code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = RobertaConfig snake_case_ = '''roberta''' def __init__( self , lowerCamelCase__ ) -> str: '''simple docstring''' super().__init__(lowerCamelCase__ ) __lowerCamelCase = RobertaEmbeddings(lowerCamelCase__ ) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , __magic_name__ , ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = RobertaConfig snake_case_ = '''roberta''' def __init__( self , lowerCamelCase__ ) -> Optional[Any]: '''simple docstring''' super().__init__(lowerCamelCase__ ) __lowerCamelCase = config.num_labels __lowerCamelCase = config.num_hidden_layers __lowerCamelCase = DeeRobertaModel(lowerCamelCase__ ) __lowerCamelCase = nn.Dropout(config.hidden_dropout_prob ) __lowerCamelCase = nn.Linear(config.hidden_size , self.config.num_labels ) @add_start_docstrings_to_model_forward(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=None , lowerCamelCase__=-1 , lowerCamelCase__=False , ) -> str: '''simple docstring''' __lowerCamelCase = self.num_layers try: __lowerCamelCase = self.roberta( lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , position_ids=lowerCamelCase__ , head_mask=lowerCamelCase__ , inputs_embeds=lowerCamelCase__ , ) __lowerCamelCase = outputs[1] __lowerCamelCase = self.dropout(lowerCamelCase__ ) __lowerCamelCase = self.classifier(lowerCamelCase__ ) __lowerCamelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __lowerCamelCase = e.message __lowerCamelCase = e.exit_layer __lowerCamelCase = outputs[0] if not self.training: __lowerCamelCase = entropy(lowerCamelCase__ ) __lowerCamelCase = [] __lowerCamelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __lowerCamelCase = MSELoss() __lowerCamelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase = CrossEntropyLoss() __lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __lowerCamelCase = [] for highway_exit in outputs[-1]: __lowerCamelCase = highway_exit[0] if not self.training: highway_logits_all.append(lowerCamelCase__ ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __lowerCamelCase = MSELoss() __lowerCamelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __lowerCamelCase = CrossEntropyLoss() __lowerCamelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(lowerCamelCase__ ) if train_highway: __lowerCamelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __lowerCamelCase = (loss,) + outputs if not self.training: __lowerCamelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __lowerCamelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
90
'''simple docstring''' import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : List[str] = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_script.py"] ) UpperCAmelCase : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ["scripts", "test_distributed_data_loop.py"] ) UpperCAmelCase : Tuple = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["scripts", "test_ops.py"] ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Any = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices." ) UpperCAmelCase : Tuple = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(snake_case , env=os.environ.copy() ) @require_multi_gpu def A_ ( self ): '''simple docstring''' print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) UpperCAmelCase : str = ["torchrun", f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices="0,1" ): execute_subprocess_async(snake_case , env=os.environ.copy() ) if __name__ == "__main__": a : Union[str, Any] = Accelerator() a : str = (accelerator.state.process_index + 2, 10) a : List[str] = torch.randint(0, 10, shape).to(accelerator.device) a : Optional[int] = "" a : int = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." a : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." a : List[str] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
311
0
'''simple docstring''' import torch def _lowerCAmelCase ( ) -> Tuple: if torch.cuda.is_available(): __lowerCAmelCase = torch.cuda.device_count() else: __lowerCAmelCase = 0 print(f'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
46
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a : Dict = logging.get_logger(__name__) _a : Optional[int] = """▁""" _a : Any = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[Any] = { """vocab_file""": { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model""" ), } } _a : Tuple = { """xlm-roberta-base""": 5_1_2, """xlm-roberta-large""": 5_1_2, """xlm-roberta-large-finetuned-conll02-dutch""": 5_1_2, """xlm-roberta-large-finetuned-conll02-spanish""": 5_1_2, """xlm-roberta-large-finetuned-conll03-english""": 5_1_2, """xlm-roberta-large-finetuned-conll03-german""": 5_1_2, } class _UpperCAmelCase ( lowerCAmelCase_ ): a : List[Any] =VOCAB_FILES_NAMES a : str =PRETRAINED_VOCAB_FILES_MAP a : Any =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Optional[Any] =["""input_ids""", """attention_mask"""] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE = None,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) + self.fairseq_offset __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE,""" """ ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
46
1
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class UpperCAmelCase_ : def __init__( self : Optional[int] ) -> None: _UpperCamelCase = [] _UpperCamelCase = 0 _UpperCamelCase = 0 def _UpperCamelCase ( self : List[Any] ) -> bool: return self.head == self.tail def _UpperCamelCase ( self : List[Any] , __UpperCamelCase : Any ) -> None: self.data.append(__UpperCamelCase ) _UpperCamelCase = self.tail + 1 def _UpperCamelCase ( self : Any ) -> Any: _UpperCamelCase = self.data[self.head] _UpperCamelCase = self.head + 1 return ret def _UpperCamelCase ( self : Optional[int] ) -> int: return self.tail - self.head def _UpperCamelCase ( self : List[Any] ) -> None: print(self.data ) print('''**************''' ) print(self.data[self.head : self.tail] ) class UpperCAmelCase_ : def __init__( self : int , __UpperCamelCase : Any ) -> None: _UpperCamelCase = data _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = 1 def _UpperCamelCase ( self : Dict ) -> Any: return self.data def _UpperCamelCase ( self : Dict ) -> MyNode | None: return self.left def _UpperCamelCase ( self : Union[str, Any] ) -> MyNode | None: return self.right def _UpperCamelCase ( self : int ) -> int: return self.height def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Any ) -> None: _UpperCamelCase = data def _UpperCamelCase ( self : Any , __UpperCamelCase : MyNode | None ) -> None: _UpperCamelCase = node def _UpperCamelCase ( self : str , __UpperCamelCase : MyNode | None ) -> None: _UpperCamelCase = node def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int ) -> None: _UpperCamelCase = height def lowercase ( a__ : MyNode | None ) -> int: if node is None: return 0 return node.get_height() def lowercase ( a__ : int , a__ : int ) -> int: if a > b: return a return b def lowercase ( a__ : MyNode ) -> MyNode: print('''left rotation node:''' , node.get_data() ) _UpperCamelCase = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(a__ ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a__ ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a__ ) return ret def lowercase ( a__ : MyNode ) -> MyNode: print('''right rotation node:''' , node.get_data() ) _UpperCamelCase = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(a__ ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a__ ) _UpperCamelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(a__ ) return ret def lowercase ( a__ : MyNode ) -> MyNode: _UpperCamelCase = node.get_left() assert left_child is not None node.set_left(left_rotation(a__ ) ) return right_rotation(a__ ) def lowercase ( a__ : MyNode ) -> MyNode: _UpperCamelCase = node.get_right() assert right_child is not None node.set_right(right_rotation(a__ ) ) return left_rotation(a__ ) def lowercase ( a__ : MyNode | None , a__ : Any ) -> MyNode | None: if node is None: return MyNode(a__ ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , a__ ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected _UpperCamelCase = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child _UpperCamelCase = right_rotation(a__ ) else: _UpperCamelCase = lr_rotation(a__ ) else: node.set_right(insert_node(node.get_right() , a__ ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: _UpperCamelCase = node.get_right() assert right_child is not None if data < right_child.get_data(): _UpperCamelCase = rl_rotation(a__ ) else: _UpperCamelCase = left_rotation(a__ ) _UpperCamelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(a__ ) return node def lowercase ( a__ : MyNode ) -> Any: while True: _UpperCamelCase = root.get_right() if right_child is None: break _UpperCamelCase = right_child return root.get_data() def lowercase ( a__ : MyNode ) -> Any: while True: _UpperCamelCase = root.get_left() if left_child is None: break _UpperCamelCase = left_child return root.get_data() def lowercase ( a__ : MyNode , a__ : Any ) -> MyNode | None: _UpperCamelCase = root.get_left() _UpperCamelCase = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: _UpperCamelCase = get_left_most(a__ ) root.set_data(a__ ) root.set_right(del_node(a__ , a__ ) ) elif left_child is not None: _UpperCamelCase = left_child elif right_child is not None: _UpperCamelCase = right_child else: return None elif root.get_data() > data: if left_child is None: print('''No such data''' ) return root else: root.set_left(del_node(a__ , a__ ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(a__ , a__ ) ) if get_height(a__ ) - get_height(a__ ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): _UpperCamelCase = left_rotation(a__ ) else: _UpperCamelCase = rl_rotation(a__ ) elif get_height(a__ ) - get_height(a__ ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): _UpperCamelCase = right_rotation(a__ ) else: _UpperCamelCase = lr_rotation(a__ ) _UpperCamelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(a__ ) return root class UpperCAmelCase_ : def __init__( self : Union[str, Any] ) -> None: _UpperCamelCase = None def _UpperCamelCase ( self : int ) -> int: return get_height(self.root ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Any ) -> None: print('''insert:''' + str(__UpperCamelCase ) ) _UpperCamelCase = insert_node(self.root , __UpperCamelCase ) def _UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : Any ) -> None: print('''delete:''' + str(__UpperCamelCase ) ) if self.root is None: print('''Tree is empty!''' ) return _UpperCamelCase = del_node(self.root , __UpperCamelCase ) def __str__( self : Any , ) -> str: # a level traversale, gives a more intuitive look on the tree _UpperCamelCase = '''''' _UpperCamelCase = MyQueue() q.push(self.root ) _UpperCamelCase = self.get_height() if layer == 0: return output _UpperCamelCase = 0 while not q.is_empty(): _UpperCamelCase = q.pop() _UpperCamelCase = ''' ''' * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__UpperCamelCase ) q.push(__UpperCamelCase ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space _UpperCamelCase = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __UpperCamelCase ) - 1: _UpperCamelCase = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def lowercase ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() UpperCAmelCase = AVLtree() UpperCAmelCase = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
256
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def lowercase ( a__ : Dict , a__ : Dict , a__ : List[str] , a__ : int , a__ : Any ) -> Optional[Any]: for attribute in key.split('''.''' ): _UpperCamelCase = getattr(a__ , a__ ) if weight_type is not None: _UpperCamelCase = getattr(a__ , a__ ).shape else: _UpperCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _UpperCamelCase = value elif weight_type == "weight_g": _UpperCamelCase = value elif weight_type == "weight_v": _UpperCamelCase = value elif weight_type == "bias": _UpperCamelCase = value else: _UpperCamelCase = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def lowercase ( a__ : str , a__ : Any , a__ : List[Any] ) -> List[Any]: _UpperCamelCase = [] _UpperCamelCase = fairseq_model.state_dict() _UpperCamelCase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _UpperCamelCase = False if "conv_layers" in name: load_conv_layer( a__ , a__ , a__ , a__ , hf_model.config.feat_extract_norm == '''group''' , ) _UpperCamelCase = True else: for key, mapped_key in MAPPING.items(): _UpperCamelCase = '''sew.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: _UpperCamelCase = True if "*" in mapped_key: _UpperCamelCase = name.split(a__ )[0].split('''.''' )[-2] _UpperCamelCase = mapped_key.replace('''*''' , a__ ) if "weight_g" in name: _UpperCamelCase = '''weight_g''' elif "weight_v" in name: _UpperCamelCase = '''weight_v''' elif "weight" in name: _UpperCamelCase = '''weight''' elif "bias" in name: _UpperCamelCase = '''bias''' else: _UpperCamelCase = None set_recursively(a__ , a__ , a__ , a__ , a__ ) continue if not is_used: unused_weights.append(a__ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def lowercase ( a__ : str , a__ : int , a__ : Optional[int] , a__ : Optional[Any] , a__ : int ) -> Any: _UpperCamelCase = full_name.split('''conv_layers.''' )[-1] _UpperCamelCase = name.split('''.''' ) _UpperCamelCase = int(items[0] ) _UpperCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _UpperCamelCase = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(a__ ) def lowercase ( a__ : List[str] , a__ : Optional[int] ) -> Union[str, Any]: _UpperCamelCase = SEWConfig() if is_finetuned: _UpperCamelCase = model.wav_encoder.wav_model.cfg else: _UpperCamelCase = model.cfg _UpperCamelCase = fs_config.conv_bias _UpperCamelCase = eval(fs_config.conv_feature_layers ) _UpperCamelCase = [x[0] for x in conv_layers] _UpperCamelCase = [x[1] for x in conv_layers] _UpperCamelCase = [x[2] for x in conv_layers] _UpperCamelCase = '''gelu''' _UpperCamelCase = '''layer''' if fs_config.extractor_mode == '''layer_norm''' else '''group''' _UpperCamelCase = 0.0 _UpperCamelCase = fs_config.activation_fn.name _UpperCamelCase = fs_config.encoder_embed_dim _UpperCamelCase = 0.02 _UpperCamelCase = fs_config.encoder_ffn_embed_dim _UpperCamelCase = 1e-5 _UpperCamelCase = fs_config.encoder_layerdrop _UpperCamelCase = fs_config.encoder_attention_heads _UpperCamelCase = fs_config.conv_pos_groups _UpperCamelCase = fs_config.conv_pos _UpperCamelCase = len(a__ ) _UpperCamelCase = fs_config.encoder_layers _UpperCamelCase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: _UpperCamelCase = model.cfg _UpperCamelCase = fs_config.final_dropout _UpperCamelCase = fs_config.layerdrop _UpperCamelCase = fs_config.activation_dropout _UpperCamelCase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 _UpperCamelCase = fs_config.attention_dropout _UpperCamelCase = fs_config.dropout_input _UpperCamelCase = fs_config.dropout _UpperCamelCase = fs_config.mask_channel_length _UpperCamelCase = fs_config.mask_channel_prob _UpperCamelCase = fs_config.mask_length _UpperCamelCase = fs_config.mask_prob _UpperCamelCase = '''Wav2Vec2FeatureExtractor''' _UpperCamelCase = '''Wav2Vec2CTCTokenizer''' return config @torch.no_grad() def lowercase ( a__ : List[Any] , a__ : Optional[Any] , a__ : str=None , a__ : Tuple=None , a__ : Tuple=True ) -> Union[str, Any]: if is_finetuned: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: _UpperCamelCase = SEWConfig.from_pretrained(a__ ) else: _UpperCamelCase = convert_config(model[0] , a__ ) _UpperCamelCase = model[0].eval() _UpperCamelCase = True if config.feat_extract_norm == '''layer''' else False _UpperCamelCase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=a__ , return_attention_mask=a__ , ) if is_finetuned: if dict_path: _UpperCamelCase = Dictionary.load(a__ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _UpperCamelCase = target_dict.pad_index _UpperCamelCase = target_dict.bos_index _UpperCamelCase = target_dict.pad_index _UpperCamelCase = target_dict.bos_index _UpperCamelCase = target_dict.eos_index _UpperCamelCase = len(target_dict.symbols ) _UpperCamelCase = os.path.join(a__ , '''vocab.json''' ) if not os.path.isdir(a__ ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(a__ ) ) return os.makedirs(a__ , exist_ok=a__ ) with open(a__ , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(target_dict.indices , a__ ) _UpperCamelCase = WavaVecaCTCTokenizer( a__ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=a__ , ) _UpperCamelCase = WavaVecaProcessor(feature_extractor=a__ , tokenizer=a__ ) processor.save_pretrained(a__ ) _UpperCamelCase = SEWForCTC(a__ ) else: _UpperCamelCase = SEWModel(a__ ) feature_extractor.save_pretrained(a__ ) recursively_load_weights(a__ , a__ , a__ ) hf_model.save_pretrained(a__ ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) UpperCAmelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
256
1
"""simple docstring""" from collections import defaultdict from pathlib import Path import pandas as pd from rouge_cli import calculate_rouge_path from utils import calculate_rouge UpperCAmelCase = [ 'Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of the' ' final seconds on board Flight 9525. The Germanwings co-pilot says he had a "previous episode of severe' ' depression\" German airline confirms it knew of Andreas Lubitz\'s depression years before he took control.', 'The Palestinian Authority officially becomes the 123rd member of the International Criminal Court. The formal' ' accession was marked with a ceremony at The Hague, in the Netherlands. The Palestinians signed the ICC\'s' ' founding Rome Statute in January. Israel and the United States opposed the Palestinians\' efforts to join the' ' body.', 'Amnesty International releases its annual report on the death penalty. The report catalogs the use of' ' state-sanctioned killing as a punitive measure across the globe. At least 607 people were executed around the' ' world in 2014, compared to 778 in 2013. The U.S. remains one of the worst offenders for imposing capital' ' punishment.', ] UpperCAmelCase = [ 'Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .' ' Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz' ' had informed his Lufthansa training school of an episode of severe depression, airline says .', 'Membership gives the ICC jurisdiction over alleged crimes committed in Palestinian territories since last June .' ' Israel and the United States opposed the move, which could open the door to war crimes investigations against' ' Israelis .', 'Amnesty\'s annual death penalty report catalogs encouraging signs, but setbacks in numbers of those sentenced to' ' death . Organization claims that governments around the world are using the threat of terrorism to advance' ' executions . The number of executions worldwide has gone down by almost 22% compared with 2013, but death' ' sentences up by 28% .', ] def lowercase ( ) -> int: _UpperCamelCase = calculate_rouge(a__ , a__ , bootstrap_aggregation=a__ , rouge_keys=['''rouge2''', '''rougeL'''] ) assert isinstance(a__ , a__ ) _UpperCamelCase = calculate_rouge(a__ , a__ , bootstrap_aggregation=a__ , rouge_keys=['''rouge2'''] ) assert ( pd.DataFrame(no_aggregation['''rouge2'''] ).fmeasure.mean() == pd.DataFrame(no_aggregation_just_ra['''rouge2'''] ).fmeasure.mean() ) def lowercase ( ) -> List[str]: _UpperCamelCase = '''rougeLsum''' _UpperCamelCase = calculate_rouge(a__ , a__ , newline_sep=a__ , rouge_keys=[k] )[k] _UpperCamelCase = calculate_rouge(a__ , a__ , newline_sep=a__ , rouge_keys=[k] )[k] assert score > score_no_sep def lowercase ( ) -> Optional[int]: _UpperCamelCase = ['''rouge1''', '''rouge2''', '''rougeL'''] _UpperCamelCase = calculate_rouge(a__ , a__ , newline_sep=a__ , rouge_keys=a__ ) _UpperCamelCase = calculate_rouge(a__ , a__ , newline_sep=a__ , rouge_keys=a__ ) assert score_sep == score_no_sep def lowercase ( ) -> Optional[int]: _UpperCamelCase = [ '''Her older sister, Margot Frank, died in 1945, a month earlier than previously thought.''', '''Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports .''', ] _UpperCamelCase = [ '''Margot Frank, died in 1945, a month earlier than previously thought.''', '''Prosecutor: "No videos were used in the crash investigation" German papers say they saw a cell phone video of''' ''' the final seconds on board Flight 9525.''', ] assert calculate_rouge(a__ , a__ , newline_sep=a__ ) == calculate_rouge(a__ , a__ , newline_sep=a__ ) def lowercase ( ) -> int: _UpperCamelCase = [ '''" "a person who has such a video needs to immediately give it to the investigators," prosecutor says .<n> "it is a very disturbing scene," editor-in-chief of bild online tells "erin burnett: outfront" ''' ] _UpperCamelCase = [ ''' Marseille prosecutor says "so far no videos were used in the crash investigation" despite media reports . Journalists at Bild and Paris Match are "very confident" the video clip is real, an editor says . Andreas Lubitz had informed his Lufthansa training school of an episode of severe depression, airline says .''' ] _UpperCamelCase = calculate_rouge(a__ , a__ , rouge_keys=['''rougeLsum'''] , newline_sep=a__ )['''rougeLsum'''] _UpperCamelCase = calculate_rouge(a__ , a__ , rouge_keys=['''rougeLsum'''] )['''rougeLsum'''] assert new_score > prev_score def lowercase ( ) -> Any: _UpperCamelCase = Path('''examples/seq2seq/test_data/wmt_en_ro''' ) _UpperCamelCase = calculate_rouge_path(data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) ) assert isinstance(a__ , a__ ) _UpperCamelCase = calculate_rouge_path( data_dir.joinpath('''test.source''' ) , data_dir.joinpath('''test.target''' ) , bootstrap_aggregation=a__ ) assert isinstance(a__ , a__ )
361
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
54
0
"""simple docstring""" import os import numpy import onnx def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' lowerCAmelCase : str = a.name lowerCAmelCase : int = b.name lowerCAmelCase : List[Any] = "" lowerCAmelCase : List[Any] = "" lowerCAmelCase : List[str] = a == b lowerCAmelCase : List[str] = name_a lowerCAmelCase : Optional[int] = name_b return res def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _graph_replace_input_with(node_proto.attribute[1].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' lowerCAmelCase : Tuple = list(model.graph.initializer ) lowerCAmelCase : Optional[int] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i lowerCAmelCase : Dict = inits[i].name lowerCAmelCase : Optional[int] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' lowerCAmelCase : Optional[int] = os.path.dirname(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = os.path.basename(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = onnx.load(os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Union[str, Any] = list(model.graph.initializer ) lowerCAmelCase : Optional[Any] = set() lowerCAmelCase : Any = {} lowerCAmelCase : Optional[Any] = [] lowerCAmelCase : Any = 0 for i in range(len(SCREAMING_SNAKE_CASE ) ): if i in dup_set: continue for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(SCREAMING_SNAKE_CASE ) dup_set.add(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Dict = inits[j].data_type lowerCAmelCase : Optional[int] = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("unexpected data type: " , SCREAMING_SNAKE_CASE ) total_reduced_size += mem_size lowerCAmelCase : Optional[int] = inits[i].name lowerCAmelCase : List[str] = inits[j].name if name_i in dup_map: dup_map[name_i].append(SCREAMING_SNAKE_CASE ) else: lowerCAmelCase : Tuple = [name_j] ind_to_replace.append((j, i) ) print("total reduced size: " , total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 , "GB" ) lowerCAmelCase : Any = sorted(SCREAMING_SNAKE_CASE ) _remove_dup_initializers_from_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[str] = "optimized_" + model_file_name lowerCAmelCase : List[str] = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) onnx.save(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) return new_model
108
'''simple docstring''' import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging lowercase__ : Any = logging.get_logger(__name__) class __lowerCAmelCase : """simple docstring""" _snake_case : List[str] = None @experimental def a__ ( lowercase : Union[str, Any], lowercase : Optional[int], lowercase : Tuple, lowercase : List[Any], lowercase : Dict, lowercase : Union[str, Any], lowercase : Optional[Any] ) -> int: """simple docstring""" if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) return _map_with_joblib(lowercase, lowercase, lowercase, lowercase, lowercase, lowercase, lowercase ) def a__ ( lowercase : Dict, lowercase : str, lowercase : Union[str, Any], lowercase : Optional[Any], lowercase : Optional[int], lowercase : Optional[Any], lowercase : Optional[int] ) -> List[str]: """simple docstring""" _UpperCamelCase = num_proc if num_proc <= len(lowercase ) else len(lowercase ) _UpperCamelCase = [] # We organize the splits ourselve (contiguous splits) for index in range(lowercase ): _UpperCamelCase = len(lowercase ) // num_proc _UpperCamelCase = len(lowercase ) % num_proc _UpperCamelCase = div * index + min(lowercase, lowercase ) _UpperCamelCase = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(lowercase ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"""Error dividing inputs iterable among processes. """ F"""Total number of objects {len(lowercase )}, """ F"""length: {sum(len(i[1] ) for i in split_kwds )}""" ) logger.info( F"""Spawning {num_proc} processes for {len(lowercase )} objects in slices of {[len(i[1] ) for i in split_kwds]}""" ) _UpperCamelCase , _UpperCamelCase = None, None if not disable_tqdm: _UpperCamelCase , _UpperCamelCase = (RLock(),), tqdm.set_lock with Pool(lowercase, initargs=lowercase, initializer=lowercase ) as pool: _UpperCamelCase = pool.map(lowercase, lowercase ) logger.info(F"""Finished {num_proc} processes""" ) _UpperCamelCase = [obj for proc_res in mapped for obj in proc_res] logger.info(F"""Unpacked {len(lowercase )} objects""" ) return mapped def a__ ( lowercase : str, lowercase : Tuple, lowercase : List[str], lowercase : List[str], lowercase : Any, lowercase : int, lowercase : Optional[Any] ) -> Any: """simple docstring""" import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=lowercase ): return joblib.Parallel()( joblib.delayed(lowercase )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def a__ ( lowercase : str ) -> Optional[int]: """simple docstring""" _UpperCamelCase = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: _UpperCamelCase = None
324
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : Tuple = TFAutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' ) a_ : int = AutoTokenizer.from_pretrained('google/mt5-small' ) a_ : Dict = tokenizer('Hello there' , return_tensors='tf' ).input_ids a_ : str = tokenizer('Hi I am' , return_tensors='tf' ).input_ids a_ : int = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ).loss a_ : List[str] = -tf.math.reduce_mean(SCREAMING_SNAKE_CASE__ ).numpy() a_ : Optional[int] = -21.228168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
120
def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" if n == 1 or not isinstance(__A , __A ): return 0 elif n == 2: return 1 else: a_ : int = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def SCREAMING_SNAKE_CASE_ ( __A : int ) -> int: """simple docstring""" a_ : Any = 0 a_ : Optional[Any] = 2 while digits < n: index += 1 a_ : List[Any] = len(str(fibonacci(__A ) ) ) return index def SCREAMING_SNAKE_CASE_ ( __A : int = 10_00 ) -> int: """simple docstring""" return fibonacci_digits_index(__A ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
120
1
from string import ascii_uppercase __snake_case :str = {str(ord(c) - 55): c for c in ascii_uppercase} def __snake_case ( _UpperCAmelCase , _UpperCAmelCase ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) __a = '''''' __a = 0 __a = 0 while div != 1: __a , __a = divmod(_UpperCAmelCase , _UpperCAmelCase ) if base >= 11 and 9 < mod < 36: __a = ALPHABET_VALUES[str(_UpperCAmelCase )] else: __a = str(_UpperCAmelCase ) new_value += actual_value __a = num // base __a = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(_UpperCAmelCase ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
49
