code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) a__ : str = { 'configuration_speech_to_text': ['SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Speech2TextConfig'], 'processing_speech_to_text': ['Speech2TextProcessor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ['Speech2TextTokenizer'] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ['Speech2TextFeatureExtractor'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFSpeech2TextForConditionalGeneration', 'TFSpeech2TextModel', 'TFSpeech2TextPreTrainedModel', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[str] = [ 'SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Speech2TextForConditionalGeneration', 'Speech2TextModel', 'Speech2TextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys a__ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
349
'''simple docstring''' import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCamelCase ( self ) -> int: __UpperCamelCase = 1 __UpperCamelCase = 3 __UpperCamelCase = (3_2, 3_2) __UpperCamelCase = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image @property def __lowerCamelCase ( self ) -> Dict: torch.manual_seed(0 ) __UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=3_2 , ) return model @property def __lowerCamelCase ( self ) -> List[str]: torch.manual_seed(0 ) __UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCamelCase ( self ) -> Optional[int]: torch.manual_seed(0 ) __UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModel(lowercase ) @property def __lowerCamelCase ( self ) -> Tuple: def extract(*lowercase , **lowercase ): class UpperCAmelCase__ : def __init__( self ) -> Tuple: __UpperCamelCase = torch.ones([0] ) def __lowerCamelCase ( self , lowercase ) -> List[str]: self.pixel_values.to(lowercase ) return self return Out() return extract def __lowerCamelCase ( self ) -> Any: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowercase , set_alpha_to_one=lowercase , ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Tuple: __UpperCamelCase = """cpu""" # ensure determinism for the device-dependent torch.Generator __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe([prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) __UpperCamelCase = output.images __UpperCamelCase = torch.Generator(device=lowercase ).manual_seed(0 ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=lowercase , )[0] __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) __UpperCamelCase = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Union[str, Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=lowercase ) assert isinstance(lowercase , lowercase ) assert isinstance(pipe.scheduler , lowercase ) assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowercase ) __UpperCamelCase = StableDiffusionPipeline.from_pretrained(lowercase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __UpperCamelCase = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = self.dummy_cond_unet __UpperCamelCase = PNDMScheduler(skip_prk_steps=lowercase ) __UpperCamelCase = self.dummy_vae __UpperCamelCase = self.dummy_text_encoder __UpperCamelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 __UpperCamelCase = unet.half() __UpperCamelCase = vae.half() __UpperCamelCase = bert.half() # make sure here that pndm scheduler skips prk __UpperCamelCase = StableDiffusionPipeline( unet=lowercase , scheduler=lowercase , vae=lowercase , text_encoder=lowercase , tokenizer=lowercase , safety_checker=lowercase , feature_extractor=self.dummy_extractor , ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """A painting of a squirrel eating a burger""" __UpperCamelCase = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 6_4, 6_4, 3) @nightly @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase): def __lowerCamelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) __UpperCamelCase = 4_0_0_3_6_6_0_3_4_6 __UpperCamelCase = 7 # without safety guidance (sld_guidance_scale = 0) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=lowercase ) __UpperCamelCase = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = """padme amidala taking a bath artwork, safe for work, no nudity""" __UpperCamelCase = 2_7_3_4_9_7_1_7_5_5 __UpperCamelCase = 7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowerCamelCase ( self ) -> Optional[Any]: __UpperCamelCase = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) __UpperCamelCase = sd_pipe.to(lowercase ) sd_pipe.set_progress_bar_config(disable=lowercase ) __UpperCamelCase = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) __UpperCamelCase = 1_0_4_4_3_5_5_2_3_4 __UpperCamelCase = 1_2 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=0 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 __UpperCamelCase = torch.manual_seed(lowercase ) __UpperCamelCase = sd_pipe( [prompt] , generator=lowercase , guidance_scale=lowercase , num_inference_steps=5_0 , output_type="""np""" , width=5_1_2 , height=5_1_2 , sld_guidance_scale=2_0_0_0 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) __UpperCamelCase = output.images __UpperCamelCase = image[0, -3:, -3:, -1] __UpperCamelCase = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_1_2, 5_1_2, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
349
1
"""simple docstring""" from copy import deepcopy class __lowerCamelCase : '''simple docstring''' def __init__( self : List[str] , a_ : list[int] | None = None , a_ : int | None = None ): if arr is None and size is not None: lowerCAmelCase_ : str = size lowerCAmelCase_ : int = [0] * size elif arr is not None: self.init(a_ ) else: raise ValueError("Either arr or size must be specified" ) def lowerCamelCase ( self : Tuple , a_ : list[int] ): lowerCAmelCase_ : Union[str, Any] = len(a_ ) lowerCAmelCase_ : str = deepcopy(a_ ) for i in range(1 , self.size ): lowerCAmelCase_ : Any = self.next_(a_ ) if j < self.size: self.tree[j] += self.tree[i] def lowerCamelCase ( self : Dict ): lowerCAmelCase_ : str = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): lowerCAmelCase_ : List[str] = self.next_(a_ ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def lowerCamelCase ( a_ : int ): return index + (index & (-index)) @staticmethod def lowerCamelCase ( a_ : int ): return index - (index & (-index)) def lowerCamelCase ( self : Tuple , a_ : int , a_ : int ): if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value lowerCAmelCase_ : Any = self.next_(a_ ) def lowerCamelCase ( self : str , a_ : int , a_ : int ): self.add(a_ , value - self.get(a_ ) ) def lowerCamelCase ( self : Tuple , a_ : int ): if right == 0: return 0 lowerCAmelCase_ : Union[str, Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] lowerCAmelCase_ : Tuple = self.prev(a_ ) return result def lowerCamelCase ( self : List[str] , a_ : int , a_ : int ): return self.prefix(a_ ) - self.prefix(a_ ) def lowerCamelCase ( self : str , a_ : int ): return self.query(a_ , index + 1 ) def lowerCamelCase ( self : Tuple , a_ : int ): value -= self.tree[0] if value < 0: return -1 lowerCAmelCase_ : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 lowerCAmelCase_ : Optional[Any] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
353
"""simple docstring""" def __lowerCamelCase ( __UpperCamelCase = 50 ) -> int: """simple docstring""" lowerCAmelCase_ : int = [1] * (length + 1) for row_length in range(3 , length + 1 ): for block_length in range(3 , row_length + 1 ): for block_start in range(row_length - block_length ): ways_number[row_length] += ways_number[ row_length - block_start - block_length - 1 ] ways_number[row_length] += 1 return ways_number[length] if __name__ == "__main__": print(F"""{solution() = }""")
161
0
import os from typing import Any, Callable, Dict, List, Optional, Tuple, Union import torch from torch import nn from ...models.controlnet import ControlNetModel, ControlNetOutput from ...models.modeling_utils import ModelMixin from ...utils import logging a__ : List[str] = logging.get_logger(__name__) class a_ ( a__ ): """simple docstring""" def __init__( self , _lowerCamelCase ) ->str: super().__init__() SCREAMING_SNAKE_CASE : Dict = nn.ModuleList(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = True , ) ->Union[ControlNetOutput, Tuple]: for i, (image, scale, controlnet) in enumerate(zip(_lowerCamelCase , _lowerCamelCase , self.nets ) ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = controlnet( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ) # merge samples if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = down_samples, mid_sample else: SCREAMING_SNAKE_CASE : Tuple = [ samples_prev + samples_curr for samples_prev, samples_curr in zip(_lowerCamelCase , _lowerCamelCase ) ] mid_block_res_sample += mid_sample return down_block_res_samples, mid_block_res_sample def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = True , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , ) ->List[str]: SCREAMING_SNAKE_CASE : Optional[int] = 0 SCREAMING_SNAKE_CASE : Optional[Any] = save_directory for controlnet in self.nets: controlnet.save_pretrained( _lowerCamelCase , is_main_process=_lowerCamelCase , save_function=_lowerCamelCase , safe_serialization=_lowerCamelCase , variant=_lowerCamelCase , ) idx += 1 SCREAMING_SNAKE_CASE : Optional[int] = model_path_to_save + F"""_{idx}""" @classmethod def __lowerCAmelCase ( cls , _lowerCamelCase , **_lowerCamelCase ) ->str: SCREAMING_SNAKE_CASE : List[Any] = 0 SCREAMING_SNAKE_CASE : List[str] = [] # load controlnet and append to list until no controlnet directory exists anymore # first controlnet has to be saved under `./mydirectory/controlnet` to be compliant with `DiffusionPipeline.from_prertained` # second, third, ... controlnets have to be saved under `./mydirectory/controlnet_1`, `./mydirectory/controlnet_2`, ... SCREAMING_SNAKE_CASE : Optional[Any] = pretrained_model_path while os.path.isdir(_lowerCamelCase ): SCREAMING_SNAKE_CASE : str = ControlNetModel.from_pretrained(_lowerCamelCase , **_lowerCamelCase ) controlnets.append(_lowerCamelCase ) idx += 1 SCREAMING_SNAKE_CASE : Union[str, Any] = pretrained_model_path + F"""_{idx}""" logger.info(F"""{len(_lowerCamelCase )} controlnets loaded from {pretrained_model_path}.""" ) if len(_lowerCamelCase ) == 0: raise ValueError( F"""No ControlNets found under {os.path.dirname(_lowerCamelCase )}. Expected at least {pretrained_model_path + "_0"}.""" ) return cls(_lowerCamelCase )
313
import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer a__ : Dict = logging.get_logger(__name__) a__ : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a__ : str = { '''vocab_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''', }, '''merges_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''', }, } a__ : Optional[int] = { '''allenai/led-base-16384''': 16_384, } class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : Union[str, Any] = LEDTokenizer __SCREAMING_SNAKE_CASE : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase="replace" , _lowerCamelCase="<s>" , _lowerCamelCase="</s>" , _lowerCamelCase="</s>" , _lowerCamelCase="<s>" , _lowerCamelCase="<unk>" , _lowerCamelCase="<pad>" , _lowerCamelCase="<mask>" , _lowerCamelCase=False , _lowerCamelCase=True , **_lowerCamelCase , ) ->Union[str, Any]: super().__init__( _lowerCamelCase , _lowerCamelCase , tokenizer_file=_lowerCamelCase , errors=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , sep_token=_lowerCamelCase , cls_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , mask_token=_lowerCamelCase , add_prefix_space=_lowerCamelCase , trim_offsets=_lowerCamelCase , **_lowerCamelCase , ) SCREAMING_SNAKE_CASE : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : str = getattr(_lowerCamelCase , pre_tok_state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : Optional[int] = add_prefix_space SCREAMING_SNAKE_CASE : str = pre_tok_class(**_lowerCamelCase ) SCREAMING_SNAKE_CASE : Any = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : List[Any] = '''post_processor''' SCREAMING_SNAKE_CASE : int = getattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : Any = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : Optional[int] = tuple(state['''sep'''] ) if "cls" in state: SCREAMING_SNAKE_CASE : Optional[Any] = tuple(state['''cls'''] ) SCREAMING_SNAKE_CASE : Any = False if state.get('''add_prefix_space''' , _lowerCamelCase ) != add_prefix_space: SCREAMING_SNAKE_CASE : Union[str, Any] = add_prefix_space SCREAMING_SNAKE_CASE : Union[str, Any] = True if state.get('''trim_offsets''' , _lowerCamelCase ) != trim_offsets: SCREAMING_SNAKE_CASE : List[Any] = trim_offsets SCREAMING_SNAKE_CASE : Union[str, Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : List[str] = getattr(_lowerCamelCase , state.pop('''type''' ) ) SCREAMING_SNAKE_CASE : List[Any] = component_class(**_lowerCamelCase ) setattr(self.backend_tokenizer , _lowerCamelCase , _lowerCamelCase ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __lowerCAmelCase ( self ) ->str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCAmelCase ( self , _lowerCamelCase ) ->List[Any]: SCREAMING_SNAKE_CASE : str = AddedToken(_lowerCamelCase , lstrip=_lowerCamelCase , rstrip=_lowerCamelCase ) if isinstance(_lowerCamelCase , _lowerCamelCase ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : Tuple = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._batch_encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , *_lowerCamelCase , **_lowerCamelCase ) ->BatchEncoding: SCREAMING_SNAKE_CASE : List[Any] = kwargs.get('''is_split_into_words''' , _lowerCamelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ '''to use it with pretokenized inputs.''' ) return super()._encode_plus(*_lowerCamelCase , **_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->Tuple[str]: SCREAMING_SNAKE_CASE : Any = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase=None ) ->Any: SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None ) ->List[int]: SCREAMING_SNAKE_CASE : Any = [self.sep_token_id] SCREAMING_SNAKE_CASE : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = PaddingStrategy.DO_NOT_PAD , _lowerCamelCase = None , _lowerCamelCase = None , ) ->dict: SCREAMING_SNAKE_CASE : Tuple = super()._pad( encoded_inputs=_lowerCamelCase , max_length=_lowerCamelCase , padding_strategy=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE : Optional[Any] = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE : int = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE : Tuple = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowerCamelCase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE : int = len(_lowerCamelCase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE : str = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE : Optional[Any] = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
313
1
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' __UpperCAmelCase : int =ViTImageProcessor if is_vision_available() else None @property def snake_case ( self ): return self.image_processor_tester.prepare_image_processor_dict() def snake_case ( self ): __lowerCAmelCase = (3, 32, 1_28) __lowerCAmelCase = tempfile.mkdtemp() # fmt: off __lowerCAmelCase = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"] # fmt: on __lowerCAmelCase = dict(zip(__a , range(len(__a ) ) ) ) __lowerCAmelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__a ) + "\n" ) __lowerCAmelCase = { "do_normalize": False, "do_resize": True, "image_processor_type": "ViTImageProcessor", "resample": 3, "size": {"height": 32, "width": 1_28}, } __lowerCAmelCase = os.path.join(self.tmpdirname , __a ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__a , __a ) def snake_case ( self , **__a ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self , **__a ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__a ) def snake_case ( self ): shutil.rmtree(self.tmpdirname ) def snake_case ( self ): __lowerCAmelCase = np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta ) __lowerCAmelCase = Image.fromarray(np.moveaxis(__a , 0 , -1 ) ) return image_input def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__a ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) processor.save_pretrained(self.tmpdirname ) __lowerCAmelCase = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) __lowerCAmelCase = self.get_image_processor(do_normalize=__a , padding_value=1.0 ) __lowerCAmelCase = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__a , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __a ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = image_processor(__a , return_tensors="np" ) __lowerCAmelCase = processor(images=__a , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "test" __lowerCAmelCase = processor(text=__a ) __lowerCAmelCase = tokenizer(__a ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = "test" __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "labels"] ) # test if it raises when no input is passed with pytest.raises(__a ): processor() def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __lowerCAmelCase = processor.char_decode(__a ) __lowerCAmelCase = tokenizer.batch_decode(__a ) __lowerCAmelCase = [seq.replace(" " , "" ) for seq in decoded_tok] self.assertListEqual(__a , __a ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = None __lowerCAmelCase = self.prepare_image_inputs() __lowerCAmelCase = processor(text=__a , images=__a ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def snake_case ( self ): __lowerCAmelCase = self.get_image_processor() __lowerCAmelCase = self.get_tokenizer() __lowerCAmelCase = MgpstrProcessor(tokenizer=__a , image_processor=__a ) __lowerCAmelCase = torch.randn(1 , 27 , 38 ) __lowerCAmelCase = torch.randn(1 , 27 , 5_02_57 ) __lowerCAmelCase = torch.randn(1 , 27 , 3_05_22 ) __lowerCAmelCase = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["generated_text", "scores", "char_preds", "bpe_preds", "wp_preds"] )
259
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [[] for _ in range(_UpperCamelCase )] __lowerCAmelCase = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1 or len(_UpperCamelCase ) <= key: return input_string for position, character in enumerate(_UpperCamelCase ): __lowerCAmelCase = position % (lowest * 2) # puts it in bounds __lowerCAmelCase = min(_UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_UpperCamelCase ) __lowerCAmelCase = ["".join(_UpperCamelCase ) for row in temp_grid] __lowerCAmelCase = "".join(_UpperCamelCase ) return output_string def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = key - 1 if key <= 0: raise ValueError("Height of grid can't be 0 or negative" ) if key == 1: return input_string __lowerCAmelCase = [[] for _ in range(_UpperCamelCase )] # generates template for position in range(len(_UpperCamelCase ) ): __lowerCAmelCase = position % (lowest * 2) # puts it in bounds __lowerCAmelCase = min(_UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) __lowerCAmelCase = 0 for row in temp_grid: # fills in the characters __lowerCAmelCase = input_string[counter : counter + len(_UpperCamelCase )] grid.append(list(_UpperCamelCase ) ) counter += len(_UpperCamelCase ) __lowerCAmelCase = "" # reads as zigzag for position in range(len(_UpperCamelCase ) ): __lowerCAmelCase = position % (lowest * 2) # puts it in bounds __lowerCAmelCase = min(_UpperCamelCase , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = {} for key_guess in range(1 , len(_UpperCamelCase ) ): # tries every key __lowerCAmelCase = decrypt(_UpperCamelCase , _UpperCamelCase ) return results if __name__ == "__main__": import doctest doctest.testmod()
259
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging A : List[str] = '▁' A : str = {'vocab_file': 'spiece.model'} A : Dict = { 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'} } A : Tuple = { 'google/pegasus-xsum': 5_1_2, } A : Tuple = logging.get_logger(__name__) class __A( a ): snake_case_ = VOCAB_FILES_NAMES snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = ['''input_ids''', '''attention_mask'''] def __init__( self , _snake_case , _snake_case="<pad>" , _snake_case="</s>" , _snake_case="<unk>" , _snake_case="<mask_2>" , _snake_case="<mask_1>" , _snake_case=None , _snake_case=103 , _snake_case = None , **_snake_case , ) -> None: '''simple docstring''' __a = offset if additional_special_tokens is not None: if not isinstance(_snake_case , _snake_case ): raise TypeError( F"""additional_special_tokens should be of type {type(_snake_case )}, but is""" F""" {type(_snake_case )}""" ) __a = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ F"""<unk_{i}>""" for i in range(len(_snake_case ) , self.offset - 1 ) ] if len(set(_snake_case ) ) != len(_snake_case ): raise ValueError( '''Please make sure that the provided additional_special_tokens do not contain an incorrectly''' F""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) __a = additional_special_tokens_extended else: __a = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [F"""<unk_{i}>""" for i in range(2 , self.offset )] __a = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=_snake_case , unk_token=_snake_case , mask_token=_snake_case , pad_token=_snake_case , mask_token_sent=_snake_case , offset=_snake_case , additional_special_tokens=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __a = mask_token_sent __a = vocab_file __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_snake_case ) # add special tokens to encoder dict __a = { 0: self.pad_token, 1: self.eos_token, } if self.mask_token_sent is not None: self.encoder.update( { 2: self.mask_token_sent, 3: self.mask_token, } ) if self.offset > 0: # entries 2-104 are only used for pretraining and called <mask_1>, <mask_2>, unk_2, ...unk_102 # mask_token_sent is already added to list -> so start at 1 self.encoder.update({i + 3: additional_special_tokens[i] for i in range(1 , self.offset - 1 )} ) __a = {v: k for k, v in self.encoder.items()} @property def SCREAMING_SNAKE_CASE_ ( self ) -> int: '''simple docstring''' return len(self.sp_model ) + self.offset def SCREAMING_SNAKE_CASE_ ( self ) -> Dict[str, int]: '''simple docstring''' __a = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: '''simple docstring''' __a = self.__dict__.copy() __a = None return state def __setstate__( self , _snake_case ) -> Optional[Any]: '''simple docstring''' __a = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __a = {} __a = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> List[str]: '''simple docstring''' return self.sp_model.encode(_snake_case , out_type=_snake_case ) def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> int: '''simple docstring''' if token in self.decoder: return self.decoder[token] elif token in self.added_tokens_decoder: return self.added_tokens_decoder[token] __a = self.sp_model.piece_to_id(_snake_case ) return sp_id + self.offset def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> str: '''simple docstring''' if index in self.encoder: return self.encoder[index] elif index in self.added_tokens_encoder: return self.added_tokens_encoder[index] else: __a = self.sp_model.IdToPiece(index - self.offset ) return token def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Any: '''simple docstring''' __a = [] __a = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(_snake_case ) + token __a = [] else: current_sub_tokens.append(_snake_case ) out_string += self.sp_model.decode(_snake_case ) return out_string.strip() def SCREAMING_SNAKE_CASE_ ( self , _snake_case=False ) -> Any: '''simple docstring''' return 1 def SCREAMING_SNAKE_CASE_ ( self , _snake_case ) -> Optional[int]: '''simple docstring''' __a = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special return [1 if x in all_special_ids else 0 for x in seq] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None , _snake_case = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return self._special_token_mask(_snake_case ) elif token_ids_a is None: return self._special_token_mask(_snake_case ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case=None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def SCREAMING_SNAKE_CASE_ ( self , _snake_case , _snake_case = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(_snake_case ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return __a = os.path.join( _snake_case , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case , '''wb''' ) as fi: __a = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
6
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): _a = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING _a = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def a__ ( self , _a , _a , _a ) -> int: _A : str = TextaTextGenerationPipeline(model=_a , tokenizer=_a ) return generator, ["Something to write", "Something else"] def a__ ( self , _a , _a ) -> Dict: _A : Any = generator("""Something there""" ) self.assertEqual(_a , [{"""generated_text""": ANY(_a )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) _A : List[Any] = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) _A : Optional[int] = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=_a ) self.assertEqual( _a , [ [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], [{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}], ] , ) with self.assertRaises(_a ): generator(4 ) @require_torch def a__ ( self ) -> List[str]: _A : Any = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility _A : Dict = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] ) _A : Any = 3 _A : Any = generator( """Something there""" , num_return_sequences=_a , num_beams=_a , ) _A : Optional[int] = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(_a , _a ) _A : Dict = generator("""This is a test""" , do_sample=_a , num_return_sequences=2 , return_tensors=_a ) self.assertEqual( _a , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) _A : Dict = generator.model.config.eos_token_id _A : List[str] = """<pad>""" _A : Dict = generator( ["""This is a test""", """This is a second test"""] , do_sample=_a , num_return_sequences=2 , batch_size=2 , return_tensors=_a , ) self.assertEqual( _a , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def a__ ( self ) -> int: _A : Optional[Any] = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility _A : str = generator("""Something there""" , do_sample=_a ) self.assertEqual(_a , [{"""generated_text""": """"""}] )
26
0
from torch import nn def a( A : Optional[Any] ) -> str: """simple docstring""" if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'''Unsupported activation function: {act_fn}''' )
71
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness _lowercase: Optional[Any] = "\\n@misc{chen2021evaluating,\n title={Evaluating Large Language Models Trained on Code},\n author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \\nand Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \\nand Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \\nand Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \\nand Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \\nand Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \\nand Mohammad Bavarian and Clemens Winter and Philippe Tillet \\nand Felipe Petroski Such and Dave Cummings and Matthias Plappert \\nand Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \\nand William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \\nand Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \\nand William Saunders and Christopher Hesse and Andrew N. Carr \\nand Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \\nand Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \\nand Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \\nand Sam McCandlish and Ilya Sutskever and Wojciech Zaremba},\n year={2021},\n eprint={2107.03374},\n archivePrefix={arXiv},\n primaryClass={cs.LG}\n}\n" _lowercase: Union[str, Any] = "\\nThis metric implements the evaluation harness for the HumanEval problem solving dataset\ndescribed in the paper \"Evaluating Large Language Models Trained on Code\"\n(https://arxiv.org/abs/2107.03374).\n" _lowercase: Union[str, Any] = "\nCalculates how good are predictions given some references, using certain scores\nArgs:\n predictions: list of candidates to evaluate. Each candidates should be a list\n of strings with several code candidates to solve the problem.\n references: a list with a test for each prediction. Each test should evaluate the\n correctness of a code candidate.\n k: number of code candidates to consider in the evaluation (Default: [1, 10, 100])\n num_workers: number of workers used to evaluate the canidate programs (Default: 4).\n timeout:\nReturns:\n pass_at_k: dict with pass rates for each k\n results: dict with granular results of each unittest\nExamples:\n >>> code_eval = datasets.load_metric(\"code_eval\")\n >>> test_cases = [\"assert add(2,3)==5\"]\n >>> candidates = [[\"def add(a,b): return a*b\", \"def add(a, b): return a+b\"]]\n >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2])\n >>> print(pass_at_k)\n {'pass@1': 0.5, 'pass@2': 1.0}\n" _lowercase: List[Any] = "\n################################################################################\n !!!WARNING!!!\n################################################################################\nThe \"code_eval\" metric executes untrusted model-generated code in Python.\nAlthough it is highly unlikely that model-generated code will do something\novertly malicious in response to this test suite, model-generated code may act\ndestructively due to a lack of model capability or alignment.\nUsers are strongly encouraged to sandbox this evaluation suite so that it\ndoes not perform destructive actions on their host or network. For more\ninformation on how OpenAI sandboxes its code, see the paper \"Evaluating Large\nLanguage Models Trained on Code\" (https://arxiv.org/abs/2107.03374).\n\nOnce you have read this disclaimer and taken appropriate precautions,\nset the environment variable HF_ALLOW_CODE_EVAL=\"1\". Within Python you can to this\nwith:\n\n>>> import os\n>>> os.environ[\"HF_ALLOW_CODE_EVAL\"] = \"1\"\n\n################################################################################\\n" _lowercase: List[Any] = "The MIT License\n\nCopyright (c) OpenAI (https://openai.com)\n\nPermission is hereby granted, free of charge, to any person obtaining a copy\nof this software and associated documentation files (the \"Software\"), to deal\nin the Software without restriction, including without limitation the rights\nto use, copy, modify, merge, publish, distribute, sublicense, and/or sell\ncopies of the Software, and to permit persons to whom the Software is\nfurnished to do so, subject to the following conditions:\n\nThe above copyright notice and this permission notice shall be included in\nall copies or substantial portions of the Software.\n\nTHE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\nIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\nFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\nAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\nLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\nOUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN\nTHE SOFTWARE." @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("string" ) ), "references": datasets.Value("string" ), } ) , homepage="https://github.com/openai/human-eval" , codebase_urls=["https://github.com/openai/human-eval"] , reference_urls=["https://github.com/openai/human-eval"] , license=_LICENSE , ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=[1, 10, 100] , lowerCamelCase_=4 , lowerCamelCase_=3.0 ): """simple docstring""" if os.getenv("HF_ALLOW_CODE_EVAL" , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError("This metric is currently not supported on Windows." ) with ThreadPoolExecutor(max_workers=lowerCamelCase_ ) as executor: a = [] a = Counter() a = 0 a = defaultdict(lowerCamelCase_ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): for candidate in candidates: a = candidate + "\n" + test_case a = (test_program, timeout, task_id, completion_id[task_id]) a = executor.submit(lowerCamelCase_ , *lowerCamelCase_ ) futures.append(lowerCamelCase_ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase_ ): a = future.result() results[result["task_id"]].append((result["completion_id"], result) ) a , a = [], [] for result in results.values(): result.sort() a = [r[1]["passed"] for r in result] total.append(len(lowerCamelCase_ ) ) correct.append(sum(lowerCamelCase_ ) ) a = np.array(lowerCamelCase_ ) a = np.array(lowerCamelCase_ ) a = k a = {F'''pass@{k}''': estimate_pass_at_k(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def a( A : Optional[Any] , A : str , A : Dict ) -> Optional[int]: """simple docstring""" def estimator(A : int , A : int , A : int ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 , n + 1 ) ) if isinstance(A , A ): a = itertools.repeat(A , len(A ) ) else: assert len(A ) == len(A ) a = iter(A ) return np.array([estimator(int(A ) , int(A ) , A ) for n, c in zip(A , A )] )
71
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __UpperCAmelCase =logging.get_logger(__name__) __UpperCAmelCase =Dict[str, Any] __UpperCAmelCase =List[Prediction] @add_end_docstrings(UpperCAmelCase__ ) class a__ ( UpperCAmelCase__ ): def __init__( self : Optional[int] , *a : int , **a : List[Any] ): """simple docstring""" super().__init__(*a , **a ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , **a : str ): """simple docstring""" __lowerCamelCase = {} if "threshold" in kwargs: __lowerCamelCase = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : str , *a : str , **a : Union[str, Any] ): """simple docstring""" return super().__call__(*a , **a ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int ): """simple docstring""" __lowerCamelCase = load_image(a ) __lowerCamelCase = torch.IntTensor([[image.height, image.width]] ) __lowerCamelCase = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: __lowerCamelCase = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) __lowerCamelCase = target_size return inputs def SCREAMING_SNAKE_CASE__ ( self : str , a : Optional[Any] ): """simple docstring""" __lowerCamelCase = model_inputs.pop('''target_size''' ) __lowerCamelCase = self.model(**a ) __lowerCamelCase = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: __lowerCamelCase = model_inputs['''bbox'''] return model_outputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : int , a : List[str]=0.9 ): """simple docstring""" __lowerCamelCase = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. __lowerCamelCase , __lowerCamelCase = target_size[0].tolist() def unnormalize(a : Any ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) __lowerCamelCase , __lowerCamelCase = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) __lowerCamelCase = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] __lowerCamelCase = [unnormalize(a ) for bbox in model_outputs['''bbox'''].squeeze(0 )] __lowerCamelCase = ['''score''', '''label''', '''box'''] __lowerCamelCase = [dict(zip(a , a ) ) for vals in zip(scores.tolist() , a , a ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel __lowerCamelCase = self.image_processor.post_process_object_detection(a , a , a ) __lowerCamelCase = raw_annotations[0] __lowerCamelCase = raw_annotation['''scores'''] __lowerCamelCase = raw_annotation['''labels'''] __lowerCamelCase = raw_annotation['''boxes'''] __lowerCamelCase = scores.tolist() __lowerCamelCase = [self.model.config.idalabel[label.item()] for label in labels] __lowerCamelCase = [self._get_bounding_box(a ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] __lowerCamelCase = ['''score''', '''label''', '''box'''] __lowerCamelCase = [ dict(zip(a , a ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def SCREAMING_SNAKE_CASE__ ( self : List[Any] , a : "torch.Tensor" ): """simple docstring""" if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = box.int().tolist() __lowerCamelCase = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
67
'''simple docstring''' import torch from transformers import PreTrainedModel, XLMRobertaConfig, XLMRobertaModel class a__ ( UpperCAmelCase__ ): lowerCamelCase : Dict ="M-CLIP" def __init__( self : Tuple , a : Optional[int]=10_24 , a : Tuple=7_68 , **a : List[str] ): """simple docstring""" __lowerCamelCase = transformerDimSize __lowerCamelCase = imageDimSize super().__init__(**a ) class a__ ( UpperCAmelCase__ ): lowerCamelCase : Optional[Any] =MCLIPConfig def __init__( self : str , a : List[Any] , *a : Dict , **a : str ): """simple docstring""" super().__init__(a , *a , **a ) __lowerCamelCase = XLMRobertaModel(a ) __lowerCamelCase = torch.nn.Linear( in_features=config.transformerDimensions , out_features=config.numDims ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , a : int , a : List[Any] ): """simple docstring""" __lowerCamelCase = self.transformer(input_ids=a , attention_mask=a )[0] __lowerCamelCase = (embs * attention_mask.unsqueeze(2 )).sum(dim=1 ) / attention_mask.sum(dim=1 )[:, None] return self.LinearTransformation(a ), embs
67
1
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = {"configuration_timm_backbone": ["TimmBackboneConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ["TimmBackbone"] if TYPE_CHECKING: from .configuration_timm_backbone import TimmBackboneConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timm_backbone import TimmBackbone else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
300
class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = 0 _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Tuple = {} def snake_case__ ( self, __a): '''simple docstring''' if vertex not in self.adjacency: _lowerCAmelCase : List[Any] = {} self.num_vertices += 1 def snake_case__ ( self, __a, __a, __a): '''simple docstring''' self.add_vertex(__a) self.add_vertex(__a) if head == tail: return _lowerCAmelCase : Dict = weight _lowerCAmelCase : Dict = weight def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = self.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge edges.remove((tail, head, weight)) for i in range(len(__a)): _lowerCAmelCase : Optional[int] = list(edges[i]) edges.sort(key=lambda __a: e[2]) for i in range(len(__a) - 1): if edges[i][2] >= edges[i + 1][2]: _lowerCAmelCase : Tuple = edges[i][2] + 1 for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = edge _lowerCAmelCase : Union[str, Any] = weight _lowerCAmelCase : Optional[int] = weight def __str__( self): '''simple docstring''' _lowerCAmelCase : Optional[int] = "" for tail in self.adjacency: for head in self.adjacency[tail]: _lowerCAmelCase : List[Any] = self.adjacency[head][tail] string += f"{head} -> {tail} == {weight}\n" return string.rstrip("\n") def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def snake_case__ ( self): '''simple docstring''' return self.adjacency.keys() @staticmethod def snake_case__ ( __a=None, __a=None): '''simple docstring''' _lowerCAmelCase : Optional[Any] = Graph() if vertices is None: _lowerCAmelCase : Any = [] if edges is None: _lowerCAmelCase : Any = [] for vertex in vertices: g.add_vertex(__a) for edge in edges: g.add_edge(*__a) return g class UpperCAmelCase_ : def __init__( self): '''simple docstring''' _lowerCAmelCase : Dict = {} _lowerCAmelCase : List[Any] = {} def __len__( self): '''simple docstring''' return len(self.parent) def snake_case__ ( self, __a): '''simple docstring''' if item in self.parent: return self.find(__a) _lowerCAmelCase : Optional[int] = item _lowerCAmelCase : Any = 0 return item def snake_case__ ( self, __a): '''simple docstring''' if item not in self.parent: return self.make_set(__a) if item != self.parent[item]: _lowerCAmelCase : Any = self.find(self.parent[item]) return self.parent[item] def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = self.find(__a) _lowerCAmelCase : List[str] = self.find(__a) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _lowerCAmelCase : Any = roota return roota if self.rank[roota] < self.rank[roota]: _lowerCAmelCase : List[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _lowerCAmelCase : int = roota return roota return None @staticmethod def snake_case__ ( __a): '''simple docstring''' _lowerCAmelCase : Tuple = graph.num_vertices _lowerCAmelCase : Optional[int] = Graph.UnionFind() _lowerCAmelCase : str = [] while num_components > 1: _lowerCAmelCase : List[str] = {} for vertex in graph.get_vertices(): _lowerCAmelCase : Optional[Any] = -1 _lowerCAmelCase : Union[str, Any] = graph.get_edges() for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : str = edge edges.remove((tail, head, weight)) for edge in edges: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = edge _lowerCAmelCase : Dict = union_find.find(__a) _lowerCAmelCase : Optional[Any] = union_find.find(__a) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Union[str, Any] = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _lowerCAmelCase : Tuple = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Optional[int] = cheap_edge[vertex] if union_find.find(__a) != union_find.find(__a): union_find.union(__a, __a) mst_edges.append(cheap_edge[vertex]) _lowerCAmelCase : Any = num_components - 1 _lowerCAmelCase : List[str] = Graph.build(edges=__a) return mst
300
1
"""simple docstring""" def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : Union[str, Any] = 1 for i in range(1 ,num + 1 ): fact *= i return fact def _lowercase ( __snake_case ) -> int: __lowerCAmelCase : List[str] = 0 while number > 0: __lowerCAmelCase : Optional[int] = number % 10 sum_of_digits += last_digit __lowerCAmelCase : int = number // 10 # Removing the last_digit from the given number return sum_of_digits def _lowercase ( __snake_case = 100 ) -> int: __lowerCAmelCase : str = factorial(__snake_case ) __lowerCAmelCase : Optional[int] = split_and_add(__snake_case ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
269
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING a__ : List[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = { "Salesforce/instruct-blip-flan-t5": "https://huggingface.co/Salesforce/instruct-blip-flan-t5/resolve/main/config.json", } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : List[str] = 'instructblip_vision_model' def __init__( self :List[str] , _A :str=1_408 , _A :List[str]=6_144 , _A :List[Any]=39 , _A :Optional[Any]=16 , _A :Tuple=224 , _A :Tuple=14 , _A :Tuple="gelu" , _A :Optional[Any]=1E-6 , _A :List[Any]=0.0 , _A :Dict=1E-10 , _A :List[str]=True , **_A :Dict , ) -> Dict: '''simple docstring''' super().__init__(**_A ) __A = hidden_size __A = intermediate_size __A = num_hidden_layers __A = num_attention_heads __A = patch_size __A = image_size __A = initializer_range __A = attention_dropout __A = layer_norm_eps __A = hidden_act __A = qkv_bias @classmethod def lowercase_ ( cls :Any , _A :Union[str, os.PathLike] , **_A :Tuple ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_A ) __A , __A = cls.get_config_dict(_A , **_A ) # get the vision config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __A = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : List[str] = 'instructblip_qformer' def __init__( self :Tuple , _A :int=30_522 , _A :List[str]=768 , _A :str=12 , _A :Optional[Any]=12 , _A :Union[str, Any]=3_072 , _A :str="gelu" , _A :Tuple=0.1 , _A :Dict=0.1 , _A :Dict=512 , _A :Union[str, Any]=0.02 , _A :int=1E-12 , _A :str=0 , _A :Union[str, Any]="absolute" , _A :List[str]=2 , _A :Optional[Any]=1_408 , **_A :Any , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=_A , **_A ) __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = hidden_act __A = intermediate_size __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = initializer_range __A = layer_norm_eps __A = position_embedding_type __A = cross_attention_frequency __A = encoder_hidden_size @classmethod def lowercase_ ( cls :int , _A :Union[str, os.PathLike] , **_A :int ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(_A ) __A , __A = cls.get_config_dict(_A , **_A ) # get the qformer config dict if we are loading from InstructBlipConfig if config_dict.get('model_type' ) == "instructblip": __A = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(_A , **_A ) class UpperCamelCase__ ( SCREAMING_SNAKE_CASE): UpperCAmelCase__ : Any = 'instructblip' UpperCAmelCase__ : List[Any] = True def __init__( self :Dict , _A :int=None , _A :Optional[Any]=None , _A :Optional[Any]=None , _A :Optional[Any]=32 , **_A :List[Any] ) -> Tuple: '''simple docstring''' super().__init__(**_A ) if vision_config is None: __A = {} logger.info('vision_config is None. initializing the InstructBlipVisionConfig with default values.' ) if qformer_config is None: __A = {} logger.info('qformer_config is None. Initializing the InstructBlipQFormerConfig with default values.' ) if text_config is None: __A = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __A = InstructBlipVisionConfig(**_A ) __A = InstructBlipQFormerConfig(**_A ) __A = text_config['model_type'] if 'model_type' in text_config else 'opt' __A = CONFIG_MAPPING[text_model_type](**_A ) __A = self.text_config.tie_word_embeddings __A = self.text_config.is_encoder_decoder __A = num_query_tokens __A = self.vision_config.hidden_size __A = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __A = 1.0 __A = 0.02 @classmethod def lowercase_ ( cls :int , _A :InstructBlipVisionConfig , _A :InstructBlipQFormerConfig , _A :PretrainedConfig , **_A :Any , ) -> Any: '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **_A , ) def lowercase_ ( self :int ) -> Tuple: '''simple docstring''' __A = copy.deepcopy(self.__dict__ ) __A = self.vision_config.to_dict() __A = self.qformer_config.to_dict() __A = self.text_config.to_dict() __A = self.__class__.model_type return output
161
0
def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(A__ ) for i in range(n - 1 ): for j in range(i + 1, A__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a__ ( A__ ): if len(A__ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ ) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = arr[0:mid] SCREAMING_SNAKE_CASE_ : List[str] = arr[mid:] SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ : Any = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ : Dict = _count_cross_inversions(A__, A__ ) SCREAMING_SNAKE_CASE_ : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while i < len(A__ ) and j < len(A__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_ : Optional[int] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ', A__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_ : int = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ : List[Any] = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : List[str] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ : int = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) if __name__ == "__main__": main()
350
def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = len(A__ ) for i in range(n - 1 ): for j in range(i + 1, A__ ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def a__ ( A__ ): if len(A__ ) <= 1: return arr, 0 SCREAMING_SNAKE_CASE_ : Optional[int] = len(A__ ) // 2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = arr[0:mid] SCREAMING_SNAKE_CASE_ : List[str] = arr[mid:] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = count_inversions_recursive(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = _count_cross_inversions(A__, A__ ) SCREAMING_SNAKE_CASE_ : str = inversion_p + inversions_q + cross_inversions return c, num_inversions def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : List[str] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 while i < len(A__ ) and j < len(A__ ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(A__ ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(A__ ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def a__ ( ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [1_0, 2, 1, 5, 5, 2, 1_1] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) SCREAMING_SNAKE_CASE_ : Optional[int] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ', A__ ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() SCREAMING_SNAKE_CASE_ : int = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) # an empty list should also have zero inversions SCREAMING_SNAKE_CASE_ : Optional[int] = [] SCREAMING_SNAKE_CASE_ : List[str] = count_inversions_bf(A__ ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = count_inversions_recursive(A__ ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', A__ ) if __name__ == "__main__": main()
162
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional import evaluate import numpy as np import torch from datasets import load_dataset from PIL import Image from torchvision.transforms import ( CenterCrop, Compose, Normalize, RandomHorizontalFlip, RandomResizedCrop, Resize, ToTensor, ) import transformers from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, AutoConfig, AutoImageProcessor, AutoModelForImageClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version __snake_case = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/image-classification/requirements.txt""") __snake_case = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys()) __snake_case = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) def _A ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , '''rb''' ) as f: UpperCamelCase :List[str] = Image.open(SCREAMING_SNAKE_CASE__ ) return im.convert('''RGB''' ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ : Optional[str] =field( default=lowercase, metadata={ 'help': 'Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub).' }, ) UpperCamelCase_ : Optional[str] =field( default=lowercase, metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} ) UpperCamelCase_ : Optional[str] =field(default=lowercase, metadata={'help': 'A folder containing the training data.'} ) UpperCamelCase_ : Optional[str] =field(default=lowercase, metadata={'help': 'A folder containing the validation data.'} ) UpperCamelCase_ : Optional[float] =field( default=0.15, metadata={'help': 'Percent to split off of train for validation.'} ) UpperCamelCase_ : Optional[int] =field( default=lowercase, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) }, ) UpperCamelCase_ : Optional[int] =field( default=lowercase, metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) }, ) def UpperCAmelCase ( self ) -> int: if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None): raise ValueError( '''You must specify either a dataset name from the hub or a train and/or validation directory.''' ) @dataclass class UpperCAmelCase_ : """simple docstring""" UpperCamelCase_ : str =field( default='google/vit-base-patch16-224-in21k', metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}, ) UpperCamelCase_ : Optional[str] =field( default=lowercase, metadata={'help': 'If training from scratch, pass a model type from the list: ' + ', '.join(lowercase )}, ) UpperCamelCase_ : Optional[str] =field( default=lowercase, metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) UpperCamelCase_ : Optional[str] =field( default=lowercase, metadata={'help': 'Where do you want to store the pretrained models downloaded from s3'} ) UpperCamelCase_ : str =field( default='main', metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'}, ) UpperCamelCase_ : str =field(default=lowercase, metadata={'help': 'Name or path of preprocessor config.'} ) UpperCamelCase_ : bool =field( default=lowercase, metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) }, ) UpperCamelCase_ : bool =field( default=lowercase, metadata={'help': 'Will enable to load a pretrained model whose head dimensions are different.'}, ) def _A ( SCREAMING_SNAKE_CASE__ : int ): UpperCamelCase :Dict = torch.stack([example['''pixel_values'''] for example in examples] ) UpperCamelCase :Optional[int] = torch.tensor([example['''labels'''] for example in examples] ) return {"pixel_values": pixel_values, "labels": labels} def _A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCamelCase :int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCamelCase , UpperCamelCase , UpperCamelCase :str = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('''run_image_classification''' , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() UpperCamelCase :Any = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. UpperCamelCase :Dict = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCamelCase :Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Initialize our dataset and prepare it for the 'image-classification' task. if data_args.dataset_name is not None: UpperCamelCase :int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , ) else: UpperCamelCase :List[Any] = {} if data_args.train_dir is not None: UpperCamelCase :Union[str, Any] = os.path.join(data_args.train_dir , '''**''' ) if data_args.validation_dir is not None: UpperCamelCase :Union[str, Any] = os.path.join(data_args.validation_dir , '''**''' ) UpperCamelCase :Tuple = load_dataset( '''imagefolder''' , data_files=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , task='''image-classification''' , ) # If we don't have a validation split, split off a percentage of train as validation. UpperCamelCase :Dict = None if '''validation''' in dataset.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , SCREAMING_SNAKE_CASE__ ) and data_args.train_val_split > 0.0: UpperCamelCase :Union[str, Any] = dataset['''train'''].train_test_split(data_args.train_val_split ) UpperCamelCase :Dict = split['''train'''] UpperCamelCase :List[Any] = split['''test'''] # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. UpperCamelCase :Any = dataset['''train'''].features['''labels'''].names UpperCamelCase , UpperCamelCase :List[str] = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCamelCase :List[Any] = str(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = label # Load the accuracy metric from the datasets package UpperCamelCase :Optional[Any] = evaluate.load('''accuracy''' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ : Dict ): return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids ) UpperCamelCase :Dict = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(SCREAMING_SNAKE_CASE__ ) , labelaid=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) UpperCamelCase :Optional[Any] = AutoModelForImageClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) UpperCamelCase :int = AutoImageProcessor.from_pretrained( model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Define torchvision transforms to be applied to each image. if "shortest_edge" in image_processor.size: UpperCamelCase :Tuple = image_processor.size['''shortest_edge'''] else: UpperCamelCase :str = (image_processor.size['''height'''], image_processor.size['''width''']) UpperCamelCase :Tuple = Normalize(mean=image_processor.image_mean , std=image_processor.image_std ) UpperCamelCase :Optional[int] = Compose( [ RandomResizedCrop(SCREAMING_SNAKE_CASE__ ), RandomHorizontalFlip(), ToTensor(), normalize, ] ) UpperCamelCase :str = Compose( [ Resize(SCREAMING_SNAKE_CASE__ ), CenterCrop(SCREAMING_SNAKE_CASE__ ), ToTensor(), normalize, ] ) def train_transforms(SCREAMING_SNAKE_CASE__ : Optional[Any] ): UpperCamelCase :str = [ _train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image'''] ] return example_batch def val_transforms(SCREAMING_SNAKE_CASE__ : str ): UpperCamelCase :Any = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']] return example_batch if training_args.do_train: if "train" not in dataset: raise ValueError('''--do_train requires a train dataset''' ) if data_args.max_train_samples is not None: UpperCamelCase :List[Any] = ( dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms dataset["train"].set_transform(SCREAMING_SNAKE_CASE__ ) if training_args.do_eval: if "validation" not in dataset: raise ValueError('''--do_eval requires a validation dataset''' ) if data_args.max_eval_samples is not None: UpperCamelCase :Tuple = ( dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms dataset["validation"].set_transform(SCREAMING_SNAKE_CASE__ ) # Initalize our trainer UpperCamelCase :int = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: UpperCamelCase :Any = None if training_args.resume_from_checkpoint is not None: UpperCamelCase :Optional[Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCamelCase :Union[str, Any] = last_checkpoint UpperCamelCase :int = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) trainer.save_model() trainer.log_metrics('''train''' , train_result.metrics ) trainer.save_metrics('''train''' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: UpperCamelCase :List[Any] = trainer.evaluate() trainer.log_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''eval''' , SCREAMING_SNAKE_CASE__ ) # Write model card and (optionally) push to hub UpperCamelCase :int = { '''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''image-classification''', '''dataset''': data_args.dataset_name, '''tags''': ['''image-classification''', '''vision'''], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": main()
259
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed __snake_case = logging.getLogger(__name__) def _A ( SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : Dict=3 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : int = 10 , SCREAMING_SNAKE_CASE__ : int = 2 ): def get_dataset(SCREAMING_SNAKE_CASE__ : List[Any] ): UpperCamelCase :Union[str, Any] = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(SCREAMING_SNAKE_CASE__ , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) UpperCamelCase :str = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = get_dataset(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) UpperCamelCase :Any = DataLoader(SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , num_workers=4 ) return (train_dataloader, valid_dataloader) def _A ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=None ): UpperCamelCase :Dict = [] for epoch in range(SCREAMING_SNAKE_CASE__ ): # Train quickly model.train() for batch in dataloader: UpperCamelCase , UpperCamelCase :Optional[Any] = batch UpperCamelCase :int = model(SCREAMING_SNAKE_CASE__ ) UpperCamelCase :Optional[int] = torch.nn.functional.mse_loss(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) accelerator.backward(SCREAMING_SNAKE_CASE__ ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class UpperCAmelCase_ ( nn.Module ): """simple docstring""" def __init__( self ) -> str: super().__init__() UpperCamelCase :Optional[int] = nn.Parameter(torch.randn(1 ) ) UpperCamelCase :int = nn.Parameter(torch.randn(1 ) ) def UpperCAmelCase ( self , SCREAMING_SNAKE_CASE_ ) -> int: return x * self.a + self.b class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase ( self ) -> Dict: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Tuple = ProjectConfiguration(total_limit=1 , project_dir=SCREAMING_SNAKE_CASE_ , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Dict = Accelerator(project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Union[str, Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def UpperCAmelCase ( self ) -> str: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[str] = DummyModel() UpperCamelCase :Union[str, Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Dict = dummy_dataloaders() # Train baseline UpperCamelCase :Dict = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :int = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial UpperCamelCase :int = os.path.join(SCREAMING_SNAKE_CASE_ , '''initial''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[int] = optimizer.state_dict() UpperCamelCase :Optional[int] = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Any = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :List[Any] = dummy_dataloaders() UpperCamelCase :List[str] = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Tuple = model.a.item(), model.b.item() UpperCamelCase :Tuple = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[int] = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything UpperCamelCase :Optional[int] = os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoint''' ) accelerator.save_state(SCREAMING_SNAKE_CASE_ ) # Load everything back in and make sure all states work accelerator.load_state(SCREAMING_SNAKE_CASE_ ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Union[str, Any] = model.a.item(), model.b.item() UpperCamelCase :Optional[Any] = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> List[Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :Optional[int] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :int = dummy_dataloaders() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Optional[Any] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() ((UpperCamelCase) , (UpperCamelCase)) :List[str] = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() UpperCamelCase :Any = train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[int] = model.a.item(), model.b.item() UpperCamelCase :Any = optimizer.state_dict() # Train partially set_seed(42 ) UpperCamelCase :Union[str, Any] = DummyModel() UpperCamelCase :List[Any] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase , UpperCamelCase :Tuple = dummy_dataloaders() UpperCamelCase :Optional[Any] = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Union[str, Any] = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :List[str] = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ((UpperCamelCase) , (UpperCamelCase)) :Dict = model.a.item(), model.b.item() UpperCamelCase :Dict = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Any = train(2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_1''' ) ) test_rands += train(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ((UpperCamelCase) , (UpperCamelCase)) :Optional[Any] = model.a.item(), model.b.item() UpperCamelCase :str = optimizer.state_dict() self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase ( self ) -> Union[str, Any]: UpperCamelCase :List[Any] = torch.tensor([1, 2, 3] ) UpperCamelCase :Any = torch.tensor([2, 3, 4] ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :Optional[Any] = torch.optim.Adam(net.parameters() ) UpperCamelCase :Optional[Any] = Accelerator() with self.assertRaises(SCREAMING_SNAKE_CASE_ ) as ve: accelerator.register_for_checkpointing(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase :Optional[Any] = str(ve.exception ) self.assertTrue('''Item at index 0''' in message ) self.assertTrue('''Item at index 1''' in message ) self.assertFalse('''Item at index 2''' in message ) self.assertFalse('''Item at index 3''' in message ) def UpperCAmelCase ( self ) -> Any: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :List[Any] = DummyModel() UpperCamelCase :List[str] = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) UpperCamelCase :Any = torch.optim.lr_scheduler.StepLR(SCREAMING_SNAKE_CASE_ , step_size=1 , gamma=0.99 ) UpperCamelCase , UpperCamelCase :Any = dummy_dataloaders() UpperCamelCase :Optional[int] = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ ) # Train baseline UpperCamelCase :str = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase :Tuple = accelerator.prepare( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Save initial accelerator.save_state() UpperCamelCase :int = scheduler.state_dict() train(3 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , scheduler.state_dict() ) def UpperCAmelCase ( self ) -> Union[str, Any]: with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) UpperCamelCase :Optional[Any] = DummyModel() UpperCamelCase :int = ProjectConfiguration(automatic_checkpoint_naming=SCREAMING_SNAKE_CASE_ , total_limit=2 ) # Train baseline UpperCamelCase :Tuple = Accelerator(project_dir=SCREAMING_SNAKE_CASE_ , project_config=SCREAMING_SNAKE_CASE_ ) UpperCamelCase :List[str] = accelerator.prepare(SCREAMING_SNAKE_CASE_ ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_0''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_9''' ) ) ) self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''checkpoints''' , '''checkpoint_10''' ) ) ) @require_cuda def UpperCAmelCase ( self ) -> int: UpperCamelCase :int = ['''torchrun''', F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE_ , env=os.environ.copy() ) if __name__ == "__main__": __snake_case = """/tmp/accelerate/state_checkpointing""" __snake_case = DummyModel() __snake_case = torch.optim.Adam(params=model.parameters(), lr=1E-3) __snake_case = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.9_9) __snake_case , __snake_case = dummy_dataloaders() __snake_case = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline __snake_case = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) __snake_case , __snake_case = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert param_device.type == accelerator.device.type __snake_case = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: __snake_case = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
259
1
