelCase , UpperCAmelCase , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(UpperCAmelCase ) if __name__ == "__main__": print(F'Total count for various states are: {single_qubit_measure(1, 1)}')
214
0
import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class __UpperCAmelCase ( unittest.TestCase , lowerCamelCase__ ): def __magic_name__ ( self : Union[str, Any] ): UpperCAmelCase : Optional[Any] = load_tool('''text-classification''' ) self.tool.setup() UpperCAmelCase : List[str] = load_tool('''text-classification''', remote=__A ) def __magic_name__ ( self : str ): UpperCAmelCase : Tuple = self.tool('''That\'s quite cool''', ['''positive''', '''negative'''] ) self.assertEqual(__A, '''positive''' ) def __magic_name__ ( self : str ): UpperCAmelCase : str = self.remote_tool('''That\'s quite cool''', ['''positive''', '''negative'''] ) self.assertEqual(__A, '''positive''' ) def __magic_name__ ( self : Optional[int] ): UpperCAmelCase : Optional[Any] = self.tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] ) self.assertEqual(__A, '''positive''' ) def __magic_name__ ( self : Optional[Any] ): UpperCAmelCase : Union[str, Any] = self.remote_tool(text='''That\'s quite cool''', labels=['''positive''', '''negative'''] ) self.assertEqual(__A, '''positive''' )
336
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any]=False , UpperCAmelCase : List[str]=False ) -> Any: UpperCAmelCase : Optional[int] = '''backbone.''' if is_semantic else '''''' UpperCAmelCase : Dict = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'''{prefix}blocks.{i}.norm1.weight''', f'''beit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm1.bias''', f'''beit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.weight''', f'''beit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append( (f'''{prefix}blocks.{i}.attn.proj.bias''', f'''beit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.weight''', f'''beit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.norm2.bias''', f'''beit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.weight''', f'''beit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc1.bias''', f'''beit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.weight''', f'''beit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((f'''{prefix}blocks.{i}.mlp.fc2.bias''', f'''beit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ (f'''{prefix}cls_token''', '''beit.embeddings.cls_token'''), (f'''{prefix}patch_embed.proj.weight''', '''beit.embeddings.patch_embeddings.projection.weight'''), (f'''{prefix}patch_embed.proj.bias''', '''beit.embeddings.patch_embeddings.projection.bias'''), (f'''{prefix}pos_embed''', '''beit.embeddings.position_embeddings'''), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('''mask_token''', '''beit.embeddings.mask_token'''), ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) else: # layernorm + classification head rename_keys.extend( [ ('''fc_norm.weight''', '''beit.pooler.layernorm.weight'''), ('''fc_norm.bias''', '''beit.pooler.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def a__ ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : str , UpperCAmelCase : str=False , UpperCAmelCase : Dict=False ) -> Any: for i in range(config.num_hidden_layers ): UpperCAmelCase : Tuple = '''backbone.''' if is_semantic else '''''' # queries, keys and values UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.qkv.weight''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.q_bias''' ) UpperCAmelCase : List[Any] = state_dict.pop(f'''{prefix}blocks.{i}.attn.v_bias''' ) UpperCAmelCase : Union[str, Any] = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase : str = q_bias UpperCAmelCase : List[str] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase : List[str] = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase : int = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained UpperCAmelCase : int = state_dict.pop(f'''{prefix}blocks.{i}.gamma_1''' ) UpperCAmelCase : Optional[Any] = state_dict.pop(f'''{prefix}blocks.{i}.gamma_2''' ) UpperCAmelCase : str = gamma_a UpperCAmelCase : Dict = gamma_a def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Tuple ) -> Optional[Any]: UpperCAmelCase : Union[str, Any] = dct.pop(UpperCAmelCase ) UpperCAmelCase : str = val def a__ ( ) -> Optional[int]: UpperCAmelCase : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : Union[str, Any] = Image.open(requests.get(UpperCAmelCase , stream=UpperCAmelCase ).raw ) return im @torch.no_grad() def a__ ( UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[Any]=False ) -> Union[str, Any]: UpperCAmelCase : Dict = False if '''rvlcdip''' in checkpoint_url else True UpperCAmelCase : Any = BeitConfig(use_absolute_position_embeddings=UpperCAmelCase , use_mask_token=UpperCAmelCase ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: UpperCAmelCase : List[Any] = 1_024 UpperCAmelCase : Optional[Any] = 4_096 UpperCAmelCase : Any = 24 UpperCAmelCase : Union[str, Any] = 16 # labels if "rvlcdip" in checkpoint_url: UpperCAmelCase : Optional[Any] = 16 UpperCAmelCase : List[Any] = '''huggingface/label-files''' UpperCAmelCase : Any = '''rvlcdip-id2label.json''' UpperCAmelCase : List[str] = json.load(open(hf_hub_download(UpperCAmelCase , UpperCAmelCase , repo_type='''dataset''' ) , '''r''' ) ) UpperCAmelCase : Dict = {int(UpperCAmelCase ): v for k, v in idalabel.items()} UpperCAmelCase : Union[str, Any] = idalabel UpperCAmelCase : Tuple = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys UpperCAmelCase : Tuple = torch.hub.load_state_dict_from_url(UpperCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : List[str] = create_rename_keys(UpperCAmelCase , has_lm_head=UpperCAmelCase ) for src, dest in rename_keys: rename_key(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) read_in_q_k_v(UpperCAmelCase , UpperCAmelCase , has_lm_head=UpperCAmelCase ) # load HuggingFace model UpperCAmelCase : Tuple = BeitForMaskedImageModeling(UpperCAmelCase ) if has_lm_head else BeitForImageClassification(UpperCAmelCase ) model.eval() model.load_state_dict(UpperCAmelCase ) # Check outputs on an image UpperCAmelCase : Dict = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=UpperCAmelCase ) UpperCAmelCase : List[str] = prepare_img() UpperCAmelCase : Optional[Any] = image_processor(images=UpperCAmelCase , return_tensors='''pt''' ) UpperCAmelCase : str = encoding['''pixel_values'''] UpperCAmelCase : Any = model(UpperCAmelCase ) UpperCAmelCase : Optional[Any] = outputs.logits # verify logits UpperCAmelCase : List[Any] = [1, 16] if '''rvlcdip''' in checkpoint_url else [1, 196, 8_192] assert logits.shape == torch.Size(UpperCAmelCase ), "Shape of logits not as expected" Path(UpperCAmelCase ).mkdir(exist_ok=UpperCAmelCase ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(UpperCAmelCase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(UpperCAmelCase ) if push_to_hub: if has_lm_head: UpperCAmelCase : List[Any] = '''dit-base''' if '''base''' in checkpoint_url else '''dit-large''' else: UpperCAmelCase : Any = '''dit-base-finetuned-rvlcdip''' if '''dit-b''' in checkpoint_url else '''dit-large-finetuned-rvlcdip''' image_processor.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=UpperCAmelCase , ) model.push_to_hub( repo_path_or_name=Path(UpperCAmelCase , UpperCAmelCase ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=UpperCAmelCase , ) if __name__ == "__main__": _lowerCamelCase : Tuple = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth", type=str, help="URL to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", ) _lowerCamelCase : Optional[int] = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
336
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: __snake_case = None __snake_case = logging.get_logger(__name__) __snake_case = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __snake_case = { '''vocab_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_file''': { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/tokenizer.json''', }, } __snake_case = { '''camembert-base''': 512, } __snake_case = '''▁''' class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : int = VOCAB_FILES_NAMES A_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP A_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A_ : Any = ['input_ids', 'attention_mask'] A_ : str = CamembertTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase=["<s>NOTUSED", "</s>NOTUSED"] , **__UpperCAmelCase , ) -> str: # Mask token behave like a normal word, i.e. include the space before it _a = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) _a = vocab_file _a = False if not self.vocab_file else True def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _a = [self.cls_token_id] _a = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return _a = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
153
"""simple docstring""" import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A_ ( _lowerCAmelCase : Union[str, Any], _lowerCAmelCase : Tuple, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int] ): """simple docstring""" _a = StableDiffusionPipeline.from_pretrained(_lowerCAmelCase, torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _a = load_file(_lowerCAmelCase ) _a = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _a = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _a = pipeline.text_encoder else: _a = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _a = pipeline.unet # find the target layer _a = layer_infos.pop(0 ) while len(_lowerCAmelCase ) > -1: try: _a = curr_layer.__getattr__(_lowerCAmelCase ) if len(_lowerCAmelCase ) > 0: _a = layer_infos.pop(0 ) elif len(_lowerCAmelCase ) == 0: break except Exception: if len(_lowerCAmelCase ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _a = layer_infos.pop(0 ) _a = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''', '''lora_up''' ) ) pair_keys.append(_lowerCAmelCase ) else: pair_keys.append(_lowerCAmelCase ) pair_keys.append(key.replace('''lora_up''', '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _a = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _a = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase ).unsqueeze(2 ).unsqueeze(3 ) else: _a = state_dict[pair_keys[0]].to(torch.floataa ) _a = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(_lowerCAmelCase, _lowerCAmelCase ) # update visited list for item in pair_keys: visited.append(_lowerCAmelCase ) return pipeline if __name__ == "__main__": __snake_case = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __snake_case = parser.parse_args() __snake_case = args.base_model_path __snake_case = args.checkpoint_path __snake_case = args.dump_path __snake_case = args.lora_prefix_unet __snake_case = args.lora_prefix_text_encoder __snake_case = args.alpha __snake_case = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __snake_case = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
153
1
import warnings from ..trainer import Trainer from ..utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : List[Any] , UpperCamelCase__ : int=None , **UpperCamelCase__ : Dict ) -> Optional[Any]: """simple docstring""" warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , UpperCamelCase__ , ) super().__init__(args=UpperCamelCase__ , **UpperCamelCase__ )
88
from collections.abc import Sequence def a_ ( __lowercase : Sequence[float] , __lowercase : float ) -> float: return sum(c * (x**i) for i, c in enumerate(__lowercase ) ) def a_ ( __lowercase : Sequence[float] , __lowercase : float ) -> float: _snake_case = 0.0 for coeff in reversed(__lowercase ): _snake_case = result * x + coeff return result if __name__ == "__main__": _lowerCamelCase : Optional[Any] = (0.0, 0.0, 5.0, 9.3, 7.0) _lowerCamelCase : Optional[int] = 1_0.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
282
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features lowercase_ = logging.get_logger(__name__) lowercase_ = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) lowercase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class A : """simple docstring""" lowerCamelCase = field( default=__lowerCamelCase , metadata={'help': 'Model type selected in the list: ' + ', '.join(__lowerCamelCase )} ) lowerCamelCase = field( default=__lowerCamelCase , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} ) lowerCamelCase = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase = field( default=1_28 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , ) lowerCamelCase = field( default=64 , metadata={ 'help': ( 'The maximum number of tokens for the question. Questions longer than this will ' 'be truncated to this length.' ) } , ) lowerCamelCase = field( default=30 , metadata={ 'help': ( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ) } , ) lowerCamelCase = field( default=__lowerCamelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) lowerCamelCase = field( default=__lowerCamelCase , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} ) lowerCamelCase = field( default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCamelCase = field( default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} ) lowerCamelCase = field( default=0 , metadata={ 'help': ( 'language id of input for language-specific xlm models (see' ' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)' ) } , ) lowerCamelCase = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} ) class A ( __lowerCamelCase ): """simple docstring""" lowerCamelCase = """train""" lowerCamelCase = """dev""" class A ( __lowerCamelCase ): """simple docstring""" lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 lowerCamelCase = 42 def __init__( self : Dict,lowercase_ : SquadDataTrainingArguments,lowercase_ : PreTrainedTokenizer,lowercase_ : Optional[int] = None,lowercase_ : Union[str, Split] = Split.train,lowercase_ : Optional[bool] = False,lowercase_ : Optional[str] = None,lowercase_ : Optional[str] = "pt",)-> Optional[Any]: '''simple docstring''' A__ = args A__ = is_language_sensitive A__ = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(__lowercase,__lowercase ): try: A__ = Split[mode] except KeyError: raise KeyError('mode is not a valid split name' ) A__ = mode # Load data features from cache or dataset file A__ = '''v2''' if args.version_2_with_negative else '''v1''' A__ = os.path.join( cache_dir if cache_dir is not None else args.data_dir,F'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. A__ = cached_features_file + '''.lock''' with FileLock(__lowercase ): if os.path.exists(__lowercase ) and not args.overwrite_cache: A__ = time.time() A__ = torch.load(__lowercase ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. A__ = self.old_features['''features'''] A__ = self.old_features.get('dataset',__lowercase ) A__ = self.old_features.get('examples',__lowercase ) logger.info( F'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in' ' future run' ) else: if mode == Split.dev: A__ = self.processor.get_dev_examples(args.data_dir ) else: A__ = self.processor.get_train_examples(args.data_dir ) A__ = squad_convert_examples_to_features( examples=self.examples,tokenizer=__lowercase,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__lowercase,) A__ = time.time() torch.save( {'features': self.features, 'dataset': self.dataset, 'examples': self.examples},__lowercase,) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' ) def __len__( self : List[Any] )-> int: '''simple docstring''' return len(self.features ) def __getitem__( self : Optional[int],lowercase_ : str )-> List[str]: '''simple docstring''' A__ = self.features[i] A__ = torch.tensor(feature.input_ids,dtype=torch.long ) A__ = torch.tensor(feature.attention_mask,dtype=torch.long ) A__ = torch.tensor(feature.token_type_ids,dtype=torch.long ) A__ = torch.tensor(feature.cls_index,dtype=torch.long ) A__ = torch.tensor(feature.p_mask,dtype=torch.float ) A__ = torch.tensor(feature.is_impossible,dtype=torch.float ) A__ = { '''input_ids''': input_ids, '''attention_mask''': attention_mask, '''token_type_ids''': token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({'cls_index': cls_index, 'p_mask': p_mask} ) if self.args.version_2_with_negative: inputs.update({'is_impossible': is_impossible} ) if self.is_language_sensitive: inputs.update({'langs': (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: A__ = torch.tensor(feature.start_position,dtype=torch.long ) A__ = torch.tensor(feature.end_position,dtype=torch.long ) inputs.update({'start_positions': start_positions, 'end_positions': end_positions} ) return inputs
350
import argparse import collections import torch from flax import traverse_util from tax import checkpoints from transformers import TaConfig, TaEncoderModel, TaForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() def _snake_case( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]="attention" ) -> Union[str, Any]: '''simple docstring''' A__ = params[f'{prefix}/layers_{i}/{layer_name}/key/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/out/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/query/kernel'] A__ = params[f'{prefix}/layers_{i}/{layer_name}/value/kernel'] return k, o, q, v def _snake_case( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Dict=False ) -> str: '''simple docstring''' if split_mlp_wi: A__ = params[f'{prefix}/layers_{i}/mlp/wi_0/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wi_1/kernel'] A__ = (wi_a, wi_a) else: A__ = params[f'{prefix}/layers_{i}/mlp/wi/kernel'] A__ = params[f'{prefix}/layers_{i}/mlp/wo/kernel'] return wi, wo def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : int ) -> str: '''simple docstring''' return params[f'{prefix}/layers_{i}/{layer_name}/scale'] def _snake_case( SCREAMING_SNAKE_CASE__ : dict , *, SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : bool ) -> int: '''simple docstring''' A__ = traverse_util.flatten_dict(variables['target'] ) A__ = {'/'.join(SCREAMING_SNAKE_CASE__ ): v for k, v in old.items()} # v1.1 models have a gated GeLU with wi_0 and wi_1 instead of wi A__ = 'encoder/layers_0/mlp/wi_0/kernel' in old print('Split MLP:' , SCREAMING_SNAKE_CASE__ ) A__ = collections.OrderedDict() # Shared embeddings. A__ = old['token_embedder/embedding'] # Encoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'encoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old[ 'encoder/relpos_bias/rel_embedding' ].T A__ = old['encoder/encoder_norm/scale'] if not is_encoder_only: # Decoder. for i in range(SCREAMING_SNAKE_CASE__ ): # Block i, layer 0 (Self Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_self_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'self_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 1 (Cross Attention). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_cross_attention_layer_norm' ) A__ , A__ , A__ , A__ = tax_attention_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'encoder_decoder_attention' ) A__ = layer_norm A__ = k.T A__ = o.T A__ = q.T A__ = v.T # Block i, layer 2 (MLP). A__ = tax_layer_norm_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , 'pre_mlp_layer_norm' ) A__ , A__ = tax_mlp_lookup(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , 'decoder' , SCREAMING_SNAKE_CASE__ ) A__ = layer_norm if split_mlp_wi: A__ = wi[0].T A__ = wi[1].T else: A__ = wi.T A__ = wo.T A__ = old['decoder/decoder_norm/scale'] A__ = old[ 'decoder/relpos_bias/rel_embedding' ].T # LM Head (only in v1.1 checkpoints, in v1.0 embeddings are used instead) if "decoder/logits_dense/kernel" in old: A__ = old['decoder/logits_dense/kernel'].T return new def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : bool ) -> Dict: '''simple docstring''' A__ = collections.OrderedDict([(k, torch.from_numpy(v.copy() )) for (k, v) in converted_params.items()] ) # Add what is missing. if "encoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if not is_encoder_only: if "decoder.embed_tokens.weight" not in state_dict: A__ = state_dict['shared.weight'] if "lm_head.weight" not in state_dict: # For old 1.0 models. print('Using shared word embeddings as lm_head.' ) A__ = state_dict['shared.weight'] return state_dict def _snake_case( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Tuple ) -> int: '''simple docstring''' A__ = checkpoints.load_tax_checkpoint(SCREAMING_SNAKE_CASE__ ) A__ = convert_tax_to_pytorch(SCREAMING_SNAKE_CASE__ , num_layers=config.num_layers , is_encoder_only=SCREAMING_SNAKE_CASE__ ) A__ = make_state_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = False ) -> Any: '''simple docstring''' A__ = TaConfig.from_json_file(SCREAMING_SNAKE_CASE__ ) print(f'Building PyTorch model from configuration: {config}' ) # Non-v1.1 checkpoints could also use T5Model, but this works for all. # The v1.0 checkpoints will simply have an LM head that is the word embeddings. if is_encoder_only: A__ = TaEncoderModel(SCREAMING_SNAKE_CASE__ ) else: A__ = TaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # Load weights from tf checkpoint load_tax_weights_in_ta(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) # Verify that we can load the checkpoint. model.from_pretrained(SCREAMING_SNAKE_CASE__ ) print('Done' ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser(description="Converts a native T5X checkpoint into a PyTorch checkpoint.") # Required parameters parser.add_argument( "--t5x_checkpoint_path", default=None, type=str, required=True, help="Path to the T5X checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained T5 model.\nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_encoder_only", action="store_true", help="Check if the model is encoder-decoder model", default=False ) lowercase_ = parser.parse_args() convert_tax_checkpoint_to_pytorch( args.tax_checkpoint_path, args.config_file, args.pytorch_dump_path, args.is_encoder_only )