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class A : '''simple docstring''' def __init__(self , _UpperCAmelCase , _UpperCAmelCase=1_3 , _UpperCAmelCase=7 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=9_9 , _UpperCAmelCase=3_2 , _UpperCAmelCase=2 , _UpperCAmelCase=4 , _UpperCAmelCase=3_7 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=5_1_2 , _UpperCAmelCase=1_6 , _UpperCAmelCase=2 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=4 , _UpperCAmelCase=None , ) -> Dict: __UpperCamelCase : Optional[Any] = parent __UpperCamelCase : List[str] = 1_3 __UpperCamelCase : List[Any] = 7 __UpperCamelCase : List[str] = True __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = True __UpperCamelCase : str = True __UpperCamelCase : List[Any] = 9_9 __UpperCamelCase : Union[str, Any] = 3_8_4 __UpperCamelCase : str = 2 __UpperCamelCase : Optional[Any] = 4 __UpperCamelCase : Any = 3_7 __UpperCamelCase : str = "gelu" __UpperCamelCase : Optional[Any] = 0.1 __UpperCamelCase : str = 0.1 __UpperCamelCase : str = 5_1_2 __UpperCamelCase : Optional[Any] = 1_6 __UpperCamelCase : Dict = 2 __UpperCamelCase : Optional[int] = 0.02 __UpperCamelCase : List[Any] = 3 __UpperCamelCase : Optional[Any] = 4 __UpperCamelCase : int = 1_2_8 __UpperCamelCase : Tuple = 2 __UpperCamelCase : str = 9 __UpperCamelCase : List[Any] = 1 __UpperCamelCase : Any = None def a_ (self ) -> int: __UpperCamelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : str = None if self.use_input_mask: __UpperCamelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : int = None if self.use_token_type_ids: __UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : List[Any] = None __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : Optional[Any] = None if self.use_labels: __UpperCamelCase : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : Tuple = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : str = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Dict: __UpperCamelCase : Tuple = TFConvBertModel(config=_UpperCAmelCase ) __UpperCamelCase : Optional[Any] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __UpperCamelCase : Optional[Any] = [input_ids, input_mask] __UpperCamelCase : str = model(_UpperCAmelCase ) __UpperCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : int = TFConvBertForMaskedLM(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : List[str] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: __UpperCamelCase : Union[str, Any] = self.num_labels __UpperCamelCase : Optional[Any] = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) __UpperCamelCase : List[str] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Optional[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: __UpperCamelCase : Optional[int] = self.num_choices __UpperCamelCase : List[Any] = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) __UpperCamelCase : Optional[int] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Optional[Any] = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : str = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : List[str] = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __UpperCamelCase : int = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Any: __UpperCamelCase : List[str] = self.num_labels __UpperCamelCase : Tuple = TFConvBertForTokenClassification(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Union[str, Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: __UpperCamelCase : int = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) __UpperCamelCase : Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __UpperCamelCase : Any = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ (self ) -> str: __UpperCamelCase : str = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Any = config_and_inputs __UpperCamelCase : int = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A = False A = False A = False def a_ (self ) -> Optional[int]: __UpperCamelCase : Tuple = TFConvBertModelTester(self ) __UpperCamelCase : Optional[Any] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=3_7 ) def a_ (self ) -> Dict: self.config_tester.run_common_tests() def a_ (self ) -> Dict: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def a_ (self ) -> Dict: __UpperCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def a_ (self ) -> Dict: __UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def a_ (self ) -> Optional[int]: __UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def a_ (self ) -> Any: __UpperCamelCase , __UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = True __UpperCamelCase : int = True if hasattr(_UpperCAmelCase , "use_cache" ): __UpperCamelCase : List[Any] = True __UpperCamelCase : List[str] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Optional[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase : Any = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) __UpperCamelCase : int = model_class(_UpperCAmelCase ) __UpperCamelCase : Any = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) __UpperCamelCase : List[str] = os.path.join(_UpperCAmelCase , "saved_model" , "1" ) __UpperCamelCase : List[str] = tf.keras.models.load_model(_UpperCAmelCase ) __UpperCamelCase : Dict = model(_UpperCAmelCase ) if self.is_encoder_decoder: __UpperCamelCase : Any = outputs["encoder_hidden_states"] __UpperCamelCase : Tuple = outputs["encoder_attentions"] else: __UpperCamelCase : Tuple = outputs["hidden_states"] __UpperCamelCase : Optional[int] = outputs["attentions"] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) __UpperCamelCase : Any = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def a_ (self ) -> Optional[Any]: __UpperCamelCase : Tuple = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(_UpperCAmelCase ) def a_ (self ) -> Tuple: __UpperCamelCase , __UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase : str = True __UpperCamelCase : Tuple = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Optional[int] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) __UpperCamelCase : Any = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) __UpperCamelCase : List[Any] = getattr(self.model_tester , "key_length" , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase ): __UpperCamelCase : Dict = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) __UpperCamelCase : List[str] = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase ): __UpperCamelCase : Any = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: __UpperCamelCase : Any = True __UpperCamelCase : Dict = False __UpperCamelCase : str = model_class(_UpperCAmelCase ) __UpperCamelCase : Tuple = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) __UpperCamelCase : List[Any] = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: __UpperCamelCase : str = model_class(_UpperCAmelCase ) __UpperCamelCase : Dict = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCamelCase : Optional[Any] = True __UpperCamelCase : Tuple = model_class(_UpperCAmelCase ) __UpperCamelCase : int = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine __UpperCamelCase : int = True __UpperCamelCase : str = True __UpperCamelCase : Optional[Any] = model_class(_UpperCAmelCase ) __UpperCamelCase : Optional[int] = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): '''simple docstring''' @slow def a_ (self ) -> str: __UpperCamelCase : Dict = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) __UpperCamelCase : str = tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase : Optional[int] = model(_UpperCAmelCase )[0] __UpperCamelCase : Tuple = [1, 6, 7_6_8] self.assertEqual(output.shape , _UpperCAmelCase ) __UpperCamelCase : Any = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 )
298
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class _snake_case ( lowercase__): UpperCamelCase__ : Optional[Any] ="""transfo-xl""" UpperCamelCase__ : Dict =["""mems"""] UpperCamelCase__ : Optional[int] ={ """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Optional[Any], __lowercase : Optional[Any]=26_7735, __lowercase : int=[2_0000, 4_0000, 20_0000], __lowercase : Union[str, Any]=1024, __lowercase : Tuple=1024, __lowercase : Tuple=16, __lowercase : Optional[Any]=64, __lowercase : str=4096, __lowercase : Optional[int]=4, __lowercase : Union[str, Any]=False, __lowercase : Union[str, Any]=18, __lowercase : List[str]=1600, __lowercase : List[Any]=1000, __lowercase : Union[str, Any]=True, __lowercase : Tuple=True, __lowercase : Optional[Any]=0, __lowercase : List[str]=-1, __lowercase : int=True, __lowercase : Dict=0.1, __lowercase : Union[str, Any]=0.0, __lowercase : str=True, __lowercase : Optional[Any]="normal", __lowercase : str=0.01, __lowercase : Tuple=0.01, __lowercase : List[Any]=0.02, __lowercase : Any=1e-5, __lowercase : Union[str, Any]=0, **__lowercase : Union[str, Any], ): lowercase__ = vocab_size lowercase__ = [] self.cutoffs.extend(__lowercase ) if proj_share_all_but_first: lowercase__ = [False] + [True] * len(self.cutoffs ) else: lowercase__ = [False] + [False] * len(self.cutoffs ) lowercase__ = d_model lowercase__ = d_embed lowercase__ = d_head lowercase__ = d_inner lowercase__ = div_val lowercase__ = pre_lnorm lowercase__ = n_layer lowercase__ = n_head lowercase__ = mem_len lowercase__ = same_length lowercase__ = attn_type lowercase__ = clamp_len lowercase__ = sample_softmax lowercase__ = adaptive lowercase__ = dropout lowercase__ = dropatt lowercase__ = untie_r lowercase__ = init lowercase__ = init_range lowercase__ = proj_init_std lowercase__ = init_std lowercase__ = layer_norm_epsilon super().__init__(eos_token_id=__lowercase, **__lowercase ) @property def A__ ( self : Optional[Any] ): # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def A__ ( self : List[str], __lowercase : Union[str, Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
224
from collections import namedtuple import requests from lxml import html # type: ignore lowercase_ = namedtuple("""covid_data""", """cases deaths recovered""") def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ = "https://www.worldometers.info/coronavirus/" ): lowercase__ = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(SCREAMING_SNAKE_CASE_ ).content ).xpath(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = """Total COVID-19 cases in the world: {} Total deaths due to COVID-19 in the world: {} Total COVID-19 patients recovered in the world: {}""" print(fmt.format(*covid_stats()))
224
1
"""simple docstring""" import random from typing import Any def UpperCAmelCase__ ( SCREAMING_SNAKE_CASE : list ): '''simple docstring''' for _ in range(len(SCREAMING_SNAKE_CASE ) ): lowerCAmelCase = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) lowerCAmelCase = random.randint(0 , len(SCREAMING_SNAKE_CASE ) - 1 ) lowerCAmelCase , lowerCAmelCase = data[b], data[a] return data if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [0, 1, 2, 3, 4, 5, 6, 7] SCREAMING_SNAKE_CASE__ = ["python", "says", "hello", "!"] print("Fisher-Yates Shuffle:") print("List", integers, strings) print("FY Shuffle", fisher_yates_shuffle(integers), fisher_yates_shuffle(strings))
46
"""simple docstring""" from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class lowercase : def __init__( self , lowercase , ) -> Optional[int]: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 32 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.02 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = None def _snake_case ( self ) -> str: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertModel(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Optional[int]: lowerCAmelCase = TFDistilBertForMaskedLM(config=lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = TFDistilBertForQuestionAnswering(config=lowercase ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> List[Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForSequenceClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFDistilBertForMultipleChoice(lowercase ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(lowercase , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, } lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ) -> int: lowerCAmelCase = self.num_labels lowerCAmelCase = TFDistilBertForTokenClassification(lowercase ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCAmelCase = model(lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class lowercase ( _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) _SCREAMING_SNAKE_CASE = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False def _snake_case ( self ) -> Dict: lowerCAmelCase = TFDistilBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=lowercase , dim=37 ) def _snake_case ( self ) -> str: self.config_tester.run_common_tests() def _snake_case ( self ) -> int: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*lowercase ) def _snake_case ( self ) -> Any: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*lowercase ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*lowercase ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*lowercase ) def _snake_case ( self ) -> List[Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*lowercase ) def _snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*lowercase ) @slow def _snake_case ( self ) -> List[str]: for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): lowerCAmelCase = TFDistilBertModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class lowercase ( unittest.TestCase ): @slow def _snake_case ( self ) -> Any: lowerCAmelCase = TFDistilBertModel.from_pretrained("""distilbert-base-uncased""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(lowercase )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , lowercase ) lowerCAmelCase = tf.constant( [ [ [0.19_261_885, -0.13_732_955, 0.4_119_799], [0.22_150_156, -0.07_422_661, 0.39_037_204], [0.22_756_018, -0.0_896_414, 0.3_701_467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowercase , atol=1e-4 )
46
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowercase ( self : List[str] ) -> Dict: __lowerCAmelCase = FlaxXLMRobertaModel.from_pretrained('xlm-roberta-base' ) __lowerCAmelCase = AutoTokenizer.from_pretrained('xlm-roberta-base' ) __lowerCAmelCase = 'The dog is cute and lives in the garden house' __lowerCAmelCase = jnp.array([tokenizer.encode(lowerCAmelCase_ )] ) __lowerCAmelCase = (1, 1_2, 7_6_8) # batch_size, sequence_length, embedding_vector_dim __lowerCAmelCase = jnp.array( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) __lowerCAmelCase = model(lowerCAmelCase_ )['last_hidden_state'] self.assertEqual(output.shape , lowerCAmelCase_ ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , lowerCAmelCase_ , atol=1e-3 ) )
207
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Dict = { 'facebook/encodec_24khz': 'https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json', 'facebook/encodec_48khz': 'https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json', } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """encodec""" def __init__( self : Optional[Any] , lowerCAmelCase_ : List[Any]=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCAmelCase_ : Optional[Any]=2_4_0_0_0 , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=1_2_8 , lowerCAmelCase_ : List[Any]=3_2 , lowerCAmelCase_ : Optional[Any]=1 , lowerCAmelCase_ : Optional[int]=[8, 5, 4, 2] , lowerCAmelCase_ : Optional[Any]="weight_norm" , lowerCAmelCase_ : Tuple=7 , lowerCAmelCase_ : Optional[int]=7 , lowerCAmelCase_ : Dict=3 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Dict="reflect" , lowerCAmelCase_ : List[Any]=2 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Dict=1.0 , lowerCAmelCase_ : str=1_0_2_4 , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : List[Any]=True , **lowerCAmelCase_ : Optional[Any] , ) -> Union[str, Any]: __lowerCAmelCase = target_bandwidths __lowerCAmelCase = sampling_rate __lowerCAmelCase = audio_channels __lowerCAmelCase = normalize __lowerCAmelCase = chunk_length_s __lowerCAmelCase = overlap __lowerCAmelCase = hidden_size __lowerCAmelCase = num_filters __lowerCAmelCase = num_residual_layers __lowerCAmelCase = upsampling_ratios __lowerCAmelCase = norm_type __lowerCAmelCase = kernel_size __lowerCAmelCase = last_kernel_size __lowerCAmelCase = residual_kernel_size __lowerCAmelCase = dilation_growth_rate __lowerCAmelCase = use_causal_conv __lowerCAmelCase = pad_mode __lowerCAmelCase = compress __lowerCAmelCase = num_lstm_layers __lowerCAmelCase = trim_right_ratio __lowerCAmelCase = codebook_size __lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size __lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**lowerCAmelCase_ ) @property def lowercase ( self : Union[str, Any] ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowercase ( self : Optional[Any] ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowercase ( self : Any ) -> int: __lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowercase ( self : str ) -> int: return int(1_0_0_0 * self.target_bandwidths[-1] // (self.frame_rate * 1_0) )
207
1
'''simple docstring''' __SCREAMING_SNAKE_CASE : int = """Alexander Joslin""" import operator as op from .stack import Stack def UpperCamelCase_ ( _UpperCAmelCase : str ) -> int: """simple docstring""" _UpperCAmelCase : Tuple = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} _UpperCAmelCase : Stack[int] = Stack() _UpperCAmelCase : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(_UpperCAmelCase ) ) elif i in operators: # RULE 2 operator_stack.push(_UpperCAmelCase ) elif i == ")": # RULE 4 _UpperCAmelCase : str = operator_stack.peek() operator_stack.pop() _UpperCAmelCase : List[str] = operand_stack.peek() operand_stack.pop() _UpperCAmelCase : List[str] = operand_stack.peek() operand_stack.pop() _UpperCAmelCase : List[Any] = operators[opr](_UpperCAmelCase , _UpperCAmelCase ) operand_stack.push(_UpperCAmelCase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F'{equation} = {dijkstras_two_stack_algorithm(equation)}')
31
"""simple docstring""" import importlib.util import json import os import warnings from dataclasses import dataclass, field import torch from ..training_args import TrainingArguments from ..utils import cached_property, is_sagemaker_dp_enabled, logging a__ : Union[str, Any] = logging.get_logger(__name__) def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = os.getenv("SM_HP_MP_PARAMETERS" , "{}" ) try: # Parse it and check the field "partitions" is included, it is required for model parallel. __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if "partitions" not in smp_options: return False except json.JSONDecodeError: return False # Get the sagemaker specific framework parameters from mpi_options variable. __SCREAMING_SNAKE_CASE = os.getenv("SM_FRAMEWORK_PARAMS" , "{}" ) try: # Parse it and check the field "sagemaker_distributed_dataparallel_enabled". __SCREAMING_SNAKE_CASE = json.loads(lowerCAmelCase_ ) if not mpi_options.get("sagemaker_mpi_enabled" , lowerCAmelCase_ ): return False except json.JSONDecodeError: return False # Lastly, check if the `smdistributed` module is present. return importlib.util.find_spec("smdistributed" ) is not None if is_sagemaker_model_parallel_available(): import smdistributed.modelparallel.torch as smp smp.init() @dataclass class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : str = field( default="" , metadata={"help": "Used by the SageMaker launcher to send mp-specific args. Ignored in SageMakerTrainer"} , ) def UpperCAmelCase_ ( self : List[str] ) -> Any: super().__post_init__() warnings.warn( "`SageMakerTrainingArguments` is deprecated and will be removed in v5 of Transformers. You can use " "`TrainingArguments` instead." , UpperCAmelCase__ , ) @cached_property def UpperCAmelCase_ ( self : List[str] ) -> "torch.device": logger.info("PyTorch: setting up devices" ) if torch.distributed.is_available() and torch.distributed.is_initialized() and self.local_rank == -1: logger.warning( "torch.distributed process group is initialized, but local_rank == -1. " "In order to use Torch DDP, launch your script with `python -m torch.distributed.launch" ) if self.no_cuda: __SCREAMING_SNAKE_CASE = torch.device("cpu" ) __SCREAMING_SNAKE_CASE = 0 elif is_sagemaker_model_parallel_available(): __SCREAMING_SNAKE_CASE = smp.local_rank() __SCREAMING_SNAKE_CASE = torch.device("cuda" , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = 1 elif is_sagemaker_dp_enabled(): import smdistributed.dataparallel.torch.torch_smddp # noqa: F401 torch.distributed.init_process_group(backend="smddp" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = int(os.getenv("SMDATAPARALLEL_LOCAL_RANK" ) ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 elif self.local_rank == -1: # if n_gpu is > 1 we'll use nn.DataParallel. # If you only want to use a specific subset of GPUs use `CUDA_VISIBLE_DEVICES=0` # Explicitly set CUDA to the first (index 0) CUDA device, otherwise `set_device` will # trigger an error that a device index is missing. Index 0 takes into account the # GPUs available in the environment, so `CUDA_VISIBLE_DEVICES=1,2` with `cuda:0` # will use the first GPU in that env, i.e. GPU#1 __SCREAMING_SNAKE_CASE = torch.device("cuda:0" if torch.cuda.is_available() else "cpu" ) # Sometimes the line in the postinit has not been run before we end up here, so just checking we're not at # the default value. __SCREAMING_SNAKE_CASE = torch.cuda.device_count() else: # Here, we'll use torch.distributed. # Initializes the distributed backend which will take care of synchronizing nodes/GPUs if not torch.distributed.is_initialized(): torch.distributed.init_process_group(backend="nccl" , timeout=self.ddp_timeout_delta ) __SCREAMING_SNAKE_CASE = torch.device("cuda" , self.local_rank ) __SCREAMING_SNAKE_CASE = 1 if device.type == "cuda": torch.cuda.set_device(UpperCAmelCase__ ) return device @property def UpperCAmelCase_ ( self : Dict ) -> Any: if is_sagemaker_model_parallel_available(): return smp.dp_size() return super().world_size @property def UpperCAmelCase_ ( self : Union[str, Any] ) -> List[Any]: return not is_sagemaker_model_parallel_available() @property def UpperCAmelCase_ ( self : Tuple ) -> int: return False
54
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _lowerCamelCase ( lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[int]=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=lowerCAmelCase__ ) @dataclass class __SCREAMING_SNAKE_CASE : '''simple docstring''' lowerCamelCase_ :str = field( metadata={'''help''': '''The csv file to plot.'''} , ) lowerCamelCase_ :bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) lowerCamelCase_ :bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) lowerCamelCase_ :bool = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) lowerCamelCase_ :bool = field( default=__SCREAMING_SNAKE_CASE , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) lowerCamelCase_ :Optional[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) lowerCamelCase_ :Optional[List[str]] = list_field( default=__SCREAMING_SNAKE_CASE , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def _lowerCamelCase ( lowerCamelCase_ : Dict ): """simple docstring""" try: int(lowerCAmelCase__ ) return True except ValueError: return False def _lowerCamelCase ( lowerCamelCase_ : Optional[int] ): """simple docstring""" try: float(lowerCAmelCase__ ) return True except ValueError: return False class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : List[str] = args UpperCAmelCase_ : Union[str, Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='' ) as csv_file: UpperCAmelCase_ : List[str] = csv.DictReader(_a ) for row in reader: UpperCAmelCase_ : str = row['model'] self.result_dict[model_name]["bsz"].append(int(row['batch_size'] ) ) self.result_dict[model_name]["seq_len"].append(int(row['sequence_length'] ) ) if can_convert_to_int(row['result'] ): # value is not None UpperCAmelCase_ : Tuple = int(row['result'] ) elif can_convert_to_float(row['result'] ): # value is not None UpperCAmelCase_ : Any = float(row['result'] ) def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ : int = plt.subplots() UpperCAmelCase_ : int = 'Time usage' if self.args.is_time else 'Memory usage' UpperCAmelCase_ : int = title_str + ' for training' if self.args.is_train else title_str + ' for inference' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('log' ) ax.set_yscale('log' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): UpperCAmelCase_ : Any = sorted(set(self.result_dict[model_name]['bsz'] ) ) UpperCAmelCase_ : Optional[Any] = sorted(set(self.result_dict[model_name]['seq_len'] ) ) UpperCAmelCase_ : Optional[int] = self.result_dict[model_name]['result'] ((UpperCAmelCase_) , (UpperCAmelCase_)) : Dict = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) UpperCAmelCase_ : Any = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: UpperCAmelCase_ : int = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_a , ) else: UpperCAmelCase_ : Dict = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((UpperCAmelCase_) , (UpperCAmelCase_)) : List[str] = ( ('batch_size', 'len') if self.args.plot_along_batch else ('in #tokens', 'bsz') ) UpperCAmelCase_ : str = np.asarray(_a , _a )[: len(_a )] plt.scatter( _a , _a , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(_a , _a , '--' ) title_str += F''' {label_model_name} vs.''' UpperCAmelCase_ : Tuple = title_str[:-4] UpperCAmelCase_ : List[str] = 'Time in s' if self.args.is_time else 'Memory in MB' # plot plt.title(_a ) plt.xlabel(_a ) plt.ylabel(_a ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def _lowerCamelCase ( ): """simple docstring""" UpperCAmelCase_ : List[str] = HfArgumentParser(lowerCAmelCase__ ) UpperCAmelCase_ : int = parser.parse_args_into_dataclasses()[0] UpperCAmelCase_ : Optional[Any] = Plot(args=lowerCAmelCase__ ) plot.plot() if __name__ == "__main__": main()
361
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : str = " " ): """simple docstring""" UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[Any] = 0 for index, char in enumerate(lowerCamelCase_ ): if char == separator: split_words.append(string[last_index:index] ) UpperCAmelCase_ : Optional[Any] = index + 1 elif index + 1 == len(lowerCamelCase_ ): split_words.append(string[last_index : index + 1] ) return split_words if __name__ == "__main__": from doctest import testmod testmod()
274
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Any = logging.get_logger(__name__) __A : Optional[int] = { "SCUT-DLVCLab/lilt-roberta-en-base": ( "https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json" ), } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'lilt' def __init__( self : Tuple , lowerCamelCase : Union[str, Any]=3_05_22 , lowerCamelCase : Dict=7_68 , lowerCamelCase : List[str]=12 , lowerCamelCase : Dict=12 , lowerCamelCase : Any=30_72 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : Optional[int]=0.1 , lowerCamelCase : List[str]=0.1 , lowerCamelCase : List[str]=5_12 , lowerCamelCase : str=2 , lowerCamelCase : str=0.02 , lowerCamelCase : Tuple=1E-12 , lowerCamelCase : List[str]=0 , lowerCamelCase : List[Any]="absolute" , lowerCamelCase : Tuple=None , lowerCamelCase : Dict=4 , lowerCamelCase : str=10_24 , **lowerCamelCase : int , ) -> Optional[int]: super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Optional[int] = vocab_size lowerCAmelCase_ : Dict = hidden_size lowerCAmelCase_ : Union[str, Any] = num_hidden_layers lowerCAmelCase_ : Any = num_attention_heads lowerCAmelCase_ : Dict = hidden_act lowerCAmelCase_ : str = intermediate_size lowerCAmelCase_ : Tuple = hidden_dropout_prob lowerCAmelCase_ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase_ : Any = max_position_embeddings lowerCAmelCase_ : int = type_vocab_size lowerCAmelCase_ : str = initializer_range lowerCAmelCase_ : str = layer_norm_eps lowerCAmelCase_ : List[Any] = position_embedding_type lowerCAmelCase_ : Any = classifier_dropout lowerCAmelCase_ : Dict = channel_shrink_ratio lowerCAmelCase_ : int = max_ad_position_embeddings
120
'''simple docstring''' def UpperCamelCase_ ( A__ : int = 1_00 ): '''simple docstring''' lowerCAmelCase_ : int = set() lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : str = n + 1 # maximum limit for a in range(2 , A__ ): for b in range(2 , A__ ): lowerCAmelCase_ : str = a**b # calculates the current power collect_powers.add(A__ ) # adds the result to the set return len(A__ ) if __name__ == "__main__": print("Number of terms ", solution(int(str(input()).strip())))
120
1
from collections.abc import Callable class a__ : def __init__( self , UpperCAmelCase = None ) -> None: # Stores actual heap items. __a = [] # Stores indexes of each item for supporting updates and deletion. __a = {} # Stores current size of heap. __a = 0 # Stores function used to evaluate the score of an item on which basis ordering # will be done. __a = key or (lambda UpperCAmelCase : x) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> int | None: return int((i - 1) / 2 ) if i > 0 else None def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> int | None: __a = int(2 * i + 1 ) return left if 0 < left < self.size else None def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> int | None: __a = int(2 * i + 2 ) return right if 0 < right < self.size else None def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> None: __a , __a = ( self.pos_map[self.arr[j][0]], self.pos_map[self.arr[i][0]], ) # Then swap the items in the list. __a , __a = self.arr[j], self.arr[i] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> bool: return self.arr[i][1] < self.arr[j][1] def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> int: __a = self._left(UpperCAmelCase ) __a = self._right(UpperCAmelCase ) __a = i if left is not None and not self._cmp(UpperCAmelCase , UpperCAmelCase ): __a = left if right is not None and not self._cmp(UpperCAmelCase , UpperCAmelCase ): __a = right return valid_parent def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> None: __a = self._parent(UpperCAmelCase ) while parent is not None and not self._cmp(UpperCAmelCase , UpperCAmelCase ): self._swap(UpperCAmelCase , UpperCAmelCase ) __a , __a = parent, self._parent(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> None: __a = self._get_valid_parent(UpperCAmelCase ) while valid_parent != index: self._swap(UpperCAmelCase , UpperCAmelCase ) __a , __a = valid_parent, self._get_valid_parent(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> None: if item not in self.pos_map: return __a = self.pos_map[item] __a = [item, self.key(UpperCAmelCase )] # Make sure heap is right in both up and down direction. # Ideally only one of them will make any change. self._heapify_up(UpperCAmelCase ) self._heapify_down(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> None: if item not in self.pos_map: return __a = self.pos_map[item] del self.pos_map[item] __a = self.arr[self.size - 1] __a = index self.size -= 1 # Make sure heap is right in both up and down direction. Ideally only one # of them will make any change- so no performance loss in calling both. if self.size > index: self._heapify_up(UpperCAmelCase ) self._heapify_down(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase ) -> None: __a = len(self.arr ) if arr_len == self.size: self.arr.append([item, self.key(UpperCAmelCase )] ) else: __a = [item, self.key(UpperCAmelCase )] __a = self.size self.size += 1 self._heapify_up(self.size - 1 ) def __SCREAMING_SNAKE_CASE ( self ) -> tuple | None: return self.arr[0] if self.size else None def __SCREAMING_SNAKE_CASE ( self ) -> tuple | None: __a = self.get_top() if top_item_tuple: self.delete_item(top_item_tuple[0] ) return top_item_tuple def lowerCAmelCase( ): pass if __name__ == "__main__": import doctest doctest.testmod()