import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() UpperCAmelCase = { """bart""": ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), """bert""": ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-uncased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-large-cased-whole-word-masking-finetuned-squad""": ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """bert-base-cased-finetuned-mrpc""": ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """dpr""": ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), """gpt2""": ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlnet""": ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm""": ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """xlm-roberta""": ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """transfo-xl""": ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """openai-gpt""": ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """roberta""": ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """layoutlm""": ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), """roberta-large-mnli""": ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """camembert""": ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """flaubert""": ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert""": ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """distilbert-base-distilled-squad""": ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert""": ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """lxmert-visual-feature-encoder""": ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """ctrl""": ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """albert""": ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """t5""": ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """electra""": ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), """wav2vec2""": ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=True )-> List[str]: """simple docstring""" if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.''' ) snake_case_ , snake_case_ , snake_case_ , snake_case_ = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: snake_case_ = cached_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) snake_case_ = config_class.from_json_file(SCREAMING_SNAKE_CASE ) snake_case_ = True snake_case_ = True print(f'''Building TensorFlow model from configuration: {config}''' ) snake_case_ = model_class(SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): snake_case_ = cached_file( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: snake_case_ = load_pytorch_checkpoint_in_tfa_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if compare_with_pt_model: snake_case_ = tf_model(tf_model.dummy_inputs , training=SCREAMING_SNAKE_CASE ) # build the network snake_case_ = torch.load(SCREAMING_SNAKE_CASE , map_location='''cpu''' ) snake_case_ = pt_model_class.from_pretrained( pretrained_model_name_or_path=SCREAMING_SNAKE_CASE , config=SCREAMING_SNAKE_CASE , state_dict=SCREAMING_SNAKE_CASE ) with torch.no_grad(): snake_case_ = pt_model(**pt_model.dummy_inputs ) snake_case_ = pto[0].numpy() snake_case_ = tfo[0].numpy() snake_case_ = np.amax(np.abs(np_pt - np_tf ) ) print(f'''Max absolute difference between models outputs {diff}''' ) assert diff <= 2E-2, f'''Error, model absolute difference is >2e-2: {diff}''' # Save pytorch-model print(f'''Save TensorFlow model to {tf_dump_path}''' ) tf_model.save_weights(SCREAMING_SNAKE_CASE , save_format='''h5''' ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False , )-> str: """simple docstring""" if args_model_type is None: snake_case_ = list(MODEL_CLASSES.keys() ) else: snake_case_ = [args_model_type] for j, model_type in enumerate(SCREAMING_SNAKE_CASE , start=1 ): print('''=''' * 100 ) print(f''' Converting model type {j}/{len(SCREAMING_SNAKE_CASE )}: {model_type}''' ) print('''=''' * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(f'''Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.''' ) snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: snake_case_ = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: snake_case_ = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , start=1 ): print('''-''' * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(f''' Skipping finetuned checkpoint {model_shortcut_name}''' ) continue snake_case_ = model_shortcut_name elif only_convert_finetuned_models: print(f''' Skipping not finetuned checkpoint {model_shortcut_name}''' ) continue print( f''' Converting checkpoint {i}/{len(SCREAMING_SNAKE_CASE )}: {model_shortcut_name} - model_type {model_type}''' ) print('''-''' * 100 ) if config_shortcut_name in aws_config_map: snake_case_ = cached_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: snake_case_ = config_shortcut_name if model_shortcut_name in aws_model_maps: snake_case_ = cached_file(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , force_download=not use_cached_models ) else: snake_case_ = model_shortcut_name if os.path.isfile(SCREAMING_SNAKE_CASE ): snake_case_ = '''converted_model''' convert_pt_checkpoint_to_tf( model_type=SCREAMING_SNAKE_CASE , pytorch_checkpoint_path=SCREAMING_SNAKE_CASE , config_file=SCREAMING_SNAKE_CASE , tf_dump_path=os.path.join(SCREAMING_SNAKE_CASE , model_shortcut_name + '''-tf_model.h5''' ) , compare_with_pt_model=SCREAMING_SNAKE_CASE , ) if remove_cached_files: os.remove(SCREAMING_SNAKE_CASE ) os.remove(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_dump_path""", default=None, type=str, required=True, help="""Path to the output Tensorflow dump file.""" ) parser.add_argument( """--model_type""", default=None, type=str, help=( f'''Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and ''' """convert all the models from AWS.""" ), ) parser.add_argument( """--pytorch_checkpoint_path""", default=None, type=str, help=( """Path to the PyTorch checkpoint path or shortcut name to download from AWS. """ """If not given, will download and convert all the checkpoints from AWS.""" ), ) parser.add_argument( """--config_file""", default=None, type=str, help=( """The config json file corresponding to the pre-trained model. \n""" """This specifies the model architecture. If not given and """ """--pytorch_checkpoint_path is not given or is a shortcut name """ """use the configuration associated to the shortcut name on the AWS""" ), ) parser.add_argument( """--compare_with_pt_model""", action="""store_true""", help="""Compare Tensorflow and PyTorch model predictions.""" ) parser.add_argument( """--use_cached_models""", action="""store_true""", help="""Use cached models if possible instead of updating to latest checkpoint versions.""", ) parser.add_argument( """--remove_cached_files""", action="""store_true""", help="""Remove pytorch models after conversion (save memory when converting in batches).""", ) parser.add_argument("""--only_convert_finetuned_models""", action="""store_true""", help="""Only convert finetuned models.""") UpperCAmelCase = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
267
import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): snake_case_ = ['''a''', '''b''', '''c'''] # Defaults to last layer if both are None snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''c'''] ) self.assertEqual(_UpperCAmelCase , [2] ) # Out indices set to match out features snake_case_ , snake_case_ = get_aligned_output_features_output_indices(['''a''', '''c'''] , _UpperCAmelCase , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features set to match out indices snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [0, 2] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [0, 2] ) # Out features selected from negative indices snake_case_ , snake_case_ = get_aligned_output_features_output_indices(_UpperCAmelCase , [-3, -1] , _UpperCAmelCase ) self.assertEqual(_UpperCAmelCase , ['''a''', '''c'''] ) self.assertEqual(_UpperCAmelCase , [-3, -1] ) def UpperCamelCase__ ( self ): # Stage names must be set with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , _UpperCAmelCase ) # Out features must be a list with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(_UpperCAmelCase , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(_UpperCAmelCase ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def UpperCamelCase__ ( self ): snake_case_ = BackboneMixin() snake_case_ = ['''a''', '''b''', '''c'''] snake_case_ = ['''a''', '''c'''] snake_case_ = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly snake_case_ = ['''a''', '''b'''] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) snake_case_ = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
267
1
from __future__ import annotations from collections.abc import Iterator class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =value __UpperCamelCase : Node | None =None __UpperCamelCase : Node | None =None class __A : """simple docstring""" def __init__( self , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =tree def __lowercase ( self , lowerCamelCase__ ): """simple docstring""" if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self ): """simple docstring""" yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
71
import itertools import os from collections import Counter, defaultdict from concurrent.futures import ThreadPoolExecutor, as_completed import numpy as np import datasets from .execute import check_correctness A_ :List[str] = '''\ @misc{chen2021evaluating, title={Evaluating Large Language Models Trained on Code}, author={Mark Chen and Jerry Tworek and Heewoo Jun and Qiming Yuan \ and Henrique Ponde de Oliveira Pinto and Jared Kaplan and Harri Edwards \ and Yuri Burda and Nicholas Joseph and Greg Brockman and Alex Ray \ and Raul Puri and Gretchen Krueger and Michael Petrov and Heidy Khlaaf \ and Girish Sastry and Pamela Mishkin and Brooke Chan and Scott Gray \ and Nick Ryder and Mikhail Pavlov and Alethea Power and Lukasz Kaiser \ and Mohammad Bavarian and Clemens Winter and Philippe Tillet \ and Felipe Petroski Such and Dave Cummings and Matthias Plappert \ and Fotios Chantzis and Elizabeth Barnes and Ariel Herbert-Voss \ and William Hebgen Guss and Alex Nichol and Alex Paino and Nikolas Tezak \ and Jie Tang and Igor Babuschkin and Suchir Balaji and Shantanu Jain \ and William Saunders and Christopher Hesse and Andrew N. Carr \ and Jan Leike and Josh Achiam and Vedant Misra and Evan Morikawa \ and Alec Radford and Matthew Knight and Miles Brundage and Mira Murati \ and Katie Mayer and Peter Welinder and Bob McGrew and Dario Amodei \ and Sam McCandlish and Ilya Sutskever and Wojciech Zaremba}, year={2021}, eprint={2107.03374}, archivePrefix={arXiv}, primaryClass={cs.LG} } ''' A_ :Any = '''\ This metric implements the evaluation harness for the HumanEval problem solving dataset described in the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). ''' A_ :Tuple = ''' Calculates how good are predictions given some references, using certain scores Args: predictions: list of candidates to evaluate. Each candidates should be a list of strings with several code candidates to solve the problem. references: a list with a test for each prediction. Each test should evaluate the correctness of a code candidate. k: number of code candidates to consider in the evaluation (Default: [1, 10, 100]) num_workers: number of workers used to evaluate the canidate programs (Default: 4). timeout: Returns: pass_at_k: dict with pass rates for each k results: dict with granular results of each unittest Examples: >>> code_eval = datasets.load_metric("code_eval") >>> test_cases = ["assert add(2,3)==5"] >>> candidates = [["def add(a,b): return a*b", "def add(a, b): return a+b"]] >>> pass_at_k, results = code_eval.compute(references=test_cases, predictions=candidates, k=[1, 2]) >>> print(pass_at_k) {\'pass@1\': 0.5, \'pass@2\': 1.0} ''' A_ :List[str] = ''' ################################################################################ !!!WARNING!!! ################################################################################ The "code_eval" metric executes untrusted model-generated code in Python. Although it is highly unlikely that model-generated code will do something overtly malicious in response to this test suite, model-generated code may act destructively due to a lack of model capability or alignment. Users are strongly encouraged to sandbox this evaluation suite so that it does not perform destructive actions on their host or network. For more information on how OpenAI sandboxes its code, see the paper "Evaluating Large Language Models Trained on Code" (https://arxiv.org/abs/2107.03374). Once you have read this disclaimer and taken appropriate precautions, set the environment variable HF_ALLOW_CODE_EVAL="1". Within Python you can to this with: >>> import os >>> os.environ["HF_ALLOW_CODE_EVAL"] = "1" ################################################################################\ ''' A_ :Tuple = '''The MIT License Copyright (c) OpenAI (https://openai.com) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __A ( datasets.Metric ): """simple docstring""" def __lowercase ( self ): """simple docstring""" return datasets.MetricInfo( # This is the description that will appear on the metrics page. description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string' ) ), 'references': datasets.Value('string' ), } ) , homepage='https://github.com/openai/human-eval' , codebase_urls=['https://github.com/openai/human-eval'] , reference_urls=['https://github.com/openai/human-eval'] , license=_LICENSE , ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=[1, 10, 100] , lowerCamelCase__=4 , lowerCamelCase__=3.0 ): """simple docstring""" if os.getenv('HF_ALLOW_CODE_EVAL' , 0 ) != "1": raise ValueError(_WARNING ) if os.name == "nt": raise NotImplementedError('This metric is currently not supported on Windows.' ) with ThreadPoolExecutor(max_workers=lowerCamelCase__ ) as executor: __UpperCamelCase : List[str] =[] __UpperCamelCase : Any =Counter() __UpperCamelCase : List[Any] =0 __UpperCamelCase : int =defaultdict(lowerCamelCase__ ) for task_id, (candidates, test_case) in enumerate(zip(lowerCamelCase__ , lowerCamelCase__ ) ): for candidate in candidates: __UpperCamelCase : str =candidate + '\n' + test_case __UpperCamelCase : Any =(test_program, timeout, task_id, completion_id[task_id]) __UpperCamelCase : Optional[Any] =executor.submit(lowerCamelCase__ , *lowerCamelCase__ ) futures.append(lowerCamelCase__ ) completion_id[task_id] += 1 n_samples += 1 for future in as_completed(lowerCamelCase__ ): __UpperCamelCase : str =future.result() results[result["task_id"]].append((result['completion_id'], result) ) __UpperCamelCase , __UpperCamelCase : int =[], [] for result in results.values(): result.sort() __UpperCamelCase : str =[r[1]['passed'] for r in result] total.append(len(lowerCamelCase__ ) ) correct.append(sum(lowerCamelCase__ ) ) __UpperCamelCase : Optional[int] =np.array(lowerCamelCase__ ) __UpperCamelCase : List[str] =np.array(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =k __UpperCamelCase : List[Any] ={f'pass@{k}': estimate_pass_at_k(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).mean() for k in ks if (total >= k).all()} return pass_at_k, results def A ( a_ ,a_ ,a_ ) -> Optional[int]: def estimator(a_ ,a_ ,a_ ) -> float: if n - c < k: return 1.0 return 1.0 - np.prod(1.0 - k / np.arange(n - c + 1 ,n + 1 ) ) if isinstance(a_ ,a_ ): __UpperCamelCase : Optional[int] =itertools.repeat(a_ ,len(a_ ) ) else: assert len(a_ ) == len(a_ ) __UpperCamelCase : List[Any] =iter(a_ ) return np.array([estimator(int(a_ ) ,int(a_ ) ,a_ ) for n, c in zip(a_ ,a_ )] )
71
1
# This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __lowerCamelCase : Optional[Any] = open # noqa: we just need to have a builtin inside this module to test it properly
354
from math import isqrt def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int ) -> list[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE__ = False return [i for i in range(2 , __UpperCamelCase ) if is_prime[i]] def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : int = 10**8 ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = calculate_prime_numbers(max_number // 2 ) SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(__UpperCamelCase ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F"""{solution() = }""")
204
0
from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def __snake_case ( _lowerCAmelCase : int ) -> int: # A local function to see if a dot lands in the circle. def is_in_circle(_lowerCAmelCase : float , _lowerCAmelCase : float ) -> bool: A_ : str = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle A_ : Optional[int] = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_lowerCAmelCase ) ) # The ratio of the area for circle to square is pi/4. A_ : int = proportion * 4 print(f"The estimated value of pi is {pi_estimate}" ) print(f"The numpy value of pi is {pi}" ) print(f"The total error is {abs(pi - pi_estimate )}" ) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Callable[[float], float] , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : float = 1.0 , ) -> float: return mean( function_to_integrate(uniform(_lowerCAmelCase , _lowerCAmelCase ) ) for _ in range(_lowerCAmelCase ) ) * (max_value - min_value) def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : float = 1.0 ) -> None: def identity_function(_lowerCAmelCase : float ) -> float: return x A_ : Any = area_under_curve_estimator( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) A_ : Tuple = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(f"Estimating area under y=x where x varies from {min_value} to {max_value}" ) print(f"Estimated value is {estimated_value}" ) print(f"Expected value is {expected_value}" ) print(f"Total error is {abs(estimated_value - expected_value )}" ) print("******************" ) def __snake_case ( _lowerCAmelCase : int ) -> None: def function_to_integrate(_lowerCAmelCase : float ) -> float: return sqrt(4.0 - x * x ) A_ : List[str] = area_under_curve_estimator( _lowerCAmelCase , _lowerCAmelCase , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(f"Estimated value is {estimated_value}" ) print(f"Expected value is {pi}" ) print(f"Total error is {abs(estimated_value - pi )}" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
300
import inspect import unittest from transformers import ViTMSNConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMSNForImageClassification, ViTMSNModel from transformers.models.vit_msn.modeling_vit_msn import VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __magic_name__ : """simple docstring""" def __init__( self :Dict , snake_case :Optional[int] , snake_case :Tuple=13 , snake_case :List[Any]=30 , snake_case :Union[str, Any]=2 , snake_case :List[Any]=3 , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Dict=32 , snake_case :List[str]=5 , snake_case :Optional[Any]=4 , snake_case :Any=37 , snake_case :Dict="gelu" , snake_case :List[str]=0.1 , snake_case :str=0.1 , snake_case :Tuple=10 , snake_case :str=0.02 , snake_case :Optional[Any]=None , ): '''simple docstring''' A_ : Tuple = parent A_ : int = batch_size A_ : List[str] = image_size A_ : List[Any] = patch_size A_ : Optional[Any] = num_channels A_ : List[Any] = is_training A_ : Tuple = use_labels A_ : Union[str, Any] = hidden_size A_ : Tuple = num_hidden_layers A_ : Any = num_attention_heads A_ : List[str] = intermediate_size A_ : Optional[int] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : str = attention_probs_dropout_prob A_ : Any = type_sequence_label_size A_ : List[str] = initializer_range A_ : Dict = scope # in ViT MSN, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) A_ : Optional[int] = (image_size // patch_size) ** 2 A_ : List[str] = num_patches + 1 def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A_ : Tuple = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Dict = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' return ViTMSNConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def SCREAMING_SNAKE_CASE ( self :List[Any] , snake_case :List[Any] , snake_case :str , snake_case :Tuple ): '''simple docstring''' A_ : Optional[Any] = ViTMSNModel(config=snake_case ) model.to(snake_case ) model.eval() A_ : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :Optional[int] , snake_case :List[str] , snake_case :List[str] ): '''simple docstring''' A_ : Dict = self.type_sequence_label_size A_ : Tuple = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Union[str, Any] = model(snake_case , labels=snake_case ) print("Pixel and labels shape: {pixel_values.shape}, {labels.shape}" ) print("Labels: {labels}" ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A_ : Union[str, Any] = 1 A_ : int = ViTMSNForImageClassification(snake_case ) model.to(snake_case ) model.eval() A_ : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A_ : Optional[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : List[str] = self.prepare_config_and_inputs() A_ , A_ , A_ : Optional[int] = config_and_inputs A_ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = (ViTMSNModel, ViTMSNForImageClassification) if is_torch_available() else () __UpperCamelCase = ( {'''feature-extraction''': ViTMSNModel, '''image-classification''': ViTMSNForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = ViTMSNModelTester(self ) A_ : str = ConfigTester(self , config_class=snake_case , has_text_modality=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="ViTMSN does not use inputs_embeds" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ , A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[int] = model_class(snake_case ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Optional[int] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case , nn.Linear ) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ , A_ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Optional[Any] = model_class(snake_case ) A_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : List[str] = [*signature.parameters.keys()] A_ : List[Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' for model_name in VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Optional[Any] = ViTMSNModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) def __snake_case ( ) -> Optional[Any]: A_ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): """simple docstring""" @cached_property def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' return ViTImageProcessor.from_pretrained("facebook/vit-msn-small" ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' torch.manual_seed(2 ) A_ : Any = ViTMSNForImageClassification.from_pretrained("facebook/vit-msn-small" ).to(snake_case ) A_ : List[str] = self.default_image_processor A_ : int = prepare_img() A_ : List[str] = image_processor(images=snake_case , return_tensors="pt" ).to(snake_case ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**snake_case ) # verify the logits A_ : List[Any] = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , snake_case ) A_ : int = torch.tensor([-0.0803, -0.4454, -0.2375] ).to(snake_case ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) )
300
1
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ : Optional[Any] = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __UpperCamelCase ( _UpperCAmelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __UpperCAmelCase : List[str] = list(s_dict.keys() ) for key in keys: __UpperCAmelCase : int = R".*/layers_(\d+)" __UpperCAmelCase : List[str] = key if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = re.sub(R"layers_(\d+)", R"block/\1/layer", _UpperCAmelCase ) __UpperCAmelCase : Any = R"(encoder|decoder)\/" if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = re.match(_UpperCAmelCase, _UpperCAmelCase ).groups() if groups[0] == "encoder": __UpperCAmelCase : Optional[Any] = re.sub(R"/mlp/", R"/1/mlp/", _UpperCAmelCase ) __UpperCAmelCase : List[Any] = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", _UpperCAmelCase ) elif groups[0] == "decoder": __UpperCAmelCase : List[Any] = re.sub(R"/mlp/", R"/2/mlp/", _UpperCAmelCase ) __UpperCAmelCase : Any = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", _UpperCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __UpperCAmelCase : List[str] = new_key.replace(_UpperCAmelCase, _UpperCAmelCase ) print(F"{key} -> {new_key}" ) __UpperCAmelCase : Any = s_dict.pop(_UpperCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Tuple = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Optional[Any] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __UpperCAmelCase : Any = s_dict[key].shape[0] __UpperCAmelCase : str = s_dict[key] for idx in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"{key} -> {key.replace('expert/', 'nested fstring' )}" ) s_dict.pop(_UpperCAmelCase ) return s_dict lowerCAmelCase__ : Optional[Any] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(_UpperCAmelCase, "r" ) as f: __UpperCAmelCase : List[Any] = f.read() __UpperCAmelCase : Union[str, Any] = re.findall(R"(.*) = ([0-9.]*)", _UpperCAmelCase ) __UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __UpperCAmelCase : Tuple = float(_UpperCAmelCase ) if "." in value else int(_UpperCAmelCase ) __UpperCAmelCase : str = re.findall(R"(.*activations) = \(\'(.*)\',\)", _UpperCAmelCase )[0] __UpperCAmelCase : int = str(activation[1] ) __UpperCAmelCase : int = num_experts __UpperCAmelCase : List[str] = SwitchTransformersConfig(**_UpperCAmelCase ) return config def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase="./", _UpperCAmelCase=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) __UpperCAmelCase : Dict = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) if gin_file is not None: __UpperCAmelCase : int = convert_gin_to_config(_UpperCAmelCase, _UpperCAmelCase ) else: __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(_UpperCAmelCase ) __UpperCAmelCase : Any = SwitchTransformersForConditionalGeneration(_UpperCAmelCase ) __UpperCAmelCase : str = flax_params["target"] __UpperCAmelCase : Any = flatten_dict(_UpperCAmelCase, sep="/" ) __UpperCAmelCase : Optional[Any] = rename_keys(_UpperCAmelCase ) __UpperCAmelCase : Any = unflatten_dict(_UpperCAmelCase, sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCAmelCase, _UpperCAmelCase ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowerCAmelCase__ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
368
'''simple docstring''' import argparse import re from flax.traverse_util import flatten_dict, unflatten_dict from tax import checkpoints from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model from transformers.utils import logging logging.set_verbosity_info() # should not include what is already done by the `from_pt` argument lowerCAmelCase__ : Optional[Any] = { "/attention/": "/0/SelfAttention/", "/self_attention/": "/0/SelfAttention/", "/encoder_decoder_attention/": "/1/EncDecAttention/", "value": "v", "query": "q", "key": "k", "out": "o", "pre_self_attention_layer_norm": "0/layer_norm", "pre_cross_attention_layer_norm": "1/layer_norm", "pre_attention_layer_norm": "0/layer_norm", # previously 1, but seems wrong "token_embedder": "shared", "encoder_norm": "final_layer_norm", "decoder_norm": "final_layer_norm", "relpos_bias/rel_embedding": "block/0/layer/0/SelfAttention/relative_attention_bias/weight", "router/router_weights/w/": "router/classifier/", "roer/roer_weights/w/": "router/classifier/", "logits_dense": "lm_head", } def __UpperCamelCase ( _UpperCAmelCase ): # 1. in HF T5, we have block.{x}.layer.{y}. which corresponds to layer.{x} in # the original model __UpperCAmelCase : List[str] = list(s_dict.keys() ) for key in keys: __UpperCAmelCase : int = R".*/layers_(\d+)" __UpperCAmelCase : List[str] = key if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : Optional[int] = re.sub(R"layers_(\d+)", R"block/\1/layer", _UpperCAmelCase ) __UpperCAmelCase : Any = R"(encoder|decoder)\/" if re.match(_UpperCAmelCase, _UpperCAmelCase ): __UpperCAmelCase : List[Any] = re.match(_UpperCAmelCase, _UpperCAmelCase ).groups() if groups[0] == "encoder": __UpperCAmelCase : Optional[Any] = re.sub(R"/mlp/", R"/1/mlp/", _UpperCAmelCase ) __UpperCAmelCase : List[Any] = re.sub(R"/pre_mlp_layer_norm/", R"/1/layer_norm/", _UpperCAmelCase ) elif groups[0] == "decoder": __UpperCAmelCase : List[Any] = re.sub(R"/mlp/", R"/2/mlp/", _UpperCAmelCase ) __UpperCAmelCase : Any = re.sub(R"/pre_mlp_layer_norm/", R"/2/layer_norm/", _UpperCAmelCase ) # 2. Convert other classic mappings for old_key, temp_key in MOE_LAYER_NAME_MAPPING.items(): if old_key in new_key: __UpperCAmelCase : List[str] = new_key.replace(_UpperCAmelCase, _UpperCAmelCase ) print(F"{key} -> {new_key}" ) __UpperCAmelCase : Any = s_dict.pop(_UpperCAmelCase ) if "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Tuple = s_dict[ "encoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T if "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" in s_dict: __UpperCAmelCase : Optional[Any] = s_dict[ "decoder/block/0/layer/0/SelfAttention/relative_attention_bias/weight" ].T # 3. Take extra care of the EXPERTS layer for key in list(s_dict.keys() ): if "expert" in key: __UpperCAmelCase : Any = s_dict[key].shape[0] __UpperCAmelCase : str = s_dict[key] for idx in range(_UpperCAmelCase ): __UpperCAmelCase : Optional[Any] = expert_weihts[idx] print(F"{key} -> {key.replace('expert/', 'nested fstring' )}" ) s_dict.pop(_UpperCAmelCase ) return s_dict lowerCAmelCase__ : Optional[Any] = { "NUM_ENCODER_LAYERS": "num_layers", "NUM_DECODER_LAYERS": "num_decoder_layers", "NUM_HEADS": "num_heads", "HEAD_DIM": "d_kv", "EMBED_DIM": "d_model", "MLP_DIM": "d_ff", "NUM_SELECTED_EXPERTS": "num_selected_experts", "NUM_ENCODER_SPARSE_LAYERS": "num_sparse_encoder_layers", "NUM_DECODER_SPARSE_LAYERS": "num_sparse_decoder_layers", "dense.MlpBlock.activations": "feed_forward_proj", } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): # Convert a google style config to the hugging face fromat import regex as re with open(_UpperCAmelCase, "r" ) as f: __UpperCAmelCase : List[Any] = f.read() __UpperCAmelCase : Union[str, Any] = re.findall(R"(.*) = ([0-9.]*)", _UpperCAmelCase ) __UpperCAmelCase : Dict = {} for param, value in regex_match: if param in GIN_TO_CONFIG_MAPPING and value != "": __UpperCAmelCase : Tuple = float(_UpperCAmelCase ) if "." in value else int(_UpperCAmelCase ) __UpperCAmelCase : str = re.findall(R"(.*activations) = \(\'(.*)\',\)", _UpperCAmelCase )[0] __UpperCAmelCase : int = str(activation[1] ) __UpperCAmelCase : int = num_experts __UpperCAmelCase : List[str] = SwitchTransformersConfig(**_UpperCAmelCase ) return config def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase=None, _UpperCAmelCase="./", _UpperCAmelCase=8 ): # Initialise PyTorch model print(F"Loading flax weights from : {flax_checkpoint_path}" ) __UpperCAmelCase : Dict = checkpoints.load_tax_checkpoint(_UpperCAmelCase ) if gin_file is not None: __UpperCAmelCase : int = convert_gin_to_config(_UpperCAmelCase, _UpperCAmelCase ) else: __UpperCAmelCase : int = SwitchTransformersConfig.from_pretrained(_UpperCAmelCase ) __UpperCAmelCase : Any = SwitchTransformersForConditionalGeneration(_UpperCAmelCase ) __UpperCAmelCase : str = flax_params["target"] __UpperCAmelCase : Any = flatten_dict(_UpperCAmelCase, sep="/" ) __UpperCAmelCase : Optional[Any] = rename_keys(_UpperCAmelCase ) __UpperCAmelCase : Any = unflatten_dict(_UpperCAmelCase, sep="/" ) # Load the flax params in the PT model load_flax_weights_in_pytorch_model(_UpperCAmelCase, _UpperCAmelCase ) print(F"Save PyTorch model to {pytorch_dump_path}" ) pt_model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": lowerCAmelCase__ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--switch_t5x_checkpoint_path", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained SwitchTransformers model. \nThis specifies the" " model architecture. If not provided, a `gin_file` has to be provided." ), ) parser.add_argument( "--gin_file", default=None, type=str, required=False, help="Path to the gin config file. If not provided, a `config_file` has to be passed ", ) parser.add_argument( "--config_name", default=None, type=str, required=False, help="Config name of SwitchTransformers model." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output pytorch model." ) parser.add_argument("--num_experts", default=8, type=int, required=False, help="Number of experts") lowerCAmelCase__ : int = parser.parse_args() convert_flax_checkpoint_to_pytorch( args.switch_tax_checkpoint_path, args.config_name, args.gin_file, args.pytorch_dump_folder_path, args.num_experts, )
37
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class lowerCAmelCase__ ( _snake_case): '''simple docstring''' __SCREAMING_SNAKE_CASE = 42 class lowerCAmelCase__ ( _snake_case , _snake_case): '''simple docstring''' __SCREAMING_SNAKE_CASE = True @register_to_config def __init__( self , __lowerCamelCase = 3 , __lowerCamelCase = 3 , __lowerCamelCase = ("DownEncoderBlock2D",) , __lowerCamelCase = ("UpDecoderBlock2D",) , __lowerCamelCase = (6_4,) , __lowerCamelCase = 1 , __lowerCamelCase = "silu" , __lowerCamelCase = 4 , __lowerCamelCase = 3_2 , __lowerCamelCase = 3_2 , __lowerCamelCase = 0.1_8_2_1_5 , ) -> Optional[int]: super().__init__() # pass init params to Encoder _A : str = Encoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , down_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , act_fn=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , double_z=UpperCamelCase__ , ) # pass init params to Decoder _A : str = Decoder( in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , up_block_types=UpperCamelCase__ , block_out_channels=UpperCamelCase__ , layers_per_block=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , act_fn=UpperCamelCase__ , ) _A : int = nn.Convad(2 * latent_channels , 2 * latent_channels , 1) _A : List[str] = nn.Convad(UpperCamelCase__ , UpperCamelCase__ , 1) _A : List[Any] = False _A : Tuple = False # only relevant if vae tiling is enabled _A : Tuple = self.config.sample_size _A : Any = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple)) else self.config.sample_size ) _A : Any = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) _A : int = 0.2_5 def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase=False) -> Any: if isinstance(UpperCamelCase__ , (Encoder, Decoder)): _A : int = value def _lowerCamelCase ( self , __lowerCamelCase = True) -> List[str]: _A : str = use_tiling def _lowerCamelCase ( self) -> List[Any]: self.enable_tiling(UpperCamelCase__) def _lowerCamelCase ( self) -> List[str]: _A : Any = True def _lowerCamelCase ( self) -> Optional[Any]: _A : Union[str, Any] = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def _lowerCamelCase ( self) -> Dict[str, AttentionProcessor]: _A : List[Any] = {} def fn_recursive_add_processors(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase): if hasattr(UpperCamelCase__ , "set_processor"): _A : List[Any] = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F"{name}.{sub_name}" , UpperCamelCase__ , UpperCamelCase__) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) return processors def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = len(self.attn_processors.keys()) if isinstance(UpperCamelCase__ , UpperCamelCase__) and len(UpperCamelCase__) != count: raise ValueError( F"A dict of processors was passed, but the number of processors {len(UpperCamelCase__)} does not match the" F" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase): if hasattr(UpperCamelCase__ , "set_processor"): if not isinstance(UpperCamelCase__ , UpperCamelCase__): module.set_processor(UpperCamelCase__) else: module.set_processor(processor.pop(F"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F"{name}.{sub_name}" , UpperCamelCase__ , UpperCamelCase__) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__) def _lowerCamelCase ( self) -> Any: self.set_attn_processor(AttnProcessor()) @apply_forward_hook def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = True) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase__ , return_dict=UpperCamelCase__) if self.use_slicing and x.shape[0] > 1: _A : Optional[Any] = [self.encoder(UpperCamelCase__) for x_slice in x.split(1)] _A : List[Any] = torch.cat(UpperCamelCase__) else: _A : str = self.encoder(UpperCamelCase__) _A : str = self.quant_conv(UpperCamelCase__) _A : Optional[int] = DiagonalGaussianDistribution(UpperCamelCase__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = True) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase__ , return_dict=UpperCamelCase__) _A : Dict = self.post_quant_conv(UpperCamelCase__) _A : int = self.decoder(UpperCamelCase__) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__) @apply_forward_hook def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = True) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: _A : Tuple = [self._decode(UpperCamelCase__).sample for z_slice in z.split(1)] _A : Optional[int] = torch.cat(UpperCamelCase__) else: _A : List[Any] = self._decode(UpperCamelCase__).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase__) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> int: _A : Tuple = min(a.shape[2] , b.shape[2] , UpperCamelCase__) for y in range(UpperCamelCase__): _A : Union[str, Any] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase) -> Dict: _A : Optional[Any] = min(a.shape[3] , b.shape[3] , UpperCamelCase__) for x in range(UpperCamelCase__): _A : Tuple = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = True) -> AutoencoderKLOutput: _A : Optional[Any] = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) _A : str = int(self.tile_latent_min_size * self.tile_overlap_factor) _A : List[str] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _A : Any = [] for i in range(0 , x.shape[2] , UpperCamelCase__): _A : Any = [] for j in range(0 , x.shape[3] , UpperCamelCase__): _A : Tuple = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _A : Optional[Any] = self.encoder(UpperCamelCase__) _A : int = self.quant_conv(UpperCamelCase__) row.append(UpperCamelCase__) rows.append(UpperCamelCase__) _A : str = [] for i, row in enumerate(UpperCamelCase__): _A : str = [] for j, tile in enumerate(UpperCamelCase__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A : int = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__) if j > 0: _A : Dict = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(UpperCamelCase__ , dim=3)) _A : List[str] = torch.cat(UpperCamelCase__ , dim=2) _A : Union[str, Any] = DiagonalGaussianDistribution(UpperCamelCase__) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase__) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = True) -> Union[DecoderOutput, torch.FloatTensor]: _A : Dict = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) _A : int = int(self.tile_sample_min_size * self.tile_overlap_factor) _A : Any = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _A : Dict = [] for i in range(0 , z.shape[2] , UpperCamelCase__): _A : List[Any] = [] for j in range(0 , z.shape[3] , UpperCamelCase__): _A : int = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _A : int = self.post_quant_conv(UpperCamelCase__) _A : str = self.decoder(UpperCamelCase__) row.append(UpperCamelCase__) rows.append(UpperCamelCase__) _A : str = [] for i, row in enumerate(UpperCamelCase__): _A : Optional[Any] = [] for j, tile in enumerate(UpperCamelCase__): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _A : List[Any] = self.blend_v(rows[i - 1][j] , UpperCamelCase__ , UpperCamelCase__) if j > 0: _A : Any = self.blend_h(row[j - 1] , UpperCamelCase__ , UpperCamelCase__) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(UpperCamelCase__ , dim=3)) _A : Any = torch.cat(UpperCamelCase__ , dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__) def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = False , __lowerCamelCase = True , __lowerCamelCase = None , ) -> Union[DecoderOutput, torch.FloatTensor]: _A : List[str] = sample _A : str = self.encode(UpperCamelCase__).latent_dist if sample_posterior: _A : List[str] = posterior.sample(generator=UpperCamelCase__) else: _A : Union[str, Any] = posterior.mode() _A : int = self.decode(UpperCamelCase__).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase__)
11
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[list[float]]: A_ = [] for data in source_data: for i, el in enumerate(UpperCAmelCase__ ): if len(UpperCAmelCase__ ) < i + 1: data_lists.append([] ) data_lists[i].append(float(UpperCAmelCase__ ) ) return data_lists def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[list[float]]: A_ = [] for dlist, weight in zip(UpperCAmelCase__, UpperCAmelCase__ ): A_ = min(UpperCAmelCase__ ) A_ = max(UpperCAmelCase__ ) A_ = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: A_ = F'''Invalid weight of {weight:f} provided''' raise ValueError(UpperCAmelCase__ ) score_lists.append(UpperCAmelCase__ ) return score_lists def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[float]: A_ = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(UpperCAmelCase__ ): A_ = final_scores[j] + ele return final_scores def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> list[list[float]]: A_ = get_data(UpperCAmelCase__ ) A_ = calculate_each_score(UpperCAmelCase__, UpperCAmelCase__ ) A_ = generate_final_scores(UpperCAmelCase__ ) # append scores to source data for i, ele in enumerate(UpperCAmelCase__ ): source_data[i].append(UpperCAmelCase__ ) return source_data
162
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_lilt''': ['''LILT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LiltConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''LILT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LiltForQuestionAnswering''', '''LiltForSequenceClassification''', '''LiltForTokenClassification''', '''LiltModel''', '''LiltPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_lilt import LILT_PRETRAINED_CONFIG_ARCHIVE_MAP, LiltConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lilt import ( LILT_PRETRAINED_MODEL_ARCHIVE_LIST, LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, LiltPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
358
'''simple docstring''' import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowerCamelCase_ ( unittest.TestCase ): def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = 0 @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained(_A ) self.assertIsNotNone(_A ) self.assertIsInstance(_A , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(_A ) , 0 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = AutoConfig.from_pretrained(_A ) self.assertIsInstance(_A , _A ) # Check that tokenizer_type ≠ model_type UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , config=_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' , use_fast=_A ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' , use_fast=_A ) self.assertIsInstance(_A , _A ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(_A , '''vocab.txt''' ) ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained(_A , tokenizer_type='''bert''' ) self.assertIsInstance(_A , _A ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(_A , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(_A , '''merges.txt''' ) ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , tokenizer_type='''gpt2''' ) self.assertIsInstance(_A , _A ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' with pytest.raises(_A ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: UpperCAmelCase__ : Optional[int] = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) if isinstance(_A , _A ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , _A ) else: self.assertEqual(tokenizer.do_lower_case , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : List[str] ): '''simple docstring''' for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( _A , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): UpperCAmelCase__ : Dict = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : List[Any] = TOKENIZER_MAPPING.values() UpperCAmelCase__ : Any = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(_A ) @require_tokenizers def lowercase_ ( self : Optional[int] ): '''simple docstring''' self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=_A ) , _A ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , _A ) @require_tokenizers def lowercase_ ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=_A ) UpperCAmelCase__ : Any = '''Hello, world. How are you?''' UpperCAmelCase__ : Dict = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=_A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.tokenize(_A ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(_A ) , _A ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 30_000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : int = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(_A , _A ) def lowercase_ ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : str = get_tokenizer_config('''bert-base-cased''' ) UpperCAmelCase__ : Optional[int] = config.pop('''_commit_hash''' , _A ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(_A , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. UpperCAmelCase__ : Tuple = get_tokenizer_config(_A ) self.assertDictEqual(_A , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = get_tokenizer_config(_A ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : Dict ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , slow_tokenizer_class=_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizer.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : Any ): '''simple docstring''' try: AutoConfig.register('''custom''' , _A ) # Can register in two steps AutoTokenizer.register(_A , slow_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( _A , slow_tokenizer_class=_A , fast_tokenizer_class=_A ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_A ): AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: UpperCAmelCase__ : Any = BertTokenizerFast.from_pretrained(_A ) bert_tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Optional[int] = CustomTokenizerFast.from_pretrained(_A ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A ) self.assertIsInstance(_A , _A ) UpperCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(_A , use_fast=_A ) self.assertIsInstance(_A , _A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Optional[int] ): '''simple docstring''' with self.assertRaises(_A ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_A ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_A ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained(_A , trust_remote_code=_A , use_fast=_A ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : int ): '''simple docstring''' class lowerCamelCase_ ( __a ): lowerCAmelCase__ = False class lowerCamelCase_ ( __a ): lowerCAmelCase__ = NewTokenizer lowerCAmelCase__ = False try: AutoConfig.register('''custom''' , _A ) AutoTokenizer.register(_A , slow_tokenizer_class=_A ) AutoTokenizer.register(_A , fast_tokenizer_class=_A ) # If remote code is not set, the default is to use local UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : List[Any] = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) UpperCAmelCase__ : str = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub UpperCAmelCase__ : Dict = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) UpperCAmelCase__ : Any = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=_A , use_fast=_A ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version UpperCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=_A , use_fast=_A ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Tuple ): '''simple docstring''' with self.assertRaisesRegex( _A , '''bert-base is not a local folder and is not a valid model identifier''' ): UpperCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ): '''simple docstring''' with self.assertRaisesRegex( _A , R'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained(_A , revision='''aaaaaa''' ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: UpperCAmelCase__ : Optional[int] = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
299
0
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def a__ ( a__ ): """simple docstring""" return "".join(sorted(a__ ) ) def a__ ( a__ ): """simple docstring""" return word_by_signature[signature(a__ )] UpperCAmelCase : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') UpperCAmelCase : Optional[Any] = sorted({word.strip().lower() for word in data.splitlines()}) UpperCAmelCase : Optional[Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": UpperCAmelCase : List[Any] = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
267
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPImageProcessor, CLIPProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() # fmt: off __SCREAMING_SNAKE_CASE = ["""l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __SCREAMING_SNAKE_CASE = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) __SCREAMING_SNAKE_CASE = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __SCREAMING_SNAKE_CASE = {"""unk_token""": """<unk>"""} __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(__SCREAMING_SNAKE_CASE ) ) __SCREAMING_SNAKE_CASE = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48145466, 0.4578275, 0.40821073], """image_std""": [0.26862954, 0.26130258, 0.27577711], } __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> str: """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple , **__SCREAMING_SNAKE_CASE : Any ) -> int: """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] , **__SCREAMING_SNAKE_CASE : Optional[int] ) -> List[str]: """simple docstring""" return CLIPImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Tuple ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ ( self : Optional[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __SCREAMING_SNAKE_CASE = [Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = self.get_rust_tokenizer() __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_slow.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor_fast.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __SCREAMING_SNAKE_CASE ) self.assertIsInstance(processor_fast.image_processor , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __SCREAMING_SNAKE_CASE = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __SCREAMING_SNAKE_CASE = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) __SCREAMING_SNAKE_CASE = CLIPProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) __SCREAMING_SNAKE_CASE = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __SCREAMING_SNAKE_CASE = processor.batch_decode(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.get_image_processor() __SCREAMING_SNAKE_CASE = self.get_tokenizer() __SCREAMING_SNAKE_CASE = CLIPProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = """lower newer""" __SCREAMING_SNAKE_CASE = self.prepare_image_inputs() __SCREAMING_SNAKE_CASE = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
267
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class A : """simple docstring""" def __init__( self : str,lowercase_ : int,lowercase_ : Optional[Any]=1_3,lowercase_ : Optional[int]=7,lowercase_ : str=True,lowercase_ : Optional[int]=True,lowercase_ : Dict=True,lowercase_ : str=True,lowercase_ : Union[str, Any]=9_9,lowercase_ : Union[str, Any]=3_2,lowercase_ : Optional[Any]=2,lowercase_ : int=4,lowercase_ : str=3_7,lowercase_ : int="gelu",lowercase_ : Dict=0.1,lowercase_ : Union[str, Any]=0.1,lowercase_ : Optional[int]=5_1_2,lowercase_ : Union[str, Any]=1_6,lowercase_ : Any=2,lowercase_ : Dict=0.02,lowercase_ : int=3,lowercase_ : Dict=4,lowercase_ : str=None,lowercase_ : Optional[int]=0,)-> Optional[int]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope A__ = projection_dim def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length],self.vocab_size ) A__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_token_type_ids: A__ = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size],self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length],self.num_labels ) A__ = ids_tensor([self.batch_size],self.num_choices ) A__ = BertConfig( vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,is_decoder=lowercase_,initializer_range=self.initializer_range,) A__ = DPRConfig(projection_dim=self.projection_dim,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def snake_case__ ( self : List[Any],lowercase_ : Optional[int],lowercase_ : Optional[Any],lowercase_ : str,lowercase_ : int,lowercase_ : Tuple,lowercase_ : List[Any],lowercase_ : Dict )-> List[str]: '''simple docstring''' A__ = TFDPRContextEncoder(config=lowercase_ ) A__ = model(lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self : Optional[int],lowercase_ : Optional[Any],lowercase_ : Tuple,lowercase_ : Any,lowercase_ : Any,lowercase_ : Union[str, Any],lowercase_ : Union[str, Any],lowercase_ : str )-> str: '''simple docstring''' A__ = TFDPRQuestionEncoder(config=lowercase_ ) A__ = model(lowercase_,attention_mask=lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_,token_type_ids=lowercase_ ) A__ = model(lowercase_ ) self.parent.assertEqual(result.pooler_output.shape,(self.batch_size, self.projection_dim or self.hidden_size) ) def snake_case__ ( self : int,lowercase_ : List[Any],lowercase_ : Optional[Any],lowercase_ : Any,lowercase_ : Any,lowercase_ : List[Any],lowercase_ : Union[str, Any],lowercase_ : Tuple )-> List[Any]: '''simple docstring''' A__ = TFDPRReader(config=lowercase_ ) A__ = model(lowercase_,attention_mask=lowercase_ ) self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape,(self.batch_size,) ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'input_ids': input_ids} return config, inputs_dict @require_tf class A ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) lowerCamelCase = {'feature-extraction': TFDPRQuestionEncoder} if is_tf_available() else {} lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False lowerCamelCase = False def snake_case__ ( self : str )-> List[Any]: '''simple docstring''' A__ = TFDPRModelTester(self ) A__ = ConfigTester(self,config_class=lowercase_,hidden_size=3_7 ) def snake_case__ ( self : Dict )-> Any: '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self : Tuple )-> Tuple: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowercase_ ) def snake_case__ ( self : Optional[int] )-> Union[str, Any]: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowercase_ ) def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowercase_ ) @slow def snake_case__ ( self : Any )-> Any: '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRContextEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRQuestionEncoder.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFDPRReader.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf class A ( unittest.TestCase ): """simple docstring""" @slow def snake_case__ ( self : int )-> Dict: '''simple docstring''' A__ = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) A__ = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] A__ = model(lowercase_ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. A__ = tf.constant( [ [ 0.03_236_253, 0.12_753_335, 0.16_818_509, 0.00_279_786, 0.3_896_933, 0.24_264_945, 0.2_178_971, -0.02_335_227, -0.08_481_959, -0.14_324_117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy(),expected_slice.numpy(),atol=1E-4 ) )
282
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class A ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : List[Any],lowercase_ : str )-> List[Any]: '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'],model_result['ss'] ): A__ = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(lowercase_ ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' A__ = 'sgugger/tiny-distilbert-classification' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,only_pretrain_model=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,torchscript=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu','Cant do half precision' ) def snake_case__ ( self : Any )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,fpaa=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Any )-> Optional[Any]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) # set architectures equal to `None` A__ = None A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : Union[str, Any] )-> int: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu','Can\'t do half precision' ) def snake_case__ ( self : List[Any] )-> Dict: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],fpaa=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Optional[int]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[Any] )-> Any: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def snake_case__ ( self : List[str] )-> List[str]: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : int )-> Union[str, Any]: '''simple docstring''' A__ = 'sshleifer/tinier_bart' A__ = AutoConfig.from_pretrained(lowercase_ ) A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_,configs=[config] ) A__ = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,save_to_csv=lowercase_,sequence_lengths=[8],batch_sizes=[1],inference_time_csv_file=os.path.join(lowercase_,'inf_time.csv' ),train_memory_csv_file=os.path.join(lowercase_,'train_mem.csv' ),inference_memory_csv_file=os.path.join(lowercase_,'inf_mem.csv' ),train_time_csv_file=os.path.join(lowercase_,'train_time.csv' ),env_info_csv_file=os.path.join(lowercase_,'env.csv' ),multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) benchmark.run() self.assertTrue(Path(os.path.join(lowercase_,'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(lowercase_,'env.csv' ) ).exists() ) def snake_case__ ( self : Tuple )-> str: '''simple docstring''' A__ = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(lowercase_ : Optional[Any] ): self.assertTrue(hasattr(lowercase_,'sequential' ) ) self.assertTrue(hasattr(lowercase_,'cumulative' ) ) self.assertTrue(hasattr(lowercase_,'current' ) ) self.assertTrue(hasattr(lowercase_,'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: A__ = PyTorchBenchmarkArguments( models=[MODEL_ID],training=lowercase_,inference=lowercase_,sequence_lengths=[8],batch_sizes=[1],log_filename=os.path.join(lowercase_,'log.txt' ),log_print=lowercase_,trace_memory_line_by_line=lowercase_,multi_process=lowercase_,) A__ = PyTorchBenchmark(lowercase_ ) A__ = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(lowercase_,'log.txt' ) ).exists() )
282
1
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def A__ ( UpperCAmelCase_ ): _UpperCamelCase : Dict = [] if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for v in tree.values(): shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(UpperCAmelCase_ ) ) elif isinstance(UpperCAmelCase_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[Any] = [] for d in reversed(UpperCAmelCase_ ): idx.append(flat_idx % d ) _UpperCamelCase : Optional[Any] = flat_idx // d return tuple(reversed(UpperCAmelCase_ ) ) @torch.jit.ignore def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None , UpperCAmelCase_ = None , ): def reduce_edge_list(UpperCAmelCase_ ) -> None: _UpperCamelCase : Optional[int] = True for i in range(len(UpperCAmelCase_ ) ): _UpperCamelCase : Optional[Any] = -1 * (i + 1) l[reversed_idx] &= tally _UpperCamelCase : Dict = l[reversed_idx] if start_edges is None: _UpperCamelCase : Optional[int] = [s == 0 for s in start] reduce_edge_list(UpperCAmelCase_ ) if end_edges is None: _UpperCamelCase : Any = [e == (d - 1) for e, d in zip(UpperCAmelCase_ , UpperCAmelCase_ )] reduce_edge_list(UpperCAmelCase_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(UpperCAmelCase_ ) == 0: return [()] elif len(UpperCAmelCase_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _UpperCamelCase : Optional[int] = [] _UpperCamelCase : Any = [] # Dimensions common to start and end can be selected directly for s, e in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if s == e: path_list.append(slice(UpperCAmelCase_ , s + 1 ) ) else: break _UpperCamelCase : Optional[int] = tuple(UpperCAmelCase_ ) _UpperCamelCase : Optional[Any] = len(UpperCAmelCase_ ) # start == end, and we're done if divergence_idx == len(UpperCAmelCase_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCamelCase : str = start[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCamelCase : Optional[Any] = end[divergence_idx] return tuple( path + (slice(UpperCAmelCase_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _UpperCamelCase : Optional[Any] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Optional[int] = t.shape[:no_batch_dims] _UpperCamelCase : Optional[Any] = list(_flat_idx_to_idx(UpperCAmelCase_ , UpperCAmelCase_ ) ) # _get_minimal_slice_set is inclusive _UpperCamelCase : Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , UpperCAmelCase_ ) ) # Get an ordered list of slices to perform _UpperCamelCase : Tuple = _get_minimal_slice_set( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , ) _UpperCamelCase : Any = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = False , UpperCAmelCase_ = None , UpperCAmelCase_ = False , ): if not (len(UpperCAmelCase_ ) > 0): raise ValueError('Must provide at least one input' ) _UpperCamelCase : Dict = [shape[:no_batch_dims] for shape in _fetch_dims(UpperCAmelCase_ )] _UpperCamelCase : List[Any] = tuple([max(UpperCAmelCase_ ) for s in zip(*UpperCAmelCase_ )] ) def _prep_inputs(UpperCAmelCase_ ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _UpperCamelCase : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _UpperCamelCase : int = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _UpperCamelCase : Optional[int] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _UpperCamelCase : int = tensor_tree_map(_prep_inputs , UpperCAmelCase_ ) _UpperCamelCase : Dict = None if _out is not None: _UpperCamelCase : Union[str, Any] = tensor_tree_map(lambda UpperCAmelCase_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _UpperCamelCase : Dict = 1 for d in orig_batch_dims: flat_batch_dim *= d _UpperCamelCase : List[str] = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(UpperCAmelCase_ ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _UpperCamelCase : List[Any] = 0 _UpperCamelCase : Any = prepped_outputs for _ in range(UpperCAmelCase_ ): # Chunk the input if not low_mem: _UpperCamelCase : List[Any] = _select_chunk else: _UpperCamelCase : Union[str, Any] = partial( _chunk_slice , flat_start=UpperCAmelCase_ , flat_end=min(UpperCAmelCase_ , i + chunk_size ) , no_batch_dims=len(UpperCAmelCase_ ) , ) _UpperCamelCase : Optional[int] = tensor_tree_map(UpperCAmelCase_ , UpperCAmelCase_ ) # Run the layer on the chunk _UpperCamelCase : List[str] = layer(**UpperCAmelCase_ ) # Allocate space for the output if out is None: _UpperCamelCase : List[Any] = tensor_tree_map(lambda UpperCAmelCase_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , UpperCAmelCase_ ) # Put the chunk in its pre-allocated space if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): def assign(UpperCAmelCase_ , UpperCAmelCase_ ) -> None: for k, v in da.items(): if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): assign(UpperCAmelCase_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _UpperCamelCase : List[Any] = da[k] assign(UpperCAmelCase_ , UpperCAmelCase_ ) elif isinstance(UpperCAmelCase_ , UpperCAmelCase_ ): for xa, xa in zip(UpperCAmelCase_ , UpperCAmelCase_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: _UpperCamelCase : Optional[Any] = xa elif isinstance(UpperCAmelCase_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _UpperCamelCase : List[Any] = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _UpperCamelCase : Any = tensor_tree_map(lambda UpperCAmelCase_ : t.view(orig_batch_dims + t.shape[1:] ) , UpperCAmelCase_ ) return out class lowercase__ : def __init__( self : Optional[Any] ,lowerCamelCase__ : int = 512 ,): '''simple docstring''' _UpperCamelCase : Optional[int] = max_chunk_size _UpperCamelCase : Any = None _UpperCamelCase : Optional[Any] = None def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Callable ,lowerCamelCase__ : tuple ,lowerCamelCase__ : int ): '''simple docstring''' logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _UpperCamelCase : Optional[Any] = [2**l for l in range(int(math.log(self.max_chunk_size ,2 ) ) + 1 )] _UpperCamelCase : Optional[Any] = [c for c in candidates if c > min_chunk_size] _UpperCamelCase : Tuple = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(lowerCamelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*A_ ,chunk_size=A_ ) return True except RuntimeError: return False _UpperCamelCase : Tuple = 0 _UpperCamelCase : Dict = len(A_ ) - 1 while i > min_viable_chunk_size_index: _UpperCamelCase : Union[str, Any] = test_chunk_size(candidates[i] ) if not viable: _UpperCamelCase : Tuple = (min_viable_chunk_size_index + i) // 2 else: _UpperCamelCase : List[Any] = i _UpperCamelCase : List[Any] = (i + len(A_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Iterable ,lowerCamelCase__ : Iterable ): '''simple docstring''' _UpperCamelCase : Any = True for aa, aa in zip(A_ ,A_ ): assert type(A_ ) == type(A_ ) if isinstance(A_ ,(list, tuple) ): consistent &= self._compare_arg_caches(A_ ,A_ ) elif isinstance(A_ ,A_ ): _UpperCamelCase : Dict = [v for _, v in sorted(aa.items() ,key=lambda lowerCamelCase__ : x[0] )] _UpperCamelCase : int = [v for _, v in sorted(aa.items() ,key=lambda lowerCamelCase__ : x[0] )] consistent &= self._compare_arg_caches(A_ ,A_ ) else: consistent &= aa == aa return consistent def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Callable ,lowerCamelCase__ : tuple ,lowerCamelCase__ : int ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = True _UpperCamelCase : Tuple = tree_map(lambda lowerCamelCase__ : a.shape if isinstance(A_ ,torch.Tensor ) else a ,A_ ,A_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(A_ ) _UpperCamelCase : int = self._compare_arg_caches(self.cached_arg_data ,A_ ) else: # Otherwise, we can reuse the precomputed value _UpperCamelCase : int = False if not consistent: _UpperCamelCase : int = self._determine_favorable_chunk_size( A_ ,A_ ,A_ ,) _UpperCamelCase : Optional[int] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
83
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase : str = { "configuration_nezha": ["NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP", "NezhaConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST", "NezhaForNextSentencePrediction", "NezhaForMaskedLM", "NezhaForPreTraining", "NezhaForMultipleChoice", "NezhaForQuestionAnswering", "NezhaForSequenceClassification", "NezhaForTokenClassification", "NezhaModel", "NezhaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys lowerCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
0