282
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance SCREAMING_SNAKE_CASE : List[str] = 6_378_137.0 SCREAMING_SNAKE_CASE : Tuple = 6_356_752.314_245 SCREAMING_SNAKE_CASE : Dict = 637_8137 def lowercase ( _snake_case : float , _snake_case : float , _snake_case : float , _snake_case : float ) ->float: """simple docstring""" __snake_case : Any = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __snake_case : List[Any] = atan((1 - flattening) * tan(radians(_snake_case ) ) ) __snake_case : str = atan((1 - flattening) * tan(radians(_snake_case ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __snake_case : Union[str, Any] = haversine_distance(_snake_case , _snake_case , _snake_case , _snake_case ) / EQUATORIAL_RADIUS # Intermediate P and Q values __snake_case : Union[str, Any] = (b_lata + b_lata) / 2 __snake_case : Any = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __snake_case : List[str] = (sin(_snake_case ) ** 2) * (cos(_snake_case ) ** 2) __snake_case : Optional[Any] = cos(sigma / 2 ) ** 2 __snake_case : Optional[int] = (sigma - sin(_snake_case )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __snake_case : Optional[Any] = (cos(_snake_case ) ** 2) * (sin(_snake_case ) ** 2) __snake_case : List[Any] = sin(sigma / 2 ) ** 2 __snake_case : Optional[int] = (sigma + sin(_snake_case )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
102
"""simple docstring""" from ...utils import is_torch_available, is_transformers_available if is_transformers_available() and is_torch_available(): from .pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings, VQDiffusionPipeline
102
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def _lowercase ( __lowerCAmelCase ) -> Optional[int]: # picklable for multiprocessing return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def _lowercase ( ) -> str: with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" SCREAMING_SNAKE_CASE__ : Any = [1, 2, 3] with pytest.raises(__lowerCAmelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=2 ) with pytest.raises(__lowerCAmelCase ): with parallel_backend("""unsupported backend""" ): map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def _lowercase ( __lowerCAmelCase ) -> Tuple: SCREAMING_SNAKE_CASE__ : Tuple = [1, 2] SCREAMING_SNAKE_CASE__ : Dict = {"""a""": 1, """b""": 2} SCREAMING_SNAKE_CASE__ : List[str] = {"""a""": [1, 2], """b""": [3, 4]} SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""a""": {"""1""": 1}, """b""": 2} SCREAMING_SNAKE_CASE__ : Optional[Any] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} SCREAMING_SNAKE_CASE__ : List[Any] = [2, 3] SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"""a""": 2, """b""": 3} SCREAMING_SNAKE_CASE__ : str = {"""a""": [2, 3], """b""": [4, 5]} SCREAMING_SNAKE_CASE__ : Tuple = {"""a""": {"""1""": 2}, """b""": 3} SCREAMING_SNAKE_CASE__ : Tuple = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa assert map_nested(__lowerCAmelCase , __lowerCAmelCase , num_proc=__lowerCAmelCase ) == expected_map_nested_sa
358
"""simple docstring""" from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging a :Optional[int] = logging.get_logger(__name__) def _lowercase ( __lowerCAmelCase ) -> List[int]: if isinstance(__lowerCAmelCase , np.ndarray ): return list(tensor.shape ) SCREAMING_SNAKE_CASE__ : int = tf.shape(__lowerCAmelCase ) if tensor.shape == tf.TensorShape(__lowerCAmelCase ): return dynamic SCREAMING_SNAKE_CASE__ : List[Any] = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowerCAmelCase )] def _lowercase ( __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None ) -> tf.Tensor: return tf.nn.softmax(logits=logits + 1E-9 , axis=__lowerCAmelCase , name=__lowerCAmelCase ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=1E-5 , __lowerCAmelCase=-1 ) -> List[Any]: # This is a very simplified functional layernorm, designed to duplicate # the functionality of PyTorch nn.functional.layer_norm when this is needed to port # models in Transformers. if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowerCAmelCase , __lowerCAmelCase ): raise NotImplementedError("""Only 1D weight and bias tensors are supported for now, with only a single axis.""" ) # Get mean and variance on the axis to be normalized SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[str] = tf.nn.moments(__lowerCAmelCase , axes=[axis] , keepdims=__lowerCAmelCase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis SCREAMING_SNAKE_CASE__ : str = [1] * inputs.shape.rank SCREAMING_SNAKE_CASE__ : Optional[int] = shape_list(__lowerCAmelCase )[axis] SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.reshape(__lowerCAmelCase , __lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = tf.reshape(__lowerCAmelCase , __lowerCAmelCase ) # Compute layer normalization using the batch_normalization # function. SCREAMING_SNAKE_CASE__ : Any = tf.nn.batch_normalization( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , offset=__lowerCAmelCase , scale=__lowerCAmelCase , variance_epsilon=__lowerCAmelCase , ) return outputs def _lowercase ( __lowerCAmelCase , __lowerCAmelCase=0 , __lowerCAmelCase=-1 ) -> Optional[Any]: # Replicates the behavior of torch.flatten in TF # If end_dim or start_dim is negative, count them from the end if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.shape(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) SCREAMING_SNAKE_CASE__ : int = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowerCAmelCase , __lowerCAmelCase ) def _lowercase ( __lowerCAmelCase ) -> tf.Tensor: if not isinstance(__lowerCAmelCase , tf.Tensor ): SCREAMING_SNAKE_CASE__ : Dict = tf.convert_to_tensor(__lowerCAmelCase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: SCREAMING_SNAKE_CASE__ : Union[str, Any] = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: SCREAMING_SNAKE_CASE__ : List[Any] = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) SCREAMING_SNAKE_CASE__ : Any = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = "input_ids" ) -> None: tf.debugging.assert_less( __lowerCAmelCase , tf.cast(__lowerCAmelCase , dtype=tensor.dtype ) , message=( F'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowerCAmelCase )}) must be smaller than the embedding ''' F'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__ : Any = 6_4512 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. SCREAMING_SNAKE_CASE__ : List[str] = [x for x in data if len(__lowerCAmelCase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( """The following attributes cannot be saved to HDF5 file because """ F'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' F'''bytes: {bad_attributes}''' ) SCREAMING_SNAKE_CASE__ : Any = np.asarray(__lowerCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = 1 SCREAMING_SNAKE_CASE__ : Optional[int] = np.array_split(__lowerCAmelCase , __lowerCAmelCase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 SCREAMING_SNAKE_CASE__ : List[str] = np.array_split(__lowerCAmelCase , __lowerCAmelCase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowerCAmelCase ): SCREAMING_SNAKE_CASE__ : List[str] = chunk_data else: SCREAMING_SNAKE_CASE__ : Optional[int] = data def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple: if name in group.attrs: SCREAMING_SNAKE_CASE__ : Optional[Any] = [n.decode("""utf8""" ) if hasattr(__lowerCAmelCase , """decode""" ) else n for n in group.attrs[name]] else: SCREAMING_SNAKE_CASE__ : str = [] SCREAMING_SNAKE_CASE__ : List[str] = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode("""utf8""" ) if hasattr(__lowerCAmelCase , """decode""" ) else n for n in group.attrs["""%s%d""" % (name, chunk_id)]] ) chunk_id += 1 return data def _lowercase ( __lowerCAmelCase ) -> List[Any]: def _expand_single_ad_tensor(__lowerCAmelCase ): if isinstance(__lowerCAmelCase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowerCAmelCase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowerCAmelCase )
56
0
import sys def lowerCAmelCase__ ( lowerCamelCase_ : List[Any]): '''simple docstring''' lowerCAmelCase__ : List[Any] = len(SCREAMING_SNAKE_CASE_) lowerCAmelCase__ : Optional[int] = [[0 for x in range(SCREAMING_SNAKE_CASE_)] for x in range(SCREAMING_SNAKE_CASE_)] lowerCAmelCase__ : Dict = [[0 for x in range(SCREAMING_SNAKE_CASE_)] for x in range(SCREAMING_SNAKE_CASE_)] for chain_length in range(2 ,SCREAMING_SNAKE_CASE_): for a in range(1 ,n - chain_length + 1): lowerCAmelCase__ : List[str] = a + chain_length - 1 lowerCAmelCase__ : int = sys.maxsize for c in range(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_): lowerCAmelCase__ : str = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: lowerCAmelCase__ : Union[str, Any] = cost lowerCAmelCase__ : str = c return matrix, sol def lowerCAmelCase__ ( lowerCamelCase_ : Any ,lowerCamelCase_ : Tuple ,lowerCamelCase_ : List[Any]): '''simple docstring''' if i == j: print('''A''' + str(SCREAMING_SNAKE_CASE_) ,end=''' ''') else: print('''(''' ,end=''' ''') print_optiomal_solution(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,optimal_solution[i][j]) print_optiomal_solution(SCREAMING_SNAKE_CASE_ ,optimal_solution[i][j] + 1 ,SCREAMING_SNAKE_CASE_) print(''')''' ,end=''' ''') def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Any = [30, 35, 15, 5, 10, 20, 25] lowerCAmelCase__ : int = len(SCREAMING_SNAKE_CASE_) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 lowerCAmelCase__ : str = matrix_chain_order(SCREAMING_SNAKE_CASE_) print('''No. of Operation required: ''' + str(matrix[1][n - 1])) print_optiomal_solution(SCREAMING_SNAKE_CASE_ ,1 ,n - 1) if __name__ == "__main__": main()
129
from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a , a = 0): lowercase__ , lowercase__ : Dict = row, column lowercase__ : Optional[Any] = [[default_value for c in range(a)] for r in range(a)] def __str__( self): lowercase__ : Tuple = f"""Matrix consist of {self.row} rows and {self.column} columns\n""" # Make string identifier lowercase__ : Optional[int] = 0 for row_vector in self.array: for obj in row_vector: lowercase__ : List[str] = max(a , len(str(a))) lowercase__ : Optional[int] = f"""%{max_element_length}s""" # Make string and return def single_line(a) -> str: nonlocal string_format_identifier lowercase__ : Tuple = '[' line += ", ".join(string_format_identifier % (obj,) for obj in row_vector) line += "]" return line s += "\n".join(single_line(a) for row_vector in self.array) return s def __repr__( self): return str(self) def snake_case_ ( self , a): if not (isinstance(a , (list, tuple)) and len(a) == 2): return False elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column): return False else: return True def __getitem__( self , a): assert self.validate_indicies(a) return self.array[loc[0]][loc[1]] def __setitem__( self , a , a): assert self.validate_indicies(a) lowercase__ : List[str] = value def __add__( self , a): assert isinstance(a , a) assert self.row == another.row and self.column == another.column # Add lowercase__ : List[str] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowercase__ : Dict = self[r, c] + another[r, c] return result def __neg__( self): lowercase__ : List[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowercase__ : int = -self[r, c] return result def __sub__( self , a): return self + (-another) def __mul__( self , a): if isinstance(a , (int, float)): # Scalar multiplication lowercase__ : Optional[Any] = Matrix(self.row , self.column) for r in range(self.row): for c in range(self.column): lowercase__ : Union[str, Any] = self[r, c] * another return result elif isinstance(a , a): # Matrix multiplication assert self.column == another.row lowercase__ : List[Any] = Matrix(self.row , another.column) for r in range(self.row): for c in range(another.column): for i in range(self.column): result[r, c] += self[r, i] * another[i, c] return result else: lowercase__ : Optional[Any] = f"""Unsupported type given for another ({type(a)})""" raise TypeError(a) def snake_case_ ( self): lowercase__ : Optional[int] = Matrix(self.column , self.row) for r in range(self.row): for c in range(self.column): lowercase__ : str = self[r, c] return result def snake_case_ ( self , a , a): assert isinstance(a , a) and isinstance(a , a) assert self.row == self.column == u.row == v.row # u, v should be column vector assert u.column == v.column == 1 # u, v should be column vector # Calculate lowercase__ : int = v.transpose() lowercase__ : Tuple = (v_t * self * u)[0, 0] + 1 if numerator_factor == 0: return None # It's not invertable return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor)) # Testing if __name__ == "__main__": def snake_case__ ( ): '''simple docstring''' lowercase__ : Any = Matrix(3 , 3 , 0 ) for i in range(3 ): lowercase__ : str = 1 print(f"""a^(-1) is {ainv}""" ) # u, v lowercase__ : Optional[Any] = Matrix(3 , 1 , 0 ) lowercase__ , lowercase__ , lowercase__ : List[Any] = 1, 2, -3 lowercase__ : Union[str, Any] = Matrix(3 , 1 , 0 ) lowercase__ , lowercase__ , lowercase__ : Any = 4, -2, 5 print(f"""u is {u}""" ) print(f"""v is {v}""" ) print(f"""uv^T is {u * v.transpose()}""" ) # Sherman Morrison print(f"""(a + uv^T)^(-1) is {ainv.sherman_morrison(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}""" ) def snake_case__ ( ): '''simple docstring''' import doctest doctest.testmod() testa()
214
0
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin snake_case_ : Optional[Any] = random.Random() if is_torch_available(): import torch def A (__A : Any , __A : List[Any]=1.0 , __A : Any=None , __A : Union[str, Any]=None ) -> Union[str, Any]: """simple docstring""" if rng is None: UpperCAmelCase_ = global_rng UpperCAmelCase_ = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class __snake_case ( unittest.TestCase ): def __init__( self : int , _snake_case : Optional[Any] , _snake_case : Optional[int]=7 , _snake_case : Optional[int]=400 , _snake_case : Optional[int]=2000 , _snake_case : Any=1 , _snake_case : str=0.0 , _snake_case : int=16000 , _snake_case : int=True , _snake_case : Optional[int]=True , ): """simple docstring""" UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = min_seq_length UpperCAmelCase_ = max_seq_length UpperCAmelCase_ = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCAmelCase_ = feature_size UpperCAmelCase_ = padding_value UpperCAmelCase_ = sampling_rate UpperCAmelCase_ = return_attention_mask UpperCAmelCase_ = do_normalize def lowerCamelCase ( self : Tuple): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def lowerCamelCase ( self : Any , _snake_case : Any=False , _snake_case : Any=False): """simple docstring""" def _flatten(_snake_case : Dict): return list(itertools.chain(*__SCREAMING_SNAKE_CASE)) if equal_length: UpperCAmelCase_ = floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size UpperCAmelCase_ = [ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff) ] if numpify: UpperCAmelCase_ = [np.asarray(__SCREAMING_SNAKE_CASE) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __snake_case ( _A , unittest.TestCase ): UpperCAmelCase__ : int = ASTFeatureExtractor def lowerCamelCase ( self : Optional[int]): """simple docstring""" UpperCAmelCase_ = ASTFeatureExtractionTester(self) def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 UpperCAmelCase_ = [floats_list((1, x))[0] for x in range(800 , 1400 , 200)] UpperCAmelCase_ = [np.asarray(__SCREAMING_SNAKE_CASE) for speech_input in speech_inputs] # Test not batched input UpperCAmelCase_ = feat_extract(speech_inputs[0] , return_tensors='''np''').input_values UpperCAmelCase_ = feat_extract(np_speech_inputs[0] , return_tensors='''np''').input_values self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3)) # Test batched UpperCAmelCase_ = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''').input_values UpperCAmelCase_ = feat_extract(__SCREAMING_SNAKE_CASE , padding=__SCREAMING_SNAKE_CASE , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3)) # Test 2-D numpy arrays are batched. UpperCAmelCase_ = [floats_list((1, x))[0] for x in (800, 800, 800)] UpperCAmelCase_ = np.asarray(__SCREAMING_SNAKE_CASE) UpperCAmelCase_ = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors='''np''').input_values UpperCAmelCase_ = feat_extract(__SCREAMING_SNAKE_CASE , return_tensors='''np''').input_values for enc_seq_a, enc_seq_a in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): self.assertTrue(np.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3)) @require_torch def lowerCamelCase ( self : Optional[Any]): """simple docstring""" import torch UpperCAmelCase_ = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) UpperCAmelCase_ = np.random.rand(100).astype(np.floataa) UpperCAmelCase_ = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCAmelCase_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''np''') self.assertTrue(np_processed.input_values.dtype == np.floataa) UpperCAmelCase_ = feature_extractor.pad([{'''input_values''': inputs}] , return_tensors='''pt''') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def lowerCamelCase ( self : Union[str, Any] , _snake_case : Dict): """simple docstring""" from datasets import load_dataset UpperCAmelCase_ = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''') # automatic decoding with librispeech UpperCAmelCase_ = ds.sort('''id''').select(range(__SCREAMING_SNAKE_CASE))[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] @require_torch def lowerCamelCase ( self : Dict): """simple docstring""" UpperCAmelCase_ = torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9]) # fmt: on UpperCAmelCase_ = self._load_datasamples(1) UpperCAmelCase_ = ASTFeatureExtractor() UpperCAmelCase_ = feature_extractor(__SCREAMING_SNAKE_CASE , return_tensors='''pt''').input_values self.assertEquals(input_values.shape , (1, 1024, 128)) self.assertTrue(torch.allclose(input_values[0, 0, :30] , __SCREAMING_SNAKE_CASE , atol=1e-4))
362
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass snake_case_ : List[Any] = (3, 9, -11, 0, 7, 5, 1, -1) snake_case_ : str = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class __snake_case : UpperCAmelCase__ : int UpperCAmelCase__ : Node | None class __snake_case : def __init__( self : Optional[int] , _snake_case : Iterable[int]): """simple docstring""" UpperCAmelCase_ = None for i in sorted(_snake_case , reverse=_snake_case): UpperCAmelCase_ = Node(_snake_case , self.head) def __iter__( self : Dict): """simple docstring""" UpperCAmelCase_ = self.head while node: yield node.data UpperCAmelCase_ = node.next_node def __len__( self : int): """simple docstring""" return sum(1 for _ in self) def __str__( self : Optional[Any]): """simple docstring""" return " -> ".join([str(_snake_case) for node in self]) def A (__A : SortedLinkedList , __A : SortedLinkedList ) -> SortedLinkedList: """simple docstring""" return SortedLinkedList(list(__A ) + list(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() snake_case_ : Union[str, Any] = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
7
0
"""simple docstring""" from scipy.stats import spearmanr import datasets lowerCAmelCase__ = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' lowerCAmelCase__ = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' lowerCAmelCase__ = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def snake_case_ (self , __a , __a , __a=False ) -> List[str]: UpperCamelCase = spearmanr(__a , __a ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
153