197
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from transformers import TensorFlowBenchmark, TensorFlowBenchmarkArguments @require_tf class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> Optional[Any]: for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): __a = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = 'sshleifer/tiny-gpt2' __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = 'sgugger/tiny-distilbert-classification' __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , only_pretrain_model=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = 'sshleifer/tiny-gpt2' __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = 'sshleifer/tiny-gpt2' __a = AutoConfig.from_pretrained(UpperCAmelCase ) __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase , [config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = 'sshleifer/tiny-gpt2' __a = AutoConfig.from_pretrained(UpperCAmelCase ) __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase , [config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: __a = 'sshleifer/tiny-gpt2' __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: __a = 'sshleifer/tiny-gpt2' __a = AutoConfig.from_pretrained(UpperCAmelCase ) __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase , [config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = 'patrickvonplaten/t5-tiny-random' __a = AutoConfig.from_pretrained(UpperCAmelCase ) __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase , configs=[config] ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(is_tf_available() and len(tf.config.list_physical_devices('GPU' ) ) == 0 , 'Cannot do xla on CPU.' ) def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = 'sshleifer/tiny-gpt2' __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , training=UpperCAmelCase , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , use_xla=UpperCAmelCase , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase ) __a = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase , save_to_csv=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(UpperCAmelCase , 'inf_time.csv' ) , inference_memory_csv_file=os.path.join(UpperCAmelCase , 'inf_mem.csv' ) , env_info_csv_file=os.path.join(UpperCAmelCase , 'env.csv' ) , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase ) benchmark.run() self.assertTrue(Path(os.path.join(UpperCAmelCase , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(UpperCAmelCase , 'env.csv' ) ).exists() ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(UpperCAmelCase ): self.assertTrue(hasattr(UpperCAmelCase , 'sequential' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'cumulative' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'current' ) ) self.assertTrue(hasattr(UpperCAmelCase , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __a = TensorFlowBenchmarkArguments( models=[MODEL_ID] , inference=UpperCAmelCase , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(UpperCAmelCase , 'log.txt' ) , log_print=UpperCAmelCase , trace_memory_line_by_line=UpperCAmelCase , eager_mode=UpperCAmelCase , multi_process=UpperCAmelCase , ) __a = TensorFlowBenchmark(UpperCAmelCase ) __a = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) self.assertTrue(Path(os.path.join(UpperCAmelCase , 'log.txt' ) ).exists() )
197
1
"""simple docstring""" from typing import Union import fire import torch from tqdm import tqdm def UpperCamelCase_ ( lowerCAmelCase__ : str , lowerCAmelCase__ : str = "cpu" , lowerCAmelCase__ : Union[str, None] = None ) -> None: """simple docstring""" lowerCAmelCase_ : Any = torch.load(lowerCAmelCase__ , map_location=lowerCAmelCase__ ) for k, v in tqdm(state_dict.items() ): if not isinstance(lowerCAmelCase__ , torch.Tensor ): raise TypeError('FP16 conversion only works on paths that are saved state dicts, like pytorch_model.bin' ) lowerCAmelCase_ : str = v.half() if save_path is None: # overwrite src_path lowerCAmelCase_ : Dict = src_path torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": fire.Fire(convert)
224
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class UpperCamelCase__ ( lowercase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ( """This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.""" """It takes two arguments named `image` which should be the original image, and `label` which should be a text """ """describing the elements what should be identified in the segmentation mask. The tool returns the mask.""" ) _SCREAMING_SNAKE_CASE = """CIDAS/clipseg-rd64-refined""" _SCREAMING_SNAKE_CASE = """image_segmenter""" _SCREAMING_SNAKE_CASE = CLIPSegForImageSegmentation _SCREAMING_SNAKE_CASE = ["""image""", """text"""] _SCREAMING_SNAKE_CASE = ["""image"""] def __init__( self : Dict , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : Optional[int] ): requires_backends(self , ['vision'] ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : "Image" , SCREAMING_SNAKE_CASE_ : str ): return self.pre_processor(text=[label] , images=[image] , padding=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ): with torch.no_grad(): lowerCAmelCase_ : List[str] = self.model(**SCREAMING_SNAKE_CASE_ ).logits return logits def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): lowerCAmelCase_ : Dict = outputs.cpu().detach().numpy() lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Optional[Any] = 1 return Image.fromarray((array * 2_5_5).astype(np.uinta ) )
224
1
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( '''stable diffusion controlnet''', '''0.22.0''', '''Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.''', standard_warn=False, stacklevel=3, )
228
'''simple docstring''' import torch from transformers import CamembertForMaskedLM, CamembertTokenizer def _snake_case ( A , A , A , A=5 ) -> List[str]: # Adapted from https://github.com/pytorch/fairseq/blob/master/fairseq/models/roberta/hub_interface.py assert masked_input.count('''<mask>''' ) == 1 lowerCAmelCase__ = torch.tensor(tokenizer.encode(A , add_special_tokens=A ) ).unsqueeze(0 ) # Batch size 1 lowerCAmelCase__ = model(A )[0] # The last hidden-state is the first element of the output tuple lowerCAmelCase__ = (input_ids.squeeze() == tokenizer.mask_token_id).nonzero().item() lowerCAmelCase__ = logits[0, masked_index, :] lowerCAmelCase__ = logits.softmax(dim=0 ) lowerCAmelCase__ , lowerCAmelCase__ = prob.topk(k=A , dim=0 ) lowerCAmelCase__ = ''' '''.join( [tokenizer.convert_ids_to_tokens(indices[i].item() ) for i in range(len(A ) )] ) lowerCAmelCase__ = tokenizer.mask_token lowerCAmelCase__ = [] for index, predicted_token_bpe in enumerate(topk_predicted_token_bpe.split(''' ''' ) ): lowerCAmelCase__ = predicted_token_bpe.replace('''\u2581''' , ''' ''' ) if " {0}".format(A ) in masked_input: topk_filled_outputs.append( ( masked_input.replace(''' {0}'''.format(A ) , A ), values[index].item(), predicted_token, ) ) else: topk_filled_outputs.append( ( masked_input.replace(A , A ), values[index].item(), predicted_token, ) ) return topk_filled_outputs __UpperCAmelCase = CamembertTokenizer.from_pretrained('''camembert-base''') __UpperCAmelCase = CamembertForMaskedLM.from_pretrained('''camembert-base''') model.eval() __UpperCAmelCase = '''Le camembert est <mask> :)''' print(fill_mask(masked_input, model, tokenizer, topk=3))
228
1
from math import factorial, radians def a ( lowerCamelCase_ , lowerCamelCase_ = 18 , lowerCamelCase_ = 10 ): '''simple docstring''' lowercase__ = angle_in_degrees - ((angle_in_degrees // 3_60.0) * 3_60.0) # Converting from degrees to radians lowercase__ = radians(lowerCamelCase_ ) lowercase__ = angle_in_radians lowercase__ = 3 lowercase__ = -1 for _ in range(lowerCamelCase_ ): result += (b * (angle_in_radians**a)) / factorial(lowerCamelCase_ ) lowercase__ = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(lowerCamelCase_ , lowerCamelCase_ ) if __name__ == "__main__": __import__('doctest').testmod()
207
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS A__ : Tuple = logging.get_logger(__name__) A__ : int = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class _UpperCAmelCase ( A__ ): """simple docstring""" def __init__( self : Optional[int], lowerCamelCase : int=None, lowerCamelCase : int=None, *lowerCamelCase : List[Any], **lowerCamelCase : Any ): '''simple docstring''' super().__init__(*lowerCamelCase, **lowerCamelCase ) if config is None: assert isinstance(self.model, lowerCamelCase ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" F""" {self.model.__class__}""" ) lowercase__ = self.model.config else: lowercase__ = config lowercase__ = data_args lowercase__ = self.config.tgt_vocab_size if isinstance(self.config, lowerCamelCase ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( F"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" ''' padding..''' ) if self.args.label_smoothing == 0: lowercase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase__ = label_smoothed_nll_loss def lowercase__ ( self : List[Any], lowerCamelCase : int ): '''simple docstring''' if self.optimizer is None: lowercase__ = ['''bias''', '''LayerNorm.weight'''] lowercase__ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase__ = Adafactor lowercase__ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase__ = AdamW lowercase__ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase__ = self.args.learning_rate if self.sharded_ddp: lowercase__ = OSS( params=lowerCamelCase, optim=lowerCamelCase, **lowerCamelCase, ) else: lowercase__ = optimizer_cls(lowerCamelCase, **lowerCamelCase ) if self.lr_scheduler is None: lowercase__ = self._get_lr_scheduler(lowerCamelCase ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def lowercase__ ( self : List[str], lowerCamelCase : Optional[int] ): '''simple docstring''' lowercase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase__ = schedule_func(self.optimizer, num_warmup_steps=self.args.warmup_steps ) else: lowercase__ = schedule_func( self.optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=lowerCamelCase ) return scheduler def lowercase__ ( self : List[Any] ): '''simple docstring''' if isinstance(self.train_dataset, torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size, distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED), ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase__ ( self : Any, lowerCamelCase : List[Any], lowerCamelCase : str, lowerCamelCase : Union[str, Any] ): '''simple docstring''' if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = self.loss_fn(logits.view(-1, logits.shape[-1] ), labels.view(-1 ) ) else: # compute usual loss via models lowercase__ , lowercase__ = model(**lowerCamelCase, labels=lowerCamelCase, use_cache=lowerCamelCase )[:2] else: # compute label smoothed loss lowercase__ = model(**lowerCamelCase, use_cache=lowerCamelCase )[0] lowercase__ = torch.nn.functional.log_softmax(lowerCamelCase, dim=-1 ) lowercase__ , lowercase__ = self.loss_fn(lowerCamelCase, lowerCamelCase, self.args.label_smoothing, ignore_index=self.config.pad_token_id ) return loss, logits def lowercase__ ( self : List[str], lowerCamelCase : Optional[Any], lowerCamelCase : Tuple ): '''simple docstring''' lowercase__ = inputs.pop('''labels''' ) lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) return loss def lowercase__ ( self : str, lowerCamelCase : nn.Module, lowerCamelCase : Dict[str, Union[torch.Tensor, Any]], lowerCamelCase : bool, lowerCamelCase : Optional[List[str]] = None, ): '''simple docstring''' lowercase__ = self._prepare_inputs(lowerCamelCase ) lowercase__ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase__ = self.model.generate( inputs['''input_ids'''], attention_mask=inputs['''attention_mask'''], **lowerCamelCase, ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) lowercase__ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase__ , lowercase__ = self._compute_loss(lowerCamelCase, lowerCamelCase, lowerCamelCase ) lowercase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase__ = self._pad_tensors_to_max_len(lowerCamelCase, gen_kwargs['''max_length'''] ) return (loss, logits, labels) def lowercase__ ( self : List[Any], lowerCamelCase : str, lowerCamelCase : Any ): '''simple docstring''' # If PAD token is not defined at least EOS token has to be defined lowercase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' F""" padded to `max_length`={max_length}""" ) lowercase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length), dtype=tensor.dtype, device=tensor.device ) lowercase__ = tensor return padded_tensor
207
1
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig, is_flax_available from transformers.testing_utils import require_flax, slow from transformers.utils import cached_property, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.models.regnet.modeling_flax_regnet import FlaxRegNetForImageClassification, FlaxRegNetModel if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __a ( unittest.TestCase ): def __init__( self , a__ , a__=3 , a__=32 , a__=3 , a__=10 , a__=[10, 20, 30, 40] , a__=[1, 1, 2, 1] , a__=True , a__=True , a__="relu" , a__=3 , a__=None , ): _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = num_channels _lowerCamelCase = embeddings_size _lowerCamelCase = hidden_sizes _lowerCamelCase = depths _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_act _lowerCamelCase = num_labels _lowerCamelCase = scope _lowerCamelCase = len(a__ ) def snake_case_ ( self ): _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = self.get_config() return config, pixel_values def snake_case_ ( self ): return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = FlaxRegNetModel(config=a__ ) _lowerCamelCase = model(a__ ) # Output shape (b, c, h, w) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case_ ( self , a__ , a__ ): _lowerCamelCase = self.num_labels _lowerCamelCase = FlaxRegNetForImageClassification(config=a__ ) _lowerCamelCase = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case_ ( self ): _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __a ( lowerCAmelCase__ , unittest.TestCase ): SCREAMING_SNAKE_CASE__ : int = (FlaxRegNetModel, FlaxRegNetForImageClassification) if is_flax_available() else () SCREAMING_SNAKE_CASE__ : Union[str, Any] = False SCREAMING_SNAKE_CASE__ : Tuple = False SCREAMING_SNAKE_CASE__ : List[str] = False def snake_case_ ( self ): _lowerCamelCase = FlaxRegNetModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=a__ , has_text_modality=a__ ) def snake_case_ ( self ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case_ ( self ): return def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def snake_case_ ( self ): _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*a__ ) @unittest.skip(reason='RegNet does not use inputs_embeds' ) def snake_case_ ( self ): pass @unittest.skip(reason='RegNet does not support input and output embeddings' ) def snake_case_ ( self ): pass def snake_case_ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(a__ ) _lowerCamelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , a__ ) def snake_case_ ( self ): def check_hidden_states_output(a__ , a__ , a__ ): _lowerCamelCase = model_class(a__ ) _lowerCamelCase = model(**self._prepare_for_class(a__ , a__ ) ) _lowerCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _lowerCamelCase = self.model_tester.num_stages self.assertEqual(len(a__ ) , expected_num_stages + 1 ) _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCamelCase = True check_hidden_states_output(a__ , a__ , a__ ) def snake_case_ ( self ): _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _lowerCamelCase = self._prepare_for_class(a__ , a__ ) _lowerCamelCase = model_class(a__ ) @jax.jit def model_jitted(a__ , **a__ ): return model(pixel_values=a__ , **a__ ) with self.subTest('JIT Enabled' ): _lowerCamelCase = model_jitted(**a__ ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _lowerCamelCase = model_jitted(**a__ ).to_tuple() self.assertEqual(len(a__ ) , len(a__ ) ) for jitted_output, output in zip(a__ , a__ ): self.assertEqual(jitted_output.shape , output.shape ) def SCREAMING_SNAKE_CASE_ ( )-> List[str]: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_flax class __a ( unittest.TestCase ): @cached_property def snake_case_ ( self ): return AutoImageProcessor.from_pretrained('facebook/regnet-y-040' ) if is_vision_available() else None @slow def snake_case_ ( self ): _lowerCamelCase = FlaxRegNetForImageClassification.from_pretrained('facebook/regnet-y-040' ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=a__ , return_tensors='np' ) _lowerCamelCase = model(**a__ ) # verify the logits _lowerCamelCase = (1, 10_00) self.assertEqual(outputs.logits.shape , a__ ) _lowerCamelCase = jnp.array([-0.4180, -1.5051, -3.4836] ) self.assertTrue(jnp.allclose(outputs.logits[0, :3] , a__ , atol=1e-4 ) )
80
"""simple docstring""" from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : "DiagonalGaussianDistribution" class __a ( lowerCAmelCase__ , lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = True @register_to_config def __init__( self , a__ = 3 , a__ = 3 , a__ = ("DownEncoderBlock2D",) , a__ = ("UpDecoderBlock2D",) , a__ = (64,) , a__ = 1 , a__ = "silu" , a__ = 4 , a__ = 32 , a__ = 32 , a__ = 0.18215 , ): super().__init__() # pass init params to Encoder _lowerCamelCase = Encoder( in_channels=a__ , out_channels=a__ , down_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , act_fn=a__ , norm_num_groups=a__ , double_z=a__ , ) # pass init params to Decoder _lowerCamelCase = Decoder( in_channels=a__ , out_channels=a__ , up_block_types=a__ , block_out_channels=a__ , layers_per_block=a__ , norm_num_groups=a__ , act_fn=a__ , ) _lowerCamelCase = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _lowerCamelCase = nn.Convad(a__ , a__ , 1 ) _lowerCamelCase = False _lowerCamelCase = False # only relevant if vae tiling is enabled _lowerCamelCase = self.config.sample_size _lowerCamelCase = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _lowerCamelCase = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _lowerCamelCase = 0.25 def snake_case_ ( self , a__ , a__=False ): if isinstance(a__ , (Encoder, Decoder) ): _lowerCamelCase = value def snake_case_ ( self , a__ = True ): _lowerCamelCase = use_tiling def snake_case_ ( self ): self.enable_tiling(a__ ) def snake_case_ ( self ): _lowerCamelCase = True def snake_case_ ( self ): _lowerCamelCase = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case_ ( self ): _lowerCamelCase = {} def fn_recursive_add_processors(a__ , a__ , a__ ): if hasattr(a__ , 'set_processor' ): _lowerCamelCase = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'{name}.{sub_name}' , a__ , a__ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(a__ , a__ , a__ ) return processors def snake_case_ ( self , a__ ): _lowerCamelCase = len(self.attn_processors.keys() ) if isinstance(a__ , a__ ) and len(a__ ) != count: raise ValueError( F'A dict of processors was passed, but the number of processors {len(a__ )} does not match the' F' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(a__ , a__ , a__ ): if hasattr(a__ , 'set_processor' ): if not isinstance(a__ , a__ ): module.set_processor(a__ ) else: module.set_processor(processor.pop(F'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'{name}.{sub_name}' , a__ , a__ ) for name, module in self.named_children(): fn_recursive_attn_processor(a__ , a__ , a__ ) def snake_case_ ( self ): self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def snake_case_ ( self , a__ , a__ = True ): if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(a__ , return_dict=a__ ) if self.use_slicing and x.shape[0] > 1: _lowerCamelCase = [self.encoder(a__ ) for x_slice in x.split(1 )] _lowerCamelCase = torch.cat(a__ ) else: _lowerCamelCase = self.encoder(a__ ) _lowerCamelCase = self.quant_conv(a__ ) _lowerCamelCase = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case_ ( self , a__ , a__ = True ): if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(a__ , return_dict=a__ ) _lowerCamelCase = self.post_quant_conv(a__ ) _lowerCamelCase = self.decoder(a__ ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) @apply_forward_hook def snake_case_ ( self , a__ , a__ = True ): if self.use_slicing and z.shape[0] > 1: _lowerCamelCase = [self._decode(a__ ).sample for z_slice in z.split(1 )] _lowerCamelCase = torch.cat(a__ ) else: _lowerCamelCase = self._decode(a__ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=a__ ) def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = min(a.shape[2] , b.shape[2] , a__ ) for y in range(a__ ): _lowerCamelCase = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def snake_case_ ( self , a__ , a__ , a__ ): _lowerCamelCase = min(a.shape[3] , b.shape[3] , a__ ) for x in range(a__ ): _lowerCamelCase = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def snake_case_ ( self , a__ , a__ = True ): _lowerCamelCase = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _lowerCamelCase = int(self.tile_latent_min_size * self.tile_overlap_factor ) _lowerCamelCase = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowerCamelCase = [] for i in range(0 , x.shape[2] , a__ ): _lowerCamelCase = [] for j in range(0 , x.shape[3] , a__ ): _lowerCamelCase = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowerCamelCase = self.encoder(a__ ) _lowerCamelCase = self.quant_conv(a__ ) row.append(a__ ) rows.append(a__ ) _lowerCamelCase = [] for i, row in enumerate(a__ ): _lowerCamelCase = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCamelCase = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: _lowerCamelCase = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) _lowerCamelCase = torch.cat(a__ , dim=2 ) _lowerCamelCase = DiagonalGaussianDistribution(a__ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=a__ ) def snake_case_ ( self , a__ , a__ = True ): _lowerCamelCase = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _lowerCamelCase = int(self.tile_sample_min_size * self.tile_overlap_factor ) _lowerCamelCase = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowerCamelCase = [] for i in range(0 , z.shape[2] , a__ ): _lowerCamelCase = [] for j in range(0 , z.shape[3] , a__ ): _lowerCamelCase = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowerCamelCase = self.post_quant_conv(a__ ) _lowerCamelCase = self.decoder(a__ ) row.append(a__ ) rows.append(a__ ) _lowerCamelCase = [] for i, row in enumerate(a__ ): _lowerCamelCase = [] for j, tile in enumerate(a__ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCamelCase = self.blend_v(rows[i - 1][j] , a__ , a__ ) if j > 0: _lowerCamelCase = self.blend_h(row[j - 1] , a__ , a__ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(a__ , dim=3 ) ) _lowerCamelCase = torch.cat(a__ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=a__ ) def snake_case_ ( self , a__ , a__ = False , a__ = True , a__ = None , ): _lowerCamelCase = sample _lowerCamelCase = self.encode(a__ ).latent_dist if sample_posterior: _lowerCamelCase = posterior.sample(generator=a__ ) else: _lowerCamelCase = posterior.mode() _lowerCamelCase = self.decode(a__ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=a__ )
80
1
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCAmelCase_ ( __lowercase ): lowerCamelCase : str = (KDPMaDiscreteScheduler,) lowerCamelCase : Optional[int] = 10 def __UpperCAmelCase ( self : List[Any] , **UpperCAmelCase__ : Optional[int] ) -> Any: lowerCAmelCase = { 'num_train_timesteps': 1_1_0_0, 'beta_start': 0.0_001, 'beta_end': 0.02, 'beta_schedule': 'linear', } config.update(**UpperCAmelCase__ ) return config def __UpperCAmelCase ( self : List[str] ) -> Tuple: for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Dict ) -> Optional[Any]: for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=UpperCAmelCase__ , beta_end=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> int: for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=UpperCAmelCase__ ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=UpperCAmelCase__ ) def __UpperCAmelCase ( self : int ) -> Dict: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='v_prediction' ) lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = output.prev_sample lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.69_34E-07 ) < 1E-2 assert abs(result_mean.item() - 6.11_12E-10 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_93_42_86_50_17_09_72E-07 ) < 1E-2 assert abs(result_mean.item() - 0.0_002 ) < 1E-3 def __UpperCAmelCase ( self : Tuple ) -> Dict: if torch_device == "mps": return lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter * scheduler.init_noise_sigma lowerCAmelCase = sample.to(UpperCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = output.prev_sample lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: if torch_device == "mps": return lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**UpperCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=UpperCAmelCase__ ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter.to(UpperCAmelCase__ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: lowerCAmelCase = scheduler.scale_model_input(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = model(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) lowerCAmelCase = output.prev_sample lowerCAmelCase = torch.sum(torch.abs(UpperCAmelCase__ ) ) lowerCAmelCase = torch.mean(torch.abs(UpperCAmelCase__ ) ) if str(UpperCAmelCase__ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 20.4_125 ) < 1E-2 assert abs(result_mean.item() - 0.0_266 ) < 1E-3
4
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def __lowerCamelCase ( __a :Dict ) -> Any: """simple docstring""" A__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(__a , __a ) def __lowerCamelCase ( __a :str ) -> Union[str, Any]: """simple docstring""" A__ , A__ = emb.weight.shape A__ = nn.Linear(__a , __a , bias=__a ) A__ = emb.weight.data return lin_layer def __lowerCamelCase ( __a :str ) -> List[str]: """simple docstring""" A__ = torch.load(__a , map_location="""cpu""" ) A__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) A__ = checkpoint["""model"""] remove_ignore_keys_(__a ) A__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] A__ = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} A__ = XGLMConfig( vocab_size=__a , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) A__ = XGLMForCausalLM(__a ) A__ = model.load_state_dict(__a , strict=__a ) print(__a ) A__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": A : int = argparse.ArgumentParser() # Required parameters parser.add_argument('''fairseq_path''', type=str, help='''path to a model.pt on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') A : str = parser.parse_args() A : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
274
0