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __snake_case ( unittest.TestCase ): def __init__( self , snake_case__ , snake_case__=13 , snake_case__=30 , snake_case__=2 , snake_case__=3 , snake_case__=True , snake_case__=True , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=10 , snake_case__=0.02 , ) -> str: '''simple docstring''' UpperCAmelCase : Optional[int] =parent UpperCAmelCase : Optional[Any] =batch_size UpperCAmelCase : Any =image_size UpperCAmelCase : Any =patch_size UpperCAmelCase : List[Any] =num_channels UpperCAmelCase : Optional[int] =is_training UpperCAmelCase : str =use_labels UpperCAmelCase : str =hidden_size UpperCAmelCase : Union[str, Any] =num_hidden_layers UpperCAmelCase : Any =num_attention_heads UpperCAmelCase : Optional[int] =intermediate_size UpperCAmelCase : Dict =hidden_act UpperCAmelCase : Optional[int] =hidden_dropout_prob UpperCAmelCase : Union[str, Any] =attention_probs_dropout_prob UpperCAmelCase : Tuple =type_sequence_label_size UpperCAmelCase : Optional[Any] =initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Optional[int] =(image_size // patch_size) ** 2 UpperCAmelCase : Optional[int] =num_patches + 1 def UpperCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase : int =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase : int =ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Optional[Any] =FlaxViTModel(config=snake_case__ ) UpperCAmelCase : Tuple =model(snake_case__ ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) UpperCAmelCase : Any =(self.image_size, self.image_size) UpperCAmelCase : Union[str, Any] =(self.patch_size, self.patch_size) UpperCAmelCase : str =(image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self , snake_case__ , snake_case__ ) -> List[str]: '''simple docstring''' UpperCAmelCase : int =self.type_sequence_label_size UpperCAmelCase : int =FlaxViTForImageClassification(config=snake_case__ ) UpperCAmelCase : Optional[Any] =model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCAmelCase : int =1 UpperCAmelCase : str =FlaxViTForImageClassification(snake_case__ ) UpperCAmelCase : Optional[int] =floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCAmelCase : List[Any] =model(snake_case__ ) def UpperCAmelCase__ ( self ) -> Dict: '''simple docstring''' UpperCAmelCase : Optional[Any] =self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) : List[str] =config_and_inputs UpperCAmelCase : Tuple ={'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class __snake_case ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase : List[str] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> None: '''simple docstring''' UpperCAmelCase : Any =FlaxViTModelTester(self ) UpperCAmelCase : int =ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCAmelCase__ ( self ) -> int: '''simple docstring''' UpperCAmelCase : Dict =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def UpperCAmelCase__ ( self ) -> Optional[int]: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Tuple =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase : str =model_class(snake_case__ ) UpperCAmelCase : List[Any] =inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase : Optional[int] =[*signature.parameters.keys()] UpperCAmelCase : List[Any] =['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase , UpperCAmelCase : int =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase : List[Any] =self._prepare_for_class(snake_case__ , snake_case__ ) UpperCAmelCase : List[str] =model_class(snake_case__ ) @jax.jit def model_jitted(snake_case__ , **snake_case__ ): return model(pixel_values=snake_case__ , **snake_case__ ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase : Union[str, Any] =model_jitted(**snake_case__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase : Dict =model_jitted(**snake_case__ ).to_tuple() self.assertEqual(len(snake_case__ ) , len(snake_case__ ) ) for jitted_output, output in zip(snake_case__ , snake_case__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' for model_class_name in self.all_model_classes: UpperCAmelCase : Any =model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) UpperCAmelCase : Optional[Any] =model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(snake_case__ )
78
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __snake_case ( lowerCamelCase__ ): @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : List[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Tuple =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Optional[int] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : List[Any] =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[Any] =self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Optional[Any] ='''1''' UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Optional[Any] =''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' UpperCAmelCase : Any =''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' UpperCAmelCase : Union[str, Any] =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache UpperCAmelCase : Union[str, Any] ='''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(snake_case__ ) BertModel.from_pretrained(snake_case__ ) BertTokenizer.from_pretrained(snake_case__ ) pipeline(task='''fill-mask''' , model=snake_case__ ) # baseline - just load from_pretrained with normal network UpperCAmelCase : Any =[sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed UpperCAmelCase : List[str] =self.get_env() UpperCAmelCase : Any =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> List[Any]: '''simple docstring''' UpperCAmelCase : Union[str, Any] =''' from transformers import BertConfig, BertModel, BertTokenizer ''' UpperCAmelCase : int =''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' UpperCAmelCase : int =''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Any =self.get_env() UpperCAmelCase : List[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network UpperCAmelCase : Optional[Any] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def UpperCAmelCase__ ( self ) -> Any: '''simple docstring''' UpperCAmelCase : Dict =''' from transformers import pipeline ''' UpperCAmelCase : List[Any] =''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' UpperCAmelCase : Tuple =''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : int ='''1''' UpperCAmelCase : Optional[int] =[sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] UpperCAmelCase : List[str] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def UpperCAmelCase__ ( self ) -> List[str]: '''simple docstring''' UpperCAmelCase : Any =''' from transformers import AutoModel ''' UpperCAmelCase : Optional[Any] =''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network UpperCAmelCase : Dict =[sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed UpperCAmelCase : Optional[int] =self.get_env() UpperCAmelCase : Optional[Any] =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files UpperCAmelCase : Any ='''1''' UpperCAmelCase : Dict =subprocess.run(snake_case__ , env=snake_case__ , check=snake_case__ , capture_output=snake_case__ ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
78
1
import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed UpperCAmelCase : Union[str, Any] = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f"""{bindir}/../../examples/pytorch/translation"""): from run_translation import main # noqa set_seed(42) UpperCAmelCase : Union[str, Any] = "sshleifer/student_marian_en_ro_6_1" UpperCAmelCase : Union[str, Any] = "sshleifer/tiny-mbart" @require_torch class __lowercase ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" def __A ( self , A=False , A=None , A=True , A=True , A=True , A=True , ) -> Tuple: '''simple docstring''' lowerCamelCase = self.run_trainer( eval_steps=1 , max_len=12 , model_name=__UpperCAmelCase , num_train_epochs=1 , distributed=__UpperCAmelCase , extra_args_str=__UpperCAmelCase , predict_with_generate=__UpperCAmelCase , do_train=__UpperCAmelCase , do_eval=__UpperCAmelCase , do_predict=__UpperCAmelCase , ) lowerCamelCase = TrainerState.load_from_json(os.path.join(__UpperCAmelCase , """trainer_state.json""" ) ).log_history if not do_eval: return lowerCamelCase = [log for log in logs if """eval_loss""" in log.keys()] lowerCamelCase = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats lowerCamelCase = eval_metrics[-1] assert isinstance(last_step_stats["""eval_bleu"""] , __UpperCAmelCase ) assert not math.isnan(float(last_step_stats["""eval_loss"""] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def __A ( self ) -> Optional[int]: '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def __A ( self ) -> List[Any]: '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCAmelCase ) @require_torch_multi_gpu def __A ( self ) -> Tuple: '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCAmelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __A ( self ) -> Any: '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCAmelCase , extra_args_str="""--sharded_ddp simple""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __A ( self ) -> Dict: '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCAmelCase , extra_args_str="""--sharded_ddp simple --fp16""" ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __A ( self ) -> Dict: '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCAmelCase , extra_args_str="""--sharded_ddp zero_dp_2""" , predict_with_generate=__UpperCAmelCase ) @unittest.skip("""Requires an update of the env running those tests""" ) @require_torch_multi_gpu @require_fairscale def __A ( self ) -> List[Any]: '''simple docstring''' self.run_seqaseq_quick( distributed=__UpperCAmelCase , extra_args_str="""--sharded_ddp zero_dp_2 --fp16""" , predict_with_generate=__UpperCAmelCase ) @require_apex @require_torch_gpu def __A ( self ) -> Tuple: '''simple docstring''' self.run_seqaseq_quick(distributed=__UpperCAmelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=__UpperCAmelCase , extra_args_str="""--fp16 --fp16_backend=apex""" ) @parameterized.expand(["""base""", """low""", """high""", """mixed"""] ) @require_torch_multi_gpu def __A ( self , A ) -> Any: '''simple docstring''' lowerCamelCase = { # test with the default log_level - should be info and thus log info once """base""": {"""extra_args_str""": """""", """n_matches""": 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes """low""": {"""extra_args_str""": """--log_level debug --log_level_replica debug""", """n_matches""": 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica """high""": {"""extra_args_str""": """--log_level error --log_level_replica debug""", """n_matches""": 1}, # test with high log_level and log_level_replica - should be quiet on all processes """mixed""": {"""extra_args_str""": """--log_level error --log_level_replica error""", """n_matches""": 0}, } lowerCamelCase = experiments[experiment_id] lowerCamelCase = {"""distributed""": True, """predict_with_generate""": False, """do_eval""": False, """do_predict""": False} lowerCamelCase = """Running training""" with CaptureStderr() as cl: self.run_seqaseq_quick(**__UpperCAmelCase , extra_args_str=data["""extra_args_str"""] ) lowerCamelCase = len(re.findall(__UpperCAmelCase , cl.err ) ) self.assertEqual(__UpperCAmelCase , data["""n_matches"""] ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.run_trainer( eval_steps=2 , max_len=1_28 , model_name=__UpperCAmelCase , learning_rate=3e-4 , num_train_epochs=10 , distributed=__UpperCAmelCase , ) # Check metrics lowerCamelCase = TrainerState.load_from_json(os.path.join(__UpperCAmelCase , """trainer_state.json""" ) ).log_history lowerCamelCase = [log for log in logs if """eval_loss""" in log.keys()] lowerCamelCase = eval_metrics[0] lowerCamelCase = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats["""eval_bleu"""] , __UpperCAmelCase ) # test if do_predict saves generations and metrics lowerCamelCase = os.listdir(__UpperCAmelCase ) lowerCamelCase = {os.path.basename(__UpperCAmelCase ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def __A ( self ) -> Union[str, Any]: '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(A ) -> Tuple[int, float]: lowerCamelCase = """--skip_memory_metrics 0""" lowerCamelCase = self.run_trainer( max_len=1_28 , model_name=__UpperCAmelCase , learning_rate=3e-4 , num_train_epochs=1 , optim=__UpperCAmelCase , distributed=__UpperCAmelCase , extra_args_str=__UpperCAmelCase , do_eval=__UpperCAmelCase , do_predict=__UpperCAmelCase , n_gpus_to_use=1 , ) # Check metrics lowerCamelCase = TrainerState.load_from_json(Path(__UpperCAmelCase , """trainer_state.json""" ) ).log_history lowerCamelCase = int(logs[0]["""train_mem_gpu_peaked_delta"""] / 2**20 ) lowerCamelCase = int(logs[0]["""train_mem_gpu_alloc_delta"""] / 2**20 ) lowerCamelCase = logs[0]["""train_loss"""] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss lowerCamelCase = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) lowerCamelCase = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) lowerCamelCase = gpu_alloc_mem_orig - gpu_alloc_mem_bnb lowerCamelCase = gpu_peak_mem_orig + gpu_alloc_mem_orig lowerCamelCase = gpu_peak_mem_bnb + gpu_alloc_mem_bnb lowerCamelCase = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings lowerCamelCase = 1_20 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( __UpperCAmelCase , __UpperCAmelCase , """should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got""" F' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and' F' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB' , ) self.assertGreater( __UpperCAmelCase , __UpperCAmelCase , """should use ~150MB less total gpu memory with BNB, compared to without it for this model but got""" F' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and' F' gpu_total_mem_bnb={gpu_total_mem_bnb}MB' , ) self.assertEqual( __UpperCAmelCase , __UpperCAmelCase , F'loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}' ) def __A ( self , A , A , A , A = 3e-3 , A = "adafactor" , A = False , A = None , A = 0 , A = True , A = True , A = True , A = True , A = None , ) -> List[str]: '''simple docstring''' lowerCamelCase = self.test_file_dir / """../fixtures/tests_samples/wmt_en_ro""" lowerCamelCase = self.get_auto_remove_tmp_dir() lowerCamelCase = F'\n --model_name_or_path {model_name}\n --train_file {data_dir}/train.json\n --validation_file {data_dir}/val.json\n --test_file {data_dir}/test.json\n --output_dir {output_dir}\n --overwrite_output_dir\n --max_train_samples 8\n --max_source_length {max_len}\n --max_target_length {max_len}\n --do_train\n --num_train_epochs {str(__UpperCAmelCase )}\n --per_device_train_batch_size 4\n --learning_rate {learning_rate}\n --warmup_steps 8\n --logging_steps 0\n --logging_strategy no\n --save_steps {str(__UpperCAmelCase )}\n --group_by_length\n --label_smoothing_factor 0.1\n --target_lang ro_RO\n --source_lang en_XX\n '.split() lowerCamelCase = F'\n --do_eval\n --per_device_eval_batch_size 4\n --max_eval_samples 8\n --val_max_target_length {max_len}\n --evaluation_strategy steps\n --eval_steps {str(__UpperCAmelCase )}\n '.split() lowerCamelCase = """ --do_predict """.split() lowerCamelCase = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'--optim {optim}'.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: lowerCamelCase = get_gpu_count() lowerCamelCase = get_torch_dist_unique_port() lowerCamelCase = F'\n -m torch.distributed.run\n --nproc_per_node={n_gpus_to_use}\n --master_port={master_port}\n {self.examples_dir_str}/pytorch/translation/run_translation.py\n '.split() lowerCamelCase = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__UpperCAmelCase , env=self.get_env() ) else: lowerCamelCase = ["""run_translation.py"""] + args with patch.object(__UpperCAmelCase , """argv""" , __UpperCAmelCase ): main() return output_dir
252
'''simple docstring''' import argparse import os.path as osp import re import torch from safetensors.torch import load_file, save_file # =================# # UNet Conversion # # =================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''time_embed.0.weight''', '''time_embedding.linear_1.weight'''), ('''time_embed.0.bias''', '''time_embedding.linear_1.bias'''), ('''time_embed.2.weight''', '''time_embedding.linear_2.weight'''), ('''time_embed.2.bias''', '''time_embedding.linear_2.bias'''), ('''input_blocks.0.0.weight''', '''conv_in.weight'''), ('''input_blocks.0.0.bias''', '''conv_in.bias'''), ('''out.0.weight''', '''conv_norm_out.weight'''), ('''out.0.bias''', '''conv_norm_out.bias'''), ('''out.2.weight''', '''conv_out.weight'''), ('''out.2.bias''', '''conv_out.bias'''), ] _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''in_layers.0''', '''norm1'''), ('''in_layers.2''', '''conv1'''), ('''out_layers.0''', '''norm2'''), ('''out_layers.3''', '''conv2'''), ('''emb_layers.1''', '''time_emb_proj'''), ('''skip_connection''', '''conv_shortcut'''), ] _lowerCAmelCase = [] # hardcoded number of downblocks and resnets/attentions... # would need smarter logic for other networks. for i in range(4): # loop over downblocks/upblocks for j in range(2): # loop over resnets/attentions for downblocks _lowerCAmelCase = F"""down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.0.""" unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix)) if i < 3: # no attention layers in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""input_blocks.{3*i + j + 1}.1.""" unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix)) for j in range(3): # loop over resnets/attentions for upblocks _lowerCAmelCase = F"""up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.0.""" unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix)) if i > 0: # no attention layers in up_blocks.0 _lowerCAmelCase = F"""up_blocks.{i}.attentions.{j}.""" _lowerCAmelCase = F"""output_blocks.{3*i + j}.1.""" unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix)) if i < 3: # no downsample in down_blocks.3 _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.conv.""" _lowerCAmelCase = F"""input_blocks.{3*(i+1)}.0.op.""" unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix)) # no upsample in up_blocks.3 _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""output_blocks.{3*i + 2}.{1 if i == 0 else 2}.""" unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix)) _lowerCAmelCase = '''mid_block.attentions.0.''' _lowerCAmelCase = '''middle_block.1.''' unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix)) for j in range(2): _lowerCAmelCase = F"""mid_block.resnets.{j}.""" _lowerCAmelCase = F"""middle_block.{2*j}.""" unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix)) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = {k: k for k in unet_state_dict.keys()} for sd_name, hf_name in unet_conversion_map: lowerCAmelCase__ : Optional[int] = sd_name for k, v in mapping.items(): if "resnets" in k: for sd_part, hf_part in unet_conversion_map_resnet: lowerCAmelCase__ : Any = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v for k, v in mapping.items(): for sd_part, hf_part in unet_conversion_map_layer: lowerCAmelCase__ : List[Any] = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v lowerCAmelCase__ : Tuple = {v: unet_state_dict[k] for k, v in mapping.items()} return new_state_dict # ================# # VAE Conversion # # ================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''nin_shortcut''', '''conv_shortcut'''), ('''norm_out''', '''conv_norm_out'''), ('''mid.attn_1.''', '''mid_block.attentions.0.'''), ] for i in range(4): # down_blocks have two resnets for j in range(2): _lowerCAmelCase = F"""encoder.down_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""encoder.down.{i}.block.{j}.""" vae_conversion_map.append((sd_down_prefix, hf_down_prefix)) if i < 3: _lowerCAmelCase = F"""down_blocks.{i}.downsamplers.0.""" _lowerCAmelCase = F"""down.{i}.downsample.""" vae_conversion_map.append((sd_downsample_prefix, hf_downsample_prefix)) _lowerCAmelCase = F"""up_blocks.{i}.upsamplers.0.""" _lowerCAmelCase = F"""up.{3-i}.upsample.""" vae_conversion_map.append((sd_upsample_prefix, hf_upsample_prefix)) # up_blocks have three resnets # also, up blocks in hf are numbered in reverse from sd for j in range(3): _lowerCAmelCase = F"""decoder.up_blocks.{i}.resnets.{j}.""" _lowerCAmelCase = F"""decoder.up.{3-i}.block.{j}.""" vae_conversion_map.append((sd_up_prefix, hf_up_prefix)) # this part accounts for mid blocks in both the encoder and the decoder for i in range(2): _lowerCAmelCase = F"""mid_block.resnets.{i}.""" _lowerCAmelCase = F"""mid.block_{i+1}.""" vae_conversion_map.append((sd_mid_res_prefix, hf_mid_res_prefix)) _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''norm.''', '''group_norm.'''), ('''q.''', '''query.'''), ('''k.''', '''key.'''), ('''v.''', '''value.'''), ('''proj_out.''', '''proj_attn.'''), ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return w.reshape(*w.shape , 1 , 1 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = {k: k for k in vae_state_dict.keys()} for k, v in mapping.items(): for sd_part, hf_part in vae_conversion_map: lowerCAmelCase__ : str = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Optional[Any] = v for k, v in mapping.items(): if "attentions" in k: for sd_part, hf_part in vae_conversion_map_attn: lowerCAmelCase__ : Dict = v.replace(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : List[Any] = v lowerCAmelCase__ : Union[str, Any] = {v: vae_state_dict[k] for k, v in mapping.items()} lowerCAmelCase__ : Tuple = ["""q""", """k""", """v""", """proj_out"""] for k, v in new_state_dict.items(): for weight_name in weights_to_convert: if f"""mid.attn_1.{weight_name}.weight""" in k: print(f"""Reshaping {k} for SD format""" ) lowerCAmelCase__ : Optional[int] = reshape_weight_for_sd(UpperCamelCase ) return new_state_dict # =========================# # Text Encoder Conversion # # =========================# _lowerCAmelCase = [ # (stable-diffusion, HF Diffusers) ('''resblocks.''', '''text_model.encoder.layers.'''), ('''ln_1''', '''layer_norm1'''), ('''ln_2''', '''layer_norm2'''), ('''.c_fc.''', '''.fc1.'''), ('''.c_proj.''', '''.fc2.'''), ('''.attn''', '''.self_attn'''), ('''ln_final.''', '''transformer.text_model.final_layer_norm.'''), ('''token_embedding.weight''', '''transformer.text_model.embeddings.token_embedding.weight'''), ('''positional_embedding''', '''transformer.text_model.embeddings.position_embedding.weight'''), ] _lowerCAmelCase = {re.escape(x[1]): x[0] for x in textenc_conversion_lst} _lowerCAmelCase = re.compile('''|'''.join(protected.keys())) # Ordering is from https://github.com/pytorch/pytorch/blob/master/test/cpp/api/modules.cpp _lowerCAmelCase = {'''q''': 0, '''k''': 1, '''v''': 2} def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = {} lowerCAmelCase__ : int = {} lowerCAmelCase__ : List[Any] = {} for k, v in text_enc_dict.items(): if ( k.endswith(""".self_attn.q_proj.weight""" ) or k.endswith(""".self_attn.k_proj.weight""" ) or k.endswith(""".self_attn.v_proj.weight""" ) ): lowerCAmelCase__ : Optional[int] = k[: -len(""".q_proj.weight""" )] lowerCAmelCase__ : Tuple = k[-len("""q_proj.weight""" )] if k_pre not in capture_qkv_weight: lowerCAmelCase__ : List[Any] = [None, None, None] lowerCAmelCase__ : Dict = v continue if ( k.endswith(""".self_attn.q_proj.bias""" ) or k.endswith(""".self_attn.k_proj.bias""" ) or k.endswith(""".self_attn.v_proj.bias""" ) ): lowerCAmelCase__ : str = k[: -len(""".q_proj.bias""" )] lowerCAmelCase__ : List[str] = k[-len("""q_proj.bias""" )] if k_pre not in capture_qkv_bias: lowerCAmelCase__ : Union[str, Any] = [None, None, None] lowerCAmelCase__ : Any = v continue lowerCAmelCase__ : Dict = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Union[str, Any] = v for k_pre, tensors in capture_qkv_weight.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : Any = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : Tuple = torch.cat(UpperCamelCase ) for k_pre, tensors in capture_qkv_bias.items(): if None in tensors: raise Exception("""CORRUPTED MODEL: one of the q-k-v values for the text encoder was missing""" ) lowerCAmelCase__ : str = textenc_pattern.sub(lambda UpperCamelCase : protected[re.escape(m.group(0 ) )] , UpperCamelCase ) lowerCAmelCase__ : List[Any] = torch.cat(UpperCamelCase ) return new_state_dict def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" return text_enc_dict if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--model_path''', default=None, type=str, required=True, help='''Path to the model to convert.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--half''', action='''store_true''', help='''Save weights in half precision.''') parser.add_argument( '''--use_safetensors''', action='''store_true''', help='''Save weights use safetensors, default is ckpt.''' ) _lowerCAmelCase = parser.parse_args() assert args.model_path is not None, "Must provide a model path!" assert args.checkpoint_path is not None, "Must provide a checkpoint path!" # Path for safetensors _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.safetensors''') _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''model.safetensors''') # Load models from safetensors if it exists, if it doesn't pytorch if osp.exists(unet_path): _lowerCAmelCase = load_file(unet_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''unet''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(unet_path, map_location='''cpu''') if osp.exists(vae_path): _lowerCAmelCase = load_file(vae_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''vae''', '''diffusion_pytorch_model.bin''') _lowerCAmelCase = torch.load(vae_path, map_location='''cpu''') if osp.exists(text_enc_path): _lowerCAmelCase = load_file(text_enc_path, device='''cpu''') else: _lowerCAmelCase = osp.join(args.model_path, '''text_encoder''', '''pytorch_model.bin''') _lowerCAmelCase = torch.load(text_enc_path, map_location='''cpu''') # Convert the UNet model _lowerCAmelCase = convert_unet_state_dict(unet_state_dict) _lowerCAmelCase = {'''model.diffusion_model.''' + k: v for k, v in unet_state_dict.items()} # Convert the VAE model _lowerCAmelCase = convert_vae_state_dict(vae_state_dict) _lowerCAmelCase = {'''first_stage_model.''' + k: v for k, v in vae_state_dict.items()} # Easiest way to identify v2.0 model seems to be that the text encoder (OpenCLIP) is deeper _lowerCAmelCase = '''text_model.encoder.layers.22.layer_norm2.bias''' in text_enc_dict if is_vaa_model: # Need to add the tag 'transformer' in advance so we can knock it out from the final layer-norm _lowerCAmelCase = {'''transformer.''' + k: v for k, v in text_enc_dict.items()} _lowerCAmelCase = convert_text_enc_state_dict_vaa(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.model.''' + k: v for k, v in text_enc_dict.items()} else: _lowerCAmelCase = convert_text_enc_state_dict(text_enc_dict) _lowerCAmelCase = {'''cond_stage_model.transformer.''' + k: v for k, v in text_enc_dict.items()} # Put together new checkpoint _lowerCAmelCase = {**unet_state_dict, **vae_state_dict, **text_enc_dict} if args.half: _lowerCAmelCase = {k: v.half() for k, v in state_dict.items()} if args.use_safetensors: save_file(state_dict, args.checkpoint_path) else: _lowerCAmelCase = {'''state_dict''': state_dict} torch.save(state_dict, args.checkpoint_path)
37
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case = { """configuration_mobilenet_v2""": [ """MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileNetV2Config""", """MobileNetV2OnnxConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = ["""MobileNetV2FeatureExtractor"""] snake_case = ["""MobileNetV2ImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileNetV2ForImageClassification""", """MobileNetV2ForSemanticSegmentation""", """MobileNetV2Model""", """MobileNetV2PreTrainedModel""", """load_tf_weights_in_mobilenet_v2""", ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
319
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## snake_case = 16 snake_case = 32 def lowerCamelCase__ ( lowercase , lowercase = 16 ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = AutoTokenizer.from_pretrained("bert-base-cased" ) SCREAMING_SNAKE_CASE : Union[str, Any] = load_dataset("glue" , "mrpc" ) def tokenize_function(lowercase ): # max_length=None => use the model max length (it's actually the default) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=lowercase , max_length=lowercase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): SCREAMING_SNAKE_CASE : List[Any] = datasets.map( lowercase , batched=lowercase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library SCREAMING_SNAKE_CASE : Tuple = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(lowercase ): # On TPU it's best to pad everything to the same length or training will be very slow. SCREAMING_SNAKE_CASE : Tuple = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": SCREAMING_SNAKE_CASE : str = 16 elif accelerator.mixed_precision != "no": SCREAMING_SNAKE_CASE : Optional[Any] = 8 else: SCREAMING_SNAKE_CASE : Union[str, Any] = None return tokenizer.pad( lowercase , padding="longest" , max_length=lowercase , pad_to_multiple_of=lowercase , return_tensors="pt" , ) # Instantiate dataloaders. SCREAMING_SNAKE_CASE : Optional[int] = DataLoader( tokenized_datasets["train"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) SCREAMING_SNAKE_CASE : Dict = DataLoader( tokenized_datasets["validation"] , shuffle=lowercase , collate_fn=lowercase , batch_size=lowercase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders snake_case = mocked_dataloaders # noqa: F811 def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" if os.environ.get("TESTING_MOCKED_DATALOADERS" , lowercase ) == "1": SCREAMING_SNAKE_CASE : int = 2 # New Code # SCREAMING_SNAKE_CASE : Union[str, Any] = int(args.gradient_accumulation_steps ) # Initialize accelerator SCREAMING_SNAKE_CASE : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=lowercase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs SCREAMING_SNAKE_CASE : Any = config["lr"] SCREAMING_SNAKE_CASE : Optional[Any] = int(config["num_epochs"] ) SCREAMING_SNAKE_CASE : List[Any] = int(config["seed"] ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(config["batch_size"] ) SCREAMING_SNAKE_CASE : Optional[Any] = evaluate.load("glue" , "mrpc" ) set_seed(lowercase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = get_dataloaders(lowercase , lowercase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) SCREAMING_SNAKE_CASE : List[Any] = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=lowercase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). SCREAMING_SNAKE_CASE : Any = model.to(accelerator.device ) # Instantiate optimizer SCREAMING_SNAKE_CASE : Any = AdamW(params=model.parameters() , lr=lowercase ) # Instantiate scheduler SCREAMING_SNAKE_CASE : Union[str, Any] = get_linear_schedule_with_warmup( optimizer=lowercase , num_warmup_steps=100 , num_training_steps=(len(lowercase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = accelerator.prepare( lowercase , lowercase , lowercase , lowercase , lowercase ) # Now we train the model for epoch in range(lowercase ): model.train() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(lowercase ): SCREAMING_SNAKE_CASE : Any = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = output.loss accelerator.backward(lowercase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowercase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): SCREAMING_SNAKE_CASE : List[Any] = model(**lowercase ) SCREAMING_SNAKE_CASE : Optional[Any] = outputs.logits.argmax(dim=-1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=lowercase , references=lowercase , ) SCREAMING_SNAKE_CASE : Tuple = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , lowercase ) def lowerCamelCase__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=lowercase , default=lowercase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) SCREAMING_SNAKE_CASE : List[str] = parser.parse_args() SCREAMING_SNAKE_CASE : Dict = {"lr": 2E-5, "num_epochs": 3, "seed": 42, "batch_size": 16} training_function(lowercase , lowercase ) if __name__ == "__main__": main()
319
1
"""simple docstring""" import json import os import tempfile import unittest import unittest.mock as mock from pathlib import Path from requests.exceptions import HTTPError from transformers.utils import ( CONFIG_NAME, FLAX_WEIGHTS_NAME, TF2_WEIGHTS_NAME, TRANSFORMERS_CACHE, WEIGHTS_NAME, cached_file, get_file_from_repo, has_file, ) __A = "hf-internal-testing/tiny-random-bert" __A = os.path.join(TRANSFORMERS_CACHE, "models--hf-internal-testing--tiny-random-bert") __A = "9b8c223d42b2188cb49d29af482996f9d0f3e5a6" class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = cached_file(_A , _A ) # Should have downloaded the file in here self.assertTrue(os.path.isdir(_A ) ) # Cache should contain at least those three subfolders: for subfolder in ["blobs", "refs", "snapshots"]: self.assertTrue(os.path.isdir(os.path.join(_A , _A ) ) ) with open(os.path.join(_A , "refs" , "main" ) ) as f: snake_case : Union[str, Any] = f.read() self.assertEqual(_A , os.path.join(_A , "snapshots" , _A , _A ) ) self.assertTrue(os.path.isfile(_A ) ) # File is cached at the same place the second time. snake_case : Union[str, Any] = cached_file(_A , _A ) self.assertEqual(_A , _A ) # Using a specific revision to test the full commit hash. snake_case : List[str] = cached_file(_A , _A , revision="9b8c223" ) self.assertEqual(_A , os.path.join(_A , "snapshots" , _A , _A ) ) def lowerCamelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex(_A , "is not a valid model identifier" ): snake_case : Optional[Any] = cached_file("tiny-random-bert" , _A ) with self.assertRaisesRegex(_A , "is not a valid git identifier" ): snake_case : Optional[Any] = cached_file(_A , _A , revision="aaaa" ) with self.assertRaisesRegex(_A , "does not appear to have a file named" ): snake_case : List[str] = cached_file(_A , "conf" ) def lowerCamelCase_ ( self ): """simple docstring""" with self.assertRaisesRegex(_A , "does not appear to have a file named" ): snake_case : Optional[int] = cached_file(_A , "conf" ) with open(os.path.join(_A , "refs" , "main" ) ) as f: snake_case : str = f.read() self.assertTrue(os.path.isfile(os.path.join(_A , ".no_exist" , _A , "conf" ) ) ) snake_case : int = cached_file(_A , "conf" , _raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) snake_case : int = cached_file(_A , "conf" , local_files_only=_A , _raise_exceptions_for_missing_entries=_A ) self.assertIsNone(_A ) snake_case : Any = mock.Mock() snake_case : str = 500 snake_case : Tuple = {} snake_case : List[Any] = HTTPError snake_case : Dict = {} # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=_A ) as mock_head: snake_case : Any = cached_file(_A , "conf" , _raise_exceptions_for_connection_errors=_A ) self.assertIsNone(_A ) # This check we did call the fake head request mock_head.assert_called() def lowerCamelCase_ ( self ): """simple docstring""" self.assertTrue(has_file("hf-internal-testing/tiny-bert-pt-only" , _A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , _A ) ) self.assertFalse(has_file("hf-internal-testing/tiny-bert-pt-only" , _A ) ) def lowerCamelCase_ ( self ): """simple docstring""" self.assertIsNone(get_file_from_repo("bert-base-cased" , "ahah.txt" ) ) # The function raises if the repository does not exist. with self.assertRaisesRegex(_A , "is not a valid model identifier" ): get_file_from_repo("bert-base-case" , _A ) # The function raises if the revision does not exist. with self.assertRaisesRegex(_A , "is not a valid git identifier" ): get_file_from_repo("bert-base-cased" , _A , revision="ahaha" ) snake_case : Tuple = get_file_from_repo("bert-base-cased" , _A ) # The name is the cached name which is not very easy to test, so instead we load the content. snake_case : List[Any] = json.loads(open(_A , "r" ).read() ) self.assertEqual(config["hidden_size"] , 768 ) def lowerCamelCase_ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: snake_case : Dict = Path(_A ) / "a.txt" filename.touch() self.assertEqual(get_file_from_repo(_A , "a.txt" ) , str(_A ) ) self.assertIsNone(get_file_from_repo(_A , "b.txt" ) )
148
import math import random def A__ ( __lowerCamelCase, __lowerCamelCase = False ): if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value __UpperCAmelCase = 0.02 def A__ ( __lowerCamelCase, __lowerCamelCase ): SCREAMING_SNAKE_CASE_ = float(2 * (random.randint(1, 1_00 )) - 1 ) for _ in range(__lowerCamelCase ): # Forward propagation SCREAMING_SNAKE_CASE_ = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? SCREAMING_SNAKE_CASE_ = (expected / 1_00) - layer_a # Error delta SCREAMING_SNAKE_CASE_ = layer_1_error * sigmoid_function(__lowerCamelCase, __lowerCamelCase ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 1_00 if __name__ == "__main__": import doctest doctest.testmod() __UpperCAmelCase = int(input("Expected value: ")) __UpperCAmelCase = int(input("Number of propagations: ")) print(forward_propagation(expected, number_propagations))
299
0
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch _a : Any = logging.get_logger(__name__) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Any = ["pixel_values"] def __init__( self , a__ = True , a__ = None , a__ = PILImageResampling.BILINEAR , a__ = True , a__ = None , a__ = True , a__ = 1 / 255 , a__ = True , a__ = None , a__ = None , **a__ , ): super().__init__(**a__ ) _lowerCAmelCase : Any = size if size is not None else {"""shortest_edge""": 256} _lowerCAmelCase : List[str] = get_size_dict(a__ , default_to_square=a__ ) _lowerCAmelCase : Optional[int] = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _lowerCAmelCase : Tuple = get_size_dict(a__ , param_name="""crop_size""" ) _lowerCAmelCase : List[str] = do_resize _lowerCAmelCase : int = size _lowerCAmelCase : Any = resample _lowerCAmelCase : List[Any] = do_center_crop _lowerCAmelCase : int = crop_size _lowerCAmelCase : Optional[int] = do_rescale _lowerCAmelCase : List[Any] = rescale_factor _lowerCAmelCase : List[Any] = do_normalize _lowerCAmelCase : Optional[int] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def __A ( self , a__ , a__ , a__ = PILImageResampling.BICUBIC , a__ = None , **a__ , ): _lowerCAmelCase : Optional[int] = get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" not in size: raise ValueError(F"The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}" ) _lowerCAmelCase : List[str] = get_resize_output_image_size(a__ , size=size["""shortest_edge"""] , default_to_square=a__ ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ , ): _lowerCAmelCase : Tuple = get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}" ) return center_crop(a__ , size=(size["""height"""], size["""width"""]) , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ = None , **a__ ): return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ , a__ , a__ = None , **a__ , ): return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def __A ( self , a__ , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = ChannelDimension.FIRST , **a__ , ): _lowerCAmelCase : Any = do_resize if do_resize is not None else self.do_resize _lowerCAmelCase : Optional[Any] = size if size is not None else self.size _lowerCAmelCase : Optional[int] = get_size_dict(a__ , default_to_square=a__ ) _lowerCAmelCase : Dict = resample if resample is not None else self.resample _lowerCAmelCase : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop _lowerCAmelCase : Tuple = crop_size if crop_size is not None else self.crop_size _lowerCAmelCase : List[Any] = get_size_dict(a__ , param_name="""crop_size""" ) _lowerCAmelCase : str = do_rescale if do_rescale is not None else self.do_rescale _lowerCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCAmelCase : Dict = do_normalize if do_normalize is not None else self.do_normalize _lowerCAmelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean _lowerCAmelCase : Union[str, Any] = image_std if image_std is not None else self.image_std _lowerCAmelCase : Optional[int] = make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _lowerCAmelCase : List[str] = [to_numpy_array(a__ ) for image in images] if do_resize: _lowerCAmelCase : Dict = [self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_center_crop: _lowerCAmelCase : Optional[Any] = [self.center_crop(image=a__ , size=a__ ) for image in images] if do_rescale: _lowerCAmelCase : str = [self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: _lowerCAmelCase : int = [self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] _lowerCAmelCase : Dict = [to_channel_dimension_format(a__ , a__ ) for image in images] _lowerCAmelCase : Union[str, Any] = {"""pixel_values""": images} return BatchFeature(data=a__ , tensor_type=a__ ) def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Optional[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a__ ) != len(a__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(a__ ): _lowerCAmelCase : str = target_sizes.numpy() _lowerCAmelCase : str = [] for idx in range(len(a__ ) ): _lowerCAmelCase : Any = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=a__ ) _lowerCAmelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a__ ) else: _lowerCAmelCase : Optional[Any] = logits.argmax(dim=1 ) _lowerCAmelCase : Optional[Any] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
126
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: _a : Tuple = None _a : str = logging.get_logger(__name__) _a : str = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _a : Tuple = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json' ), }, } _a : int = { 'facebook/nllb-large-en-ro': 1_024, 'facebook/nllb-200-distilled-600M': 1_024, } # fmt: off _a : Union[str, Any] = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = VOCAB_FILES_NAMES _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : str = ["input_ids", "attention_mask"] _UpperCamelCase : Tuple = NllbTokenizer _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self , a__=None , a__=None , a__="<s>" , a__="</s>" , a__="</s>" , a__="<s>" , a__="<unk>" , a__="<pad>" , a__="<mask>" , a__=None , a__=None , a__=None , a__=False , **a__ , ): # Mask token behave like a normal word, i.e. include the space before it _lowerCAmelCase : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token _lowerCAmelCase : int = legacy_behaviour super().__init__( vocab_file=a__ , tokenizer_file=a__ , bos_token=a__ , eos_token=a__ , sep_token=a__ , cls_token=a__ , unk_token=a__ , pad_token=a__ , mask_token=a__ , src_lang=a__ , tgt_lang=a__ , additional_special_tokens=a__ , legacy_behaviour=a__ , **a__ , ) _lowerCAmelCase : List[Any] = vocab_file _lowerCAmelCase : List[str] = False if not self.vocab_file else True _lowerCAmelCase : List[str] = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens} ) _lowerCAmelCase : Tuple = { lang_code: self.convert_tokens_to_ids(a__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _lowerCAmelCase : List[str] = src_lang if src_lang is not None else """eng_Latn""" _lowerCAmelCase : int = self.convert_tokens_to_ids(self._src_lang ) _lowerCAmelCase : str = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __A ( self ): return self._src_lang @src_lang.setter def __A ( self , a__ ): _lowerCAmelCase : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __A ( self , a__ , a__ = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __A ( self , a__ , a__ = None ): _lowerCAmelCase : Tuple = [self.sep_token_id] _lowerCAmelCase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __A ( self , a__ , a__ , a__ , a__ , **a__ ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) _lowerCAmelCase : str = src_lang _lowerCAmelCase : List[Any] = self(a__ , add_special_tokens=a__ , return_tensors=a__ , **a__ ) _lowerCAmelCase : Dict = self.convert_tokens_to_ids(a__ ) _lowerCAmelCase : Dict = tgt_lang_id return inputs def __A ( self , a__ , a__ = "eng_Latn" , a__ = None , a__ = "fra_Latn" , **a__ , ): _lowerCAmelCase : List[Any] = src_lang _lowerCAmelCase : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(a__ , a__ , **a__ ) def __A ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __A ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __A ( self , a__ ): _lowerCAmelCase : Optional[Any] = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : Union[str, Any] = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : str = [self.cur_lang_code] _lowerCAmelCase : List[Any] = [self.eos_token_id] _lowerCAmelCase : List[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : Any = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ ): _lowerCAmelCase : Any = self.convert_tokens_to_ids(a__ ) if self.legacy_behaviour: _lowerCAmelCase : Optional[int] = [] _lowerCAmelCase : str = [self.eos_token_id, self.cur_lang_code] else: _lowerCAmelCase : int = [self.cur_lang_code] _lowerCAmelCase : Optional[int] = [self.eos_token_id] _lowerCAmelCase : Union[str, Any] = self.convert_ids_to_tokens(self.prefix_tokens ) _lowerCAmelCase : int = self.convert_ids_to_tokens(self.suffix_tokens ) _lowerCAmelCase : str = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def __A ( self , a__ , a__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(a__ ): logger.error(F"Vocabulary path ({save_directory}) should be a directory." ) return _lowerCAmelCase : Optional[Any] = os.path.join( a__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a__ ): copyfile(self.vocab_file , a__ ) return (out_vocab_file,)
126
1
def a_ ( __lowercase : str , __lowercase : str ) -> bool: _snake_case = len(__lowercase ) + 1 _snake_case = len(__lowercase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. _snake_case = [[0 for i in range(__lowercase )] for j in range(__lowercase )] # since string of zero length match pattern of zero length _snake_case = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , __lowercase ): _snake_case = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , __lowercase ): _snake_case = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , __lowercase ): for j in range(1 , __lowercase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": _snake_case = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: _snake_case = 1 elif pattern[j - 2] in (input_string[i - 1], "."): _snake_case = dp[i - 1][j] else: _snake_case = 0 else: _snake_case = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _lowerCamelCase : Any = '''aab''' _lowerCamelCase : Dict = '''c*a*b''' # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(F'{input_string} matches the given pattern {pattern}') else: print(F'{input_string} does not match with the given pattern {pattern}')
282
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : int ): '''simple docstring''' _snake_case = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) _snake_case = AutoTokenizer.from_pretrained('xlm-roberta-base' ) _snake_case = 'The dog is cute and lives in the garden house' _snake_case = jnp.array([tokenizer.encode(lowercase )] ) _snake_case = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim _snake_case = jnp.array( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) _snake_case = model(lowercase )['last_hidden_state'] self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowercase , atol=1E-3 ) )
282
1
"""simple docstring""" from typing import Dict from transformers import EvalPrediction, HfArgumentParser, TrainingArguments, is_torch_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, get_torch_dist_unique_port, require_torch_multi_gpu, require_torch_neuroncore, ) from transformers.training_args import ParallelMode from transformers.utils import logging A_ = logging.get_logger(__name__) if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset from transformers import Trainer class lowercase( __a ): '''simple docstring''' def __init__( self: Any, a_: int = 101 ): '''simple docstring''' _snake_case : int = length def __len__( self: Any ): '''simple docstring''' return self.length def __getitem__( self: List[str], a_: List[Any] ): '''simple docstring''' return i class lowercase: '''simple docstring''' def __call__( self: int, a_: Dict ): '''simple docstring''' return {"input_ids": torch.tensor(a__ ), "labels": torch.tensor(a__ )} class lowercase( nn.Module ): '''simple docstring''' def __init__( self: Optional[int] ): '''simple docstring''' super().__init__() # Add some (unused) params otherwise DDP will complain. _snake_case : str = nn.Linear(120, 80 ) def UpperCamelCase_ ( self: Optional[Any], a_: int, a_: List[Any]=None ): '''simple docstring''' if labels is not None: return torch.tensor(0.0, device=input_ids.device ), input_ids else: return input_ids class lowercase( __a ): '''simple docstring''' @require_torch_neuroncore def UpperCamelCase_ ( self: List[Any] ): '''simple docstring''' _snake_case : int = f"--nproc_per_node=2\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _snake_case : List[str] = self.get_auto_remove_tmp_dir() _snake_case : Dict = f"--output_dir {output_dir}".split() _snake_case : Tuple = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a__, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call class lowercase( __a ): '''simple docstring''' @require_torch_multi_gpu def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Union[str, Any] = f"--nproc_per_node={torch.cuda.device_count()}\n --master_port={get_torch_dist_unique_port()}\n {self.test_file_dir}/test_trainer_distributed.py\n ".split() _snake_case : str = self.get_auto_remove_tmp_dir() _snake_case : str = f"--output_dir {output_dir}".split() _snake_case : Any = ["""torchrun"""] + distributed_args + args execute_subprocess_async(a__, env=self.get_env() ) # successful return here == success - any errors would have caused an error in the sub-call if __name__ == "__main__": # The script below is meant to be run under torch.distributed, on a machine with multiple GPUs: # # PYTHONPATH="src" python -m torch.distributed.run --nproc_per_node 2 --output_dir output_dir ./tests/test_trainer_distributed.py A_ = HfArgumentParser((TrainingArguments,)) A_ = parser.parse_args_into_dataclasses()[0] logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}, ''' F'''distributed training: {training_args.parallel_mode != ParallelMode.NOT_DISTRIBUTED}''' ) # Essentially, what we want to verify in the distributed case is that we get all samples back, # in the right order. (this is crucial for prediction for instance) for dataset_length in [1_01, 40, 7]: A_ = DummyDataset(dataset_length) def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : Tuple = list(range(len(snake_case__ ) ) ) _snake_case : Optional[int] = p.predictions.tolist() == sequential and p.label_ids.tolist() == sequential if not success and training_args.local_rank == 0: logger.warning( """Predictions and/or labels do not match expected results:\n - predictions: """ F"{p.predictions.tolist()}\n - labels: {p.label_ids.tolist()}\n - expected: {sequential}" ) return {"success": success} A_ = Trainer( model=DummyModel(), args=training_args, data_collator=DummyDataCollator(), eval_dataset=dataset, compute_metrics=compute_metrics, ) A_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ = 2 A_ = trainer.evaluate() logger.info(metrics) if metrics["eval_success"] is not True: logger.error(metrics) exit(1) A_ = trainer.predict(dataset) logger.info(p.metrics) if p.metrics["test_success"] is not True: logger.error(p.metrics) exit(1) A_ = None
360
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : int = 1_00_00_00 ): """simple docstring""" _snake_case : Dict = [i - 1 for i in range(limit + 1 )] for i in range(2 , limit + 1 ): if phi[i] == i - 1: for j in range(2 * i , limit + 1 , snake_case__ ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
132
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = """▁""" snake_case_ = {"""vocab_file""": """sentencepiece.bpe.model"""} snake_case_ = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } snake_case_ = { """xlm-roberta-base""": 512, """xlm-roberta-large""": 512, """xlm-roberta-large-finetuned-conll02-dutch""": 512, """xlm-roberta-large-finetuned-conll02-spanish""": 512, """xlm-roberta-large-finetuned-conll03-english""": 512, """xlm-roberta-large-finetuned-conll03-german""": 512, } class A_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["""input_ids""", """attention_mask"""] def __init__( self :Optional[Any] , lowercase_ :Optional[int] , lowercase_ :Optional[int]="<s>" , lowercase_ :Optional[Any]="</s>" , lowercase_ :Optional[int]="</s>" , lowercase_ :List[str]="<s>" , lowercase_ :Tuple="<unk>" , lowercase_ :Union[str, Any]="<pad>" , lowercase_ :int="<mask>" , lowercase_ :Optional[Dict[str, Any]] = None , **lowercase_ :Optional[int] , ) -> None: # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) + self.fairseq_offset UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self :Optional[Any] ) -> List[str]: UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None UpperCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self :str , lowercase_ :Dict ) -> Dict: UpperCAmelCase = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase__ ( self :Any , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] UpperCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self :int , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None , lowercase_ :bool = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCAmelCase__ ( self :Optional[Any] , lowercase_ :List[int] , lowercase_ :Optional[List[int]] = None ) -> List[int]: UpperCAmelCase = [self.sep_token_id] UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase__ ( self :Optional[int] ) -> Optional[int]: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCAmelCase__ ( self :Optional[Any] ) -> Optional[Any]: UpperCAmelCase = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase__ ( self :int , lowercase_ :str ) -> List[str]: return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCAmelCase__ ( self :Tuple , lowercase_ :Optional[Any] ) -> int: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase__ ( self :Dict , lowercase_ :Any ) -> Dict: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase__ ( self :List[str] , lowercase_ :Union[str, Any] ) -> Optional[Any]: UpperCAmelCase = ''.join(lowercase_ ).replace(lowercase_ , ' ' ).strip() return out_string def UpperCAmelCase__ ( self :Dict , lowercase_ :str , lowercase_ :Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(lowercase_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowercase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , 'wb' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
78
"""simple docstring""" import colorsys from PIL import Image # type: ignore def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ ): UpperCAmelCase = x UpperCAmelCase = y for step in range(lowercase_ ): # noqa: B007 UpperCAmelCase = a * a - b * b + x UpperCAmelCase = 2 * a * b + y UpperCAmelCase = a_new # divergence happens for all complex number with an absolute value # greater than 4 if a * a + b * b > 4: break return step / (max_step - 1) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return (255, 255, 255) def _lowerCAmelCase ( lowercase_ ): if distance == 1: return (0, 0, 0) else: return tuple(round(i * 255 ) for i in colorsys.hsv_to_rgb(lowercase_ , 1 , 1 ) ) def _lowerCAmelCase ( lowercase_ = 800 , lowercase_ = 600 , lowercase_ = -0.6 , lowercase_ = 0 , lowercase_ = 3.2 , lowercase_ = 50 , lowercase_ = True , ): UpperCAmelCase = Image.new('RGB' , (image_width, image_height) ) UpperCAmelCase = img.load() # loop through the image-coordinates for image_x in range(lowercase_ ): for image_y in range(lowercase_ ): # determine the figure-coordinates based on the image-coordinates UpperCAmelCase = figure_width / image_width * image_height UpperCAmelCase = figure_center_x + (image_x / image_width - 0.5) * figure_width UpperCAmelCase = figure_center_y + (image_y / image_height - 0.5) * figure_height UpperCAmelCase = get_distance(lowercase_ , lowercase_ , lowercase_ ) # color the corresponding pixel based on the selected coloring-function if use_distance_color_coding: UpperCAmelCase = get_color_coded_rgb(lowercase_ ) else: UpperCAmelCase = get_black_and_white_rgb(lowercase_ ) return img if __name__ == "__main__": import doctest doctest.testmod() # colored version, full figure snake_case_ = get_image() # uncomment for colored version, different section, zoomed in # img = get_image(figure_center_x = -0.6, figure_center_y = -0.4, # figure_width = 0.8) # uncomment for black and white version, full figure # img = get_image(use_distance_color_coding = False) # uncomment to save the image # img.save("mandelbrot.png") img.show()
78
1
'''simple docstring''' import os import re import warnings from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer if TYPE_CHECKING: from ...tokenization_utils_base import TextInput from ...utils import logging _a : Tuple = logging.get_logger(__name__) _a : Optional[Any] = {"""vocab_file""": """spiece.model"""} _a : int = { """vocab_file""": { """t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""", """t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""", """t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""", """t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""", """t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""", } } # TODO(PVP) - this should be removed in Transformers v5 _a : Optional[int] = { """t5-small""": 5_1_2, """t5-base""": 5_1_2, """t5-large""": 5_1_2, """t5-3b""": 5_1_2, """t5-11b""": 5_1_2, } _a : Dict = """▁""" class _UpperCAmelCase ( lowerCAmelCase_ ): a : int =VOCAB_FILES_NAMES a : int =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE=1_00,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE=True,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: __lowerCAmelCase = [f'<extra_id_{i}>' for i in range(__SCREAMING_SNAKE_CASE )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens __lowerCAmelCase = len(set(filter(lambda __SCREAMING_SNAKE_CASE : bool("""extra_id""" in str(__SCREAMING_SNAKE_CASE ) ),__SCREAMING_SNAKE_CASE ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) if legacy: logger.warning_once( f'You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to' """ read the related pull request available at https://github.com/huggingface/transformers/pull/24565""" ) __lowerCAmelCase = legacy __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,extra_ids=__SCREAMING_SNAKE_CASE,additional_special_tokens=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,legacy=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = vocab_file __lowerCAmelCase = extra_ids __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__SCREAMING_SNAKE_CASE ) @staticmethod def lowerCamelCase__ ( __SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes: __lowerCAmelCase = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""",__SCREAMING_SNAKE_CASE,) return max_model_length @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.sp_model.get_piece_size() + self._extra_ids def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self ): '''simple docstring''' return list( set(filter(lambda __SCREAMING_SNAKE_CASE : bool(re.search(R"""<extra_id_\d+>""",__SCREAMING_SNAKE_CASE ) ) is not None,self.additional_special_tokens ) ) ) def lowerCamelCase__ ( self ): '''simple docstring''' return [self._convert_token_to_id(__SCREAMING_SNAKE_CASE ) for token in self.get_sentinel_tokens()] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if len(__SCREAMING_SNAKE_CASE ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f'This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated' """ eos tokens being added.""" ) return token_ids else: return token_ids + [self.eos_token_id] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = self._add_eos_if_not_present(__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return token_ids_a else: __lowerCAmelCase = self._add_eos_if_not_present(__SCREAMING_SNAKE_CASE ) return token_ids_a + token_ids_a def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not self.legacy: __lowerCAmelCase = SPIECE_UNDERLINE + text.replace(__SCREAMING_SNAKE_CASE,""" """ ) return super().tokenize(__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if not self.legacy: __lowerCAmelCase = text.startswith(__SCREAMING_SNAKE_CASE ) if is_first: __lowerCAmelCase = text[1:] __lowerCAmelCase = self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) if not self.legacy and not is_first and not text.startswith(""" """ ) and tokens[0].startswith(__SCREAMING_SNAKE_CASE ): __lowerCAmelCase = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:] return tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token.startswith("""<extra_id_""" ): __lowerCAmelCase = re.match(R"""<extra_id_(\d+)>""",__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = int(match.group(1 ) ) return self.vocab_size - num - 1 return self.sp_model.piece_to_id(__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index < self.sp_model.get_piece_size(): __lowerCAmelCase = self.sp_model.IdToPiece(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = f'<extra_id_{self.vocab_size - 1 - index}>' return token def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = [] __lowerCAmelCase = """""" __lowerCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) + token __lowerCAmelCase = True __lowerCAmelCase = [] else: current_sub_tokens.append(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = False out_string += self.sp_model.decode(__SCREAMING_SNAKE_CASE ) return out_string.strip() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
46
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : Optional[int] =KandinskyVaaImgaImgPipeline a : List[Any] =["""image_embeds""", """negative_image_embeds""", """image"""] a : Union[str, Any] =[ """image_embeds""", """negative_image_embeds""", """image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Optional[Any] =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = { """num_train_timesteps""": 10_00, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __lowerCAmelCase = DDIMScheduler(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.619_9778, 0.6398_4406, 0.4614_5785, 0.6294_4984, 0.562_2215, 0.4730_6132, 0.4744_1456, 0.460_7606, 0.4871_9263] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_img2img_frog.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = """A red cartoon frog, 4k""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,strength=0.2,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
1
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def SCREAMING_SNAKE_CASE( __lowercase="" ) -> str: A: Tuple = tempfile.mkdtemp() return os.path.join(__lowercase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : Tuple ) -> str: '''simple docstring''' A: Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5 A: Tuple = AgentAudio(SCREAMING_SNAKE_CASE_ ) A: Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor A , A: Any = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , torch.tensor(SCREAMING_SNAKE_CASE_ ) , atol=1E-4 ) ) def _snake_case ( self : Optional[int] ) -> Tuple: '''simple docstring''' A: Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5 A: Dict = get_new_path(suffix='''.wav''' ) sf.write(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1_60_00 ) A: Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : int ) -> Optional[int]: '''simple docstring''' A: int = torch.randint(0 , 2_56 , (64, 64, 3) ) A: Optional[int] = AgentImage(SCREAMING_SNAKE_CASE_ ) A: Dict = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : int ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' A: Dict = Image.open(SCREAMING_SNAKE_CASE_ ) A: int = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def _snake_case ( self : Optional[Any] ) -> str: '''simple docstring''' A: List[str] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' A: int = Image.open(SCREAMING_SNAKE_CASE_ ) A: Dict = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self : str ) -> Optional[Any]: '''simple docstring''' A: Union[str, Any] = '''Hey!''' A: Optional[Any] = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_ , agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
319
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
1
import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : str = DownBlockaD # noqa F405 A : Optional[int] = 'down' def __lowerCamelCase ( self ): lowercase : Union[str, Any] = [-0.0232, -0.9869, 0.8054, -0.0637, -0.1688, -1.4264, 0.4470, -1.3394, 0.0904] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Optional[Any] = ResnetDownsampleBlockaD # noqa F405 A : List[Any] = 'down' def __lowerCamelCase ( self ): lowercase : Optional[int] = [0.0710, 0.2410, -0.7320, -1.0757, -1.1343, 0.3540, -0.0133, -0.2576, 0.0948] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : List[Any] = AttnDownBlockaD # noqa F405 A : Tuple = 'down' def __lowerCamelCase ( self ): lowercase : int = [0.0636, 0.8964, -0.6234, -1.0131, 0.0844, 0.4935, 0.3437, 0.0911, -0.2957] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Any = CrossAttnDownBlockaD # noqa F405 A : Optional[Any] = 'down' def __lowerCamelCase ( self ): lowercase : Dict = super().prepare_init_args_and_inputs_for_common() lowercase : Dict = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : Dict = [0.2238, -0.7396, -0.2255, -0.3829, 0.1925, 1.1665, 0.0603, -0.7295, 0.1983] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : str = SimpleCrossAttnDownBlockaD # noqa F405 A : Union[str, Any] = 'down' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : int = super().prepare_init_args_and_inputs_for_common() lowercase : List[str] = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __lowerCamelCase ( self ): lowercase : Tuple = [0.7921, -0.0992, -0.1962, -0.7695, -0.4242, 0.7804, 0.4737, 0.2765, 0.3338] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Tuple = SkipDownBlockaD # noqa F405 A : List[str] = 'down' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : List[str] = [-0.0845, -0.2087, -0.2465, 0.0971, 0.1900, -0.0484, 0.2664, 0.4179, 0.5069] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Dict = AttnSkipDownBlockaD # noqa F405 A : Optional[Any] = 'down' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_skip_sample=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Dict = [0.5539, 0.1609, 0.4924, 0.0537, -0.1995, 0.4050, 0.0979, -0.2721, -0.0642] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Any = DownEncoderBlockaD # noqa F405 A : Optional[int] = 'down' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : str = { '''in_channels''': 32, '''out_channels''': 32, } lowercase : Optional[int] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : Union[str, Any] = [1.1102, 0.5302, 0.4872, -0.0023, -0.8042, 0.0483, -0.3489, -0.5632, 0.7626] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Any = AttnDownEncoderBlockaD # noqa F405 A : List[Any] = 'down' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Optional[int] = { '''in_channels''': 32, '''out_channels''': 32, } lowercase : Dict = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : Dict = [0.8966, -0.1486, 0.8568, 0.8141, -0.9046, -0.1342, -0.0972, -0.7417, 0.1538] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Optional[Any] = UNetMidBlockaD # noqa F405 A : List[Any] = 'mid' def __lowerCamelCase ( self ): lowercase : Dict = { '''in_channels''': 32, '''temb_channels''': 128, } lowercase : Optional[int] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : Dict = [-0.1062, 1.7248, 0.3494, 1.4569, -0.0910, -1.2421, -0.9984, 0.6736, 1.0028] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : List[str] = UNetMidBlockaDCrossAttn # noqa F405 A : List[str] = 'mid' def __lowerCamelCase ( self ): lowercase : str = super().prepare_init_args_and_inputs_for_common() lowercase : Optional[int] = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : List[str] = [0.0187, 2.4220, 0.4484, 1.1203, -0.6121, -1.5122, -0.8270, 0.7851, 1.8335] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : List[Any] = UNetMidBlockaDSimpleCrossAttn # noqa F405 A : Optional[Any] = 'mid' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_encoder_hidden_states=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : int = super().prepare_init_args_and_inputs_for_common() lowercase : List[str] = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : Tuple = [0.7143, 1.9974, 0.5448, 1.3977, 0.1282, -1.1237, -1.4238, 0.5530, 0.8880] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Any = UpBlockaD # noqa F405 A : Dict = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Dict = [-0.2041, -0.4165, -0.3022, 0.0041, -0.6628, -0.7053, 0.1928, -0.0325, 0.0523] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : str = ResnetUpsampleBlockaD # noqa F405 A : List[str] = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Any = [0.2287, 0.3549, -0.1346, 0.4797, -0.1715, -0.9649, 0.7305, -0.5864, -0.6244] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Optional[Any] = CrossAttnUpBlockaD # noqa F405 A : str = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : List[str] = super().prepare_init_args_and_inputs_for_common() lowercase : Dict = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : Tuple = [-0.1403, -0.3515, -0.0420, -0.1425, 0.3167, 0.5094, -0.2181, 0.5931, 0.5582] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 A : Dict = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ , include_encoder_hidden_states=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : str = super().prepare_init_args_and_inputs_for_common() lowercase : Any = 32 return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : List[Any] = [0.2645, 0.1480, 0.0909, 0.8044, -0.9758, -0.9083, 0.0994, -1.1453, -0.7402] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Union[str, Any] = AttnUpBlockaD # noqa F405 A : Optional[int] = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def __lowerCamelCase ( self ): lowercase : Tuple = [0.0979, 0.1326, 0.0021, 0.0659, 0.2249, 0.0059, 0.1132, 0.5952, 0.1033] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : List[Any] = SkipUpBlockaD # noqa F405 A : Optional[int] = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = [-0.0893, -0.1234, -0.1506, -0.0332, 0.0123, -0.0211, 0.0566, 0.0143, 0.0362] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : List[Any] = AttnSkipUpBlockaD # noqa F405 A : str = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_res_hidden_states_tuple=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : List[Any] = [0.0361, 0.0617, 0.2787, -0.0350, 0.0342, 0.3421, -0.0843, 0.0913, 0.3015] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Optional[Any] = UpDecoderBlockaD # noqa F405 A : Dict = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : str = {'''in_channels''': 32, '''out_channels''': 32} lowercase : Union[str, Any] = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : str = [0.4404, 0.1998, -0.9886, -0.3320, -0.3128, -0.7034, -0.6955, -0.2338, -0.3137] super().test_output(SCREAMING_SNAKE_CASE__ ) class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : Optional[int] = AttnUpDecoderBlockaD # noqa F405 A : str = 'up' @property def __lowerCamelCase ( self ): return super().get_dummy_input(include_temb=SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Any = {'''in_channels''': 32, '''out_channels''': 32} lowercase : str = self.dummy_input return init_dict, inputs_dict def __lowerCamelCase ( self ): lowercase : Tuple = [0.6738, 0.4491, 0.1055, 1.0710, 0.7316, 0.3339, 0.3352, 0.1023, 0.3568] super().test_output(SCREAMING_SNAKE_CASE__ )