"""simple docstring""" import absl # noqa: F401 # Here to have a nice missing dependency error message early on import nltk # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import six # noqa: F401 # Here to have a nice missing dependency error message early on from rouge_score import rouge_scorer, scoring import datasets lowerCAmelCase__ = '''\ @inproceedings{lin-2004-rouge, title = "{ROUGE}: A Package for Automatic Evaluation of Summaries", author = "Lin, Chin-Yew", booktitle = "Text Summarization Branches Out", month = jul, year = "2004", address = "Barcelona, Spain", publisher = "Association for Computational Linguistics", url = "https://www.aclweb.org/anthology/W04-1013", pages = "74--81", } ''' lowerCAmelCase__ = '''\ ROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for evaluating automatic summarization and machine translation software in natural language processing. The metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation. Note that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters. This metrics is a wrapper around Google Research reimplementation of ROUGE: https://github.com/google-research/google-research/tree/master/rouge ''' lowerCAmelCase__ = ''' Calculates average rouge scores for a list of hypotheses and references Args: predictions: list of predictions to score. Each prediction should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. rouge_types: A list of rouge types to calculate. Valid names: `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring, `"rougeL"`: Longest common subsequence based scoring. `"rougeLSum"`: rougeLsum splits text using `"\n"`. See details in https://github.com/huggingface/datasets/issues/617 use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes. use_aggregator: Return aggregates if this is set to True Returns: rouge1: rouge_1 (precision, recall, f1), rouge2: rouge_2 (precision, recall, f1), rougeL: rouge_l (precision, recall, f1), rougeLsum: rouge_lsum (precision, recall, f1) Examples: >>> rouge = datasets.load_metric(\'rouge\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> results = rouge.compute(predictions=predictions, references=references) >>> print(list(results.keys())) [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\'] >>> print(results["rouge1"]) AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0)) >>> print(results["rouge1"].mid.fmeasure) 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCamelCase ( datasets.Metric ): def snake_case_ (self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Value("string" , id="sequence" ), } ) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[ "https://en.wikipedia.org/wiki/ROUGE_(metric)", "https://github.com/google-research/google-research/tree/master/rouge", ] , ) def snake_case_ (self , __a , __a , __a=None , __a=True , __a=False ) -> Union[str, Any]: if rouge_types is None: UpperCamelCase = ["rouge1", "rouge2", "rougeL", "rougeLsum"] UpperCamelCase = rouge_scorer.RougeScorer(rouge_types=__a , use_stemmer=__a ) if use_aggregator: UpperCamelCase = scoring.BootstrapAggregator() else: UpperCamelCase = [] for ref, pred in zip(__a , __a ): UpperCamelCase = scorer.score(__a , __a ) if use_aggregator: aggregator.add_scores(__a ) else: scores.append(__a ) if use_aggregator: UpperCamelCase = aggregator.aggregate() else: UpperCamelCase = {} for key in scores[0]: UpperCamelCase = [score[key] for score in scores] return result
153
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL __lowercase = logging.get_logger(__name__) def lowercase ( A_ , A_ )-> Optional[Any]: '''simple docstring''' a : int = b.T a : str = np.sum(np.square(A_ ) , axis=1 ) a : int = np.sum(np.square(A_ ) , axis=0 ) a : int = np.matmul(A_ , A_ ) a : int = aa[:, None] - 2 * ab + ba[None, :] return d def lowercase ( A_ , A_ )-> str: '''simple docstring''' a : Any = x.reshape(-1 , 3 ) a : List[str] = squared_euclidean_distance(A_ , A_ ) return np.argmin(A_ , axis=1 ) class _A ( _a ): """simple docstring""" UpperCAmelCase : Tuple = ["""pixel_values"""] def __init__( self : List[Any] , __UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , __UpperCAmelCase : bool = True , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : bool = True , __UpperCAmelCase : bool = True , **__UpperCAmelCase : Optional[Any] , ): super().__init__(**__UpperCAmelCase) a : Dict = size if size is not None else {"height": 256, "width": 256} a : Tuple = get_size_dict(__UpperCAmelCase) a : Dict = np.array(__UpperCAmelCase) if clusters is not None else None a : Optional[Any] = do_resize a : Dict = size a : Any = resample a : int = do_normalize a : Tuple = do_color_quantize def __snake_case ( self : Tuple , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Dict[str, int] , __UpperCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__UpperCAmelCase : int , ): a : List[Any] = get_size_dict(__UpperCAmelCase) if "height" not in size or "width" not in size: raise ValueError(f'''Size dictionary must contain both height and width keys. Got {size.keys()}''') return resize( __UpperCAmelCase , size=(size["height"], size["width"]) , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase) def __snake_case ( self : Any , __UpperCAmelCase : np.ndarray , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = None , ): a : str = rescale(image=__UpperCAmelCase , scale=1 / 127.5 , data_format=__UpperCAmelCase) a : Optional[Any] = image - 1 return image def __snake_case ( self : Dict , __UpperCAmelCase : ImageInput , __UpperCAmelCase : bool = None , __UpperCAmelCase : Dict[str, int] = None , __UpperCAmelCase : PILImageResampling = None , __UpperCAmelCase : bool = None , __UpperCAmelCase : Optional[bool] = None , __UpperCAmelCase : Optional[Union[List[List[int]], np.ndarray]] = None , __UpperCAmelCase : Optional[Union[str, TensorType]] = None , __UpperCAmelCase : Optional[Union[str, ChannelDimension]] = ChannelDimension.FIRST , **__UpperCAmelCase : int , ): a : List[str] = do_resize if do_resize is not None else self.do_resize a : Dict = size if size is not None else self.size a : List[str] = get_size_dict(__UpperCAmelCase) a : List[str] = resample if resample is not None else self.resample a : str = do_normalize if do_normalize is not None else self.do_normalize a : Dict = do_color_quantize if do_color_quantize is not None else self.do_color_quantize a : Tuple = clusters if clusters is not None else self.clusters a : Dict = np.array(__UpperCAmelCase) a : List[Any] = make_list_of_images(__UpperCAmelCase) if not valid_images(__UpperCAmelCase): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray.") if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True.") if do_color_quantize and clusters is None: raise ValueError("Clusters must be specified if do_color_quantize is True.") # All transformations expect numpy arrays. a : int = [to_numpy_array(__UpperCAmelCase) for image in images] if do_resize: a : Optional[Any] = [self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase) for image in images] if do_normalize: a : int = [self.normalize(image=__UpperCAmelCase) for image in images] if do_color_quantize: a : Union[str, Any] = [to_channel_dimension_format(__UpperCAmelCase , ChannelDimension.LAST) for image in images] # color quantize from (batch_size, height, width, 3) to (batch_size, height, width) a : int = np.array(__UpperCAmelCase) a : List[str] = color_quantize(__UpperCAmelCase , __UpperCAmelCase).reshape(images.shape[:-1]) # flatten to (batch_size, height*width) a : Optional[Any] = images.shape[0] a : List[Any] = images.reshape(__UpperCAmelCase , -1) # We need to convert back to a list of images to keep consistent behaviour across processors. a : Optional[int] = list(__UpperCAmelCase) else: a : Union[str, Any] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase) for image in images] a : Union[str, Any] = {"input_ids": images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase)
350
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase __lowercase = logging.get_logger(__name__) __lowercase = { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json""", """allenai/longformer-large-4096""": """https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json""", """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : Optional[Any] = """longformer""" def __init__( self : List[Any] , __UpperCAmelCase : Union[List[int], int] = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 1 , __UpperCAmelCase : int = 0 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : int = 30522 , __UpperCAmelCase : int = 768 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 12 , __UpperCAmelCase : int = 3072 , __UpperCAmelCase : str = "gelu" , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : float = 0.1 , __UpperCAmelCase : int = 512 , __UpperCAmelCase : int = 2 , __UpperCAmelCase : float = 0.02 , __UpperCAmelCase : float = 1e-12 , __UpperCAmelCase : bool = False , **__UpperCAmelCase : int , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : int = attention_window a : List[str] = sep_token_id a : List[Any] = bos_token_id a : int = eos_token_id a : Union[str, Any] = vocab_size a : Dict = hidden_size a : int = num_hidden_layers a : int = num_attention_heads a : Optional[int] = hidden_act a : Union[str, Any] = intermediate_size a : Tuple = hidden_dropout_prob a : Union[str, Any] = attention_probs_dropout_prob a : str = max_position_embeddings a : Dict = type_vocab_size a : Optional[Any] = initializer_range a : List[Any] = layer_norm_eps a : List[str] = onnx_export class _A ( _a ): """simple docstring""" def __init__( self : Tuple , __UpperCAmelCase : "PretrainedConfig" , __UpperCAmelCase : str = "default" , __UpperCAmelCase : "List[PatchingSpec]" = None): super().__init__(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) a : Optional[Any] = True @property def __snake_case ( self : int): if self.task == "multiple-choice": a : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("global_attention_mask", dynamic_axis), ]) @property def __snake_case ( self : Union[str, Any]): a : str = super().outputs if self.task == "default": a : Tuple = {0: "batch"} return outputs @property def __snake_case ( self : Optional[int]): return 1e-4 @property def __snake_case ( self : str): # needs to be >= 14 to support tril operator return max(super().default_onnx_opset , 14) def __snake_case ( self : List[str] , __UpperCAmelCase : "PreTrainedTokenizerBase" , __UpperCAmelCase : int = -1 , __UpperCAmelCase : int = -1 , __UpperCAmelCase : bool = False , __UpperCAmelCase : Optional[TensorType] = None , ): a : str = super().generate_dummy_inputs( preprocessor=__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly a : Union[str, Any] = torch.zeros_like(inputs["input_ids"]) # make every second token global a : Dict = 1 return inputs
226
0
'''simple docstring''' import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration _lowerCAmelCase = 50_0000 _lowerCAmelCase , _lowerCAmelCase = os.path.split(__file__) _lowerCAmelCase = os.path.join(RESULTS_BASEPATH, '''results''', RESULTS_FILENAME.replace('''.py''', '''.json''')) @get_duration def _SCREAMING_SNAKE_CASE ( UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = dataset.map(**UpperCamelCase ) @get_duration def _SCREAMING_SNAKE_CASE ( UpperCamelCase , **UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[Any] = dataset.filter(**UpperCamelCase ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : Tuple = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase__ : List[str] = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) lowerCAmelCase__ : Union[str, Any] = generate_example_dataset( os.path.join(UpperCamelCase , """dataset.arrow""" ) , UpperCamelCase , num_examples=UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=UpperCamelCase ) def tokenize(UpperCamelCase ): return tokenizer(examples["""text"""] ) lowerCAmelCase__ : int = map(UpperCamelCase ) lowerCAmelCase__ : List[Any] = map(UpperCamelCase , batched=UpperCamelCase ) lowerCAmelCase__ : int = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""numpy""" ): lowerCAmelCase__ : Optional[Any] = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""pandas""" ): lowerCAmelCase__ : Dict = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): lowerCAmelCase__ : Any = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): lowerCAmelCase__ : Dict = map(UpperCamelCase , function=lambda UpperCamelCase : None , batched=UpperCamelCase ) lowerCAmelCase__ : Optional[int] = map(UpperCamelCase , function=UpperCamelCase , batched=UpperCamelCase ) lowerCAmelCase__ : Any = filter(UpperCamelCase ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(UpperCamelCase , """wb""" ) as f: f.write(json.dumps(UpperCamelCase ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
37
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def a_ ( __lowercase : Dict ) -> List[Any]: _snake_case = args.pruning_method _snake_case = args.threshold _snake_case = args.model_name_or_path.rstrip('/' ) _snake_case = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _snake_case = torch.load(os.path.join(__lowercase , 'pytorch_model.bin' ) ) _snake_case = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _snake_case = MagnitudeBinarizer.apply(inputs=__lowercase , threshold=__lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = TopKBinarizer.apply(__lowercase , __lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = ThresholdBinarizer.apply(__lowercase , __lowercase , __lowercase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case , _snake_case = -0.1, 1.1 _snake_case = torch.sigmoid(__lowercase ) _snake_case = s * (r - l) + l _snake_case = s_bar.clamp(min=0.0 , max=1.0 ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _snake_case = os.path.join( os.path.dirname(__lowercase ) , f'''bertarized_{os.path.basename(__lowercase )}''' ) if not os.path.isdir(__lowercase ): shutil.copytree(__lowercase , __lowercase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(__lowercase , os.path.join(__lowercase , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( '''--pruning_method''', choices=['''l0''', '''magnitude''', '''topK''', '''sigmoied_threshold'''], type=str, required=True, help=( '''Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,''' ''' sigmoied_threshold = Soft movement pruning)''' ), ) parser.add_argument( '''--threshold''', type=float, required=False, help=( '''For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.''' '''For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.''' '''Not needed for `l0`''' ), ) parser.add_argument( '''--model_name_or_path''', type=str, required=True, help='''Folder containing the model that was previously fine-pruned''', ) parser.add_argument( '''--target_model_path''', default=None, type=str, required=False, help='''Folder containing the model that was previously fine-pruned''', ) _lowerCamelCase : int = parser.parse_args() main(args)
282
0
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['image_processor'] UpperCAmelCase_ = 'SamImageProcessor' def __init__( self : Tuple , lowercase__ : Dict): '''simple docstring''' super().__init__(lowercase__) lowerCAmelCase__ = self.image_processor lowerCAmelCase__ = -10 lowerCAmelCase__ = self.image_processor.size['longest_edge'] def __call__( self : List[Any] , lowercase__ : Optional[int]=None , lowercase__ : Any=None , lowercase__ : Tuple=None , lowercase__ : List[str]=None , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase__ = encoding_image_processor['original_sizes'] if hasattr(lowercase__ , 'numpy'): # Checks if Torch or TF tensor lowerCAmelCase__ = original_sizes.numpy() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._check_and_preprocess_points( input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , ) lowerCAmelCase__ = self._normalize_and_convert( lowercase__ , lowercase__ , input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , return_tensors=lowercase__ , ) return encoding_image_processor def __snake_case ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : str=None , lowercase__ : Optional[int]=None , lowercase__ : str=None , lowercase__ : Optional[Any]="pt" , ): '''simple docstring''' if input_points is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0]) for point in input_points ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__) for point, original_size in zip(lowercase__ , lowercase__) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowerCAmelCase__ , lowerCAmelCase__ = self._pad_points_and_labels(lowercase__ , lowercase__) lowerCAmelCase__ = np.array(lowercase__) if input_labels is not None: lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0] , is_bounding_box=lowercase__) for box in input_boxes ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__ , is_bounding_box=lowercase__) for box, original_size in zip(lowercase__ , lowercase__) ] lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes}) if input_points is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'input_points': input_points}) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels}) return encoding_image_processor def __snake_case ( self : str , lowercase__ : Optional[int] , lowercase__ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = max([point.shape[0] for point in input_points]) lowerCAmelCase__ = [] for i, point in enumerate(lowercase__): if point.shape[0] != expected_nb_points: lowerCAmelCase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowerCAmelCase__ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(lowercase__) lowerCAmelCase__ = processed_input_points return input_points, input_labels def __snake_case ( self : Optional[Any] , lowercase__ : int , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : Optional[Any]=False): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = original_size lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor._get_preprocess_shape(lowercase__ , longest_edge=lowercase__) lowerCAmelCase__ = deepcopy(lowercase__).astype(lowercase__) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 2 , 2) lowerCAmelCase__ = coords[..., 0] * (new_w / old_w) lowerCAmelCase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 4) return coords def __snake_case ( self : Dict , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : int=None , ): '''simple docstring''' if input_points is not None: if hasattr(lowercase__ , 'numpy'): # Checks for TF or Torch tensor lowerCAmelCase__ = input_points.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_points[0] , lowercase__): raise ValueError('Input points must be a list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__) for input_point in input_points] else: lowerCAmelCase__ = None if input_labels is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_labels.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_labels[0] , lowercase__): raise ValueError('Input labels must be a list of list integers.') lowerCAmelCase__ = [np.array(lowercase__) for label in input_labels] else: lowerCAmelCase__ = None if input_boxes is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_boxes.numpy().tolist() if ( not isinstance(lowercase__ , lowercase__) or not isinstance(input_boxes[0] , lowercase__) or not isinstance(input_boxes[0][0] , lowercase__) ): raise ValueError('Input boxes must be a list of list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__).astype(np.floataa) for box in input_boxes] else: lowerCAmelCase__ = None return input_points, input_labels, input_boxes @property def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(lowercase__)) def __snake_case ( self : int , *lowercase__ : int , **lowercase__ : int): '''simple docstring''' return self.image_processor.post_process_masks(*lowercase__ , **lowercase__)
350
from math import log from scipy.constants import Boltzmann, physical_constants lowerCAmelCase__ = 300 # TEMPERATURE (unit = K) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ): if donor_conc <= 0: raise ValueError('Donor concentration should be positive' ) elif acceptor_conc <= 0: raise ValueError('Acceptor concentration should be positive' ) elif intrinsic_conc <= 0: raise ValueError('Intrinsic concentration should be positive' ) elif donor_conc <= intrinsic_conc: raise ValueError( 'Donor concentration should be greater than intrinsic concentration' ) elif acceptor_conc <= intrinsic_conc: raise ValueError( 'Acceptor concentration should be greater than intrinsic concentration' ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
119
0
from typing import Dict from .base import GenericTensor, Pipeline class SCREAMING_SNAKE_CASE__ ( _lowerCamelCase ): """simple docstring""" def A__ ( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ )-> List[Any]: '''simple docstring''' if tokenize_kwargs is None: __UpperCamelCase = {} if truncation is not None: if "truncation" in tokenize_kwargs: raise ValueError( '''truncation parameter defined twice (given as keyword argument as well as in tokenize_kwargs)''' ) __UpperCamelCase = truncation __UpperCamelCase = tokenize_kwargs __UpperCamelCase = {} if return_tensors is not None: __UpperCamelCase = return_tensors return preprocess_params, {}, postprocess_params def A__ ( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> List[str]: '''simple docstring''' __UpperCamelCase = self.framework __UpperCamelCase = self.tokenizer(lowercase_ , return_tensors=lowercase_ , **lowercase_ ) return model_inputs def A__ ( self , SCREAMING_SNAKE_CASE_ )-> Tuple: '''simple docstring''' __UpperCamelCase = self.model(**lowercase_ ) return model_outputs def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False )-> Union[str, Any]: '''simple docstring''' if return_tensors: return model_outputs[0] if self.framework == "pt": return model_outputs[0].tolist() elif self.framework == "tf": return model_outputs[0].numpy().tolist() def __call__( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )-> Any: '''simple docstring''' return super().__call__(*lowercase_ , **lowercase_ )
328
'''simple docstring''' import re def __magic_name__ ( __UpperCAmelCase ) -> bool: '''simple docstring''' snake_case_ = re.compile( r'''^(?:0|94|\+94|0{2}94)''' r'''7(0|1|2|4|5|6|7|8)''' r'''(-| |)''' r'''\d{7}$''' ) return bool(re.search(__UpperCAmelCase, __UpperCAmelCase ) ) if __name__ == "__main__": a : Any = '0094702343221' print(is_sri_lankan_phone_number(phone))
56
0
"""simple docstring""" A = { '''km/h''': 1.0, '''m/s''': 3.6, '''mph''': 1.609344, '''knot''': 1.852, } A = { '''km/h''': 1.0, '''m/s''': 0.277777778, '''mph''': 0.621371192, '''knot''': 0.539956803, } def __A ( a_ :float , a_ :str , a_ :str) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __a : Dict = ( F"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" F"""Valid values are: {", ".join(a_)}""" ) raise ValueError(a_) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3) if __name__ == "__main__": import doctest doctest.testmod()
351