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class A__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self , lowercase , lowercase) -> Tuple: '''simple docstring''' return F'gaussian_noise_s={seed}_shape={"_".join([str(lowerCamelCase_) for s in shape])}.npy' def __lowercase ( self) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self , lowercase=0 , lowercase=(4, 4, 64, 64) , lowercase=False) -> List[str]: '''simple docstring''' a__ : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa a__ : List[str] = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase_ , lowerCamelCase_)) , dtype=lowerCamelCase_) return image def __lowercase ( self , lowercase=False , lowercase="CompVis/stable-diffusion-v1-4") -> Union[str, Any]: '''simple docstring''' a__ : int = jnp.bfloataa if fpaa else jnp.floataa a__ : Optional[Any] = """bf16""" if fpaa else None a__ : Any = FlaxUNetaDConditionModel.from_pretrained( lowerCamelCase_ , subfolder='unet' , dtype=lowerCamelCase_ , revision=lowerCamelCase_) return model, params def __lowercase ( self , lowercase=0 , lowercase=(4, 77, 768) , lowercase=False) -> Union[str, Any]: '''simple docstring''' a__ : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa a__ : Any = jnp.array(load_hf_numpy(self.get_file_format(lowerCamelCase_ , lowerCamelCase_)) , dtype=lowerCamelCase_) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.23_23, -0.13_04, 0.08_13, -0.30_93, -0.09_19, -0.15_71, -0.11_25, -0.58_06]], [17, 0.55, [-0.08_31, -0.24_43, 0.09_01, -0.09_19, 0.33_96, 0.01_03, -0.37_43, 0.07_01]], [8, 0.89, [-0.48_63, 0.08_59, 0.08_75, -0.16_58, 0.91_99, -0.01_14, 0.48_39, 0.46_39]], [3, 1000, [-0.56_49, 0.24_02, -0.55_18, 0.12_48, 1.13_28, -0.24_43, -0.03_25, -1.00_78]], # fmt: on ]) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : List[str] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' , fpaa=lowerCamelCase_) a__ : Tuple = self.get_latents(lowerCamelCase_ , fpaa=lowerCamelCase_) a__ : Union[str, Any] = self.get_encoder_hidden_states(lowerCamelCase_ , fpaa=lowerCamelCase_) a__ : int = model.apply( {'params': params} , lowerCamelCase_ , jnp.array(lowerCamelCase_ , dtype=jnp.intaa) , encoder_hidden_states=lowerCamelCase_ , ).sample assert sample.shape == latents.shape a__ : Any = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) a__ : Dict = jnp.array(lowerCamelCase_ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2) @parameterized.expand( [ # fmt: off [83, 4, [0.15_14, 0.08_07, 0.16_24, 0.10_16, -0.18_96, 0.02_63, 0.06_77, 0.23_10]], [17, 0.55, [0.11_64, -0.02_16, 0.01_70, 0.15_89, -0.31_20, 0.10_05, -0.05_81, -0.14_58]], [8, 0.89, [-0.17_58, -0.01_69, 0.10_04, -0.14_11, 0.13_12, 0.11_03, -0.19_96, 0.21_39]], [3, 1000, [0.12_14, 0.03_52, -0.07_31, -0.15_62, -0.09_94, -0.09_06, -0.23_40, -0.05_39]], # fmt: on ]) def __lowercase ( self , lowercase , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__ : int = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' , fpaa=lowerCamelCase_) a__ : List[Any] = self.get_latents(lowerCamelCase_ , shape=(4, 4, 96, 96) , fpaa=lowerCamelCase_) a__ : Dict = self.get_encoder_hidden_states(lowerCamelCase_ , shape=(4, 77, 1024) , fpaa=lowerCamelCase_) a__ : List[Any] = model.apply( {'params': params} , lowerCamelCase_ , jnp.array(lowerCamelCase_ , dtype=jnp.intaa) , encoder_hidden_states=lowerCamelCase_ , ).sample assert sample.shape == latents.shape a__ : List[str] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) a__ : Dict = jnp.array(lowerCamelCase_ , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1e-2)
365
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer lowercase : List[Any] = logging.get_logger(__name__) lowercase : Any = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp lowercase : Optional[Any] = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } lowercase : List[str] = { """RUCAIBox/mvp""": 1_0_2_4, } class A__ ( __UpperCAmelCase ): """simple docstring""" __A : Dict = VOCAB_FILES_NAMES __A : str = PRETRAINED_VOCAB_FILES_MAP __A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __A : Any = ['''input_ids''', '''attention_mask'''] __A : Tuple = MvpTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=None , lowercase="replace" , lowercase="<s>" , lowercase="</s>" , lowercase="</s>" , lowercase="<s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase="<mask>" , lowercase=False , lowercase=True , **lowercase , ) -> str: '''simple docstring''' super().__init__( lowercase , lowercase , tokenizer_file=lowercase , errors=lowercase , bos_token=lowercase , eos_token=lowercase , sep_token=lowercase , cls_token=lowercase , unk_token=lowercase , pad_token=lowercase , mask_token=lowercase , add_prefix_space=lowercase , trim_offsets=lowercase , **lowercase , ) a__ : Optional[int] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : Dict = getattr(lowercase , pre_tok_state.pop('type')) a__ : str = add_prefix_space a__ : Union[str, Any] = pre_tok_class(**lowercase) a__ : List[Any] = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` a__ : Optional[int] = 'post_processor' a__ : Optional[int] = getattr(self.backend_tokenizer , lowercase , lowercase) if tokenizer_component_instance: a__ : str = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: a__ : Any = tuple(state['sep']) if "cls" in state: a__ : str = tuple(state['cls']) a__ : List[str] = False if state.get('add_prefix_space' , lowercase) != add_prefix_space: a__ : List[str] = add_prefix_space a__ : List[str] = True if state.get('trim_offsets' , lowercase) != trim_offsets: a__ : Optional[int] = trim_offsets a__ : List[str] = True if changes_to_apply: a__ : Optional[int] = getattr(lowercase , state.pop('type')) a__ : Tuple = component_class(**lowercase) setattr(self.backend_tokenizer , lowercase , lowercase) @property def __lowercase ( self) -> str: '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.') return None return str(self._mask_token) @mask_token.setter def __lowercase ( self , lowercase) -> Any: '''simple docstring''' a__ : Tuple = AddedToken(lowercase , lstrip=lowercase , rstrip=lowercase) if isinstance(lowercase , lowercase) else value a__ : str = value def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : Optional[Any] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._batch_encode_plus(*lowercase , **lowercase) def __lowercase ( self , *lowercase , **lowercase) -> BatchEncoding: '''simple docstring''' a__ : List[str] = kwargs.get('is_split_into_words' , lowercase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' 'to use it with pretokenized inputs.') return super()._encode_plus(*lowercase , **lowercase) def __lowercase ( self , lowercase , lowercase = None) -> Tuple[str]: '''simple docstring''' a__ : List[str] = self._tokenizer.model.save(lowercase , name=lowercase) return tuple(lowercase) def __lowercase ( self , lowercase , lowercase=None) -> Union[str, Any]: '''simple docstring''' a__ : List[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __lowercase ( self , lowercase , lowercase = None) -> List[int]: '''simple docstring''' a__ : int = [self.sep_token_id] a__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
225
0
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :int = 1_0_0_0 ) -> int: '''simple docstring''' lowercase = 2**power lowercase = 0 while n: lowercase , lowercase = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
197
"""simple docstring""" import tempfile import numpy as np import torch from transformers import AutoTokenizer, TaEncoderModel from diffusers import DDPMScheduler, UNetaDConditionModel from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.pipelines.deepfloyd_if import IFWatermarker from diffusers.utils.testing_utils import torch_device from ..test_pipelines_common import to_np class _A : def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=1 , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=3 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def A__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowercase = TaEncoderModel.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowercase = AutoTokenizer.from_pretrained("""hf-internal-testing/tiny-random-t5""" ) torch.manual_seed(0 ) lowercase = UNetaDConditionModel( sample_size=32 , layers_per_block=[1, 2] , block_out_channels=[32, 64] , down_block_types=[ """ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D""", ] , mid_block_type="""UNetMidBlock2DSimpleCrossAttn""" , up_block_types=["""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""] , in_channels=6 , out_channels=6 , cross_attention_dim=32 , encoder_hid_dim=32 , attention_head_dim=8 , addition_embed_type="""text""" , addition_embed_type_num_heads=2 , cross_attention_norm="""group_norm""" , resnet_time_scale_shift="""scale_shift""" , act_fn="""gelu""" , class_embed_type="""timestep""" , mid_block_scale_factor=1.4_1_4 , time_embedding_act_fn="""gelu""" , time_embedding_dim=32 , ) unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , thresholding=__lowerCAmelCase , dynamic_thresholding_ratio=0.9_5 , sample_max_value=1.0 , prediction_type="""epsilon""" , variance_type="""learned_range""" , ) torch.manual_seed(0 ) lowercase = DDPMScheduler( num_train_timesteps=1000 , beta_schedule="""squaredcos_cap_v2""" , beta_start=0.0_0_0_1 , beta_end=0.0_2 , ) torch.manual_seed(0 ) lowercase = IFWatermarker() return { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "image_noising_scheduler": image_noising_scheduler, "watermarker": watermarker, "safety_checker": None, "feature_extractor": None, } def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = inputs["""prompt"""] lowercase = inputs["""generator"""] lowercase = inputs["""num_inference_steps"""] lowercase = inputs["""output_type"""] if "image" in inputs: lowercase = inputs["""image"""] else: lowercase = None if "mask_image" in inputs: lowercase = inputs["""mask_image"""] else: lowercase = None if "original_image" in inputs: lowercase = inputs["""original_image"""] else: lowercase = None lowercase , lowercase = pipe.encode_prompt(__lowerCAmelCase ) # inputs with prompt converted to embeddings lowercase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image # set all optional components to None for optional_component in pipe._optional_components: setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) lowercase = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) lowercase = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests for optional_component in pipe._optional_components: self.assertTrue( getattr(__lowerCAmelCase , __lowerCAmelCase ) is None , f'`{optional_component}` did not stay set to None after loading.' , ) lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = inputs["""generator"""] lowercase = inputs["""num_inference_steps"""] lowercase = inputs["""output_type"""] # inputs with prompt converted to embeddings lowercase = { """prompt_embeds""": prompt_embeds, """negative_prompt_embeds""": negative_prompt_embeds, """generator""": generator, """num_inference_steps""": num_inference_steps, """output_type""": output_type, } if image is not None: lowercase = image if mask_image is not None: lowercase = mask_image if original_image is not None: lowercase = original_image lowercase = pipe_loaded(**__lowerCAmelCase )[0] lowercase = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase , 1E-4 ) def A__ ( self ): """simple docstring""" lowercase = self.get_dummy_components() lowercase = self.pipeline_class(**__lowerCAmelCase ) pipe.to(__lowerCAmelCase ) pipe.set_progress_bar_config(disable=__lowerCAmelCase ) lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = pipe(**__lowerCAmelCase )[0] with tempfile.TemporaryDirectory() as tmpdir: pipe.save_pretrained(__lowerCAmelCase ) lowercase = self.pipeline_class.from_pretrained(__lowerCAmelCase ) pipe_loaded.to(__lowerCAmelCase ) pipe_loaded.set_progress_bar_config(disable=__lowerCAmelCase ) pipe_loaded.unet.set_attn_processor(AttnAddedKVProcessor() ) # For reproducibility tests lowercase = self.get_dummy_inputs(__lowerCAmelCase ) lowercase = pipe_loaded(**__lowerCAmelCase )[0] lowercase = np.abs(to_np(__lowerCAmelCase ) - to_np(__lowerCAmelCase ) ).max() self.assertLess(__lowerCAmelCase , 1E-4 )
197
1
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def UpperCAmelCase_ ( _lowercase : List[str] , _lowercase : List[Any] , _lowercase : Dict ) -> str: if isinstance(lowerCAmelCase_ , torch.Tensor ): return image elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = [image] if isinstance(image[0] , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) )[None, :] for i in image] SCREAMING_SNAKE_CASE_ = np.concatenate(lowerCAmelCase_ , axis=0 ) SCREAMING_SNAKE_CASE_ = np.array(lowerCAmelCase_ ).astype(np.floataa ) / 2_5_5.0 SCREAMING_SNAKE_CASE_ = image.transpose(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE_ = 2.0 * image - 1.0 SCREAMING_SNAKE_CASE_ = torch.from_numpy(lowerCAmelCase_ ) elif isinstance(image[0] , torch.Tensor ): SCREAMING_SNAKE_CASE_ = torch.cat(lowerCAmelCase_ , dim=0 ) return image def UpperCAmelCase_ ( _lowercase : str , _lowercase : List[str] , _lowercase : Tuple , _lowercase : Optional[int]=0.9_9_9_5 ) -> Optional[int]: if not isinstance(lowerCAmelCase_ , np.ndarray ): SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = va.device SCREAMING_SNAKE_CASE_ = va.cpu().numpy() SCREAMING_SNAKE_CASE_ = va.cpu().numpy() SCREAMING_SNAKE_CASE_ = np.sum(va * va / (np.linalg.norm(lowerCAmelCase_ ) * np.linalg.norm(lowerCAmelCase_ )) ) if np.abs(lowerCAmelCase_ ) > DOT_THRESHOLD: SCREAMING_SNAKE_CASE_ = (1 - t) * va + t * va else: SCREAMING_SNAKE_CASE_ = np.arccos(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = np.sin(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = theta_a * t SCREAMING_SNAKE_CASE_ = np.sin(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ = np.sin(theta_a - theta_t ) / sin_theta_a SCREAMING_SNAKE_CASE_ = sin_theta_t / sin_theta_a SCREAMING_SNAKE_CASE_ = sa * va + sa * va if inputs_are_torch: SCREAMING_SNAKE_CASE_ = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ ) return va def UpperCAmelCase_ ( _lowercase : Any , _lowercase : List[Any] ) -> Tuple: SCREAMING_SNAKE_CASE_ = F.normalize(lowerCAmelCase_ , dim=-1 ) SCREAMING_SNAKE_CASE_ = F.normalize(lowerCAmelCase_ , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def UpperCAmelCase_ ( _lowercase : int , _lowercase : Optional[Any] ) -> Union[str, Any]: for param in model.parameters(): SCREAMING_SNAKE_CASE_ = value class lowerCamelCase_ ( _UpperCamelCase ): '''simple docstring''' def __init__( self : Tuple , _lowerCAmelCase : AutoencoderKL , _lowerCAmelCase : CLIPTextModel , _lowerCAmelCase : CLIPModel , _lowerCAmelCase : CLIPTokenizer , _lowerCAmelCase : UNetaDConditionModel , _lowerCAmelCase : Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler, DPMSolverMultistepScheduler] , _lowerCAmelCase : CLIPFeatureExtractor , _lowerCAmelCase : List[str]=None , _lowerCAmelCase : str=None , _lowerCAmelCase : List[Any]=None , ): super().__init__() self.register_modules( vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , clip_model=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , coca_model=_UpperCAmelCase , coca_tokenizer=_UpperCAmelCase , coca_transform=_UpperCAmelCase , ) SCREAMING_SNAKE_CASE_ = ( feature_extractor.size if isinstance(feature_extractor.size , _UpperCAmelCase ) else feature_extractor.size['shortest_edge'] ) SCREAMING_SNAKE_CASE_ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , _UpperCAmelCase ) set_requires_grad(self.clip_model , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _lowerCAmelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): self.enable_attention_slicing(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): set_requires_grad(self.vae , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): set_requires_grad(self.vae , _UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): set_requires_grad(self.unet , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): # get the original timestep using init_timestep SCREAMING_SNAKE_CASE_ = min(int(num_inference_steps * strength ) , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = max(num_inference_steps - init_timestep , 0 ) SCREAMING_SNAKE_CASE_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def lowerCAmelCase_ ( self : Optional[int] , _lowerCAmelCase : Any , _lowerCAmelCase : Dict , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[int]=None ): if not isinstance(_UpperCAmelCase , torch.Tensor ): raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(_UpperCAmelCase )}" ) SCREAMING_SNAKE_CASE_ = image.to(device=_UpperCAmelCase , dtype=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(_UpperCAmelCase ) ] SCREAMING_SNAKE_CASE_ = torch.cat(_UpperCAmelCase , dim=0 ) else: SCREAMING_SNAKE_CASE_ = self.vae.encode(_UpperCAmelCase ).latent_dist.sample(_UpperCAmelCase ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE_ = 0.1_8215 * init_latents SCREAMING_SNAKE_CASE_ = init_latents.repeat_interleave(_UpperCAmelCase , dim=0 ) SCREAMING_SNAKE_CASE_ = randn_tensor(init_latents.shape , generator=_UpperCAmelCase , device=_UpperCAmelCase , dtype=_UpperCAmelCase ) # get latents SCREAMING_SNAKE_CASE_ = self.scheduler.add_noise(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = init_latents return latents def lowerCAmelCase_ ( self : int , _lowerCAmelCase : Optional[Any] ): SCREAMING_SNAKE_CASE_ = self.coca_transform(_UpperCAmelCase ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): SCREAMING_SNAKE_CASE_ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) SCREAMING_SNAKE_CASE_ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split('<end_of_text>' )[0].replace('<start_of_text>' , '' ).rstrip(' .,' ) def lowerCAmelCase_ ( self : List[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): SCREAMING_SNAKE_CASE_ = self.feature_extractor.preprocess(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = torch.from_numpy(clip_image_input['pixel_values'][0] ).unsqueeze(0 ).to(self.device ).half() SCREAMING_SNAKE_CASE_ = self.clip_model.get_image_features(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = image_embeddings_clip.repeat_interleave(_UpperCAmelCase , dim=0 ) return image_embeddings_clip @torch.enable_grad() def lowerCAmelCase_ ( self : Optional[Any] , _lowerCAmelCase : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Any , ): SCREAMING_SNAKE_CASE_ = latents.detach().requires_grad_() SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE_ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): SCREAMING_SNAKE_CASE_ = self.scheduler.alphas_cumprod[timestep] SCREAMING_SNAKE_CASE_ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf SCREAMING_SNAKE_CASE_ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 SCREAMING_SNAKE_CASE_ = torch.sqrt(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = self.scheduler.sigmas[index] SCREAMING_SNAKE_CASE_ = latents - sigma * noise_pred else: raise ValueError(F"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE_ = 1 / 0.1_8215 * sample SCREAMING_SNAKE_CASE_ = self.vae.decode(_UpperCAmelCase ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = transforms.Resize(self.feature_extractor_size )(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = self.normalize(_UpperCAmelCase ).to(latents.dtype ) SCREAMING_SNAKE_CASE_ = self.clip_model.get_image_features(_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=_UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = spherical_dist_loss(_UpperCAmelCase , _UpperCAmelCase ).mean() * clip_guidance_scale SCREAMING_SNAKE_CASE_ = -torch.autograd.grad(_UpperCAmelCase , _UpperCAmelCase )[0] if isinstance(self.scheduler , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_ = latents.detach() + grads * (sigma**2) SCREAMING_SNAKE_CASE_ = noise_pred_original else: SCREAMING_SNAKE_CASE_ = noise_pred_original - torch.sqrt(_UpperCAmelCase ) * grads return noise_pred, latents @torch.no_grad() def __call__( self : Union[str, Any] , _lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , _lowerCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[str] = None , _lowerCAmelCase : Optional[int] = 512 , _lowerCAmelCase : Optional[int] = 512 , _lowerCAmelCase : float = 0.6 , _lowerCAmelCase : Optional[int] = 50 , _lowerCAmelCase : Optional[float] = 7.5 , _lowerCAmelCase : Optional[int] = 1 , _lowerCAmelCase : float = 0.0 , _lowerCAmelCase : Optional[float] = 100 , _lowerCAmelCase : Optional[torch.Generator] = None , _lowerCAmelCase : Optional[str] = "pil" , _lowerCAmelCase : bool = True , _lowerCAmelCase : float = 0.8 , _lowerCAmelCase : float = 0.1 , _lowerCAmelCase : float = 0.1 , ): if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size: raise ValueError(F"You have passed {batch_size} batch_size, but only {len(_UpperCAmelCase )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(_UpperCAmelCase , torch.Generator ) and batch_size > 1: SCREAMING_SNAKE_CASE_ = [generator] + [None] * (batch_size - 1) SCREAMING_SNAKE_CASE_ = [ ('model', self.coca_model is None), ('tokenizer', self.coca_tokenizer is None), ('transform', self.coca_transform is None), ] SCREAMING_SNAKE_CASE_ = [x[0] for x in coca_is_none if x[1]] SCREAMING_SNAKE_CASE_ = ', '.join(_UpperCAmelCase ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(_UpperCAmelCase ): raise ValueError( F"Content prompt is None and CoCa [{coca_is_none_str}] is None." F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) SCREAMING_SNAKE_CASE_ = self.get_image_description(_UpperCAmelCase ) if style_prompt is None: if len(_UpperCAmelCase ): raise ValueError( F"Style prompt is None and CoCa [{coca_is_none_str}] is None." F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) SCREAMING_SNAKE_CASE_ = self.get_image_description(_UpperCAmelCase ) # get prompt text embeddings for content and style SCREAMING_SNAKE_CASE_ = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE_ = self.tokenizer( _UpperCAmelCase , padding='max_length' , max_length=self.tokenizer.model_max_length , truncation=_UpperCAmelCase , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] SCREAMING_SNAKE_CASE_ = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # duplicate text embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = text_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # set timesteps SCREAMING_SNAKE_CASE_ = 'offset' in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) SCREAMING_SNAKE_CASE_ = {} if accepts_offset: SCREAMING_SNAKE_CASE_ = 1 self.scheduler.set_timesteps(_UpperCAmelCase , **_UpperCAmelCase ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) SCREAMING_SNAKE_CASE_ = self.get_timesteps(_UpperCAmelCase , _UpperCAmelCase , self.device ) SCREAMING_SNAKE_CASE_ = timesteps[:1].repeat(_UpperCAmelCase ) # Preprocess image SCREAMING_SNAKE_CASE_ = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = preprocess(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = self.prepare_latents( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , text_embeddings.dtype , self.device , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = slerp(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE_ = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = self.get_clip_image_embeddings(_UpperCAmelCase , _UpperCAmelCase ) SCREAMING_SNAKE_CASE_ = slerp( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. SCREAMING_SNAKE_CASE_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ = content_text_input.input_ids.shape[-1] SCREAMING_SNAKE_CASE_ = self.tokenizer([''] , padding='max_length' , max_length=_UpperCAmelCase , return_tensors='pt' ) SCREAMING_SNAKE_CASE_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt SCREAMING_SNAKE_CASE_ = uncond_embeddings.repeat_interleave(_UpperCAmelCase , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. SCREAMING_SNAKE_CASE_ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) SCREAMING_SNAKE_CASE_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps SCREAMING_SNAKE_CASE_ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device='cpu' , dtype=_UpperCAmelCase ).to( self.device ) else: SCREAMING_SNAKE_CASE_ = torch.randn(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) SCREAMING_SNAKE_CASE_ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler SCREAMING_SNAKE_CASE_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] SCREAMING_SNAKE_CASE_ = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) SCREAMING_SNAKE_CASE_ = {} if accepts_eta: SCREAMING_SNAKE_CASE_ = eta # check if the scheduler accepts generator SCREAMING_SNAKE_CASE_ = 'generator' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: SCREAMING_SNAKE_CASE_ = generator with self.progress_bar(total=_UpperCAmelCase ): for i, t in enumerate(_UpperCAmelCase ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual SCREAMING_SNAKE_CASE_ = self.unet(_UpperCAmelCase , _UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ).sample # perform classifier free guidance if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: SCREAMING_SNAKE_CASE_ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) SCREAMING_SNAKE_CASE_ = self.cond_fn( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor SCREAMING_SNAKE_CASE_ = 1 / 0.1_8215 * latents SCREAMING_SNAKE_CASE_ = self.vae.decode(_UpperCAmelCase ).sample SCREAMING_SNAKE_CASE_ = (image / 2 + 0.5).clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=_UpperCAmelCase , nsfw_content_detected=_UpperCAmelCase )
369
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Any = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = "speech_to_text" lowercase_ = ["past_key_values"] lowercase_ = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[int]=10_000 , _lowerCAmelCase : str=12 , _lowerCAmelCase : Tuple=2_048 , _lowerCAmelCase : str=4 , _lowerCAmelCase : Tuple=6 , _lowerCAmelCase : Optional[int]=2_048 , _lowerCAmelCase : Dict=4 , _lowerCAmelCase : List[Any]=0.0 , _lowerCAmelCase : int=0.0 , _lowerCAmelCase : Optional[int]=True , _lowerCAmelCase : Union[str, Any]=True , _lowerCAmelCase : Any="relu" , _lowerCAmelCase : Any=256 , _lowerCAmelCase : List[str]=0.1 , _lowerCAmelCase : Optional[Any]=0.0 , _lowerCAmelCase : Optional[int]=0.0 , _lowerCAmelCase : Tuple=0.02 , _lowerCAmelCase : List[str]=2 , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : List[str]=1 , _lowerCAmelCase : Dict=0 , _lowerCAmelCase : Tuple=2 , _lowerCAmelCase : Optional[int]=6_000 , _lowerCAmelCase : Tuple=1_024 , _lowerCAmelCase : Any=2 , _lowerCAmelCase : str=(5, 5) , _lowerCAmelCase : Optional[int]=1_024 , _lowerCAmelCase : List[Any]=80 , _lowerCAmelCase : List[Any]=1 , **_lowerCAmelCase : List[Any] , ): SCREAMING_SNAKE_CASE_ = vocab_size SCREAMING_SNAKE_CASE_ = d_model SCREAMING_SNAKE_CASE_ = encoder_ffn_dim SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = encoder_attention_heads SCREAMING_SNAKE_CASE_ = decoder_ffn_dim SCREAMING_SNAKE_CASE_ = decoder_layers SCREAMING_SNAKE_CASE_ = decoder_attention_heads SCREAMING_SNAKE_CASE_ = dropout SCREAMING_SNAKE_CASE_ = attention_dropout SCREAMING_SNAKE_CASE_ = activation_dropout SCREAMING_SNAKE_CASE_ = activation_function SCREAMING_SNAKE_CASE_ = init_std SCREAMING_SNAKE_CASE_ = encoder_layerdrop SCREAMING_SNAKE_CASE_ = decoder_layerdrop SCREAMING_SNAKE_CASE_ = use_cache SCREAMING_SNAKE_CASE_ = encoder_layers SCREAMING_SNAKE_CASE_ = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ = max_source_positions SCREAMING_SNAKE_CASE_ = max_target_positions SCREAMING_SNAKE_CASE_ = num_conv_layers SCREAMING_SNAKE_CASE_ = list(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = conv_channels SCREAMING_SNAKE_CASE_ = input_feat_per_channel SCREAMING_SNAKE_CASE_ = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F"but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, " F"`config.num_conv_layers = {self.num_conv_layers}`." ) super().__init__( pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , decoder_start_token_id=_lowerCAmelCase , **_lowerCAmelCase , )
210
0