365
import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Union[str, Any]: """simple docstring""" lowercase : Any = os.path.abspath(_UpperCamelCase ) logger.info(f"""Converting TensorFlow checkpoint from {tf_path}""" ) # Load weights from TF model lowercase : Optional[int] = tf.train.list_variables(_UpperCamelCase ) lowercase : Optional[int] = [] lowercase : Optional[int] = [] lowercase : Optional[Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowercase : int = full_name.split('''/''' ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f"""Skipping non-model layer {full_name}""" ) continue if "optimizer" in full_name: logger.info(f"""Skipping optimization layer {full_name}""" ) continue if name[0] == "model": # ignore initial 'model' lowercase : List[Any] = name[1:] # figure out how many levels deep the name is lowercase : Optional[int] = 0 for _name in name: if _name.startswith('''layer_with_weights''' ): depth += 1 else: break layer_depth.append(_UpperCamelCase ) # read data lowercase : Any = tf.train.load_variable(_UpperCamelCase, _UpperCamelCase ) names.append('''/'''.join(_UpperCamelCase ) ) arrays.append(_UpperCamelCase ) logger.info(f"""Read a total of {len(_UpperCamelCase ):,} layers""" ) # Sanity check if len(set(_UpperCamelCase ) ) != 1: raise ValueError(f"""Found layer names with different depths (layer depth {list(set(_UpperCamelCase ) )})""" ) lowercase : List[str] = list(set(_UpperCamelCase ) )[0] if layer_depth != 1: raise ValueError( '''The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP''' ''' heads.''' ) # convert layers logger.info('''Converting weights...''' ) for full_name, array in zip(_UpperCamelCase, _UpperCamelCase ): lowercase : Optional[int] = full_name.split('''/''' ) lowercase : Tuple = model lowercase : Any = [] for i, m_name in enumerate(_UpperCamelCase ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith('''layer_with_weights''' ): lowercase : Tuple = int(m_name.split('''-''' )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(['''embeddings''', '''LayerNorm'''] ) lowercase : int = getattr(_UpperCamelCase, '''embeddings''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''LayerNorm''' ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(['''encoder''', '''layer''', str(layer_num - 4 )] ) lowercase : int = getattr(_UpperCamelCase, '''encoder''' ) lowercase : Tuple = getattr(_UpperCamelCase, '''layer''' ) lowercase : List[Any] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(['''pooler''', '''dense'''] ) lowercase : str = getattr(_UpperCamelCase, '''pooler''' ) lowercase : str = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "embeddings": trace.append('''embeddings''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''embeddings''' ) if layer_num == 0: trace.append('''word_embeddings''' ) lowercase : str = getattr(_UpperCamelCase, '''word_embeddings''' ) elif layer_num == 1: trace.append('''position_embeddings''' ) lowercase : List[Any] = getattr(_UpperCamelCase, '''position_embeddings''' ) elif layer_num == 2: trace.append('''token_type_embeddings''' ) lowercase : int = getattr(_UpperCamelCase, '''token_type_embeddings''' ) else: raise ValueError(f"""Unknown embedding layer with name {full_name}""" ) trace.append('''weight''' ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''weight''' ) elif m_name == "_attention_layer": # self-attention layer trace.extend(['''attention''', '''self'''] ) lowercase : Tuple = getattr(_UpperCamelCase, '''attention''' ) lowercase : str = getattr(_UpperCamelCase, '''self''' ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(['''attention''', '''output''', '''LayerNorm'''] ) lowercase : Dict = getattr(_UpperCamelCase, '''attention''' ) lowercase : Any = getattr(_UpperCamelCase, '''output''' ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''LayerNorm''' ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(['''attention''', '''output''', '''dense'''] ) lowercase : Union[str, Any] = getattr(_UpperCamelCase, '''attention''' ) lowercase : str = getattr(_UpperCamelCase, '''output''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_dense": # output dense trace.extend(['''output''', '''dense'''] ) lowercase : List[str] = getattr(_UpperCamelCase, '''output''' ) lowercase : str = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_layer_norm": # output dense trace.extend(['''output''', '''LayerNorm'''] ) lowercase : Dict = getattr(_UpperCamelCase, '''output''' ) lowercase : int = getattr(_UpperCamelCase, '''LayerNorm''' ) elif m_name == "_key_dense": # attention key trace.append('''key''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''key''' ) elif m_name == "_query_dense": # attention query trace.append('''query''' ) lowercase : Dict = getattr(_UpperCamelCase, '''query''' ) elif m_name == "_value_dense": # attention value trace.append('''value''' ) lowercase : Optional[Any] = getattr(_UpperCamelCase, '''value''' ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(['''intermediate''', '''dense'''] ) lowercase : List[str] = getattr(_UpperCamelCase, '''intermediate''' ) lowercase : Optional[int] = getattr(_UpperCamelCase, '''dense''' ) elif m_name == "_output_layer_norm": # output layer norm trace.append('''output''' ) lowercase : Tuple = getattr(_UpperCamelCase, '''output''' ) # weights & biases elif m_name in ["bias", "beta"]: trace.append('''bias''' ) lowercase : str = getattr(_UpperCamelCase, '''bias''' ) elif m_name in ["kernel", "gamma"]: trace.append('''weight''' ) lowercase : Dict = getattr(_UpperCamelCase, '''weight''' ) else: logger.warning(f"""Ignored {m_name}""" ) # for certain layers reshape is necessary lowercase : Any = '''.'''.join(_UpperCamelCase ) if re.match(R'''(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)''', _UpperCamelCase ) or re.match( R'''(\S+)\.attention\.output\.dense\.weight''', _UpperCamelCase ): lowercase : Any = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowercase : List[str] = array.transpose() if pointer.shape == array.shape: lowercase : Optional[Any] = torch.from_numpy(_UpperCamelCase ) else: raise ValueError( f"""Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:""" f""" {array.shape}""" ) logger.info(f"""Successfully set variable {full_name} to PyTorch layer {trace}""" ) return model def __lowercase ( _UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) ->Tuple: """simple docstring""" logger.info(f"""Loading model based on config from {config_path}...""" ) lowercase : List[Any] = BertConfig.from_json_file(_UpperCamelCase ) lowercase : Dict = BertModel(_UpperCamelCase ) # Load weights from checkpoint logger.info(f"""Loading weights from checkpoint {tf_checkpoint_path}...""" ) load_tfa_weights_in_bert(_UpperCamelCase, _UpperCamelCase, _UpperCamelCase ) # Save pytorch-model logger.info(f"""Saving PyTorch model to {pytorch_dump_path}...""" ) torch.save(model.state_dict(), _UpperCamelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() parser.add_argument( '''--tf_checkpoint_path''', type=str, required=True, help='''Path to the TensorFlow 2.x checkpoint path.''' ) parser.add_argument( '''--bert_config_file''', type=str, required=True, help='''The config json file corresponding to the BERT model. This specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', type=str, required=True, help='''Path to the output PyTorch model (must include filename).''', ) __a = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
173
0
"""simple docstring""" import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") lowerCAmelCase = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") lowerCAmelCase = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class A_ ( A__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ = CamembertTokenizer SCREAMING_SNAKE_CASE_ = CamembertTokenizerFast SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True def UpperCAmelCase__ ( self :List[Any] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase__ : str =CamembertTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self :Union[str, Any] ): """simple docstring""" lowerCamelCase__ : List[Any] ='<pad>' lowerCamelCase__ : Union[str, Any] =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Dict ): """simple docstring""" lowerCamelCase__ : Union[str, Any] =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCamelCase_ ) , 1_004 ) def UpperCAmelCase__ ( self :Any ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_005 ) def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : List[Any] =CamembertTokenizer(lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) lowerCamelCase__ : int =CamembertTokenizerFast.from_pretrained(self.tmpdirname ) lowerCamelCase__ : List[str] ='I was born in 92000, and this is falsé.' lowerCamelCase__ : Optional[Any] =tokenizer.encode(lowerCamelCase_ ) lowerCamelCase__ : int =rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) lowerCamelCase__ : Optional[Any] =tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] =rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase__ ( self :Optional[int] ): """simple docstring""" if not self.test_rust_tokenizer: return lowerCamelCase__ : str =self.get_tokenizer() lowerCamelCase__ : List[str] =self.get_rust_tokenizer() lowerCamelCase__ : Any ='I was born in 92000, and this is falsé.' lowerCamelCase__ : Union[str, Any] =tokenizer.tokenize(lowerCamelCase_ ) lowerCamelCase__ : Dict =rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCamelCase__ : Any =rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCamelCase__ : Optional[int] =self.get_rust_tokenizer() lowerCamelCase__ : Any =tokenizer.encode(lowerCamelCase_ ) lowerCamelCase__ : Dict =rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def UpperCAmelCase__ ( self :List[str] ): """simple docstring""" lowerCamelCase__ : Tuple ={'input_ids': [[5, 54, 7_196, 297, 30, 23, 776, 18, 11, 3_215, 3_705, 8_252, 22, 3_164, 1_181, 2_116, 29, 16, 813, 25, 791, 3_314, 20, 3_446, 38, 27_575, 120, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 468, 17, 11, 9_088, 20, 1_517, 8, 22_804, 18_818, 10, 38, 629, 607, 607, 142, 19, 7_196, 867, 56, 10_326, 24, 2_267, 20, 416, 5_072, 15_612, 233, 734, 7, 2_399, 27, 16, 3_015, 1_649, 7, 24, 20, 4_338, 2_399, 27, 13, 3_400, 14, 13, 6_189, 8, 930, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. lowerCamelCase__ : List[Any] =[ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=lowerCamelCase_ , )
126
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowerCAmelCase = """Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine""" def lowerCAmelCase_ ( ) ->Tuple: lowerCamelCase__ : Dict =_ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCamelCase__ : int =get_sagemaker_input() else: lowerCamelCase__ : List[str] =get_cluster_input() return config def lowerCAmelCase_ ( snake_case_ : List[Any]=None ) ->List[str]: if subparsers is not None: lowerCamelCase__ : Union[str, Any] =subparsers.add_parser('config' , description=snake_case_ ) else: lowerCamelCase__ : Tuple =argparse.ArgumentParser('Accelerate config command' , description=snake_case_ ) parser.add_argument( '--config_file' , default=snake_case_ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case_ ) return parser def lowerCAmelCase_ ( snake_case_ : str ) ->List[Any]: lowerCamelCase__ : Optional[int] =get_user_input() if args.config_file is not None: lowerCamelCase__ : Dict =args.config_file else: if not os.path.isdir(snake_case_ ): os.makedirs(snake_case_ ) lowerCamelCase__ : Optional[Any] =default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case_ ) else: config.to_yaml_file(snake_case_ ) print(f"""accelerate configuration saved at {config_file}""" ) def lowerCAmelCase_ ( ) ->Optional[Any]: lowerCamelCase__ : Tuple =config_command_parser() lowerCamelCase__ : Tuple =parser.parse_args() config_command(snake_case_ ) if __name__ == "__main__": main()
126
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-z )) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' return (-y * np.log(UpperCamelCase__ ) - (1 - y) * np.log(1 - h )).mean() def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' _a : Optional[int] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) return np.sum(y * scores - np.log(1 + np.exp(UpperCamelCase__ ) ) ) def lowerCAmelCase__ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=7_0_0_0_0 ): '''simple docstring''' _a : List[str] = np.zeros(x.shape[1] ) for iterations in range(UpperCamelCase__ ): _a : Optional[Any] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _a : Union[str, Any] = sigmoid_function(UpperCamelCase__ ) _a : List[str] = np.dot(x.T , h - y ) / y.size _a : Any = theta - alpha * gradient # updating the weights _a : Optional[int] = np.dot(UpperCamelCase__ , UpperCamelCase__ ) _a : Any = sigmoid_function(UpperCamelCase__ ) _a : Any = cost_function(UpperCamelCase__ , UpperCamelCase__ ) if iterations % 1_0_0 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": _snake_case = datasets.load_iris() _snake_case = iris.data[:, :2] _snake_case = (iris.target != 0) * 1 _snake_case = 0.1 _snake_case = logistic_reg(alpha, x, y, max_iterations=7_0000) print('theta: ', theta) # printing the theta i.e our weights vector def lowerCAmelCase__ ( UpperCamelCase__ ): '''simple docstring''' return sigmoid_function( np.dot(UpperCamelCase__ , UpperCamelCase__ ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((_snake_case) , (_snake_case)) = (x[:, 0].min(), x[:, 0].max()) ((_snake_case) , (_snake_case)) = (x[:, 1].min(), x[:, 1].max()) ((_snake_case) , (_snake_case)) = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) _snake_case = np.c_[xxa.ravel(), xxa.ravel()] _snake_case = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
324
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( snake_case_ , snake_case_ , unittest.TestCase ): UpperCamelCase : Union[str, Any] = StableDiffusionXLImgaImgPipeline UpperCamelCase : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} UpperCamelCase : Tuple = PipelineTesterMixin.required_optional_params - {'''latents'''} UpperCamelCase : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _lowercase ( self : Any ) -> List[Any]: torch.manual_seed(0 ) _a : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=UpperCAmelCase__ , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , ) _a : Union[str, Any] = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _a : List[str] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _a : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=32 , ) _a : Tuple = CLIPTextModel(UpperCAmelCase__ ) _a : str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Dict = CLIPTextModelWithProjection(UpperCAmelCase__ ) _a : Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=UpperCAmelCase__ ) _a : Any = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def _lowercase ( self : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=0 ) -> int: _a : Dict = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) _a : Any = image / 2 + 0.5 if str(UpperCAmelCase__ ).startswith("""mps""" ): _a : Any = torch.manual_seed(UpperCAmelCase__ ) else: _a : Tuple = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Optional[Any] = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def _lowercase ( self : Any ) -> List[Any]: _a : Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator _a : Dict = self.get_dummy_components() _a : List[Any] = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Union[str, Any] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = sd_pipe(**UpperCAmelCase__ ).images _a : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _a : List[str] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowercase ( self : Any ) -> Any: super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def _lowercase ( self : List[Any] ) -> Optional[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def _lowercase ( self : Any ) -> Any: pass def _lowercase ( self : Tuple ) -> Union[str, Any]: _a : int = self.get_dummy_components() _a : Any = StableDiffusionXLImgaImgPipeline(**UpperCAmelCase__ ) _a : Dict = sd_pipe.to(UpperCAmelCase__ ) _a : List[str] = sd_pipe.to(UpperCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) # forward without prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : List[str] = 3 * ["""this is a negative prompt"""] _a : Dict = negative_prompt _a : Dict = 3 * [inputs["""prompt"""]] _a : Optional[Any] = sd_pipe(**UpperCAmelCase__ ) _a : Tuple = output.images[0, -3:, -3:, -1] # forward with prompt embeds _a : int = self.get_dummy_inputs(UpperCAmelCase__ ) _a : Union[str, Any] = 3 * ["""this is a negative prompt"""] _a : int = 3 * [inputs.pop("""prompt""" )] ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) : List[str] = sd_pipe.encode_prompt(UpperCAmelCase__ , negative_prompt=UpperCAmelCase__ ) _a : Tuple = sd_pipe( **UpperCAmelCase__ , prompt_embeds=UpperCAmelCase__ , negative_prompt_embeds=UpperCAmelCase__ , pooled_prompt_embeds=UpperCAmelCase__ , negative_pooled_prompt_embeds=UpperCAmelCase__ , ) _a : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _lowercase ( self : List[str] ) -> Union[str, Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : str="cpu" , UpperCAmelCase__ : str=torch.floataa , UpperCAmelCase__ : List[Any]=0 ) -> List[str]: _a : List[str] = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) _a : Union[str, Any] = np.random.RandomState(UpperCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _a : List[Any] = torch.from_numpy(UpperCAmelCase__ ).to(device=UpperCAmelCase__ , dtype=UpperCAmelCase__ ) _a : Any = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def _lowercase ( self : int ) -> Union[str, Any]: _a : Union[str, Any] = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) _a : List[str] = self.get_inputs(UpperCAmelCase__ ) _a : Tuple = pipe(**UpperCAmelCase__ ).images _a : List[str] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) _a : int = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
324
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : Any = logging.get_logger(__name__) UpperCAmelCase : int = { """huggingface/time-series-transformer-tourism-monthly""": ( """https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json""" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Any = """time_series_transformer""" _lowercase : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = "student_t" , lowerCAmelCase__ = "nll" , lowerCAmelCase__ = 1 , lowerCAmelCase__ = [1, 2, 3, 4, 5, 6, 7] , lowerCAmelCase__ = "mean" , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = 0 , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 3_2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = True , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 0.1 , lowerCAmelCase__ = 1_0_0 , lowerCAmelCase__ = 0.02 , lowerCAmelCase__=True , **lowerCAmelCase__ , ) -> List[str]: '''simple docstring''' a__ : int =prediction_length a__ : List[Any] =context_length or prediction_length a__ : int =distribution_output a__ : List[str] =loss a__ : Optional[int] =input_size a__ : Dict =num_time_features a__ : Any =lags_sequence a__ : List[Any] =scaling a__ : Optional[Any] =num_dynamic_real_features a__ : Dict =num_static_real_features a__ : Optional[int] =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) a__ : Optional[Any] =cardinality else: a__ : List[Any] =[0] if embedding_dimension and num_static_categorical_features > 0: if len(lowerCAmelCase__ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) a__ : List[str] =embedding_dimension else: a__ : int =[min(5_0 , (cat + 1) // 2 ) for cat in self.cardinality] a__ : Any =num_parallel_samples # Transformer architecture configuration a__ : Optional[Any] =input_size * len(lowerCAmelCase__ ) + self._number_of_features a__ : str =d_model a__ : List[Any] =encoder_attention_heads a__ : int =decoder_attention_heads a__ : Tuple =encoder_ffn_dim a__ : Optional[Any] =decoder_ffn_dim a__ : Any =encoder_layers a__ : Union[str, Any] =decoder_layers a__ : Optional[int] =dropout a__ : List[str] =attention_dropout a__ : Union[str, Any] =activation_dropout a__ : int =encoder_layerdrop a__ : List[Any] =decoder_layerdrop a__ : str =activation_function a__ : Union[str, Any] =init_std a__ : Optional[Any] =use_cache super().__init__(is_encoder_decoder=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowercase ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
95
"""simple docstring""" from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class __a (UpperCamelCase_): '''simple docstring''' _SCREAMING_SNAKE_CASE :Union[List[PIL.Image.Image], np.ndarray] _SCREAMING_SNAKE_CASE :Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
132
0
"""simple docstring""" import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging UpperCAmelCase = logging.get_logger(__name__) def lowerCamelCase (a_ :Optional[Any]) -> int: lowercase :Optional[int] = R'''\w+[.]\d+''' lowercase :Optional[int] = re.findall(a_ , a_) for pat in pats: lowercase :str = key.replace(a_ , '''_'''.join(pat.split('''.'''))) return key def lowerCamelCase (a_ :Union[str, Any] , a_ :List[Any] , a_ :Optional[int]) -> List[Any]: lowercase :List[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): lowercase :str = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: lowercase :List[Any] = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: lowercase :Union[str, Any] = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer lowercase :Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: lowercase :str = pt_tensor.transpose(2 , 3 , 1 , 0) return renamed_pt_tuple_key, pt_tensor # linear layer lowercase :Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": lowercase :Any = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight lowercase :List[Any] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias lowercase :int = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCamelCase (a_ :Dict , a_ :int , a_ :List[Any]=42) -> str: # Step 1: Convert pytorch tensor to numpy lowercase :int = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params lowercase :List[str] = flax_model.init_weights(PRNGKey(a_)) lowercase :Optional[int] = flatten_dict(a_) lowercase :Dict = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): lowercase :int = rename_key(a_) lowercase :Union[str, Any] = tuple(renamed_pt_key.split('''.''')) # Correctly rename weight parameters lowercase , lowercase :List[str] = rename_key_and_reshape_tensor(a_ , a_ , a_) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F"""PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape """ F"""{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.""") # also add unexpected weight so that warning is thrown lowercase :int = jnp.asarray(a_) return unflatten_dict(a_)
172
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class __magic_name__ ( __UpperCAmelCase ): __A : str = "imagegpt" __A : str = ["past_key_values"] __A : Optional[Any] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[Any] , snake_case__ : Union[str, Any]=5_1_2 + 1 , snake_case__ : Optional[int]=3_2 * 3_2 , snake_case__ : Optional[Any]=5_1_2 , snake_case__ : List[str]=2_4 , snake_case__ : Any=8 , snake_case__ : str=None , snake_case__ : Any="quick_gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Optional[Any]=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=1e-5 , snake_case__ : List[Any]=0.02 , snake_case__ : Tuple=True , snake_case__ : Dict=True , snake_case__ : str=False , snake_case__ : Optional[int]=False , snake_case__ : Union[str, Any]=False , **snake_case__ : Union[str, Any] , ): '''simple docstring''' lowercase :int = vocab_size lowercase :str = n_positions lowercase :List[str] = n_embd lowercase :int = n_layer lowercase :List[str] = n_head lowercase :Tuple = n_inner lowercase :Tuple = activation_function lowercase :Optional[Any] = resid_pdrop lowercase :Tuple = embd_pdrop lowercase :Dict = attn_pdrop lowercase :List[Any] = layer_norm_epsilon lowercase :List[Any] = initializer_range lowercase :List[Any] = scale_attn_weights lowercase :Dict = use_cache lowercase :List[str] = scale_attn_by_inverse_layer_idx lowercase :List[str] = reorder_and_upcast_attn lowercase :Dict = tie_word_embeddings super().__init__(tie_word_embeddings=snake_case__ , **snake_case__ ) class __magic_name__ ( __UpperCAmelCase ): @property def __snake_case ( self : Any ): '''simple docstring''' return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ] ) def __snake_case ( self : Union[str, Any] , snake_case__ : "FeatureExtractionMixin" , snake_case__ : int = 1 , snake_case__ : int = -1 , snake_case__ : bool = False , snake_case__ : Optional["TensorType"] = None , snake_case__ : int = 3 , snake_case__ : int = 3_2 , snake_case__ : int = 3_2 , ): '''simple docstring''' lowercase :Union[str, Any] = self._generate_dummy_images(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase :List[str] = dict(preprocessor(images=snake_case__ , return_tensors=snake_case__ ) ) return inputs
172
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["BloomTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", "BloomForCausalLM", "BloomModel", "BloomPreTrainedModel", "BloomForSequenceClassification", "BloomForTokenClassification", "BloomForQuestionAnswering", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
"""simple docstring""" SCREAMING_SNAKE_CASE__ = { "A": ".-", "B": "-...", "C": "-.-.", "D": "-..", "E": ".", "F": "..-.", "G": "--.", "H": "....", "I": "..", "J": ".---", "K": "-.-", "L": ".-..", "M": "--", "N": "-.", "O": "---", "P": ".--.", "Q": "--.-", "R": ".-.", "S": "...", "T": "-", "U": "..-", "V": "...-", "W": ".--", "X": "-..-", "Y": "-.--", "Z": "--..", "1": ".----", "2": "..---", "3": "...--", "4": "....-", "5": ".....", "6": "-....", "7": "--...", "8": "---..", "9": "----.", "0": "-----", "&": ".-...", "@": ".--.-.", ":": "---...", ",": "--..--", ".": ".-.-.-", "'": ".----.", "\"": ".-..-.", "?": "..--..", "/": "-..-.", "=": "-...-", "+": ".-.-.", "-": "-....-", "(": "-.--.", ")": "-.--.-", "!": "-.-.--", " ": "/" } # Exclamation mark is not in ITU-R recommendation # fmt: on SCREAMING_SNAKE_CASE__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase = """Morse code here!""" print(SCREAMING_SNAKE_CASE ) lowerCAmelCase = encrypt(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) lowerCAmelCase = decrypt(SCREAMING_SNAKE_CASE ) print(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
46
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal UpperCAmelCase__ = datasets.utils.logging.get_logger(__name__) UpperCAmelCase__ = ["""names""", """prefix"""] UpperCAmelCase__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] UpperCAmelCase__ = ["""encoding_errors""", """on_bad_lines"""] UpperCAmelCase__ = ["""date_format"""] @dataclass class __lowerCAmelCase ( datasets.BuilderConfig ): UpperCamelCase = "," UpperCamelCase = None UpperCamelCase = "infer" UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = False UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = True UpperCamelCase = False UpperCamelCase = True UpperCamelCase = None UpperCamelCase = "." UpperCamelCase = None UpperCamelCase = '"' UpperCamelCase = 0 UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = None UpperCamelCase = True UpperCamelCase = True UpperCamelCase = 0 UpperCamelCase = True UpperCamelCase = False UpperCamelCase = None UpperCamelCase = 1_0_0_0_0 UpperCamelCase = None UpperCamelCase = "strict" UpperCamelCase = "error" UpperCamelCase = None def _lowerCamelCase ( self : Dict) -> Tuple: """simple docstring""" if self.delimiter is not None: _UpperCAmelCase = self.delimiter if self.column_names is not None: _UpperCAmelCase = self.column_names @property def _lowerCamelCase ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = { 'sep': self.sep, 'header': self.header, 'names': self.names, 'index_col': self.index_col, 'usecols': self.usecols, 'prefix': self.prefix, 'mangle_dupe_cols': self.mangle_dupe_cols, 'engine': self.engine, 'converters': self.converters, 'true_values': self.true_values, 'false_values': self.false_values, 'skipinitialspace': self.skipinitialspace, 'skiprows': self.skiprows, 'nrows': self.nrows, 'na_values': self.na_values, 'keep_default_na': self.keep_default_na, 'na_filter': self.na_filter, 'verbose': self.verbose, 'skip_blank_lines': self.skip_blank_lines, 'thousands': self.thousands, 'decimal': self.decimal, 'lineterminator': self.lineterminator, 'quotechar': self.quotechar, 'quoting': self.quoting, 'escapechar': self.escapechar, 'comment': self.comment, 'encoding': self.encoding, 'dialect': self.dialect, 'error_bad_lines': self.error_bad_lines, 'warn_bad_lines': self.warn_bad_lines, 'skipfooter': self.skipfooter, 'doublequote': self.doublequote, 'memory_map': self.memory_map, 'float_precision': self.float_precision, 'chunksize': self.chunksize, 'encoding_errors': self.encoding_errors, 'on_bad_lines': self.on_bad_lines, 'date_format': self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _lowercase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __lowerCAmelCase ( datasets.ArrowBasedBuilder ): UpperCamelCase = CsvConfig def _lowerCamelCase ( self : Tuple) -> Dict: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def _lowerCamelCase ( self : List[str] , A : Union[str, Any]) -> Optional[int]: """simple docstring""" if not self.config.data_files: raise ValueError(F"At least one data file must be specified, but got data_files={self.config.data_files}") _UpperCAmelCase = dl_manager.download_and_extract(self.config.data_files) if isinstance(_lowercase , (str, list, tuple)): _UpperCAmelCase = data_files if isinstance(_lowercase , _lowercase): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(_lowercase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files})] _UpperCAmelCase = [] for split_name, files in data_files.items(): if isinstance(_lowercase , _lowercase): _UpperCAmelCase = [files] _UpperCAmelCase = [dl_manager.iter_files(_lowercase) for file in files] splits.append(datasets.SplitGenerator(name=_lowercase , gen_kwargs={'files': files})) return splits def _lowerCamelCase ( self : Union[str, Any] , A : Optional[int]) -> pa.Table: """simple docstring""" if self.config.features is not None: _UpperCAmelCase = self.config.features.arrow_schema if all(not require_storage_cast(_lowercase) for feature in self.config.features.values()): # cheaper cast _UpperCAmelCase = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_lowercase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _UpperCAmelCase = table_cast(_lowercase , _lowercase) return pa_table def _lowerCamelCase ( self : Any , A : List[Any]) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _UpperCAmelCase = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_lowercase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_lowercase)): _UpperCAmelCase = pd.read_csv(_lowercase , iterator=_lowercase , dtype=_lowercase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(_lowercase): _UpperCAmelCase = pa.Table.from_pandas(_lowercase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowercase) except ValueError as e: logger.error(F"Failed to read file '{file}' with error {type(_lowercase)}: {e}") raise
366
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { "edbeeching/decision-transformer-gym-hopper-medium": ( "https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __lowerCAmelCase ( A ): UpperCamelCase = '''decision_transformer''' UpperCamelCase = ['''past_key_values'''] UpperCamelCase = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Any , A : Optional[int]=17 , A : List[str]=4 , A : int=1_28 , A : Union[str, Any]=40_96 , A : Any=True , A : Any=1 , A : List[Any]=10_24 , A : List[Any]=3 , A : Tuple=1 , A : Any=None , A : Optional[int]="relu" , A : Union[str, Any]=0.1 , A : Optional[int]=0.1 , A : Optional[int]=0.1 , A : Optional[int]=1E-5 , A : List[Any]=0.0_2 , A : Tuple=True , A : Union[str, Any]=True , A : str=5_02_56 , A : Union[str, Any]=5_02_56 , A : List[Any]=False , A : Optional[int]=False , **A : int , ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = state_dim _UpperCAmelCase = act_dim _UpperCAmelCase = hidden_size _UpperCAmelCase = max_ep_len _UpperCAmelCase = action_tanh _UpperCAmelCase = vocab_size _UpperCAmelCase = n_positions _UpperCAmelCase = n_layer _UpperCAmelCase = n_head _UpperCAmelCase = n_inner _UpperCAmelCase = activation_function _UpperCAmelCase = resid_pdrop _UpperCAmelCase = embd_pdrop _UpperCAmelCase = attn_pdrop _UpperCAmelCase = layer_norm_epsilon _UpperCAmelCase = initializer_range _UpperCAmelCase = scale_attn_weights _UpperCAmelCase = use_cache _UpperCAmelCase = scale_attn_by_inverse_layer_idx _UpperCAmelCase = reorder_and_upcast_attn _UpperCAmelCase = bos_token_id _UpperCAmelCase = eos_token_id super().__init__(bos_token_id=A , eos_token_id=A , **A)
290
0
import functools import gc import inspect import torch from .imports import is_npu_available, is_xpu_available def __SCREAMING_SNAKE_CASE ( *snake_case_ ): '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): _UpperCAmelCase = list(snake_case_ ) for i in range(len(snake_case_ ) ): _UpperCAmelCase = None gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() return objects def __SCREAMING_SNAKE_CASE ( snake_case_ ): '''simple docstring''' _UpperCAmelCase = [ """CUDA out of memory.""", # CUDA OOM """cuDNN error: CUDNN_STATUS_NOT_SUPPORTED.""", # CUDNN SNAFU """DefaultCPUAllocator: can't allocate memory""", # CPU OOM ] if isinstance(snake_case_ , snake_case_ ) and len(exception.args ) == 1: return any(err in exception.args[0] for err in _statements ) return False def __SCREAMING_SNAKE_CASE ( snake_case_ = None , snake_case_ = 128 ): '''simple docstring''' if function is None: return functools.partial(snake_case_ , starting_batch_size=snake_case_ ) _UpperCAmelCase = starting_batch_size def decorator(*snake_case_ , **snake_case_ ): nonlocal batch_size gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() _UpperCAmelCase = list(inspect.signature(snake_case_ ).parameters.keys() ) # Guard against user error if len(snake_case_ ) < (len(snake_case_ ) + 1): _UpperCAmelCase = """, """.join([f"""{arg}={value}""" for arg, value in zip(params[1:] , args[1:] )] ) raise TypeError( f"""Batch size was passed into `{function.__name__}` as the first argument when called.""" f"""Remove this as the decorator already does so: `{function.__name__}({arg_str})`""" ) while True: if batch_size == 0: raise RuntimeError("No executable batch size found, reached zero." ) try: return function(snake_case_ , *snake_case_ , **snake_case_ ) except Exception as e: if should_reduce_batch_size(snake_case_ ): gc.collect() if is_xpu_available(): torch.xpu.empty_cache() elif is_npu_available(): torch.npu.empty_cache() else: torch.cuda.empty_cache() batch_size //= 2 else: raise return decorator
133
"""simple docstring""" def __magic_name__ ( lowercase , lowercase ): if a < 0 or b < 0: raise ValueError("""the value of both inputs must be positive""" ) SCREAMING_SNAKE_CASE_: Optional[int] =str(bin(lowercase ) )[2:] # remove the leading "0b" SCREAMING_SNAKE_CASE_: Any =str(bin(lowercase ) )[2:] SCREAMING_SNAKE_CASE_: Dict =max(len(lowercase ) , len(lowercase ) ) return "0b" + "".join( str(int("""1""" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(lowercase ) , b_binary.zfill(lowercase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
173
0
'''simple docstring''' from typing import Optional import numpy as np import torch from torch import nn from transformers import GPTaConfig, GPTaLMHeadModel from transformers.modeling_utils import ModuleUtilsMixin from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCAmelCase_ ( _a , _a , _a ): """simple docstring""" lowercase = [r"h\.\d+\.attn\.bias", r"h\.\d+\.attn\.masked_bias"] @register_to_config def __init__( self : Optional[int] , snake_case_ : int , snake_case_ : int , snake_case_ : Optional[int] = None , snake_case_ : int = 50_257 , snake_case_ : int = 1_024 , snake_case_ : int = 768 , snake_case_ : int = 12 , snake_case_ : int = 12 , snake_case_ : Optional[int] = None , snake_case_ : str = "gelu_new" , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : float = 0.1 , snake_case_ : float = 1E-5 , snake_case_ : float = 0.02 , snake_case_ : bool = True , snake_case_ : bool = True , snake_case_ : bool = False , snake_case_ : bool = False , ): super().__init__() snake_case__ : Optional[int] = prefix_length if prefix_inner_dim != n_embd and prefix_hidden_dim is None: raise ValueError( f"`prefix_hidden_dim` cannot be `None` when `prefix_inner_dim`: {prefix_hidden_dim} and" f" `n_embd`: {n_embd} are not equal." ) snake_case__ : Dict = prefix_inner_dim snake_case__ : Tuple = prefix_hidden_dim snake_case__ : Optional[Any] = ( nn.Linear(self.prefix_inner_dim , self.prefix_hidden_dim ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ : List[str] = ( nn.Linear(self.prefix_hidden_dim , snake_case_ ) if self.prefix_hidden_dim is not None else nn.Identity() ) snake_case__ : Union[str, Any] = GPTaConfig( vocab_size=snake_case_ , n_positions=snake_case_ , n_embd=snake_case_ , n_layer=snake_case_ , n_head=snake_case_ , n_inner=snake_case_ , activation_function=snake_case_ , resid_pdrop=snake_case_ , embd_pdrop=snake_case_ , attn_pdrop=snake_case_ , layer_norm_epsilon=snake_case_ , initializer_range=snake_case_ , scale_attn_weights=snake_case_ , use_cache=snake_case_ , scale_attn_by_inverse_layer_idx=snake_case_ , reorder_and_upcast_attn=snake_case_ , ) snake_case__ : Dict = GPTaLMHeadModel(snake_case_ ) def lowerCamelCase ( self : Optional[int] , snake_case_ : torch.Tensor , snake_case_ : torch.Tensor , snake_case_ : Optional[torch.Tensor] = None , snake_case_ : Optional[torch.Tensor] = None , ): snake_case__ : Optional[Any] = self.transformer.transformer.wte(snake_case_ ) snake_case__ : Tuple = self.encode_prefix(snake_case_ ) snake_case__ : Any = self.decode_prefix(snake_case_ ) snake_case__ : Optional[Any] = torch.cat((prefix_embeds, embedding_text) , dim=1 ) if labels is not None: snake_case__ : Any = self.get_dummy_token(input_ids.shape[0] , input_ids.device ) snake_case__ : int = torch.cat((dummy_token, input_ids) , dim=1 ) snake_case__ : str = self.transformer(inputs_embeds=snake_case_ , labels=snake_case_ , attention_mask=snake_case_ ) if self.prefix_hidden_dim is not None: return out, hidden else: return out def lowerCamelCase ( self : Optional[Any] , snake_case_ : int , snake_case_ : torch.device ): return torch.zeros(snake_case_ , self.prefix_length , dtype=torch.intaa , device=snake_case_ ) def lowerCamelCase ( self : Tuple , snake_case_ : Tuple ): return self.encode_prefix(snake_case_ ) @torch.no_grad() def lowerCamelCase ( self : List[str] , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : List[str] ): snake_case__ : Union[str, Any] = torch.split(snake_case_ , 1 , dim=0 ) snake_case__ : List[str] = [] snake_case__ : Optional[Any] = [] for feature in features: snake_case__ : List[Any] = self.decode_prefix(feature.to(snake_case_ ) ) # back to the clip feature # Only support beam search for now snake_case__ , snake_case__ : Any = self.generate_beam( input_embeds=snake_case_ , device=snake_case_ , eos_token_id=snake_case_ ) generated_tokens.append(output_tokens[0] ) generated_seq_lengths.append(seq_lengths[0] ) snake_case__ : Optional[Any] = torch.stack(snake_case_ ) snake_case__ : int = torch.stack(snake_case_ ) return generated_tokens, generated_seq_lengths @torch.no_grad() def lowerCamelCase ( self : Optional[int] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[int]=None , snake_case_ : Union[str, Any]=None , snake_case_ : int = 5 , snake_case_ : int = 67 , snake_case_ : float = 1.0 , snake_case_ : Optional[int] = None , ): snake_case__ : List[Any] = eos_token_id snake_case__ : List[Any] = None snake_case__ : List[str] = None snake_case__ : str = torch.ones(snake_case_ , device=snake_case_ , dtype=torch.int ) snake_case__ : Union[str, Any] = torch.zeros(snake_case_ , device=snake_case_ , dtype=torch.bool ) if input_embeds is not None: snake_case__ : int = input_embeds else: snake_case__ : Optional[int] = self.transformer.transformer.wte(snake_case_ ) for i in range(snake_case_ ): snake_case__ : Optional[Any] = self.transformer(inputs_embeds=snake_case_ ) snake_case__ : Optional[Any] = outputs.logits snake_case__ : Any = logits[:, -1, :] / (temperature if temperature > 0 else 1.0) snake_case__ : Any = logits.softmax(-1 ).log() if scores is None: snake_case__ , snake_case__ : Optional[Any] = logits.topk(snake_case_ , -1 ) snake_case__ : int = generated.expand(snake_case_ , *generated.shape[1:] ) snake_case__ , snake_case__ : List[Any] = next_tokens.permute(1 , 0 ), scores.squeeze(0 ) if tokens is None: snake_case__ : Tuple = next_tokens else: snake_case__ : Any = tokens.expand(snake_case_ , *tokens.shape[1:] ) snake_case__ : List[Any] = torch.cat((tokens, next_tokens) , dim=1 ) else: snake_case__ : Union[str, Any] = -float(np.inf ) snake_case__ : Optional[int] = 0 snake_case__ : Dict = scores[:, None] + logits seq_lengths[~is_stopped] += 1 snake_case__ : Any = scores_sum / seq_lengths[:, None] snake_case__ , snake_case__ : Dict = scores_sum_average.view(-1 ).topk(snake_case_ , -1 ) snake_case__ : Any = next_tokens // scores_sum.shape[1] snake_case__ : List[str] = seq_lengths[next_tokens_source] snake_case__ : Optional[Any] = next_tokens % scores_sum.shape[1] snake_case__ : List[Any] = next_tokens.unsqueeze(1 ) snake_case__ : Union[str, Any] = tokens[next_tokens_source] snake_case__ : Tuple = torch.cat((tokens, next_tokens) , dim=1 ) snake_case__ : Optional[int] = generated[next_tokens_source] snake_case__ : Optional[int] = scores_sum_average * seq_lengths snake_case__ : Union[str, Any] = is_stopped[next_tokens_source] snake_case__ : Tuple = self.transformer.transformer.wte(next_tokens.squeeze() ).view(generated.shape[0] , 1 , -1 ) snake_case__ : Tuple = torch.cat((generated, next_token_embed) , dim=1 ) snake_case__ : str = is_stopped + next_tokens.eq(snake_case_ ).squeeze() if is_stopped.all(): break snake_case__ : Tuple = scores / seq_lengths snake_case__ : List[Any] = scores.argsort(descending=snake_case_ ) # tokens tensors are already padded to max_seq_length snake_case__ : List[Any] = [tokens[i] for i in order] snake_case__ : Dict = torch.stack(snake_case_ , dim=0 ) snake_case__ : List[str] = torch.tensor([seq_lengths[i] for i in order] , dtype=seq_lengths.dtype ) return output_texts, seq_lengths
43
'''simple docstring''' def __snake_case( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""multiplicative_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""multiplicative_persistence() does not accept negative values""" ) snake_case__ : List[Any] = 0 snake_case__ : Union[str, Any] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: snake_case__ : List[Any] = [int(_lowerCAmelCase ) for i in num_string] snake_case__ : str = 1 for i in range(0 , len(_lowerCAmelCase ) ): total *= numbers[i] snake_case__ : Optional[Any] = str(_lowerCAmelCase ) steps += 1 return steps def __snake_case( _lowerCAmelCase ) -> int: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""additive_persistence() only accepts integral values""" ) if num < 0: raise ValueError("""additive_persistence() does not accept negative values""" ) snake_case__ : Union[str, Any] = 0 snake_case__ : List[str] = str(_lowerCAmelCase ) while len(_lowerCAmelCase ) != 1: snake_case__ : Optional[int] = [int(_lowerCAmelCase ) for i in num_string] snake_case__ : Dict = 0 for i in range(0 , len(_lowerCAmelCase ) ): total += numbers[i] snake_case__ : List[Any] = str(_lowerCAmelCase ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
43
1
'''simple docstring''' # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def a__ ( lowercase : Dict ) -> Tuple: """simple docstring""" return 1 / (1 + np.exp(-z )) def a__ ( lowercase : List[str], lowercase : Union[str, Any] ) -> Tuple: """simple docstring""" return (-y * np.log(lowercase ) - (1 - y) * np.log(1 - h )).mean() def a__ ( lowercase : List[Any], lowercase : Dict, lowercase : int ) -> Dict: """simple docstring""" _UpperCamelCase = np.dot(lowercase, lowercase ) return np.sum(y * scores - np.log(1 + np.exp(lowercase ) ) ) def a__ ( lowercase : Dict, lowercase : List[str], lowercase : List[str], lowercase : int=70000 ) -> List[str]: """simple docstring""" _UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(lowercase ): _UpperCamelCase = np.dot(lowercase, lowercase ) _UpperCamelCase = sigmoid_function(lowercase ) _UpperCamelCase = np.dot(x.T, h - y ) / y.size _UpperCamelCase = theta - alpha * gradient # updating the weights _UpperCamelCase = np.dot(lowercase, lowercase ) _UpperCamelCase = sigmoid_function(lowercase ) _UpperCamelCase = cost_function(lowercase, lowercase ) if iterations % 100 == 0: print(F"""loss: {j} \t""" ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": lowercase__ : Union[str, Any] = datasets.load_iris() lowercase__ : Optional[int] = iris.data[:, :2] lowercase__ : int = (iris.target != 0) * 1 lowercase__ : Tuple = 0.1 lowercase__ : List[Any] = logistic_reg(alpha, x, y, max_iterations=7_00_00) print('theta: ', theta) # printing the theta i.e our weights vector def a__ ( lowercase : str ) -> List[str]: """simple docstring""" return sigmoid_function( np.dot(lowercase, lowercase ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(10, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color='b', label='0') plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color='r', label='1') ((lowercase__) , (lowercase__)) : str = (x[:, 0].min(), x[:, 0].max()) ((lowercase__) , (lowercase__)) : str = (x[:, 1].min(), x[:, 1].max()) ((lowercase__) , (lowercase__)) : Any = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) lowercase__ : Optional[int] = np.c_[xxa.ravel(), xxa.ravel()] lowercase__ : Tuple = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors='black') plt.legend() plt.show()
324
'''simple docstring''' import math def a__ ( lowercase : list, lowercase : int = 0, lowercase : int = 0 ) -> list: """simple docstring""" _UpperCamelCase = end or len(lowercase ) for i in range(lowercase, lowercase ): _UpperCamelCase = i _UpperCamelCase = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: _UpperCamelCase = array[temp_index - 1] temp_index -= 1 _UpperCamelCase = temp_index_value return array def a__ ( lowercase : list, lowercase : int, lowercase : int ) -> None: # Max Heap """simple docstring""" _UpperCamelCase = index _UpperCamelCase = 2 * index + 1 # Left Node _UpperCamelCase = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: _UpperCamelCase = left_index if right_index < heap_size and array[largest] < array[right_index]: _UpperCamelCase = right_index if largest != index: _UpperCamelCase , _UpperCamelCase = array[largest], array[index] heapify(lowercase, lowercase, lowercase ) def a__ ( lowercase : list ) -> list: """simple docstring""" _UpperCamelCase = len(lowercase ) for i in range(n // 2, -1, -1 ): heapify(lowercase, lowercase, lowercase ) for i in range(n - 1, 0, -1 ): _UpperCamelCase , _UpperCamelCase = array[0], array[i] heapify(lowercase, 0, lowercase ) return array def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int ) -> int: """simple docstring""" _UpperCamelCase = low _UpperCamelCase = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i _UpperCamelCase , _UpperCamelCase = array[j], array[i] i += 1 def a__ ( lowercase : list ) -> list: """simple docstring""" if len(lowercase ) == 0: return array _UpperCamelCase = 2 * math.ceil(math.loga(len(lowercase ) ) ) _UpperCamelCase = 16 return intro_sort(lowercase, 0, len(lowercase ), lowercase, lowercase ) def a__ ( lowercase : list, lowercase : int, lowercase : int, lowercase : int, lowercase : int ) -> list: """simple docstring""" while end - start > size_threshold: if max_depth == 0: return heap_sort(lowercase ) max_depth -= 1 _UpperCamelCase = median_of_a(lowercase, lowercase, start + ((end - start) // 2) + 1, end - 1 ) _UpperCamelCase = partition(lowercase, lowercase, lowercase, lowercase ) intro_sort(lowercase, lowercase, lowercase, lowercase, lowercase ) _UpperCamelCase = p return insertion_sort(lowercase, lowercase, lowercase ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ : Any = input('Enter numbers separated by a comma : ').strip() lowercase__ : Any = [float(item) for item in user_input.split(',')] print(sort(unsorted))
324
1
def snake_case ( snake_case__ :int , snake_case__ :int) -> int: while second != 0: _A = first & second first ^= second _A = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() _SCREAMING_SNAKE_CASE = int(input('Enter the first number: ').strip()) _SCREAMING_SNAKE_CASE = int(input('Enter the second number: ').strip()) print(F'''{add(first, second) = }''')
360
def snake_case ( snake_case__ :str , snake_case__ :str) -> list: _A = len(snake_case__) _A = [] for i in range(len(snake_case__) - pat_len + 1): _A = True for j in range(snake_case__): if s[i + j] != pattern[j]: _A = False break if match_found: position.append(snake_case__) return position if __name__ == "__main__": assert naive_pattern_search('ABCDEFG', 'DE') == [3] print(naive_pattern_search('ABAAABCDBBABCDDEBCABC', 'ABC'))
81
0
"""simple docstring""" import os import unittest from transformers.models.transfo_xl.tokenization_transfo_xl import VOCAB_FILES_NAMES, TransfoXLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase ( lowercase , unittest.TestCase ): UpperCAmelCase : Tuple = TransfoXLTokenizer UpperCAmelCase : Optional[int] = False UpperCAmelCase : Tuple = False def _lowercase (self : Optional[int]) -> str: super().setUp() __snake_case : List[Any] = [ '<unk>', '[CLS]', '[SEP]', 'want', 'unwanted', 'wa', 'un', 'running', ',', 'low', 'l', ] __snake_case : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file']) with open(self.vocab_file , 'w' , encoding='utf-8') as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens])) def _lowercase (self : Any , **_A : Union[str, Any]) -> List[str]: __snake_case : List[str] = True return TransfoXLTokenizer.from_pretrained(self.tmpdirname , **_A) def _lowercase (self : Dict , _A : Dict) -> Union[str, Any]: __snake_case : Any = '<unk> UNwanted , running' __snake_case : Tuple = '<unk> unwanted, running' return input_text, output_text def _lowercase (self : int) -> Any: __snake_case : List[str] = TransfoXLTokenizer(vocab_file=self.vocab_file , lower_case=_A) __snake_case : Optional[int] = tokenizer.tokenize('<unk> UNwanted , running') self.assertListEqual(_A , ['<unk>', 'unwanted', ',', 'running']) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A) , [0, 4, 8, 7]) def _lowercase (self : Optional[int]) -> List[str]: __snake_case : Any = TransfoXLTokenizer(lower_case=_A) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ') , ['hello', '!', 'how', 'are', 'you', '?']) def _lowercase (self : int) -> List[Any]: __snake_case : Optional[int] = TransfoXLTokenizer(lower_case=_A) self.assertListEqual( tokenizer.tokenize(' \tHeLLo ! how \n Are yoU ? ') , ['HeLLo', '!', 'how', 'Are', 'yoU', '?']) def _lowercase (self : Optional[Any]) -> int: __snake_case : List[Any] = TransfoXLTokenizer(lower_case=_A) __snake_case : Any = 'Hello (bracket) and side-scrolled [and] Henry\'s $5,000 with 3.34 m. What\'s up!?' __snake_case : Dict = [ 'Hello', '(', 'bracket', ')', 'and', 'side', '@-@', 'scrolled', '[', 'and', ']', 'Henry', '\'s', '$', '5', '@,@', '000', 'with', '3', '@.@', '34', 'm', '.', 'What', '\'s', 'up', '!', '?', ] self.assertListEqual(tokenizer.tokenize(_A) , _A) self.assertEqual(tokenizer.convert_tokens_to_string(_A) , _A) def _lowercase (self : Dict) -> int: __snake_case : int = self.get_tokenizer() __snake_case : int = len(_A) tokenizer.add_tokens(['new1', 'new2']) tokenizer.move_added_token('new1' , 1) # Check that moved token is not copied (duplicate) self.assertEqual(len(_A) , original_len + 2) # Check that token is moved to specified id self.assertEqual(tokenizer.encode('new1') , [1]) self.assertEqual(tokenizer.decode([1]) , 'new1')
172
"""simple docstring""" def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' while a != 0: __snake_case , __snake_case : Optional[Any] = b % a, a return b def __UpperCAmelCase ( UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> int: '''simple docstring''' if gcd(UpperCAmelCase_ , UpperCAmelCase_ ) != 1: __snake_case : Optional[Any] = F"mod inverse of {a!r} and {m!r} does not exist" raise ValueError(UpperCAmelCase_ ) __snake_case , __snake_case , __snake_case : Optional[int] = 1, 0, a __snake_case , __snake_case , __snake_case : int = 0, 1, m while va != 0: __snake_case : Union[str, Any] = ua // va __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Union[str, Any] = (ua - q * va), (ua - q * va), (ua - q * va), va, va, va return ua % m
172
1
'''simple docstring''' from scipy.stats import spearmanr import datasets __a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' __a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' __a = R'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A__ ( datasets.Metric ): """simple docstring""" def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _lowerCAmelCase ( self : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple=False ) -> Tuple: """simple docstring""" _UpperCAmelCase : List[str] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
'''simple docstring''' from math import factorial def __UpperCAmelCase ( a_: int = 100 ): return sum(map(a_, str(factorial(a_ ) ) ) ) if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
17
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging a__ : List[Any] =logging.get_logger(__name__) # TODO: upload to AWS a__ : Optional[int] ={ '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json''' ), } class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] ="retribert" def __init__( self : int , __A : List[Any]=3_0_5_2_2 , __A : List[Any]=7_6_8 , __A : Union[str, Any]=8 , __A : Union[str, Any]=1_2 , __A : Optional[int]=3_0_7_2 , __A : int="gelu" , __A : List[str]=0.1 , __A : List[str]=0.1 , __A : Tuple=5_1_2 , __A : str=2 , __A : str=0.02 , __A : int=1e-12 , __A : Any=True , __A : Dict=1_2_8 , __A : Tuple=0 , **__A : int , ): super().__init__(pad_token_id=__A , **__A ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = share_encoders __UpperCamelCase = projection_dim
53
"""simple docstring""" from math import pi, sqrt, tan def __a ( _SCREAMING_SNAKE_CASE ) ->float: if side_length < 0: raise ValueError('surface_area_cube() only accepts non-negative values' ) return 6 * side_length**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if length < 0 or breadth < 0 or height < 0: raise ValueError('surface_area_cuboid() only accepts non-negative values' ) return 2 * ((length * breadth) + (breadth * height) + (length * height)) def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('surface_area_sphere() only accepts non-negative values' ) return 4 * pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('surface_area_hemisphere() only accepts non-negative values' ) return 3 * pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius < 0 or height < 0: raise ValueError('surface_area_cone() only accepts non-negative values' ) return pi * radius * (radius + (height**2 + radius**2) ** 0.5) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius_a < 0 or radius_a < 0 or height < 0: raise ValueError( 'surface_area_conical_frustum() only accepts non-negative values' ) a__: List[Any] = (height**2 + (radius_a - radius_a) ** 2) ** 0.5 return pi * ((slant_height * (radius_a + radius_a)) + radius_a**2 + radius_a**2) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius < 0 or height < 0: raise ValueError('surface_area_cylinder() only accepts non-negative values' ) return 2 * pi * radius * (height + radius) def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if torus_radius < 0 or tube_radius < 0: raise ValueError('surface_area_torus() only accepts non-negative values' ) if torus_radius < tube_radius: raise ValueError( 'surface_area_torus() does not support spindle or self intersecting tori' ) return 4 * pow(_SCREAMING_SNAKE_CASE , 2 ) * torus_radius * tube_radius def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if length < 0 or width < 0: raise ValueError('area_rectangle() only accepts non-negative values' ) return length * width def __a ( _SCREAMING_SNAKE_CASE ) ->float: if side_length < 0: raise ValueError('area_square() only accepts non-negative values' ) return side_length**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if base < 0 or height < 0: raise ValueError('area_triangle() only accepts non-negative values' ) return (base * height) / 2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if sidea < 0 or sidea < 0 or sidea < 0: raise ValueError('area_triangle_three_sides() only accepts non-negative values' ) elif sidea + sidea < sidea or sidea + sidea < sidea or sidea + sidea < sidea: raise ValueError('Given three sides do not form a triangle' ) a__: int = (sidea + sidea + sidea) / 2 a__: Tuple = sqrt( semi_perimeter * (semi_perimeter - sidea) * (semi_perimeter - sidea) * (semi_perimeter - sidea) ) return area def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if base < 0 or height < 0: raise ValueError('area_parallelogram() only accepts non-negative values' ) return base * height def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if basea < 0 or basea < 0 or height < 0: raise ValueError('area_trapezium() only accepts non-negative values' ) return 1 / 2 * (basea + basea) * height def __a ( _SCREAMING_SNAKE_CASE ) ->float: if radius < 0: raise ValueError('area_circle() only accepts non-negative values' ) return pi * radius**2 def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if radius_x < 0 or radius_y < 0: raise ValueError('area_ellipse() only accepts non-negative values' ) return pi * radius_x * radius_y def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if diagonal_a < 0 or diagonal_a < 0: raise ValueError('area_rhombus() only accepts non-negative values' ) return 1 / 2 * diagonal_a * diagonal_a def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->float: if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or sides < 3: raise ValueError( 'area_reg_polygon() only accepts integers greater than or \ equal to three as number of sides' ) elif length < 0: raise ValueError( 'area_reg_polygon() only accepts non-negative values as \ length of a side' ) return (sides * length**2) / (4 * tan(pi / sides )) return (sides * length**2) / (4 * tan(pi / sides )) if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # verbose so we can see methods missing tests print('[DEMO] Areas of various geometric shapes: \n') print(f"Rectangle: {area_rectangle(10, 20) = }") print(f"Square: {area_square(10) = }") print(f"Triangle: {area_triangle(10, 10) = }") print(f"Triangle: {area_triangle_three_sides(5, 12, 13) = }") print(f"Parallelogram: {area_parallelogram(10, 20) = }") print(f"Rhombus: {area_rhombus(10, 20) = }") print(f"Trapezium: {area_trapezium(10, 20, 30) = }") print(f"Circle: {area_circle(20) = }") print(f"Ellipse: {area_ellipse(10, 20) = }") print('\nSurface Areas of various geometric shapes: \n') print(f"Cube: {surface_area_cube(20) = }") print(f"Cuboid: {surface_area_cuboid(10, 20, 30) = }") print(f"Sphere: {surface_area_sphere(20) = }") print(f"Hemisphere: {surface_area_hemisphere(20) = }") print(f"Cone: {surface_area_cone(10, 20) = }") print(f"Conical Frustum: {surface_area_conical_frustum(10, 20, 30) = }") print(f"Cylinder: {surface_area_cylinder(10, 20) = }") print(f"Torus: {surface_area_torus(20, 10) = }") print(f"Equilateral Triangle: {area_reg_polygon(3, 10) = }") print(f"Square: {area_reg_polygon(4, 10) = }") print(f"Reqular Pentagon: {area_reg_polygon(5, 10) = }")
290
0
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TextClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. UpperCAmelCase : List[Any] = {"""LayoutLMv2Config""", """LayoutLMv3Config"""} @is_pipeline_test class __lowerCAmelCase ( unittest.TestCase): _lowercase : str = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING _lowercase : Tuple = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: _lowercase : Dict = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: _lowercase : int = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } @require_torch def _lowercase ( self ) -> Tuple: '''simple docstring''' a__ : str =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" ) a__ : Any =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) a__ : Any =text_classifier("This is great !" , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}] ) a__ : Tuple =text_classifier(["This is great !", "This is bad"] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) a__ : List[Any] =text_classifier("This is great !" , top_k=1 ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) # Legacy behavior a__ : Any =text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) a__ : List[str] =text_classifier("This is great !" , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}]] ) a__ : Optional[int] =text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], [{"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_1", "score": 0.4_96}], ] , ) a__ : int =text_classifier(["This is great !", "Something else"] , return_all_scores=lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [ {"label": "LABEL_0", "score": 0.5_04}, {"label": "LABEL_0", "score": 0.5_04}, ] , ) @require_torch def _lowercase ( self ) -> List[Any]: '''simple docstring''' import torch a__ : Dict =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="pt" , device=torch.device("cpu" ) , ) a__ : Optional[Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @require_tf def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' a__ : Optional[int] =pipeline( task="text-classification" , model="hf-internal-testing/tiny-random-distilbert" , framework="tf" ) a__ : Optional[Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "LABEL_0", "score": 0.5_04}] ) @slow @require_torch def _lowercase ( self ) -> str: '''simple docstring''' a__ : Union[str, Any] =pipeline("text-classification" ) a__ : Union[str, Any] =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) a__ : Optional[Any] =text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) a__ : Dict =text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) @slow @require_tf def _lowercase ( self ) -> Optional[int]: '''simple docstring''' a__ : Tuple =pipeline("text-classification" , framework="tf" ) a__ : str =text_classifier("This is great !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 1.0}] ) a__ : str =text_classifier("This is bad !" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "NEGATIVE", "score": 1.0}] ) a__ : Dict =text_classifier("Birds are a type of animal" ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": "POSITIVE", "score": 0.9_88}] ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' a__ : List[Any] =TextClassificationPipeline(model=lowerCAmelCase__ , tokenizer=lowerCAmelCase__ ) return text_classifier, ["HuggingFace is in", "This is another test"] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' a__ : Tuple =text_classifier.model # Small inputs because BartTokenizer tiny has maximum position embeddings = 22 a__ : List[Any] ="HuggingFace is in" a__ : int =text_classifier(lowerCAmelCase__ ) self.assertEqual(nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) a__ : Optional[int] =["HuggingFace is in ", "Paris is in France"] a__ : Optional[Any] =text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}, {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() ) self.assertTrue(outputs[1]["label"] in model.config.idalabel.values() ) # Forcing to get all results with `top_k=None` # This is NOT the legacy format a__ : Union[str, Any] =text_classifier(lowerCAmelCase__ , top_k=lowerCAmelCase__ ) a__ : Optional[Any] =len(model.config.idalabel.values() ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [[{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N, [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] * N] , ) a__ : List[str] ={"text": "HuggingFace is in ", "text_pair": "Paris is in France"} a__ : Optional[Any] =text_classifier(lowerCAmelCase__ ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , {"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )} , ) self.assertTrue(outputs["label"] in model.config.idalabel.values() ) # This might be used a text pair, but tokenizer + pipe interaction # makes it hard to understand that it's not using the pair properly # https://github.com/huggingface/transformers/issues/17305 # We disabled this usage instead as it was outputting wrong outputs. a__ : Any =[["HuggingFace is in ", "Paris is in France"]] with self.assertRaises(lowerCAmelCase__ ): text_classifier(lowerCAmelCase__ ) # This used to be valid for doing text pairs # We're keeping it working because of backward compatibility a__ : Optional[int] =text_classifier([[["HuggingFace is in ", "Paris is in France"]]] ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , [{"label": ANY(lowerCAmelCase__ ), "score": ANY(lowerCAmelCase__ )}] , ) self.assertTrue(outputs[0]["label"] in model.config.idalabel.values() )