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging A = logging.get_logger(__name__) A = {'''vocab_file''': '''spiece.model'''} A = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } A = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } A = '''▁''' class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , _UpperCAmelCase , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=False , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="[SEP]" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="[CLS]" , _UpperCAmelCase="[MASK]" , _UpperCAmelCase = None , **_UpperCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __a : int = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) __a : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) __a : Tuple = do_lower_case __a : Optional[Any] = remove_space __a : Optional[Any] = keep_accents __a : Union[str, Any] = vocab_file __a : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def _lowerCamelCase ( self ): return len(self.sp_model ) def _lowerCamelCase ( self ): __a : Any = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): __a : str = self.__dict__.copy() __a : Tuple = None return state def __setstate__( self , _UpperCAmelCase ): __a : Any = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a : Optional[Any] = {} __a : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _lowerCamelCase ( self , _UpperCAmelCase ): if self.remove_space: __a : Any = ''' '''.join(inputs.strip().split() ) else: __a : Tuple = inputs __a : Union[str, Any] = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: __a : List[str] = unicodedata.normalize('''NFKD''' , _UpperCAmelCase ) __a : Optional[int] = ''''''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: __a : Optional[Any] = outputs.lower() return outputs def _lowerCamelCase ( self , _UpperCAmelCase ): __a : int = self.preprocess_text(_UpperCAmelCase ) __a : Tuple = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) __a : int = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): __a : List[str] = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: __a : Tuple = cur_pieces[1:] else: __a : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.PieceToId(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def _lowerCamelCase ( self , _UpperCAmelCase ): __a : List[str] = [] __a : str = '''''' __a : Any = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token __a : Tuple = True __a : Tuple = [] else: current_sub_tokens.append(_UpperCAmelCase ) __a : Optional[int] = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : int = [self.sep_token_id] __a : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): __a : Union[str, Any] = [self.sep_token_id] __a : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowerCamelCase ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __a : List[str] = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , '''wb''' ) as fi: __a : Any = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
188
0
"""simple docstring""" import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets A : Optional[Any] = "\\n@inproceedings{snover-etal-2006-study,\n title = \"A Study of Translation Edit Rate with Targeted Human Annotation\",\n author = \"Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John\",\n booktitle = \"Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers\",\n month = aug # \" 8-12\",\n year = \"2006\",\n address = \"Cambridge, Massachusetts, USA\",\n publisher = \"Association for Machine Translation in the Americas\",\n url = \"https://aclanthology.org/2006.amta-papers.25\",\n pages = \"223--231\",\n}\n@inproceedings{post-2018-call,\n title = \"A Call for Clarity in Reporting {BLEU} Scores\",\n author = \"Post, Matt\",\n booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",\n month = oct,\n year = \"2018\",\n address = \"Belgium, Brussels\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/W18-6319\",\n pages = \"186--191\",\n}\n" A : Optional[int] = "\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu's required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n" A : Any = "\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n 'score' (float): TER score (num_edits / sum_ref_lengths * 100)\n 'num_edits' (int): The cumulative number of edits\n 'ref_length' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 150.0, 'num_edits': 15, 'ref_length': 10.0}\n\n Example 2:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 62.5, 'num_edits': 5, 'ref_length': 8.0}\n\n Example 3:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {'score': 57.14285714285714, 'num_edits': 6, 'ref_length': 10.5}\n\n Example 4:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 0.0, 'num_edits': 0, 'ref_length': 8.0}\n\n Example 5:\n >>> predictions = [\"does this sentence match??\",\n ... \"what about this sentence?\",\n ... \"What did the TER metric user say to the developer?\"]\n >>> references = [[\"does this sentence match\", \"does this sentence match!?!\"],\n ... [\"wHaT aBoUt ThIs SeNtEnCe?\", \"wHaT aBoUt ThIs SeNtEnCe?\"],\n ... [\"Your jokes are...\", \"...TERrible\"]]\n >>> ter = datasets.load_metric(\"ter\")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {'score': 100.0, 'num_edits': 10, 'ref_length': 10.0}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def snake_case ( self ): if version.parse(scb.__version__ ) < version.parse("1.4.12" ): raise ImportWarning( "To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn't match this condition.\n" "You can install it with `pip install \"sacrebleu>=1.4.12\"`." ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="http://www.cs.umd.edu/~snover/tercom/" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("string" , id="sequence" ), "references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ), } ) , codebase_urls=["https://github.com/mjpost/sacreBLEU#ter"] , reference_urls=[ "https://github.com/jhclark/tercom", ] , ) def snake_case ( self , __a , __a , __a = False , __a = False , __a = False , __a = False , ): __lowerCAmelCase = len(references[0] ) if any(len(__a ) != references_per_prediction for refs in references ): raise ValueError("Sacrebleu requires the same number of references for each prediction" ) __lowerCAmelCase = [[refs[i] for refs in references] for i in range(__a )] __lowerCAmelCase = TER( normalized=__a , no_punct=__a , asian_support=__a , case_sensitive=__a , ) __lowerCAmelCase = sb_ter.corpus_score(__a , __a ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
57
import unittest from transformers import AlbertTokenizer, AlbertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowercase_ = get_tests_dir("fixtures/spiece.model") @require_sentencepiece @require_tokenizers class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = AlbertTokenizer lowerCamelCase = AlbertTokenizerFast lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True def snake_case__ ( self : Dict )-> Any: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ = AlbertTokenizer(lowercase_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : List[str],lowercase_ : str )-> Any: '''simple docstring''' A__ = 'this is a test' A__ = 'this is a test' return input_text, output_text def snake_case__ ( self : List[Any] )-> Optional[int]: '''simple docstring''' A__ = '<pad>' A__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase_ ),lowercase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase_ ),lowercase_ ) def snake_case__ ( self : List[str] )-> str: '''simple docstring''' A__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0],'<pad>' ) self.assertEqual(vocab_keys[1],'<unk>' ) self.assertEqual(vocab_keys[-1],'▁eloquent' ) self.assertEqual(len(lowercase_ ),3_0_0_0_0 ) def snake_case__ ( self : int )-> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size,3_0_0_0_0 ) def snake_case__ ( self : Union[str, Any] )-> List[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return A__ = self.get_tokenizer() A__ = self.get_rust_tokenizer() A__ = 'I was born in 92000, and this is falsé.' A__ = tokenizer.tokenize(lowercase_ ) A__ = rust_tokenizer.tokenize(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) A__ = rust_tokenizer.encode(lowercase_,add_special_tokens=lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) A__ = self.get_rust_tokenizer() A__ = tokenizer.encode(lowercase_ ) A__ = rust_tokenizer.encode(lowercase_ ) self.assertListEqual(lowercase_,lowercase_ ) def snake_case__ ( self : int )-> int: '''simple docstring''' A__ = AlbertTokenizer(lowercase_,keep_accents=lowercase_ ) A__ = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase_,['▁this', '▁is', '▁a', '▁test'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase_ ),[4_8, 2_5, 2_1, 1_2_8_9] ) A__ = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.'] ) A__ = tokenizer.convert_tokens_to_ids(lowercase_ ) self.assertListEqual(lowercase_,[3_1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] ) A__ = tokenizer.convert_ids_to_tokens(lowercase_ ) self.assertListEqual( lowercase_,['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.'],) def snake_case__ ( self : Union[str, Any] )-> str: '''simple docstring''' A__ = AlbertTokenizer(lowercase_ ) A__ = tokenizer.encode('sequence builders' ) A__ = tokenizer.encode('multi-sequence build' ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_ ) A__ = tokenizer.build_inputs_with_special_tokens(lowercase_,lowercase_ ) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ] @slow def snake_case__ ( self : Any )-> Tuple: '''simple docstring''' A__ = {'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'input_ids': [[2, 2_1_9_7_0, 1_3, 5, 6_0_9_2, 1_6_7, 2_8, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 7_0_2_8, 1_2_0_5_1, 1_8, 1_7, 7_1_0_3, 2_1_5_3, 6_7_3, 8, 3_5_1_5, 1_8_6_8_4, 8, 4_4_6_1, 6, 1_9_2_7, 2_9_7, 8, 1_2_0_6_0, 2_6_0_7, 1_8, 1_3, 5, 4_4_6_1, 1_5, 1_0_5_3_8, 3_8, 8, 1_3_5, 1_5, 8_2_2, 5_8, 1_5, 9_9_3, 1_0_3_6_3, 1_5, 1_4_6_0, 8_0_0_5, 4_4_6_1, 1_5, 9_9_3, 2_5_5, 2_3_2_8, 9, 9, 9, 6, 2_6, 1_1_1_2, 8_1_6, 3_2_6_0, 1_3, 5, 1_0_3, 2_3_7_7, 6, 1_7, 1_1_1_2, 8_1_6, 2_7_8_2, 1_3, 5, 1_0_3, 1_0_6_4_1, 6, 2_9, 8_4, 2_5_1_2, 2_4_3_0, 7_8_2, 1_8_6_8_4, 2_7_6_1, 1_9, 8_0_8, 2_4_3_0, 2_5_5_6, 1_7, 8_5_5, 1_4_8_0, 9_4_7_7, 4_0_9_1, 1_2_8, 1_1_7_1_2, 1_5, 7_1_0_3, 2_1_5_3, 6_7_3, 1_7, 2_4_8_8_3, 9_9_9_0, 9, 3], [2, 1_1_5_0_2, 2_5, 1_0_0_6, 2_0, 7_8_2, 8, 1_1_8_0_9, 8_5_5, 1_7_3_2, 1_9_3_9_3, 1_8_6_6_7, 3_7, 3_6_7, 2_1_0_1_8, 6_9, 1_8_5_4, 3_4, 1_1_8_6_0, 1_9_1_2_4, 2_7, 1_5_6, 2_2_5, 1_7, 1_9_3, 4_1_4_1, 1_9, 6_5, 9_1_2_4, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [2, 1_4, 2_2_3_1, 8_8_6, 2_3_8_5, 1_7_6_5_9, 8_4, 1_4, 1_6_7_9_2, 1_9_5_2, 9, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase_,model_name='albert-base-v2',revision='6b6560eaf5ff2e250b00c50f380c5389a9c2d82e',)
7
0
"""simple docstring""" from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __magic_name__ : '''simple docstring''' def _lowerCAmelCase ( self , _a ): """simple docstring""" raise NotImplementedError() def _lowerCAmelCase ( self ): """simple docstring""" raise NotImplementedError() class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a = False , **_a ): """simple docstring""" lowerCamelCase = tokenizer lowerCamelCase = skip_prompt lowerCamelCase = decode_kwargs # variables used in the streaming process lowerCamelCase = [] lowerCamelCase = 0 lowerCamelCase = True def _lowerCAmelCase ( self , _a ): """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError("""TextStreamer only supports batch size 1""" ) elif len(value.shape ) > 1: lowerCamelCase = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCamelCase = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith("""\n""" ): lowerCamelCase = text[self.print_len :] lowerCamelCase = [] lowerCamelCase = 0 # If the last token is a CJK character, we print the characters. elif len(_a ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCamelCase = text[self.print_len :] self.print_len += len(_a ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCamelCase = text[self.print_len : text.rfind(""" """ ) + 1] self.print_len += len(_a ) self.on_finalized_text(_a ) def _lowerCAmelCase ( self ): """simple docstring""" # Flush the cache, if it exists if len(self.token_cache ) > 0: lowerCamelCase = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCamelCase = text[self.print_len :] lowerCamelCase = [] lowerCamelCase = 0 else: lowerCamelCase = """""" lowerCamelCase = True self.on_finalized_text(_a , stream_end=_a ) def _lowerCAmelCase ( self , _a , _a = False ): """simple docstring""" print(_a , flush=_a , end="""""" if not stream_end else None ) def _lowerCAmelCase ( self , _a ): """simple docstring""" # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4e00 and cp <= 0X9fff) or (cp >= 0X3400 and cp <= 0X4dbf) # or (cp >= 0X2_0000 and cp <= 0X2_a6df) # or (cp >= 0X2_a700 and cp <= 0X2_b73f) # or (cp >= 0X2_b740 and cp <= 0X2_b81f) # or (cp >= 0X2_b820 and cp <= 0X2_ceaf) # or (cp >= 0Xf900 and cp <= 0Xfaff) or (cp >= 0X2_f800 and cp <= 0X2_fa1f) # ): # return True return False class __magic_name__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self , _a , _a = False , _a = None , **_a ): """simple docstring""" super().__init__(_a , _a , **_a ) lowerCamelCase = Queue() lowerCamelCase = None lowerCamelCase = timeout def _lowerCAmelCase ( self , _a , _a = False ): """simple docstring""" self.text_queue.put(_a , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self ): """simple docstring""" return self def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
358
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class __magic_name__ ( UpperCAmelCase__ , UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = 1 @register_to_config def __init__( self , _a=2_000 , _a=0.1 , _a=20 , _a=1e-3 ): """simple docstring""" lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None def _lowerCAmelCase ( self , _a , _a = None ): """simple docstring""" lowerCamelCase = torch.linspace(1 , self.config.sampling_eps , _a , device=_a ) def _lowerCAmelCase ( self , _a , _a , _a , _a=None ): """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCamelCase = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCamelCase = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCamelCase = std.flatten() while len(std.shape ) < len(score.shape ): lowerCamelCase = std.unsqueeze(-1 ) lowerCamelCase = -score / std # compute lowerCamelCase = -1.0 / len(self.timesteps ) lowerCamelCase = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCamelCase = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCamelCase = beta_t.unsqueeze(-1 ) lowerCamelCase = -0.5 * beta_t * x lowerCamelCase = torch.sqrt(_a ) lowerCamelCase = drift - diffusion**2 * score lowerCamelCase = x + drift * dt # add noise lowerCamelCase = randn_tensor(x.shape , layout=x.layout , generator=_a , device=x.device , dtype=x.dtype ) lowerCamelCase = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self ): """simple docstring""" return self.config.num_train_timesteps
168
0
"""simple docstring""" import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _A ( lowercase , lowercase ): """simple docstring""" a =f'''{sampling_rate}''' a ='''1''' a ='''f32le''' a =[ '''ffmpeg''', '''-i''', '''pipe:0''', '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] try: with subprocess.Popen(_UpperCAmelCase , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: a =ffmpeg_process.communicate(_UpperCAmelCase ) except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to load audio files from filename''' ) from error a =output_stream[0] a =np.frombuffer(_UpperCAmelCase , np.floataa ) if audio.shape[0] == 0: raise ValueError('''Malformed soundfile''' ) return audio def _A ( lowercase , lowercase , lowercase = "f32le" , ): """simple docstring""" a =f'''{sampling_rate}''' a ='''1''' if format_for_conversion == "s16le": a =2 elif format_for_conversion == "f32le": a =4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) a =platform.system() if system == "Linux": a ='''alsa''' a ='''default''' elif system == "Darwin": a ='''avfoundation''' a =''':0''' elif system == "Windows": a ='''dshow''' a ='''default''' a =[ '''ffmpeg''', '''-f''', format_, '''-i''', input_, '''-ac''', ac, '''-ar''', ar, '''-f''', format_for_conversion, '''-fflags''', '''nobuffer''', '''-hide_banner''', '''-loglevel''', '''quiet''', '''pipe:1''', ] a =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample a =_ffmpeg_stream(_UpperCAmelCase , _UpperCAmelCase ) for item in iterator: yield item def _A ( lowercase , lowercase , lowercase = None , lowercase = None , lowercase = "f32le" , ): """simple docstring""" if stream_chunk_s is not None: a =stream_chunk_s else: a =chunk_length_s a =ffmpeg_microphone(_UpperCAmelCase , _UpperCAmelCase , format_for_conversion=_UpperCAmelCase ) if format_for_conversion == "s16le": a =np.intaa a =2 elif format_for_conversion == "f32le": a =np.floataa a =4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: a =chunk_length_s / 6 a =int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(_UpperCAmelCase , (int, float) ): a =[stride_length_s, stride_length_s] a =int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample a =int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample a =datetime.datetime.now() a =datetime.timedelta(seconds=_UpperCAmelCase ) for item in chunk_bytes_iter(_UpperCAmelCase , _UpperCAmelCase , stride=(stride_left, stride_right) , stream=_UpperCAmelCase ): # Put everything back in numpy scale a =np.frombuffer(item['''raw'''] , dtype=_UpperCAmelCase ) a =( item['''stride'''][0] // size_of_sample, item['''stride'''][1] // size_of_sample, ) a =sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _A ( lowercase , lowercase , lowercase , lowercase = False ): """simple docstring""" a =B'''''' a =stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) a =0 for raw in iterator: acc += raw if stream and len(_UpperCAmelCase ) < chunk_len: a =(_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(_UpperCAmelCase ) >= chunk_len: # We are flushing the accumulator a =(_stride_left, stride_right) a ={'''raw''': acc[:chunk_len], '''stride''': stride} if stream: a =False yield item a =stride_left a =acc[chunk_len - stride_left - stride_right :] # Last chunk if len(_UpperCAmelCase ) > stride_left: a ={'''raw''': acc, '''stride''': (_stride_left, 0)} if stream: a =False yield item def _A ( lowercase , lowercase ): """simple docstring""" a =2**24 # 16Mo try: with subprocess.Popen(_UpperCAmelCase , stdout=subprocess.PIPE , bufsize=_UpperCAmelCase ) as ffmpeg_process: while True: a =ffmpeg_process.stdout.read(_UpperCAmelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('''ffmpeg was not found but is required to stream audio files from filename''' ) from error
81
import qiskit def a ( _UpperCAmelCase : int , _UpperCAmelCase : int ): '''simple docstring''' __UpperCAmelCase : List[str] = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCAmelCase : Optional[Any] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCAmelCase : str = qiskit.execute(_UpperCAmelCase , _UpperCAmelCase , shots=10_00 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_UpperCAmelCase ) if __name__ == "__main__": __A =half_adder(1, 1) print(f'''Half Adder Output Qubit Counts: {counts}''')
226
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _lowerCamelCase : Optional[int] = None _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase : Any = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } _lowerCamelCase : List[str] = { """facebook/nllb-large-en-ro""": 1024, """facebook/nllb-200-distilled-600M""": 1024, } # fmt: off _lowerCamelCase : Optional[int] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = ['''input_ids''', '''attention_mask'''] __lowerCAmelCase = NllbTokenizer __lowerCAmelCase = [] __lowerCAmelCase = [] def __init__(self : Optional[int] , _lowerCAmelCase : int=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Optional[Any]="<s>" , _lowerCAmelCase : int="</s>" , _lowerCAmelCase : List[Any]="</s>" , _lowerCAmelCase : Tuple="<s>" , _lowerCAmelCase : str="<unk>" , _lowerCAmelCase : List[str]="<pad>" , _lowerCAmelCase : Optional[int]="<mask>" , _lowerCAmelCase : str=None , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Tuple=None , _lowerCAmelCase : List[Any]=False , **_lowerCAmelCase : Optional[Any] , ): A = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token A = legacy_behaviour super().__init__( vocab_file=snake_case__ , tokenizer_file=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , src_lang=snake_case__ , tgt_lang=snake_case__ , additional_special_tokens=snake_case__ , legacy_behaviour=snake_case__ , **snake_case__ , ) A = vocab_file A = False if not self.vocab_file else True A = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) A = { lang_code: self.convert_tokens_to_ids(snake_case__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } A = src_lang if src_lang is not None else 'eng_Latn' A = self.convert_tokens_to_ids(self._src_lang ) A = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def A (self : Union[str, Any] ): return self._src_lang @src_lang.setter def A (self : Optional[Any] , _lowerCAmelCase : Dict ): A = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def A (self : Any , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Union[str, Any] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def A (self : Tuple , _lowerCAmelCase : List[str] , _lowerCAmelCase : str = None ): A = [self.sep_token_id] A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A (self : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , **_lowerCAmelCase : Any ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) A = src_lang A = self(snake_case__ , add_special_tokens=snake_case__ , return_tensors=snake_case__ , **snake_case__ ) A = self.convert_tokens_to_ids(snake_case__ ) A = tgt_lang_id return inputs def A (self : Dict , _lowerCAmelCase : Dict , _lowerCAmelCase : Dict = "eng_Latn" , _lowerCAmelCase : List[Any] = None , _lowerCAmelCase : Optional[int] = "fra_Latn" , **_lowerCAmelCase : Optional[int] , ): A = src_lang A = tgt_lang return super().prepare_seqaseq_batch(snake_case__ , snake_case__ , **snake_case__ ) def A (self : Any ): return self.set_src_lang_special_tokens(self.src_lang ) def A (self : str ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def A (self : Optional[Any] , _lowerCAmelCase : Any ): A = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: A = [] A = [self.eos_token_id, self.cur_lang_code] else: A = [self.cur_lang_code] A = [self.eos_token_id] A = self.convert_ids_to_tokens(self.prefix_tokens ) A = self.convert_ids_to_tokens(self.suffix_tokens ) A = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A (self : str , _lowerCAmelCase : List[str] ): A = self.convert_tokens_to_ids(snake_case__ ) if self.legacy_behaviour: A = [] A = [self.eos_token_id, self.cur_lang_code] else: A = [self.cur_lang_code] A = [self.eos_token_id] A = self.convert_ids_to_tokens(self.prefix_tokens ) A = self.convert_ids_to_tokens(self.suffix_tokens ) A = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def A (self : Dict , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return A = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) return (out_vocab_file,)