import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class __lowerCAmelCase ( unittest.TestCase ): UpperCamelCase__ = MODEL_FOR_CAUSAL_LM_MAPPING UpperCamelCase__ = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""pt""" ) # Using `do_sample=False` to force deterministic output a = text_generator("""This is a test""" , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ] , ) a = text_generator(["""This is a test""", """This is a second test"""] ) self.assertEqual( __magic_name__ , [ [ { """generated_text""": ( """This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope.""" """ oscope. FiliFili@@""" ) } ], [ { """generated_text""": ( """This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy""" """ oscope. oscope. FiliFili@@""" ) } ], ] , ) a = text_generator("""This is a test""" , do_sample=__magic_name__ , num_return_sequences=2 , return_tensors=__magic_name__ ) self.assertEqual( __magic_name__ , [ {"""generated_token_ids""": ANY(__magic_name__ )}, {"""generated_token_ids""": ANY(__magic_name__ )}, ] , ) a = text_generator.model.config.eos_token_id a = """<pad>""" a = text_generator( ["""This is a test""", """This is a second test"""] , do_sample=__magic_name__ , num_return_sequences=2 , batch_size=2 , return_tensors=__magic_name__ , ) self.assertEqual( __magic_name__ , [ [ {"""generated_token_ids""": ANY(__magic_name__ )}, {"""generated_token_ids""": ANY(__magic_name__ )}, ], [ {"""generated_token_ids""": ANY(__magic_name__ )}, {"""generated_token_ids""": ANY(__magic_name__ )}, ], ] , ) @require_tf def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = pipeline(task="""text-generation""" , model="""sshleifer/tiny-ctrl""" , framework="""tf""" ) # Using `do_sample=False` to force deterministic output a = text_generator("""This is a test""" , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ] , ) a = text_generator(["""This is a test""", """This is a second test"""] , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [ { """generated_text""": ( """This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵""" """ please,""" ) } ], [ { """generated_text""": ( """This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes""" """ Cannes 閲閲Cannes Cannes Cannes 攵 please,""" ) } ], ] , ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :str , __magic_name__ :int , __magic_name__ :Any ): '''simple docstring''' a = TextGenerationPipeline(model=__magic_name__ , tokenizer=__magic_name__ ) return text_generator, ["This is a test", "Another test"] def lowerCamelCase__ ( self :int ): '''simple docstring''' a = """Hello I believe in""" a = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) a = text_generator(__magic_name__ ) self.assertEqual( __magic_name__ , [{"""generated_text""": """Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"""}] , ) a = text_generator(__magic_name__ , stop_sequence=""" fe""" ) self.assertEqual(__magic_name__ , [{"""generated_text""": """Hello I believe in fe"""}] ) def lowerCamelCase__ ( self :Optional[Any] , __magic_name__ :str , __magic_name__ :int ): '''simple docstring''' a = text_generator.model a = text_generator.tokenizer a = text_generator("""This is a test""" ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) a = text_generator("""This is a test""" , return_full_text=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) a = pipeline(task="""text-generation""" , model=__magic_name__ , tokenizer=__magic_name__ , return_full_text=__magic_name__ ) a = text_generator("""This is a test""" ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) self.assertNotIn("""This is a test""" , outputs[0]["""generated_text"""] ) a = text_generator("""This is a test""" , return_full_text=__magic_name__ ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) self.assertTrue(outputs[0]["""generated_text"""].startswith("""This is a test""" ) ) a = text_generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: a = text_generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=__magic_name__ ) self.assertEqual( __magic_name__ , [ [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], [{"""generated_text""": ANY(__magic_name__ )}, {"""generated_text""": ANY(__magic_name__ )}], ] , ) with self.assertRaises(__magic_name__ ): a = text_generator("""test""" , return_full_text=__magic_name__ , return_text=__magic_name__ ) with self.assertRaises(__magic_name__ ): a = text_generator("""test""" , return_full_text=__magic_name__ , return_tensors=__magic_name__ ) with self.assertRaises(__magic_name__ ): a = text_generator("""test""" , return_text=__magic_name__ , return_tensors=__magic_name__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): a = text_generator("""""" ) self.assertEqual(__magic_name__ , [{"""generated_text""": ANY(__magic_name__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): a = text_generator("""""" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. a = ["""RwkvForCausalLM""", """XGLMForCausalLM""", """GPTNeoXForCausalLM"""] if ( tokenizer.model_max_length < 1_0000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("""This is a test""" * 500 , max_new_tokens=20 ) a = text_generator("""This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(__magic_name__ ): text_generator( """This is a test""" * 500 , handle_long_generation="""hole""" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self :Dict ): '''simple docstring''' import torch # Classic `model_kwargs` a = pipeline( model="""hf-internal-testing/tiny-random-bloom""" , model_kwargs={"""device_map""": """auto""", """torch_dtype""": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) a = pipe("""This is a test""" ) self.assertEqual( __magic_name__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) a = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) a = pipe("""This is a test""" ) self.assertEqual( __magic_name__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 a = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) a = pipe("""This is a test""" ) self.assertEqual( __magic_name__ , [ { """generated_text""": ( """This is a test test test test test test test test test test test test test test test test""" """ test""" ) } ] , ) @require_torch @require_torch_gpu def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' import torch a = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device=0 , torch_dtype=torch.floataa ) pipe("""This is a test""" ) @require_torch @require_accelerate @require_torch_gpu def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' import torch a = pipeline(model="""hf-internal-testing/tiny-random-bloom""" , device_map="""auto""" , torch_dtype=torch.floataa ) pipe("""This is a test""" , do_sample=__magic_name__ , top_p=0.5 ) def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = """Hello world""" a = pipeline("""text-generation""" , model="""hf-internal-testing/tiny-random-gpt2""" ) if text_generator.model.framework == "tf": a = logging.get_logger("""transformers.generation.tf_utils""" ) else: a = logging.get_logger("""transformers.generation.utils""" ) a = """Both `max_new_tokens`""" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(__magic_name__ ) as cl: a = text_generator(__magic_name__ , max_length=10 , max_new_tokens=1 ) self.assertIn(__magic_name__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(__magic_name__ ) as cl: a = text_generator(__magic_name__ , max_new_tokens=1 ) self.assertNotIn(__magic_name__ , cl.out ) with CaptureLogger(__magic_name__ ) as cl: a = text_generator(__magic_name__ , max_length=10 ) self.assertNotIn(__magic_name__ , cl.out )
228
from __future__ import annotations def __A ( __lowerCamelCase , __lowerCamelCase = None ) -> list[list[str]]: a = word_bank or [] # create a table a = len(__lowerCamelCase ) + 1 a = [] for _ in range(__lowerCamelCase ): table.append([] ) # seed value a = [[]] # because empty string has empty combination # iterate through the indices for i in range(__lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__lowerCamelCase )] == word: a = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__lowerCamelCase )]: combination.reverse() return table[len(__lowerCamelCase )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
228
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/config.json", # See all XGLM models at https://huggingface.co/models?filter=xglm } class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Union[str, Any] = """xglm""" __SCREAMING_SNAKE_CASE :Union[str, Any] = ["""past_key_values"""] __SCREAMING_SNAKE_CASE :str = { """num_attention_heads""": """attention_heads""", """hidden_size""": """d_model""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , a__ : Optional[int]=25_6008 , a__ : Dict=2048 , a__ : List[Any]=1024 , a__ : Optional[Any]=4096 , a__ : Optional[int]=24 , a__ : str=16 , a__ : int="gelu" , a__ : Any=0.1 , a__ : Optional[int]=0.1 , a__ : str=0.0 , a__ : Union[str, Any]=0.0 , a__ : List[Any]=0.02 , a__ : Tuple=True , a__ : Tuple=True , a__ : Dict=2 , a__ : List[str]=1 , a__ : str=0 , a__ : List[str]=2 , **a__ : List[str] , ): __magic_name__ = vocab_size __magic_name__ = max_position_embeddings __magic_name__ = d_model __magic_name__ = ffn_dim __magic_name__ = num_layers __magic_name__ = attention_heads __magic_name__ = activation_function __magic_name__ = dropout __magic_name__ = attention_dropout __magic_name__ = activation_dropout __magic_name__ = layerdrop __magic_name__ = init_std __magic_name__ = scale_embedding # scale factor will be sqrt(d_model) if True __magic_name__ = use_cache super().__init__( pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , decoder_start_token_id=a__ , **a__ , )
355
'''simple docstring''' import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels _lowerCAmelCase = object() # For specifying empty leaf dict `{}` _lowerCAmelCase = object() def UpperCamelCase ( a , a ) -> Union[str, Any]: '''simple docstring''' __magic_name__ = tuple((re.compile(x + '''$''' ) for x in qs) ) for i in range(len(a ) - len(a ) + 1 ): __magic_name__ = [x.match(a ) for x, y in zip(a , ks[i:] )] if matches and all(a ): return True return False def UpperCamelCase ( a ) -> Tuple: '''simple docstring''' def replace(a , a ): for rule, replacement in rules: if _match(a , a ): return replacement return val return replace def UpperCamelCase ( ) -> Union[str, Any]: '''simple docstring''' return [ # embeddings (("transformer", "wpe", "embedding"), P('''mp''' , a )), (("transformer", "wte", "embedding"), P('''mp''' , a )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(a , '''mp''' )), (("attention", "out_proj", "kernel"), P('''mp''' , a )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(a , '''mp''' )), (("mlp", "c_fc", "bias"), P('''mp''' )), (("mlp", "c_proj", "kernel"), P('''mp''' , a )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def UpperCamelCase ( a ) -> str: '''simple docstring''' __magic_name__ = _get_partition_rules() __magic_name__ = _replacement_rules(a ) __magic_name__ = {k: _unmatched for k in flatten_dict(a )} __magic_name__ = {k: replace(a , a ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(a ) )
98
0
'''simple docstring''' import os import sys a__ : Tuple = os.path.join(os.path.dirname(__file__), 'src') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) a__ : Optional[int] = [ 'torch', 'numpy', 'tokenizers', 'filelock', 'requests', 'tqdm', 'regex', 'sentencepiece', 'sacremoses', 'importlib_metadata', 'huggingface_hub', ] @add_start_docstrings(AutoConfig.__doc__ ) def _UpperCamelCase ( *__A , **__A ) -> str: '''simple docstring''' return AutoConfig.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _UpperCamelCase ( *__A , **__A ) -> List[str]: '''simple docstring''' return AutoTokenizer.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModel.__doc__ ) def _UpperCamelCase ( *__A , **__A ) -> Dict: '''simple docstring''' return AutoModel.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _UpperCamelCase ( *__A , **__A ) -> List[Any]: '''simple docstring''' return AutoModelForCausalLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _UpperCamelCase ( *__A , **__A ) -> str: '''simple docstring''' return AutoModelForMaskedLM.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _UpperCamelCase ( *__A , **__A ) -> Tuple: '''simple docstring''' return AutoModelForSequenceClassification.from_pretrained(*__A , **__A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _UpperCamelCase ( *__A , **__A ) -> Dict: '''simple docstring''' return AutoModelForQuestionAnswering.from_pretrained(*__A , **__A )
80
'''simple docstring''' from __future__ import annotations def _UpperCamelCase ( __A , __A , __A ) -> dict[str, float]: '''simple docstring''' if (voltage, current, resistance).count(0 ) != 1: raise ValueError("One and only one argument must be 0" ) if resistance < 0: raise ValueError("Resistance cannot be negative" ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError("Exactly one argument must be 0" ) if __name__ == "__main__": import doctest doctest.testmod()
80
1
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class __a ( UpperCAmelCase ): _a : Optional[int] = 'MCTCTFeatureExtractor' _a : int = 'AutoTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> List[str]: """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _UpperCAmelCase = kwargs.pop('raw_speech' ) else: _UpperCAmelCase = kwargs.pop('audio' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('sampling_rate' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('text' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _UpperCAmelCase = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: _UpperCAmelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase = encodings['input_ids'] return inputs def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('input_features' , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = kwargs.pop('labels' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if input_features is not None: _UpperCAmelCase = self.feature_extractor.pad(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is not None: _UpperCAmelCase = self.tokenizer.pad(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase = labels['input_ids'] return input_features def UpperCAmelCase__ ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @contextmanager def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False
362
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCAmelCase__ ( a__: str , a__: List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg' _UpperCAmelCase = Image.open(requests.get(a__ , stream=a__ ).raw ).convert('RGB' ) _UpperCAmelCase = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) _UpperCAmelCase = transform(a__ ).unsqueeze(0 ).to(a__ ) return image def lowerCAmelCase__ ( a__: Optional[int] ) -> int: '''simple docstring''' if "visual_encoder" in key: _UpperCAmelCase = re.sub('visual_encoder*' , 'vision_model.encoder' , a__ ) if "blocks" in key: _UpperCAmelCase = re.sub(R'blocks' , 'layers' , a__ ) if "attn" in key: _UpperCAmelCase = re.sub(R'attn' , 'self_attn' , a__ ) if "norm1" in key: _UpperCAmelCase = re.sub(R'norm1' , 'layer_norm1' , a__ ) if "norm2" in key: _UpperCAmelCase = re.sub(R'norm2' , 'layer_norm2' , a__ ) if "encoder.norm" in key: _UpperCAmelCase = re.sub(R'encoder.norm' , 'post_layernorm' , a__ ) if "encoder.patch_embed.proj" in key: _UpperCAmelCase = re.sub(R'encoder.patch_embed.proj' , 'embeddings.patch_embedding' , a__ ) if "encoder.pos_embed" in key: _UpperCAmelCase = re.sub(R'encoder.pos_embed' , 'embeddings.position_embedding' , a__ ) if "encoder.cls_token" in key: _UpperCAmelCase = re.sub(R'encoder.cls_token' , 'embeddings.class_embedding' , a__ ) if "self_attn" in key: _UpperCAmelCase = re.sub(R'self_attn.proj' , 'self_attn.projection' , a__ ) return key @torch.no_grad() def lowerCAmelCase__ ( a__: Optional[Any] , a__: List[str]=None ) -> Optional[Any]: '''simple docstring''' if config_path is not None: _UpperCAmelCase = BlipConfig.from_pretrained(a__ ) else: _UpperCAmelCase = BlipConfig(projection_dim=5_1_2 , text_config={} , vision_config={} ) _UpperCAmelCase = BlipForConditionalGeneration(a__ ).eval() _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth' _UpperCAmelCase = blip_decoder(pretrained=a__ , image_size=3_8_4 , vit='base' ) _UpperCAmelCase = pt_model.eval() _UpperCAmelCase = pt_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value hf_model.load_state_dict(a__ ) _UpperCAmelCase = 3_8_4 _UpperCAmelCase = load_demo_image(image_size=a__ , device='cpu' ) _UpperCAmelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) _UpperCAmelCase = tokenizer(['a picture of'] ).input_ids _UpperCAmelCase = hf_model.generate(a__ , a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 3_8_6_1, 1_9_9_7, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] _UpperCAmelCase = hf_model.generate(a__ ) assert out[0].tolist() == [3_0_5_2_2, 1_0_3_7, 2_4_5_0, 3_5_6_4, 2_0_0_6, 1_9_9_6, 3_5_0_9, 2_0_0_7, 2_0_1_4, 3_8_9_9, 1_0_2] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(a__ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' _UpperCAmelCase = ( 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth' ) _UpperCAmelCase = blip_vqa(pretrained=a__ , image_size=a__ , vit='base' ) vqa_model.eval() _UpperCAmelCase = vqa_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForQuestionAnswering(a__ ) hf_vqa_model.load_state_dict(a__ ) _UpperCAmelCase = ['How many dogs are in this image?'] _UpperCAmelCase = tokenizer(a__ , return_tensors='pt' ).input_ids _UpperCAmelCase = hf_vqa_model.generate(a__ , a__ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '_vqa' ) _UpperCAmelCase = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth' _UpperCAmelCase = blip_itm(pretrained=a__ , image_size=a__ , vit='base' ) itm_model.eval() _UpperCAmelCase = itm_model.state_dict() for key in modified_state_dict.copy(): _UpperCAmelCase = modified_state_dict.pop(a__ ) _UpperCAmelCase = rename_key(a__ ) _UpperCAmelCase = value _UpperCAmelCase = BlipForImageTextRetrieval(a__ ) _UpperCAmelCase = ['A picture of a woman with a dog sitting in a beach'] _UpperCAmelCase = tokenizer( a__ , return_tensors='pt' , padding='max_length' , truncation=a__ , max_length=3_5 , ).input_ids hf_itm_model.load_state_dict(a__ ) hf_itm_model.eval() _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) _UpperCAmelCase = hf_itm_model(a__ , a__ , use_itm_head=a__ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '_itm' ) if __name__ == "__main__": lowerCAmelCase__ :int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') lowerCAmelCase__ :List[Any] = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
185
0
"""simple docstring""" from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance a__ : int = 6_37_81_37.0 a__ : Union[str, Any] = 6_35_67_52.31_42_45 a__ : Dict = 6_3_7_8_1_3_7 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) __SCREAMING_SNAKE_CASE = atan((1 - flattening) * tan(radians(lowerCAmelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius __SCREAMING_SNAKE_CASE = haversine_distance(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values __SCREAMING_SNAKE_CASE = (b_lata + b_lata) / 2 __SCREAMING_SNAKE_CASE = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) __SCREAMING_SNAKE_CASE = (sin(lowerCAmelCase_ ) ** 2) * (cos(lowerCAmelCase_ ) ** 2) __SCREAMING_SNAKE_CASE = cos(sigma / 2 ) ** 2 __SCREAMING_SNAKE_CASE = (sigma - sin(lowerCAmelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) __SCREAMING_SNAKE_CASE = (cos(lowerCAmelCase_ ) ** 2) * (sin(lowerCAmelCase_ ) ** 2) __SCREAMING_SNAKE_CASE = sin(sigma / 2 ) ** 2 __SCREAMING_SNAKE_CASE = (sigma + sin(lowerCAmelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
54
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ): SCREAMING_SNAKE_CASE_ = 0 def lowerCAmelCase_ ( self : int ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32' ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): # Ensure we can load the image processor from the feature extractor config with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = CLIPConfig() # Create a dummy config file with image_proceesor_type SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ).to_dict() config_dict.pop('image_processor_type' ) SCREAMING_SNAKE_CASE_ = CLIPImageProcessor(**_lowerCAmelCase ) # save in new folder model_config.save_pretrained(_lowerCAmelCase ) config.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) # make sure private variable is not incorrectly saved SCREAMING_SNAKE_CASE_ = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : str ): with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , 'clip-base is not a local folder and is not a valid model identifier' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('clip-base' ) def lowerCAmelCase_ ( self : List[Any] ): with self.assertRaisesRegex( _lowerCAmelCase , R'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , revision='aaaaaa' ) def lowerCAmelCase_ ( self : str ): with self.assertRaisesRegex( _lowerCAmelCase , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model' ) def lowerCAmelCase_ ( self : Tuple ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase , trust_remote_code=_lowerCAmelCase ) self.assertEqual(reloaded_image_processor.__class__.__name__ , 'NewImageProcessor' ) def lowerCAmelCase_ ( self : Optional[Any] ): try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowerCAmelCase ): AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'preprocessor_config.json' SCREAMING_SNAKE_CASE_ = Path(_lowerCAmelCase ) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'} , open(_lowerCAmelCase , 'w' ) , ) json.dump({'model_type': 'clip'} , open(_lowerCAmelCase , 'w' ) ) SCREAMING_SNAKE_CASE_ = CustomImageProcessor.from_pretrained(_lowerCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_lowerCAmelCase ) SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(_lowerCAmelCase ) self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCAmelCase_ ( self : Union[str, Any] ): class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowercase_ = True try: AutoConfig.register('custom' , _lowerCAmelCase ) AutoImageProcessor.register(_lowerCAmelCase , _lowerCAmelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor' ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor' , trust_remote_code=_lowerCAmelCase ) self.assertEqual(image_processor.__class__.__name__ , 'NewImageProcessor' ) self.assertTrue(not hasattr(_lowerCAmelCase , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
225
0
import logging import random import ray from transformers import RagConfig, RagRetriever, RagTokenizer from transformers.models.rag.retrieval_rag import CustomHFIndex UpperCAmelCase__ = logging.getLogger(__name__) class lowercase_ : '''simple docstring''' def __init__( self : str ) ->Any: """simple docstring""" a = False def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ) ->List[str]: """simple docstring""" if not self.initialized: a = RagRetriever( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) a = True def __lowerCAmelCase ( self : Any ) ->Tuple: """simple docstring""" self.retriever.index.init_index() def __lowerCAmelCase ( self : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Tuple ) ->List[str]: """simple docstring""" a , a = self.retriever._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return doc_ids, retrieved_doc_embeds class lowercase_ ( lowercase ): '''simple docstring''' def __init__( self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict , __UpperCAmelCase : Dict=None ) ->Optional[Any]: """simple docstring""" if index is not None and index.is_initialized() and len(__UpperCAmelCase ) > 0: raise ValueError( '''When using Ray for distributed fine-tuning, ''' '''you\'ll need to provide the paths instead, ''' '''as the dataset and the index are loaded ''' '''separately. More info in examples/rag/use_own_knowledge_dataset.py ''' ) super().__init__( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , index=__UpperCAmelCase , init_retrieval=__UpperCAmelCase , ) a = retrieval_workers if len(self.retrieval_workers ) > 0: ray.get( [ worker.create_rag_retriever.remote(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) for worker in self.retrieval_workers ] ) def __lowerCAmelCase ( self : List[Any] ) ->Tuple: """simple docstring""" logger.info('''initializing retrieval''' ) if len(self.retrieval_workers ) > 0: ray.get([worker.init_retrieval.remote() for worker in self.retrieval_workers] ) else: # Non-distributed training. Load index into this same process. self.index.init_index() def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Tuple ) ->Dict: """simple docstring""" if len(self.retrieval_workers ) > 0: # Select a random retrieval actor. a = self.retrieval_workers[random.randint(0 , len(self.retrieval_workers ) - 1 )] a , a = ray.get(random_worker.retrieve.remote(__UpperCAmelCase , __UpperCAmelCase ) ) else: a , a = self._main_retrieve(__UpperCAmelCase , __UpperCAmelCase ) return retrieved_doc_embeds, doc_ids, self.index.get_doc_dicts(__UpperCAmelCase ) @classmethod def __lowerCAmelCase ( cls : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple=None , **__UpperCAmelCase : Optional[int] ) ->List[Any]: """simple docstring""" return super(__UpperCAmelCase , cls ).get_tokenizers(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) @classmethod def __lowerCAmelCase ( cls : Optional[int] , __UpperCAmelCase : int , __UpperCAmelCase : List[str] , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : int ) ->str: """simple docstring""" a = kwargs.pop('''config''' , __UpperCAmelCase ) or RagConfig.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) a = RagTokenizer.from_pretrained(__UpperCAmelCase , config=__UpperCAmelCase ) a = rag_tokenizer.question_encoder a = rag_tokenizer.generator if indexed_dataset is not None: a = '''custom''' a = CustomHFIndex(config.retrieval_vector_size , __UpperCAmelCase ) else: a = cls._build_index(__UpperCAmelCase ) return cls( __UpperCAmelCase , question_encoder_tokenizer=__UpperCAmelCase , generator_tokenizer=__UpperCAmelCase , retrieval_workers=__UpperCAmelCase , index=__UpperCAmelCase , )
354
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCAmelCase__ = { "configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST", "GPTBigCodeForSequenceClassification", "GPTBigCodeForTokenClassification", "GPTBigCodeForCausalLM", "GPTBigCodeModel", "GPTBigCodePreTrainedModel", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_dpt import DPTImageProcessor SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) class _UpperCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *a_ , **a_ ): '''simple docstring''' warnings.warn( '''The class DPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DPTImageProcessor instead.''' , a_ , ) super().__init__(*a_ , **a_ )
102
from ..utils import DummyObject, requires_backends class _UpperCamelCase ( metaclass=_UpperCAmelCase ): """simple docstring""" __a : Dict = ['''keras_nlp'''] def __init__( self , *lowerCAmelCase__ , **lowerCAmelCase__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''keras_nlp'''] )
210
0
from __future__ import annotations from typing import Any def __lowerCamelCase ( lowerCAmelCase__ ): create_state_space_tree(lowerCAmelCase__ , [] , 0 ) def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if index == len(lowerCAmelCase__ ): print(lowerCAmelCase__ ) return create_state_space_tree(lowerCAmelCase__ , lowerCAmelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(lowerCAmelCase__ , lowerCAmelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase__ = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(['A', 'B', 'C']) generate_all_subsequences(seq)
119
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def __lowerCamelCase ( ): lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , required=lowerCAmelCase__ , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=lowerCAmelCase__ , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=lowerCAmelCase__ , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=lowerCAmelCase__ , default=4_2 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=lowerCAmelCase__ , default=0 , help='cuda_id.' , ) lowerCAmelCase__ = parser.parse_args() return args def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): if not len(lowerCAmelCase__ ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowerCAmelCase__ , lowerCAmelCase__ = imgs[0].size lowerCAmelCase__ = Image.new('RGB' , size=(cols * w, rows * h) ) lowerCAmelCase__ , lowerCAmelCase__ = grid.size for i, img in enumerate(lowerCAmelCase__ ): grid.paste(lowerCAmelCase__ , box=(i % cols * w, i // cols * h) ) return grid def __lowerCamelCase ( lowerCAmelCase__ , lowerCAmelCase__="robotic cat with wings" , lowerCAmelCase__=7.5 , lowerCAmelCase__=5_0 , lowerCAmelCase__=1 , lowerCAmelCase__=4_2 , ): lowerCAmelCase__ = torch.Generator(pipeline.device ).manual_seed(lowerCAmelCase__ ) lowerCAmelCase__ = pipeline( lowerCAmelCase__ , guidance_scale=lowerCAmelCase__ , num_inference_steps=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_images_per_prompt=lowerCAmelCase__ , ).images lowerCAmelCase__ = int(math.sqrt(lowerCAmelCase__ ) ) lowerCAmelCase__ = image_grid(lowerCAmelCase__ , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images lowerCAmelCase__ = parse_args() # Load models and create wrapper for stable diffusion lowerCAmelCase__ = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder='tokenizer') lowerCAmelCase__ = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='text_encoder') lowerCAmelCase__ = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder='vae') lowerCAmelCase__ = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder='unet') lowerCAmelCase__ = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) lowerCAmelCase__ = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, 'best_model.pt')): lowerCAmelCase__ = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, 'unet', unet) else: lowerCAmelCase__ = unet.to(torch.device('cuda', args.cuda_id)) lowerCAmelCase__ = pipeline.to(unet.device) lowerCAmelCase__ , lowerCAmelCase__ = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, '{}.png'.format('_'.join(args.caption.split())))) lowerCAmelCase__ = os.path.join(args.pretrained_model_name_or_path, '_'.join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, '{}.png'.format(idx + 1)))
119
1
'''simple docstring''' import re import subprocess import sys UpperCAmelCase : Tuple = subprocess.check_output('git merge-base main HEAD'.split()).decode('utf-8') UpperCAmelCase : int = subprocess.check_output(f"""git diff --name-only {fork_point_sha}""".split()).decode('utf-8').split() UpperCAmelCase : Any = '|'.join(sys.argv[1:]) UpperCAmelCase : List[Any] = re.compile(Rf"""^({joined_dirs}).*?\.py$""") UpperCAmelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(' '.join(relevant_modified_files), end='')
267