361
def _A ( SCREAMING_SNAKE_CASE : float , SCREAMING_SNAKE_CASE : float ): """simple docstring""" return price * (1 + tax_rate) if __name__ == "__main__": print(F"""{price_plus_tax(100, 0.2_5) = }""") print(F"""{price_plus_tax(1_2_5.5_0, 0.0_5) = }""")
148
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=UpperCAmelCase_ ) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : str = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) a__ : ClassVar[Features] = Features({"""text""": Value("""string""" )} ) a__ : ClassVar[Features] = Features({} ) a__ : str = "text" @property def UpperCamelCase__ ( self) -> Dict[str, str]: return {self.text_column: "text"}
43
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging __lowercase = logging.get_logger(__name__) class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Optional[Any] = ["""pixel_values"""] def __init__( self , __lowercase = True , __lowercase = 32 , __lowercase=PILImageResampling.BILINEAR , __lowercase = True , **__lowercase , ) -> None: __UpperCamelCase :Optional[int] = do_resize __UpperCamelCase :Any = do_rescale __UpperCamelCase :str = size_divisor __UpperCamelCase :Dict = resample super().__init__(**__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: __UpperCamelCase , __UpperCamelCase :int = get_image_size(__lowercase) # Rounds the height and width down to the closest multiple of size_divisor __UpperCamelCase :List[Any] = height // size_divisor * size_divisor __UpperCamelCase :List[str] = width // size_divisor * size_divisor __UpperCamelCase :str = resize(__lowercase , (new_h, new_w) , resample=__lowercase , data_format=__lowercase , **__lowercase) return image def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase = None , **__lowercase) -> np.ndarray: return rescale(image=__lowercase , scale=__lowercase , data_format=__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None , __lowercase = None , __lowercase=None , __lowercase = None , __lowercase = None , __lowercase = ChannelDimension.FIRST , **__lowercase , ) -> BatchFeature: __UpperCamelCase :Union[str, Any] = do_resize if do_resize is not None else self.do_resize __UpperCamelCase :Tuple = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase :List[str] = size_divisor if size_divisor is not None else self.size_divisor __UpperCamelCase :List[Any] = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('''size_divisor is required for resizing''') __UpperCamelCase :List[Any] = make_list_of_images(__lowercase) if not valid_images(__lowercase): raise ValueError('''Invalid image(s)''') # All transformations expect numpy arrays. __UpperCamelCase :Optional[Any] = [to_numpy_array(__lowercase) for img in images] if do_resize: __UpperCamelCase :List[str] = [self.resize(__lowercase , size_divisor=__lowercase , resample=__lowercase) for image in images] if do_rescale: __UpperCamelCase :Dict = [self.rescale(__lowercase , scale=1 / 255) for image in images] __UpperCamelCase :str = [to_channel_dimension_format(__lowercase , __lowercase) for image in images] __UpperCamelCase :int = {'''pixel_values''': images} return BatchFeature(data=__lowercase , tensor_type=__lowercase)
43
1
import warnings from functools import wraps from typing import Callable def SCREAMING_SNAKE_CASE__ ( lowercase ) -> Callable: @wraps(lowercase ) def _inner_fn(*lowercase ,**lowercase ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") ,lowercase ,) return fn(*lowercase ,**lowercase ) return _inner_fn
176
from .glue import GlueDataset, GlueDataTrainingArguments from .language_modeling import ( LineByLineTextDataset, LineByLineWithRefDataset, LineByLineWithSOPTextDataset, TextDataset, TextDatasetForNextSentencePrediction, ) from .squad import SquadDataset, SquadDataTrainingArguments
176
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate a__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow('''''', '''|''', '''|'''), datarow=DataRow('''''', '''|''', '''|'''), padding=1, with_header_hide=None, ) a__ = [] a__ = [] a__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} a__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": f'''🤗 Accelerate nightly {os.environ.get("TEST_TYPE", "")} test results''', """emoji""": True, }, } ] a__ = 0 for log in Path().glob('''*.log'''): a__ = 0 with open(log, '''r''') as f: for line in f: a__ = json.loads(line) if line.get('''nodeid''', '''''') != "": a__ = line["""nodeid"""] if line.get('''duration''', None) is not None: a__ = f'''{line["duration"]:.4f}''' if line.get('''outcome''', '''''') == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split('''_''')[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) a__ = [] log.unlink() a__ = """""" a__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += f"*{name[1:]}: {num_failed} failed test*\n" else: message += f"*{name[1:]}: {num_failed} failed tests*\n" a__ = [] a__ = {} for test in failed_tests: a__ = test[0].split('''::''') a__ = data[0].split('''/''')[-1] if data[0] not in filesafailed: a__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) a__ = [test[0] for test in failed_table] a__ = list(set(files)) # Count number of instances in failed_tests a__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) a__ = tabulate( table, headers=['''Test Location''', '''Num Failed'''], tablefmt=hf_table_format, stralign='''right''', ) message += f"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: a__ = """Too many failed tests, please see the full report in the Action results.""" a__ = len(err) + 10 a__ = message[: 3000 - offset] + f'''\n...\n```\n{err}''' print(f'''### {message}''') else: a__ = """No failed tests! 🤗""" print(f'''## {message}''') payload.append(no_error_payload) if os.environ.get('''TEST_TYPE''', '''''') != "": from slack_sdk import WebClient a__ = WebClient(token=os.environ['''SLACK_API_TOKEN''']) if message != "No failed tests! 🤗": a__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) a__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": f'''https://github.com/{os.environ["GITHUB_REPOSITORY"]}/actions/runs/{os.environ["GITHUB_RUN_ID"]}''', }, } payload.append(action_button) a__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": f'''Nightly {os.environ.get("TEST_TYPE")} test results for {date.today()}''', } ], } payload.append(date_report) a__ = client.chat_postMessage(channel='''#accelerate-ci-daily''', text=message, blocks=payload) a__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name a__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: a__ = row[0] else: a__ = """""" a__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": f'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=["Class", "Test"], tablefmt=hf_table_format, stralign="right")}\n```''', }, } client.chat_postMessage( channel='''#accelerate-ci-daily''', thread_ts=ts, blocks=[payload], )
235
"""simple docstring""" def _A ( lowercase , lowercase ): """simple docstring""" while second != 0: a =first & second first ^= second a =c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase_ : Dict = int(input("""Enter the first number: """).strip()) lowerCamelCase_ : List[Any] = int(input("""Enter the second number: """).strip()) print(F'{add(first, second) = }')
81
0
class __snake_case : def __init__( self : Dict , _lowercase : int , _lowercase : int=None , _lowercase : List[Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE__ = data SCREAMING_SNAKE_CASE__ = previous SCREAMING_SNAKE_CASE__ = next_node def __str__( self : Optional[int] ): """simple docstring""" return f"""{self.data}""" def __a ( self : Dict ): """simple docstring""" return self.data def __a ( self : List[str] ): """simple docstring""" return self.next def __a ( self : List[str] ): """simple docstring""" return self.previous class __snake_case : def __init__( self : Tuple , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = head def __iter__( self : Optional[Any] ): """simple docstring""" return self def __a ( self : int ): """simple docstring""" if not self.current: raise StopIteration else: SCREAMING_SNAKE_CASE__ = self.current.get_data() SCREAMING_SNAKE_CASE__ = self.current.get_next() return value class __snake_case : def __init__( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None # First node in list SCREAMING_SNAKE_CASE__ = None # Last node in list def __str__( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.head SCREAMING_SNAKE_CASE__ = [] while current is not None: nodes.append(current.get_data() ) SCREAMING_SNAKE_CASE__ = current.get_next() return " ".join(str(_lowercase ) for node in nodes ) def __contains__( self : Optional[Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.head while current: if current.get_data() == value: return True SCREAMING_SNAKE_CASE__ = current.get_next() return False def __iter__( self : Tuple ): """simple docstring""" return LinkedListIterator(self.head ) def __a ( self : Dict ): """simple docstring""" if self.head: return self.head.get_data() return None def __a ( self : Optional[Any] ): """simple docstring""" if self.tail: return self.tail.get_data() return None def __a ( self : List[Any] , _lowercase : Node ): """simple docstring""" if self.head is None: SCREAMING_SNAKE_CASE__ = node SCREAMING_SNAKE_CASE__ = node else: self.insert_before_node(self.head , _lowercase ) def __a ( self : int , _lowercase : Node ): """simple docstring""" if self.head is None: self.set_head(_lowercase ) else: self.insert_after_node(self.tail , _lowercase ) def __a ( self : Union[str, Any] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = Node(_lowercase ) if self.head is None: self.set_head(_lowercase ) else: self.set_tail(_lowercase ) def __a ( self : int , _lowercase : Node , _lowercase : Node ): """simple docstring""" SCREAMING_SNAKE_CASE__ = node SCREAMING_SNAKE_CASE__ = node.previous if node.get_previous() is None: SCREAMING_SNAKE_CASE__ = node_to_insert else: SCREAMING_SNAKE_CASE__ = node_to_insert SCREAMING_SNAKE_CASE__ = node_to_insert def __a ( self : Union[str, Any] , _lowercase : Node , _lowercase : Node ): """simple docstring""" SCREAMING_SNAKE_CASE__ = node SCREAMING_SNAKE_CASE__ = node.next if node.get_next() is None: SCREAMING_SNAKE_CASE__ = node_to_insert else: SCREAMING_SNAKE_CASE__ = node_to_insert SCREAMING_SNAKE_CASE__ = node_to_insert def __a ( self : Optional[Any] , _lowercase : int , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = 1 SCREAMING_SNAKE_CASE__ = Node(_lowercase ) SCREAMING_SNAKE_CASE__ = self.head while node: if current_position == position: self.insert_before_node(_lowercase , _lowercase ) return current_position += 1 SCREAMING_SNAKE_CASE__ = node.next self.insert_after_node(self.tail , _lowercase ) def __a ( self : List[str] , _lowercase : int ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.head while node: if node.get_data() == item: return node SCREAMING_SNAKE_CASE__ = node.get_next() raise Exception("""Node not found""" ) def __a ( self : List[Any] , _lowercase : Any ): """simple docstring""" if (node := self.get_node(_lowercase )) is not None: if node == self.head: SCREAMING_SNAKE_CASE__ = self.head.get_next() if node == self.tail: SCREAMING_SNAKE_CASE__ = self.tail.get_previous() self.remove_node_pointers(_lowercase ) @staticmethod def __a ( _lowercase : Node ): """simple docstring""" if node.get_next(): SCREAMING_SNAKE_CASE__ = node.previous if node.get_previous(): SCREAMING_SNAKE_CASE__ = node.next SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None def __a ( self : Optional[Any] ): """simple docstring""" return self.head is None def __SCREAMING_SNAKE_CASE ( ) -> None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
204
import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : Optional[int] , __UpperCamelCase : str ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ = checkpoint SCREAMING_SNAKE_CASE__ = {} SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_in.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_in.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.conv_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.norm_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""encoder.norm_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_in.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_in.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.conv_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.norm_out.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""decoder.norm_out.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""quant_conv.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""quant_conv.bias"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""post_quant_conv.weight"""] SCREAMING_SNAKE_CASE__ = vae_state_dict["""post_quant_conv.bias"""] # Retrieves the keys for the encoder down blocks only SCREAMING_SNAKE_CASE__ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """encoder.down""" in layer} ) SCREAMING_SNAKE_CASE__ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(__UpperCamelCase ) } # Retrieves the keys for the decoder up blocks only SCREAMING_SNAKE_CASE__ = len({""".""".join(layer.split(""".""" )[:3] ) for layer in vae_state_dict if """decoder.up""" in layer} ) SCREAMING_SNAKE_CASE__ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(__UpperCamelCase ) } for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: SCREAMING_SNAKE_CASE__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) SCREAMING_SNAKE_CASE__ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""down.{i}.block""", """new""": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """encoder.mid.block""" in key] SCREAMING_SNAKE_CASE__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE__ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """encoder.mid.attn""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_attention_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) for i in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = num_up_blocks - 1 - i SCREAMING_SNAKE_CASE__ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: SCREAMING_SNAKE_CASE__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] SCREAMING_SNAKE_CASE__ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""up.{block_id}.block""", """new""": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """decoder.mid.block""" in key] SCREAMING_SNAKE_CASE__ = 2 for i in range(1 , num_mid_res_blocks + 1 ): SCREAMING_SNAKE_CASE__ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_resnet_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": f"""mid.block_{i}""", """new""": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = [key for key in vae_state_dict if """decoder.mid.attn""" in key] SCREAMING_SNAKE_CASE__ = renew_vae_attention_paths(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = {"""old""": """mid.attn_1""", """new""": """mid_block.attentions.0"""} assign_to_checkpoint(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , additional_replacements=[meta_path] , config=__UpperCamelCase ) conv_attn_to_linear(__UpperCamelCase ) return new_checkpoint def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str , __UpperCamelCase : str , ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ = requests.get( """ https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml""" ) SCREAMING_SNAKE_CASE__ = io.BytesIO(r.content ) SCREAMING_SNAKE_CASE__ = OmegaConf.load(__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = 5_12 SCREAMING_SNAKE_CASE__ = """cuda""" if torch.cuda.is_available() else """cpu""" if checkpoint_path.endswith("""safetensors""" ): from safetensors import safe_open SCREAMING_SNAKE_CASE__ = {} with safe_open(__UpperCamelCase , framework="""pt""" , device="""cpu""" ) as f: for key in f.keys(): SCREAMING_SNAKE_CASE__ = f.get_tensor(__UpperCamelCase ) else: SCREAMING_SNAKE_CASE__ = torch.load(__UpperCamelCase , map_location=__UpperCamelCase )["""state_dict"""] # Convert the VAE model. SCREAMING_SNAKE_CASE__ = create_vae_diffusers_config(__UpperCamelCase , image_size=__UpperCamelCase ) SCREAMING_SNAKE_CASE__ = custom_convert_ldm_vae_checkpoint(__UpperCamelCase , __UpperCamelCase ) SCREAMING_SNAKE_CASE__ = AutoencoderKL(**__UpperCamelCase ) vae.load_state_dict(__UpperCamelCase ) vae.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": __lowerCamelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('''--vae_pt_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the VAE.pt to convert.''') __lowerCamelCase : Optional[int] = parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
204
1
"""simple docstring""" from scipy.stats import spearmanr import datasets _a = '\nThe Spearman rank-order correlation coefficient is a measure of the\nrelationship between two datasets. Like other correlation coefficients,\nthis one varies between -1 and +1 with 0 implying no correlation.\nPositive correlations imply that as data in dataset x increases, so\ndoes data in dataset y. Negative correlations imply that as x increases,\ny decreases. Correlations of -1 or +1 imply an exact monotonic relationship.\n\nUnlike the Pearson correlation, the Spearman correlation does not\nassume that both datasets are normally distributed.\n\nThe p-value roughly indicates the probability of an uncorrelated system\nproducing datasets that have a Spearman correlation at least as extreme\nas the one computed from these datasets. The p-values are not entirely\nreliable but are probably reasonable for datasets larger than 500 or so.\n' _a = '\nArgs:\n predictions (`List[float]`): Predicted labels, as returned by a model.\n references (`List[float]`): Ground truth labels.\n return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns\n only the spearmanr score. Defaults to `False`.\nReturns:\n spearmanr (`float`): Spearman correlation coefficient.\n p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.\nExamples:\n Example 1:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])\n >>> print(results)\n {\'spearmanr\': -0.7}\n\n Example 2:\n >>> spearmanr_metric = datasets.load_metric("spearmanr")\n >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],\n ... predictions=[10, 9, 2.5, 6, 4],\n ... return_pvalue=True)\n >>> print(results[\'spearmanr\'])\n -0.7\n >>> print(round(results[\'spearmanr_pvalue\'], 2))\n 0.19\n' _a = r'\\n@book{kokoska2000crc,\n title={CRC standard probability and statistics tables and formulae},\n author={Kokoska, Stephen and Zwillinger, Daniel},\n year={2000},\n publisher={Crc Press}\n}\n@article{2020SciPy-NMeth,\n author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and\n Haberland, Matt and Reddy, Tyler and Cournapeau, David and\n Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and\n Bright, Jonathan and {van der Walt}, St{\'e}fan J. and\n Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and\n Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and\n Kern, Robert and Larson, Eric and Carey, C J and\n Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and\n {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and\n Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and\n Harris, Charles R. and Archibald, Anne M. and\n Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and\n {van Mulbregt}, Paul and {SciPy 1.0 Contributors}},\n title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific\n Computing in Python}},\n journal = {Nature Methods},\n year = {2020},\n volume = {17},\n pages = {261--272},\n adsurl = {https://rdcu.be/b08Wh},\n doi = {10.1038/s41592-019-0686-2},\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): """simple docstring""" def _lowercase ( self : Dict ): return datasets.MetricInfo( description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ), reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"], ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int]=False ): __lowercase = spearmanr(UpperCAmelCase__, UpperCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
17
"""simple docstring""" import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _a = 2 class _lowerCAmelCase : """simple docstring""" def __init__( self : Dict, *, # begin keyword-only arguments UpperCAmelCase__ : str="<s>", UpperCAmelCase__ : Tuple="<pad>", UpperCAmelCase__ : str="</s>", UpperCAmelCase__ : Optional[Any]="<unk>", UpperCAmelCase__ : List[Any]=None, ): __lowercase ,__lowercase ,__lowercase ,__lowercase = bos, unk, pad, eos __lowercase = [] __lowercase = [] __lowercase = {} __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) __lowercase = self.add_symbol(UpperCAmelCase__ ) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(UpperCAmelCase__ ) __lowercase = len(self.symbols ) def __eq__( self : List[str], UpperCAmelCase__ : Dict ): return self.indices == other.indices def __getitem__( self : Optional[int], UpperCAmelCase__ : List[str] ): if idx < len(self.symbols ): return self.symbols[idx] return self.unk_word def __len__( self : str ): return len(self.symbols ) def __contains__( self : Any, UpperCAmelCase__ : Optional[Any] ): return sym in self.indices @classmethod def _lowercase ( cls : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = cls() d.add_from_file(UpperCAmelCase__ ) return d def _lowercase ( self : Dict, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : List[Any]=1, UpperCAmelCase__ : str=False ): if word in self.indices and not overwrite: __lowercase = self.indices[word] __lowercase = self.count[idx] + n return idx else: __lowercase = len(self.symbols ) __lowercase = idx self.symbols.append(UpperCAmelCase__ ) self.count.append(UpperCAmelCase__ ) return idx def _lowercase ( self : Any, UpperCAmelCase__ : str ): return 0 def _lowercase ( self : Tuple, UpperCAmelCase__ : List[Any] ): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): try: with open(UpperCAmelCase__, "r", encoding="utf-8" ) as fd: self.add_from_file(UpperCAmelCase__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("Incorrect encoding detected in {}, please rebuild the dataset".format(UpperCAmelCase__ ) ) return __lowercase = f.readlines() __lowercase = self._load_meta(UpperCAmelCase__ ) for line in lines[indices_start_line:]: try: __lowercase ,__lowercase = line.rstrip().rsplit(" ", 1 ) if field == "#fairseq:overwrite": __lowercase = True __lowercase ,__lowercase = line.rsplit(" ", 1 ) else: __lowercase = False __lowercase = int(UpperCAmelCase__ ) __lowercase = line if word in self and not overwrite: raise RuntimeError( "Duplicate word found when loading Dictionary: '{}'. " "Duplicate words can overwrite earlier ones by adding the " "#fairseq:overwrite flag at the end of the corresponding row " "in the dictionary file. If using the Camembert model, please " "download an updated copy of the model file.".format(UpperCAmelCase__ ) ) self.add_symbol(UpperCAmelCase__, n=UpperCAmelCase__, overwrite=UpperCAmelCase__ ) except ValueError: raise ValueError("Incorrect dictionary format, expected '<token> <cnt> [flags]'" ) def _A ( UpperCamelCase_ : int) -> str: '''simple docstring''' __lowercase = dict((re.sub(r"@@$", "", UpperCamelCase_), v) if k.endswith("@@") else (re.sub(r"$", "</w>", UpperCamelCase_), v) for k, v in d.items()) __lowercase = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[F"""{k}</w>"""] __lowercase = d[k] # restore return da def _A ( UpperCamelCase_ : str, UpperCamelCase_ : str) -> List[Any]: '''simple docstring''' if not os.path.exists(UpperCamelCase_): raise ValueError(F"""path {biogpt_checkpoint_path} does not exist!""") os.makedirs(UpperCamelCase_, exist_ok=UpperCamelCase_) print(F"""Writing results to {pytorch_dump_folder_path}""") # handle various types of models __lowercase = os.path.join(UpperCamelCase_, "checkpoint.pt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {checkpoint_file} does not exist!""") __lowercase = torch.load(UpperCamelCase_, map_location="cpu") __lowercase = chkpt["cfg"]["model"] # dicts __lowercase = os.path.join(UpperCamelCase_, "dict.txt") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {dict_file} does not exist!""") __lowercase = Dictionary.load(UpperCamelCase_) __lowercase = rewrite_dict_keys(src_dict.indices) __lowercase = len(UpperCamelCase_) __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["vocab_file"]) print(F"""Generating {src_vocab_file} of {src_vocab_size} records""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # merges_file (bpecodes) __lowercase = os.path.join(UpperCamelCase_, "bpecodes") if not os.path.isfile(UpperCamelCase_): raise ValueError(F"""path to the file {bpecodes_file} does not exist!""") __lowercase = os.path.join(UpperCamelCase_, VOCAB_FILES_NAMES["merges_file"]) shutil.copyfile(UpperCamelCase_, UpperCamelCase_) # model config __lowercase = os.path.join(UpperCamelCase_, "config.json") __lowercase = { "activation_dropout": args["activation_dropout"], "architectures": ["BioGptForCausalLM"], "attention_probs_dropout_prob": args["attention_dropout"], "bos_token_id": 0, "eos_token_id": 2, "hidden_act": args["activation_fn"], "hidden_dropout_prob": args["dropout"], "hidden_size": args["decoder_embed_dim"], "initializer_range": 0.02, "intermediate_size": args["decoder_ffn_embed_dim"], "layer_norm_eps": 1E-12, "layerdrop": args["decoder_layerdrop"], "max_position_embeddings": args["max_target_positions"], "model_type": "biogpt", "num_attention_heads": args["decoder_attention_heads"], "num_hidden_layers": args["decoder_layers"], "pad_token_id": 1, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_decoder_input_output_embed"], "vocab_size": src_vocab_size, } # good hparam defaults to start with print(F"""Generating {biogpt_model_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # tokenizer config __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) __lowercase = { "bos_token": "<s>", "eos_token": "</s>", "model_max_length": 1024, "pad_token": "<pad>", "special_tokens_map_file": None, "tokenizer_class": "BioGptTokenizer", "unk_token": "<unk>", } print(F"""Generating {biogpt_tokenizer_config_file}""") with open(UpperCamelCase_, "w", encoding="utf-8") as f: f.write(json.dumps(UpperCamelCase_, ensure_ascii=UpperCamelCase_, indent=UpperCamelCase_)) # model __lowercase = chkpt["model"] # remove unneeded keys __lowercase = [ "decoder.version", ] for k in ignore_keys: model_state_dict.pop(UpperCamelCase_, UpperCamelCase_) __lowercase = list(model_state_dict.keys()) for layer_name in layer_names: if layer_name.endswith("output_projection.weight"): __lowercase = model_state_dict.pop(UpperCamelCase_) else: __lowercase = model_state_dict.pop(UpperCamelCase_) __lowercase = BioGptConfig.from_pretrained(UpperCamelCase_) __lowercase = BioGptForCausalLM(UpperCamelCase_) # check that it loads ok model_new.load_state_dict(UpperCamelCase_) # save __lowercase = os.path.join(UpperCamelCase_, UpperCamelCase_) print(F"""Generating {pytorch_weights_dump_path}""") torch.save(UpperCamelCase_, UpperCamelCase_) print("Conversion is done!") if __name__ == "__main__": _a = argparse.ArgumentParser() # Required parameters parser.add_argument( '--biogpt_checkpoint_path', default=None, type=str, required=True, help=( 'Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,' ' bpecodes, etc.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _a = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
17
1
'''simple docstring''' from itertools import count def UpperCAmelCase_ (__a : int = 5_0 ): """simple docstring""" _a : Optional[int] = [1] * min_block_length for n in count(__a ): fill_count_functions.append(1 ) for block_length in range(__a , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1_0_0_0_0_0_0: break return n if __name__ == "__main__": print(f'''{solution() = }''')
5
'''simple docstring''' def UpperCAmelCase_ (__a : int = 1_0**1_2 ): """simple docstring""" _a : List[str] = 1 _a : Optional[int] = 0 _a : Any = 1 _a : List[str] = 1 while numerator <= 2 * min_total - 1: prev_numerator += 2 * numerator numerator += 2 * prev_numerator prev_denominator += 2 * denominator denominator += 2 * prev_denominator return (denominator + 1) // 2 if __name__ == "__main__": print(f'''{solution() = }''')
5
1
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=lowerCamelCase_ ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): snake_case_ = field(default="""language-modeling""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ = Features({"""text""": Value("""string""" )} ) snake_case_ = Features({} ) snake_case_ = "text" @property def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: return {self.text_column: "text"}
152
"""simple docstring""" import math import time from typing import Dict, List, Optional from torch.utils.data import Dataset from transformers import SeqaSeqTrainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowerCamelCase__ ( lowerCamelCase_ ): def __init__( self , *SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) snake_case : Optional[Any] = eval_examples snake_case : Any = post_process_function def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = None , SCREAMING_SNAKE_CASE = "eval" , **SCREAMING_SNAKE_CASE , ): """simple docstring""" snake_case : Optional[int] = gen_kwargs.copy() snake_case : Optional[int] = ( gen_kwargs["max_length"] if gen_kwargs.get("max_length" ) is not None else self.args.generation_max_length ) snake_case : Any = ( gen_kwargs["num_beams"] if gen_kwargs.get("num_beams" ) is not None else self.args.generation_num_beams ) snake_case : Optional[int] = gen_kwargs snake_case : List[Any] = self.eval_dataset if eval_dataset is None else eval_dataset snake_case : List[Any] = self.get_eval_dataloader(SCREAMING_SNAKE_CASE ) snake_case : Any = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. snake_case : List[str] = self.compute_metrics snake_case : Tuple = None snake_case : str = time.time() snake_case : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case : List[Any] = eval_loop( SCREAMING_SNAKE_CASE , description="Evaluation" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , ) finally: snake_case : List[str] = compute_metrics snake_case : str = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default snake_case : Tuple = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) snake_case : List[Any] = self.compute_metrics(SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case : Any = metrics.pop(SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: snake_case : List[str] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) snake_case : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , SCREAMING_SNAKE_CASE ) return metrics def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE = "test" , **SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[int] = gen_kwargs.copy() snake_case : int = self.get_test_dataloader(SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. snake_case : Optional[int] = self.compute_metrics snake_case : Dict = None snake_case : int = time.time() snake_case : Optional[Any] = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop try: snake_case : Dict = eval_loop( SCREAMING_SNAKE_CASE , description="Prediction" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=SCREAMING_SNAKE_CASE , metric_key_prefix=SCREAMING_SNAKE_CASE , ) finally: snake_case : Optional[int] = compute_metrics snake_case : Dict = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output snake_case : int = self.post_process_function(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , "predict" ) snake_case : Any = self.compute_metrics(SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): snake_case : List[str] = metrics.pop(SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=SCREAMING_SNAKE_CASE )
148
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
355
import os import unittest from huggingface_hub.utils import are_progress_bars_disabled import transformers.models.bart.tokenization_bart from transformers import logging from transformers.testing_utils import CaptureLogger, mockenv, mockenv_context from transformers.utils.logging import disable_progress_bar, enable_progress_bar class A_ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : List[Any] = logging.get_logger() # the current default level is logging.WARNING __lowerCamelCase : Dict = logging.get_verbosity() logging.set_verbosity_error() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_warning() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_info() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) logging.set_verbosity_debug() self.assertEqual(logger.getEffectiveLevel() ,logging.get_verbosity()) # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): __lowerCamelCase : Optional[int] = logging.get_verbosity() __lowerCamelCase : str = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : Tuple = 'Testing 1, 2, 3' # should be able to log warnings (if default settings weren't overridden by `pytest --log-level-all`) if level_origin <= logging.WARNING: with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') # this is setting the level for all of `transformers.*` loggers logging.set_verbosity_error() # should not be able to log warnings with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,'') # should be able to log warnings again logging.set_verbosity_warning() with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') # restore to the original level logging.set_verbosity(SCREAMING_SNAKE_CASE__) @mockenv(TRANSFORMERS_VERBOSITY='error') def lowerCAmelCase ( self : Tuple): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() # this action activates the env var __lowerCamelCase : int = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : int = os.getenv('TRANSFORMERS_VERBOSITY' ,SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = logging.log_levels[env_level_str] __lowerCamelCase : Tuple = logging.get_verbosity() self.assertEqual( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,F"TRANSFORMERS_VERBOSITY={env_level_str}/{env_level}, but internal verbosity is {current_level}" ,) # restore to the original level __lowerCamelCase : List[str] = '' transformers.utils.logging._reset_library_root_logger() @mockenv(TRANSFORMERS_VERBOSITY='super-error') def lowerCAmelCase ( self : List[Any]): # reset for the env var to take effect, next time some logger call is made transformers.utils.logging._reset_library_root_logger() __lowerCamelCase : List[str] = logging.logging.getLogger() with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: # this action activates the env var logging.get_logger('transformers.models.bart.tokenization_bart') self.assertIn('Unknown option TRANSFORMERS_VERBOSITY=super-error' ,cl.out) # no need to restore as nothing was changed def lowerCAmelCase ( self : Any): # testing `logger.warning_advice()` transformers.utils.logging._reset_library_root_logger() __lowerCamelCase : Tuple = logging.get_logger('transformers.models.bart.tokenization_bart') __lowerCamelCase : Optional[int] = 'Testing 1, 2, 3' with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS='1'): # nothing should be logged as env var disables this method with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,'') with mockenv_context(TRANSFORMERS_NO_ADVISORY_WARNINGS=''): # should log normally as TRANSFORMERS_NO_ADVISORY_WARNINGS is unset with CaptureLogger(SCREAMING_SNAKE_CASE__) as cl: logger.warning_advice(SCREAMING_SNAKE_CASE__) self.assertEqual(cl.out ,msg + '\n') def SCREAMING_SNAKE_CASE__ ( ) -> Any: disable_progress_bar() assert are_progress_bars_disabled() enable_progress_bar() assert not are_progress_bars_disabled()
113
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """huggingface/informer-tourism-monthly""": ( """https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json""" ), # See all Informer models at https://huggingface.co/models?filter=informer } class lowercase__ ( _UpperCAmelCase ): A__ : Tuple ="""informer""" A__ : Dict ={ """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : Dict , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "student_t" , UpperCAmelCase_ : str = "nll" , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : List[int] = None , UpperCAmelCase_ : Optional[Union[str, bool]] = "mean" , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : float = 0.05 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : str = "prob" , UpperCAmelCase_ : int = 5 , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : Union[str, Any] , ): # time series specific configuration SCREAMING_SNAKE_CASE__ = prediction_length SCREAMING_SNAKE_CASE__ = context_length or prediction_length SCREAMING_SNAKE_CASE__ = distribution_output SCREAMING_SNAKE_CASE__ = loss SCREAMING_SNAKE_CASE__ = input_size SCREAMING_SNAKE_CASE__ = num_time_features SCREAMING_SNAKE_CASE__ = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE__ = scaling SCREAMING_SNAKE_CASE__ = num_dynamic_real_features SCREAMING_SNAKE_CASE__ = num_static_real_features SCREAMING_SNAKE_CASE__ = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(UpperCAmelCase_ ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) SCREAMING_SNAKE_CASE__ = cardinality else: SCREAMING_SNAKE_CASE__ = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(UpperCAmelCase_ ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) SCREAMING_SNAKE_CASE__ = embedding_dimension else: SCREAMING_SNAKE_CASE__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] SCREAMING_SNAKE_CASE__ = num_parallel_samples # Transformer architecture configuration SCREAMING_SNAKE_CASE__ = input_size * len(self.lags_sequence ) + self._number_of_features SCREAMING_SNAKE_CASE__ = d_model SCREAMING_SNAKE_CASE__ = encoder_attention_heads SCREAMING_SNAKE_CASE__ = decoder_attention_heads SCREAMING_SNAKE_CASE__ = encoder_ffn_dim SCREAMING_SNAKE_CASE__ = decoder_ffn_dim SCREAMING_SNAKE_CASE__ = encoder_layers SCREAMING_SNAKE_CASE__ = decoder_layers SCREAMING_SNAKE_CASE__ = dropout SCREAMING_SNAKE_CASE__ = attention_dropout SCREAMING_SNAKE_CASE__ = activation_dropout SCREAMING_SNAKE_CASE__ = encoder_layerdrop SCREAMING_SNAKE_CASE__ = decoder_layerdrop SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = init_std SCREAMING_SNAKE_CASE__ = use_cache # Informer SCREAMING_SNAKE_CASE__ = attention_type SCREAMING_SNAKE_CASE__ = sampling_factor SCREAMING_SNAKE_CASE__ = distil super().__init__(is_encoder_decoder=UpperCAmelCase_ , **UpperCAmelCase_ ) @property def A_ ( self : Tuple ): return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
176
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __snake_case = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class lowercase__ ( _UpperCAmelCase , unittest.TestCase ): A__ : str =DebertaVaTokenizer A__ : List[str] =DebertaVaTokenizerFast A__ : Any =True A__ : str =True def A_ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , unk_token='<unk>' ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] ): SCREAMING_SNAKE_CASE__ = 'this is a test' SCREAMING_SNAKE_CASE__ = 'this is a test' return input_text, output_text def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = '<pad>' SCREAMING_SNAKE_CASE__ = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_ ) , UpperCAmelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_ ) , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<pad>' ) self.assertEqual(vocab_keys[1] , '<unk>' ) self.assertEqual(vocab_keys[-1] , '[PAD]' ) self.assertEqual(len(UpperCAmelCase_ ) , 30001 ) def A_ ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 30000 ) def A_ ( self : Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = ' \tHeLLo!how \n Are yoU? ' SCREAMING_SNAKE_CASE__ = ['▁hello', '!', 'how', '▁are', '▁you', '?'] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def A_ ( self : Any ): pass @unittest.skip('There is an inconsistency between slow and fast tokenizer due to a bug in the fast one.' ) def A_ ( self : Tuple ): pass def A_ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : List[str] ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁i', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Tuple ): # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', '▁', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '▁', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Any ): # fmt: off SCREAMING_SNAKE_CASE__ = ' \tHeLLo!how \n Are yoU? ' SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', 'e', '<unk>', 'o', '!', 'how', '▁', '<unk>', 're', '▁yo', '<unk>', '?'] # fmt: on SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , do_lower_case=UpperCAmelCase_ , split_by_punct=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : int ): SCREAMING_SNAKE_CASE__ = self.get_tokenizer() SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE__ = 'This is a test' SCREAMING_SNAKE_CASE__ = [13, 1, 4398, 25, 21, 1289] SCREAMING_SNAKE_CASE__ = ['▁', 'T', 'his', '▁is', '▁a', '▁test'] SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', 'his', '▁is', '▁a', '▁test'] SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = DebertaVaTokenizerFast(UpperCAmelCase_ , keep_accents=UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) # fmt: off SCREAMING_SNAKE_CASE__ = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ = [13, 1, 23, 386, 19, 561, 3050, 15, 17, 48, 25, 8256, 18, 1, 9] SCREAMING_SNAKE_CASE__ = ['▁', 'I', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', 'é', '.', ] SCREAMING_SNAKE_CASE__ = ['▁', '<unk>', '▁was', '▁born', '▁in', '▁9', '2000', ',', '▁and', '▁this', '▁is', '▁fal', 's', '<unk>', '.', ] # fmt: on SCREAMING_SNAKE_CASE__ = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.tokenize(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = rust_tokenizer.convert_ids_to_tokens(UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def A_ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ = DebertaVaTokenizer(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('sequence builders' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('multi-sequence build' ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , UpperCAmelCase_ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , UpperCAmelCase_ , ) @slow def A_ ( self : Optional[Any] ): # fmt: off SCREAMING_SNAKE_CASE__ = {'input_ids': [[1, 39867, 36, 19390, 486, 27, 35052, 81436, 18, 60685, 1225, 7, 35052, 81436, 18, 9367, 16899, 18, 15937, 53, 594, 773, 18, 16287, 30465, 36, 15937, 6, 41139, 38, 36979, 60763, 191, 6, 34132, 99, 6, 50538, 390, 43230, 6, 34132, 2779, 20850, 14, 699, 1072, 1194, 36, 382, 10901, 53, 7, 699, 1072, 2084, 36, 20422, 630, 53, 19, 105, 3049, 1896, 1053, 16899, 1506, 11, 37978, 4243, 7, 1237, 31869, 200, 16566, 654, 6, 35052, 81436, 7, 55630, 13593, 4, 2], [1, 26, 15011, 13, 667, 8, 1053, 18, 23611, 1237, 72356, 12820, 34, 104134, 1209, 35, 13313, 6627, 21, 202, 347, 7, 164, 2399, 11, 46, 4485, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1232, 2864, 15785, 14951, 105, 5, 8581, 1250, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'token_type_ids': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='microsoft/deberta-v2-xlarge' , revision='ad6e42c1532ddf3a15c39246b63f5559d558b670' , )
176
1
import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Optional[int] = tmp_path / "file.csv" __snake_case : str = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : int = tmp_path / "malformed_file.csv" __snake_case : List[Any] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Optional[int] = tmp_path / "csv_with_image.csv" __snake_case : Optional[Any] = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : str = tmp_path / "csv_with_label.csv" __snake_case : Optional[int] = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) @pytest.fixture def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : int = tmp_path / "csv_with_int_list.csv" __snake_case : Tuple = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(__lowerCamelCase , "w" ) as f: f.write(__lowerCamelCase ) return str(__lowerCamelCase ) def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ): __snake_case : int = Csv() __snake_case : Union[str, Any] = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(__lowerCamelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(__lowerCamelCase ) in record.message for record in caplog.records ) @require_pil def lowerCAmelCase_ ( __lowerCamelCase ): with open(__lowerCamelCase , encoding="utf-8" ) as f: __snake_case : int = f.read().splitlines()[1] __snake_case : Dict = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) __snake_case : List[str] = csv._generate_tables([[csv_file_with_image]] ) __snake_case : Any = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() __snake_case : str = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def lowerCAmelCase_ ( __lowerCamelCase ): with open(__lowerCamelCase , encoding="utf-8" ) as f: __snake_case : Optional[int] = f.read().splitlines()[1:] __snake_case : Any = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) __snake_case : str = csv._generate_tables([[csv_file_with_label]] ) __snake_case : List[Any] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() __snake_case : Any = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(__lowerCamelCase ) for label in labels] def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case : Tuple = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda __lowerCamelCase : [int(__lowerCamelCase ) for i in x.split()]} ) __snake_case : List[str] = csv._generate_tables([[csv_file_with_int_list]] ) __snake_case : str = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) __snake_case : str = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
134
import argparse import os import torch from transformers.utils import WEIGHTS_NAME _snake_case : Union[str, Any] = ["small", "medium", "large"] _snake_case : List[Any] = "lm_head.decoder.weight" _snake_case : Optional[Any] = "lm_head.weight" def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): __snake_case : Tuple = torch.load(__lowerCamelCase ) __snake_case : Dict = d.pop(__lowerCamelCase ) os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) torch.save(__lowerCamelCase , os.path.join(__lowerCamelCase , __lowerCamelCase ) ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() parser.add_argument("--dialogpt_path", default=".", type=str) _snake_case : Any = parser.parse_args() for MODEL in DIALOGPT_MODELS: _snake_case : Dict = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') _snake_case : List[str] = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
134
1
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase : list[int] , lowercase : list[int] , lowercase : int ): '''simple docstring''' lowerCamelCase_ = list(range(len(lowercase ) ) ) lowerCamelCase_ = [v / w for v, w in zip(lowercase , lowercase )] index.sort(key=lambda lowercase : ratio[i] , reverse=lowercase ) lowerCamelCase_ = 0 lowerCamelCase_ = [0] * len(lowercase ) for i in index: if weight[i] <= capacity: lowerCamelCase_ = 1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase_ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
204
import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCamelCase : Any = logging.get_logger(__name__) class A( UpperCamelCase ): '''simple docstring''' def __init__( self : Dict , *A_ : Optional[int] , **A_ : int ) -> None: """simple docstring""" warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , A_ , ) super().__init__(*A_ , **A_ )
204
1
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __A : Optional[Any] = logging.get_logger(__name__) def lowercase ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [] def parse_line(_SCREAMING_SNAKE_CASE : Tuple ): for line in fp: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): _UpperCAmelCase = line.decode('''UTF-8''' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(''' ''' ): # process a single warning and move it to `selected_warnings`. if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(_SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(_SCREAMING_SNAKE_CASE ) buffer.clear() continue else: _UpperCAmelCase = line.strip() buffer.append(_SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(_SCREAMING_SNAKE_CASE ): _UpperCAmelCase = os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(_SCREAMING_SNAKE_CASE ) as fp: parse_line(_SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(_SCREAMING_SNAKE_CASE ) as fp: parse_line(_SCREAMING_SNAKE_CASE ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def lowercase ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' _UpperCAmelCase = set() _UpperCAmelCase = [os.path.join(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for p in os.listdir(_SCREAMING_SNAKE_CASE ) if (p.endswith('''.zip''' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def lowercase ( _SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' return values.split(''',''' ) __A : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument("--workflow_run_id", type=str, required=True, help="A GitHub Actions workflow run id.") parser.add_argument( "--output_dir", type=str, required=True, help="Where to store the downloaded artifacts and other result files.", ) parser.add_argument("--token", default=None, type=str, help="A token that has actions:read permission.") # optional parameters parser.add_argument( "--targets", default="DeprecationWarning,UserWarning,FutureWarning", type=list_str, help="Comma-separated list of target warning(s) which we want to extract.", ) parser.add_argument( "--from_gh", action="store_true", help="If running from a GitHub action workflow and collecting warnings from its artifacts.", ) __A : Dict = parser.parse_args() __A : Optional[Any] = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __A : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, "artifacts.json"), "w", encoding="UTF-8") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("=" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __A : Any = extract_warnings(args.output_dir, args.targets) __A : Union[str, Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, "selected_warnings.json"), "w", encoding="UTF-8") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
364
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py __A : Union[str, Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. __A : Tuple = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) __A : List[str] = spec.loader.load_module() __A : Any = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` __A : Optional[int] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") __A : List[str] = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def lowercase ( ): '''simple docstring''' _UpperCAmelCase = [] for config_class in list(CONFIG_MAPPING.values() ): _UpperCAmelCase = False # source code of `config_class` _UpperCAmelCase = inspect.getsource(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = _re_checkpoint.findall(_SCREAMING_SNAKE_CASE ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` _UpperCAmelCase , _UpperCAmelCase = checkpoint # verify the checkpoint name corresponds to the checkpoint link _UpperCAmelCase = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: _UpperCAmelCase = True break _UpperCAmelCase = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = '''\n'''.join(sorted(_SCREAMING_SNAKE_CASE ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
326
0
from itertools import count def UpperCAmelCase_ ( __snake_case = 50 ) -> int: """simple docstring""" _lowercase =[1] * min_block_length for n in count(__snake_case ): fill_count_functions.append(1 ) for block_length in range(__snake_case , n + 1 ): for block_start in range(n - block_length ): fill_count_functions[n] += fill_count_functions[ n - block_start - block_length - 1 ] fill_count_functions[n] += 1 if fill_count_functions[n] > 1000000: break return n if __name__ == "__main__": print(f'''{solution() = }''')
5
UpperCAmelCase__ = { '''A''': '''.-''', '''B''': '''-...''', '''C''': '''-.-.''', '''D''': '''-..''', '''E''': '''.''', '''F''': '''..-.''', '''G''': '''--.''', '''H''': '''....''', '''I''': '''..''', '''J''': '''.---''', '''K''': '''-.-''', '''L''': '''.-..''', '''M''': '''--''', '''N''': '''-.''', '''O''': '''---''', '''P''': '''.--.''', '''Q''': '''--.-''', '''R''': '''.-.''', '''S''': '''...''', '''T''': '''-''', '''U''': '''..-''', '''V''': '''...-''', '''W''': '''.--''', '''X''': '''-..-''', '''Y''': '''-.--''', '''Z''': '''--..''', '''1''': '''.----''', '''2''': '''..---''', '''3''': '''...--''', '''4''': '''....-''', '''5''': '''.....''', '''6''': '''-....''', '''7''': '''--...''', '''8''': '''---..''', '''9''': '''----.''', '''0''': '''-----''', '''&''': '''.-...''', '''@''': '''.--.-.''', ''':''': '''---...''', ''',''': '''--..--''', '''.''': '''.-.-.-''', '''\'''': '''.----.''', '''"''': '''.-..-.''', '''?''': '''..--..''', '''/''': '''-..-.''', '''=''': '''-...-''', '''+''': '''.-.-.''', '''-''': '''-....-''', '''(''': '''-.--.''', ''')''': '''-.--.-''', '''!''': '''-.-.--''', ''' ''': '''/''' } # Exclamation mark is not in ITU-R recommendation # fmt: on UpperCAmelCase__ = {value: key for key, value in MORSE_CODE_DICT.items()} def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return " ".join(MORSE_CODE_DICT[char] for char in message.upper() ) def UpperCAmelCase_ ( __snake_case ) -> str: """simple docstring""" return "".join(REVERSE_DICT[char] for char in message.split() ) def UpperCAmelCase_ ( ) -> None: """simple docstring""" _lowercase ='''Morse code here!''' print(__snake_case ) _lowercase =encrypt(__snake_case ) print(__snake_case ) _lowercase =decrypt(__snake_case ) print(__snake_case ) if __name__ == "__main__": main()
5
1
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
121
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : Collection[float] | None = None ): if components is None: lowercase__ : List[Any] = [] lowercase__ : str = list(SCREAMING_SNAKE_CASE ) def __len__( self : Tuple ): return len(self.__components ) def __str__( self : int ): return "(" + ",".join(map(SCREAMING_SNAKE_CASE , self.__components ) ) + ")" def __add__( self : List[Any] , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Optional[Any] = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : int = [self.__components[i] + other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: raise Exception("must have the same size" ) def __sub__( self : Any , SCREAMING_SNAKE_CASE : Vector ): lowercase__ : Any = len(self ) if size == len(SCREAMING_SNAKE_CASE ): lowercase__ : Any = [self.__components[i] - other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return Vector(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("must have the same size" ) @overload def __mul__( self : int , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , (float, int) ): lowercase__ : Dict = [c * other for c in self.__components] return Vector(SCREAMING_SNAKE_CASE ) elif isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(self ) == len(SCREAMING_SNAKE_CASE ): lowercase__ : List[str] = len(self ) lowercase__ : Union[str, Any] = [self.__components[i] * other.component(SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE )] return sum(SCREAMING_SNAKE_CASE ) else: # error case raise Exception("invalid operand!" ) def snake_case ( self : Any ): return Vector(self.__components ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("index out of range" ) def snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): assert -len(self.__components ) <= pos < len(self.__components ) lowercase__ : int = value def snake_case ( self : Any ): if len(self.__components ) == 0: raise Exception("Vector is empty" ) lowercase__ : Union[str, Any] = [c**2 for c in self.__components] return math.sqrt(sum(SCREAMING_SNAKE_CASE ) ) def snake_case ( self : Tuple , SCREAMING_SNAKE_CASE : Vector , SCREAMING_SNAKE_CASE : bool = False ): lowercase__ : Optional[Any] = self * other lowercase__ : Union[str, Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) return Vector([0] * dimension ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , lowerCamelCase__ )) lowercase__ : Tuple = [0] * dimension lowercase__ : Union[str, Any] = 1 return Vector(lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" assert ( isinstance(lowerCamelCase__ , lowerCamelCase__ ) and isinstance(lowerCamelCase__ , lowerCamelCase__ ) and (isinstance(lowerCamelCase__ , (int, float) )) ) return x * scalar + y def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : Optional[Any] = [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] return Vector(lowerCamelCase__ ) class snake_case__: """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE : list[list[float]] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): lowercase__ : List[str] = matrix lowercase__ : int = w lowercase__ : str = h def __str__( self : int ): lowercase__ : int = "" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : str , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Union[str, Any] = [] for i in range(self.__height ): lowercase__ : int = [ self.__matrix[i][j] + other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrix must have the same dimension!" ) def __sub__( self : Dict , SCREAMING_SNAKE_CASE : Matrix ): if self.__width == other.width() and self.__height == other.height(): lowercase__ : Dict = [] for i in range(self.__height ): lowercase__ : Optional[Any] = [ self.__matrix[i][j] - other.component(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] matrix.append(SCREAMING_SNAKE_CASE ) return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) else: raise Exception("matrices must have the same dimension!" ) @overload def __mul__( self : Any , SCREAMING_SNAKE_CASE : float ): ... @overload def __mul__( self : Tuple , SCREAMING_SNAKE_CASE : Vector ): ... def __mul__( self : Optional[Any] , SCREAMING_SNAKE_CASE : float | Vector ): if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # matrix-vector if len(SCREAMING_SNAKE_CASE ) == self.__width: lowercase__ : Any = zero_vector(self.__height ) for i in range(self.__height ): lowercase__ : Union[str, Any] = [ self.__matrix[i][j] * other.component(SCREAMING_SNAKE_CASE ) for j in range(self.__width ) ] ans.change_component(SCREAMING_SNAKE_CASE , sum(SCREAMING_SNAKE_CASE ) ) return ans else: raise Exception( "vector must have the same size as the " "number of columns of the matrix!" ) elif isinstance(SCREAMING_SNAKE_CASE , (int, float) ): # matrix-scalar lowercase__ : str = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(SCREAMING_SNAKE_CASE , self.__width , self.__height ) return None def snake_case ( self : Union[str, Any] ): return self.__height def snake_case ( self : Optional[Any] ): return self.__width def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : float ): if 0 <= x < self.__height and 0 <= y < self.__width: lowercase__ : Union[str, Any] = value else: raise Exception("change_component: indices out of bounds" ) def snake_case ( self : int , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) lowercase__ : str = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(SCREAMING_SNAKE_CASE ) ): lowercase__ : Optional[int] = minor[i][:y] + minor[i][y + 1 :] return Matrix(SCREAMING_SNAKE_CASE , self.__width - 1 , self.__height - 1 ).determinant() def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: raise Exception("Indices out of bounds" ) def snake_case ( self : List[str] ): if self.__height != self.__width: raise Exception("Matrix is not square" ) if self.__height < 1: raise Exception("Matrix has no element" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: lowercase__ : Dict = [ self.__matrix[0][y] * self.cofactor(0 , SCREAMING_SNAKE_CASE ) for y in range(self.__width ) ] return sum(SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : list[list[float]] = [[0] * n for _ in range(lowerCamelCase__ )] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" random.seed(lowerCamelCase__ ) lowercase__ : list[list[float]] = [ [random.randint(lowerCamelCase__ , lowerCamelCase__ ) for _ in range(lowerCamelCase__ )] for _ in range(lowerCamelCase__ ) ] return Matrix(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ )
121
1
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { """huggingface/autoformer-tourism-monthly""": """https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json""", } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = 'autoformer' __lowerCamelCase = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self , lowercase = None , lowercase = None , lowercase = "student_t" , lowercase = "nll" , lowercase = 1 , lowercase = [1, 2, 3, 4, 5, 6, 7] , lowercase = True , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 64 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = 2 , lowercase = 32 , lowercase = 32 , lowercase = "gelu" , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 0.1 , lowercase = 100 , lowercase = 0.02 , lowercase = True , lowercase=True , lowercase = 10 , lowercase = 25 , lowercase = 3 , **lowercase , ) -> Optional[Any]: '''simple docstring''' A__ = prediction_length A__ = context_length if context_length is not None else prediction_length A__ = distribution_output A__ = loss A__ = input_size A__ = num_time_features A__ = lags_sequence A__ = scaling A__ = num_dynamic_real_features A__ = num_static_real_features A__ = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) A__ = cardinality else: A__ = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(lowercase ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) A__ = embedding_dimension else: A__ = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ = num_parallel_samples # Transformer architecture configuration A__ = input_size * len(self.lags_sequence ) + self._number_of_features A__ = d_model A__ = encoder_attention_heads A__ = decoder_attention_heads A__ = encoder_ffn_dim A__ = decoder_ffn_dim A__ = encoder_layers A__ = decoder_layers A__ = dropout A__ = attention_dropout A__ = activation_dropout A__ = encoder_layerdrop A__ = decoder_layerdrop A__ = activation_function A__ = init_std A__ = use_cache # Autoformer A__ = label_length A__ = moving_average A__ = autocorrelation_factor super().__init__(is_encoder_decoder=lowercase , **lowercase ) @property def UpperCamelCase ( self ) -> int: '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
68
"""simple docstring""" __UpperCamelCase = frozenset( [ '''prompt''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''']) __UpperCamelCase = frozenset( [ '''prompt''', '''image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # Text guided image variation with an image mask '''prompt''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''image''', '''mask_image''', '''negative_prompt''']) __UpperCamelCase = frozenset( [ # image variation with an image mask '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''image''', '''mask_image''']) __UpperCamelCase = frozenset( [ '''example_image''', '''image''', '''mask_image''', '''height''', '''width''', '''guidance_scale''', ] ) __UpperCamelCase = frozenset(['''example_image''', '''image''', '''mask_image''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''class_labels''']) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset(['''batch_size''']) __UpperCamelCase = frozenset([]) __UpperCamelCase = frozenset( [ '''prompt''', '''audio_length_in_s''', '''guidance_scale''', '''negative_prompt''', '''prompt_embeds''', '''negative_prompt_embeds''', '''cross_attention_kwargs''', ] ) __UpperCamelCase = frozenset(['''prompt''', '''negative_prompt''']) __UpperCamelCase = frozenset(['''input_tokens''']) __UpperCamelCase = frozenset(['''input_tokens'''])
113
0
'''simple docstring''' import sys from collections import defaultdict class _lowercase : def __init__( self: Tuple ): lowerCamelCase__ : int = [] def lowerCamelCase_ ( self: Dict , UpperCamelCase__: int ): return self.node_position[vertex] def lowerCamelCase_ ( self: Any , UpperCamelCase__: Any , UpperCamelCase__: int ): lowerCamelCase__ : Optional[Any] = pos def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: int , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[str] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCamelCase__ : Union[str, Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCamelCase__ : Optional[Any] = 2 * start + 1 else: lowerCamelCase__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCamelCase__ , lowerCamelCase__ : int = heap[smallest_child], positions[smallest_child] lowerCamelCase__ , lowerCamelCase__ : int = ( heap[start], positions[start], ) lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = temp, tempa lowerCamelCase__ : Tuple = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , UpperCamelCase__ ) self.top_to_bottom(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: int , UpperCamelCase__: Tuple , UpperCamelCase__: int ): lowerCamelCase__ : Any = position[index] while index != 0: lowerCamelCase__ : Tuple = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCamelCase__ : str = heap[parent] lowerCamelCase__ : List[Any] = position[parent] self.set_position(position[parent] , UpperCamelCase__ ) else: lowerCamelCase__ : int = val lowerCamelCase__ : Tuple = temp self.set_position(UpperCamelCase__ , UpperCamelCase__ ) break lowerCamelCase__ : Optional[Any] = parent else: lowerCamelCase__ : Union[str, Any] = val lowerCamelCase__ : Any = temp self.set_position(UpperCamelCase__ , 0 ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Optional[Any] , UpperCamelCase__: Any ): lowerCamelCase__ : Tuple = len(UpperCamelCase__ ) // 2 - 1 for i in range(UpperCamelCase__ , -1 , -1 ): self.top_to_bottom(UpperCamelCase__ , UpperCamelCase__ , len(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCamelCase_ ( self: str , UpperCamelCase__: str , UpperCamelCase__: Any ): lowerCamelCase__ : Union[str, Any] = positions[0] lowerCamelCase__ : Any = sys.maxsize self.top_to_bottom(UpperCamelCase__ , 0 , len(UpperCamelCase__ ) , UpperCamelCase__ ) return temp def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> str: lowerCamelCase__ : Any = Heap() lowerCamelCase__ : Any = [0] * len(UpperCamelCase ) lowerCamelCase__ : int = [-1] * len(UpperCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCamelCase__ : Tuple = [] # Heap of Distance of vertices from their neighboring vertex lowerCamelCase__ : Optional[int] = [] for vertex in range(len(UpperCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCamelCase ) heap.node_position.append(UpperCamelCase ) lowerCamelCase__ : int = [] lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Dict = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = distance heap.heapify(UpperCamelCase , UpperCamelCase ) for _ in range(1 , len(UpperCamelCase ) ): lowerCamelCase__ : Optional[int] = heap.delete_minimum(UpperCamelCase , UpperCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCamelCase__ : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCamelCase )] ): lowerCamelCase__ : Tuple = distance heap.bottom_to_top( UpperCamelCase , heap.get_position(UpperCamelCase ) , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Tuple = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _A : Tuple =int(input('''Enter number of edges: ''').strip()) _A : Union[str, Any] =defaultdict(list) for _ in range(edges_number): _A : Any =[int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