353
'''simple docstring''' from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : Dict = logging.get_logger(__name__) _lowerCamelCase : Any = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class __UpperCAmelCase ( A__ ): '''simple docstring''' __lowerCAmelCase = '''umt5''' __lowerCAmelCase = ['''past_key_values'''] def __init__(self : Dict , _lowerCAmelCase : Optional[int]=25_0112 , _lowerCAmelCase : int=512 , _lowerCAmelCase : Any=64 , _lowerCAmelCase : int=1024 , _lowerCAmelCase : int=8 , _lowerCAmelCase : Dict=None , _lowerCAmelCase : Optional[int]=6 , _lowerCAmelCase : Optional[int]=32 , _lowerCAmelCase : Any=128 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Optional[int]=1e-6 , _lowerCAmelCase : Dict=1.0 , _lowerCAmelCase : Tuple="gated-gelu" , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : List[str]=True , _lowerCAmelCase : Optional[int]="T5Tokenizer" , _lowerCAmelCase : int=True , _lowerCAmelCase : Optional[Any]=0 , _lowerCAmelCase : str=1 , _lowerCAmelCase : Union[str, Any]=0 , **_lowerCAmelCase : Union[str, Any] , ): super().__init__( is_encoder_decoder=_lowerCAmelCase , tokenizer_class=_lowerCAmelCase , tie_word_embeddings=_lowerCAmelCase , pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , ) A = vocab_size A = d_model A = d_kv A = d_ff A = num_layers A = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A = num_heads A = relative_attention_num_buckets A = relative_attention_max_distance A = dropout_rate A = layer_norm_epsilon A = initializer_factor A = feed_forward_proj A = use_cache A = self.feed_forward_proj.split("""-""" ) A = act_info[-1] A = act_info[0] == """gated""" if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" """Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. """ """'gated-gelu' or 'relu'""" ) if feed_forward_proj == "gated-gelu": A = """gelu_new""" @property def A (self : Optional[Any] ): return self.d_model @property def A (self : List[Any] ): return self.num_heads @property def A (self : Dict ): return self.num_layers class __UpperCAmelCase ( A__ ): '''simple docstring''' @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def A (self : Optional[Any] ): A = { """input_ids""": {0: """batch""", 1: """encoder_sequence"""}, """attention_mask""": {0: """batch""", 1: """encoder_sequence"""}, } if self.use_past: A = """past_encoder_sequence + sequence""" A = {0: """batch"""} A = {0: """batch""", 1: """past_decoder_sequence + sequence"""} else: A = {0: """batch""", 1: """decoder_sequence"""} A = {0: """batch""", 1: """decoder_sequence"""} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction="""inputs""" ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def A (self : Union[str, Any] ): return 13 @property def A (self : Tuple ): return 5e-4
337
0
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def __snake_case ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Union[str, Any]=1024 ) -> List[str]: A_ : str = [], [] A_ : List[str] = list(zip(snake_case__ , snake_case__ ) ) A_ : Dict = sorted_examples[0] def is_too_big(_lowerCAmelCase : Union[str, Any] ): return tok(snake_case__ , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): A_ : str = new_src + ' ' + src A_ : Optional[int] = new_tgt + ' ' + tgt if is_too_big(snake_case__ ) or is_too_big(snake_case__ ): # cant fit, finalize example finished_src.append(snake_case__ ) finished_tgt.append(snake_case__ ) A_ : List[str] = src, tgt else: # can fit, keep adding A_ : Dict = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(snake_case__ ) finished_tgt.append(snake_case__ ) return finished_src, finished_tgt def __snake_case ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Path , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Tuple ) -> Optional[int]: A_ : Optional[int] = Path(snake_case__ ) save_path.mkdir(exist_ok=snake_case__ ) for split in ["train"]: A_ : int = data_dir / f"{split}.source", data_dir / f"{split}.target" A_ : List[Any] = [x.rstrip() for x in Path(snake_case__ ).open().readlines()] A_ : List[str] = [x.rstrip() for x in Path(snake_case__ ).open().readlines()] A_ : Any = pack_examples(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) print(f"packed {split} split from {len(snake_case__ )} examples -> {len(snake_case__ )}." ) Path(save_path / f"{split}.source" ).open("w" ).write("\n".join(snake_case__ ) ) Path(save_path / f"{split}.target" ).open("w" ).write("\n".join(snake_case__ ) ) for split in ["val", "test"]: A_ : Optional[int] = data_dir / f"{split}.source", data_dir / f"{split}.target" shutil.copyfile(snake_case__ , save_path / f"{split}.source" ) shutil.copyfile(snake_case__ , save_path / f"{split}.target" ) def __snake_case ( ) -> List[str]: A_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--tok_name" , type=snake_case__ , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=snake_case__ , default=128 ) parser.add_argument("--data_dir" , type=snake_case__ ) parser.add_argument("--save_path" , type=snake_case__ ) A_ : Optional[Any] = parser.parse_args() A_ : List[str] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(snake_case__ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
300
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase ( snake_case__ : Tuple ) -> List[str]: UpperCamelCase : Optional[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class lowerCAmelCase_ ( a__ , a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : str = StableDiffusionLatentUpscalePipeline UpperCAmelCase__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { "height", "width", "cross_attention_kwargs", "negative_prompt_embeds", "prompt_embeds", } UpperCAmelCase__ : str = PipelineTesterMixin.required_optional_params - {"num_images_per_prompt"} UpperCAmelCase__ : Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCAmelCase__ : List[str] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCAmelCase__ : Union[str, Any] = frozenset([] ) UpperCAmelCase__ : Optional[int] = True @property def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : List[Any] = 1 UpperCamelCase : List[str] = 4 UpperCamelCase : List[str] = (16, 16) UpperCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) return image def snake_case_ ( self ) -> int: torch.manual_seed(0 ) UpperCamelCase : int = UNetaDConditionModel( act_fn='gelu', attention_head_dim=8, norm_num_groups=SCREAMING_SNAKE_CASE_, block_out_channels=[32, 32, 64, 64], time_cond_proj_dim=160, conv_in_kernel=1, conv_out_kernel=1, cross_attention_dim=32, down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ), in_channels=8, mid_block_type=SCREAMING_SNAKE_CASE_, only_cross_attention=SCREAMING_SNAKE_CASE_, out_channels=5, resnet_time_scale_shift='scale_shift', time_embedding_type='fourier', timestep_post_act='gelu', up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D'), ) UpperCamelCase : Tuple = AutoencoderKL( block_out_channels=[32, 32, 64, 64], in_channels=3, out_channels=3, down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) UpperCamelCase : Tuple = EulerDiscreteScheduler(prediction_type='sample' ) UpperCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, hidden_act='quick_gelu', projection_dim=512, ) UpperCamelCase : Any = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase : Optional[int] = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> List[str]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[str] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : Optional[Any] = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> List[Any]: UpperCamelCase : str = 'cpu' UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Dict = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Union[str, Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase : str = image[0, -3:, -3:, -1] self.assertEqual(image.shape, (1, 256, 256, 3) ) UpperCamelCase : List[Any] = np.array( [0.47_22_24_12, 0.41_92_16_33, 0.44_71_74_34, 0.46_87_41_92, 0.42_58_82_58, 0.46_15_07_26, 0.4_67_75_34, 0.45_58_38_32, 0.48_57_90_55] ) UpperCamelCase : Dict = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(SCREAMING_SNAKE_CASE_, 1e-3 ) def snake_case_ ( self ) -> List[Any]: super().test_attention_slicing_forward_pass(expected_max_diff=7e-3 ) def snake_case_ ( self ) -> Tuple: super().test_cpu_offload_forward_pass(expected_max_diff=3e-3 ) def snake_case_ ( self ) -> Dict: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) def snake_case_ ( self ) -> Any: super().test_inference_batch_single_identical(expected_max_diff=7e-3 ) def snake_case_ ( self ) -> List[str]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3e-3 ) def snake_case_ ( self ) -> Optional[int]: super().test_save_load_local(expected_max_difference=3e-3 ) def snake_case_ ( self ) -> int: super().test_save_load_optional_components(expected_max_difference=3e-3 ) def snake_case_ ( self ) -> Optional[Any]: UpperCamelCase : Optional[Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] UpperCamelCase : Tuple = self.get_dummy_components() UpperCamelCase : Tuple = self.pipeline_class(**SCREAMING_SNAKE_CASE_ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=SCREAMING_SNAKE_CASE_ ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = 2 UpperCamelCase : Optional[Any] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue UpperCamelCase : List[Any] = getattr(SCREAMING_SNAKE_CASE_, scheduler_enum.name ) UpperCamelCase : List[str] = scheduler_cls.from_config(pipe.scheduler.config ) UpperCamelCase : List[str] = pipe(**SCREAMING_SNAKE_CASE_ )[0] outputs.append(SCREAMING_SNAKE_CASE_ ) assert check_same_shape(SCREAMING_SNAKE_CASE_ ) @require_torch_gpu @slow class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Dict = torch.manual_seed(33 ) UpperCamelCase : Union[str, Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4', torch_dtype=torch.floataa ) pipe.to('cuda' ) UpperCamelCase : Tuple = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa ) upscaler.to('cuda' ) UpperCamelCase : Union[str, Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' UpperCamelCase : int = pipe(SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, output_type='latent' ).images UpperCamelCase : List[str] = upscaler( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=20, guidance_scale=0, generator=SCREAMING_SNAKE_CASE_, output_type='np', ).images[0] UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5e-2 def snake_case_ ( self ) -> int: UpperCamelCase : List[Any] = torch.manual_seed(33 ) UpperCamelCase : Union[str, Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler', torch_dtype=torch.floataa ) upscaler.to('cuda' ) UpperCamelCase : Dict = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' UpperCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) UpperCamelCase : str = upscaler( prompt=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=20, guidance_scale=0, generator=SCREAMING_SNAKE_CASE_, output_type='np', ).images[0] UpperCamelCase : Optional[Any] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5e-2
119
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): if not (isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) and isinstance(UpperCAmelCase_ , UpperCAmelCase_ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) A__ = len(UpperCAmelCase_ ) A__ = len(UpperCAmelCase_ ) A__ = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] A__ = 0 A__ = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: A__ = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: A__ = i A__ = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
355
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int = 50 ): A__ = [1] * (length + 1) for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): ways_number[row_length] += ways_number[ row_length - tile_start - tile_length ] return ways_number[length] if __name__ == "__main__": print(f"""{solution() = }""")
69
0
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html A_ :Any = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def A ( a_ ,a_ ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,a_=None ,) -> Tuple: if attention_mask is None: __UpperCamelCase : Optional[int] =np.where(input_ids != config.pad_token_id ,1 ,0 ) if decoder_attention_mask is None: __UpperCamelCase : Tuple =np.where(decoder_input_ids != config.pad_token_id ,1 ,0 ) if head_mask is None: __UpperCamelCase : Optional[int] =np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase : List[str] =np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __UpperCamelCase : Tuple =np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class __A : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=False , lowerCamelCase__=99 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=4 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=0.02 , ): """simple docstring""" __UpperCamelCase : int =parent __UpperCamelCase : int =batch_size __UpperCamelCase : int =seq_length __UpperCamelCase : Union[str, Any] =is_training __UpperCamelCase : str =use_labels __UpperCamelCase : str =vocab_size __UpperCamelCase : Optional[int] =hidden_size __UpperCamelCase : Tuple =num_hidden_layers __UpperCamelCase : Optional[int] =num_attention_heads __UpperCamelCase : List[str] =intermediate_size __UpperCamelCase : str =hidden_act __UpperCamelCase : Optional[Any] =hidden_dropout_prob __UpperCamelCase : Dict =attention_probs_dropout_prob __UpperCamelCase : Any =max_position_embeddings __UpperCamelCase : List[Any] =eos_token_id __UpperCamelCase : Tuple =pad_token_id __UpperCamelCase : Optional[int] =bos_token_id __UpperCamelCase : List[str] =initializer_range def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __UpperCamelCase : Any =np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __UpperCamelCase : Any =shift_tokens_right(lowercase_ , 1 , 2 ) __UpperCamelCase : Dict =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowercase_ , ) __UpperCamelCase : Optional[int] =prepare_blenderbot_inputs_dict(lowercase_ , lowercase_ , lowercase_ ) return config, inputs_dict def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Optional[int] =self.prepare_config_and_inputs() return config, inputs_dict def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Any =20 __UpperCamelCase : List[Any] =model_class_name(lowercase_ ) __UpperCamelCase : Optional[int] =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase : Optional[Any] =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase : int =model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) __UpperCamelCase : Union[str, Any] =jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase : List[Any] =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase : int =model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) __UpperCamelCase : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase : Any =model.decode( decoder_input_ids[:, -1:] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowercase_ , ) __UpperCamelCase : Optional[Any] =model.decode(lowercase_ , lowercase_ ) __UpperCamelCase : List[str] =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Tuple =20 __UpperCamelCase : str =model_class_name(lowercase_ ) __UpperCamelCase : List[Any] =model.encode(inputs_dict['input_ids'] ) __UpperCamelCase , __UpperCamelCase : Dict =( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) __UpperCamelCase : Any =jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __UpperCamelCase : Any =model.init_cache(decoder_input_ids.shape[0] , lowercase_ , lowercase_ ) __UpperCamelCase : int =jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __UpperCamelCase : str =model.decode( decoder_input_ids[:, :-1] , lowercase_ , decoder_attention_mask=lowercase_ , past_key_values=lowercase_ , decoder_position_ids=lowercase_ , ) __UpperCamelCase : List[str] =jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase : List[Any] =model.decode( decoder_input_ids[:, -1:] , lowercase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowercase_ , decoder_position_ids=lowercase_ , ) __UpperCamelCase : Any =model.decode(lowercase_ , lowercase_ , decoder_attention_mask=lowercase_ ) __UpperCamelCase : int =np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=f'Max diff is {diff}' ) @require_flax class __A ( unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Optional[Any] =9_9 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __UpperCamelCase : Tuple =input_ids.shape[0] __UpperCamelCase : Any =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase , __UpperCamelCase : Optional[int] =self._get_config_and_data() __UpperCamelCase : Any =FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) __UpperCamelCase : str =lm_model(input_ids=lowercase_ ) __UpperCamelCase : Any =(batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __UpperCamelCase : Optional[int] =FlaxBlenderbotSmallForConditionalGeneration(lowercase_ ) __UpperCamelCase : Union[str, Any] =np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __UpperCamelCase : Tuple =np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __UpperCamelCase : Dict =lm_model(input_ids=lowercase_ , decoder_input_ids=lowercase_ ) __UpperCamelCase : str =(*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , lowercase_ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __UpperCamelCase : str =shift_tokens_right(lowercase_ , 1 , 2 ) __UpperCamelCase : int =np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() __UpperCamelCase : Any =np.equal(lowercase_ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(lowercase_ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class __A ( lowerCamelCase__ , unittest.TestCase , lowerCamelCase__ ): """simple docstring""" UpperCamelCase__ : Optional[Any] =True UpperCamelCase__ : List[Any] =( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCamelCase__ : Optional[Any] =(FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =FlaxBlenderbotSmallModelTester(self ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : str =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowercase_ , lowercase_ , lowercase_ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowercase_ , lowercase_ , lowercase_ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : str =self._prepare_for_class(lowercase_ , lowercase_ ) __UpperCamelCase : Union[str, Any] =model_class(lowercase_ ) @jax.jit def encode_jitted(lowerCamelCase__ , lowerCamelCase__=None , **lowerCamelCase__ ): return model.encode(input_ids=lowercase_ , attention_mask=lowercase_ ) with self.subTest('JIT Enabled' ): __UpperCamelCase : Tuple =encode_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase : str =encode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase , __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __UpperCamelCase : Dict =model_class(lowercase_ ) __UpperCamelCase : Union[str, Any] =model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) __UpperCamelCase : str ={ 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): return model.decode( decoder_input_ids=lowercase_ , decoder_attention_mask=lowercase_ , encoder_outputs=lowercase_ , ) with self.subTest('JIT Enabled' ): __UpperCamelCase : Optional[Any] =decode_jitted(**lowercase_ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): __UpperCamelCase : str =decode_jitted(**lowercase_ ).to_tuple() self.assertEqual(len(lowercase_ ) , len(lowercase_ ) ) for jitted_output, output in zip(lowercase_ , lowercase_ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowercase ( self ): """simple docstring""" for model_class_name in self.all_model_classes: __UpperCamelCase : Tuple =model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __UpperCamelCase : Tuple =np.ones((1, 1) ) * model.config.eos_token_id __UpperCamelCase : List[str] =model(lowercase_ ) self.assertIsNotNone(lowercase_ )