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case ( __UpperCAmelCase , unittest.TestCase ): """simple docstring""" snake_case__ = ShapEImgaImgPipeline snake_case__ = ["image"] snake_case__ = ["image"] snake_case__ = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] snake_case__ = False @property def __lowerCAmelCase ( self : List[str] ): return 32 @property def __lowerCAmelCase ( self : str ): return 32 @property def __lowerCAmelCase ( self : int ): return self.time_input_dim * 4 @property def __lowerCAmelCase ( self : List[Any] ): return 8 @property def __lowerCAmelCase ( self : Optional[int] ): torch.manual_seed(0 ) UpperCAmelCase__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size ,image_size=64 ,projection_dim=self.text_embedder_hidden_size ,intermediate_size=37 ,num_attention_heads=4 ,num_channels=3 ,num_hidden_layers=5 ,patch_size=1 ,) UpperCAmelCase__ = CLIPVisionModel(lowerCamelCase__ ) return model @property def __lowerCAmelCase ( self : Optional[Any] ): UpperCAmelCase__ = CLIPImageProcessor( crop_size=224 ,do_center_crop=lowerCamelCase__ ,do_normalize=lowerCamelCase__ ,do_resize=lowerCamelCase__ ,image_mean=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] ,image_std=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] ,resample=3 ,size=224 ,) return image_processor @property def __lowerCAmelCase ( self : str ): torch.manual_seed(0 ) UpperCAmelCase__ = { 'num_attention_heads': 2, 'attention_head_dim': 16, 'embedding_dim': self.time_input_dim, 'num_embeddings': 32, 'embedding_proj_dim': self.text_embedder_hidden_size, 'time_embed_dim': self.time_embed_dim, 'num_layers': 1, 'clip_embed_dim': self.time_input_dim * 2, 'additional_embeddings': 0, 'time_embed_act_fn': 'gelu', 'norm_in_type': 'layer', 'embedding_proj_norm_type': 'layer', 'encoder_hid_proj_type': None, 'added_emb_type': None, } UpperCAmelCase__ = PriorTransformer(**lowerCamelCase__ ) return model @property def __lowerCAmelCase ( self : Tuple ): torch.manual_seed(0 ) UpperCAmelCase__ = { 'param_shapes': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), 'd_latent': self.time_input_dim, 'd_hidden': self.renderer_dim, 'n_output': 12, 'background': ( 0.1, 0.1, 0.1, ), } UpperCAmelCase__ = ShapERenderer(**lowerCamelCase__ ) return model def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = self.dummy_prior UpperCAmelCase__ = self.dummy_image_encoder UpperCAmelCase__ = self.dummy_image_processor UpperCAmelCase__ = self.dummy_renderer UpperCAmelCase__ = HeunDiscreteScheduler( beta_schedule='exp' ,num_train_timesteps=1_024 ,prediction_type='sample' ,use_karras_sigmas=lowerCamelCase__ ,clip_sample=lowerCamelCase__ ,clip_sample_range=1.0 ,) UpperCAmelCase__ = { 'prior': prior, 'image_encoder': image_encoder, 'image_processor': image_processor, 'renderer': renderer, 'scheduler': scheduler, } return components def __lowerCAmelCase ( self : Optional[int] ,lowerCamelCase__ : Any ,lowerCamelCase__ : str=0 ): UpperCAmelCase__ = floats_tensor((1, 3, 64, 64) ,rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) if str(lowerCamelCase__ ).startswith('mps' ): UpperCAmelCase__ = torch.manual_seed(lowerCamelCase__ ) else: UpperCAmelCase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCAmelCase__ = { 'image': input_image, 'generator': generator, 'num_inference_steps': 1, 'frame_size': 32, 'output_type': 'np', } return inputs def __lowerCAmelCase ( self : Optional[int] ): UpperCAmelCase__ = 'cpu' UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**lowerCamelCase__ ) UpperCAmelCase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) UpperCAmelCase__ = output.images[0] UpperCAmelCase__ = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) UpperCAmelCase__ = np.array( [ 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, 0.0_0_0_3_9_2_1_6, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __lowerCAmelCase ( self : Tuple ): # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __lowerCAmelCase ( self : Tuple ): UpperCAmelCase__ = torch_device == 'cpu' UpperCAmelCase__ = True self._test_inference_batch_single_identical( batch_size=2 ,test_max_difference=lowerCamelCase__ ,relax_max_difference=lowerCamelCase__ ,) def __lowerCAmelCase ( self : List[Any] ): UpperCAmelCase__ = self.get_dummy_components() UpperCAmelCase__ = self.pipeline_class(**lowerCamelCase__ ) UpperCAmelCase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = 1 UpperCAmelCase__ = 2 UpperCAmelCase__ = self.get_dummy_inputs(lowerCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: UpperCAmelCase__ = batch_size * [inputs[key]] UpperCAmelCase__ = pipe(**lowerCamelCase__ ,num_images_per_prompt=lowerCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self : Any ): UpperCAmelCase__ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/corgi.png' ) UpperCAmelCase__ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/shap_e/test_shap_e_img2img_out.npy' ) UpperCAmelCase__ = ShapEImgaImgPipeline.from_pretrained('openai/shap-e-img2img' ) UpperCAmelCase__ = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCAmelCase__ = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) UpperCAmelCase__ = pipe( lowerCamelCase__ ,generator=lowerCamelCase__ ,guidance_scale=3.0 ,num_inference_steps=64 ,frame_size=64 ,output_type='np' ,).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase__ ,lowerCamelCase__ )
98
0
"""simple docstring""" from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ) -> list[float]: snake_case_ , snake_case_ = coefficient_matrix.shape snake_case_ , snake_case_ = constant_matrix.shape if rowsa != colsa: snake_case_ = f"""Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if colsa != 1: snake_case_ = f"""Constant matrix must be nx1 but received {rowsa}x{colsa}""" raise ValueError(_SCREAMING_SNAKE_CASE ) if rowsa != rowsa: snake_case_ = ( """Coefficient and constant matrices dimensions must be nxn and nx1 but """ f"""received {rowsa}x{colsa} and {rowsa}x{colsa}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) != rowsa: snake_case_ = ( """Number of initial values must be equal to number of rows in coefficient """ f"""matrix but received {len(_SCREAMING_SNAKE_CASE )} and {rowsa}""" ) raise ValueError(_SCREAMING_SNAKE_CASE ) if iterations <= 0: raise ValueError("""Iterations must be at least 1""" ) snake_case_ = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) snake_case_ , snake_case_ = table.shape strictly_diagonally_dominant(_SCREAMING_SNAKE_CASE ) # Iterates the whole matrix for given number of times for _ in range(_SCREAMING_SNAKE_CASE ): snake_case_ = [] for row in range(_SCREAMING_SNAKE_CASE ): snake_case_ = 0 for col in range(_SCREAMING_SNAKE_CASE ): if col == row: snake_case_ = table[row][col] elif col == cols - 1: snake_case_ = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] snake_case_ = (temp + val) / denom new_val.append(_SCREAMING_SNAKE_CASE ) snake_case_ = new_val return [float(_SCREAMING_SNAKE_CASE ) for i in new_val] def _a ( _SCREAMING_SNAKE_CASE ) -> bool: snake_case_ , snake_case_ = table.shape snake_case_ = True for i in range(0 , _SCREAMING_SNAKE_CASE ): snake_case_ = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("""Coefficient matrix is not strictly diagonally dominant""" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
362
"""simple docstring""" from collections import defaultdict from math import gcd def _a ( _SCREAMING_SNAKE_CASE = 1_500_000 ) -> int: snake_case_ = defaultdict(_SCREAMING_SNAKE_CASE ) snake_case_ = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , _SCREAMING_SNAKE_CASE , 2 ): if gcd(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) > 1: continue snake_case_ = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(_SCREAMING_SNAKE_CASE , limit + 1 , _SCREAMING_SNAKE_CASE ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f"""{solution() = }""")
233
0
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def snake_case_ ( A_ : BertModel, A_ : str, A_ : str ): '''simple docstring''' _lowerCamelCase : Optional[int] = ('dense.weight', 'attention.self.query', 'attention.self.key', 'attention.self.value') _lowerCamelCase : Any = ( ('layer.', 'layer_'), ('word_embeddings.weight', 'word_embeddings'), ('position_embeddings.weight', 'position_embeddings'), ('token_type_embeddings.weight', 'token_type_embeddings'), ('.', '/'), ('LayerNorm/weight', 'LayerNorm/gamma'), ('LayerNorm/bias', 'LayerNorm/beta'), ('weight', 'kernel'), ) if not os.path.isdir(UpperCAmelCase_ ): os.makedirs(UpperCAmelCase_ ) _lowerCamelCase : str = model.state_dict() def to_tf_var_name(A_ : str ): for patt, repl in iter(UpperCAmelCase_ ): _lowerCamelCase : str = name.replace(UpperCAmelCase_, UpperCAmelCase_ ) return F'''bert/{name}''' def create_tf_var(A_ : np.ndarray, A_ : str, A_ : tf.Session ): _lowerCamelCase : str = tf.dtypes.as_dtype(tensor.dtype ) _lowerCamelCase : Dict = tf.get_variable(dtype=UpperCAmelCase_, shape=tensor.shape, name=UpperCAmelCase_, initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(UpperCAmelCase_ ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: _lowerCamelCase : List[Any] = to_tf_var_name(UpperCAmelCase_ ) _lowerCamelCase : List[str] = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): _lowerCamelCase : List[str] = torch_tensor.T _lowerCamelCase : str = create_tf_var(tensor=UpperCAmelCase_, name=UpperCAmelCase_, session=UpperCAmelCase_ ) tf.keras.backend.set_value(UpperCAmelCase_, UpperCAmelCase_ ) _lowerCamelCase : int = session.run(UpperCAmelCase_ ) print(F'''Successfully created {tf_name}: {np.allclose(UpperCAmelCase_, UpperCAmelCase_ )}''' ) _lowerCamelCase : List[str] = tf.train.Saver(tf.trainable_variables() ) saver.save(UpperCAmelCase_, os.path.join(UpperCAmelCase_, model_name.replace('''-''', '''_''' ) + '''.ckpt''' ) ) def snake_case_ ( A_ : List[Any]=None ): '''simple docstring''' _lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('''--model_name''', type=UpperCAmelCase_, required=UpperCAmelCase_, help='''model name e.g. bert-base-uncased''' ) parser.add_argument( '''--cache_dir''', type=UpperCAmelCase_, default=UpperCAmelCase_, required=UpperCAmelCase_, help='''Directory containing pytorch model''' ) parser.add_argument('''--pytorch_model_path''', type=UpperCAmelCase_, required=UpperCAmelCase_, help='''/path/to/<pytorch-model-name>.bin''' ) parser.add_argument('''--tf_cache_dir''', type=UpperCAmelCase_, required=UpperCAmelCase_, help='''Directory in which to save tensorflow model''' ) _lowerCamelCase : Optional[int] = parser.parse_args(UpperCAmelCase_ ) _lowerCamelCase : int = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name, state_dict=torch.load(args.pytorch_model_path ), cache_dir=args.cache_dir, ) convert_pytorch_checkpoint_to_tf(model=UpperCAmelCase_, ckpt_dir=args.tf_cache_dir, model_name=args.model_name ) if __name__ == "__main__": main()
72
'''simple docstring''' import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCAmelCase_ (_UpperCAmelCase , unittest.TestCase ): """simple docstring""" pass @nightly @require_onnxruntime @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" @property def lowercase_ ( self ) -> int: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowercase_ ( self ) -> Dict: __lowerCamelCase : int = ort.SessionOptions() __lowerCamelCase : Optional[Any] = False return options def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCamelCase : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCamelCase : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Tuple = 'A red cat sitting on a park bench' __lowerCamelCase : Union[str, Any] = np.random.RandomState(0 ) __lowerCamelCase : Union[str, Any] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=10 , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : Tuple = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Union[str, Any] = np.array([0.2_5_1_4, 0.3_0_0_7, 0.3_5_1_7, 0.1_7_9_0, 0.2_3_8_2, 0.3_1_6_7, 0.1_9_4_4, 0.2_2_7_3, 0.2_4_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo.png' ) __lowerCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/in_paint/overture-creations-5sI6fQgYIuo_mask.png' ) __lowerCamelCase : Dict = LMSDiscreteScheduler.from_pretrained( 'runwayml/stable-diffusion-inpainting' , subfolder='scheduler' , revision='onnx' ) __lowerCamelCase : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( 'runwayml/stable-diffusion-inpainting' , revision='onnx' , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : str = 'A red cat sitting on a park bench' __lowerCamelCase : Tuple = np.random.RandomState(0 ) __lowerCamelCase : Optional[int] = pipe( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE_ , output_type='np' , ) __lowerCamelCase : List[str] = output.images __lowerCamelCase : Dict = images[0, 2_55:2_58, 2_55:2_58, -1] assert images.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Tuple = np.array([0.0_0_8_6, 0.0_0_7_7, 0.0_0_8_3, 0.0_0_9_3, 0.0_1_0_7, 0.0_1_3_9, 0.0_0_9_4, 0.0_0_9_7, 0.0_1_2_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
185
0
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( lowercase , lowercase , lowercase ): """simple docstring""" @register_to_config def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = False , ): """simple docstring""" super().__init__() lowerCAmelCase : Optional[Any] = nn.Embedding(snake_case__ , snake_case__ ) lowerCAmelCase : int = nn.Embedding(snake_case__ , snake_case__ ) lowerCAmelCase : Any = False lowerCAmelCase : Optional[Any] = nn.Dropout(p=snake_case__ ) lowerCAmelCase : Optional[Any] = TaConfig( vocab_size=snake_case__ , d_model=snake_case__ , num_heads=snake_case__ , d_kv=snake_case__ , d_ff=snake_case__ , dropout_rate=snake_case__ , feed_forward_proj=snake_case__ , is_decoder=snake_case__ , is_encoder_decoder=snake_case__ , ) lowerCAmelCase : str = nn.ModuleList() for lyr_num in range(snake_case__ ): lowerCAmelCase : Union[str, Any] = TaBlock(snake_case__ ) self.encoders.append(snake_case__ ) lowerCAmelCase : Any = TaLayerNorm(snake_case__ ) lowerCAmelCase : List[str] = nn.Dropout(p=snake_case__ ) def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Tuple = self.token_embedder(snake_case__ ) lowerCAmelCase : Dict = encoder_input_tokens.shape[1] lowerCAmelCase : Union[str, Any] = torch.arange(snake_case__ , device=encoder_input_tokens.device ) x += self.position_encoding(snake_case__ ) lowerCAmelCase : List[str] = self.dropout_pre(snake_case__ ) # inverted the attention mask lowerCAmelCase : Optional[Any] = encoder_input_tokens.size() lowerCAmelCase : Tuple = self.get_extended_attention_mask(snake_case__ , snake_case__ ) for lyr in self.encoders: lowerCAmelCase : Any = lyr(snake_case__ , snake_case__ )[0] lowerCAmelCase : Optional[int] = self.layer_norm(snake_case__ ) return self.dropout_post(snake_case__ ), encoder_inputs_mask
359
"""simple docstring""" import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowercase__ ( *snake_case__ , **snake_case__ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" a : Optional[Any] =MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase__ ( self , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Dict = [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] return object_detector, examples def lowercase__ ( self , snake_case__ , snake_case__ ): """simple docstring""" lowerCAmelCase : Optional[Any] = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase : Dict = len(snake_case__ ) self.assertGreater(snake_case__ , 0 ) self.assertEqual( snake_case__ , [ { "score": ANY(snake_case__ ), "label": ANY(snake_case__ ), "box": {"xmin": ANY(snake_case__ ), "ymin": ANY(snake_case__ ), "xmax": ANY(snake_case__ ), "ymax": ANY(snake_case__ )}, } for i in range(snake_case__ ) ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = pipeline( "zero-shot-object-detection" , model="hf-internal-testing/tiny-random-owlvit-object-detection" ) lowerCAmelCase : Tuple = object_detector( "./tests/fixtures/tests_samples/COCO/000000039769.png" , candidate_labels=["cat", "remote", "couch"] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] , ) lowerCAmelCase : Optional[Any] = object_detector( [ { "image": "./tests/fixtures/tests_samples/COCO/000000039769.png", "candidate_labels": ["cat", "remote", "couch"], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.7235, "label": "cat", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7218, "label": "remote", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.7184, "label": "couch", "box": {"xmin": 204, "ymin": 167, "xmax": 232, "ymax": 190}}, {"score": 0.6748, "label": "remote", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6656, "label": "cat", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6614, "label": "couch", "box": {"xmin": 571, "ymin": 83, "xmax": 598, "ymax": 103}}, {"score": 0.6456, "label": "remote", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, {"score": 0.642, "label": "remote", "box": {"xmin": 67, "ymin": 274, "xmax": 93, "ymax": 297}}, {"score": 0.6419, "label": "cat", "box": {"xmin": 494, "ymin": 105, "xmax": 521, "ymax": 127}}, ] ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Dict = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ] , ) lowerCAmelCase : Dict = object_detector( [ { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, { "image": "http://images.cocodataset.org/val2017/000000039769.jpg", "candidate_labels": ["cat", "remote", "couch"], }, ] , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, {"score": 0.1474, "label": "remote", "box": {"xmin": 335, "ymin": 74, "xmax": 371, "ymax": 187}}, {"score": 0.1208, "label": "couch", "box": {"xmin": 4, "ymin": 0, "xmax": 642, "ymax": 476}}, ], ] , ) @require_tf @unittest.skip("Zero Shot Object Detection not implemented in TF" ) def lowercase__ ( self ): """simple docstring""" pass @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = 0.2 lowerCAmelCase : List[Any] = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Union[str, Any] = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , threshold=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, {"score": 0.2537, "label": "cat", "box": {"xmin": 1, "ymin": 55, "xmax": 315, "ymax": 472}}, ] , ) @require_torch @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = 2 lowerCAmelCase : Any = pipeline("zero-shot-object-detection" ) lowerCAmelCase : Any = object_detector( "http://images.cocodataset.org/val2017/000000039769.jpg" , candidate_labels=["cat", "remote", "couch"] , top_k=snake_case__ , ) self.assertEqual( nested_simplify(snake_case__ , decimals=4 ) , [ {"score": 0.2868, "label": "cat", "box": {"xmin": 324, "ymin": 20, "xmax": 640, "ymax": 373}}, {"score": 0.277, "label": "remote", "box": {"xmin": 40, "ymin": 72, "xmax": 177, "ymax": 115}}, ] , )
133
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class __SCREAMING_SNAKE_CASE ( UpperCamelCase__ ): def __init__( self : Optional[int] , A : List[Any] , A : Union[str, Any] , A : int , A : int , ) ->int: super().__init__() lowerCamelCase__ : List[Any] = value_function lowerCamelCase__ : Union[str, Any] = unet lowerCamelCase__ : str = scheduler lowerCamelCase__ : Union[str, Any] = env lowerCamelCase__ : Tuple = env.get_dataset() lowerCamelCase__ : Optional[int] = {} for key in self.data.keys(): try: lowerCamelCase__ : Any = self.data[key].mean() except: # noqa: E722 pass lowerCamelCase__ : Union[str, Any] = {} for key in self.data.keys(): try: lowerCamelCase__ : Optional[Any] = self.data[key].std() except: # noqa: E722 pass lowerCamelCase__ : str = env.observation_space.shape[0] lowerCamelCase__ : Union[str, Any] = env.action_space.shape[0] def __lowerCamelCase ( self : Optional[Any] , A : str , A : Any ) ->Union[str, Any]: return (x_in - self.means[key]) / self.stds[key] def __lowerCamelCase ( self : int , A : Tuple , A : Tuple ) ->Optional[int]: return x_in * self.stds[key] + self.means[key] def __lowerCamelCase ( self : Optional[int] , A : Union[str, Any] ) ->List[str]: if type(_a ) is dict: return {k: self.to_torch(_a ) for k, v in x_in.items()} elif torch.is_tensor(_a ): return x_in.to(self.unet.device ) return torch.tensor(_a , device=self.unet.device ) def __lowerCamelCase ( self : List[str] , A : Any , A : Dict , A : Dict ) ->Optional[Any]: for key, val in cond.items(): lowerCamelCase__ : int = val.clone() return x_in def __lowerCamelCase ( self : Optional[int] , A : Tuple , A : List[str] , A : int , A : Optional[int] ) ->Optional[int]: lowerCamelCase__ : Union[str, Any] = x.shape[0] lowerCamelCase__ : Any = None for i in tqdm.tqdm(self.scheduler.timesteps ): # create batch of timesteps to pass into model lowerCamelCase__ : Dict = torch.full((batch_size,) , _a , device=self.unet.device , dtype=torch.long ) for _ in range(_a ): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models lowerCamelCase__ : List[Any] = self.value_function(x.permute(0 , 2 , 1 ) , _a ).sample lowerCamelCase__ : Optional[Any] = torch.autograd.grad([y.sum()] , [x] )[0] lowerCamelCase__ : Optional[int] = self.scheduler._get_variance(_a ) lowerCamelCase__ : List[Any] = torch.exp(0.5 * posterior_variance ) lowerCamelCase__ : Tuple = model_std * grad lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : Any = x.detach() lowerCamelCase__ : List[Any] = x + scale * grad lowerCamelCase__ : Any = self.reset_xa(_a , _a , self.action_dim ) lowerCamelCase__ : str = self.unet(x.permute(0 , 2 , 1 ) , _a ).sample.permute(0 , 2 , 1 ) # TODO: verify deprecation of this kwarg lowerCamelCase__ : Dict = self.scheduler.step(_a , _a , _a , predict_epsilon=_a )["""prev_sample"""] # apply conditions to the trajectory (set the initial state) lowerCamelCase__ : str = self.reset_xa(_a , _a , self.action_dim ) lowerCamelCase__ : List[Any] = self.to_torch(_a ) return x, y def __call__( self : Tuple , A : int , A : Any=6_4 , A : Union[str, Any]=3_2 , A : Optional[Any]=2 , A : Optional[int]=0.1 ) ->Any: # normalize the observations and create batch dimension lowerCamelCase__ : Any = self.normalize(_a , '''observations''' ) lowerCamelCase__ : Optional[int] = obs[None].repeat(_a , axis=0 ) lowerCamelCase__ : List[str] = {0: self.to_torch(_a )} lowerCamelCase__ : int = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) lowerCamelCase__ : Optional[int] = randn_tensor(_a , device=self.unet.device ) lowerCamelCase__ : int = self.reset_xa(_a , _a , self.action_dim ) lowerCamelCase__ : int = self.to_torch(_a ) # run the diffusion process lowerCamelCase__ : List[Any] = self.run_diffusion(_a , _a , _a , _a ) # sort output trajectories by value lowerCamelCase__ : Optional[int] = y.argsort(0 , descending=_a ).squeeze() lowerCamelCase__ : Tuple = x[sorted_idx] lowerCamelCase__ : Optional[int] = sorted_values[:, :, : self.action_dim] lowerCamelCase__ : Union[str, Any] = actions.detach().cpu().numpy() lowerCamelCase__ : Tuple = self.de_normalize(_a , key='''actions''' ) # select the action with the highest value if y is not None: lowerCamelCase__ : int = 0 else: # if we didn't run value guiding, select a random action lowerCamelCase__ : Optional[Any] = np.random.randint(0 , _a ) lowerCamelCase__ : Any = denorm_actions[selected_index, 0] return denorm_actions
142
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "facebook/xmod-base": "https://huggingface.co/facebook/xmod-base/resolve/main/config.json", "facebook/xmod-large-prenorm": "https://huggingface.co/facebook/xmod-large-prenorm/resolve/main/config.json", "facebook/xmod-base-13-125k": "https://huggingface.co/facebook/xmod-base-13-125k/resolve/main/config.json", "facebook/xmod-base-30-125k": "https://huggingface.co/facebook/xmod-base-30-125k/resolve/main/config.json", "facebook/xmod-base-30-195k": "https://huggingface.co/facebook/xmod-base-30-195k/resolve/main/config.json", "facebook/xmod-base-60-125k": "https://huggingface.co/facebook/xmod-base-60-125k/resolve/main/config.json", "facebook/xmod-base-60-265k": "https://huggingface.co/facebook/xmod-base-60-265k/resolve/main/config.json", "facebook/xmod-base-75-125k": "https://huggingface.co/facebook/xmod-base-75-125k/resolve/main/config.json", "facebook/xmod-base-75-269k": "https://huggingface.co/facebook/xmod-base-75-269k/resolve/main/config.json", } class lowercase ( UpperCamelCase__ ): _a = "xmod" def __init__( self , _a=3_0522 , _a=768 , _a=12 , _a=12 , _a=3072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-12 , _a=1 , _a=0 , _a=2 , _a="absolute" , _a=True , _a=None , _a=False , _a=2 , _a=False , _a=True , _a=True , _a=("en_XX",) , _a=None , **_a , ) -> str: super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) _A : Tuple = vocab_size _A : Union[str, Any] = hidden_size _A : Dict = num_hidden_layers _A : Dict = num_attention_heads _A : List[Any] = hidden_act _A : Optional[Any] = intermediate_size _A : Any = hidden_dropout_prob _A : str = attention_probs_dropout_prob _A : Dict = max_position_embeddings _A : Any = type_vocab_size _A : List[Any] = initializer_range _A : int = layer_norm_eps _A : int = position_embedding_type _A : Any = use_cache _A : int = classifier_dropout _A : int = pre_norm _A : Optional[Any] = adapter_reduction_factor _A : List[Any] = adapter_layer_norm _A : Optional[int] = adapter_reuse_layer_norm _A : Any = ln_before_adapter _A : Union[str, Any] = list(_a ) _A : List[Any] = default_language class lowercase ( UpperCamelCase__ ): @property def a__ ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _A : Dict = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
26
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE : Optional[Any] = { "configuration_xmod": [ "XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP", "XmodConfig", "XmodOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE : List[Any] = [ "XMOD_PRETRAINED_MODEL_ARCHIVE_LIST", "XmodForCausalLM", "XmodForMaskedLM", "XmodForMultipleChoice", "XmodForQuestionAnswering", "XmodForSequenceClassification", "XmodForTokenClassification", "XmodModel", "XmodPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys _SCREAMING_SNAKE_CASE : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
366
'''simple docstring''' from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def UpperCamelCase_( snake_case : str , snake_case : complex , snake_case : str = "x" , snake_case : float = 1_0**-1_0 , snake_case : int = 1 , ): '''simple docstring''' snake_case_ = symbols(snake_case ) snake_case_ = lambdify(snake_case , snake_case ) snake_case_ = lambdify(snake_case , diff(snake_case , snake_case ) ) snake_case_ = starting_point while True: if diff_function(snake_case ) != 0: snake_case_ = prev_guess - multiplicity * func(snake_case ) / diff_function( snake_case ) else: raise ZeroDivisionError("Could not find root" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess snake_case_ = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}") # Find root of polynomial # Find fourth Root of 5 print(F"The root of x**4 - 5 = 0 is {newton_raphson('x**4 -5', 0.4 +5j)}") # Find value of e print( "The root of log(y) - 1 = 0 is ", F"{newton_raphson('log(y) - 1', 2, variable='y')}", ) # Exponential Roots print( "The root of exp(x) - 1 = 0 is", F"{newton_raphson('exp(x) - 1', 10, precision=0.0_0_5)}", ) # Find root of cos(x) print(F"The root of cos(x) = 0 is {newton_raphson('cos(x)', 0)}")
92
0
import unittest import numpy as np def UpperCamelCase ( snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : np.ndarray , snake_case__ : np.ndarray | None = None , ) -> np.ndarray: UpperCamelCase : Optional[Any] = np.shape(snake_case__ ) UpperCamelCase : List[str] = np.shape(snake_case__ ) UpperCamelCase : Optional[Any] = np.shape(snake_case__ ) if shape_a[0] != shape_b[0]: UpperCamelCase : str = ( 'Expected the same number of rows for A and B. ' F"""Instead found A of size {shape_a} and B of size {shape_b}""" ) raise ValueError(snake_case__ ) if shape_b[1] != shape_c[1]: UpperCamelCase : str = ( 'Expected the same number of columns for B and C. ' F"""Instead found B of size {shape_b} and C of size {shape_c}""" ) raise ValueError(snake_case__ ) UpperCamelCase : List[str] = pseudo_inv if a_inv is None: try: UpperCamelCase : str = np.linalg.inv(snake_case__ ) except np.linalg.LinAlgError: raise ValueError( 'Input matrix A is not invertible. Cannot compute Schur complement.' ) return mat_c - mat_b.T @ a_inv @ mat_b class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> None: UpperCamelCase : str = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase : List[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase : Tuple = np.array([[2, 1], [6, 3]] ) UpperCamelCase : Optional[Any] = schur_complement(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.block([[a, b], [b.T, c]] ) UpperCamelCase : Optional[int] = np.linalg.det(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = np.linalg.det(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = np.linalg.det(SCREAMING_SNAKE_CASE_ ) self.assertAlmostEqual(SCREAMING_SNAKE_CASE_, det_a * det_s ) def snake_case_ ( self ) -> None: UpperCamelCase : Tuple = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase : Dict = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase : str = np.array([[2, 1], [6, 3]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self ) -> None: UpperCamelCase : Dict = np.array([[1, 2, 1], [2, 1, 2], [3, 2, 4]] ) UpperCamelCase : Optional[Any] = np.array([[0, 3], [3, 0], [2, 3]] ) UpperCamelCase : str = np.array([[2, 1, 3], [6, 3, 5]] ) with self.assertRaises(SCREAMING_SNAKE_CASE_ ): schur_complement(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": import doctest doctest.testmod() unittest.main()
119
import argparse import json from tqdm import tqdm def UpperCamelCase ( ) -> Optional[int]: UpperCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=snake_case__ , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=snake_case__ , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=snake_case__ , help='where to store parsed gold_data_path file' , ) UpperCamelCase : int = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: UpperCamelCase : int = json.load(snake_case__ ) for dpr_record in tqdm(snake_case__ ): UpperCamelCase : Union[str, Any] = dpr_record['question'] UpperCamelCase : Dict = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(snake_case__ ) + '\n' ) if __name__ == "__main__": main()
119
1