129
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _A : Union[str, Any] =8 def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> Tuple: lowerCamelCase__ : List[str] = x.device lowerCamelCase__ : Any = (x * 255).int().clamp(0 , 255 ) lowerCamelCase__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase ) lowerCamelCase__ : int = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b c h w -> b c 1 h w""" ) lowerCamelCase__ : Tuple = ((x & mask) != 0).float() lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """b c d h w -> b (c d) h w""" ) lowerCamelCase__ : Optional[int] = bits * 2 - 1 return bits def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase=BITS ) -> List[Any]: lowerCamelCase__ : List[Any] = x.device lowerCamelCase__ : Dict = (x > 0).int() lowerCamelCase__ : Optional[Any] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=UpperCamelCase , dtype=torch.intaa ) lowerCamelCase__ : List[Any] = rearrange(UpperCamelCase , """d -> d 1 1""" ) lowerCamelCase__ : List[str] = rearrange(UpperCamelCase , """b (c d) h w -> b c d h w""" , d=8 ) lowerCamelCase__ : List[Any] = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = 0.0 , UpperCamelCase = True , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDIMSchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowerCamelCase__ : Optional[int] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[timestep] lowerCamelCase__ : List[str] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowerCamelCase__ : Optional[int] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[int] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowerCamelCase__ : Dict = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : Optional[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowerCamelCase__ : Tuple = self._get_variance(UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Optional[int] = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowerCamelCase__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Optional[Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowerCamelCase__ : Tuple = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowerCamelCase__ : Dict = model_output.device if torch.is_tensor(UpperCamelCase ) else """cpu""" lowerCamelCase__ : str = torch.randn(model_output.shape , dtype=model_output.dtype , generator=UpperCamelCase ).to(UpperCamelCase ) lowerCamelCase__ : Optional[Any] = self._get_variance(UpperCamelCase , UpperCamelCase ) ** 0.5 * eta * noise lowerCamelCase__ : int = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) def SCREAMING_SNAKE_CASE_ (self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase="epsilon" , UpperCamelCase=None , UpperCamelCase = True , ) -> Union[DDPMSchedulerOutput, Tuple]: lowerCamelCase__ : List[Any] = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowerCamelCase__ , lowerCamelCase__ : Optional[Any] = torch.split(UpperCamelCase , sample.shape[1] , dim=1 ) else: lowerCamelCase__ : List[str] = None # 1. compute alphas, betas lowerCamelCase__ : str = self.alphas_cumprod[t] lowerCamelCase__ : List[str] = self.alphas_cumprod[t - 1] if t > 0 else self.one lowerCamelCase__ : str = 1 - alpha_prod_t lowerCamelCase__ : List[Any] = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowerCamelCase__ : Union[str, Any] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowerCamelCase__ : Optional[Any] = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowerCamelCase__ : str = self.bit_scale if self.config.clip_sample: lowerCamelCase__ : List[Any] = torch.clamp(UpperCamelCase , -scale , UpperCamelCase ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : Tuple = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowerCamelCase__ : Tuple = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowerCamelCase__ : int = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowerCamelCase__ : Optional[Any] = 0 if t > 0: lowerCamelCase__ : Optional[Any] = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=UpperCamelCase ).to(model_output.device ) lowerCamelCase__ : str = (self._get_variance(UpperCamelCase , predicted_variance=UpperCamelCase ) ** 0.5) * noise lowerCamelCase__ : Optional[int] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=UpperCamelCase , pred_original_sample=UpperCamelCase ) class _lowercase ( _lowercase ): def __init__( self: List[str] , UpperCamelCase__: UNetaDConditionModel , UpperCamelCase__: Union[DDIMScheduler, DDPMScheduler] , UpperCamelCase__: Optional[float] = 1.0 , ): super().__init__() lowerCamelCase__ : Optional[int] = bit_scale lowerCamelCase__ : List[Any] = ( ddim_bit_scheduler_step if isinstance(UpperCamelCase__ , UpperCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) @torch.no_grad() def __call__( self: Union[str, Any] , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 256 , UpperCamelCase__: Optional[int] = 50 , UpperCamelCase__: Optional[torch.Generator] = None , UpperCamelCase__: Optional[int] = 1 , UpperCamelCase__: Optional[str] = "pil" , UpperCamelCase__: bool = True , **UpperCamelCase__: int , ): lowerCamelCase__ : List[Any] = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=UpperCamelCase__ , ) lowerCamelCase__ : Union[str, Any] = decimal_to_bits(UpperCamelCase__ ) * self.bit_scale lowerCamelCase__ : Union[str, Any] = latents.to(self.device ) self.scheduler.set_timesteps(UpperCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowerCamelCase__ : Tuple = self.unet(UpperCamelCase__ , UpperCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowerCamelCase__ : Any = self.scheduler.step(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ).prev_sample lowerCamelCase__ : Dict = bits_to_decimal(UpperCamelCase__ ) if output_type == "pil": lowerCamelCase__ : int = self.numpy_to_pil(UpperCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCamelCase__ )
129
1
'''simple docstring''' import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging __snake_case : Optional[int] = logging.get_logger(__name__) class lowerCamelCase ( lowercase_ ): '''simple docstring''' __snake_case = ['input_features', 'is_longer'] def __init__( self : str , lowerCAmelCase_ : List[str]=64 , lowerCAmelCase_ : Union[str, Any]=4_80_00 , lowerCAmelCase_ : List[Any]=4_80 , lowerCAmelCase_ : str=10 , lowerCAmelCase_ : str=10_24 , lowerCAmelCase_ : List[str]=0.0 , lowerCAmelCase_ : Tuple=False , lowerCAmelCase_ : float = 0 , lowerCAmelCase_ : float = 1_40_00 , lowerCAmelCase_ : int = None , lowerCAmelCase_ : str = "fusion" , lowerCAmelCase_ : str = "repeatpad" , **lowerCAmelCase_ : int , ) -> List[str]: '''simple docstring''' super().__init__( feature_size=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , padding_value=lowerCAmelCase_ , return_attention_mask=lowerCAmelCase_ , **lowerCAmelCase_ , ) A__ : Union[str, Any] =top_db A__ : Tuple =truncation A__ : List[str] =padding A__ : List[Any] =fft_window_size A__ : Optional[Any] =(fft_window_size >> 1) + 1 A__ : List[str] =hop_length A__ : List[Any] =max_length_s A__ : List[str] =max_length_s * sampling_rate A__ : Optional[Any] =sampling_rate A__ : int =frequency_min A__ : Any =frequency_max A__ : int =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase_ , min_frequency=lowerCAmelCase_ , max_frequency=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , norm=lowerCAmelCase_ , mel_scale="""htk""" , ) A__ : Tuple =mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=lowerCAmelCase_ , min_frequency=lowerCAmelCase_ , max_frequency=lowerCAmelCase_ , sampling_rate=lowerCAmelCase_ , norm="""slaney""" , mel_scale="""slaney""" , ) def lowercase__ ( self : str ) -> Dict[str, Any]: '''simple docstring''' A__ : Optional[int] =copy.deepcopy(self.__dict__ ) A__ : Any =self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowercase__ ( self : Optional[Any] , lowerCAmelCase_ : np.array , lowerCAmelCase_ : Optional[np.array] = None ) -> np.ndarray: '''simple docstring''' A__ : List[str] =spectrogram( lowerCAmelCase_ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=lowerCAmelCase_ , log_mel="""dB""" , ) return log_mel_spectrogram.T def lowercase__ ( self : List[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str] ) -> Any: '''simple docstring''' A__ : Any =np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A__ : Any =[0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A__ : List[Any] =[0] # randomly choose index for each part A__ : int =np.random.choice(ranges[0] ) A__ : str =np.random.choice(ranges[1] ) A__ : Any =np.random.choice(ranges[2] ) A__ : Any =mel[idx_front : idx_front + chunk_frames, :] A__ : str =mel[idx_middle : idx_middle + chunk_frames, :] A__ : Union[str, Any] =mel[idx_back : idx_back + chunk_frames, :] A__ : Optional[int] =torch.tensor(mel[None, None, :] ) A__ : Optional[int] =torch.nn.functional.interpolate( lowerCAmelCase_ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=lowerCAmelCase_ ) A__ : str =mel_shrink[0][0].numpy() A__ : int =np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowercase__ ( self : Optional[int] , lowerCAmelCase_ : np.array , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any ) -> np.array: '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A__ : List[Any] =True # random crop to max_length (for compatibility) -> this should be handled by self.pad A__ : Optional[Any] =len(lowerCAmelCase_ ) - max_length A__ : Dict =np.random.randint(0 , overflow + 1 ) A__ : Optional[int] =waveform[idx : idx + max_length] A__ : Any =self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": A__ : Union[str, Any] =self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters ) A__ : Tuple =max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A__ : Optional[int] =mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A__ : List[str] =np.stack([mel, mel, mel, mel] , axis=0 ) A__ : Union[str, Any] =False else: A__ : List[str] =self._random_mel_fusion(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) A__ : Tuple =True else: raise NotImplementedError(f"data_truncating {truncation} not implemented" ) else: A__ : str =False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A__ : Optional[Any] =int(max_length / len(lowerCAmelCase_ ) ) A__ : str =np.stack(np.tile(lowerCAmelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A__ : int =int(max_length / len(lowerCAmelCase_ ) ) A__ : Optional[Any] =np.stack(np.tile(lowerCAmelCase_ , lowerCAmelCase_ ) ) A__ : List[Any] =np.pad(lowerCAmelCase_ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": A__ : str =self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters ) A__ : Tuple =np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: A__ : str =self._np_extract_fbank_features(lowerCAmelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : List[Any] , lowerCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowerCAmelCase_ : str = None , lowerCAmelCase_ : Optional[str] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , **lowerCAmelCase_ : List[Any] , ) -> BatchFeature: '''simple docstring''' A__ : Optional[int] =truncation if truncation is not None else self.truncation A__ : Optional[Any] =padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A__ : Tuple =isinstance(lowerCAmelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) A__ : int =is_batched_numpy or ( isinstance(lowerCAmelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : List[str] =[np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(lowerCAmelCase_ , np.ndarray ): A__ : List[str] =np.asarray(lowerCAmelCase_ , dtype=np.floataa ) elif isinstance(lowerCAmelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ : Optional[Any] =raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ : Tuple =[np.asarray(lowerCAmelCase_ )] # convert to mel spectrogram, truncate and pad if needed. A__ : Union[str, Any] =[ self._get_input_mel(lowerCAmelCase_ , max_length if max_length else self.nb_max_samples , lowerCAmelCase_ , lowerCAmelCase_ ) for waveform in raw_speech ] A__ : Union[str, Any] =[] A__ : Tuple =[] for mel, longer in padded_inputs: input_mel.append(lowerCAmelCase_ ) is_longer.append(lowerCAmelCase_ ) if truncation == "fusion" and sum(lowerCAmelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A__ : List[str] =np.random.randint(0 , len(lowerCAmelCase_ ) ) A__ : Optional[int] =True if isinstance(input_mel[0] , lowerCAmelCase_ ): A__ : int =[np.asarray(lowerCAmelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A__ : int =[[longer] for longer in is_longer] A__ : str ={"""input_features""": input_mel, """is_longer""": is_longer} A__ : Union[str, Any] =BatchFeature(lowerCAmelCase_ ) if return_tensors is not None: A__ : List[str] =input_features.convert_to_tensors(lowerCAmelCase_ ) return input_features
134
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __snake_case : Optional[Any] = {'configuration_xglm': ['XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XGLMConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : int = ['XGLMTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[Any] = ['XGLMTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'XGLMForCausalLM', 'XGLMModel', 'XGLMPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : str = [ 'FlaxXGLMForCausalLM', 'FlaxXGLMModel', 'FlaxXGLMPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Optional[Any] = [ 'TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFXGLMForCausalLM', 'TFXGLMModel', 'TFXGLMPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __snake_case : Any = _LazyModule(__name__, globals()['__file__'], _import_structure)
134
1
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class a__ ( unittest.TestCase ): """simple docstring""" def _snake_case (self ): __lowerCAmelCase = 10 def _snake_case (self ): __lowerCAmelCase = [1, 2, 3, 4] __lowerCAmelCase = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] __lowerCAmelCase = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(__lowercase , self.block_size , 0 ) , __lowercase ) def _snake_case (self ): __lowerCAmelCase = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' __lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase ) self.assertEqual(__lowercase , [] ) def _snake_case (self ): __lowerCAmelCase = '''''' __lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase ) self.assertEqual(__lowercase , [] ) self.assertEqual(__lowercase , [] ) def _snake_case (self ): __lowerCAmelCase = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) __lowerCAmelCase , __lowerCAmelCase = process_story(__lowercase ) __lowerCAmelCase = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(__lowercase , __lowercase ) __lowerCAmelCase = ['''It was the best of times.'''] self.assertEqual(__lowercase , __lowercase ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([1, 2, 3, 4] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(__lowercase , 0 ).numpy() , expected.numpy() ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowercase , 23 ).numpy() , expected.numpy() ) def _snake_case (self ): __lowerCAmelCase = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) __lowerCAmelCase = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(__lowercase , 1 ).numpy() , expected.numpy() ) def _snake_case (self ): __lowerCAmelCase = 1_01 __lowerCAmelCase = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 1_01, 5, 6], [1, 1_01, 3, 4, 1_01, 6]] ) __lowerCAmelCase = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) __lowerCAmelCase = compute_token_type_ids(__lowercase , __lowercase ) np.testing.assert_array_equal(__lowercase , __lowercase )
364
'''simple docstring''' import numpy as np def __magic_name__( lowerCamelCase, lowerCamelCase, lowerCamelCase = 1E-12, lowerCamelCase = 1_0_0, ): assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[1] # Ensure proper dimensionality. assert np.shape(lowerCamelCase)[0] == np.shape(lowerCamelCase)[0] # Ensure inputs are either both complex or both real assert np.iscomplexobj(lowerCamelCase) == np.iscomplexobj(lowerCamelCase) __lowerCAmelCase = np.iscomplexobj(lowerCamelCase) if is_complex: # Ensure complex input_matrix is Hermitian assert np.array_equal(lowerCamelCase, input_matrix.conj().T) # Set convergence to False. Will define convergence when we exceed max_iterations # or when we have small changes from one iteration to next. __lowerCAmelCase = False __lowerCAmelCase = 0 __lowerCAmelCase = 0 __lowerCAmelCase = 1E12 while not convergence: # Multiple matrix by the vector. __lowerCAmelCase = np.dot(lowerCamelCase, lowerCamelCase) # Normalize the resulting output vector. __lowerCAmelCase = w / np.linalg.norm(lowerCamelCase) # Find rayleigh quotient # (faster than usual b/c we know vector is normalized already) __lowerCAmelCase = vector.conj().T if is_complex else vector.T __lowerCAmelCase = np.dot(lowerCamelCase, np.dot(lowerCamelCase, lowerCamelCase)) # Check convergence. __lowerCAmelCase = np.abs(lambda_ - lambda_previous) / lambda_ iterations += 1 if error <= error_tol or iterations >= max_iterations: __lowerCAmelCase = True __lowerCAmelCase = lambda_ if is_complex: __lowerCAmelCase = np.real(lambda_) return lambda_, vector def __magic_name__( ): __lowerCAmelCase = np.array([[4_1, 4, 2_0], [4, 2_6, 3_0], [2_0, 3_0, 5_0]]) __lowerCAmelCase = np.array([4_1, 4, 2_0]) __lowerCAmelCase = real_input_matrix.astype(np.complexaaa) __lowerCAmelCase = np.triu(1J * complex_input_matrix, 1) complex_input_matrix += imag_matrix complex_input_matrix += -1 * imag_matrix.T __lowerCAmelCase = np.array([4_1, 4, 2_0]).astype(np.complexaaa) for problem_type in ["real", "complex"]: if problem_type == "real": __lowerCAmelCase = real_input_matrix __lowerCAmelCase = real_vector elif problem_type == "complex": __lowerCAmelCase = complex_input_matrix __lowerCAmelCase = complex_vector # Our implementation. __lowerCAmelCase , __lowerCAmelCase = power_iteration(lowerCamelCase, lowerCamelCase) # Numpy implementation. # Get eigenvalues and eigenvectors using built-in numpy # eigh (eigh used for symmetric or hermetian matrices). __lowerCAmelCase , __lowerCAmelCase = np.linalg.eigh(lowerCamelCase) # Last eigenvalue is the maximum one. __lowerCAmelCase = eigen_values[-1] # Last column in this matrix is eigenvector corresponding to largest eigenvalue. __lowerCAmelCase = eigen_vectors[:, -1] # Check our implementation and numpy gives close answers. assert np.abs(eigen_value - eigen_value_max) <= 1E-6 # Take absolute values element wise of each eigenvector. # as they are only unique to a minus sign. assert np.linalg.norm(np.abs(lowerCamelCase) - np.abs(lowerCamelCase)) <= 1E-6 if __name__ == "__main__": import doctest doctest.testmod() test_power_iteration()
9
0
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent a__ : Tuple = {'UserAgent': UserAgent().random} def _UpperCamelCase ( __A ) -> dict: '''simple docstring''' UpperCamelCase__ = script.contents[0] UpperCamelCase__ = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowercase_ : def __init__( self , a ): UpperCamelCase__ = f'''https://www.instagram.com/{username}/''' UpperCamelCase__ = self.get_json() def __a ( self ): UpperCamelCase__ = requests.get(self.url , headers=a ).text UpperCamelCase__ = BeautifulSoup(a , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self ): return f'''{self.__class__.__name__}(\'{self.username}\')''' def __str__( self ): return f'''{self.fullname} ({self.username}) is {self.biography}''' @property def __a ( self ): return self.user_data["username"] @property def __a ( self ): return self.user_data["full_name"] @property def __a ( self ): return self.user_data["biography"] @property def __a ( self ): return self.user_data["business_email"] @property def __a ( self ): return self.user_data["external_url"] @property def __a ( self ): return self.user_data["edge_followed_by"]["count"] @property def __a ( self ): return self.user_data["edge_follow"]["count"] @property def __a ( self ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def __a ( self ): return self.user_data["profile_pic_url_hd"] @property def __a ( self ): return self.user_data["is_verified"] @property def __a ( self ): return self.user_data["is_private"] def _UpperCamelCase ( __A = "github" ) -> None: '''simple docstring''' import os if os.environ.get("CI" ): return # test failing on GitHub Actions UpperCamelCase__ = InstagramUser(__A ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __A ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() a__ : Any = InstagramUser('github') print(instagram_user) print(F"""{instagram_user.number_of_posts = }""") print(F"""{instagram_user.number_of_followers = }""") print(F"""{instagram_user.number_of_followings = }""") print(F"""{instagram_user.email = }""") print(F"""{instagram_user.website = }""") print(F"""{instagram_user.profile_picture_url = }""") print(F"""{instagram_user.is_verified = }""") print(F"""{instagram_user.is_private = }""")
80
def lowerCAmelCase__( lowercase : int = 100_0000 ) -> int: __snake_case : List[Any] = limit + 1 __snake_case : List[str] = [0] * limit for first_term in range(1 , lowercase ): for n in range(lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a __snake_case : Tuple = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
326
0
"""simple docstring""" from __future__ import annotations from math import pi, sqrt def lowerCamelCase ( _UpperCamelCase : float , _UpperCamelCase : float ) -> tuple: '''simple docstring''' if inductance <= 0: raise ValueError("""Inductance cannot be 0 or negative""" ) elif capacitance <= 0: raise ValueError("""Capacitance cannot be 0 or negative""" ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
350
"""simple docstring""" from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase__ ( A ): """simple docstring""" __a = ["""image_processor""", """tokenizer"""] __a = """AutoImageProcessor""" __a = """AutoTokenizer""" def __init__( self : Union[str, Any] , UpperCamelCase : List[Any] , UpperCamelCase : List[str] ): '''simple docstring''' super().__init__(UpperCamelCase , UpperCamelCase ) __UpperCAmelCase : str = self.image_processor def __call__( self : Dict , UpperCamelCase : Optional[int]=None , UpperCamelCase : Optional[int]=None , UpperCamelCase : int=None , **UpperCamelCase : Optional[int] ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: __UpperCAmelCase : List[str] = self.tokenizer(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if images is not None: __UpperCAmelCase : Optional[Any] = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: __UpperCAmelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def lowerCamelCase__ ( self : List[str] , *UpperCamelCase : Optional[int] , **UpperCamelCase : Dict ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def lowerCamelCase__ ( self : int , *UpperCamelCase : str , **UpperCamelCase : Optional[Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' return ["input_ids", "attention_mask", "pixel_values"]
320
0
from unittest.mock import Mock, patch from file_transfer.send_file import send_file @patch('''socket.socket''' ) @patch('''builtins.open''' ) def lowerCamelCase__ ( a , a ) -> Tuple: # ===== initialization ===== _A: Union[str, Any] = Mock() _A: List[Any] = conn, Mock() _A: Optional[Any] = iter([1, None] ) _A: str = lambda a : next(a ) # ===== invoke ===== send_file(filename='''mytext.txt''' , testing=a ) # ===== ensurance ===== sock.assert_called_once() sock.return_value.bind.assert_called_once() sock.return_value.listen.assert_called_once() sock.return_value.accept.assert_called_once() conn.recv.assert_called_once() file.return_value.__enter__.assert_called_once() file.return_value.__enter__.return_value.read.assert_called() conn.send.assert_called_once() conn.close.assert_called_once() sock.return_value.shutdown.assert_called_once() sock.return_value.close.assert_called_once()
121
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase__ : Any = logging.get_logger(__name__) class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' __UpperCamelCase : List[Any] = ['''pixel_values'''] def __init__( self : Optional[int] , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : Union[int, float] = 1 / 2_5_5 , lowerCAmelCase_ : bool = True , lowerCAmelCase_ : int = 8 , **lowerCAmelCase_ : Tuple , ): """simple docstring""" super().__init__(**lowerCAmelCase_ ) _A: List[str] = do_rescale _A: Any = rescale_factor _A: List[Any] = do_pad _A: Tuple = pad_size def __magic_name__ ( self : int , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : float , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **lowerCAmelCase_ : Any ): """simple docstring""" return rescale(lowerCAmelCase_ , scale=lowerCAmelCase_ , data_format=lowerCAmelCase_ , **lowerCAmelCase_ ) def __magic_name__ ( self : Tuple , lowerCAmelCase_ : np.ndarray , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Union[str, ChannelDimension]] = None ): """simple docstring""" _A , _A: Optional[int] = get_image_size(lowerCAmelCase_ ) _A: Union[str, Any] = (old_height // size + 1) * size - old_height _A: Optional[Any] = (old_width // size + 1) * size - old_width return pad(lowerCAmelCase_ , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=lowerCAmelCase_ ) def __magic_name__ ( self : str , lowerCAmelCase_ : ImageInput , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[float] = None , lowerCAmelCase_ : Optional[bool] = None , lowerCAmelCase_ : Optional[int] = None , lowerCAmelCase_ : Optional[Union[str, TensorType]] = None , lowerCAmelCase_ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **lowerCAmelCase_ : int , ): """simple docstring""" _A: List[str] = do_rescale if do_rescale is not None else self.do_rescale _A: int = rescale_factor if rescale_factor is not None else self.rescale_factor _A: str = do_pad if do_pad is not None else self.do_pad _A: Union[str, Any] = pad_size if pad_size is not None else self.pad_size _A: List[Any] = make_list_of_images(lowerCAmelCase_ ) if not valid_images(lowerCAmelCase_ ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. _A: Union[str, Any] = [to_numpy_array(lowerCAmelCase_ ) for image in images] if do_rescale: _A: str = [self.rescale(image=lowerCAmelCase_ , scale=lowerCAmelCase_ ) for image in images] if do_pad: _A: str = [self.pad(lowerCAmelCase_ , size=lowerCAmelCase_ ) for image in images] _A: Optional[Any] = [to_channel_dimension_format(lowerCAmelCase_ , lowerCAmelCase_ ) for image in images] _A: List[Any] = {'''pixel_values''': images} return BatchFeature(data=lowerCAmelCase_ , tensor_type=lowerCAmelCase_ )
121
1
"""simple docstring""" import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = [ ['attention', 'attn'], ['encoder_attention', 'encoder_attn'], ['q_lin', 'q_proj'], ['k_lin', 'k_proj'], ['v_lin', 'v_proj'], ['out_lin', 'out_proj'], ['norm_embeddings', 'layernorm_embedding'], ['position_embeddings', 'embed_positions'], ['embeddings', 'embed_tokens'], ['ffn.lin', 'fc'], ] def UpperCamelCase ( UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: a_ = k.replace(UpperCAmelCase , UpperCAmelCase ) if k.startswith("encoder" ): a_ = k.replace(".attn" , ".self_attn" ) a_ = k.replace("norm1" , "self_attn_layer_norm" ) a_ = k.replace("norm2" , "final_layer_norm" ) elif k.startswith("decoder" ): a_ = k.replace("norm1" , "self_attn_layer_norm" ) a_ = k.replace("norm2" , "encoder_attn_layer_norm" ) a_ = k.replace("norm3" , "final_layer_norm" ) return k def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = [ "model.encoder.layernorm_embedding.weight", "model.encoder.layernorm_embedding.bias", "model.decoder.layernorm_embedding.weight", "model.decoder.layernorm_embedding.bias", ] for k in keys: a_ = sd.pop(UpperCAmelCase ) a_ = k.replace("layernorm_embedding" , "layer_norm" ) assert new_k not in sd a_ = v UpperCamelCase_ = ['START'] @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Union[str, Any]: """simple docstring""" a_ = torch.load(UpperCAmelCase , map_location="cpu" ) a_ = model["model"] a_ = BlenderbotConfig.from_json_file(UpperCAmelCase ) a_ = BlenderbotForConditionalGeneration(UpperCAmelCase ) a_ = m.model.state_dict().keys() a_ = [] a_ = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue a_ = rename_state_dict_key(UpperCAmelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: a_ = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(UpperCAmelCase ) m.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) m.half() m.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument('--src_path', type=str, help='like blenderbot-model.bin') parser.add_argument('--save_dir', default='hf_blenderbot', type=str, help='Where to save converted model.') parser.add_argument( '--hf_config_json', default='blenderbot-3b-config.json', type=str, help='Path to config to use' ) UpperCamelCase_ = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
303
"""simple docstring""" import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=24 , __UpperCAmelCase=2 , __UpperCAmelCase=6 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=10_00 , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = scope a_ = range_bbox def UpperCAmelCase__ ( self) ->int: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox) # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: a_ = bbox[i, j, 3] a_ = bbox[i, j, 1] a_ = t if bbox[i, j, 2] < bbox[i, j, 0]: a_ = bbox[i, j, 2] a_ = bbox[i, j, 0] a_ = t a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self) ->List[str]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Any: a_ = LiltModel(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase , token_type_ids=__UpperCAmelCase) a_ = model(__UpperCAmelCase , bbox=__UpperCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Union[str, Any]: a_ = self.num_labels a_ = LiltForTokenClassification(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) ->Dict: a_ = LiltForQuestionAnswering(config=__UpperCAmelCase) model.to(__UpperCAmelCase) model.eval() a_ = model( __UpperCAmelCase , bbox=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->str: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class snake_case ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : List[Any] = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a_ : List[str] = ( { """feature-extraction""": LiltModel, """question-answering""": LiltForQuestionAnswering, """text-classification""": LiltForSequenceClassification, """token-classification""": LiltForTokenClassification, """zero-shot""": LiltForSequenceClassification, } if is_torch_available() else {} ) a_ : Any = False a_ : Dict = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: return True def UpperCAmelCase__ ( self) ->str: a_ = LiltModelTester(self) a_ = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->Tuple: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ = type self.model_tester.create_and_check_model(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase) def UpperCAmelCase__ ( self) ->str: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = LiltModel.from_pretrained(__UpperCAmelCase) self.assertIsNotNone(__UpperCAmelCase) @require_torch @slow class snake_case ( unittest.TestCase ): def UpperCAmelCase__ ( self) ->List[Any]: a_ = LiltModel.from_pretrained("SCUT-DLVCLab/lilt-roberta-en-base").to(__UpperCAmelCase) a_ = torch.tensor([[1, 2]] , device=__UpperCAmelCase) a_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__UpperCAmelCase) # forward pass with torch.no_grad(): a_ = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase) a_ = torch.Size([1, 2, 7_68]) a_ = torch.tensor( [[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=__UpperCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __UpperCAmelCase) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __UpperCAmelCase , atol=1E-3))
303
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __snake_case : Tuple =logging.get_logger(__name__) __snake_case : Any ={ 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } __snake_case : str ={ 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } __snake_case : Optional[int] ={'facebook/blenderbot_small-90M': 5_1_2} def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' lowerCAmelCase__ : List[Any] = set() lowerCAmelCase__ : str = word[0] for char in word[1:]: pairs.add((prev_char, char)) lowerCAmelCase__ : List[str] = char lowerCAmelCase__ : List[str] = set(lowerCamelCase_) return pairs class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' snake_case_ =VOCAB_FILES_NAMES snake_case_ =PRETRAINED_VOCAB_FILES_MAP snake_case_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ =["""input_ids""", """attention_mask"""] def __init__(self ,__lowerCamelCase ,__lowerCamelCase ,__lowerCamelCase="__start__" ,__lowerCamelCase="__end__" ,__lowerCamelCase="__unk__" ,__lowerCamelCase="__null__" ,**__lowerCamelCase ,) -> Dict: """simple docstring""" super().__init__(unk_token=__lowerCamelCase ,bos_token=__lowerCamelCase ,eos_token=__lowerCamelCase ,pad_token=__lowerCamelCase ,**__lowerCamelCase ) with open(__lowerCamelCase ,encoding='''utf-8''' ) as vocab_handle: lowerCAmelCase__ : Any = json.load(__lowerCamelCase ) lowerCAmelCase__ : str = {v: k for k, v in self.encoder.items()} with open(__lowerCamelCase ,encoding='''utf-8''' ) as merges_handle: lowerCAmelCase__ : Dict = merges_handle.read().split('''\n''' )[1:-1] lowerCAmelCase__ : str = [tuple(merge.split() ) for merge in merges] lowerCAmelCase__ : List[Any] = dict(zip(__lowerCamelCase ,range(len(__lowerCamelCase ) ) ) ) lowerCAmelCase__ : str = {} @property def lowerCAmelCase__ (self ) -> int: """simple docstring""" return len(self.encoder ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" return dict(self.encoder ,**self.added_tokens_encoder ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" if token in self.cache: return self.cache[token] lowerCAmelCase__ : str = re.sub('''([.,!?()])''' ,R''' \1''' ,__lowerCamelCase ) lowerCAmelCase__ : List[str] = re.sub('''(\')''' ,R''' \1 ''' ,__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = re.sub(R'''\s{2,}''' ,''' ''' ,__lowerCamelCase ) if "\n" in token: lowerCAmelCase__ : str = token.replace('''\n''' ,''' __newln__''' ) lowerCAmelCase__ : Optional[int] = token.split(''' ''' ) lowerCAmelCase__ : Dict = [] for token in tokens: if not len(__lowerCamelCase ): continue lowerCAmelCase__ : Union[str, Any] = token.lower() lowerCAmelCase__ : Dict = tuple(__lowerCamelCase ) lowerCAmelCase__ : Tuple = tuple(list(word[:-1] ) + [word[-1] + '''</w>'''] ) lowerCAmelCase__ : int = get_pairs(__lowerCamelCase ) if not pairs: words.append(__lowerCamelCase ) continue while True: lowerCAmelCase__ : int = min(__lowerCamelCase ,key=lambda __lowerCamelCase : self.bpe_ranks.get(__lowerCamelCase ,float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = bigram lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : str = 0 while i < len(__lowerCamelCase ): try: lowerCAmelCase__ : Optional[Any] = word.index(__lowerCamelCase ,__lowerCamelCase ) new_word.extend(word[i:j] ) lowerCAmelCase__ : str = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(__lowerCamelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : List[Any] = tuple(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = new_word if len(__lowerCamelCase ) == 1: break else: lowerCAmelCase__ : Any = get_pairs(__lowerCamelCase ) lowerCAmelCase__ : int = '''@@ '''.join(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = word[:-4] lowerCAmelCase__ : Union[str, Any] = word words.append(__lowerCamelCase ) return " ".join(__lowerCamelCase ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = [] lowerCAmelCase__ : Union[str, Any] = re.findall(R'''\S+\n?''' ,__lowerCamelCase ) for token in words: split_tokens.extend(list(self.bpe(__lowerCamelCase ).split(''' ''' ) ) ) return split_tokens def lowerCAmelCase__ (self ,__lowerCamelCase ) -> int: """simple docstring""" lowerCAmelCase__ : Any = token.lower() return self.encoder.get(__lowerCamelCase ,self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" return self.decoder.get(__lowerCamelCase ,self.unk_token ) def lowerCAmelCase__ (self ,__lowerCamelCase ) -> str: """simple docstring""" lowerCAmelCase__ : Any = ''' '''.join(__lowerCamelCase ).replace('''@@ ''' ,'''''' ).strip() return out_string def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowerCamelCase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : Any = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ : Optional[int] = os.path.join( __lowerCamelCase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=__lowerCamelCase ,ensure_ascii=__lowerCamelCase ) + '''\n''' ) lowerCAmelCase__ : Optional[int] = 0 with open(__lowerCamelCase ,'''w''' ,encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda __lowerCamelCase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) lowerCAmelCase__ : List[str] = token_index writer.write(''' '''.join(__lowerCamelCase ) + '''\n''' ) index += 1 return vocab_file, merge_file
129
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin __snake_case : int =logging.get_logger(__name__) enable_full_determinism() class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = 4 lowerCAmelCase__ : List[str] = 3 lowerCAmelCase__ : Any = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = { '''block_out_channels''': (32, 64), '''down_block_types''': ('''DownBlock2D''', '''AttnDownBlock2D'''), '''up_block_types''': ('''AttnUpBlock2D''', '''UpBlock2D'''), '''attention_head_dim''': 3, '''out_channels''': 3, '''in_channels''': 3, '''layers_per_block''': 2, '''sample_size''': 32, } lowerCAmelCase__ : List[str] = self.dummy_input return init_dict, inputs_dict class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Optional[Any] = (32, 32) lowerCAmelCase__ : Optional[Any] = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor([10] ).to(__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> List[Any]: """simple docstring""" return (4, 32, 32) @property def lowerCAmelCase__ (self ) -> Any: """simple docstring""" return (4, 32, 32) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : Tuple = { '''sample_size''': 32, '''in_channels''': 4, '''out_channels''': 4, '''layers_per_block''': 2, '''block_out_channels''': (32, 64), '''attention_head_dim''': 32, '''down_block_types''': ('''DownBlock2D''', '''DownBlock2D'''), '''up_block_types''': ('''UpBlock2D''', '''UpBlock2D'''), } lowerCAmelCase__ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[Any] = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != '''cuda''' ,'''This test is supposed to run on GPU''' ) def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ) model_accelerate.to(__lowerCamelCase ) model_accelerate.eval() lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model_accelerate.config.in_channels ,model_accelerate.config.sample_size ,model_accelerate.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : Dict = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = model_accelerate(__lowerCamelCase ,__lowerCamelCase )['''sample'''] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCAmelCase__ , lowerCAmelCase__ : Tuple = UNetaDModel.from_pretrained( '''fusing/unet-ldm-dummy-update''' ,output_loading_info=__lowerCamelCase ,low_cpu_mem_usage=__lowerCamelCase ) model_normal_load.to(__lowerCamelCase ) model_normal_load.eval() lowerCAmelCase__ : List[Any] = model_normal_load(__lowerCamelCase ,__lowerCamelCase )['''sample'''] assert torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" lowerCAmelCase__ : List[str] = UNetaDModel.from_pretrained('''fusing/unet-ldm-dummy-update''' ) model.eval() model.to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = torch.randn( 1 ,model.config.in_channels ,model.config.sample_size ,model.config.sample_size ,generator=torch.manual_seed(0 ) ,) lowerCAmelCase__ : str = noise.to(__lowerCamelCase ) lowerCAmelCase__ : List[Any] = torch.tensor([10] * noise.shape[0] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : str = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[str] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase__ : str = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-3 ) ) class lowerCamelCase__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase): '''simple docstring''' snake_case_ =UNetaDModel snake_case_ ="""sample""" @property def lowerCAmelCase__ (self ,__lowerCamelCase=(32, 32) ) -> Dict: """simple docstring""" lowerCAmelCase__ : str = 4 lowerCAmelCase__ : Optional[int] = 3 lowerCAmelCase__ : Tuple = floats_tensor((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa ,device=__lowerCamelCase ) return {"sample": noise, "timestep": time_step} @property def lowerCAmelCase__ (self ) -> str: """simple docstring""" return (3, 32, 32) @property def lowerCAmelCase__ (self ) -> Optional[int]: """simple docstring""" return (3, 32, 32) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : Tuple = { '''block_out_channels''': [32, 64, 64, 64], '''in_channels''': 3, '''layers_per_block''': 1, '''out_channels''': 3, '''time_embedding_type''': '''fourier''', '''norm_eps''': 1e-6, '''mid_block_scale_factor''': math.sqrt(2.0 ), '''norm_num_groups''': None, '''down_block_types''': [ '''SkipDownBlock2D''', '''AttnSkipDownBlock2D''', '''SkipDownBlock2D''', '''SkipDownBlock2D''', ], '''up_block_types''': [ '''SkipUpBlock2D''', '''SkipUpBlock2D''', '''AttnSkipUpBlock2D''', '''SkipUpBlock2D''', ], } lowerCAmelCase__ : Tuple = self.dummy_input return init_dict, inputs_dict @slow def lowerCAmelCase__ (self ) -> Optional[Any]: """simple docstring""" lowerCAmelCase__ , lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ,output_loading_info=__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertEqual(len(loading_info['''missing_keys'''] ) ,0 ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = self.dummy_input lowerCAmelCase__ : Tuple = floats_tensor((4, 3) + (2_56, 2_56) ).to(__lowerCamelCase ) lowerCAmelCase__ : Union[str, Any] = noise lowerCAmelCase__ : Union[str, Any] = model(**__lowerCamelCase ) assert image is not None, "Make sure output is not None" @slow def lowerCAmelCase__ (self ) -> str: """simple docstring""" lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('''google/ncsnpp-celebahq-256''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Dict = 4 lowerCAmelCase__ : Optional[Any] = 3 lowerCAmelCase__ : List[Any] = (2_56, 2_56) lowerCAmelCase__ : str = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : List[Any] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : Any = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Optional[Any] = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -1_0980.7129, -2_0028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Any: """simple docstring""" lowerCAmelCase__ : int = UNetaDModel.from_pretrained('''fusing/ncsnpp-ffhq-ve-dummy-update''' ) model.to(__lowerCamelCase ) lowerCAmelCase__ : Optional[int] = 4 lowerCAmelCase__ : Dict = 3 lowerCAmelCase__ : str = (32, 32) lowerCAmelCase__ : Tuple = torch.ones((batch_size, num_channels) + sizes ).to(__lowerCamelCase ) lowerCAmelCase__ : Tuple = torch.tensor(batch_size * [1e-4] ).to(__lowerCamelCase ) with torch.no_grad(): lowerCAmelCase__ : Optional[int] = model(__lowerCamelCase ,__lowerCamelCase ).sample lowerCAmelCase__ : List[Any] = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCAmelCase__ : Union[str, Any] = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(__lowerCamelCase ,__lowerCamelCase ,rtol=1e-2 ) ) def lowerCAmelCase__ (self ) -> Dict: """simple docstring""" pass
129
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ = logging.get_logger(__name__) class lowerCamelCase ( __lowerCAmelCase ): snake_case_ = ['''pixel_values'''] def __init__( self, lowercase_ = True, lowercase_ = None, lowercase_ = PIL.Image.BICUBIC, lowercase_ = True, lowercase_ = None, lowercase_ = 1 / 255, lowercase_ = True, lowercase_ = True, lowercase_ = None, lowercase_ = None, **lowercase_, ) -> None: super().__init__(**lowercase_ ) snake_case = size if size is not None else {'height': 256, 'width': 256} snake_case = get_size_dict(lowercase_ ) snake_case = crop_size if crop_size is not None else {'height': 224, 'width': 224} snake_case = get_size_dict(lowercase_, param_name='crop_size' ) snake_case = do_resize snake_case = size snake_case = resample snake_case = do_center_crop snake_case = crop_size snake_case = do_rescale snake_case = rescale_factor snake_case = do_normalize snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = PIL.Image.BICUBIC, lowercase_ = None, **lowercase_, ) -> np.ndarray: snake_case = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( lowercase_, size=(size['height'], size['width']), resample=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray: snake_case = get_size_dict(lowercase_ ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(lowercase_, size=(size['height'], size['width']), data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> int: return rescale(lowercase_, scale=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_, lowercase_, lowercase_ = None, **lowercase_, ) -> np.ndarray: return normalize(lowercase_, mean=lowercase_, std=lowercase_, data_format=lowercase_, **lowercase_ ) def _lowerCamelCase ( self, lowercase_, lowercase_ = None, lowercase_ = None, lowercase_=None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = None, lowercase_ = ChannelDimension.FIRST, **lowercase_, ) -> PIL.Image.Image: snake_case = do_resize if do_resize is not None else self.do_resize snake_case = resample if resample is not None else self.resample snake_case = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case = do_rescale if do_rescale is not None else self.do_rescale snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case = do_normalize if do_normalize is not None else self.do_normalize snake_case = image_mean if image_mean is not None else self.image_mean snake_case = image_std if image_std is not None else self.image_std snake_case = size if size is not None else self.size snake_case = get_size_dict(lowercase_ ) snake_case = crop_size if crop_size is not None else self.crop_size snake_case = get_size_dict(lowercase_, param_name='crop_size' ) snake_case = make_list_of_images(lowercase_ ) if not valid_images(lowercase_ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. snake_case = [to_numpy_array(lowercase_ ) for image in images] if do_resize: snake_case = [self.resize(image=lowercase_, size=lowercase_, resample=lowercase_ ) for image in images] if do_center_crop: snake_case = [self.center_crop(image=lowercase_, size=lowercase_ ) for image in images] if do_rescale: snake_case = [self.rescale(image=lowercase_, scale=lowercase_ ) for image in images] if do_normalize: snake_case = [self.normalize(image=lowercase_, mean=lowercase_, std=lowercase_ ) for image in images] snake_case = [to_channel_dimension_format(lowercase_, lowercase_ ) for image in images] snake_case = {'pixel_values': images} return BatchFeature(data=lowercase_, tensor_type=lowercase_ )
332
'''simple docstring''' from __future__ import annotations def __magic_name__ ( A ) -> None: create_state_space_tree(A , [] , 0 , [0 for i in range(len(A ) )] ) def __magic_name__ ( A , A , A , A , ) -> None: if index == len(A ): print(A ) return for i in range(len(A ) ): if not index_used[i]: current_sequence.append(sequence[i] ) snake_case = True create_state_space_tree(A , A , index + 1 , A ) current_sequence.pop() snake_case = False lowerCAmelCase_ = [3, 1, 2, 4] generate_all_permutations(sequence) lowerCAmelCase_ = ["A", "B", "C"] generate_all_permutations(sequence_a)
332
1
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , _lowerCAmelCase : Optional[Any] ) -> str: """simple docstring""" snake_case_ = parent def lowerCAmelCase__ ( self : List[Any] ) -> Tuple: """simple docstring""" return {} def _lowerCAmelCase ( )->Union[str, Any]: '''simple docstring''' snake_case_ = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' snake_case_ = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class __lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" snake_case_ = MarkupLMFeatureExtractionTester(self ) @property def lowerCAmelCase__ ( self : Any ) -> Optional[Any]: """simple docstring""" return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase__ ( self : Optional[int] ) -> Any: """simple docstring""" # Initialize feature_extractor snake_case_ = self.feature_extraction_class() # Test not batched input snake_case_ = get_html_strings()[0] snake_case_ = feature_extractor(lowerCAmelCase__ ) # fmt: off snake_case_ = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] snake_case_ = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ ) # Test batched snake_case_ = get_html_strings() snake_case_ = feature_extractor(lowerCAmelCase__ ) # fmt: off snake_case_ = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] snake_case_ = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , lowerCAmelCase__ ) self.assertEqual(encoding.xpaths , lowerCAmelCase__ )
159
import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *lowercase__ , lowercase__ = None , lowercase__=True , lowercase__=2 ): from .. import __version__ __SCREAMING_SNAKE_CASE : Optional[Any] = take_from __SCREAMING_SNAKE_CASE : List[str] = () if not isinstance(args[0] , lowercase__ ): __SCREAMING_SNAKE_CASE : List[Any] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowercase__ ).base_version ) >= version.parse(lowercase__ ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = None if isinstance(lowercase__ , lowercase__ ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowercase__ ),) __SCREAMING_SNAKE_CASE : List[Any] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowercase__ , lowercase__ ): values += (getattr(lowercase__ , lowercase__ ),) __SCREAMING_SNAKE_CASE : List[str] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: __SCREAMING_SNAKE_CASE : str = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: __SCREAMING_SNAKE_CASE : Any = warning + ''' ''' if standard_warn else '''''' warnings.warn(warning + message , lowercase__ , stacklevel=lowercase__ ) if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) > 0: __SCREAMING_SNAKE_CASE : Union[str, Any] = inspect.getouterframes(inspect.currentframe() )[1] __SCREAMING_SNAKE_CASE : Dict = call_frame.filename __SCREAMING_SNAKE_CASE : Optional[Any] = call_frame.lineno __SCREAMING_SNAKE_CASE : int = call_frame.function __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(lowercase__ ) == 0: return elif len(lowercase__ ) == 1: return values[0] return values
9
0
'''simple docstring''' from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=a__ ) class _snake_case ( a__ ): # `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization lowerCAmelCase :str = field(default='''question-answering-extractive''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase :ClassVar[Features] = Features({'''question''': Value('''string''' ), '''context''': Value('''string''' )} ) lowerCAmelCase :ClassVar[Features] = Features( { '''answers''': Sequence( { '''text''': Value('''string''' ), '''answer_start''': Value('''int32''' ), } ) } ) lowerCAmelCase :str = "question" lowerCAmelCase :str = "context" lowerCAmelCase :str = "answers" @property def snake_case__ ( self): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
350
'''simple docstring''' import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _snake_case ( a__ ): lowerCAmelCase :Optional[int] = '''''' lowerCAmelCase :str = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) lowerCAmelCase :str = None # compression type in fsspec. ex: "gzip" lowerCAmelCase :str = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self , _lowerCamelCase = "" , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase): super().__init__(self , **_lowerCamelCase) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode UpperCAmelCase__ : Optional[Any] = fsspec.open( _lowerCamelCase , mode="""rb""" , protocol=_lowerCamelCase , compression=self.compression , client_kwargs={ """requote_redirect_url""": False, # see https://github.com/huggingface/datasets/pull/5459 """trust_env""": True, # Enable reading proxy env variables. **(target_options or {}).pop("""client_kwargs""" , {}), # To avoid issues if it was already passed. } , **(target_options or {}) , ) UpperCAmelCase__ : List[Any] = os.path.basename(self.file.path.split("""::""")[0]) UpperCAmelCase__ : Dict = ( self.compressed_name[: self.compressed_name.rindex(""".""")] if """.""" in self.compressed_name else self.compressed_name ) UpperCAmelCase__ : Tuple = None @classmethod def snake_case__ ( cls , _lowerCamelCase): # compressed file paths are always relative to the archive root return super()._strip_protocol(_lowerCamelCase).lstrip("""/""") def snake_case__ ( self): if self.dir_cache is None: UpperCAmelCase__ : Optional[Any] = {**self.file.fs.info(self.file.path), """name""": self.uncompressed_name} UpperCAmelCase__ : Union[str, Any] = {f["""name"""]: f} def snake_case__ ( self , _lowerCamelCase): return self.file.open().read() def snake_case__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase=None , _lowerCamelCase=True , _lowerCamelCase=None , **_lowerCamelCase , ): UpperCAmelCase__ : List[str] = self._strip_protocol(_lowerCamelCase) if mode != "rb": raise ValueError(f'''Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'''') return self.file.open() class _snake_case ( a__ ): lowerCAmelCase :Dict = '''bz2''' lowerCAmelCase :List[str] = '''bz2''' lowerCAmelCase :Dict = '''.bz2''' class _snake_case ( a__ ): lowerCAmelCase :int = '''gzip''' lowerCAmelCase :Tuple = '''gzip''' lowerCAmelCase :str = '''.gz''' class _snake_case ( a__ ): lowerCAmelCase :List[str] = '''lz4''' lowerCAmelCase :Any = '''lz4''' lowerCAmelCase :int = '''.lz4''' class _snake_case ( a__ ): lowerCAmelCase :Union[str, Any] = '''xz''' lowerCAmelCase :int = '''xz''' lowerCAmelCase :List[Any] = '''.xz''' class _snake_case ( a__ ): lowerCAmelCase :Tuple = '''zstd''' lowerCAmelCase :List[str] = '''zstd''' lowerCAmelCase :Union[str, Any] = '''.zst''' def __init__( self , _lowerCamelCase , _lowerCamelCase = "rb" , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = DEFAULT_BLOCK_SIZE , **_lowerCamelCase , ): super().__init__( fo=_lowerCamelCase , mode=_lowerCamelCase , target_protocol=_lowerCamelCase , target_options=_lowerCamelCase , block_size=_lowerCamelCase , **_lowerCamelCase , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 UpperCAmelCase__ : Dict = self.file.__enter__ class _snake_case : def __init__( self , _lowerCamelCase): UpperCAmelCase__ : Optional[int] = file_ def __enter__( self): self._file.__enter__() return self def __exit__( self , *_lowerCamelCase , **_lowerCamelCase): self._file.__exit__(*_lowerCamelCase , **_lowerCamelCase) def __iter__( self): return iter(self._file) def snake_case__ ( self): return next(self._file) def __getattr__( self , _lowerCamelCase): return getattr(self._file , _lowerCamelCase) def fixed_enter(*_lowerCamelCase , **_lowerCamelCase): return WrappedFile(_enter(*_lowerCamelCase , **_lowerCamelCase)) UpperCAmelCase__ : List[Any] = fixed_enter
283
0
"""simple docstring""" import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE (self ): '''simple docstring''' __snake_case : int = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) __snake_case : Optional[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __snake_case : Dict = tokenizer('''Hello there''' , return_tensors='''np''' ).input_ids __snake_case : Dict = tokenizer('''Hi I am''' , return_tensors='''np''' ).input_ids __snake_case : Optional[int] = shift_tokens_right(a_ , model.config.pad_token_id , model.config.decoder_start_token_id ) __snake_case : List[Any] = model(a_ , decoder_input_ids=a_ ).logits __snake_case : Optional[Any] = optax.softmax_cross_entropy(a_ , onehot(a_ , logits.shape[-1] ) ).mean() __snake_case : Union[str, Any] = -(labels.shape[-1] * loss.item()) __snake_case : List[str] = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
102
"""simple docstring""" def A_ ( ): """simple docstring""" _a = [] _a = 1 while len(_lowerCAmelCase ) < 1e6: constant.append(str(_lowerCAmelCase ) ) i += 1 _a = ''''''.join(_lowerCAmelCase ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[9_99] ) * int(constant[99_99] ) * int(constant[9_99_99] ) * int(constant[99_99_99] ) ) if __name__ == "__main__": print(solution())
320
0
import os import sys _lowerCamelCase : str = os.path.join(os.path.dirname(__file__), "src") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) _lowerCamelCase : Union[str, Any] = [ "torch", "numpy", "tokenizers", "filelock", "requests", "tqdm", "regex", "sentencepiece", "sacremoses", "importlib_metadata", "huggingface_hub", ] @add_start_docstrings(AutoConfig.__doc__ ) def a__ ( *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: return AutoConfig.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoTokenizer.__doc__ ) def a__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Tuple ) -> Optional[Any]: return AutoTokenizer.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModel.__doc__ ) def a__ ( *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Any ) -> Union[str, Any]: return AutoModel.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def a__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[int] ) -> Dict: return AutoModelForCausalLM.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def a__ ( *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple ) -> List[Any]: return AutoModelForMaskedLM.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def a__ ( *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ) -> int: return AutoModelForSequenceClassification.from_pretrained(*UpperCAmelCase , **UpperCAmelCase ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def a__ ( *UpperCAmelCase : Dict , **UpperCAmelCase : Tuple ) -> Tuple: return AutoModelForQuestionAnswering.from_pretrained(*UpperCAmelCase , **UpperCAmelCase )
99
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowerCamelCase : Dict = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __UpperCAmelCase ( lowerCamelCase__ ): def __init__( self : Optional[Any], *__A : Tuple, **__A : Tuple ): super().__init__(*__A, **__A ) self.check_model_type(__A ) def __magic_name__ ( self : Union[str, Any], __A : int=None, __A : Tuple=None, __A : Any=None, **__A : Optional[int] ): UpperCAmelCase , UpperCAmelCase : List[Any] = {}, {} if padding is not None: UpperCAmelCase : Optional[int] = padding if truncation is not None: UpperCAmelCase : Optional[int] = truncation if top_k is not None: UpperCAmelCase : Tuple = top_k return preprocess_params, {}, postprocess_params def __call__( self : Union[str, Any], __A : Union["Image.Image", str], __A : str = None, **__A : Optional[int] ): if isinstance(__A, (Image.Image, str) ) and isinstance(__A, __A ): UpperCAmelCase : int = {'''image''': image, '''question''': question} else: UpperCAmelCase : str = image UpperCAmelCase : Union[str, Any] = super().__call__(__A, **__A ) return results def __magic_name__ ( self : List[str], __A : Union[str, Any], __A : Tuple=False, __A : List[Any]=False ): UpperCAmelCase : int = load_image(inputs['''image'''] ) UpperCAmelCase : List[str] = self.tokenizer( inputs['''question'''], return_tensors=self.framework, padding=__A, truncation=__A ) UpperCAmelCase : Union[str, Any] = self.image_processor(images=__A, return_tensors=self.framework ) model_inputs.update(__A ) return model_inputs def __magic_name__ ( self : Optional[Any], __A : List[Any] ): UpperCAmelCase : Optional[int] = self.model(**__A ) return model_outputs def __magic_name__ ( self : Any, __A : List[str], __A : Union[str, Any]=5 ): if top_k > self.model.config.num_labels: UpperCAmelCase : Any = self.model.config.num_labels if self.framework == "pt": UpperCAmelCase : Any = model_outputs.logits.sigmoid()[0] UpperCAmelCase , UpperCAmelCase : Union[str, Any] = probs.topk(__A ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) UpperCAmelCase : str = scores.tolist() UpperCAmelCase : Tuple = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(__A, __A )]
99
1
import logging import numpy as np import pytest from scipy.linalg import eigh logging.basicConfig(level=logging.INFO, format="""%(message)s""") def a__ ( snake_case ): """simple docstring""" return input_array.reshape((input_array.size, 1) ) def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = np.nan for i in range(snake_case ): __SCREAMING_SNAKE_CASE : Tuple = features[:, labels == i] __SCREAMING_SNAKE_CASE : Optional[Any] = data.mean(1 ) # Centralize the data of class i __SCREAMING_SNAKE_CASE : List[str] = data - column_reshape(snake_case ) if i > 0: # If covariance_sum is not None covariance_sum += np.dot(snake_case , centered_data.T ) else: # If covariance_sum is np.nan (i.e. first loop) __SCREAMING_SNAKE_CASE : Tuple = np.dot(snake_case , centered_data.T ) return covariance_sum / features.shape[1] def a__ ( snake_case , snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = features.mean(1 ) __SCREAMING_SNAKE_CASE : Dict = np.nan for i in range(snake_case ): __SCREAMING_SNAKE_CASE : Any = features[:, labels == i] __SCREAMING_SNAKE_CASE : Any = data.shape[1] __SCREAMING_SNAKE_CASE : Tuple = data.mean(1 ) if i > 0: # If covariance_sum is not None covariance_sum += device_data * np.dot( column_reshape(snake_case ) - column_reshape(snake_case ) , (column_reshape(snake_case ) - column_reshape(snake_case )).T , ) else: # If covariance_sum is np.nan (i.e. first loop) __SCREAMING_SNAKE_CASE : int = device_data * np.dot( column_reshape(snake_case ) - column_reshape(snake_case ) , (column_reshape(snake_case ) - column_reshape(snake_case )).T , ) return covariance_sum / features.shape[1] def a__ ( snake_case , snake_case ): """simple docstring""" # Check if the features have been loaded if features.any(): __SCREAMING_SNAKE_CASE : List[Any] = features.mean(1 ) # Center the dataset __SCREAMING_SNAKE_CASE : List[str] = features - np.reshape(snake_case , (data_mean.size, 1) ) __SCREAMING_SNAKE_CASE : Tuple = np.dot(snake_case , centered_data.T ) / features.shape[1] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = np.linalg.eigh(snake_case ) # Take all the columns in the reverse order (-1), and then takes only the first __SCREAMING_SNAKE_CASE : Any = eigenvectors[:, ::-1][:, 0:dimensions] # Project the database on the new space __SCREAMING_SNAKE_CASE : List[Any] = np.dot(filtered_eigenvectors.T , snake_case ) logging.info('''Principal Component Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=snake_case ) logging.error('''Dataset empty''' ) raise AssertionError def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" assert classes > dimensions # Check if features have been already loaded if features.any: __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[Any] = eigh( covariance_between_classes(snake_case , snake_case , snake_case ) , covariance_within_classes(snake_case , snake_case , snake_case ) , ) __SCREAMING_SNAKE_CASE : Tuple = eigenvectors[:, ::-1][:, :dimensions] __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = np.linalg.svd(snake_case ) __SCREAMING_SNAKE_CASE : List[str] = svd_matrix[:, 0:dimensions] __SCREAMING_SNAKE_CASE : int = np.dot(filtered_svd_matrix.T , snake_case ) logging.info('''Linear Discriminant Analysis computed''' ) return projected_data else: logging.basicConfig(level=logging.ERROR , format='''%(message)s''' , force=snake_case ) logging.error('''Dataset empty''' ) raise AssertionError def a__ ( ): """simple docstring""" # Create dummy dataset with 2 classes and 3 features __SCREAMING_SNAKE_CASE : Tuple = np.array([[1, 2, 3, 4, 5], [2, 3, 4, 5, 6], [3, 4, 5, 6, 7]] ) __SCREAMING_SNAKE_CASE : Optional[int] = np.array([0, 0, 0, 1, 1] ) __SCREAMING_SNAKE_CASE : List[str] = 2 __SCREAMING_SNAKE_CASE : int = 2 # Assert that the function raises an AssertionError if dimensions > classes with pytest.raises(snake_case ) as error_info: __SCREAMING_SNAKE_CASE : Any = linear_discriminant_analysis( snake_case , snake_case , snake_case , snake_case ) if isinstance(snake_case , np.ndarray ): raise AssertionError( '''Did not raise AssertionError for dimensions > classes''' ) assert error_info.type is AssertionError def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE : Any = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]] ) __SCREAMING_SNAKE_CASE : Union[str, Any] = 2 __SCREAMING_SNAKE_CASE : Any = np.array([[6.9282_0323, 8.6602_5404, 10.3923_0485], [3.0, 3.0, 3.0]] ) with pytest.raises(snake_case ) as error_info: __SCREAMING_SNAKE_CASE : Optional[int] = principal_component_analysis(snake_case , snake_case ) if not np.allclose(snake_case , snake_case ): raise AssertionError assert error_info.type is AssertionError if __name__ == "__main__": import doctest doctest.testmod()
303
import importlib import torch import yaml from omegaconf import OmegaConf from taming.models.vqgan import VQModel def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE : Dict = OmegaConf.load(snake_case ) if display: print(yaml.dump(OmegaConf.to_container(snake_case ) ) ) return config def a__ ( snake_case , snake_case=None , snake_case=None ): """simple docstring""" if conf_path is None: __SCREAMING_SNAKE_CASE : Any = '''./model_checkpoints/vqgan_only.yaml''' __SCREAMING_SNAKE_CASE : List[str] = load_config(snake_case , display=snake_case ) __SCREAMING_SNAKE_CASE : str = VQModel(**config.model.params ) if ckpt_path is None: __SCREAMING_SNAKE_CASE : Optional[Any] = '''./model_checkpoints/vqgan_only.pt''' __SCREAMING_SNAKE_CASE : Optional[Any] = torch.load(snake_case , map_location=snake_case ) if ".ckpt" in ckpt_path: __SCREAMING_SNAKE_CASE : Optional[Any] = sd['''state_dict'''] model.load_state_dict(snake_case , strict=snake_case ) model.to(snake_case ) del sd return model def a__ ( snake_case , snake_case ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Any = model.encode(snake_case ) print(F'''VQGAN --- {model.__class__.__name__}: latent shape: {z.shape[2:]}''' ) __SCREAMING_SNAKE_CASE : Any = model.decode(snake_case ) return xrec def a__ ( snake_case , snake_case=False ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : str = string.rsplit('''.''' , 1 ) if reload: __SCREAMING_SNAKE_CASE : Union[str, Any] = importlib.import_module(snake_case ) importlib.reload(snake_case ) return getattr(importlib.import_module(snake_case , package=snake_case ) , cls ) def a__ ( snake_case ): """simple docstring""" if "target" not in config: raise KeyError('''Expected key `target` to instantiate.''' ) return get_obj_from_str(config['''target'''] )(**config.get('''params''' , {} ) ) def a__ ( snake_case , snake_case , snake_case=True , snake_case=True ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = instantiate_from_config(snake_case ) if sd is not None: model.load_state_dict(snake_case ) if gpu: model.cuda() if eval_mode: model.eval() return {"model": model} def a__ ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" # load the specified checkpoint if ckpt: __SCREAMING_SNAKE_CASE : Dict = torch.load(snake_case , map_location='''cpu''' ) __SCREAMING_SNAKE_CASE : List[Any] = pl_sd['''global_step'''] print(F'''loaded model from global step {global_step}.''' ) else: __SCREAMING_SNAKE_CASE : Optional[Any] = {'''state_dict''': None} __SCREAMING_SNAKE_CASE : Optional[Any] = None __SCREAMING_SNAKE_CASE : Dict = load_model_from_config(config.model , pl_sd['''state_dict'''] , gpu=snake_case , eval_mode=snake_case )['''model'''] return model, global_step