71
from __future__ import annotations def UpperCAmelCase__ ( _A : float , _A : float , _A : float , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
188
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class _UpperCamelCase(unittest.TestCase ): """simple docstring""" def snake_case ( self : str , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int ): return f"""gaussian_noise_s={seed}_shape={"_".join([str(SCREAMING_SNAKE_CASE ) for s in shape] )}.npy""" def snake_case ( self : Tuple ): # clean up the VRAM after each test super().tearDown() gc.collect() def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Optional[Any]=0 , SCREAMING_SNAKE_CASE : Dict=(4, 4, 64, 64) , SCREAMING_SNAKE_CASE : Dict=False ): lowercase__ : int = jnp.bfloataa if fpaa else jnp.floataa lowercase__ : List[str] = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) , dtype=SCREAMING_SNAKE_CASE ) return image def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Tuple=False , SCREAMING_SNAKE_CASE : int="CompVis/stable-diffusion-v1-4" ): lowercase__ : str = jnp.bfloataa if fpaa else jnp.floataa lowercase__ : int = "bf16" if fpaa else None lowercase__ : List[str] = FlaxUNetaDConditionModel.from_pretrained( SCREAMING_SNAKE_CASE , subfolder="unet" , dtype=SCREAMING_SNAKE_CASE , revision=SCREAMING_SNAKE_CASE ) return model, params def snake_case ( self : str , SCREAMING_SNAKE_CASE : List[Any]=0 , SCREAMING_SNAKE_CASE : List[str]=(4, 77, 768) , SCREAMING_SNAKE_CASE : Optional[int]=False ): lowercase__ : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa lowercase__ : int = jnp.array(load_hf_numpy(self.get_file_format(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) , dtype=SCREAMING_SNAKE_CASE ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1_000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ] ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): lowercase__ : Any = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4" , fpaa=SCREAMING_SNAKE_CASE ) lowercase__ : Dict = self.get_latents(SCREAMING_SNAKE_CASE , fpaa=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[int] = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE , fpaa=SCREAMING_SNAKE_CASE ) lowercase__ : int = model.apply( {"params": params} , SCREAMING_SNAKE_CASE , jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape lowercase__ : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ : List[str] = jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1_000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ] ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] ): lowercase__ : Dict = self.get_unet_model(model_id="stabilityai/stable-diffusion-2" , fpaa=SCREAMING_SNAKE_CASE ) lowercase__ : Any = self.get_latents(SCREAMING_SNAKE_CASE , shape=(4, 4, 96, 96) , fpaa=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = self.get_encoder_hidden_states(SCREAMING_SNAKE_CASE , shape=(4, 77, 1_024) , fpaa=SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = model.apply( {"params": params} , SCREAMING_SNAKE_CASE , jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.intaa ) , encoder_hidden_states=SCREAMING_SNAKE_CASE , ).sample assert sample.shape == latents.shape lowercase__ : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) lowercase__ : Optional[Any] = jnp.array(SCREAMING_SNAKE_CASE , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , atol=1E-2 )
350
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import TimesformerConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, TimesformerForVideoClassification, TimesformerModel, ) from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case__: """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[str]=13 , SCREAMING_SNAKE_CASE : Union[str, Any]=10 , SCREAMING_SNAKE_CASE : Union[str, Any]=3 , SCREAMING_SNAKE_CASE : int=2 , SCREAMING_SNAKE_CASE : int=2 , SCREAMING_SNAKE_CASE : Optional[int]=True , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : int=32 , SCREAMING_SNAKE_CASE : Dict=5 , SCREAMING_SNAKE_CASE : str=4 , SCREAMING_SNAKE_CASE : Optional[int]=37 , SCREAMING_SNAKE_CASE : Any="gelu" , SCREAMING_SNAKE_CASE : List[Any]=0.1 , SCREAMING_SNAKE_CASE : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE : Dict=10 , SCREAMING_SNAKE_CASE : Optional[int]=0.02 , SCREAMING_SNAKE_CASE : str="divided_space_time" , SCREAMING_SNAKE_CASE : Tuple=None , ): lowercase__ : List[str] = parent lowercase__ : Optional[int] = batch_size lowercase__ : List[Any] = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : List[str] = patch_size lowercase__ : str = num_frames lowercase__ : List[str] = is_training lowercase__ : List[str] = use_labels lowercase__ : int = hidden_size lowercase__ : List[Any] = num_hidden_layers lowercase__ : Optional[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : Union[str, Any] = hidden_act lowercase__ : str = hidden_dropout_prob lowercase__ : Tuple = attention_probs_dropout_prob lowercase__ : Tuple = attention_type lowercase__ : Union[str, Any] = initializer_range lowercase__ : Any = scope lowercase__ : Optional[int] = num_labels # in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token lowercase__ : Union[str, Any] = (image_size // patch_size) ** 2 lowercase__ : Union[str, Any] = (num_frames) * self.num_patches_per_frame + 1 def snake_case ( self : Optional[int] ): lowercase__ : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) lowercase__ : Optional[Any] = None if self.use_labels: lowercase__ : str = ids_tensor([self.batch_size] , self.num_labels ) lowercase__ : List[Any] = self.get_config() return config, pixel_values, labels def snake_case ( self : Any ): lowercase__ : Optional[int] = TimesformerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , ) lowercase__ : List[Any] = self.num_labels return config def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : Optional[Any] = TimesformerModel(config=SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Any ): lowercase__ : List[Any] = TimesformerForVideoClassification(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() lowercase__ : List[str] = model(SCREAMING_SNAKE_CASE ) # verify the logits shape lowercase__ : List[str] = torch.Size((self.batch_size, self.num_labels) ) self.parent.assertEqual(result.logits.shape , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : List[str] = self.prepare_config_and_inputs() lowercase__ , lowercase__ , lowercase__ : int = config_and_inputs lowercase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__(_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else () lowercase_ = ( {"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification} if is_torch_available() else {} ) lowercase_ = False lowercase_ = False lowercase_ = False lowercase_ = False def snake_case ( self : Dict ): lowercase__ : Tuple = TimesformerModelTester(self ) lowercase__ : Any = ConfigTester( self , config_class=SCREAMING_SNAKE_CASE , has_text_modality=SCREAMING_SNAKE_CASE , hidden_size=37 ) def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Tuple=False ): lowercase__ : Union[str, Any] = copy.deepcopy(SCREAMING_SNAKE_CASE ) if return_labels: if model_class in get_values(SCREAMING_SNAKE_CASE ): lowercase__ : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=SCREAMING_SNAKE_CASE ) return inputs_dict def snake_case ( self : Optional[Any] ): self.config_tester.run_common_tests() @unittest.skip(reason="TimeSformer does not use inputs_embeds" ) def snake_case ( self : Any ): pass def snake_case ( self : Tuple ): lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__ : Dict = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) ) def snake_case ( self : Union[str, Any] ): lowercase__ , lowercase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : str = model_class(SCREAMING_SNAKE_CASE ) lowercase__ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__ : Any = [*signature.parameters.keys()] lowercase__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE ) def snake_case ( self : Tuple ): lowercase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE ) def snake_case ( self : str ): lowercase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_video_classification(*SCREAMING_SNAKE_CASE ) @slow def snake_case ( self : Optional[int] ): for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Optional[int] = TimesformerModel.from_pretrained(SCREAMING_SNAKE_CASE ) self.assertIsNotNone(SCREAMING_SNAKE_CASE ) def snake_case ( self : Any ): if not self.has_attentions: pass else: lowercase__ , lowercase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowercase__ : Union[str, Any] = True for model_class in self.all_model_classes: lowercase__ : List[str] = self.model_tester.seq_length lowercase__ : Any = self.model_tester.num_frames lowercase__ : Optional[int] = True lowercase__ : List[str] = False lowercase__ : List[Any] = True lowercase__ : Tuple = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Any = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : List[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase__ : Dict = True lowercase__ : int = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Any = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) lowercase__ : Any = len(SCREAMING_SNAKE_CASE ) # Check attention is always last and order is fine lowercase__ : Tuple = True lowercase__ : Tuple = True lowercase__ : Union[str, Any] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Union[str, Any] = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE ) , self.model_tester.num_hidden_layers ) # attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , ) def snake_case ( self : List[Any] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Union[str, Any] ): lowercase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE ) model.to(SCREAMING_SNAKE_CASE ) model.eval() with torch.no_grad(): lowercase__ : Tuple = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowercase__ : Optional[Any] = outputs.hidden_states lowercase__ : List[str] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) lowercase__ : int = self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) lowercase__ , lowercase__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : Dict = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase__ : Tuple = True check_hidden_states_output(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( ): """simple docstring""" lowercase__ : Optional[Any] = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowercase__ : Optional[Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) @require_torch @require_vision class snake_case__(unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Dict ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def snake_case ( self : List[Any] ): lowercase__ : List[Any] = TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to( SCREAMING_SNAKE_CASE ) lowercase__ : int = self.default_image_processor lowercase__ : List[str] = prepare_video() lowercase__ : str = image_processor(video[:8] , return_tensors="pt" ).to(SCREAMING_SNAKE_CASE ) # forward pass with torch.no_grad(): lowercase__ : str = model(**SCREAMING_SNAKE_CASE ) # verify the logits lowercase__ : Union[str, Any] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = torch.tensor([-0.3_016, -0.7_713, -0.4_205] ).to(SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) )
121
0
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase_ : int = 1_00 ) -> int: __lowerCamelCase : str = set() __lowerCamelCase : List[str] = 0 __lowerCamelCase : Optional[Any] = n + 1 # maximum limit for a in range(2 , lowerCAmelCase__ ): for b in range(2 , lowerCAmelCase__ ): __lowerCamelCase : Tuple = a**b # calculates the current power collect_powers.add(lowerCAmelCase__ ) # adds the result to the set return len(lowerCAmelCase__ ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
185
'''simple docstring''' from __future__ import annotations from collections.abc import Callable from typing import Any, Generic, TypeVar a_ : Any = TypeVar("T") class a ( Generic[T] ): def __init__( self , __magic_name__ , __magic_name__ ) -> None: _a = None _a = len(__magic_name__ ) _a = [any_type for _ in range(self.N )] + arr _a = fnc self.build() def __UpperCAmelCase ( self ) -> None: for p in range(self.N - 1 , 0 , -1 ): _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> None: p += self.N _a = v while p > 1: _a = p // 2 _a = self.fn(self.st[p * 2] , self.st[p * 2 + 1] ) def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ ) -> T | None: # noqa: E741 _a , _a = l + self.N, r + self.N _a = None while l <= r: if l % 2 == 1: _a = self.st[l] if res is None else self.fn(__magic_name__ , self.st[l] ) if r % 2 == 0: _a = self.st[r] if res is None else self.fn(__magic_name__ , self.st[r] ) _a , _a = (l + 1) // 2, (r - 1) // 2 return res if __name__ == "__main__": from functools import reduce a_ : Union[str, Any] = [1, 1_0, -2, 9, -3, 8, 4, -7, 5, 6, 1_1, -1_2] a_ : str = { 0: 7, 1: 2, 2: 6, 3: -1_4, 4: 5, 5: 4, 6: 7, 7: -1_0, 8: 9, 9: 1_0, 1_0: 1_2, 1_1: 1, } a_ : Dict = SegmentTree(test_array, min) a_ : Optional[int] = SegmentTree(test_array, max) a_ : int = SegmentTree(test_array, lambda a, b: a + b) def _A () -> None: '''simple docstring''' for i in range(len(lowerCAmelCase__ ) ): for j in range(lowerCAmelCase__ , len(lowerCAmelCase__ ) ): _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lowerCAmelCase__ , test_array[i : j + 1] ) _a = reduce(lambda lowerCAmelCase__ , lowerCAmelCase__ : a + b , test_array[i : j + 1] ) assert min_range == min_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert max_range == max_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) assert sum_range == sum_segment_tree.query(lowerCAmelCase__ , lowerCAmelCase__ ) test_all_segments() for index, value in test_updates.items(): a_ : Optional[Any] = value min_segment_tree.update(index, value) max_segment_tree.update(index, value) sum_segment_tree.update(index, value) test_all_segments()
168
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) A_ : int = { """configuration_speech_to_text""": ["""SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Speech2TextConfig"""], """processing_speech_to_text""": ["""Speech2TextProcessor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : int = ["""Speech2TextTokenizer"""] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : str = ["""Speech2TextFeatureExtractor"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Optional[Any] = [ """TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFSpeech2TextForConditionalGeneration""", """TFSpeech2TextModel""", """TFSpeech2TextPreTrainedModel""", ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ : Dict = [ """SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Speech2TextForConditionalGeneration""", """Speech2TextModel""", """Speech2TextPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys A_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : List[str] = 1 _UpperCAmelCase : List[str] = 3 _UpperCAmelCase : Union[str, Any] = (32, 32) _UpperCAmelCase : str = floats_tensor((batch_size, num_channels) + sizes ,rng=random.Random(0 ) ).to(a_ ) return image @property def _snake_case ( self ) -> List[Any]: torch.manual_seed(0 ) _UpperCAmelCase : List[str] = UNetaDConditionModel( block_out_channels=(32, 64) ,layers_per_block=2 ,sample_size=32 ,in_channels=4 ,out_channels=4 ,down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") ,up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") ,cross_attention_dim=32 ,) return model @property def _snake_case ( self ) -> Optional[int]: torch.manual_seed(0 ) _UpperCAmelCase : str = AutoencoderKL( block_out_channels=[32, 64] ,in_channels=3 ,out_channels=3 ,down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] ,up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] ,latent_channels=4 ,) return model @property def _snake_case ( self ) -> Dict: torch.manual_seed(0 ) _UpperCAmelCase : Any = CLIPTextConfig( bos_token_id=0 ,eos_token_id=2 ,hidden_size=32 ,intermediate_size=37 ,layer_norm_eps=1E-0_5 ,num_attention_heads=4 ,num_hidden_layers=5 ,pad_token_id=1 ,vocab_size=1_000 ,) return CLIPTextModel(a_ ) @property def _snake_case ( self ) -> Union[str, Any]: def extract(*a_ ,**a_ ): class lowercase : """simple docstring""" def __init__( self ) -> Any: _UpperCAmelCase : str = torch.ones([0] ) def _snake_case ( self ,a_ ) -> Any: self.pixel_values.to(a_ ) return self return Out() return extract def _snake_case ( self ) -> List[str]: _UpperCAmelCase : List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Union[str, Any] = self.dummy_cond_unet _UpperCAmelCase : int = DDIMScheduler( beta_start=0.0_0085 ,beta_end=0.012 ,beta_schedule="""scaled_linear""" ,clip_sample=a_ ,set_alpha_to_one=a_ ,) _UpperCAmelCase : Optional[int] = self.dummy_vae _UpperCAmelCase : Optional[int] = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : int = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : Optional[Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Union[str, Any] = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Optional[int] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : int = output.images _UpperCAmelCase : Union[str, Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : str = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Optional[int] = np.array([0.5756, 0.6118, 0.5005, 0.5041, 0.5471, 0.4726, 0.4976, 0.4865, 0.4864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : Tuple = self.dummy_cond_unet _UpperCAmelCase : Optional[int] = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : int = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : Union[str, Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk _UpperCAmelCase : str = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : str = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : int = """A painting of a squirrel eating a burger""" _UpperCAmelCase : Any = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : List[Any] = sd_pipe([prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ) _UpperCAmelCase : Dict = output.images _UpperCAmelCase : List[Any] = torch.Generator(device=a_ ).manual_seed(0 ) _UpperCAmelCase : Any = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=6.0 ,num_inference_steps=2 ,output_type="""np""" ,return_dict=a_ ,)[0] _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.5125, 0.5716, 0.4828, 0.5060, 0.5650, 0.4768, 0.5185, 0.4895, 0.4993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Optional[int]: _UpperCAmelCase : Optional[int] = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" ,safety_checker=a_ ) assert isinstance(a_ ,a_ ) assert isinstance(pipe.scheduler ,a_ ) assert pipe.safety_checker is None _UpperCAmelCase : Dict = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained(a_ ) # sanity check that the pipeline still works assert pipe.safety_checker is None _UpperCAmelCase : Union[str, Any] = pipe("""example prompt""" ,num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" ,"""This test requires a GPU""" ) def _snake_case ( self ) -> str: _UpperCAmelCase : Optional[int] = self.dummy_cond_unet _UpperCAmelCase : str = PNDMScheduler(skip_prk_steps=a_ ) _UpperCAmelCase : List[str] = self.dummy_vae _UpperCAmelCase : int = self.dummy_text_encoder _UpperCAmelCase : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 _UpperCAmelCase : str = unet.half() _UpperCAmelCase : List[str] = vae.half() _UpperCAmelCase : Dict = bert.half() # make sure here that pndm scheduler skips prk _UpperCAmelCase : Dict = StableDiffusionPipeline( unet=a_ ,scheduler=a_ ,vae=a_ ,text_encoder=a_ ,tokenizer=a_ ,safety_checker=a_ ,feature_extractor=self.dummy_extractor ,) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : str = """A painting of a squirrel eating a burger""" _UpperCAmelCase : int = sd_pipe([prompt] ,num_inference_steps=2 ,output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowercase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self ) -> Any: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> str: _UpperCAmelCase : List[str] = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : int = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : List[Any] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) _UpperCAmelCase : Any = 4_003_660_346 _UpperCAmelCase : List[Any] = 7 # without safety guidance (sld_guidance_scale = 0) _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : str = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : str = output.images _UpperCAmelCase : Optional[int] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) _UpperCAmelCase : List[str] = torch.manual_seed(a_ ) _UpperCAmelCase : Optional[Any] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : List[str] = image[0, -3:, -3:, -1] _UpperCAmelCase : List[str] = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> int: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ,safety_checker=a_ ) _UpperCAmelCase : Union[str, Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) _UpperCAmelCase : Union[str, Any] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Any = """padme amidala taking a bath artwork, safe for work, no nudity""" _UpperCAmelCase : Optional[Any] = 2_734_971_755 _UpperCAmelCase : Optional[int] = 7 _UpperCAmelCase : int = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : Optional[int] = output.images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Optional[int] = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 _UpperCAmelCase : Optional[int] = torch.manual_seed(a_ ) _UpperCAmelCase : int = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Union[str, Any] = output.images _UpperCAmelCase : Any = image[0, -3:, -3:, -1] _UpperCAmelCase : List[Any] = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _snake_case ( self ) -> Any: _UpperCAmelCase : Any = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) _UpperCAmelCase : List[str] = sd_pipe.to(a_ ) sd_pipe.set_progress_bar_config(disable=a_ ) _UpperCAmelCase : Optional[int] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) _UpperCAmelCase : Dict = 1_044_355_234 _UpperCAmelCase : int = 12 _UpperCAmelCase : Optional[Any] = torch.manual_seed(a_ ) _UpperCAmelCase : List[str] = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=0 ,) _UpperCAmelCase : List[str] = output.images _UpperCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] _UpperCAmelCase : Dict = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 _UpperCAmelCase : Tuple = torch.manual_seed(a_ ) _UpperCAmelCase : Dict = sd_pipe( [prompt] ,generator=a_ ,guidance_scale=a_ ,num_inference_steps=50 ,output_type="""np""" ,width=512 ,height=512 ,sld_guidance_scale=2_000 ,sld_warmup_steps=7 ,sld_threshold=0.025 ,sld_momentum_scale=0.5 ,sld_mom_beta=0.7 ,) _UpperCAmelCase : Optional[Any] = output.images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1] _UpperCAmelCase : int = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline UpperCAmelCase__ : List[str] = { 'n_samples': 6_4, 'horizon': 3_2, 'num_inference_steps': 2_0, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": UpperCAmelCase__ : Any = 'hopper-medium-v2' UpperCAmelCase__ : Union[str, Any] = gym.make(env_name) UpperCAmelCase__ : List[str] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) UpperCAmelCase__ : str = env.reset() UpperCAmelCase__ : List[Any] = 0 UpperCAmelCase__ : Optional[int] = 0 UpperCAmelCase__ : Optional[Any] = 1_0_0_0 UpperCAmelCase__ : Union[str, Any] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy UpperCAmelCase__ : Optional[Any] = pipeline(obs, planning_horizon=3_2) # execute action in environment UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : Any = env.step(denorm_actions) UpperCAmelCase__ : Dict = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f"""Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:""" f""" {total_score}""" ) # save observations for rendering rollout.append(next_observation.copy()) UpperCAmelCase__ : List[Any] = next_observation except KeyboardInterrupt: pass print(f"""Total reward: {total_reward}""")