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __a , __a , unittest.TestCase ): snake_case : List[Any] = StableDiffusionXLImgaImgPipeline snake_case : Any = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} snake_case : List[str] = PipelineTesterMixin.required_optional_params - {'''latents'''} snake_case : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS snake_case : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS snake_case : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def snake_case_ (self ): torch.manual_seed(0 ) _UpperCAmelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , attention_head_dim=(2, 4) , use_linear_projection=_snake_case , addition_embed_type="""text_time""" , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) _UpperCAmelCase : Dict = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule="""scaled_linear""" , timestep_spacing="""leading""" , ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) _UpperCAmelCase : Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act="""gelu""" , projection_dim=3_2 , ) _UpperCAmelCase : Union[str, Any] = CLIPTextModel(_snake_case ) _UpperCAmelCase : int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=_snake_case ) _UpperCAmelCase : int = CLIPTextModelWithProjection(_snake_case ) _UpperCAmelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" , local_files_only=_snake_case ) _UpperCAmelCase : List[Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """text_encoder_2""": text_encoder_a, """tokenizer_2""": tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__=0 ): _UpperCAmelCase : Any = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(_snake_case ) ).to(_snake_case ) _UpperCAmelCase : List[Any] = image / 2 + 0.5 if str(_snake_case ).startswith("""mps""" ): _UpperCAmelCase : Any = torch.manual_seed(_snake_case ) else: _UpperCAmelCase : List[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase : Any = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 5.0, """output_type""": """numpy""", """strength""": 0.7_5, } return inputs def snake_case_ (self ): _UpperCAmelCase : int = """cpu""" # ensure determinism for the device-dependent torch.Generator _UpperCAmelCase : str = self.get_dummy_components() _UpperCAmelCase : List[Any] = StableDiffusionXLImgaImgPipeline(**_snake_case ) _UpperCAmelCase : int = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase : int = self.get_dummy_inputs(_snake_case ) _UpperCAmelCase : Optional[Any] = sd_pipe(**_snake_case ).images _UpperCAmelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) _UpperCAmelCase : Union[str, Any] = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def snake_case_ (self ): super().test_attention_slicing_forward_pass(expected_max_diff=3e-3 ) def snake_case_ (self ): super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) def snake_case_ (self ): pass def snake_case_ (self ): _UpperCAmelCase : Dict = self.get_dummy_components() _UpperCAmelCase : List[str] = StableDiffusionXLImgaImgPipeline(**_snake_case ) _UpperCAmelCase : int = sd_pipe.to(_snake_case ) _UpperCAmelCase : Optional[int] = sd_pipe.to(_snake_case ) sd_pipe.set_progress_bar_config(disable=_snake_case ) # forward without prompt embeds _UpperCAmelCase : str = self.get_dummy_inputs(_snake_case ) _UpperCAmelCase : Optional[Any] = 3 * ["""this is a negative prompt"""] _UpperCAmelCase : Union[str, Any] = negative_prompt _UpperCAmelCase : Any = 3 * [inputs["""prompt"""]] _UpperCAmelCase : Optional[int] = sd_pipe(**_snake_case ) _UpperCAmelCase : Union[str, Any] = output.images[0, -3:, -3:, -1] # forward with prompt embeds _UpperCAmelCase : List[str] = self.get_dummy_inputs(_snake_case ) _UpperCAmelCase : str = 3 * ["""this is a negative prompt"""] _UpperCAmelCase : int = 3 * [inputs.pop("""prompt""" )] ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : List[str] = sd_pipe.encode_prompt(_snake_case , negative_prompt=_snake_case ) _UpperCAmelCase : Optional[int] = sd_pipe( **_snake_case , prompt_embeds=_snake_case , negative_prompt_embeds=_snake_case , pooled_prompt_embeds=_snake_case , negative_pooled_prompt_embeds=_snake_case , ) _UpperCAmelCase : Dict = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def snake_case_ (self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__="cpu" , lowerCAmelCase__=torch.floataa , lowerCAmelCase__=0 ): _UpperCAmelCase : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _UpperCAmelCase : int = np.random.RandomState(_snake_case ).standard_normal((1, 4, 6_4, 6_4) ) _UpperCAmelCase : List[Any] = torch.from_numpy(_snake_case ).to(device=_snake_case , dtype=_snake_case ) _UpperCAmelCase : Union[str, Any] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def snake_case_ (self ): _UpperCAmelCase : Any = DiffusionPipeline.from_pretrained("""stabilityai/stable-diffusion-2-base""" ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _UpperCAmelCase : Dict = self.get_inputs(_snake_case ) _UpperCAmelCase : Tuple = pipe(**_snake_case ).images _UpperCAmelCase : Dict = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) _UpperCAmelCase : List[Any] = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7e-3
357
'''simple docstring''' import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) lowerCAmelCase_ : Any = logging.getLogger(__name__) class __lowerCAmelCase ( __a ): def snake_case_ (self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=None ): _UpperCAmelCase : str = self.layer[current_layer](lowerCAmelCase__ , lowerCAmelCase__ , head_mask[current_layer] ) _UpperCAmelCase : List[Any] = layer_outputs[0] return hidden_states @add_start_docstrings( """The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.""" , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : Tuple = BertEncoderWithPabee(lowerCAmelCase__ ) self.init_weights() _UpperCAmelCase : List[str] = 0 _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : int = 0 def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = threshold def snake_case_ (self , lowerCAmelCase__ ): _UpperCAmelCase : Union[str, Any] = patience def snake_case_ (self ): _UpperCAmelCase : int = 0 _UpperCAmelCase : Optional[Any] = 0 def snake_case_ (self ): _UpperCAmelCase : Union[str, Any] = self.inference_layers_num / self.inference_instances_num _UpperCAmelCase : Optional[int] = ( F"*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =" F" {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***" ) print(lowerCAmelCase__ ) @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=False , ): if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: _UpperCAmelCase : Optional[Any] = input_ids.size() elif inputs_embeds is not None: _UpperCAmelCase : str = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) _UpperCAmelCase : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: _UpperCAmelCase : Optional[Any] = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) if token_type_ids is None: _UpperCAmelCase : Optional[int] = torch.zeros(lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. _UpperCAmelCase : torch.Tensor = self.get_extended_attention_mask(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Optional[Any] = encoder_hidden_states.size() _UpperCAmelCase : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: _UpperCAmelCase : Tuple = torch.ones(lowerCAmelCase__ , device=lowerCAmelCase__ ) _UpperCAmelCase : Union[str, Any] = self.invert_attention_mask(lowerCAmelCase__ ) else: _UpperCAmelCase : List[str] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] _UpperCAmelCase : Any = self.get_head_mask(lowerCAmelCase__ , self.config.num_hidden_layers ) _UpperCAmelCase : int = self.embeddings( input_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ ) _UpperCAmelCase : Optional[int] = embedding_output if self.training: _UpperCAmelCase : Union[str, Any] = [] for i in range(self.config.num_hidden_layers ): _UpperCAmelCase : Tuple = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Any = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : List[Any] = output_layers[i](output_dropout(lowerCAmelCase__ ) ) res.append(lowerCAmelCase__ ) elif self.patience == 0: # Use all layers for inference _UpperCAmelCase : int = self.encoder( lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , encoder_attention_mask=lowerCAmelCase__ , ) _UpperCAmelCase : List[str] = self.pooler(encoder_outputs[0] ) _UpperCAmelCase : List[Any] = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase__ )] else: _UpperCAmelCase : Union[str, Any] = 0 _UpperCAmelCase : Optional[Any] = None _UpperCAmelCase : int = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 _UpperCAmelCase : int = self.encoder.adaptive_forward( lowerCAmelCase__ , current_layer=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , head_mask=lowerCAmelCase__ ) _UpperCAmelCase : Tuple = self.pooler(lowerCAmelCase__ ) _UpperCAmelCase : int = output_layers[i](lowerCAmelCase__ ) if regression: _UpperCAmelCase : List[Any] = logits.detach() if patient_result is not None: _UpperCAmelCase : Union[str, Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: _UpperCAmelCase : List[str] = 0 else: _UpperCAmelCase : Optional[int] = logits.detach().argmax(dim=1 ) if patient_result is not None: _UpperCAmelCase : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase__ ) ): patient_counter += 1 else: _UpperCAmelCase : Tuple = 0 _UpperCAmelCase : List[str] = logits if patient_counter == self.patience: break _UpperCAmelCase : List[str] = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( """Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ , __a , ) class __lowerCAmelCase ( __a ): def __init__(self , lowerCAmelCase__ ): super().__init__(lowerCAmelCase__ ) _UpperCAmelCase : int = config.num_labels _UpperCAmelCase : List[Any] = BertModelWithPabee(lowerCAmelCase__ ) _UpperCAmelCase : int = nn.Dropout(config.hidden_dropout_prob ) _UpperCAmelCase : str = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase__ ) def snake_case_ (self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=None , ): _UpperCAmelCase : Optional[int] = self.bert( input_ids=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , token_type_ids=lowerCAmelCase__ , position_ids=lowerCAmelCase__ , head_mask=lowerCAmelCase__ , inputs_embeds=lowerCAmelCase__ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) _UpperCAmelCase : Any = (logits[-1],) if labels is not None: _UpperCAmelCase : Union[str, Any] = None _UpperCAmelCase : int = 0 for ix, logits_item in enumerate(lowerCAmelCase__ ): if self.num_labels == 1: # We are doing regression _UpperCAmelCase : Dict = MSELoss() _UpperCAmelCase : List[Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: _UpperCAmelCase : Optional[Any] = CrossEntropyLoss() _UpperCAmelCase : Union[str, Any] = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: _UpperCAmelCase : Any = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 _UpperCAmelCase : Tuple = (total_loss / total_weights,) + outputs return outputs
170
0
"""simple docstring""" from functools import reduce A_ = ( '''73167176531330624919225119674426574742355349194934''' '''96983520312774506326239578318016984801869478851843''' '''85861560789112949495459501737958331952853208805511''' '''12540698747158523863050715693290963295227443043557''' '''66896648950445244523161731856403098711121722383113''' '''62229893423380308135336276614282806444486645238749''' '''30358907296290491560440772390713810515859307960866''' '''70172427121883998797908792274921901699720888093776''' '''65727333001053367881220235421809751254540594752243''' '''52584907711670556013604839586446706324415722155397''' '''53697817977846174064955149290862569321978468622482''' '''83972241375657056057490261407972968652414535100474''' '''82166370484403199890008895243450658541227588666881''' '''16427171479924442928230863465674813919123162824586''' '''17866458359124566529476545682848912883142607690042''' '''24219022671055626321111109370544217506941658960408''' '''07198403850962455444362981230987879927244284909188''' '''84580156166097919133875499200524063689912560717606''' '''05886116467109405077541002256983155200055935729725''' '''71636269561882670428252483600823257530420752963450''' ) def UpperCAmelCase__ (snake_case__ : str = N ): """simple docstring""" return max( # mypy cannot properly interpret reduce int(reduce(lambda snake_case__ , snake_case__ : str(int(lowerCAmelCase_ ) * int(lowerCAmelCase_ ) ) , n[i : i + 13] ) ) for i in range(len(lowerCAmelCase_ ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
64
from itertools import permutations def snake_case_ ( lowerCAmelCase_ : tuple ): if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False __lowercase : Dict = [7, 11, 13, 17] for i, test in enumerate(lowerCAmelCase_ ): if (num[i + 4] * 100 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def snake_case_ ( lowerCAmelCase_ : int = 10 ): return sum( int("""""".join(map(lowerCAmelCase_ , lowerCAmelCase_ ) ) ) for num in permutations(range(lowerCAmelCase_ ) ) if is_substring_divisible(lowerCAmelCase_ ) ) if __name__ == "__main__": print(f'''{solution() = }''')
233
0
import unittest from pathlib import Path from tempfile import TemporaryDirectory from transformers import AutoConfig, TFAutoModel, is_tensorflow_text_available, is_tf_available from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.testing_utils import require_tensorflow_text, require_tf, slow if is_tf_available(): import tensorflow as tf if is_tensorflow_text_available(): from transformers.models.bert import TFBertTokenizer _A = ['bert-base-uncased', 'bert-base-cased'] _A = 'hf-internal-testing/tiny-bert-tf-only' if is_tf_available(): class _lowercase ( tf.keras.Model ): def __init__( self , UpperCAmelCase_ ) -> str: super().__init__() lowerCamelCase : List[Any] = tokenizer lowerCamelCase : int = AutoConfig.from_pretrained(lowerCAmelCase__ ) lowerCamelCase : List[str] = TFAutoModel.from_config(lowerCAmelCase__ ) def _UpperCamelCase ( self , UpperCAmelCase_ ) -> Tuple: lowerCamelCase : int = self.tokenizer(lowerCAmelCase__ ) lowerCamelCase : List[Any] = self.bert(**lowerCAmelCase__ ) return out["pooler_output"] @require_tf @require_tensorflow_text class _lowercase ( unittest.TestCase ): def _UpperCamelCase ( self ) -> Optional[int]: super().setUp() lowerCamelCase : Union[str, Any] = [ BertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in (TOKENIZER_CHECKPOINTS * 2) ] # repeat for when fast_bert_tokenizer=false lowerCamelCase : List[Any] = [TFBertTokenizer.from_pretrained(lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS] + [ TFBertTokenizer.from_pretrained(lowerCAmelCase__ , use_fast_bert_tokenizer=lowerCAmelCase__ ) for checkpoint in TOKENIZER_CHECKPOINTS ] assert len(self.tokenizers ) == len(self.tf_tokenizers ) lowerCamelCase : Union[str, Any] = [ 'This is a straightforward English test sentence.', 'This one has some weird characters\rto\nsee\r\nif those\u00E9break things.', 'Now we\'re going to add some Chinese: 一 二 三 一二三', 'And some much more rare Chinese: 齉 堃 齉堃', 'Je vais aussi écrire en français pour tester les accents', 'Classical Irish also has some unusual characters, so in they go: Gaelaċ, ꝼ', ] lowerCamelCase : Optional[Any] = list(zip(self.test_sentences , self.test_sentences[::-1] ) ) def _UpperCamelCase ( self ) -> Any: for tokenizer, tf_tokenizer in zip(self.tokenizers , self.tf_tokenizers ): for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase : str = tokenizer(lowerCAmelCase__ , return_tensors='tf' , padding='longest' ) lowerCamelCase : Union[str, Any] = tf_tokenizer(lowerCAmelCase__ ) for key in python_outputs.keys(): self.assertTrue(tf.reduce_all(python_outputs[key].shape == tf_outputs[key].shape ) ) self.assertTrue(tf.reduce_all(tf.cast(python_outputs[key] , tf.intaa ) == tf_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> Union[str, Any]: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : List[str] = tf_tokenizer(self.paired_sentences ) lowerCamelCase : Union[str, Any] = tf_tokenizer( text=[sentence[0] for sentence in self.paired_sentences] , text_pair=[sentence[1] for sentence in self.paired_sentences] , ) for key in merged_outputs.keys(): self.assertTrue(tf.reduce_all(tf.cast(merged_outputs[key] , tf.intaa ) == separated_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> List[Any]: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : List[Any] = tf.function(lowerCAmelCase__ ) for test_inputs in (self.test_sentences, self.paired_sentences): lowerCamelCase : List[str] = tf.constant(lowerCAmelCase__ ) lowerCamelCase : Optional[int] = compiled_tokenizer(lowerCAmelCase__ ) lowerCamelCase : Dict = tf_tokenizer(lowerCAmelCase__ ) for key in eager_outputs.keys(): self.assertTrue(tf.reduce_all(eager_outputs[key] == compiled_outputs[key] ) ) @slow def _UpperCamelCase ( self ) -> Dict: for tf_tokenizer in self.tf_tokenizers: lowerCamelCase : List[str] = ModelToSave(tokenizer=lowerCAmelCase__ ) lowerCamelCase : Optional[Any] = tf.convert_to_tensor(self.test_sentences ) lowerCamelCase : str = model(lowerCAmelCase__ ) # Build model with some sample inputs with TemporaryDirectory() as tempdir: lowerCamelCase : List[str] = Path(lowerCAmelCase__ ) / 'saved.model' model.save(lowerCAmelCase__ ) lowerCamelCase : Optional[int] = tf.keras.models.load_model(lowerCAmelCase__ ) lowerCamelCase : Optional[int] = loaded_model(lowerCAmelCase__ ) # We may see small differences because the loaded model is compiled, so we need an epsilon for the test self.assertLessEqual(tf.reduce_max(tf.abs(out - loaded_output ) ) , 1E-5 )
366
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore _A = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" _A = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('\n'.join(upper_files) + '\n') _A = [file for file in filepaths if ' ' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('\n'.join(space_files) + '\n') _A = [file for file in filepaths if '-' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('\n'.join(hyphen_files) + '\n') _A = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('\n'.join(nodir_files) + '\n') _A = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
205
0
'''simple docstring''' import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowerCAmelCase_ ( _lowerCamelCase: Optional[Any]=None , _lowerCamelCase: List[str]=None ): return field(default_factory=lambda: default , metadata=snake_case_ ) @dataclass class _UpperCamelCase : '''simple docstring''' _A : str = field( metadata={'''help''': '''The csv file to plot.'''} , ) _A : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether to plot along batch size or sequence length. Defaults to sequence length.'''} , ) _A : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Whether the csv file has time results or memory results. Defaults to memory results.'''} , ) _A : bool = field( default=UpperCAmelCase__ , metadata={'''help''': '''Disable logarithmic scale when plotting'''} , ) _A : bool = field( default=UpperCAmelCase__ , metadata={ '''help''': '''Whether the csv file has training results or inference results. Defaults to inference results.''' } , ) _A : Optional[str] = field( default=UpperCAmelCase__ , metadata={'''help''': '''Filename under which the plot will be saved. If unused no plot is saved.'''} , ) _A : Optional[List[str]] = list_field( default=UpperCAmelCase__ , metadata={'''help''': '''List of model names that are used instead of the ones in the csv file.'''} ) def lowerCAmelCase_ ( _lowerCamelCase: Union[str, Any] ): try: int(snake_case_ ) return True except ValueError: return False def lowerCAmelCase_ ( _lowerCamelCase: List[Any] ): try: float(snake_case_ ) return True except ValueError: return False class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase__ : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = args __SCREAMING_SNAKE_CASE : Dict = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="""""" ) as csv_file: __SCREAMING_SNAKE_CASE : List[str] = csv.DictReader(snake_case__ ) for row in reader: __SCREAMING_SNAKE_CASE : str = row["""model"""] self.result_dict[model_name]["bsz"].append(int(row["""batch_size"""] ) ) self.result_dict[model_name]["seq_len"].append(int(row["""sequence_length"""] ) ) if can_convert_to_int(row["""result"""] ): # value is not None __SCREAMING_SNAKE_CASE : Any = int(row["""result"""] ) elif can_convert_to_float(row["""result"""] ): # value is not None __SCREAMING_SNAKE_CASE : Union[str, Any] = float(row["""result"""] ) def UpperCamelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = plt.subplots() __SCREAMING_SNAKE_CASE : Dict = """Time usage""" if self.args.is_time else """Memory usage""" __SCREAMING_SNAKE_CASE : List[str] = title_str + """ for training""" if self.args.is_train else title_str + """ for inference""" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("""log""" ) ax.set_yscale("""log""" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): __SCREAMING_SNAKE_CASE : str = sorted(set(self.result_dict[model_name]["""bsz"""] ) ) __SCREAMING_SNAKE_CASE : Dict = sorted(set(self.result_dict[model_name]["""seq_len"""] ) ) __SCREAMING_SNAKE_CASE : List[str] = self.result_dict[model_name]["""result"""] ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : List[str] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) __SCREAMING_SNAKE_CASE : List[str] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: __SCREAMING_SNAKE_CASE : Any = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=snake_case__ , ) else: __SCREAMING_SNAKE_CASE : List[Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((__SCREAMING_SNAKE_CASE) , (__SCREAMING_SNAKE_CASE)) : List[Any] = ( ("""batch_size""", """len""") if self.args.plot_along_batch else ("""in #tokens""", """bsz""") ) __SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(snake_case__ , snake_case__ )[: len(snake_case__ )] plt.scatter( snake_case__ , snake_case__ , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}" ) plt.plot(snake_case__ , snake_case__ , """--""" ) title_str += F" {label_model_name} vs." __SCREAMING_SNAKE_CASE : List[str] = title_str[:-4] __SCREAMING_SNAKE_CASE : Tuple = """Time in s""" if self.args.is_time else """Memory in MB""" # plot plt.title(snake_case__ ) plt.xlabel(snake_case__ ) plt.ylabel(snake_case__ ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : List[str] = HfArgumentParser(snake_case_ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = parser.parse_args_into_dataclasses()[0] __SCREAMING_SNAKE_CASE : List[Any] = Plot(args=snake_case_ ) plot.plot() if __name__ == "__main__": main()
112
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __lowerCAmelCase ( UpperCAmelCase__ ): snake_case_ : str = "Wav2Vec2FeatureExtractor" snake_case_ : Dict = "AutoTokenizer" def __init__( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : Dict ): """simple docstring""" super().__init__(snake_case__ , snake_case__ ) _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False @classmethod def UpperCamelCase ( cls : List[Any] , snake_case__ : Optional[Any] , **snake_case__ : Any ): """simple docstring""" try: return super().from_pretrained(snake_case__ , **snake_case__ ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" " include a `tokenizer_class` attribute is deprecated and will be " "removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`" " attribute to either your `config.json` or `tokenizer_config.json` " "file to suppress this warning: " , snake_case__ , ) _UpperCAmelCase = WavaVecaFeatureExtractor.from_pretrained(snake_case__ , **snake_case__ ) _UpperCAmelCase = WavaVecaCTCTokenizer.from_pretrained(snake_case__ , **snake_case__ ) return cls(feature_extractor=snake_case__ , tokenizer=snake_case__ ) def __call__( self : int , *snake_case__ : Tuple , **snake_case__ : List[str] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*snake_case__ , **snake_case__ ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) _UpperCAmelCase = kwargs.pop("raw_speech" ) else: _UpperCAmelCase = kwargs.pop("audio" , snake_case__ ) _UpperCAmelCase = kwargs.pop("sampling_rate" , snake_case__ ) _UpperCAmelCase = kwargs.pop("text" , snake_case__ ) if len(snake_case__ ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: _UpperCAmelCase = self.feature_extractor(snake_case__ , *snake_case__ , sampling_rate=snake_case__ , **snake_case__ ) if text is not None: _UpperCAmelCase = self.tokenizer(snake_case__ , **snake_case__ ) if text is None: return inputs elif audio is None: return encodings else: _UpperCAmelCase = encodings["input_ids"] return inputs def UpperCamelCase ( self : List[str] , *snake_case__ : Any , **snake_case__ : Dict ): """simple docstring""" if self._in_target_context_manager: return self.current_processor.pad(*snake_case__ , **snake_case__ ) _UpperCAmelCase = kwargs.pop("input_features" , snake_case__ ) _UpperCAmelCase = kwargs.pop("labels" , snake_case__ ) if len(snake_case__ ) > 0: _UpperCAmelCase = args[0] _UpperCAmelCase = args[1:] if input_features is not None: _UpperCAmelCase = self.feature_extractor.pad(snake_case__ , *snake_case__ , **snake_case__ ) if labels is not None: _UpperCAmelCase = self.tokenizer.pad(snake_case__ , **snake_case__ ) if labels is None: return input_features elif input_features is None: return labels else: _UpperCAmelCase = labels["input_ids"] return input_features def UpperCamelCase ( self : str , *snake_case__ : List[str] , **snake_case__ : Dict ): """simple docstring""" return self.tokenizer.batch_decode(*snake_case__ , **snake_case__ ) def UpperCamelCase ( self : Union[str, Any] , *snake_case__ : List[str] , **snake_case__ : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*snake_case__ , **snake_case__ ) @contextmanager def UpperCamelCase ( self : Tuple ): """simple docstring""" warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) _UpperCAmelCase = True _UpperCAmelCase = self.tokenizer yield _UpperCAmelCase = self.feature_extractor _UpperCAmelCase = False
133
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _snake_case = { 'configuration_mobilevit': ['MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileViTConfig', 'MobileViTOnnxConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = ['MobileViTFeatureExtractor'] _snake_case = ['MobileViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileViTForImageClassification', 'MobileViTForSemanticSegmentation', 'MobileViTModel', 'MobileViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ 'TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileViTForImageClassification', 'TFMobileViTForSemanticSegmentation', 'TFMobileViTModel', 'TFMobileViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
371
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
324
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig lowerCAmelCase: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase: List[Any] = { 'Intel/dpt-large': 'https://huggingface.co/Intel/dpt-large/resolve/main/config.json', # See all DPT models at https://huggingface.co/models?filter=dpt } class a__( snake_case__ ): lowercase__ = """dpt""" def __init__( self : Union[str, Any] , __snake_case : Union[str, Any]=7_68 , __snake_case : Optional[int]=12 , __snake_case : int=12 , __snake_case : Dict=30_72 , __snake_case : List[Any]="gelu" , __snake_case : List[str]=0.0 , __snake_case : Any=0.0 , __snake_case : Dict=0.02 , __snake_case : int=1e-1_2 , __snake_case : Any=3_84 , __snake_case : Optional[Any]=16 , __snake_case : Union[str, Any]=3 , __snake_case : Optional[int]=False , __snake_case : List[Any]=True , __snake_case : Any=[2, 5, 8, 11] , __snake_case : Optional[int]="project" , __snake_case : List[Any]=[4, 2, 1, 0.5] , __snake_case : Any=[96, 1_92, 3_84, 7_68] , __snake_case : Tuple=2_56 , __snake_case : Optional[Any]=-1 , __snake_case : Tuple=False , __snake_case : List[str]=True , __snake_case : Optional[Any]=0.4 , __snake_case : str=2_55 , __snake_case : int=0.1 , __snake_case : Any=[1, 10_24, 24, 24] , __snake_case : str=[0, 1] , __snake_case : Union[str, Any]=None , **__snake_case : List[Any] , ): super().__init__(**_A ) a : Tuple = hidden_size a : Any = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) a : str = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } a : Tuple = BitConfig(**_A ) elif isinstance(_A , _A ): logger.info('Initializing the config with a `BiT` backbone.' ) a : Tuple = BitConfig(**_A ) elif isinstance(_A , _A ): a : Optional[int] = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) a : Optional[Any] = backbone_featmap_shape a : List[str] = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: a : str = None a : str = None a : Tuple = [] a : Tuple = num_hidden_layers a : List[Any] = num_attention_heads a : str = intermediate_size a : Optional[Any] = hidden_act a : Optional[Any] = hidden_dropout_prob a : Optional[Any] = attention_probs_dropout_prob a : List[str] = initializer_range a : List[Any] = layer_norm_eps a : Tuple = image_size a : int = patch_size a : Union[str, Any] = num_channels a : List[Any] = qkv_bias a : Optional[Any] = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) a : int = readout_type a : List[str] = reassemble_factors a : Optional[int] = neck_hidden_sizes a : Any = fusion_hidden_size a : str = head_in_index a : List[Any] = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) a : Union[str, Any] = use_auxiliary_head a : Tuple = auxiliary_loss_weight a : Union[str, Any] = semantic_loss_ignore_index a : str = semantic_classifier_dropout def lowercase_ ( self : int ): a : Optional[int] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: a : Union[str, Any] = self.backbone_config.to_dict() a : Optional[Any] = self.__class__.model_type return output
297