303
1
from __future__ import annotations def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Tuple ): # Checks if the entire collection has been sorted if len(lowerCAmelCase_ ) <= 1 or n <= 1: return insert_next(lowerCAmelCase_, n - 1 ) rec_insertion_sort(lowerCAmelCase_, n - 1 ) def a_ ( lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Optional[Any] ): # Checks order between adjacent elements if index >= len(lowerCAmelCase_ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order __lowerCAmelCase , __lowerCAmelCase = ( collection[index], collection[index - 1], ) insert_next(lowerCAmelCase_, index + 1 ) if __name__ == "__main__": _snake_case : Optional[int] = input('Enter integers separated by spaces: ') _snake_case : list[int] = [int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
359
from functools import lru_cache @lru_cache def a_ ( lowerCAmelCase_ : int ): if num < 0: raise ValueError('Number should not be negative.' ) return 1 if num in (0, 1) else num * factorial(num - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
207
0
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import center_crop, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL _lowercase : Dict = logging.get_logger(__name__) class _UpperCAmelCase ( _lowerCAmelCase ): a__ : str = ["pixel_values"] def __init__( self : str , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : PILImageResampling = PIL.Image.BICUBIC , _lowercase : bool = True , _lowercase : Dict[str, int] = None , _lowercase : Union[int, float] = 1 / 2_55 , _lowercase : bool = True , _lowercase : bool = True , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , **_lowercase : int , ): super().__init__(**_lowercase ) __UpperCAmelCase = size if size is not None else {'''height''': 2_56, '''width''': 2_56} __UpperCAmelCase = get_size_dict(_lowercase ) __UpperCAmelCase = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} __UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' ) __UpperCAmelCase = do_resize __UpperCAmelCase = size __UpperCAmelCase = resample __UpperCAmelCase = do_center_crop __UpperCAmelCase = crop_size __UpperCAmelCase = do_rescale __UpperCAmelCase = rescale_factor __UpperCAmelCase = do_normalize __UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def a ( self : Tuple , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : PILImageResampling = PIL.Image.BICUBIC , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Union[str, Any] , ): __UpperCAmelCase = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return resize( _lowercase , size=(size['''height'''], size['''width''']) , resample=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : List[str] , _lowercase : np.ndarray , _lowercase : Dict[str, int] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : List[Any] , ): __UpperCAmelCase = get_size_dict(_lowercase ) if "height" not in size or "width" not in size: raise ValueError(F'''The size dictionary must have keys \'height\' and \'width\'. Got {size.keys()}''' ) return center_crop(_lowercase , size=(size['''height'''], size['''width''']) , data_format=_lowercase , **_lowercase ) def a ( self : List[Any] , _lowercase : np.ndarray , _lowercase : Union[int, float] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Any , ): return rescale(_lowercase , scale=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Dict , _lowercase : np.ndarray , _lowercase : Union[float, List[float]] , _lowercase : Union[float, List[float]] , _lowercase : Optional[Union[str, ChannelDimension]] = None , **_lowercase : Tuple , ): return normalize(_lowercase , mean=_lowercase , std=_lowercase , data_format=_lowercase , **_lowercase ) def a ( self : Optional[int] , _lowercase : ImageInput , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : Dict=None , _lowercase : bool = None , _lowercase : Dict[str, int] = None , _lowercase : bool = None , _lowercase : float = None , _lowercase : bool = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[float, List[float]]] = None , _lowercase : Optional[Union[str, TensorType]] = None , _lowercase : ChannelDimension = ChannelDimension.FIRST , **_lowercase : List[Any] , ): __UpperCAmelCase = do_resize if do_resize is not None else self.do_resize __UpperCAmelCase = resample if resample is not None else self.resample __UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop __UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize __UpperCAmelCase = image_mean if image_mean is not None else self.image_mean __UpperCAmelCase = image_std if image_std is not None else self.image_std __UpperCAmelCase = size if size is not None else self.size __UpperCAmelCase = get_size_dict(_lowercase ) __UpperCAmelCase = crop_size if crop_size is not None else self.crop_size __UpperCAmelCase = get_size_dict(_lowercase , param_name='''crop_size''' ) __UpperCAmelCase = make_list_of_images(_lowercase ) if not valid_images(_lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. __UpperCAmelCase = [to_numpy_array(_lowercase ) for image in images] if do_resize: __UpperCAmelCase = [self.resize(image=_lowercase , size=_lowercase , resample=_lowercase ) for image in images] if do_center_crop: __UpperCAmelCase = [self.center_crop(image=_lowercase , size=_lowercase ) for image in images] if do_rescale: __UpperCAmelCase = [self.rescale(image=_lowercase , scale=_lowercase ) for image in images] if do_normalize: __UpperCAmelCase = [self.normalize(image=_lowercase , mean=_lowercase , std=_lowercase ) for image in images] __UpperCAmelCase = [to_channel_dimension_format(_lowercase , _lowercase ) for image in images] __UpperCAmelCase = {'''pixel_values''': images} return BatchFeature(data=_lowercase , tensor_type=_lowercase )
332
"""simple docstring""" from __future__ import annotations def lowercase__ ( snake_case_ :list[float] , snake_case_ :list[float] ): __UpperCAmelCase = sorted(numsa + numsa ) __UpperCAmelCase , __UpperCAmelCase = divmod(len(snake_case_ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowercase : int = [float(x) for x in input('Enter the elements of first array: ').split()] _lowercase : Tuple = [float(x) for x in input('Enter the elements of second array: ').split()] print(f"""The median of two arrays is: {median_of_two_arrays(array_a, array_a)}""")
332
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class UpperCAmelCase ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = StableDiffusionInpaintPipeline SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS SCREAMING_SNAKE_CASE = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess SCREAMING_SNAKE_CASE = frozenset([] ) def _lowerCAmelCase( self ) -> int: torch.manual_seed(0 ) lowercase__ : Optional[int] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=_SCREAMING_SNAKE_CASE , ) lowercase__ : List[str] = PNDMScheduler(skip_prk_steps=_SCREAMING_SNAKE_CASE ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowercase__ : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=512 , ) lowercase__ : Optional[int] = CLIPTextModel(_SCREAMING_SNAKE_CASE ) lowercase__ : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ : List[str] = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=0 ) -> Optional[Any]: # TODO: use tensor inputs instead of PIL, this is here just to leave the old expected_slices untouched lowercase__ : List[str] = floats_tensor((1, 3, 32, 32) , rng=random.Random(_SCREAMING_SNAKE_CASE ) ).to(_SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__ : List[Any] = Image.fromarray(np.uinta(_SCREAMING_SNAKE_CASE ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__ : List[str] = Image.fromarray(np.uinta(image + 4 ) ).convert('''RGB''' ).resize((64, 64) ) if str(_SCREAMING_SNAKE_CASE ).startswith('''mps''' ): lowercase__ : int = torch.manual_seed(_SCREAMING_SNAKE_CASE ) else: lowercase__ : Union[str, Any] = torch.Generator(device=_SCREAMING_SNAKE_CASE ).manual_seed(_SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = { "prompt": "A painting of a squirrel eating a burger", "image": init_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", } return inputs def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Optional[Any] = "cpu" # ensure determinism for the device-dependent torch.Generator lowercase__ : Dict = self.get_dummy_components() lowercase__ : int = StableDiffusionInpaintPipeline(**_SCREAMING_SNAKE_CASE ) lowercase__ : str = sd_pipe.to(_SCREAMING_SNAKE_CASE ) sd_pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = self.get_dummy_inputs(_SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = sd_pipe(**_SCREAMING_SNAKE_CASE ).images lowercase__ : str = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase__ : Optional[int] = np.array([0.4_7_2_7, 0.5_7_3_5, 0.3_9_4_1, 0.5_4_4_6, 0.5_9_2_6, 0.4_3_9_4, 0.5_0_6_2, 0.4_6_5_4, 0.4_4_7_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def _lowerCAmelCase( self ) -> List[Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase( self ) -> List[str]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCAmelCase( self ) -> Tuple: lowercase__ : Dict = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ : Any = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ : Union[str, Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench.npy''' ) lowercase__ : Optional[int] = "stabilityai/stable-diffusion-2-inpainting" lowercase__ : Dict = StableDiffusionInpaintPipeline.from_pretrained(_SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : Optional[int] = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Dict = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ) lowercase__ : Union[str, Any] = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def _lowerCAmelCase( self ) -> str: lowercase__ : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint''' '''/yellow_cat_sitting_on_a_park_bench_fp16.npy''' ) lowercase__ : Dict = "stabilityai/stable-diffusion-2-inpainting" lowercase__ : Optional[Any] = StableDiffusionInpaintPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , safety_checker=_SCREAMING_SNAKE_CASE , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing() lowercase__ : List[str] = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase__ : int = torch.manual_seed(0 ) lowercase__ : Optional[Any] = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , output_type='''np''' , ) lowercase__ : str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def _lowerCAmelCase( self ) -> int: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowercase__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/sd2-inpaint/init_image.png''' ) lowercase__ : Tuple = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' ) lowercase__ : Any = "stabilityai/stable-diffusion-2-inpainting" lowercase__ : Dict = PNDMScheduler.from_pretrained(_SCREAMING_SNAKE_CASE , subfolder='''scheduler''' ) lowercase__ : List[Any] = StableDiffusionInpaintPipeline.from_pretrained( _SCREAMING_SNAKE_CASE , safety_checker=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , ) pipe.to(_SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=_SCREAMING_SNAKE_CASE ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowercase__ : List[str] = "Face of a yellow cat, high resolution, sitting on a park bench" lowercase__ : List[Any] = torch.manual_seed(0 ) lowercase__ : Any = pipe( prompt=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , mask_image=_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , num_inference_steps=2 , output_type='''np''' , ) lowercase__ : Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.6_5 * 10**9
364
'''simple docstring''' import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline __a: Tuple = datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase ( datasets.BuilderConfig ): '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = "utf-8" SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = True # deprecated SCREAMING_SNAKE_CASE = None # deprecated SCREAMING_SNAKE_CASE = 1_0 << 2_0 # 10MB SCREAMING_SNAKE_CASE = None class UpperCAmelCase ( datasets.ArrowBasedBuilder ): '''simple docstring''' SCREAMING_SNAKE_CASE = JsonConfig def _lowerCAmelCase( self ) -> Any: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) lowercase__ : Tuple = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[Any]: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) lowercase__ : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__lowerCAmelCase , (str, list, tuple) ): lowercase__ : List[str] = data_files if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : Union[str, Any] = [files] lowercase__ : Dict = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] lowercase__ : str = [] for split_name, files in data_files.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowercase__ : List[str] = [files] lowercase__ : Optional[Any] = [dl_manager.iter_files(__lowerCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=__lowerCAmelCase , gen_kwargs={'''files''': files} ) ) return splits def _lowerCAmelCase( self , __lowerCAmelCase ) -> pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): lowercase__ : Optional[int] = self.config.features.arrow_schema.field(__lowerCAmelCase ).type lowercase__ : Union[str, Any] = pa_table.append_column(__lowerCAmelCase , pa.array([None] * len(__lowerCAmelCase ) , type=__lowerCAmelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example lowercase__ : Dict = table_cast(__lowerCAmelCase , self.config.features.arrow_schema ) return pa_table def _lowerCAmelCase( self , __lowerCAmelCase ) -> Optional[int]: for file_idx, file in enumerate(itertools.chain.from_iterable(__lowerCAmelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(__lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Dict = json.load(__lowerCAmelCase ) # We keep only the field we are interested in lowercase__ : Any = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(__lowerCAmelCase , (list, tuple) ): lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : List[Any] = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} else: lowercase__ : Union[str, Any] = dataset lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) yield file_idx, self._cast_table(__lowerCAmelCase ) # If the file has one json object per line else: with open(__lowerCAmelCase , '''rb''' ) as f: lowercase__ : Optional[int] = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small lowercase__ : List[str] = max(self.config.chunksize // 32 , 16 << 10 ) lowercase__ : Union[str, Any] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: lowercase__ : Tuple = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(__lowerCAmelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": lowercase__ : Dict = batch.decode(self.config.encoding , errors=__lowerCAmelCase ).encode('''utf-8''' ) try: while True: try: lowercase__ : str = paj.read_json( io.BytesIO(__lowerCAmelCase ) , read_options=paj.ReadOptions(block_size=__lowerCAmelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(__lowerCAmelCase , pa.ArrowInvalid ) and "straddling" not in str(__lowerCAmelCase ) or block_size > len(__lowerCAmelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(__lowerCAmelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( __lowerCAmelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: lowercase__ : Optional[int] = json.load(__lowerCAmelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # list is the only sequence type supported in JSON try: lowercase__ : List[Any] = set().union(*[row.keys() for row in dataset] ) lowercase__ : str = {col: [row.get(__lowerCAmelCase ) for row in dataset] for col in keys} lowercase__ : Optional[int] = pa.Table.from_pydict(__lowerCAmelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(__lowerCAmelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(__lowerCAmelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(__lowerCAmelCase ) batch_idx += 1
214
0
def A_ ( A__ ) -> Any: if not all(char in '01' for char in bin_string ): raise ValueError('Non-binary value was passed to the function' ) if not bin_string: raise ValueError('Empty string was passed to the function' ) a__ : str = "" while len(SCREAMING_SNAKE_CASE_ ) % 3 != 0: a__ : Optional[int] = "0" + bin_string a__ : List[str] = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE_ ) ) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: a__ : int = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE_ ): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE_ ) ) oct_string += str(SCREAMING_SNAKE_CASE_ ) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
99
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = tempfile.mkdtemp() # fmt: off lowerCamelCase : Any = ["", "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "lo", "l</w>", "w</w>", "r</w>", "t</w>", "low</w>", "er</w>", "lowest</w>", "newer</w>", "wider", "<unk>", "<|startoftext|>", "<|endoftext|>"] # fmt: on lowerCamelCase : List[Any] = dict(zip(__A , range(len(__A ) ) ) ) lowerCamelCase : List[Any] = ["#version: 0.2", "l o", "lo w</w>", "e r</w>", ""] lowerCamelCase : Optional[Any] = {"unk_token": "<unk>"} lowerCamelCase : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__A ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__A ) ) lowerCamelCase : str = { "do_resize": True, "size": 20, "do_center_crop": True, "crop_size": 18, "do_normalize": True, "image_mean": [0.48145466, 0.4578275, 0.40821073], "image_std": [0.26862954, 0.26130258, 0.27577711], } lowerCamelCase : str = os.path.join(self.tmpdirname , __A ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(__A , __A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="!" , **__A ) def _snake_case ( self , **__A ): """simple docstring""" return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **__A ) def _snake_case ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowerCamelCase : Tuple = [Image.fromarray(np.moveaxis(__A , 0 , -1 ) ) for x in image_inputs] return image_inputs def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_tokenizer() lowerCamelCase : Optional[Any] = self.get_rust_tokenizer() lowerCamelCase : Tuple = self.get_image_processor() lowerCamelCase : List[Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_slow.save_pretrained(self.tmpdirname ) lowerCamelCase : Optional[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) processor_fast.save_pretrained(self.tmpdirname ) lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , __A ) self.assertIsInstance(processor_fast.tokenizer , __A ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , __A ) self.assertIsInstance(processor_fast.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase : int = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) lowerCamelCase : List[str] = self.get_image_processor(do_normalize=__A ) lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=__A ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __A ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : List[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = self.prepare_image_inputs() lowerCamelCase : int = image_processor(__A , return_tensors="np" ) lowerCamelCase : Union[str, Any] = processor(images=__A , return_tensors="np" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Union[str, Any] = self.get_image_processor() lowerCamelCase : Dict = self.get_tokenizer() lowerCamelCase : Union[str, Any] = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Tuple = "lower newer" lowerCamelCase : Union[str, Any] = processor(text=__A , return_tensors="np" ) lowerCamelCase : List[Any] = tokenizer(__A , return_tensors="np" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : Any = self.get_tokenizer() lowerCamelCase : int = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[Any] = "lower newer" lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Any = processor(text=__A , images=__A ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = "google/owlvit-base-patch32" lowerCamelCase : List[Any] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Tuple = ["cat", "nasa badge"] lowerCamelCase : str = processor(text=__A ) lowerCamelCase : Union[str, Any] = 16 self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : str = "google/owlvit-base-patch32" lowerCamelCase : Optional[int] = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : Dict = [["cat", "nasa badge"], ["person"]] lowerCamelCase : int = processor(text=__A ) lowerCamelCase : Tuple = 16 lowerCamelCase : Any = len(__A ) lowerCamelCase : Optional[Any] = max([len(__A ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Dict = "google/owlvit-base-patch32" lowerCamelCase : Tuple = OwlViTProcessor.from_pretrained(__A ) lowerCamelCase : List[Any] = ["cat", "nasa badge"] lowerCamelCase : Optional[Any] = processor(text=__A ) lowerCamelCase : int = 16 lowerCamelCase : List[str] = inputs["input_ids"] lowerCamelCase : int = [ [4_9406, 2368, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_9406, 6841, 1_1301, 4_9407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask"] ) self.assertEqual(inputs["input_ids"].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _snake_case ( self ): """simple docstring""" lowerCamelCase : Any = self.get_image_processor() lowerCamelCase : List[str] = self.get_tokenizer() lowerCamelCase : str = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Dict = self.prepare_image_inputs() lowerCamelCase : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase : Any = processor(images=__A , query_images=__A ) self.assertListEqual(list(inputs.keys() ) , ["query_pixel_values", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(__A ): processor() def _snake_case ( self ): """simple docstring""" lowerCamelCase : Optional[Any] = self.get_image_processor() lowerCamelCase : Optional[int] = self.get_tokenizer() lowerCamelCase : Dict = OwlViTProcessor(tokenizer=__A , image_processor=__A ) lowerCamelCase : Optional[int] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase : List[Any] = processor.batch_decode(__A ) lowerCamelCase : Union[str, Any] = tokenizer.batch_decode(__A ) self.assertListEqual(__A , __A )
283
0
import io import itertools import json from dataclasses import dataclass from typing import Optional import pyarrow as pa import pyarrow.json as paj import datasets from datasets.table import table_cast from datasets.utils.file_utils import readline a__ : str = datasets.utils.logging.get_logger(__name__) @dataclass class a_ ( datasets.BuilderConfig ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None __SCREAMING_SNAKE_CASE : str = "utf-8" __SCREAMING_SNAKE_CASE : Optional[str] = None __SCREAMING_SNAKE_CASE : Optional[str] = None __SCREAMING_SNAKE_CASE : bool = True # deprecated __SCREAMING_SNAKE_CASE : Optional[int] = None # deprecated __SCREAMING_SNAKE_CASE : int = 10 << 20 # 10MB __SCREAMING_SNAKE_CASE : Optional[bool] = None class a_ ( datasets.ArrowBasedBuilder ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = JsonConfig def __lowerCAmelCase ( self ) ->Dict: if self.config.block_size is not None: logger.warning('''The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead''' ) SCREAMING_SNAKE_CASE : List[str] = self.config.block_size if self.config.use_threads is not True: logger.warning( '''The JSON loader parameter `use_threads` is deprecated and doesn\'t have any effect anymore.''' ) if self.config.newlines_in_values is not None: raise ValueError('''The JSON loader parameter `newlines_in_values` is no longer supported''' ) return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , _lowerCamelCase ) ->int: if not self.config.data_files: raise ValueError(F"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) SCREAMING_SNAKE_CASE : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_lowerCamelCase , (str, list, tuple) ): SCREAMING_SNAKE_CASE : Dict = data_files if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : List[str] = [files] SCREAMING_SNAKE_CASE : Tuple = [dl_manager.iter_files(_lowerCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE : Any = [] for split_name, files in data_files.items(): if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : Optional[int] = [files] SCREAMING_SNAKE_CASE : List[Any] = [dl_manager.iter_files(_lowerCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_lowerCamelCase , gen_kwargs={'''files''': files} ) ) return splits def __lowerCAmelCase ( self , _lowerCamelCase ) ->pa.Table: if self.config.features is not None: # adding missing columns for column_name in set(self.config.features ) - set(pa_table.column_names ): SCREAMING_SNAKE_CASE : int = self.config.features.arrow_schema.field(_lowerCamelCase ).type SCREAMING_SNAKE_CASE : Any = pa_table.append_column(_lowerCamelCase , pa.array([None] * len(_lowerCamelCase ) , type=_lowerCamelCase ) ) # more expensive cast to support nested structures with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE : str = table_cast(_lowerCamelCase , self.config.features.arrow_schema ) return pa_table def __lowerCAmelCase ( self , _lowerCamelCase ) ->Optional[Any]: for file_idx, file in enumerate(itertools.chain.from_iterable(_lowerCamelCase ) ): # If the file is one json object and if we need to look at the list of items in one specific field if self.config.field is not None: with open(_lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE : List[str] = json.load(_lowerCamelCase ) # We keep only the field we are interested in SCREAMING_SNAKE_CASE : Optional[int] = dataset[self.config.field] # We accept two format: a list of dicts or a dict of lists if isinstance(_lowerCamelCase , (list, tuple) ): SCREAMING_SNAKE_CASE : List[Any] = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE : int = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} else: SCREAMING_SNAKE_CASE : int = dataset SCREAMING_SNAKE_CASE : str = pa.Table.from_pydict(_lowerCamelCase ) yield file_idx, self._cast_table(_lowerCamelCase ) # If the file has one json object per line else: with open(_lowerCamelCase , '''rb''' ) as f: SCREAMING_SNAKE_CASE : int = 0 # Use block_size equal to the chunk size divided by 32 to leverage multithreading # Set a default minimum value of 16kB if the chunk size is really small SCREAMING_SNAKE_CASE : int = max(self.config.chunksize // 32 , 16 << 10 ) SCREAMING_SNAKE_CASE : Optional[int] = ( self.config.encoding_errors if self.config.encoding_errors is not None else '''strict''' ) while True: SCREAMING_SNAKE_CASE : str = f.read(self.config.chunksize ) if not batch: break # Finish current line try: batch += f.readline() except (AttributeError, io.UnsupportedOperation): batch += readline(_lowerCamelCase ) # PyArrow only accepts utf-8 encoded bytes if self.config.encoding != "utf-8": SCREAMING_SNAKE_CASE : Optional[Any] = batch.decode(self.config.encoding , errors=_lowerCamelCase ).encode('''utf-8''' ) try: while True: try: SCREAMING_SNAKE_CASE : str = paj.read_json( io.BytesIO(_lowerCamelCase ) , read_options=paj.ReadOptions(block_size=_lowerCamelCase ) ) break except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e: if ( isinstance(_lowerCamelCase , pa.ArrowInvalid ) and "straddling" not in str(_lowerCamelCase ) or block_size > len(_lowerCamelCase ) ): raise else: # Increase the block size in case it was too small. # The block size will be reset for the next file. logger.debug( F"""Batch of {len(_lowerCamelCase )} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}.""" ) block_size *= 2 except pa.ArrowInvalid as e: try: with open( _lowerCamelCase , encoding=self.config.encoding , errors=self.config.encoding_errors ) as f: SCREAMING_SNAKE_CASE : Union[str, Any] = json.load(_lowerCamelCase ) except json.JSONDecodeError: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise e # If possible, parse the file as a list of json objects and exit the loop if isinstance(_lowerCamelCase , _lowerCamelCase ): # list is the only sequence type supported in JSON try: SCREAMING_SNAKE_CASE : Tuple = set().union(*[row.keys() for row in dataset] ) SCREAMING_SNAKE_CASE : Optional[Any] = {col: [row.get(_lowerCamelCase ) for row in dataset] for col in keys} SCREAMING_SNAKE_CASE : str = pa.Table.from_pydict(_lowerCamelCase ) except (pa.ArrowInvalid, AttributeError) as e: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise ValueError(F"""Not able to read records in the JSON file at {file}.""" ) from None yield file_idx, self._cast_table(_lowerCamelCase ) break else: logger.error(F"""Failed to read file '{file}' with error {type(_lowerCamelCase )}: {e}""" ) raise ValueError( F"""Not able to read records in the JSON file at {file}. """ F"""You should probably indicate the field of the JSON file containing your records. """ F"""This JSON file contain the following fields: {str(list(dataset.keys() ) )}. """ F"""Select the correct one and provide it as `field='XXX'` to the dataset loading method. """ ) from None # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_lowerCamelCase ) batch_idx += 1
353
import datasets from .evaluate import evaluate a__ : Dict = '''\ @article{hendrycks2021cuad, title={CUAD: An Expert-Annotated NLP Dataset for Legal Contract Review}, author={Dan Hendrycks and Collin Burns and Anya Chen and Spencer Ball}, journal={arXiv preprint arXiv:2103.06268}, year={2021} } ''' a__ : List[str] = ''' This metric wrap the official scoring script for version 1 of the Contract Understanding Atticus Dataset (CUAD). Contract Understanding Atticus Dataset (CUAD) v1 is a corpus of more than 13,000 labels in 510 commercial legal contracts that have been manually labeled to identify 41 categories of important clauses that lawyers look for when reviewing contracts in connection with corporate transactions. ''' a__ : List[Any] = ''' Computes CUAD scores (EM, F1, AUPR, Precision@80%Recall, and Precision@90%Recall). Args: predictions: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair as given in the references (see below) - \'prediction_text\': list of possible texts for the answer, as a list of strings depending on a threshold on the confidence probability of each prediction. references: List of question-answers dictionaries with the following key-values: - \'id\': id of the question-answer pair (see above), - \'answers\': a Dict in the CUAD dataset format { \'text\': list of possible texts for the answer, as a list of strings \'answer_start\': list of start positions for the answer, as a list of ints } Note that answer_start values are not taken into account to compute the metric. Returns: \'exact_match\': Exact match (the normalized answer exactly match the gold answer) \'f1\': The F-score of predicted tokens versus the gold answer \'aupr\': Area Under the Precision-Recall curve \'prec_at_80_recall\': Precision at 80% recall \'prec_at_90_recall\': Precision at 90% recall Examples: >>> predictions = [{\'prediction_text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\'], \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> references = [{\'answers\': {\'answer_start\': [143, 49], \'text\': [\'The seller:\', \'The buyer/End-User: Shenzhen LOHAS Supply Chain Management Co., Ltd.\']}, \'id\': \'LohaCompanyltd_20191209_F-1_EX-10.16_11917878_EX-10.16_Supply Agreement__Parties\'}] >>> cuad_metric = datasets.load_metric("cuad") >>> results = cuad_metric.compute(predictions=predictions, references=references) >>> print(results) {\'exact_match\': 100.0, \'f1\': 100.0, \'aupr\': 0.0, \'prec_at_80_recall\': 1.0, \'prec_at_90_recall\': 1.0} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): """simple docstring""" def __lowerCAmelCase ( self ) ->Tuple: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': { '''id''': datasets.Value('''string''' ), '''prediction_text''': datasets.features.Sequence(datasets.Value('''string''' ) ), }, '''references''': { '''id''': datasets.Value('''string''' ), '''answers''': datasets.features.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), }, } ) , codebase_urls=['''https://www.atticusprojectai.org/cuad'''] , reference_urls=['''https://www.atticusprojectai.org/cuad'''] , ) def __lowerCAmelCase ( self , _lowerCamelCase , _lowerCamelCase ) ->Tuple: SCREAMING_SNAKE_CASE : Any = {prediction['''id''']: prediction['''prediction_text'''] for prediction in predictions} SCREAMING_SNAKE_CASE : int = [ { '''paragraphs''': [ { '''qas''': [ { '''answers''': [{'''text''': answer_text} for answer_text in ref['''answers''']['''text''']], '''id''': ref['''id'''], } for ref in references ] } ] } ] SCREAMING_SNAKE_CASE : Dict = evaluate(dataset=_lowerCamelCase , predictions=_lowerCamelCase ) return score
19
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__UpperCAmelCase ) class A__ ( __UpperCAmelCase ): """simple docstring""" __A : str = field(default='''summarization''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) __A : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) __A : ClassVar[Features] = Features({'''summary''': Value('''string''' )} ) __A : str = "text" __A : str = "summary" @property def __lowercase ( self) -> Dict[str, str]: '''simple docstring''' return {self.text_column: "text", self.summary_column: "summary"}
99
import inspect import unittest from transformers import ViTHybridConfig from transformers.testing_utils import require_accelerate, require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel from transformers.models.vit_hybrid.modeling_vit_hybrid import VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class A__ : """simple docstring""" def __init__( self , lowercase , lowercase=13 , lowercase=64 , lowercase=2 , lowercase=3 , lowercase=True , lowercase=True , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=10 , lowercase=0.02 , lowercase=[1, 16, 4, 4] , lowercase=None , ) -> List[Any]: '''simple docstring''' a__ : Optional[int] = parent a__ : Optional[int] = batch_size a__ : Any = image_size a__ : Optional[Any] = patch_size a__ : Optional[Any] = num_channels a__ : int = is_training a__ : List[str] = use_labels a__ : List[str] = hidden_size a__ : Tuple = num_hidden_layers a__ : Optional[Any] = num_attention_heads a__ : Union[str, Any] = intermediate_size a__ : Optional[int] = hidden_act a__ : Optional[Any] = hidden_dropout_prob a__ : Any = attention_probs_dropout_prob a__ : Any = type_sequence_label_size a__ : Tuple = initializer_range a__ : Tuple = scope a__ : int = backbone_featmap_shape # in ViT hybrid, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) # the number of patches is based on the feature map of the backbone, which by default uses an output stride # of 32, which means that the feature map has a spatial resolution of 1/32 of the input image size a__ : Any = (self.image_size // 32) ** 2 a__ : List[Any] = num_patches + 1 def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__ : int = None if self.use_labels: a__ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size) a__ : List[str] = self.get_config() return config, pixel_values, labels def __lowercase ( self) -> Dict: '''simple docstring''' a__ : List[str] = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, 'hidden_sizes': [4, 8, 16, 32], 'num_groups': 2, } return ViTHybridConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase , initializer_range=self.initializer_range , backbone_featmap_shape=self.backbone_featmap_shape , backbone_config=lowercase , ) def __lowercase ( self , lowercase , lowercase , lowercase) -> List[str]: '''simple docstring''' a__ : List[str] = ViTHybridModel(config=lowercase) model.to(lowercase) model.eval() a__ : Union[str, Any] = model(lowercase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : Dict = self.type_sequence_label_size a__ : Union[str, Any] = ViTHybridForImageClassification(lowercase) model.to(lowercase) model.eval() a__ : Tuple = model(lowercase , labels=lowercase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = self.prepare_config_and_inputs() a__ , a__ , a__ : Union[str, Any] = config_and_inputs a__ : str = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class A__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): """simple docstring""" __A : Optional[Any] = (ViTHybridModel, ViTHybridForImageClassification) if is_torch_available() else () __A : List[str] = ( {'''feature-extraction''': ViTHybridModel, '''image-classification''': ViTHybridForImageClassification} if is_torch_available() else {} ) __A : Any = False __A : Optional[int] = False __A : Optional[Any] = False def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = ViTHybridModelTester(self) a__ : Any = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase , hidden_size=37) def __lowercase ( self) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds') def __lowercase ( self) -> Dict: '''simple docstring''' pass def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ , a__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : str = model_class(lowercase) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) a__ : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase , nn.Linear)) def __lowercase ( self) -> int: '''simple docstring''' a__ , a__ : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Union[str, Any] = model_class(lowercase) a__ : Union[str, Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Optional[Any] = [*signature.parameters.keys()] a__ : Dict = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase) def __lowercase ( self) -> Optional[Any]: '''simple docstring''' a__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase) def __lowercase ( self) -> Dict: '''simple docstring''' a__ , a__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = _config_zero_init(lowercase) for model_class in self.all_model_classes: a__ : List[Any] = model_class(config=lowercase) # Skip the check for the backbone for name, module in model.named_modules(): if module.__class__.__name__ == "ViTHybridPatchEmbeddings": a__ : Dict = [F'{name}.{key}' for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def __lowercase ( self) -> Any: '''simple docstring''' for model_name in VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Optional[Any] = ViTHybridModel.from_pretrained(lowercase) self.assertIsNotNone(lowercase) def A_ ( ) -> int: a__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class A__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self) -> Optional[Any]: '''simple docstring''' return ( ViTHybridImageProcessor.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]) if is_vision_available() else None ) @slow def __lowercase ( self) -> Any: '''simple docstring''' a__ : List[str] = ViTHybridForImageClassification.from_pretrained(VIT_HYBRID_PRETRAINED_MODEL_ARCHIVE_LIST[0]).to( lowercase) a__ : List[str] = self.default_image_processor a__ : List[Any] = prepare_img() a__ : Any = image_processor(images=lowercase , return_tensors='pt').to(lowercase) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**lowercase) # verify the logits a__ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase) a__ : Any = torch.tensor([-1.90_90, -0.49_93, -0.23_89]).to(lowercase) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase , atol=1e-4)) @slow @require_accelerate def __lowercase ( self) -> Optional[int]: '''simple docstring''' a__ : List[str] = ViTHybridImageProcessor.from_pretrained('google/vit-hybrid-base-bit-384') a__ : Union[str, Any] = ViTHybridForImageClassification.from_pretrained('google/vit-hybrid-base-bit-384' , device_map='auto') a__ : Any = prepare_img() a__ : str = image_processor(images=lowercase , return_tensors='pt') a__ : List[Any] = model(**lowercase) a__ : int = outputs.logits # model predicts one of the 1000 ImageNet classes a__ : List[str] = logits.argmax(-1).item() self.assertTrue(model.config.idalabel[predicted_class_idx] , 'tabby, tabby cat')
99
1
"""simple docstring""" class lowerCAmelCase__ : '''simple docstring''' def __init__( self , lowercase ): _lowerCamelCase : Optional[Any] = n _lowerCamelCase : Tuple = [None] * self.n _lowerCamelCase : Any = 0 # index of the first element _lowerCamelCase : Any = 0 _lowerCamelCase : Optional[int] = 0 def __len__( self ): return self.size def A_ ( self ): return self.size == 0 def A_ ( self ): return False if self.is_empty() else self.array[self.front] def A_ ( self , lowercase ): if self.size >= self.n: raise Exception('QUEUE IS FULL' ) _lowerCamelCase : str = data _lowerCamelCase : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def A_ ( self ): if self.size == 0: raise Exception('UNDERFLOW' ) _lowerCamelCase : Union[str, Any] = self.array[self.front] _lowerCamelCase : List[Any] = None _lowerCamelCase : Union[str, Any] = (self.front + 1) % self.n self.size -= 1 return temp
366
"""simple docstring""" import unittest import numpy as np import torch from diffusers import VersatileDiffusionImageVariationPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device lowercase__ = False class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' pass @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Tuple = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) _lowerCamelCase : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) _lowerCamelCase : Dict = torch.manual_seed(0 ) _lowerCamelCase : Dict = pipe( image=lowercase , generator=lowercase , guidance_scale=7.5 , num_inference_steps=50 , output_type='numpy' , ).images _lowerCamelCase : str = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) _lowerCamelCase : Any = np.array([0.04_41, 0.04_69, 0.05_07, 0.05_75, 0.06_32, 0.06_50, 0.08_65, 0.09_09, 0.09_45] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
12
0
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCAmelCase_ : def __init__( self : Union[str, Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : Optional[int]=7 , UpperCAmelCase__ : int=True , UpperCAmelCase__ : Union[str, Any]=True , UpperCAmelCase__ : str=False , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : List[str]=9_9 , UpperCAmelCase__ : Union[str, Any]=3_2 , UpperCAmelCase__ : Optional[Any]=5 , UpperCAmelCase__ : List[Any]=4 , UpperCAmelCase__ : str=3_7 , UpperCAmelCase__ : Optional[int]="gelu" , UpperCAmelCase__ : str=0.1 , UpperCAmelCase__ : Optional[int]=0.1 , UpperCAmelCase__ : Dict=5_1_2 , UpperCAmelCase__ : int=1_6 , UpperCAmelCase__ : str=2 , UpperCAmelCase__ : Dict=0.02 , UpperCAmelCase__ : int=3 , UpperCAmelCase__ : int=4 , UpperCAmelCase__ : Any=None , ) -> Dict: lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : Dict ) -> str: return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def __UpperCAmelCase ( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] ) -> Dict: lowerCAmelCase = FalconModel(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Tuple , ) -> Optional[int]: lowerCAmelCase = True lowerCAmelCase = FalconModel(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : str , UpperCAmelCase__ : str , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str , UpperCAmelCase__ : Tuple , ) -> Tuple: lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , ) -> Optional[int]: lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = FalconForCausalLM(config=UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() # first forward pass lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) lowerCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids lowerCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and lowerCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] lowerCAmelCase = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['hidden_states'][0] # select random slice lowerCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() lowerCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Dict ) -> List[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ( lowerCAmelCase ) , ) = config_and_inputs lowerCAmelCase = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase_ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): lowerCamelCase : List[Any] = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) lowerCamelCase : List[Any] = (FalconForCausalLM,) if is_torch_available() else () lowerCamelCase : Tuple = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase : str = False lowerCamelCase : Tuple = False def __UpperCAmelCase ( self : Optional[int] ) -> Dict: lowerCAmelCase = FalconModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=3_7 ) def __UpperCAmelCase ( self : List[str] ) -> Tuple: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__ ) def __UpperCAmelCase ( self : List[Any] ) -> Any: lowerCAmelCase , *lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: lowerCAmelCase = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : List[Any] ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'single_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> int: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = FalconForCausalLM(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__ ) lowerCAmelCase = input_ids.shape[0] lowerCAmelCase = model._convert_to_rw_cache(result.past_key_values ) lowerCAmelCase = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__ ) for layer in range(len(UpperCAmelCase__ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def __UpperCAmelCase ( self : int ) -> Dict: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = 3 lowerCAmelCase = 'multi_label_classification' lowerCAmelCase = input_dict['input_ids'] lowerCAmelCase = input_ids.ne(1 ).to(UpperCAmelCase__ ) lowerCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) lowerCAmelCase = FalconForSequenceClassification(UpperCAmelCase__ ) model.to(UpperCAmelCase__ ) model.eval() lowerCAmelCase = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: # Falcon can have different numbers of KV-heads than the number of query heads, so we need # to override this test to use the right head counts. for model_class in self.all_generative_model_classes: lowerCAmelCase , lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , 'use_cache' ): return lowerCAmelCase = model_class(UpperCAmelCase__ ).to(UpperCAmelCase__ ) if "use_cache" not in inputs: lowerCAmelCase = True lowerCAmelCase = model(**UpperCAmelCase__ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return lowerCAmelCase = ( getattr(UpperCAmelCase__ , 'decoder_layers' , UpperCAmelCase__ ) or getattr(UpperCAmelCase__ , 'num_decoder_layers' , UpperCAmelCase__ ) or config.num_hidden_layers ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'num_kv_heads' , config.num_attention_heads ) lowerCAmelCase = getattr(UpperCAmelCase__ , 'd_model' , config.hidden_size ) lowerCAmelCase = embed_dim // num_attention_heads lowerCAmelCase = outputs['past_key_values'] self.assertEqual(len(UpperCAmelCase__ ) , UpperCAmelCase__ ) lowerCAmelCase , lowerCAmelCase = inputs['input_ids'].shape for i in range(UpperCAmelCase__ ): if config.new_decoder_architecture: lowerCAmelCase = config.num_attention_heads elif config.multi_query: lowerCAmelCase = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self : Optional[int] ) -> List[str]: lowerCAmelCase = AutoTokenizer.from_pretrained('Rocketknight1/falcon-rw-1b' ) lowerCAmelCase = FalconForCausalLM.from_pretrained('Rocketknight1/falcon-rw-1b' ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) lowerCAmelCase = ( 'My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.' ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=1_9 ) lowerCAmelCase = tokenizer.batch_decode(UpperCAmelCase__ )[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__ ) @slow def __UpperCAmelCase ( self : Tuple ) -> List[Any]: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4 ) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4 ) @slow def __UpperCAmelCase ( self : Dict ) -> Any: # The big models are way too big for the CI, so we use tiny random models that resemble their # architectures but with much smaller and fewer layers with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: lowerCAmelCase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) lowerCAmelCase = FalconForCausalLM.from_pretrained(UpperCAmelCase__ ) model.eval() model.to(device=UpperCAmelCase__ ) lowerCAmelCase = tokenizer('My favorite food is' , return_tensors='pt' ).to(UpperCAmelCase__ ) # Test results are the same with and without cache lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) lowerCAmelCase = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=2_0 , use_cache=UpperCAmelCase__ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
4
import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class _UpperCAmelCase : """simple docstring""" def __init__( self : Optional[Any], lowerCamelCase : Optional[int], lowerCamelCase : str=14, lowerCamelCase : List[str]=7, lowerCamelCase : Dict=True, lowerCamelCase : List[str]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Optional[Any]=True, lowerCamelCase : Any=True, lowerCamelCase : List[str]=99, lowerCamelCase : Optional[Any]=32, lowerCamelCase : Optional[int]=5, lowerCamelCase : List[Any]=4, lowerCamelCase : List[Any]=37, lowerCamelCase : List[str]="gelu", lowerCamelCase : Any=0.1, lowerCamelCase : Optional[Any]=0.1, lowerCamelCase : List[Any]=512, lowerCamelCase : List[str]=16, lowerCamelCase : Dict=2, lowerCamelCase : Union[str, Any]=0.02, lowerCamelCase : Optional[int]=3, lowerCamelCase : Dict=4, lowerCamelCase : List[Any]=None, ): '''simple docstring''' lowercase__ = parent lowercase__ = batch_size lowercase__ = seq_length lowercase__ = is_training lowercase__ = use_token_type_ids lowercase__ = use_input_mask lowercase__ = use_labels lowercase__ = use_mc_token_ids lowercase__ = vocab_size lowercase__ = hidden_size lowercase__ = num_hidden_layers lowercase__ = num_attention_heads lowercase__ = intermediate_size lowercase__ = hidden_act lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = max_position_embeddings lowercase__ = type_vocab_size lowercase__ = type_sequence_label_size lowercase__ = initializer_range lowercase__ = num_labels lowercase__ = num_choices lowercase__ = scope lowercase__ = self.vocab_size - 1 def lowercase__ ( self : Optional[int] ): '''simple docstring''' lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowercase__ = None if self.use_input_mask: lowercase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowercase__ = None if self.use_token_type_ids: lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowercase__ = None if self.use_mc_token_ids: lowercase__ = ids_tensor([self.batch_size, self.num_choices], self.seq_length ) lowercase__ = None lowercase__ = None lowercase__ = None if self.use_labels: lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowercase__ = ids_tensor([self.batch_size], self.num_choices ) lowercase__ = self.get_config() lowercase__ = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def lowercase__ ( self : Optional[int] ): '''simple docstring''' return CTRLConfig( vocab_size=self.vocab_size, n_embd=self.hidden_size, n_layer=self.num_hidden_layers, n_head=self.num_attention_heads, n_positions=self.max_position_embeddings, pad_token_id=self.pad_token_id, ) def lowercase__ ( self : Union[str, Any], lowerCamelCase : Any, lowerCamelCase : Tuple, lowerCamelCase : Any, lowerCamelCase : List[Any], lowerCamelCase : Union[str, Any], *lowerCamelCase : Dict ): '''simple docstring''' lowercase__ = CTRLModel(config=lowerCamelCase ) model.to(lowerCamelCase ) model.eval() model(lowerCamelCase, token_type_ids=lowerCamelCase, head_mask=lowerCamelCase ) model(lowerCamelCase, token_type_ids=lowerCamelCase ) lowercase__ = model(lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ), config.n_layer ) def lowercase__ ( self : Optional[Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Tuple, lowerCamelCase : Union[str, Any], lowerCamelCase : Union[str, Any], lowerCamelCase : Optional[int], *lowerCamelCase : Any ): '''simple docstring''' lowercase__ = CTRLLMHeadModel(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.loss.shape, () ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Dict ): '''simple docstring''' lowercase__ = self.prepare_config_and_inputs() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = config_and_inputs lowercase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask} return config, inputs_dict def lowercase__ ( self : List[str], lowerCamelCase : Tuple, lowerCamelCase : Optional[Any], lowerCamelCase : int, lowerCamelCase : Any, *lowerCamelCase : int ): '''simple docstring''' lowercase__ = self.num_labels lowercase__ = CTRLForSequenceClassification(lowerCamelCase ) model.to(lowerCamelCase ) model.eval() lowercase__ = ids_tensor([self.batch_size], self.type_sequence_label_size ) lowercase__ = model(lowerCamelCase, token_type_ids=lowerCamelCase, labels=lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) @require_torch class _UpperCAmelCase ( A__ ,A__ ,A__ ,unittest.TestCase ): """simple docstring""" lowercase__ = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowercase__ = (CTRLLMHeadModel,) if is_torch_available() else () lowercase__ = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False def lowercase__ ( self : Dict, lowerCamelCase : Optional[int], lowerCamelCase : str, lowerCamelCase : Any, lowerCamelCase : List[str], lowerCamelCase : Optional[Any] ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def lowercase__ ( self : Any ): '''simple docstring''' lowercase__ = CTRLModelTester(self ) lowercase__ = ConfigTester(self, config_class=lowerCamelCase, n_embd=37 ) def lowercase__ ( self : Tuple ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : int ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase__ ( self : str ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*lowerCamelCase ) def lowercase__ ( self : List[Any] ): '''simple docstring''' lowercase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*lowerCamelCase ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowercase__ ( self : Union[str, Any] ): '''simple docstring''' pass @slow def lowercase__ ( self : Any ): '''simple docstring''' for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ = CTRLModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) @unittest.skip('''The model doesn\'t support left padding''' ) # and it's not used enough to be worth fixing :) def lowercase__ ( self : List[Any] ): '''simple docstring''' pass @require_torch class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self : Any ): '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def lowercase__ ( self : int ): '''simple docstring''' lowercase__ = CTRLLMHeadModel.from_pretrained('''ctrl''' ) model.to(lowerCamelCase ) lowercase__ = torch.tensor( [[11_859, 0, 1_611, 8]], dtype=torch.long, device=lowerCamelCase ) # Legal the president is lowercase__ = [ 11_859, 0, 1_611, 8, 5, 150, 26_449, 2, 19, 348, 469, 3, 2_595, 48, 20_740, 246_533, 246_533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase__ = model.generate(lowerCamelCase, do_sample=lowerCamelCase ) self.assertListEqual(output_ids[0].tolist(), lowerCamelCase )
207
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __UpperCAmelCase : Dict = logging.get_logger(__name__) def a ( SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : Union[int, Iterable[int]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" def constraint_to_multiple_of(SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict=0 , SCREAMING_SNAKE_CASE_ : Optional[int]=None ): UpperCamelCase : Union[str, Any] = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase : Union[str, Any] = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase : Union[str, Any] = math.ceil(val / multiple ) * multiple return x UpperCamelCase : Optional[int] = (output_size, output_size) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else output_size UpperCamelCase , UpperCamelCase : Optional[int] = get_image_size(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase : int = output_size # determine new height and width UpperCamelCase : str = output_height / input_height UpperCamelCase : Union[str, Any] = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase : Union[str, Any] = scale_width else: # fit height UpperCamelCase : str = scale_height UpperCamelCase : int = constraint_to_multiple_of(scale_height * input_height , multiple=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = constraint_to_multiple_of(scale_width * input_width , multiple=SCREAMING_SNAKE_CASE_ ) return (new_height, new_width) class UpperCAmelCase_ ( _a): '''simple docstring''' __UpperCamelCase : List[str] = ["pixel_values"] def __init__( self , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = PILImageResampling.BILINEAR , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = 1 / 255 , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__(**__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = size if size is not None else {'''height''': 384, '''width''': 384} UpperCamelCase : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = do_resize UpperCamelCase : Optional[int] = size UpperCamelCase : int = keep_aspect_ratio UpperCamelCase : Union[str, Any] = ensure_multiple_of UpperCamelCase : Dict = resample UpperCamelCase : Optional[Any] = do_rescale UpperCamelCase : Optional[Any] = rescale_factor UpperCamelCase : List[str] = do_normalize UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase : int = image_std if image_std is not None else IMAGENET_STANDARD_STD def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = 1 , __SCREAMING_SNAKE_CASE = PILImageResampling.BICUBIC , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : Union[str, Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) UpperCamelCase : List[str] = get_resize_output_image_size( __SCREAMING_SNAKE_CASE , output_size=(size['''height'''], size['''width''']) , keep_aspect_ratio=__SCREAMING_SNAKE_CASE , multiple=__SCREAMING_SNAKE_CASE , ) return resize(__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return rescale(__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" return normalize(__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE , data_format=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = ChannelDimension.FIRST , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" UpperCamelCase : List[str] = do_resize if do_resize is not None else self.do_resize UpperCamelCase : Optional[int] = size if size is not None else self.size UpperCamelCase : Optional[Any] = get_size_dict(__SCREAMING_SNAKE_CASE ) UpperCamelCase : int = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase : Tuple = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase : Optional[int] = resample if resample is not None else self.resample UpperCamelCase : Tuple = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase : Any = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase : Optional[Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase : Union[str, Any] = image_mean if image_mean is not None else self.image_mean UpperCamelCase : Union[str, Any] = image_std if image_std is not None else self.image_std UpperCamelCase : str = make_list_of_images(__SCREAMING_SNAKE_CASE ) if not valid_images(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None or resample is None: raise ValueError('''Size and resample must be specified if do_resize is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. UpperCamelCase : List[Any] = [to_numpy_array(__SCREAMING_SNAKE_CASE ) for image in images] if do_resize: UpperCamelCase : List[str] = [self.resize(image=__SCREAMING_SNAKE_CASE , size=__SCREAMING_SNAKE_CASE , resample=__SCREAMING_SNAKE_CASE ) for image in images] if do_rescale: UpperCamelCase : Optional[Any] = [self.rescale(image=__SCREAMING_SNAKE_CASE , scale=__SCREAMING_SNAKE_CASE ) for image in images] if do_normalize: UpperCamelCase : Dict = [self.normalize(image=__SCREAMING_SNAKE_CASE , mean=__SCREAMING_SNAKE_CASE , std=__SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase : Union[str, Any] = [to_channel_dimension_format(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) for image in images] UpperCamelCase : str = {'''pixel_values''': images} return BatchFeature(data=__SCREAMING_SNAKE_CASE , tensor_type=__SCREAMING_SNAKE_CASE ) def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" UpperCamelCase : Any = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__SCREAMING_SNAKE_CASE ) != len(__SCREAMING_SNAKE_CASE ): raise ValueError( '''Make sure that you pass in as many target sizes as the batch dimension of the logits''' ) if is_torch_tensor(__SCREAMING_SNAKE_CASE ): UpperCamelCase : Dict = target_sizes.numpy() UpperCamelCase : Union[str, Any] = [] for idx in range(len(__SCREAMING_SNAKE_CASE ) ): UpperCamelCase : int = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='''bilinear''' , align_corners=__SCREAMING_SNAKE_CASE ) UpperCamelCase : Optional[Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__SCREAMING_SNAKE_CASE ) else: UpperCamelCase : str = logits.argmax(dim=1 ) UpperCamelCase : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
315
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class UpperCAmelCase_ ( _a): '''simple docstring''' def __init__( self , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE ): """simple docstring""" super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) UpperCamelCase : Any = eval_examples UpperCamelCase : Optional[Any] = post_process_function def _lowercase ( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = "eval" ): """simple docstring""" UpperCamelCase : int = self.eval_dataset if eval_dataset is None else eval_dataset UpperCamelCase : int = self.get_eval_dataloader(__SCREAMING_SNAKE_CASE ) UpperCamelCase : str = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase : Any = self.compute_metrics UpperCamelCase : List[Any] = None UpperCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase : Dict = time.time() try: UpperCamelCase : str = eval_loop( __SCREAMING_SNAKE_CASE , description='''Evaluation''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase : Union[str, Any] = compute_metrics UpperCamelCase : Any = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCamelCase : Dict = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , output.predictions ) UpperCamelCase : Optional[Any] = self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase : Dict = metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) else: UpperCamelCase : List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__SCREAMING_SNAKE_CASE ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCamelCase : Any = self.callback_handler.on_evaluate(self.args , self.state , self.control , __SCREAMING_SNAKE_CASE ) return metrics def _lowercase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = "test" ): """simple docstring""" UpperCamelCase : Tuple = self.get_test_dataloader(__SCREAMING_SNAKE_CASE ) # Temporarily disable metric computation, we will do it in the loop here. UpperCamelCase : Union[str, Any] = self.compute_metrics UpperCamelCase : Tuple = None UpperCamelCase : str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCamelCase : Optional[int] = time.time() try: UpperCamelCase : int = eval_loop( __SCREAMING_SNAKE_CASE , description='''Prediction''' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__SCREAMING_SNAKE_CASE , metric_key_prefix=__SCREAMING_SNAKE_CASE , ) finally: UpperCamelCase : int = compute_metrics UpperCamelCase : Dict = self.args.eval_batch_size * self.args.world_size if f"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[f"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCamelCase : Dict = self.post_process_function(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , output.predictions , '''predict''' ) UpperCamelCase : Union[str, Any] = self.compute_metrics(__SCREAMING_SNAKE_CASE ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f"""{metric_key_prefix}_""" ): UpperCamelCase : Any = metrics.pop(__SCREAMING_SNAKE_CASE ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__SCREAMING_SNAKE_CASE )
315
1
'''simple docstring''' from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal __SCREAMING_SNAKE_CASE : Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple = TypeVar("""DatasetType""", Dataset, IterableDataset) def UpperCamelCase_ ( _UpperCAmelCase : List[DatasetType] , _UpperCAmelCase : Optional[List[float]] = None , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : Literal["first_exhausted", "all_exhausted"] = "first_exhausted" , ) -> DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("Unable to interleave an empty list of datasets." ) for i, dataset in enumerate(_UpperCAmelCase ): if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCAmelCase ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.""" ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase ) else: return _interleave_iterable_datasets( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , stopping_strategy=_UpperCAmelCase ) def UpperCamelCase_ ( _UpperCAmelCase : List[DatasetType] , _UpperCAmelCase : Optional[DatasetInfo] = None , _UpperCAmelCase : Optional[NamedSplit] = None , _UpperCAmelCase : int = 0 , ) -> DatasetType: """simple docstring""" if not dsets: raise ValueError("Unable to concatenate an empty list of datasets." ) for i, dataset in enumerate(_UpperCAmelCase ): if not isinstance(_UpperCAmelCase , (Dataset, IterableDataset) ): if isinstance(_UpperCAmelCase , (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ "is an empty dataset dictionary." ) raise ValueError( F"""Dataset at position {i} has at least one split: {list(_UpperCAmelCase )}\n""" F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_UpperCAmelCase ) )}']""" ) raise ValueError( F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_UpperCAmelCase ).__name__}.""" ) if i == 0: _UpperCAmelCase , _UpperCAmelCase : Dict = ( (Dataset, IterableDataset) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError( F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase ) else: return _concatenate_iterable_datasets(_UpperCAmelCase , info=_UpperCAmelCase , split=_UpperCAmelCase , axis=_UpperCAmelCase )