25
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __a = logging.get_logger(__name__) __a = { '''ut/deta''': '''https://huggingface.co/ut/deta/resolve/main/config.json''', } class __SCREAMING_SNAKE_CASE ( A__ ): A : List[str] = 'deta' A : Dict = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=900 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=2048 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=6 , SCREAMING_SNAKE_CASE__=1024 , SCREAMING_SNAKE_CASE__=8 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__="relu" , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1.0 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__="sine" , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=300 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.25 , **SCREAMING_SNAKE_CASE__ , ): if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) lowercase : Tuple = CONFIG_MAPPING['''resnet'''](out_features=['''stage2''', '''stage3''', '''stage4'''] ) else: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): lowercase : Tuple = backbone_config.pop('''model_type''' ) lowercase : Any = CONFIG_MAPPING[backbone_model_type] lowercase : List[Any] = config_class.from_dict(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = backbone_config lowercase : Union[str, Any] = num_queries lowercase : Any = max_position_embeddings lowercase : int = d_model lowercase : Any = encoder_ffn_dim lowercase : Optional[int] = encoder_layers lowercase : Tuple = encoder_attention_heads lowercase : Optional[Any] = decoder_ffn_dim lowercase : Optional[int] = decoder_layers lowercase : int = decoder_attention_heads lowercase : Any = dropout lowercase : int = attention_dropout lowercase : Dict = activation_dropout lowercase : int = activation_function lowercase : Dict = init_std lowercase : List[str] = init_xavier_std lowercase : Optional[Any] = encoder_layerdrop lowercase : Tuple = auxiliary_loss lowercase : Tuple = position_embedding_type # deformable attributes lowercase : List[str] = num_feature_levels lowercase : Tuple = encoder_n_points lowercase : Optional[int] = decoder_n_points lowercase : Tuple = two_stage lowercase : Optional[Any] = two_stage_num_proposals lowercase : Union[str, Any] = with_box_refine lowercase : Any = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('''If two_stage is True, with_box_refine must be True.''' ) # Hungarian matcher lowercase : Optional[Any] = class_cost lowercase : str = bbox_cost lowercase : List[Any] = giou_cost # Loss coefficients lowercase : Tuple = mask_loss_coefficient lowercase : Any = dice_loss_coefficient lowercase : Dict = bbox_loss_coefficient lowercase : Tuple = giou_loss_coefficient lowercase : Union[str, Any] = eos_coefficient lowercase : Tuple = focal_alpha super().__init__(is_encoder_decoder=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @property def __lowerCamelCase ( self ): return self.encoder_attention_heads @property def __lowerCamelCase ( self ): return self.d_model def __lowerCamelCase ( self ): lowercase : Optional[Any] = copy.deepcopy(self.__dict__ ) lowercase : Any = self.backbone_config.to_dict() lowercase : List[str] = self.__class__.model_type return output
337
0
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.config_class(**self.inputs_dict) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """hidden_sizes""")) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """num_attention_heads""")) self.parent.assertTrue(hasattr(lowerCAmelCase_ , """num_encoder_blocks""")) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Optional[int]=6_4 , lowerCAmelCase_ : Tuple=3 , lowerCAmelCase_ : Optional[int]=4 , lowerCAmelCase_ : Any=[2, 2, 2, 2] , lowerCAmelCase_ : str=[8, 4, 2, 1] , lowerCAmelCase_ : Any=[1_6, 3_2, 6_4, 1_2_8] , lowerCAmelCase_ : List[str]=[1, 4, 8, 1_6] , lowerCAmelCase_ : Optional[Any]=[1, 2, 4, 8] , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]="gelu" , lowerCAmelCase_ : int=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : str=3 , lowerCAmelCase_ : Tuple=None , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = image_size lowercase_ = num_channels lowercase_ = num_encoder_blocks lowercase_ = sr_ratios lowercase_ = depths lowercase_ = hidden_sizes lowercase_ = downsampling_rates lowercase_ = num_attention_heads lowercase_ = is_training lowercase_ = use_labels lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = scope def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels) lowercase_ = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : str): """simple docstring""" return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = SegformerModel(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) lowercase_ = lowercase_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width)) def _UpperCAmelCase ( self : Any , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = self.num_labels lowercase_ = SegformerForSemanticSegmentation(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = model(lowerCAmelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4)) self.parent.assertGreater(result.loss , 0.0) def _UpperCAmelCase ( self : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = 1 lowercase_ = SegformerForSemanticSegmentation(config=lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() lowercase_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size)).to(lowerCAmelCase_) lowercase_ = model(lowerCAmelCase_ , labels=lowerCAmelCase_) self.parent.assertGreater(result.loss , 0.0) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = self.prepare_config_and_inputs() lowercase_ , lowercase_ , lowercase_ = config_and_inputs lowercase_ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowercase__ = ( { "feature-extraction": SegformerModel, "image-classification": SegformerForImageClassification, "image-segmentation": SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ = SegformerModelTester(self) lowercase_ = SegformerConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : str): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase_) def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCAmelCase_) @unittest.skip("""SegFormer does not use inputs_embeds""") def _UpperCAmelCase ( self : Any): """simple docstring""" pass @unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""") def _UpperCAmelCase ( self : Dict): """simple docstring""" pass def _UpperCAmelCase ( self : int): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = model_class(lowerCAmelCase_) lowercase_ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ = [*signature.parameters.keys()] lowercase_ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase_) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: lowercase_ = True lowercase_ = False lowercase_ = True lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) lowercase_ = outputs.attentions lowercase_ = sum(self.model_tester.depths) self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowercase_ = True lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) lowercase_ = outputs.attentions self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_) # verify the first attentions (first block, first layer) lowercase_ = (self.model_tester.image_size // 4) ** 2 lowercase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowercase_ = (self.model_tester.image_size // 3_2) ** 2 lowercase_ = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:]) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowercase_ = len(lowerCAmelCase_) # Check attention is always last and order is fine lowercase_ = True lowercase_ = True lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) self.assertEqual(out_len + 1 , len(lowerCAmelCase_)) lowercase_ = outputs.attentions self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_) # verify the first attentions (first block, first layer) lowercase_ = (self.model_tester.image_size // 4) ** 2 lowercase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def _UpperCAmelCase ( self : List[Any]): """simple docstring""" def check_hidden_states_output(lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple): lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.eval() with torch.no_grad(): lowercase_ = model(**self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_)) lowercase_ = outputs.hidden_states lowercase_ = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCAmelCase_) , lowerCAmelCase_) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:]) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase_ = True check_hidden_states_output(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : int): """simple docstring""" if not self.model_tester.is_training: return lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() lowercase_ = True for model_class in self.all_model_classes: if model_class in get_values(lowerCAmelCase_): continue lowercase_ = model_class(lowerCAmelCase_) model.to(lowerCAmelCase_) model.train() lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_) lowercase_ = model(**lowerCAmelCase_).loss loss.backward() @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def _UpperCAmelCase ( self : List[str]): """simple docstring""" pass @slow def _UpperCAmelCase ( self : str): """simple docstring""" for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = SegformerModel.from_pretrained(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) def _SCREAMING_SNAKE_CASE () -> int: '''simple docstring''' lowercase_ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_) lowercase_ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""").to( lowerCAmelCase_) lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = encoded_inputs.pixel_values.to(lowerCAmelCase_) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_) lowercase_ = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1E-4)) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_) lowercase_ = SegformerForSemanticSegmentation.from_pretrained( """nvidia/segformer-b1-finetuned-cityscapes-1024-1024""").to(lowerCAmelCase_) lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = encoded_inputs.pixel_values.to(lowerCAmelCase_) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_) lowercase_ = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8)) self.assertEqual(outputs.logits.shape , lowerCAmelCase_) lowercase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ]).to(lowerCAmelCase_) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , lowerCAmelCase_ , atol=1E-1)) @slow def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2) , keep_ratio=lowerCAmelCase_ , align=lowerCAmelCase_ , do_random_crop=lowerCAmelCase_) lowercase_ = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""").to( lowerCAmelCase_) lowercase_ = prepare_img() lowercase_ = image_processor(images=lowerCAmelCase_ , return_tensors="""pt""") lowercase_ = encoded_inputs.pixel_values.to(lowerCAmelCase_) with torch.no_grad(): lowercase_ = model(lowerCAmelCase_) lowercase_ = outputs.logits.detach().cpu() lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_ , target_sizes=[(5_0_0, 3_0_0)]) lowercase_ = torch.Size((5_0_0, 3_0_0)) self.assertEqual(segmentation[0].shape , lowerCAmelCase_) lowercase_ = image_processor.post_process_semantic_segmentation(outputs=lowerCAmelCase_) lowercase_ = torch.Size((1_2_8, 1_2_8)) self.assertEqual(segmentation[0].shape , lowerCAmelCase_)
313
"""simple docstring""" import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html UpperCAmelCase : Optional[Any] = "platform" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class SCREAMING_SNAKE_CASE__ : lowercase__ = PegasusConfig lowercase__ = {} lowercase__ = "gelu" def __init__( self : Any , lowerCAmelCase_ : str , lowerCAmelCase_ : List[Any]=1_3 , lowerCAmelCase_ : Any=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : str=9_9 , lowerCAmelCase_ : Tuple=3_2 , lowerCAmelCase_ : Dict=5 , lowerCAmelCase_ : Union[str, Any]=4 , lowerCAmelCase_ : Dict=3_7 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Any=0.1 , lowerCAmelCase_ : Optional[int]=2_0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : Optional[Any]=0 , ): """simple docstring""" lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_labels lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = eos_token_id lowercase_ = pad_token_id lowercase_ = bos_token_id def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size).clip(3 , self.vocab_size) lowercase_ = np.expand_dims(np.array([self.eos_token_id] * self.batch_size) , 1) lowercase_ = np.concatenate([input_ids, eos_tensor] , axis=1) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) lowercase_ = prepare_pegasus_inputs_dict(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) return config, inputs_dict def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict): """simple docstring""" lowercase_ = 2_0 lowercase_ = model_class_name(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""]) lowercase_ , lowercase_ = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) lowercase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) lowercase_ = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) lowercase_ = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , past_key_values=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") lowercase_ = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase_ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase_ , decoder_position_ids=lowerCAmelCase_ , ) lowercase_ = model.decode(lowerCAmelCase_ , lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_) lowercase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' if attention_mask is None: lowercase_ = np.not_equal(__lowerCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: lowercase_ = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): lowercase__ = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) lowercase__ = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ = FlaxPegasusModelTester(self) lowercase_ = ConfigTester(self , config_class=lowerCAmelCase_) def _UpperCAmelCase ( self : Any): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = self._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_) lowercase_ = model_class(lowerCAmelCase_) @jax.jit def encode_jitted(lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int]=None , **lowerCAmelCase_ : Optional[int]): return model.encode(input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_) with self.subTest("""JIT Enabled"""): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = encode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) def _UpperCAmelCase ( self : Tuple): """simple docstring""" lowercase_ , lowercase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): lowercase_ = model_class(lowerCAmelCase_) lowercase_ = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) lowercase_ = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict): return model.decode( decoder_input_ids=lowerCAmelCase_ , decoder_attention_mask=lowerCAmelCase_ , encoder_outputs=lowerCAmelCase_ , ) with self.subTest("""JIT Enabled"""): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): lowercase_ = decode_jitted(**lowerCAmelCase_).to_tuple() self.assertEqual(len(lowerCAmelCase_) , len(lowerCAmelCase_)) for jitted_output, output in zip(lowerCAmelCase_ , lowerCAmelCase_): self.assertEqual(jitted_output.shape , output.shape) @slow def _UpperCAmelCase ( self : Tuple): """simple docstring""" for model_class_name in self.all_model_classes: lowercase_ = model_class_name.from_pretrained("""google/pegasus-large""" , from_pt=lowerCAmelCase_) lowercase_ = np.ones((1, 1)) lowercase_ = model(lowerCAmelCase_) self.assertIsNotNone(lowerCAmelCase_) @slow def _UpperCAmelCase ( self : Any): """simple docstring""" lowercase_ = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""") lowercase_ = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""") lowercase_ = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] lowercase_ = [ """California's largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.""", ] lowercase_ = tokenizer(lowerCAmelCase_ , return_tensors="""np""" , truncation=lowerCAmelCase_ , max_length=5_1_2 , padding=lowerCAmelCase_) lowercase_ = model.generate(**lowerCAmelCase_ , num_beams=2).sequences lowercase_ = tokenizer.batch_decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_) assert tgt_text == decoded
313
1
import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) _snake_case : Optional[Any] = logging.getLogger() def lowerCAmelCase_ ( ): __snake_case : Dict = argparse.ArgumentParser() parser.add_argument("-f" ) __snake_case : List[Any] = parser.parse_args() return args.f def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = {} __snake_case : Tuple = os.path.join(__lowerCamelCase , "all_results.json" ) if os.path.exists(__lowerCamelCase ): with open(__lowerCamelCase , "r" ) as f: __snake_case : Dict = json.load(__lowerCamelCase ) else: raise ValueError(F'can\'t find {path}' ) return results def lowerCAmelCase_ ( ): __snake_case : Optional[Any] = torch.cuda.is_available() and torch_device == "cuda" return is_using_cuda and is_apex_available() _snake_case : Optional[int] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class a (lowerCAmelCase__ ): """simple docstring""" @classmethod def __snake_case ( cls : int ) -> Optional[int]: # Write Accelerate config, will pick up on CPU, GPU, and multi-GPU __snake_case : int = tempfile.mkdtemp() __snake_case : Any = os.path.join(cls.tmpdir , "default_config.yml" ) write_basic_config(save_location=cls.configPath ) __snake_case : Tuple = ["accelerate", "launch", "--config_file", cls.configPath] @classmethod def __snake_case ( cls : Dict ) -> Optional[int]: shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Any ) -> Union[str, Any]: __snake_case : Dict = self.get_auto_remove_tmp_dir() __snake_case : Tuple = F'\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n '.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __snake_case : List[Any] = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "glue_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Dict ) -> Union[str, Any]: __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : Tuple = F'\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n '.split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) __snake_case : List[str] = get_results(lowerCAmelCase__ ) self.assertLess(result["perplexity"] , 100 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "clm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Optional[int] ) -> List[Any]: __snake_case : List[str] = self.get_auto_remove_tmp_dir() __snake_case : Optional[Any] = F'\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __snake_case : int = get_results(lowerCAmelCase__ ) self.assertLess(result["perplexity"] , 42 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "mlm_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : str ) -> List[Any]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu __snake_case : Dict = 7 if get_gpu_count() > 1 else 2 __snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() __snake_case : int = F'\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __snake_case : Tuple = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.75 ) self.assertLess(result["train_loss"] , 0.5 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "ner_no_trainer" ) ) ) @unittest.skip(reason="Fix me @muellerzr" ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Optional[int] ) -> Optional[int]: __snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() __snake_case : Tuple = F'\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __snake_case : Optional[Any] = get_results(lowerCAmelCase__ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["eval_f1"] , 28 ) self.assertGreaterEqual(result["eval_exact"] , 28 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "qa_no_trainer" ) ) ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Dict ) -> Union[str, Any]: __snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() __snake_case : Tuple = F'\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __snake_case : Any = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_accuracy"] , 0.8 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "swag_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Any ) -> Any: __snake_case : int = self.get_auto_remove_tmp_dir() __snake_case : Tuple = F'\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __snake_case : str = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_rouge1"] , 10 ) self.assertGreaterEqual(result["eval_rouge2"] , 2 ) self.assertGreaterEqual(result["eval_rougeL"] , 7 ) self.assertGreaterEqual(result["eval_rougeLsum"] , 7 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "summarization_no_trainer" ) ) ) @slow @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Union[str, Any] ) -> str: __snake_case : Union[str, Any] = self.get_auto_remove_tmp_dir() __snake_case : Union[str, Any] = F'\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n '.split() run_command(self._launch_args + testargs ) __snake_case : Optional[Any] = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_bleu"] , 30 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "epoch_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "translation_no_trainer" ) ) ) @slow def __snake_case ( self : int ) -> Optional[Any]: __snake_case : str = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) __snake_case : Tuple = self.get_auto_remove_tmp_dir() __snake_case : List[str] = F'\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n '.split() run_command(self._launch_args + testargs ) __snake_case : List[Any] = get_results(lowerCAmelCase__ ) self.assertGreaterEqual(result["eval_overall_accuracy"] , 0.10 ) @mock.patch.dict(os.environ , {"WANDB_MODE": "offline"} ) def __snake_case ( self : Optional[Any] ) -> List[Any]: __snake_case : List[str] = self.get_auto_remove_tmp_dir() __snake_case : str = F'\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n '.split() if is_cuda_and_apex_available(): testargs.append("--fp16" ) run_command(self._launch_args + testargs ) __snake_case : int = get_results(lowerCAmelCase__ ) # The base model scores a 25% self.assertGreaterEqual(result["eval_accuracy"] , 0.6 ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "step_1" ) ) ) self.assertTrue(os.path.exists(os.path.join(lowerCAmelCase__ , "image_classification_no_trainer" ) ) )
123
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def UpperCAmelCase ( ) -> int: snake_case_ = HfArgumentParser(UpperCAmelCase ) snake_case_ = parser.parse_args_into_dataclasses()[0] snake_case_ = TensorFlowBenchmark(args=UpperCAmelCase ) try: snake_case_ = parser.parse_args_into_dataclasses()[0] except ValueError as e: snake_case_ = 'Arg --no_{0} is no longer used, please use --no-{0} instead.' snake_case_ = ' '.join(str(UpperCAmelCase ).split(' ' )[:-1] ) snake_case_ = '' snake_case_ = eval(str(UpperCAmelCase ).split(' ' )[-1] ) snake_case_ = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: snake_case_ = full_error_msg + begin_error_msg + str(UpperCAmelCase ) raise ValueError(UpperCAmelCase ) benchmark.run() if __name__ == "__main__": main()
69
0
import json import os import unittest from transformers import OpenAIGPTTokenizer, OpenAIGPTTokenizerFast from transformers.models.openai.tokenization_openai import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_spacy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase_ ( lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = OpenAIGPTTokenizer __snake_case = OpenAIGPTTokenizerFast __snake_case = True __snake_case = False def __lowerCAmelCase ( self : str ) ->Dict: """simple docstring""" super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt a = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] a = dict(zip(_snake_case , range(len(_snake_case ) ) ) ) a = ['''#version: 0.2''', '''l o''', '''lo w''', '''e r</w>''', ''''''] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(_snake_case ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(_snake_case ) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[Any] ) ->Tuple: """simple docstring""" return "lower newer", "lower newer" def __lowerCAmelCase ( self : int ) ->List[str]: """simple docstring""" a = OpenAIGPTTokenizer(self.vocab_file , self.merges_file ) a = '''lower''' a = ['''low''', '''er</w>'''] a = tokenizer.tokenize(_snake_case ) self.assertListEqual(_snake_case , _snake_case ) a = tokens + ['''<unk>'''] a = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(_snake_case ) , _snake_case ) def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any]=15 ) ->List[str]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): a = self.rust_tokenizer_class.from_pretrained(_snake_case , **_snake_case ) # Simple input a = '''This is a simple input''' a = ['''This is a simple input 1''', '''This is a simple input 2'''] a = ('''This is a simple input''', '''This is a pair''') a = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Simple input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Simple input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Pair input self.assertRaises(_snake_case , tokenizer_r.encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' ) # Pair input self.assertRaises( _snake_case , tokenizer_r.batch_encode_plus , _snake_case , max_length=_snake_case , padding='''max_length''' , ) def __lowerCAmelCase ( self : Tuple ) ->List[Any]: """simple docstring""" pass @require_ftfy @require_spacy @require_tokenizers class lowercase_ ( lowercase ): '''simple docstring''' pass
357
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : Union[str, Any] , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : UNetaDModel , __UpperCAmelCase : DDPMScheduler , __UpperCAmelCase : Optional[int] , ) ->List[str]: """simple docstring""" super().__init__() a = value_function a = unet a = scheduler a = env a = env.get_dataset() a = {} for key in self.data.keys(): try: a = self.data[key].mean() except: # noqa: E722 pass a = {} for key in self.data.keys(): try: a = self.data[key].std() except: # noqa: E722 pass a = env.observation_space.shape[0] a = env.action_space.shape[0] def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[int] ) ->Dict: """simple docstring""" return (x_in - self.means[key]) / self.stds[key] def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict ) ->List[str]: """simple docstring""" return x_in * self.stds[key] + self.means[key] def __lowerCAmelCase ( self : int , __UpperCAmelCase : int ) ->List[str]: """simple docstring""" if type(__UpperCAmelCase ) is dict: return {k: self.to_torch(__UpperCAmelCase ) for k, v in x_in.items()} elif torch.is_tensor(__UpperCAmelCase ): return x_in.to(self.unet.device ) return torch.tensor(__UpperCAmelCase , device=self.unet.device ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple ) ->int: """simple docstring""" for key, val in cond.items(): a = val.clone() return x_in def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any] ) ->Tuple: """simple docstring""" a = x.shape[0] a = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model a = torch.full((batch_size,) , __UpperCAmelCase , device=self.unet.device , dtype=torch.long ) for _ in range(__UpperCAmelCase ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models a = self.value_function(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample a = torch.autograd.grad([y.sum()] , [x] )[0] a = self.scheduler._get_variance(__UpperCAmelCase ) a = torch.exp(0.5 * posterior_variance ) a = model_std * grad a = 0 a = x.detach() a = x + scale * grad a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.unet(x.permute(0 , 2 , 1 ) , __UpperCAmelCase ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg a = self.scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , predict_epsilon=__UpperCAmelCase )['''prev_sample'''] # apply conditions to the trajectory (set the initial state) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) return x, y def __call__( self : Union[str, Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=64 , __UpperCAmelCase : int=32 , __UpperCAmelCase : Optional[Any]=2 , __UpperCAmelCase : str=0.1 ) ->List[str]: """simple docstring""" a = self.normalize(__UpperCAmelCase , '''observations''' ) a = obs[None].repeat(__UpperCAmelCase , axis=0 ) a = {0: self.to_torch(__UpperCAmelCase )} a = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) a = randn_tensor(__UpperCAmelCase , device=self.unet.device ) a = self.reset_xa(__UpperCAmelCase , __UpperCAmelCase , self.action_dim ) a = self.to_torch(__UpperCAmelCase ) # run the diffusion process a , a = self.run_diffusion(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # sort output trajectories by value a = y.argsort(0 , descending=__UpperCAmelCase ).squeeze() a = x[sorted_idx] a = sorted_values[:, :, : self.action_dim] a = actions.detach().cpu().numpy() a = self.de_normalize(__UpperCAmelCase , key='''actions''' ) # select the action with the highest value if y is not None: a = 0 else: # if we didn't run value guiding, select a random action a = np.random.randint(0 , __UpperCAmelCase ) a = denorm_actions[selected_index, 0] return denorm_actions
26
0
"""simple docstring""" import json import os from typing import Optional import numpy as np from ...feature_extraction_utils import BatchFeature from ...processing_utils import ProcessorMixin from ...utils import logging from ...utils.hub import get_file_from_repo from ..auto import AutoTokenizer _UpperCamelCase : Any = logging.get_logger(__name__) class a ( SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Tuple ='''AutoTokenizer''' UpperCAmelCase_ : str =['''tokenizer'''] UpperCAmelCase_ : List[Any] ={ '''semantic_prompt''': 1, '''coarse_prompt''': 2, '''fine_prompt''': 2, } def __init__( self , _lowerCamelCase , _lowerCamelCase=None ): super().__init__(lowerCAmelCase_ ) lowercase = speaker_embeddings @classmethod def UpperCamelCase_ ( cls , _lowerCamelCase , _lowerCamelCase="speaker_embeddings_path.json" , **_lowerCamelCase ): if speaker_embeddings_dict_path is not None: lowercase = get_file_from_repo( lowerCAmelCase_ , lowerCAmelCase_ , subfolder=kwargs.pop('subfolder' , lowerCAmelCase_ ) , cache_dir=kwargs.pop('cache_dir' , lowerCAmelCase_ ) , force_download=kwargs.pop('force_download' , lowerCAmelCase_ ) , proxies=kwargs.pop('proxies' , lowerCAmelCase_ ) , resume_download=kwargs.pop('resume_download' , lowerCAmelCase_ ) , local_files_only=kwargs.pop('local_files_only' , lowerCAmelCase_ ) , use_auth_token=kwargs.pop('use_auth_token' , lowerCAmelCase_ ) , revision=kwargs.pop('revision' , lowerCAmelCase_ ) , ) if speaker_embeddings_path is None: logger.warning( F'`{os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )}` does not exists\n , no preloaded speaker embeddings will be used - Make sure to provide a correct path to the json\n dictionnary if wanted, otherwise set `speaker_embeddings_dict_path=None`.' ) lowercase = None else: with open(lowerCAmelCase_ ) as speaker_embeddings_json: lowercase = json.load(lowerCAmelCase_ ) else: lowercase = None lowercase = AutoTokenizer.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) return cls(tokenizer=lowerCAmelCase_ , speaker_embeddings=lowerCAmelCase_ ) def UpperCamelCase_ ( self , _lowerCamelCase , _lowerCamelCase="speaker_embeddings_path.json" , _lowerCamelCase="speaker_embeddings" , _lowerCamelCase = False , **_lowerCamelCase , ): if self.speaker_embeddings is not None: os.makedirs(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ , 'v2' ) , exist_ok=lowerCAmelCase_ ) lowercase = {} lowercase = save_directory for prompt_key in self.speaker_embeddings: if prompt_key != "repo_or_path": lowercase = self._load_voice_preset(lowerCAmelCase_ ) lowercase = {} for key in self.speaker_embeddings[prompt_key]: np.save( os.path.join( embeddings_dict['repo_or_path'] , lowerCAmelCase_ , F'{prompt_key}_{key}' ) , voice_preset[key] , allow_pickle=lowerCAmelCase_ , ) lowercase = os.path.join(lowerCAmelCase_ , F'{prompt_key}_{key}.npy' ) lowercase = tmp_dict with open(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) , 'w' ) as fp: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) super().save_pretrained(lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) def UpperCamelCase_ ( self , _lowerCamelCase = None , **_lowerCamelCase ): lowercase = self.speaker_embeddings[voice_preset] lowercase = {} for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset_paths: raise ValueError( F'Voice preset unrecognized, missing {key} as a key in self.speaker_embeddings[{voice_preset}].' ) lowercase = get_file_from_repo( self.speaker_embeddings.get('repo_or_path' , '/' ) , voice_preset_paths[key] , subfolder=kwargs.pop('subfolder' , lowerCAmelCase_ ) , cache_dir=kwargs.pop('cache_dir' , lowerCAmelCase_ ) , force_download=kwargs.pop('force_download' , lowerCAmelCase_ ) , proxies=kwargs.pop('proxies' , lowerCAmelCase_ ) , resume_download=kwargs.pop('resume_download' , lowerCAmelCase_ ) , local_files_only=kwargs.pop('local_files_only' , lowerCAmelCase_ ) , use_auth_token=kwargs.pop('use_auth_token' , lowerCAmelCase_ ) , revision=kwargs.pop('revision' , lowerCAmelCase_ ) , ) if path is None: raise ValueError( F'`{os.path.join(self.speaker_embeddings.get("repo_or_path" , "/" ) , voice_preset_paths[key] )}` does not exists\n , no preloaded voice preset will be used - Make sure to provide correct paths to the {voice_preset}\n embeddings.' ) lowercase = np.load(lowerCAmelCase_ ) return voice_preset_dict def UpperCamelCase_ ( self , _lowerCamelCase = None ): for key in ["semantic_prompt", "coarse_prompt", "fine_prompt"]: if key not in voice_preset: raise ValueError(F'Voice preset unrecognized, missing {key} as a key.' ) if not isinstance(voice_preset[key] , np.ndarray ): raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) if len(voice_preset[key].shape ) != self.preset_shape[key]: raise ValueError(F'{key} voice preset must be a {str(self.preset_shape[key] )}D ndarray.' ) def __call__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="pt" , _lowerCamelCase=2_5_6 , _lowerCamelCase=False , _lowerCamelCase=True , _lowerCamelCase=False , **_lowerCamelCase , ): if voice_preset is not None and not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): if ( isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and self.speaker_embeddings is not None and voice_preset in self.speaker_embeddings ): lowercase = self._load_voice_preset(lowerCAmelCase_ ) else: if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) and not voice_preset.endswith('.npz' ): lowercase = voice_preset + '''.npz''' lowercase = np.load(lowerCAmelCase_ ) if voice_preset is not None: self._validate_voice_preset_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) lowercase = BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ ) lowercase = self.tokenizer( lowerCAmelCase_ , return_tensors=lowerCAmelCase_ , padding='max_length' , max_length=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , return_token_type_ids=lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ , **lowerCAmelCase_ , ) if voice_preset is not None: lowercase = voice_preset return encoded_text
220
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[int] ): """simple docstring""" return F"""gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase_ ) for s in shape] )}.npy""" def __magic_name__ ( self : Tuple ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any=0 , lowerCAmelCase_ : Tuple=(4, 4, 6_4, 6_4) , lowerCAmelCase_ : List[str]=False ): """simple docstring""" _A: List[str] = jnp.bfloataa if fpaa else jnp.floataa _A: Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return image def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Optional[int]=False , lowerCAmelCase_ : Optional[Any]="CompVis/stable-diffusion-v1-4" ): """simple docstring""" _A: Tuple = jnp.bfloataa if fpaa else jnp.floataa _A: str = '''bf16''' if fpaa else None _A , _A: Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase_ , subfolder='''unet''' , dtype=lowerCAmelCase_ , revision=lowerCAmelCase_ ) return model, params def __magic_name__ ( self : List[str] , lowerCAmelCase_ : Optional[int]=0 , lowerCAmelCase_ : str=(4, 7_7, 7_6_8) , lowerCAmelCase_ : Dict=False ): """simple docstring""" _A: Optional[int] = jnp.bfloataa if fpaa else jnp.floataa _A: Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase_ , lowerCAmelCase_ ) ) , dtype=lowerCAmelCase_ ) return hidden_states @parameterized.expand( [ # fmt: off [8_3, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [1_7, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1_0_0_0, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any ): """simple docstring""" _A , _A: Optional[Any] = self.get_unet_model(model_id='''CompVis/stable-diffusion-v1-4''' , fpaa=lowerCAmelCase_ ) _A: List[str] = self.get_latents(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: Optional[int] = self.get_encoder_hidden_states(lowerCAmelCase_ , fpaa=lowerCAmelCase_ ) _A: List[str] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: Tuple = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 ) @parameterized.expand( [ # fmt: off [8_3, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [1_7, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1_0_0_0, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __magic_name__ ( self : int , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" _A , _A: Union[str, Any] = self.get_unet_model(model_id='''stabilityai/stable-diffusion-2''' , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_latents(lowerCAmelCase_ , shape=(4, 4, 9_6, 9_6) , fpaa=lowerCAmelCase_ ) _A: Dict = self.get_encoder_hidden_states(lowerCAmelCase_ , shape=(4, 7_7, 1_0_2_4) , fpaa=lowerCAmelCase_ ) _A: Optional[int] = model.apply( {'''params''': params} , lowerCAmelCase_ , jnp.array(lowerCAmelCase_ , dtype=jnp.intaa ) , encoder_hidden_states=lowerCAmelCase_ , ).sample assert sample.shape == latents.shape _A: List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) , dtype=jnp.floataa ) _A: List[str] = jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1e-2 )
121
0
'''simple docstring''' def a__ ( _SCREAMING_SNAKE_CASE : List[Any] ) -> Any: """simple docstring""" UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = set({"(", "[", "{"} ) UpperCAmelCase_ : Any = set({")", "]", "}"} ) UpperCAmelCase_ : Optional[int] = {"{": "}", "[": "]", "(": ")"} for i in range(len(_SCREAMING_SNAKE_CASE ) ): if s[i] in open_brackets: stack.append(s[i] ) elif s[i] in closed_brackets and ( len(_SCREAMING_SNAKE_CASE ) == 0 or (len(_SCREAMING_SNAKE_CASE ) > 0 and open_to_closed[stack.pop()] != s[i]) ): return False return len(_SCREAMING_SNAKE_CASE ) == 0 def a__ ( ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : List[str] = input("Enter sequence of brackets: " ) if is_balanced(_SCREAMING_SNAKE_CASE ): print(_SCREAMING_SNAKE_CASE , "is balanced" ) else: print(_SCREAMING_SNAKE_CASE , "is not balanced" ) if __name__ == "__main__": main()
67
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def a__ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" if gpta_config_file == "": UpperCAmelCase_ : List[str] = GPTaConfig() else: UpperCAmelCase_ : int = GPTaConfig.from_json_file(_SCREAMING_SNAKE_CASE ) UpperCAmelCase_ : List[Any] = GPTaModel(_SCREAMING_SNAKE_CASE ) # Load weights from numpy load_tf_weights_in_gpta(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model UpperCAmelCase_ : Dict = pytorch_dump_folder_path + "/" + WEIGHTS_NAME UpperCAmelCase_ : int = pytorch_dump_folder_path + "/" + CONFIG_NAME print(F'''Save PyTorch model to {pytorch_weights_dump_path}''' ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) print(F'''Save configuration file to {pytorch_config_dump_path}''' ) with open(_SCREAMING_SNAKE_CASE , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--gpt2_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--gpt2_config_file""", default="""""", type=str, help=( """An optional config json file corresponding to the pre-trained OpenAI model. \n""" """This specifies the model architecture.""" ), ) _lowerCamelCase = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
67
1