31
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter snake_case_ = logging.get_logger(__name__) snake_case_ = {} snake_case_ = {} snake_case_ = {} def snake_case__ ( SCREAMING_SNAKE_CASE_ : type , SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ): '''simple docstring''' lowercase__ : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowercase__ : Any = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowercase__ : int = format_type def snake_case__ ( SCREAMING_SNAKE_CASE_ : Exception , SCREAMING_SNAKE_CASE_ : Optional[str] , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None ): '''simple docstring''' lowercase__ : Optional[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowercase__ : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['''python''']) _register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow''']) _register_formatter(NumpyFormatter, '''numpy''', aliases=['''np''']) _register_formatter(PandasFormatter, '''pandas''', aliases=['''pd''']) _register_formatter(CustomFormatter, '''custom''') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch''']) else: snake_case_ = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''') _register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch''']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf''']) else: snake_case_ = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''') _register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf''']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, '''jax''', aliases=[]) else: snake_case_ = ValueError('''JAX needs to be installed to be able to return JAX arrays.''') _register_unavailable_formatter(_jax_error, '''jax''', aliases=[]) def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[str] ): '''simple docstring''' if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def snake_case__ ( SCREAMING_SNAKE_CASE_ : Optional[str] , **SCREAMING_SNAKE_CASE_ : Any ): '''simple docstring''' lowercase__ : Tuple = get_format_type_from_alias(SCREAMING_SNAKE_CASE_ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**SCREAMING_SNAKE_CASE_ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
214
0
"""simple docstring""" from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar __UpperCamelCase : Dict = TypeVar('''T''') def __SCREAMING_SNAKE_CASE ( A_ ): return (position - 1) // 2 def __SCREAMING_SNAKE_CASE ( A_ ): return (2 * position) + 1 def __SCREAMING_SNAKE_CASE ( A_ ): return (2 * position) + 2 class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" def __init__( self : Dict ): lowerCAmelCase__ : list[tuple[T, int]] = [] lowerCAmelCase__ : dict[T, int] = {} lowerCAmelCase__ : int = 0 def __len__( self : Tuple ): return self.elements def __repr__( self : int ): return str(self.heap ) def __lowerCAmelCase ( self : Tuple ): # Check if the priority queue is empty return self.elements == 0 def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : T ,lowercase_ : int ): # Add an element with given priority to the queue self.heap.append((elem, weight) ) lowerCAmelCase__ : Tuple = self.elements self.elements += 1 self._bubble_up(lowercase_ ) def __lowerCAmelCase ( self : Any ): # Remove and return the element with lowest weight (highest priority) if self.elements > 1: self._swap_nodes(0 ,self.elements - 1 ) lowerCAmelCase__ ,lowerCAmelCase__ : int = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowerCAmelCase__ ,lowerCAmelCase__ : Union[str, Any] = self.heap[0] self._bubble_down(lowercase_ ) return elem def __lowerCAmelCase ( self : Any ,lowercase_ : T ,lowercase_ : int ): # Update the weight of the given key lowerCAmelCase__ : List[Any] = self.position_map[elem] lowerCAmelCase__ : Optional[Any] = (elem, weight) if position > 0: lowerCAmelCase__ : Union[str, Any] = get_parent_position(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : Optional[int] = self.heap[parent_position] if parent_weight > weight: self._bubble_up(lowercase_ ) else: self._bubble_down(lowercase_ ) else: self._bubble_down(lowercase_ ) def __lowerCAmelCase ( self : int ,lowercase_ : T ): # Place a node at the proper position (upward movement) [to be used internally # only] lowerCAmelCase__ : Optional[Any] = self.position_map[elem] if curr_pos == 0: return None lowerCAmelCase__ : int = get_parent_position(lowercase_ ) lowerCAmelCase__ ,lowerCAmelCase__ : int = self.heap[curr_pos] lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(lowercase_ ,lowercase_ ) return self._bubble_up(lowercase_ ) return None def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : T ): # Place a node at the proper position (downward movement) [to be used # internally only] lowerCAmelCase__ : int = self.position_map[elem] lowerCAmelCase__ ,lowerCAmelCase__ : List[Any] = self.heap[curr_pos] lowerCAmelCase__ : Optional[Any] = get_child_left_position(lowercase_ ) lowerCAmelCase__ : List[Any] = get_child_right_position(lowercase_ ) if child_left_position < self.elements and child_right_position < self.elements: lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.heap[child_left_position] lowerCAmelCase__ ,lowerCAmelCase__ : Any = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(lowercase_ ,lowercase_ ) return self._bubble_down(lowercase_ ) if child_left_position < self.elements: lowerCAmelCase__ ,lowerCAmelCase__ : Optional[Any] = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(lowercase_ ,lowercase_ ) return self._bubble_down(lowercase_ ) else: return None if child_right_position < self.elements: lowerCAmelCase__ ,lowerCAmelCase__ : Dict = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(lowercase_ ,lowercase_ ) return self._bubble_down(lowercase_ ) return None def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : int ,lowercase_ : int ): # Swap the nodes at the given positions lowerCAmelCase__ : Union[str, Any] = self.heap[nodea_pos][0] lowerCAmelCase__ : Optional[Any] = self.heap[nodea_pos][0] lowerCAmelCase__ ,lowerCAmelCase__ : Tuple = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowerCAmelCase__ : Dict = nodea_pos lowerCAmelCase__ : int = nodea_pos class SCREAMING_SNAKE_CASE ( Generic[T] ): """simple docstring""" def __init__( self : Union[str, Any] ): lowerCAmelCase__ : dict[T, dict[T, int]] = {} lowerCAmelCase__ : int = 0 def __repr__( self : Optional[Any] ): return str(self.connections ) def __len__( self : Tuple ): return self.nodes def __lowerCAmelCase ( self : Optional[int] ,lowercase_ : T ): # Add a node in the graph if it is not in the graph if node not in self.connections: lowerCAmelCase__ : Tuple = {} self.nodes += 1 def __lowerCAmelCase ( self : str ,lowercase_ : T ,lowercase_ : T ,lowercase_ : int ): # Add an edge between 2 nodes in the graph self.add_node(lowercase_ ) self.add_node(lowercase_ ) lowerCAmelCase__ : Any = weight lowerCAmelCase__ : Any = weight def __SCREAMING_SNAKE_CASE ( A_ , ): lowerCAmelCase__ : dict[T, int] = {node: maxsize for node in graph.connections} lowerCAmelCase__ : dict[T, T | None] = {node: None for node in graph.connections} lowerCAmelCase__ : MinPriorityQueue[T] = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(A_ , A_ ) if priority_queue.is_empty(): return dist, parent # initialization lowerCAmelCase__ : Tuple = priority_queue.extract_min() lowerCAmelCase__ : Optional[int] = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : int = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A_ , dist[neighbour] ) lowerCAmelCase__ : Any = node # running prim's algorithm while not priority_queue.is_empty(): lowerCAmelCase__ : List[Any] = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowerCAmelCase__ : List[Any] = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(A_ , dist[neighbour] ) lowerCAmelCase__ : List[str] = node return dist, parent
74
"""simple docstring""" from __future__ import annotations __UpperCamelCase : Any = 1.6021e-19 # units = C def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif conductivity < 0: raise ValueError('''Conductivity cannot be negative''' ) elif electron_conc < 0: raise ValueError('''Electron concentration cannot be negative''' ) elif mobility < 0: raise ValueError('''mobility cannot be negative''' ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
74
1
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : str = logging.get_logger(__name__) a_ : Any = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class a ( snake_case_ ): _lowerCAmelCase = """encodec""" def __init__( self , __magic_name__=[1.5, 3.0, 6.0, 12.0, 24.0] , __magic_name__=2_40_00 , __magic_name__=1 , __magic_name__=False , __magic_name__=None , __magic_name__=None , __magic_name__=1_28 , __magic_name__=32 , __magic_name__=1 , __magic_name__=[8, 5, 4, 2] , __magic_name__="weight_norm" , __magic_name__=7 , __magic_name__=7 , __magic_name__=3 , __magic_name__=2 , __magic_name__=True , __magic_name__="reflect" , __magic_name__=2 , __magic_name__=2 , __magic_name__=1.0 , __magic_name__=10_24 , __magic_name__=None , __magic_name__=True , **__magic_name__ , ) -> Tuple: _a = target_bandwidths _a = sampling_rate _a = audio_channels _a = normalize _a = chunk_length_s _a = overlap _a = hidden_size _a = num_filters _a = num_residual_layers _a = upsampling_ratios _a = norm_type _a = kernel_size _a = last_kernel_size _a = residual_kernel_size _a = dilation_growth_rate _a = use_causal_conv _a = pad_mode _a = compress _a = num_lstm_layers _a = trim_right_ratio _a = codebook_size _a = codebook_dim if codebook_dim is not None else hidden_size _a = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}' ) super().__init__(**__magic_name__ ) @property def __UpperCAmelCase ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def __UpperCAmelCase ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def __UpperCAmelCase ( self ) -> int: _a = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def __UpperCAmelCase ( self ) -> int: return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
168
__A ={str(digit): digit**5 for digit in range(1_0)} def lowerCamelCase_ ( lowerCamelCase__ ): return sum(DIGITS_FIFTH_POWER[digit] for digit in str(lowerCamelCase__ ) ) def lowerCamelCase_ ( ): return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(lowerCamelCase__ ) ) if __name__ == "__main__": print(solution())
19
0
"""simple docstring""" import unicodedata from dataclasses import dataclass from typing import Optional, Union import numpy as np from transformers.data.data_collator import DataCollatorMixin from transformers.file_utils import PaddingStrategy from transformers.tokenization_utils_base import PreTrainedTokenizerBase def __SCREAMING_SNAKE_CASE ( A_ , A_ , A_ , A_ ): if isinstance(A_ , A_ ): lowerCAmelCase__ : Tuple = np.full((len(A_ ), sequence_length, 2) , A_ ) else: lowerCAmelCase__ : Optional[Any] = np.full((len(A_ ), sequence_length) , A_ ) for i, tensor in enumerate(A_ ): if padding_side == "right": if isinstance(A_ , A_ ): lowerCAmelCase__ : List[Any] = tensor[:sequence_length] else: lowerCAmelCase__ : Union[str, Any] = tensor[:sequence_length] else: if isinstance(A_ , A_ ): lowerCAmelCase__ : List[Any] = tensor[:sequence_length] else: lowerCAmelCase__ : List[str] = tensor[:sequence_length] return out_tensor.tolist() def __SCREAMING_SNAKE_CASE ( A_ ): lowerCAmelCase__ : str = ord(A_ ) if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 1_23 and cp <= 1_26): return True lowerCAmelCase__ : Union[str, Any] = unicodedata.category(A_ ) if cat.startswith('''P''' ): return True return False @dataclass class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowercase__ = 42 lowercase__ = True lowercase__ = None lowercase__ = None lowercase__ = -100 lowercase__ = "pt" def __lowerCAmelCase ( self : Tuple ,lowercase_ : Union[str, Any] ): import torch lowerCAmelCase__ : Tuple = '''label''' if '''label''' in features[0].keys() else '''labels''' lowerCAmelCase__ : List[Any] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None lowerCAmelCase__ : Any = self.tokenizer.pad( lowercase_ ,padding=self.padding ,max_length=self.max_length ,pad_to_multiple_of=self.pad_to_multiple_of ,return_tensors='''pt''' if labels is None else None ,) if labels is None: return batch lowerCAmelCase__ : List[str] = torch.tensor(batch['''entity_ids'''] ).shape[1] lowerCAmelCase__ : int = self.tokenizer.padding_side if padding_side == "right": lowerCAmelCase__ : List[str] = [ list(lowercase_ ) + [self.label_pad_token_id] * (sequence_length - len(lowercase_ )) for label in labels ] else: lowerCAmelCase__ : List[Any] = [ [self.label_pad_token_id] * (sequence_length - len(lowercase_ )) + list(lowercase_ ) for label in labels ] lowerCAmelCase__ : str = [feature['''ner_tags'''] for feature in features] lowerCAmelCase__ : Tuple = padding_tensor(lowercase_ ,-1 ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : List[Any] = [feature['''original_entity_spans'''] for feature in features] lowerCAmelCase__ : int = padding_tensor(lowercase_ ,(-1, -1) ,lowercase_ ,lowercase_ ) lowerCAmelCase__ : Optional[int] = {k: torch.tensor(lowercase_ ,dtype=torch.intaa ) for k, v in batch.items()} return batch
357
"""simple docstring""" from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version('''>=''', '''4.25.0''')): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
74
0
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def __lowerCAmelCase ( snake_case__ ): def wrapper(*snake_case__ , **snake_case__ ): __UpperCamelCase : List[Any] = timeit.default_timer() __UpperCamelCase : Optional[Any] = func(*A__ , **A__ ) __UpperCamelCase : List[Any] = timeit.default_timer() - starttime return delta __UpperCamelCase : Optional[int] = func.__name__ return wrapper def __lowerCAmelCase ( snake_case__ , snake_case__=100 , snake_case__=None ): __UpperCamelCase : str = [] __UpperCamelCase : Dict = seq_shapes or {} for i in range(A__ ): __UpperCamelCase : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(A__ , _ArrayXD ): __UpperCamelCase : Dict = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(A__ , datasets.Value ): if v.dtype == "string": __UpperCamelCase : Optional[Any] = "The small grey turtle was surprisingly fast when challenged." else: __UpperCamelCase : List[Any] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(A__ , datasets.Sequence ): while isinstance(A__ , datasets.Sequence ): __UpperCamelCase : int = v.feature __UpperCamelCase : Union[str, Any] = seq_shapes[k] __UpperCamelCase : Dict = np.random.rand(*A__ ).astype(v.dtype ) __UpperCamelCase : Any = data dummy_data.append((i, example) ) return dummy_data def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__=100 , snake_case__=None ): __UpperCamelCase : Dict = generate_examples(A__ , num_examples=A__ , seq_shapes=A__ ) with ArrowWriter(features=A__ , path=A__ ) as writer: for key, record in dummy_data: __UpperCamelCase : Union[str, Any] = features.encode_example(A__ ) writer.write(A__ ) __UpperCamelCase , __UpperCamelCase : Optional[Any] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}." ) __UpperCamelCase : int = datasets.Dataset.from_file(filename=A__ , info=datasets.DatasetInfo(features=A__ ) ) return dataset
298
from __future__ import annotations def lowerCamelCase__ ( A__ : list[int] , A__ : list[int] , A__ : list[int] , A__ : list[list[str]] , A__ : int , ): '''simple docstring''' __lowerCamelCase = len(A__ ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(A__ ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , A__ , A__ , ) def lowerCamelCase__ ( A__ : int ): '''simple docstring''' __lowerCamelCase = [] depth_first_search([] , [] , [] , A__ , A__ ) # Print all the boards for board in boards: for column in board: print(A__ ) print("""""" ) print(len(A__ ) , """solutions were found.""" ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
12
0
"""simple docstring""" from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def lowerCAmelCase__ ( lowerCamelCase_ : List[str]): '''simple docstring''' return {key.lstrip('''-'''): value for key, value in zip(unknown_args[::2] ,unknown_args[1::2])} def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = ArgumentParser( '''HuggingFace Datasets CLI tool''' ,usage='''datasets-cli <command> [<args>]''' ,allow_abbrev=lowerCamelCase_) lowerCAmelCase__ : Union[str, Any] = parser.add_subparsers(help='''datasets-cli command helpers''') set_verbosity_info() # Register commands ConvertCommand.register_subcommand(lowerCamelCase_) EnvironmentCommand.register_subcommand(lowerCamelCase_) TestCommand.register_subcommand(lowerCamelCase_) RunBeamCommand.register_subcommand(lowerCamelCase_) DummyDataCommand.register_subcommand(lowerCamelCase_) # Parse args lowerCAmelCase__ : int = parser.parse_known_args() if not hasattr(lowerCamelCase_ ,'''func'''): parser.print_help() exit(1) lowerCAmelCase__ : str = parse_unknown_args(lowerCamelCase_) # Run lowerCAmelCase__ : str = args.func(lowerCamelCase_ ,**lowerCamelCase_) service.run() if __name__ == "__main__": main()
359
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case : str ={ 'configuration_conditional_detr': [ 'CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConditionalDetrConfig', 'ConditionalDetrOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : Tuple =['ConditionalDetrFeatureExtractor'] __snake_case : Union[str, Any] =['ConditionalDetrImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case : List[str] =[ 'CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConditionalDetrForObjectDetection', 'ConditionalDetrForSegmentation', 'ConditionalDetrModel', 'ConditionalDetrPreTrainedModel', ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys __snake_case : str =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
94
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = ShapEImgaImgPipeline UpperCAmelCase : Dict = ['''image'''] UpperCAmelCase : List[Any] = ['''image'''] UpperCAmelCase : Optional[Any] = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCAmelCase : Union[str, Any] = False @property def lowerCAmelCase_ ( self : List[str] ): return 32 @property def lowerCAmelCase_ ( self : str ): return 32 @property def lowerCAmelCase_ ( self : Tuple ): return self.time_input_dim * 4 @property def lowerCAmelCase_ ( self : Optional[int] ): return 8 @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _A = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) _A = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowerCAmelCase_ ( self : Optional[int] ): _A = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def lowerCAmelCase_ ( self : Union[str, Any] ): torch.manual_seed(0 ) _A = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } _A = PriorTransformer(**_UpperCAmelCase ) return model @property def lowerCAmelCase_ ( self : str ): torch.manual_seed(0 ) _A = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } _A = ShapERenderer(**_UpperCAmelCase ) return model def lowerCAmelCase_ ( self : List[str] ): _A = self.dummy_prior _A = self.dummy_image_encoder _A = self.dummy_image_processor _A = self.dummy_renderer _A = HeunDiscreteScheduler( beta_schedule='exp' , num_train_timesteps=1_024 , prediction_type='sample' , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) _A = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[str]=0 ): _A = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith('mps' ): _A = torch.manual_seed(_UpperCAmelCase ) else: _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) _A = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def lowerCAmelCase_ ( self : Optional[int] ): _A = 'cpu' _A = self.get_dummy_components() _A = self.pipeline_class(**_UpperCAmelCase ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) _A = output.images[0] _A = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) _A = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase_ ( self : Any ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCAmelCase_ ( self : Tuple ): _A = torch_device == 'cpu' _A = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : int ): _A = self.get_dummy_components() _A = self.pipeline_class(**_UpperCAmelCase ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = 1 _A = 2 _A = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: _A = batch_size * [inputs[key]] _A = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[str] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : str ): _A = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) _A = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) _A = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) _A = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) _A = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) _A = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='np' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
315
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
1
from bisect import bisect from itertools import accumulate def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowercase :Dict = sorted(zip(lowerCamelCase, lowerCamelCase ), key=lambda lowerCamelCase : x[0] / x[1], reverse=lowerCamelCase ) lowercase , lowercase :int = [i[0] for i in r], [i[1] for i in r] lowercase :Any = list(accumulate(lowerCamelCase ) ) lowercase :Tuple = bisect(lowerCamelCase, lowerCamelCase ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
158
from math import factorial class __lowerCAmelCase : def __init__( self: Optional[int] , _lowerCAmelCase: List[str] , _lowerCAmelCase: Tuple ): lowercase :str = real if isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Tuple = [1] * rank else: lowercase :List[str] = rank def __repr__( self: Optional[Any] ): return ( F"{self.real}+" F"{'+'.join(str(_lowerCAmelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def SCREAMING_SNAKE_CASE ( self: List[str] ): lowercase :int = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _lowerCAmelCase ) def __add__( self: int , _lowerCAmelCase: Tuple ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return Dual(self.real + other , self.duals ) lowercase :Dict = self.duals.copy() lowercase :List[str] = other.duals.copy() if len(_lowerCAmelCase ) > len(_lowerCAmelCase ): o_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) elif len(_lowerCAmelCase ) < len(_lowerCAmelCase ): s_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) lowercase :Optional[Any] = [] for i in range(len(_lowerCAmelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _lowerCAmelCase ) _a = __add__ def __sub__( self: Optional[Any] , _lowerCAmelCase: Optional[int] ): return self + other * -1 def __mul__( self: Optional[Any] , _lowerCAmelCase: Optional[int] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _lowerCAmelCase ) lowercase :Dict = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _lowerCAmelCase ) _a = __mul__ def __truediv__( self: List[str] , _lowerCAmelCase: Optional[int] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :Union[str, Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _lowerCAmelCase ) raise ValueError def __floordiv__( self: int , _lowerCAmelCase: Any ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): lowercase :str = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _lowerCAmelCase ) raise ValueError def __pow__( self: Any , _lowerCAmelCase: Tuple ): if n < 0 or isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self lowercase :Optional[int] = self for _ in range(n - 1 ): x *= self return x def UpperCAmelCase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): if not callable(lowerCamelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(lowerCamelCase, (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(lowerCamelCase, lowerCamelCase ): raise ValueError("differentiate() requires an int as input for order" ) lowercase :str = Dual(lowerCamelCase, 1 ) lowercase :Dict = func(lowerCamelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod() def UpperCAmelCase__ ( lowerCamelCase ): return y**2 * y**4 print(differentiate(f, 9, 2))
158
1
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/levit-128S''': '''https://huggingface.co/facebook/levit-128S/resolve/main/config.json''', # See all LeViT models at https://huggingface.co/models?filter=levit } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: str = '''levit''' def __init__( self : Any ,A_ : Union[str, Any]=224 ,A_ : Dict=3 ,A_ : Tuple=3 ,A_ : str=2 ,A_ : int=1 ,A_ : int=16 ,A_ : Tuple=[128, 256, 384] ,A_ : Any=[4, 8, 12] ,A_ : int=[4, 4, 4] ,A_ : Optional[Any]=[16, 16, 16] ,A_ : Union[str, Any]=0 ,A_ : List[Any]=[2, 2, 2] ,A_ : Tuple=[2, 2, 2] ,A_ : str=0.02 ,**A_ : Tuple ,) -> Dict: super().__init__(**A_ ) A = image_size A = num_channels A = kernel_size A = stride A = padding A = hidden_sizes A = num_attention_heads A = depths A = key_dim A = drop_path_rate A = patch_size A = attention_ratio A = mlp_ratio A = initializer_range A = [ ['Subsample', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['Subsample', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Union[str, Any] = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : int ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> float: return 1e-4
74
"""simple docstring""" # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union _lowercase = re.compile(r'''^(?P<major>\d+)''' r'''\.(?P<minor>\d+)''' r'''\.(?P<patch>\d+)$''') @total_ordering @dataclass class lowerCAmelCase_ : '''simple docstring''' _lowerCamelCase: str _lowerCamelCase: Optional[str] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None _lowerCamelCase: Optional[Union[str, int]] = None def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> List[str]: A , A , A = _str_to_version_tuple(self.version_str ) def __repr__( self : Optional[int] ) -> Dict: return F'{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}' @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return self.major, self.minor, self.patch def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tuple ) -> Union[str, Any]: if isinstance(A_ ,A_ ): return Version(A_ ) elif isinstance(A_ ,A_ ): return other raise TypeError(F'{other} (type {type(A_ )}) cannot be compared to version.' ) def __eq__( self : List[Any] ,A_ : Dict ) -> Any: try: A = self._validate_operand(A_ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : List[Any] ,A_ : Optional[int] ) -> Tuple: A = self._validate_operand(A_ ) return self.tuple < other.tuple def __hash__( self : Union[str, Any] ) -> Union[str, Any]: return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Any ,A_ : List[str] ) -> List[str]: A = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: return self.version_str def _snake_case ( snake_case__ : List[str] ): A = _VERSION_REG.match(snake_case__ ) if not res: raise ValueError(F'Invalid version \'{version_str}\'. Format should be x.y.z with {{x,y,z}} being digits.' ) return tuple(int(snake_case__ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def _snake_case ( snake_case__ : str ): return ".".join(str(snake_case__ ) for v in version_tuple )
74
1
"""simple docstring""" def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any ) -> int: if not head: return True # split the list to two parts _UpperCAmelCase : Dict = head.next, head while fast and fast.next: _UpperCAmelCase : Union[str, Any] = fast.next.next _UpperCAmelCase : int = slow.next _UpperCAmelCase : List[str] = slow.next _UpperCAmelCase : Optional[int] = None # Don't forget here! But forget still works! # reverse the second part _UpperCAmelCase : List[Any] = None while second: _UpperCAmelCase : Optional[Any] = second.next _UpperCAmelCase : Union[str, Any] = node _UpperCAmelCase : Optional[int] = second _UpperCAmelCase : Union[str, Any] = nxt # compare two parts # second part has the same or one less node while node: if node.val != head.val: return False _UpperCAmelCase : Tuple = node.next _UpperCAmelCase : int = head.next return True def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] ) -> Tuple: if not head or not head.next: return True # 1. Get the midpoint (slow) _UpperCAmelCase : int = head while fast and fast.next: _UpperCAmelCase : int = fast.next.next, slow.next # 2. Push the second half into the stack _UpperCAmelCase : int = [slow.val] while slow.next: _UpperCAmelCase : Union[str, Any] = slow.next stack.append(slow.val ) # 3. Comparison while stack: if stack.pop() != cur.val: return False _UpperCAmelCase : Optional[int] = cur.next return True def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, Any] ) -> Any: if not head or not head.next: return True _UpperCAmelCase : int = {} _UpperCAmelCase : int = 0 while head: if head.val in d: d[head.val].append(lowerCAmelCase ) else: _UpperCAmelCase : Any = [pos] _UpperCAmelCase : Tuple = head.next pos += 1 _UpperCAmelCase : int = pos - 1 _UpperCAmelCase : Dict = 0 for v in d.values(): if len(lowerCAmelCase ) % 2 != 0: middle += 1 else: _UpperCAmelCase : str = 0 for i in range(0 , len(lowerCAmelCase ) ): if v[i] + v[len(lowerCAmelCase ) - 1 - step] != checksum: return False step += 1 if middle > 1: return False return True
353
from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'huggingface/autoformer-tourism-monthly': 'https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json', } class a ( UpperCAmelCase ): _lowercase = "autoformer" _lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", "num_hidden_layers": "encoder_layers", } def __init__( self , A_ = None , A_ = None , A_ = "student_t" , A_ = "nll" , A_ = 1 , A_ = [1, 2, 3, 4, 5, 6, 7] , A_ = True , A_ = 0 , A_ = 0 , A_ = 0 , A_ = 0 , A_ = None , A_ = None , A_ = 64 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 2 , A_ = 32 , A_ = 32 , A_ = "gelu" , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 0.1 , A_ = 100 , A_ = 0.02 , A_ = True , A_=True , A_ = 10 , A_ = 25 , A_ = 3 , **A_ , ): '''simple docstring''' _UpperCAmelCase : List[Any] = prediction_length _UpperCAmelCase : Dict = context_length if context_length is not None else prediction_length _UpperCAmelCase : Tuple = distribution_output _UpperCAmelCase : List[Any] = loss _UpperCAmelCase : Optional[Any] = input_size _UpperCAmelCase : int = num_time_features _UpperCAmelCase : str = lags_sequence _UpperCAmelCase : Union[str, Any] = scaling _UpperCAmelCase : Union[str, Any] = num_dynamic_real_features _UpperCAmelCase : int = num_static_real_features _UpperCAmelCase : int = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : Union[str, Any] = cardinality else: _UpperCAmelCase : Any = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(A_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) _UpperCAmelCase : int = embedding_dimension else: _UpperCAmelCase : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] _UpperCAmelCase : Union[str, Any] = num_parallel_samples # Transformer architecture configuration _UpperCAmelCase : Union[str, Any] = input_size * len(self.lags_sequence ) + self._number_of_features _UpperCAmelCase : int = d_model _UpperCAmelCase : Any = encoder_attention_heads _UpperCAmelCase : str = decoder_attention_heads _UpperCAmelCase : Union[str, Any] = encoder_ffn_dim _UpperCAmelCase : Any = decoder_ffn_dim _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : Optional[int] = decoder_layers _UpperCAmelCase : Optional[Any] = dropout _UpperCAmelCase : Union[str, Any] = attention_dropout _UpperCAmelCase : Dict = activation_dropout _UpperCAmelCase : Dict = encoder_layerdrop _UpperCAmelCase : int = decoder_layerdrop _UpperCAmelCase : Union[str, Any] = activation_function _UpperCAmelCase : str = init_std _UpperCAmelCase : Tuple = use_cache # Autoformer _UpperCAmelCase : str = label_length _UpperCAmelCase : Any = moving_average _UpperCAmelCase : Optional[Any] = autocorrelation_factor super().__init__(is_encoder_decoder=A_ , **A_ ) @property def _UpperCAmelCase ( self ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
189
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase_ : '''simple docstring''' def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=True , __lowercase=False , __lowercase=False , __lowercase=False , __lowercase=2 , __lowercase=99 , __lowercase=0 , __lowercase=32 , __lowercase=5 , __lowercase=4 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=512 , __lowercase=2 , __lowercase=0.02 , __lowercase=2 , __lowercase=4 , __lowercase="last" , __lowercase=True , __lowercase=None , __lowercase=0 , ) -> List[Any]: __UpperCamelCase :str = parent __UpperCamelCase :Union[str, Any] = batch_size __UpperCamelCase :Any = seq_length __UpperCamelCase :str = is_training __UpperCamelCase :Any = use_input_lengths __UpperCamelCase :int = use_token_type_ids __UpperCamelCase :Dict = use_labels __UpperCamelCase :str = gelu_activation __UpperCamelCase :Any = sinusoidal_embeddings __UpperCamelCase :Dict = causal __UpperCamelCase :Optional[int] = asm __UpperCamelCase :Optional[int] = n_langs __UpperCamelCase :List[str] = vocab_size __UpperCamelCase :int = n_special __UpperCamelCase :List[Any] = hidden_size __UpperCamelCase :int = num_hidden_layers __UpperCamelCase :List[Any] = num_attention_heads __UpperCamelCase :int = hidden_dropout_prob __UpperCamelCase :Dict = attention_probs_dropout_prob __UpperCamelCase :Optional[Any] = max_position_embeddings __UpperCamelCase :List[str] = type_sequence_label_size __UpperCamelCase :Dict = initializer_range __UpperCamelCase :Any = num_labels __UpperCamelCase :Tuple = num_choices __UpperCamelCase :Any = summary_type __UpperCamelCase :Dict = use_proj __UpperCamelCase :Union[str, Any] = scope __UpperCamelCase :List[str] = bos_token_id def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :int = random_attention_mask([self.batch_size, self.seq_length]) __UpperCamelCase :int = None if self.use_input_lengths: __UpperCamelCase :List[str] = ( ids_tensor([self.batch_size] , vocab_size=2) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase :Optional[Any] = None if self.use_token_type_ids: __UpperCamelCase :Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.n_langs) __UpperCamelCase :Tuple = None __UpperCamelCase :Optional[int] = None __UpperCamelCase :Any = None if self.use_labels: __UpperCamelCase :List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCamelCase :Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCamelCase :Union[str, Any] = ids_tensor([self.batch_size] , 2).float() __UpperCamelCase :Optional[int] = ids_tensor([self.batch_size] , self.num_choices) __UpperCamelCase :List[Any] = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCamelCase__ ( self) -> Dict: return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Any: __UpperCamelCase :str = XLMModel(config=A_) model.to(A_) model.eval() __UpperCamelCase :Optional[int] = model(A_ , lengths=A_ , langs=A_) __UpperCamelCase :List[str] = model(A_ , langs=A_) __UpperCamelCase :List[Any] = model(A_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Dict: __UpperCamelCase :int = XLMWithLMHeadModel(A_) model.to(A_) model.eval() __UpperCamelCase :Optional[Any] = model(A_ , token_type_ids=A_ , labels=A_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> int: __UpperCamelCase :Tuple = XLMForQuestionAnsweringSimple(A_) model.to(A_) model.eval() __UpperCamelCase :Tuple = model(A_) __UpperCamelCase :Any = model(A_ , start_positions=A_ , end_positions=A_) __UpperCamelCase :str = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[Any]: __UpperCamelCase :Dict = XLMForQuestionAnswering(A_) model.to(A_) model.eval() __UpperCamelCase :Optional[Any] = model(A_) __UpperCamelCase :int = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , p_mask=A_ , ) __UpperCamelCase :List[Any] = model( A_ , start_positions=A_ , end_positions=A_ , cls_index=A_ , is_impossible=A_ , ) ((__UpperCamelCase ) , ) :Union[str, Any] = result_with_labels.to_tuple() __UpperCamelCase :Dict = model(A_ , start_positions=A_ , end_positions=A_) ((__UpperCamelCase ) , ) :Union[str, Any] = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , ()) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top)) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top)) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Optional[int]: __UpperCamelCase :Dict = XLMForSequenceClassification(A_) model.to(A_) model.eval() __UpperCamelCase :List[str] = model(A_) __UpperCamelCase :List[Any] = model(A_ , labels=A_) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[str]: __UpperCamelCase :Optional[int] = self.num_labels __UpperCamelCase :Optional[int] = XLMForTokenClassification(A_) model.to(A_) model.eval() __UpperCamelCase :Any = model(A_ , attention_mask=A_ , labels=A_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> List[str]: __UpperCamelCase :Dict = self.num_choices __UpperCamelCase :Optional[int] = XLMForMultipleChoice(config=A_) model.to(A_) model.eval() __UpperCamelCase :str = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Optional[Any] = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Any = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() __UpperCamelCase :Tuple = model( A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase__ ( self) -> int: __UpperCamelCase :List[Any] = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) :List[Any] = config_and_inputs __UpperCamelCase :List[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' a__ : Union[str, Any] = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) a__ : str = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable a__ : Optional[int] = ( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase) -> Any: if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''') ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase=False) -> int: __UpperCamelCase :Any = super()._prepare_for_class(A_ , A_ , return_labels=A_) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __UpperCamelCase :List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_) __UpperCamelCase :List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_) return inputs_dict def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Optional[int] = XLMModelTester(self) __UpperCamelCase :List[str] = ConfigTester(self , config_class=A_ , emb_dim=37) def UpperCamelCase__ ( self) -> str: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*A_) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*A_) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*A_) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*A_) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*A_) def UpperCamelCase__ ( self) -> Optional[Any]: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*A_) def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*A_) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False , __lowercase=1) -> List[Any]: self.assertIsInstance(A_ , A_) self.assertListEqual( [isinstance(A_ , A_) for iter_attentions in attentions] , [True] * len(A_)) self.assertEqual(len(A_) , (max_length - min_length) * num_beam_groups) for idx, iter_attentions in enumerate(A_): # adds PAD dummy token __UpperCamelCase :str = min_length + idx + 1 __UpperCamelCase :str = min_length + idx + 1 __UpperCamelCase :Dict = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(A_)) def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False , __lowercase=1) -> Tuple: self.assertIsInstance(A_ , A_) self.assertListEqual( [isinstance(A_ , A_) for iter_hidden_states in hidden_states] , [True] * len(A_) , ) self.assertEqual(len(A_) , (max_length - min_length) * num_beam_groups) for idx, iter_hidden_states in enumerate(A_): # adds PAD dummy token __UpperCamelCase :str = min_length + idx + 1 __UpperCamelCase :List[str] = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(A_) , ) pass @slow def UpperCamelCase__ ( self) -> Optional[Any]: for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase :Dict = XLMModel.from_pretrained(A_) self.assertIsNotNone(A_) @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Any = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''') model.to(A_) __UpperCamelCase :int = torch.tensor([[14, 447]] , dtype=torch.long , device=A_) # the president __UpperCamelCase :Union[str, Any] = [ 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, 14, 447, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __UpperCamelCase :List[Any] = model.generate(A_ , do_sample=A_) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , A_)
43
"""simple docstring""" class lowerCAmelCase_ : '''simple docstring''' def __init__( self : int ,A_ : int ) -> Union[str, Any]: A = n A = [None] * self.n A = 0 # index of the first element A = 0 A = 0 def __len__( self : int ) -> int: return self.size def _SCREAMING_SNAKE_CASE ( self : Any ) -> bool: return self.size == 0 def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Tuple: return False if self.is_empty() else self.array[self.front] def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : List[Any] ) -> int: if self.size >= self.n: raise Exception('QUEUE IS FULL' ) A = data A = (self.rear + 1) % self.n self.size += 1 return self def _SCREAMING_SNAKE_CASE ( self : int ) -> List[Any]: if self.size == 0: raise Exception('UNDERFLOW' ) A = self.array[self.front] A = None A = (self.front + 1) % self.n self.size -= 1 return temp
74
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''xlm-roberta-base''': '''https://huggingface.co/xlm-roberta-base/resolve/main/config.json''', '''xlm-roberta-large''': '''https://huggingface.co/xlm-roberta-large/resolve/main/config.json''', '''xlm-roberta-large-finetuned-conll02-dutch''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll02-spanish''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-english''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json''' ), '''xlm-roberta-large-finetuned-conll03-german''': ( '''https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json''' ), } class A_ ( _a ): lowerCAmelCase__ = 'xlm-roberta' def __init__( self: List[Any] ,__lowerCAmelCase: int=30_522 ,__lowerCAmelCase: Optional[Any]=768 ,__lowerCAmelCase: Optional[Any]=12 ,__lowerCAmelCase: str=12 ,__lowerCAmelCase: Optional[Any]=3_072 ,__lowerCAmelCase: str="gelu" ,__lowerCAmelCase: Optional[Any]=0.1 ,__lowerCAmelCase: Tuple=0.1 ,__lowerCAmelCase: str=512 ,__lowerCAmelCase: Any=2 ,__lowerCAmelCase: Any=0.02 ,__lowerCAmelCase: Dict=1e-12 ,__lowerCAmelCase: str=1 ,__lowerCAmelCase: Optional[Any]=0 ,__lowerCAmelCase: Dict=2 ,__lowerCAmelCase: int="absolute" ,__lowerCAmelCase: Optional[int]=True ,__lowerCAmelCase: List[str]=None ,**__lowerCAmelCase: Tuple ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,bos_token_id=__lowerCAmelCase ,eos_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : Union[str, Any] = vocab_size _lowerCamelCase : Optional[int] = hidden_size _lowerCamelCase : Optional[int] = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[int] = intermediate_size _lowerCamelCase : Optional[int] = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : List[str] = max_position_embeddings _lowerCamelCase : Union[str, Any] = type_vocab_size _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : Optional[Any] = layer_norm_eps _lowerCamelCase : Optional[Any] = position_embedding_type _lowerCamelCase : Union[str, Any] = use_cache _lowerCamelCase : List[Any] = classifier_dropout class A_ ( _a ): @property def _lowercase ( self: Tuple ): '''simple docstring''' if self.task == "multiple-choice": _lowerCamelCase : List[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: _lowerCamelCase : List[Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
340
"""simple docstring""" import logging from transformers.configuration_utils import PretrainedConfig _lowerCAmelCase : Optional[Any] = logging.getLogger(__name__) class A_ ( _a ): lowerCAmelCase__ = 'masked_bert' def __init__( self: Union[str, Any] ,__lowerCAmelCase: Dict=30_522 ,__lowerCAmelCase: Optional[int]=768 ,__lowerCAmelCase: Dict=12 ,__lowerCAmelCase: List[Any]=12 ,__lowerCAmelCase: List[Any]=3_072 ,__lowerCAmelCase: List[Any]="gelu" ,__lowerCAmelCase: Union[str, Any]=0.1 ,__lowerCAmelCase: List[str]=0.1 ,__lowerCAmelCase: Tuple=512 ,__lowerCAmelCase: str=2 ,__lowerCAmelCase: Tuple=0.02 ,__lowerCAmelCase: Union[str, Any]=1e-12 ,__lowerCAmelCase: Union[str, Any]=0 ,__lowerCAmelCase: List[Any]="topK" ,__lowerCAmelCase: Optional[Any]="constant" ,__lowerCAmelCase: Optional[Any]=0.0 ,**__lowerCAmelCase: str ,): '''simple docstring''' super().__init__(pad_token_id=__lowerCAmelCase ,**__lowerCAmelCase ) _lowerCamelCase : List[Any] = vocab_size _lowerCamelCase : Optional[Any] = hidden_size _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : Tuple = num_attention_heads _lowerCamelCase : Optional[Any] = hidden_act _lowerCamelCase : Optional[Any] = intermediate_size _lowerCamelCase : str = hidden_dropout_prob _lowerCamelCase : Union[str, Any] = attention_probs_dropout_prob _lowerCamelCase : str = max_position_embeddings _lowerCamelCase : List[str] = type_vocab_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : int = pruning_method _lowerCamelCase : str = mask_init _lowerCamelCase : List[Any] = mask_scale
340
1
"""simple docstring""" import mpmath # for roots of unity import numpy as np class a : def __init__( self : Tuple , __lowerCAmelCase : Any=None , __lowerCAmelCase : Any=None ): # Input as list _UpperCAmelCase = list(poly_a or [0] )[:] _UpperCAmelCase = list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() _UpperCAmelCase = len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() _UpperCAmelCase = len(self.polyB ) # Add 0 to make lengths equal a power of 2 _UpperCAmelCase = int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform _UpperCAmelCase = complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product _UpperCAmelCase = self.__multiply() def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : str ): _UpperCAmelCase = [[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(_lowerCamelCase ) <= 1: return dft[0] # _UpperCAmelCase = self.c_max_length // 2 while next_ncol > 0: _UpperCAmelCase = [[] for i in range(_lowerCamelCase )] _UpperCAmelCase = self.root**next_ncol # First half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCamelCase ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step _UpperCAmelCase = 1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(_lowerCamelCase ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update _UpperCAmelCase = new_dft _UpperCAmelCase = next_ncol // 2 return dft[0] def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = self.__dft("""A""" ) _UpperCAmelCase = self.__dft("""B""" ) _UpperCAmelCase = [[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT _UpperCAmelCase = 2 while next_ncol <= self.c_max_length: _UpperCAmelCase = [[] for i in range(_lowerCamelCase )] _UpperCAmelCase = self.root ** (next_ncol // 2) _UpperCAmelCase = 1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update _UpperCAmelCase = new_inverse_c next_ncol *= 2 # Unpack _UpperCAmelCase = [round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1j for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : str ): _UpperCAmelCase = '''A = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) _UpperCAmelCase = '''B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) _UpperCAmelCase = '''A*B = ''' + ''' + '''.join( f'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return f'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
289
from pathlib import PurePosixPath from typing import Optional import fsspec from fsspec import AbstractFileSystem from huggingface_hub.hf_api import DatasetInfo from ..utils.file_utils import get_authentication_headers_for_url from ..utils.hub import hf_hub_url class _snake_case ( _snake_case ): SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = 'hf-legacy' # "hf://"" is reserved for hffs def __init__( self , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ): super().__init__(self , **_lowerCamelCase ) a :Union[str, Any] = repo_info a :int = token a :int = None def SCREAMING_SNAKE_CASE__ ( self ): if self.dir_cache is None: a :Dict = {} for hf_file in self.repo_info.siblings: # TODO(QL): add sizes a :List[Any] = { '''name''': hf_file.rfilename, '''size''': None, '''type''': '''file''', } self.dir_cache.update( { str(_lowerCamelCase ): {'''name''': str(_lowerCamelCase ), '''size''': None, '''type''': '''directory'''} for d in list(PurePosixPath(hf_file.rfilename ).parents )[:-1] } ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase = "rb" , **_lowerCamelCase , ): if not isinstance(self.repo_info , _lowerCamelCase ): raise NotImplementedError(F'''Open is only implemented for dataset repositories, but got {self.repo_info}''' ) a :Optional[int] = hf_hub_url(self.repo_info.id , _lowerCamelCase , revision=self.repo_info.sha ) return fsspec.open( _lowerCamelCase , mode=_lowerCamelCase , headers=get_authentication_headers_for_url(_lowerCamelCase , use_auth_token=self.token ) , client_kwargs={'''trust_env''': True} , ).open() def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , **_lowerCamelCase ): self._get_dirs() a :Union[str, Any] = self._strip_protocol(_lowerCamelCase ) if path in self.dir_cache: return self.dir_cache[path] else: raise FileNotFoundError(_lowerCamelCase ) def SCREAMING_SNAKE_CASE__ ( self , _lowerCamelCase , _lowerCamelCase=False , **_lowerCamelCase ): self._get_dirs() a :str = PurePosixPath(path.strip('''/''' ) ) a :Tuple = {} for p, f in self.dir_cache.items(): a :Optional[int] = PurePosixPath(p.strip('''/''' ) ) a :str = p.parent if root == path: a :List[str] = f a :Any = list(paths.values() ) if detail: return out else: return sorted(f['''name'''] for f in out )
94
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : str = logging.get_logger(__name__) lowerCamelCase_ : Tuple = { """sayakpaul/vit-msn-base""": """https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json""", # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = "vit_msn" def __init__( self , __A=768 , __A=12 , __A=12 , __A=3072 , __A="gelu" , __A=0.0 , __A=0.0 , __A=0.02 , __A=1E-0_6 , __A=224 , __A=16 , __A=3 , __A=True , **__A , ) -> Any: super().__init__(**__A ) a =hidden_size a =num_hidden_layers a =num_attention_heads a =intermediate_size a =hidden_act a =hidden_dropout_prob a =attention_probs_dropout_prob a =initializer_range a =layer_norm_eps a =image_size a =patch_size a =num_channels a =qkv_bias
360
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: lowerCamelCase_ : Optional[int] = None lowerCamelCase_ : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase_ : str = {"""vocab_file""": """sentencepiece.model""", """tokenizer_file""": """tokenizer.json"""} lowerCamelCase_ : int = { """vocab_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/sentencepiece.model""", }, """tokenizer_file""": { """google/rembert""": """https://huggingface.co/google/rembert/resolve/main/tokenizer.json""", }, } lowerCamelCase_ : Optional[Any] = { """google/rembert""": 2_5_6, } lowerCamelCase_ : Optional[Any] = """▁""" class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = RemBertTokenizer def __init__( self , __A=None , __A=None , __A=True , __A=True , __A=False , __A="[CLS]" , __A="[SEP]" , __A="<unk>" , __A="[SEP]" , __A="<pad>" , __A="[CLS]" , __A="[MASK]" , **__A , ) -> Dict: # Mask token behave like a normal word, i.e. include the space before it a =AddedToken(__A , lstrip=__A , rstrip=__A ) if isinstance(__A , __A ) else mask_token super().__init__( __A , tokenizer_file=__A , do_lower_case=__A , remove_space=__A , keep_accents=__A , bos_token=__A , eos_token=__A , unk_token=__A , sep_token=__A , pad_token=__A , cls_token=__A , mask_token=__A , **__A , ) a =do_lower_case a =remove_space a =keep_accents a =vocab_file a =False if not self.vocab_file else True def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self , __A , __A = None , __A = False ) -> List[int]: if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__A )) + [1] + ([0] * len(__A )) + [1] return [1] + ([0] * len(__A )) + [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> List[int]: a =[self.sep_token_id] a =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self , __A , __A = None ) -> Tuple[str]: if not os.path.isdir(__A ): logger.error('''Vocabulary path ({}) should be a directory'''.format(__A ) ) return a =os.path.join( __A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__A ): copyfile(self.vocab_file , __A ) return (out_vocab_file,)
215
0
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _SCREAMING_SNAKE_CASE = "\\n Text data.\n Second line of data." _SCREAMING_SNAKE_CASE = "file" @pytest.fixture(scope="session" ) def __a(SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / (FILE_PATH + ".zstd") _lowerCAmelCase = bytes(SCREAMING_SNAKE_CASE_ , "utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ , "wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' with open(os.path.join(tmpfs.local_root_dir , SCREAMING_SNAKE_CASE_ ) , "w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return FILE_PATH @pytest.mark.parametrize("compression_format" , ["gzip", "xz", "zstd"] ) def __a(SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = {"gzip": gz_file, "xz": xz_file, "zstd": zstd_path} _lowerCAmelCase = input_paths[compression_format] _lowerCAmelCase = tmp_path / "cache" _lowerCAmelCase = DownloadConfig(cache_dir=SCREAMING_SNAKE_CASE_ , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize("default_extracted" , [True, False] ) @pytest.mark.parametrize("default_cache_dir" , [True, False] ) def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase = "custom_cache" _lowerCAmelCase = "custom_extracted_dir" _lowerCAmelCase = tmp_path / "custom_extracted_path" if default_extracted: _lowerCAmelCase = ("downloads" if default_cache_dir else custom_cache_dir, "extracted") else: monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_DIR" , SCREAMING_SNAKE_CASE_ ) monkeypatch.setattr("datasets.config.EXTRACTED_DATASETS_PATH" , str(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _lowerCAmelCase = xz_file _lowerCAmelCase = ( DownloadConfig(extract_compressed_file=SCREAMING_SNAKE_CASE_ ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = cached_path(SCREAMING_SNAKE_CASE_ , download_config=SCREAMING_SNAKE_CASE_ ) assert Path(SCREAMING_SNAKE_CASE_ ).parent.parts[-2:] == expected def __a(SCREAMING_SNAKE_CASE_ : List[Any] ): '''simple docstring''' _lowerCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve() ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file # relative path _lowerCAmelCase = str(Path(SCREAMING_SNAKE_CASE_ ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(SCREAMING_SNAKE_CASE_ ) == text_file def __a(SCREAMING_SNAKE_CASE_ : Optional[Any] ): '''simple docstring''' _lowerCAmelCase = str(tmp_path.resolve() / "__missing_file__.txt" ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) # relative path _lowerCAmelCase = "./__missing_file__.txt" with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path(SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Tuple ): '''simple docstring''' _lowerCAmelCase = get_from_cache(F'''tmp://{tmpfs_file}''' ) with open(SCREAMING_SNAKE_CASE_ ) as f: _lowerCAmelCase = f.read() assert output_file_content == FILE_CONTENT @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(): '''simple docstring''' with pytest.raises(SCREAMING_SNAKE_CASE_ ): cached_path("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : Dict ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_get("https://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): http_head("https://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : str ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_get("ftp://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): ftp_head("ftp://huggingface.co" ) @patch("datasets.config.HF_DATASETS_OFFLINE" , SCREAMING_SNAKE_CASE_ ) def __a(SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' _lowerCAmelCase = tmp_path_factory.mktemp("data" ) / "file.html" with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_get("s3://huggingface.co" , temp_file=SCREAMING_SNAKE_CASE_ ) with pytest.raises(SCREAMING_SNAKE_CASE_ ): fsspec_head("s3://huggingface.co" )
158
'''simple docstring''' from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder _SCREAMING_SNAKE_CASE = datasets.utils.logging.get_logger(__name__) class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): __lowerCamelCase : bool = None __lowerCamelCase : bool = None class lowerCAmelCase_ ( folder_based_builder.FolderBasedBuilder ): __lowerCamelCase : Tuple = datasets.Audio() __lowerCamelCase : List[str] = "audio" __lowerCamelCase : Optional[int] = AudioFolderConfig __lowerCamelCase : List[str] # definition at the bottom of the script __lowerCamelCase : Optional[int] = AudioClassification(audio_column="audio" ,label_column="label" ) _SCREAMING_SNAKE_CASE = [ ".aiff", ".au", ".avr", ".caf", ".flac", ".htk", ".svx", ".mat4", ".mat5", ".mpc2k", ".ogg", ".paf", ".pvf", ".raw", ".rf64", ".sd2", ".sds", ".ircam", ".voc", ".w64", ".wav", ".nist", ".wavex", ".wve", ".xi", ".mp3", ".opus", ] _SCREAMING_SNAKE_CASE = AUDIO_EXTENSIONS
158
1
from datasets.utils.patching import _PatchedModuleObj, patch_submodule from . import _test_patching def __UpperCamelCase () -> str: import os as original_os from os import path as original_path from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join lowercase__ = '__test_patch_submodule_mock__' with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): # Every way to access os.path.join must be patched, and the rest must stay untouched # check os.path.join assert isinstance(_test_patching.os , _PatchedModuleObj ) assert isinstance(_test_patching.os.path , _PatchedModuleObj ) assert _test_patching.os.path.join is mock # check path.join assert isinstance(_test_patching.path , _PatchedModuleObj ) assert _test_patching.path.join is mock # check join assert _test_patching.join is mock # check that the other attributes are untouched assert _test_patching.os.rename is original_rename assert _test_patching.path.dirname is original_dirname assert _test_patching.os.path.dirname is original_dirname # Even renamed modules or objects must be patched # check renamed_os.path.join assert isinstance(_test_patching.renamed_os , _PatchedModuleObj ) assert isinstance(_test_patching.renamed_os.path , _PatchedModuleObj ) assert _test_patching.renamed_os.path.join is mock # check renamed_path.join assert isinstance(_test_patching.renamed_path , _PatchedModuleObj ) assert _test_patching.renamed_path.join is mock # check renamed_join assert _test_patching.renamed_join is mock # check that the other attributes are untouched assert _test_patching.renamed_os.rename is original_rename assert _test_patching.renamed_path.dirname is original_dirname assert _test_patching.renamed_os.path.dirname is original_dirname # check that everthing is back to normal when the patch is over assert _test_patching.os is original_os assert _test_patching.path is original_path assert _test_patching.join is original_join assert _test_patching.renamed_os is original_os assert _test_patching.renamed_path is original_path assert _test_patching.renamed_join is original_join def __UpperCamelCase () -> Any: assert _test_patching.open is open lowercase__ = '__test_patch_submodule_builtin_mock__' # _test_patching has "open" in its globals assert _test_patching.open is open with patch_submodule(_test_patching , 'open' , _SCREAMING_SNAKE_CASE ): assert _test_patching.open is mock # check that everthing is back to normal when the patch is over assert _test_patching.open is open def __UpperCamelCase () -> List[str]: # pandas.read_csv is not present in _test_patching lowercase__ = '__test_patch_submodule_missing_mock__' with patch_submodule(_test_patching , 'pandas.read_csv' , _SCREAMING_SNAKE_CASE ): pass def __UpperCamelCase () -> List[str]: # builtin should always be mocked even if they're not in the globals # in case they're loaded at one point lowercase__ = '__test_patch_submodule_missing_builtin_mock__' # _test_patching doesn't have "len" in its globals assert getattr(_test_patching , 'len' , _SCREAMING_SNAKE_CASE ) is None with patch_submodule(_test_patching , 'len' , _SCREAMING_SNAKE_CASE ): assert _test_patching.len is mock assert _test_patching.len is len def __UpperCamelCase () -> List[str]: lowercase__ = '__test_patch_submodule_start_and_stop_mock__' lowercase__ = patch_submodule(_test_patching , 'open' , _SCREAMING_SNAKE_CASE ) assert _test_patching.open is open patch.start() assert _test_patching.open is mock patch.stop() assert _test_patching.open is open def __UpperCamelCase () -> Optional[int]: from os import rename as original_rename from os.path import dirname as original_dirname from os.path import join as original_join lowercase__ = '__test_patch_submodule_successive_join__' lowercase__ = '__test_patch_submodule_successive_dirname__' lowercase__ = '__test_patch_submodule_successive_rename__' assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.rename' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.dirname' , _SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename # try another order with patch_submodule(_test_patching , 'os.rename' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.join' , _SCREAMING_SNAKE_CASE ): with patch_submodule(_test_patching , 'os.path.dirname' , _SCREAMING_SNAKE_CASE ): assert _test_patching.os.path.join is mock_join assert _test_patching.os.path.dirname is mock_dirname assert _test_patching.os.rename is mock_rename assert _test_patching.os.path.join is original_join assert _test_patching.os.path.dirname is original_dirname assert _test_patching.os.rename is original_rename def __UpperCamelCase () -> Optional[Any]: lowercase__ = '__test_patch_submodule_doesnt_exist_mock__' with patch_submodule(_test_patching , '__module_that_doesn_exist__.__attribute_that_doesn_exist__' , _SCREAMING_SNAKE_CASE ): pass with patch_submodule(_test_patching , 'os.__attribute_that_doesn_exist__' , _SCREAMING_SNAKE_CASE ): pass
269
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL lowercase_ = logging.get_logger(__name__) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[int, int]: def constraint_to_multiple_of(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=None ): lowercase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: lowercase__ = math.floor(val / multiple ) * multiple if x < min_val: lowercase__ = math.ceil(val / multiple ) * multiple return x lowercase__ = (output_size, output_size) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else output_size lowercase__ , lowercase__ = get_image_size(_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = output_size # determine new height and width lowercase__ = output_height / input_height lowercase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width lowercase__ = scale_width else: # fit height lowercase__ = scale_height lowercase__ = constraint_to_multiple_of(scale_height * input_height , multiple=_SCREAMING_SNAKE_CASE ) lowercase__ = constraint_to_multiple_of(scale_width * input_width , multiple=_SCREAMING_SNAKE_CASE ) return (new_height, new_width) class SCREAMING_SNAKE_CASE (UpperCAmelCase ): _UpperCamelCase : Dict = ['pixel_values'] def __init__( self : Any , a : bool = True , a : Dict[str, int] = None , a : PILImageResampling = PILImageResampling.BILINEAR , a : bool = False , a : int = 1 , a : bool = True , a : Union[int, float] = 1 / 255 , a : bool = True , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , **a : Tuple , )-> None: """simple docstring""" super().__init__(**a ) lowercase__ = size if size is not None else {'height': 384, 'width': 384} lowercase__ = get_size_dict(a ) lowercase__ = do_resize lowercase__ = size lowercase__ = keep_aspect_ratio lowercase__ = ensure_multiple_of lowercase__ = resample lowercase__ = do_rescale lowercase__ = rescale_factor lowercase__ = do_normalize lowercase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN lowercase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def SCREAMING_SNAKE_CASE_ ( self : Dict , a : np.ndarray , a : Dict[str, int] , a : bool = False , a : int = 1 , a : PILImageResampling = PILImageResampling.BICUBIC , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[Any] , )-> np.ndarray: """simple docstring""" lowercase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) lowercase__ = get_resize_output_image_size( a , output_size=(size['height'], size['width']) , keep_aspect_ratio=a , multiple=a , ) return resize(a , size=a , resample=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , a : np.ndarray , a : Union[int, float] , a : Optional[Union[str, ChannelDimension]] = None , **a : Dict , )-> str: """simple docstring""" return rescale(a , scale=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , a : np.ndarray , a : Union[float, List[float]] , a : Union[float, List[float]] , a : Optional[Union[str, ChannelDimension]] = None , **a : Optional[int] , )-> np.ndarray: """simple docstring""" return normalize(a , mean=a , std=a , data_format=a , **a ) def SCREAMING_SNAKE_CASE_ ( self : int , a : ImageInput , a : bool = None , a : int = None , a : bool = None , a : int = None , a : PILImageResampling = None , a : bool = None , a : float = None , a : bool = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[float, List[float]]] = None , a : Optional[Union[str, TensorType]] = None , a : ChannelDimension = ChannelDimension.FIRST , **a : str , )-> PIL.Image.Image: """simple docstring""" lowercase__ = do_resize if do_resize is not None else self.do_resize lowercase__ = size if size is not None else self.size lowercase__ = get_size_dict(a ) lowercase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio lowercase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of lowercase__ = resample if resample is not None else self.resample lowercase__ = do_rescale if do_rescale is not None else self.do_rescale lowercase__ = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__ = do_normalize if do_normalize is not None else self.do_normalize lowercase__ = image_mean if image_mean is not None else self.image_mean lowercase__ = image_std if image_std is not None else self.image_std lowercase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. lowercase__ = [to_numpy_array(a ) for image in images] if do_resize: lowercase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: lowercase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: lowercase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] lowercase__ = [to_channel_dimension_format(a , a ) for image in images] lowercase__ = {'pixel_values': images} return BatchFeature(data=a , tensor_type=a ) def SCREAMING_SNAKE_CASE_ ( self : Dict , a : str , a : List[Tuple] = None )-> Optional[int]: """simple docstring""" lowercase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(a ): lowercase__ = target_sizes.numpy() lowercase__ = [] for idx in range(len(a ) ): lowercase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=a ) lowercase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: lowercase__ = logits.argmax(dim=1 ) lowercase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
269
1