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """edbeeching/decision-transformer-gym-hopper-medium""": ( """https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json""" ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class a__ ( snake_case__ ): _a : Optional[int] = """decision_transformer""" _a : Optional[int] = ["""past_key_values"""] _a : Dict = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , _A=1_7 , _A=4 , _A=1_2_8 , _A=4_0_9_6 , _A=True , _A=1 , _A=1_0_2_4 , _A=3 , _A=1 , _A=None , _A="relu" , _A=0.1 , _A=0.1 , _A=0.1 , _A=1E-5 , _A=0.02 , _A=True , _A=True , _A=5_0_2_5_6 , _A=5_0_2_5_6 , _A=False , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = state_dim __lowerCAmelCase = act_dim __lowerCAmelCase = hidden_size __lowerCAmelCase = max_ep_len __lowerCAmelCase = action_tanh __lowerCAmelCase = vocab_size __lowerCAmelCase = n_positions __lowerCAmelCase = n_layer __lowerCAmelCase = n_head __lowerCAmelCase = n_inner __lowerCAmelCase = activation_function __lowerCAmelCase = resid_pdrop __lowerCAmelCase = embd_pdrop __lowerCAmelCase = attn_pdrop __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = scale_attn_weights __lowerCAmelCase = use_cache __lowerCAmelCase = scale_attn_by_inverse_layer_idx __lowerCAmelCase = reorder_and_upcast_attn __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id super().__init__(bos_token_id=_A , eos_token_id=_A , **_A )
92
0
"""simple docstring""" import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {"vocab_file": "vocab.txt"} lowerCamelCase_ = { "vocab_file": { "facebook/esm2_t6_8M_UR50D": "https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt", "facebook/esm2_t12_35M_UR50D": "https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt", }, } lowerCamelCase_ = { "facebook/esm2_t6_8M_UR50D": 1_0_2_4, "facebook/esm2_t12_35M_UR50D": 1_0_2_4, } def __lowerCamelCase ( a_ : List[Any] ) -> Optional[Any]: with open(a_ , '''r''' ) as f: __SCREAMING_SNAKE_CASE :List[Any] = f.read().splitlines() return [l.strip() for l in lines] class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__="<unk>" ,SCREAMING_SNAKE_CASE__="<cls>" ,SCREAMING_SNAKE_CASE__="<pad>" ,SCREAMING_SNAKE_CASE__="<mask>" ,SCREAMING_SNAKE_CASE__="<eos>" ,**SCREAMING_SNAKE_CASE__ ,) -> Optional[Any]: """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Optional[int] = load_vocab_file(SCREAMING_SNAKE_CASE__ ) __SCREAMING_SNAKE_CASE :Any = dict(enumerate(self.all_tokens ) ) __SCREAMING_SNAKE_CASE :Tuple = {tok: ind for ind, tok in enumerate(self.all_tokens )} __SCREAMING_SNAKE_CASE :List[str] = unk_token __SCREAMING_SNAKE_CASE :int = cls_token __SCREAMING_SNAKE_CASE :int = pad_token __SCREAMING_SNAKE_CASE :Tuple = mask_token __SCREAMING_SNAKE_CASE :Any = eos_token __SCREAMING_SNAKE_CASE :Optional[int] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return self._id_to_token.get(SCREAMING_SNAKE_CASE__ ,self.unk_token ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return self._token_to_id.get(SCREAMING_SNAKE_CASE__ ,self._token_to_id.get(self.unk_token ) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" return text.split() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__=False ) -> List[Any]: """simple docstring""" return len(self._id_to_token ) def _UpperCamelCase ( self ) -> int: """simple docstring""" return {token: i for i, token in enumerate(self.all_tokens )} def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> int: """simple docstring""" return self._token_to_id.get(SCREAMING_SNAKE_CASE__ ,self._token_to_id.get(self.unk_token ) ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return self._id_to_token.get(SCREAMING_SNAKE_CASE__ ,self.unk_token ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ) -> List[int]: """simple docstring""" __SCREAMING_SNAKE_CASE :Optional[Any] = [self.cls_token_id] __SCREAMING_SNAKE_CASE :Optional[Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('''Cannot tokenize multiple sequences when EOS token is not set!''' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = None ,SCREAMING_SNAKE_CASE__ = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __SCREAMING_SNAKE_CASE :Dict = [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] if token_ids_a is not None: mask += [0] * len(SCREAMING_SNAKE_CASE__ ) + [1] return mask def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :Any = os.path.join(SCREAMING_SNAKE_CASE__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + '''vocab.txt''' ) with open(SCREAMING_SNAKE_CASE__ ,'''w''' ) as f: f.write('''\n'''.join(self.all_tokens ) ) return (vocab_file,) @property def _UpperCamelCase ( self ) -> int: """simple docstring""" return self.get_vocab_size(with_added_tokens=SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ = False ) -> int: """simple docstring""" return super()._add_tokens(SCREAMING_SNAKE_CASE__ ,special_tokens=SCREAMING_SNAKE_CASE__ )
370
"""simple docstring""" def __lowerCamelCase ( a_ : int = 10 , a_ : int = 22 ) -> int: __SCREAMING_SNAKE_CASE :Optional[int] = range(1 , a_ ) __SCREAMING_SNAKE_CASE :List[Any] = range(1 , a_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'{solution(1_0, 2_2) = }')
239
0
'''simple docstring''' from collections.abc import Callable def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : float = a A : float = b if function(snake_case__ ) == 0: # one of the a or b is a root for the function return a elif function(snake_case__ ) == 0: return b elif ( function(snake_case__ ) * function(snake_case__ ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('''could not find root in given interval.''' ) else: A : float = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(snake_case__ ) == 0: return mid elif function(snake_case__ ) * function(snake_case__ ) < 0: A : Union[str, Any] = mid else: A : Optional[Any] = mid A : Optional[int] = start + (end - start) / 2.0 return mid def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 10_00)) import doctest doctest.testmod()
3
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : Optional[Any] ={"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[int] = "openai-gpt" __lowerCAmelCase :Any = { "max_position_embeddings": "n_positions", "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , __lowercase=4_0_4_7_8 , __lowercase=5_1_2 , __lowercase=7_6_8 , __lowercase=1_2 , __lowercase=1_2 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=1E-5 , __lowercase=0.0_2 , __lowercase="cls_index" , __lowercase=True , __lowercase=None , __lowercase=True , __lowercase=0.1 , **__lowercase , ) -> Optional[int]: """simple docstring""" a__ : Tuple = vocab_size a__ : Union[str, Any] = n_positions a__ : int = n_embd a__ : Dict = n_layer a__ : Dict = n_head a__ : List[str] = afn a__ : List[str] = resid_pdrop a__ : List[Any] = embd_pdrop a__ : List[str] = attn_pdrop a__ : Dict = layer_norm_epsilon a__ : List[str] = initializer_range a__ : Tuple = summary_type a__ : Union[str, Any] = summary_use_proj a__ : Optional[Any] = summary_activation a__ : Union[str, Any] = summary_first_dropout a__ : Optional[Any] = summary_proj_to_labels super().__init__(**__lowercase )
170
0
'''simple docstring''' from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass lowercase__ = (3, 9, -11, 0, 7, 5, 1, -1) lowercase__ = (4, 6, 2, 0, 8, 10, 3, -2) @dataclass class A_ : '''simple docstring''' UpperCAmelCase_ : Optional[Any] = 42 UpperCAmelCase_ : List[str] = 42 class A_ : '''simple docstring''' def __init__( self : Dict , lowercase_ : List[Any] ) -> None: UpperCAmelCase : Node | None = None for i in sorted(__lowerCamelCase , reverse=__lowerCamelCase ): UpperCAmelCase : Any = Node(__lowerCamelCase , self.head ) def __iter__( self : Union[str, Any] ) -> Iterator[int]: UpperCAmelCase : int = self.head while node: yield node.data UpperCAmelCase : int = node.next_node def __len__( self : str ) -> int: return sum(1 for _ in self ) def __str__( self : Union[str, Any] ) -> str: return " -> ".join([str(__lowerCamelCase ) for node in self] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): return SortedLinkedList(list(lowerCamelCase_ ) + list(lowerCamelCase_ ) ) if __name__ == "__main__": import doctest doctest.testmod() lowercase__ = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
356
'''simple docstring''' import pytest from datasets import Dataset, DatasetDict, Features, NamedSplit, Value from datasets.io.text import TextDatasetReader from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : int = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : Tuple = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} UpperCAmelCase : Optional[int] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : Union[str, Any] = TextDatasetReader(UpperCAmelCase_ , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[int] = tmp_path / 'cache' UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ , split=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Tuple = text_path elif issubclass(UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Optional[Any] = [text_path] UpperCAmelCase : List[Any] = tmp_path / 'cache' UpperCAmelCase : Union[str, Any] = {'text': 'string'} UpperCAmelCase : List[Any] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_dataset(UpperCAmelCase_ , UpperCAmelCase_ ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_=("train",) ): assert isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) for split in splits: UpperCAmelCase : Union[str, Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 1 assert dataset.column_names == ["text"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Any = tmp_path / 'cache' UpperCAmelCase : List[str] = {'text': 'string'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): UpperCAmelCase : int = TextDatasetReader({'train': text_path} , cache_dir=UpperCAmelCase_ , keep_in_memory=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize( 'features' , [ None, {'text': 'string'}, {'text': 'int32'}, {'text': 'float32'}, ] , ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): UpperCAmelCase : Union[str, Any] = tmp_path / 'cache' # CSV file loses col_1 string dtype information: default now is "int64" instead of "string" UpperCAmelCase : Tuple = {'text': 'string'} UpperCAmelCase : Union[str, Any] = features.copy() if features else default_expected_features UpperCAmelCase : int = ( Features({feature: Value(UpperCAmelCase_ ) for feature, dtype in features.items()} ) if features is not None else None ) UpperCAmelCase : List[Any] = TextDatasetReader({'train': text_path} , features=UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def UpperCamelCase( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): if split: UpperCAmelCase : int = {split: text_path} else: UpperCAmelCase : int = 'train' UpperCAmelCase : Any = {'train': text_path, 'test': text_path} UpperCAmelCase : Dict = tmp_path / 'cache' UpperCAmelCase : Any = {'text': 'string'} UpperCAmelCase : List[str] = TextDatasetReader(UpperCAmelCase_ , cache_dir=UpperCAmelCase_ ).read() _check_text_datasetdict(UpperCAmelCase_ , UpperCAmelCase_ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() )
280
0
'''simple docstring''' from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def snake_case_ (_a : Tuple ): return {key.lstrip('''-''' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def snake_case_ (): UpperCAmelCase = ArgumentParser( '''HuggingFace Datasets CLI tool''' , usage='''datasets-cli <command> [<args>]''' , allow_abbrev=_a ) UpperCAmelCase = parser.add_subparsers(help='''datasets-cli command helpers''' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(_a ) EnvironmentCommand.register_subcommand(_a ) TestCommand.register_subcommand(_a ) RunBeamCommand.register_subcommand(_a ) DummyDataCommand.register_subcommand(_a ) # Parse args UpperCAmelCase , UpperCAmelCase = parser.parse_known_args() if not hasattr(_a , '''func''' ): parser.print_help() exit(1 ) UpperCAmelCase = parse_unknown_args(_a ) # Run UpperCAmelCase = args.func(_a , **_a ) service.run() if __name__ == "__main__": main()
34
import os def a ( A__ : str = "input.txt" ) -> int: """simple docstring""" with open(os.path.join(os.path.dirname(A__ ) , A__ ) ) as input_file: _lowercase =[ [int(A__ ) for element in line.split(',' )] for line in input_file.readlines() ] _lowercase =len(A__ ) _lowercase =len(matrix[0] ) _lowercase =[[-1 for _ in range(A__ )] for _ in range(A__ )] for i in range(A__ ): _lowercase =matrix[i][0] for j in range(1 , A__ ): for i in range(A__ ): _lowercase =minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , A__ ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2 , -1 , -1 ): _lowercase =min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f"{solution() = }")
205
0
"""simple docstring""" import copy import tempfile import unittest from huggingface_hub import HfFolder, delete_repo from parameterized import parameterized from requests.exceptions import HTTPError from transformers import AutoConfig, GenerationConfig from transformers.testing_utils import TOKEN, USER, is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @parameterized.expand([(None,), ('''foo.json''',)]) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_ , config_name=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = GenerationConfig.from_pretrained(lowercase_ , config_name=lowercase_) # Checks parameters that were specified self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.temperature , 0.7) self.assertEqual(loaded_config.length_penalty , 1.0) self.assertEqual(loaded_config.bad_words_ids , [[1, 2, 3], [4, 5]]) # Checks parameters that were not specified (defaults) self.assertEqual(loaded_config.top_k , 50) self.assertEqual(loaded_config.max_length , 20) self.assertEqual(loaded_config.max_time , lowercase_) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = AutoConfig.from_pretrained('''gpt2''') SCREAMING_SNAKE_CASE_ : Union[str, Any] = GenerationConfig.from_model_config(lowercase_) SCREAMING_SNAKE_CASE_ : str = GenerationConfig() # The generation config has loaded a few non-default parameters from the model config self.assertNotEqual(lowercase_ , lowercase_) # One of those parameters is eos_token_id -- check if it matches self.assertNotEqual(generation_config_from_model.eos_token_id , default_generation_config.eos_token_id) self.assertEqual(generation_config_from_model.eos_token_id , model_config.eos_token_id) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig() SCREAMING_SNAKE_CASE_ : Tuple = { '''max_new_tokens''': 1024, '''foo''': '''bar''', } SCREAMING_SNAKE_CASE_ : List[Any] = copy.deepcopy(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = generation_config.update(**lowercase_) # update_kwargs was not modified (no side effects) self.assertEqual(lowercase_ , lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(generation_config.max_new_tokens , 1024) # `.update()` returns a dictionary of unused kwargs self.assertEqual(lowercase_ , {'''foo''': '''bar'''}) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[int] = GenerationConfig() SCREAMING_SNAKE_CASE_ : Optional[int] = '''bar''' with tempfile.TemporaryDirectory('''test-generation-config''') as tmp_dir: generation_config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(lowercase_) # update_kwargs was used to update the config on valid attributes self.assertEqual(new_config.foo , '''bar''') SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig.from_model_config(lowercase_) assert not hasattr(lowercase_ , '''foo''') # no new kwargs should be initialized if from config def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = GenerationConfig() self.assertEqual(default_config.temperature , 1.0) self.assertEqual(default_config.do_sample , lowercase_) self.assertEqual(default_config.num_beams , 1) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , bad_words_ids=[[1, 2, 3], [4, 5]] , ) self.assertEqual(config.temperature , 0.7) self.assertEqual(config.do_sample , lowercase_) self.assertEqual(config.num_beams , 1) with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowercase_) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(lowercase_ , temperature=1.0) self.assertEqual(loaded_config.temperature , 1.0) self.assertEqual(loaded_config.do_sample , lowercase_) self.assertEqual(loaded_config.num_beams , 1) # default value @is_staging_test class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @classmethod def _SCREAMING_SNAKE_CASE ( cls : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = TOKEN HfFolder.save_token(lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Tuple): '''simple docstring''' try: delete_repo(token=cls._token , repo_id='''test-generation-config''') except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-generation-config-org''') except HTTPError: pass def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''test-generation-config''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : List[str] = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''test-generation-config''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''test-generation-config''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Any = GenerationConfig.from_pretrained(F'{USER}/test-generation-config') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = GenerationConfig( do_sample=lowercase_ , temperature=0.7 , length_penalty=1.0 , ) config.push_to_hub('''valid_org/test-generation-config-org''' , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : int = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_)) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-generation-config-org''') # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowercase_ , repo_id='''valid_org/test-generation-config-org''' , push_to_hub=lowercase_ , use_auth_token=self._token) SCREAMING_SNAKE_CASE_ : Tuple = GenerationConfig.from_pretrained('''valid_org/test-generation-config-org''') for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowercase_ , getattr(lowercase_ , lowercase_))
318
"""simple docstring""" import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class lowerCAmelCase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self : Any , lowercase_ : Dict[str, int] , lowercase_ : List[str] , lowercase_ : int = None , lowercase_ : int = None): '''simple docstring''' super().__init__() SCREAMING_SNAKE_CASE_ : str = pad_token_id SCREAMING_SNAKE_CASE_ : Optional[int] = max_length SCREAMING_SNAKE_CASE_ : Dict = vocab SCREAMING_SNAKE_CASE_ : Dict = merges SCREAMING_SNAKE_CASE_ : Union[str, Any] = BytePairTokenizer(lowercase_ , lowercase_ , sequence_length=lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : GPTaTokenizer , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = [''' '''.join(lowercase_) for m in tokenizer.bpe_ranks.keys()] SCREAMING_SNAKE_CASE_ : str = tokenizer.get_vocab() return cls(lowercase_ , lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : int , lowercase_ : Union[str, os.PathLike] , *lowercase_ : List[str] , **lowercase_ : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = GPTaTokenizer.from_pretrained(lowercase_ , *lowercase_ , **lowercase_) return cls.from_tokenizer(lowercase_ , *lowercase_ , **lowercase_) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Dict , lowercase_ : List[Any]): '''simple docstring''' return cls(**lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def _SCREAMING_SNAKE_CASE ( self : Any , lowercase_ : List[Any] , lowercase_ : int = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.tf_tokenizer(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = tf.ones_like(lowercase_) if self.pad_token_id is not None: # pad the tokens up to max length SCREAMING_SNAKE_CASE_ : Union[str, Any] = max_length if max_length is not None else self.max_length if max_length is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = pad_model_inputs( lowercase_ , max_seq_length=lowercase_ , pad_value=self.pad_token_id) return {"attention_mask": attention_mask, "input_ids": input_ids}
318
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, logging if is_torch_available(): import torch UpperCAmelCase__ = logging.get_logger(__name__) class a ( lowerCAmelCase_ ): _snake_case : Union[str, Any] = ['pixel_values'] def __init__( self : Optional[Any] , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Dict[str, int]] = None , __lowerCAmelCase : PILImageResampling = PILImageResampling.BILINEAR , __lowerCAmelCase : bool = True , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : bool = True , __lowerCAmelCase : Union[int, float] = 1 / 255 , __lowerCAmelCase : bool = True , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , **__lowerCAmelCase : Optional[Any] , ): super().__init__(**lowerCAmelCase__ ) _UpperCAmelCase = size if size is not None else {"""shortest_edge""": 256} _UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 224, """width""": 224} _UpperCAmelCase = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) _UpperCAmelCase = do_resize _UpperCAmelCase = size _UpperCAmelCase = resample _UpperCAmelCase = do_center_crop _UpperCAmelCase = crop_size _UpperCAmelCase = do_rescale _UpperCAmelCase = rescale_factor _UpperCAmelCase = do_normalize _UpperCAmelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCAmelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def lowerCAmelCase_ ( self : Tuple , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : PILImageResampling = PILImageResampling.BICUBIC , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Optional[Any] , ): _UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) _UpperCAmelCase = get_resize_output_image_size(lowerCAmelCase__ , size=size["""shortest_edge"""] , default_to_square=lowerCAmelCase__ ) return resize(lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict[str, int] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Optional[Any] , ): _UpperCAmelCase = get_size_dict(lowerCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(lowerCAmelCase__ , size=(size["""height"""], size["""width"""]) , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCAmelCase_ ( self : Dict , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : float , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Tuple ): return rescale(lowerCAmelCase__ , scale=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCAmelCase_ ( self : str , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Union[float, List[float]] , __lowerCAmelCase : Optional[Union[str, ChannelDimension]] = None , **__lowerCAmelCase : Any , ): return normalize(lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ , data_format=lowerCAmelCase__ , **lowerCAmelCase__ ) def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : ImageInput , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : PILImageResampling = None , __lowerCAmelCase : bool = None , __lowerCAmelCase : Dict[str, int] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[float] = None , __lowerCAmelCase : Optional[bool] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[float, List[float]]] = None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , __lowerCAmelCase : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__lowerCAmelCase : Optional[Any] , ): _UpperCAmelCase = do_resize if do_resize is not None else self.do_resize _UpperCAmelCase = size if size is not None else self.size _UpperCAmelCase = get_size_dict(lowerCAmelCase__ , default_to_square=lowerCAmelCase__ ) _UpperCAmelCase = resample if resample is not None else self.resample _UpperCAmelCase = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCAmelCase = crop_size if crop_size is not None else self.crop_size _UpperCAmelCase = get_size_dict(lowerCAmelCase__ , param_name="""crop_size""" ) _UpperCAmelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCAmelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCAmelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCAmelCase = image_mean if image_mean is not None else self.image_mean _UpperCAmelCase = image_std if image_std is not None else self.image_std _UpperCAmelCase = make_list_of_images(lowerCAmelCase__ ) if not valid_images(lowerCAmelCase__ ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCAmelCase = [to_numpy_array(lowerCAmelCase__ ) for image in images] if do_resize: _UpperCAmelCase = [self.resize(image=lowerCAmelCase__ , size=lowerCAmelCase__ , resample=lowerCAmelCase__ ) for image in images] if do_center_crop: _UpperCAmelCase = [self.center_crop(image=lowerCAmelCase__ , size=lowerCAmelCase__ ) for image in images] if do_rescale: _UpperCAmelCase = [self.rescale(image=lowerCAmelCase__ , scale=lowerCAmelCase__ ) for image in images] if do_normalize: _UpperCAmelCase = [self.normalize(image=lowerCAmelCase__ , mean=lowerCAmelCase__ , std=lowerCAmelCase__ ) for image in images] _UpperCAmelCase = [to_channel_dimension_format(lowerCAmelCase__ , lowerCAmelCase__ ) for image in images] _UpperCAmelCase = {"""pixel_values""": images} return BatchFeature(data=lowerCAmelCase__ , tensor_type=lowerCAmelCase__ ) def lowerCAmelCase_ ( self : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[Tuple] = None ): _UpperCAmelCase = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError( """Make sure that you pass in as many target sizes as the batch dimension of the logits""" ) if is_torch_tensor(lowerCAmelCase__ ): _UpperCAmelCase = target_sizes.numpy() _UpperCAmelCase = [] for idx in range(len(lowerCAmelCase__ ) ): _UpperCAmelCase = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="""bilinear""" , align_corners=lowerCAmelCase__ ) _UpperCAmelCase = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowerCAmelCase__ ) else: _UpperCAmelCase = logits.argmax(dim=1 ) _UpperCAmelCase = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
289
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin lowercase__ : Dict = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right lowercase__ : List[Any] = 25_00_04 lowercase__ : str = 25_00_20 @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" _snake_case : Optional[Any] = MBartTokenizer _snake_case : Tuple = MBartTokenizerFast _snake_case : List[str] = True _snake_case : Optional[Any] = True def snake_case__ ( self : Any ) -> Optional[int]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case__ ( self : str ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = MBartTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) _UpperCamelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCAmelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _UpperCamelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCamelCase = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) _UpperCamelCase = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual( lowerCAmelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def snake_case__ ( self : Any ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return _UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): _UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) _UpperCamelCase = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=True _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it save with the same files self.assertSequenceEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) # Save tokenizer rust, legacy_format=False _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = tokenizer_r.save_pretrained(lowerCAmelCase__ , legacy_format=lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.save_pretrained(lowerCAmelCase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way _UpperCamelCase = tokenizer_r.from_pretrained(lowerCAmelCase__ ) _UpperCamelCase = tokenizer_p.from_pretrained(lowerCAmelCase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ) shutil.rmtree(lowerCAmelCase__ ) @require_torch @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Dict = 'facebook/mbart-large-en-ro' _snake_case : Dict = [ ' UN Chief Says There Is No Military Solution in Syria', ' Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that "there is no military solution" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.', ] _snake_case : List[Any] = [ 'Şeful ONU declară că nu există o soluţie militară în Siria', 'Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei' ' pentru Siria este că "nu există o soluţie militară" la conflictul de aproape cinci ani şi că noi arme nu vor' ' face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.', ] _snake_case : Union[str, Any] = [8_2_7_4, 1_2_7_8_7_3, 2_5_9_1_6, 7, 8_6_2_2, 2_0_7_1, 4_3_8, 6_7_4_8_5, 5_3, 1_8_7_8_9_5, 2_3, 5_1_7_1_2, 2, EN_CODE] @classmethod def snake_case__ ( cls : List[str] ) -> List[str]: '''simple docstring''' _UpperCamelCase = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) _UpperCamelCase = 1 return cls def snake_case__ ( self : Dict ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 250001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 250004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 250020 ) def snake_case__ ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) def snake_case__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertIn(lowerCAmelCase__ , self.tokenizer.all_special_ids ) _UpperCamelCase = [RO_CODE, 884, 9019, 96, 9, 916, 86792, 36, 18743, 15596, 5, 2] _UpperCamelCase = self.tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ ) _UpperCamelCase = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase__ ) self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase__ ) def snake_case__ ( self : Any ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , lowerCAmelCase__ ) _UpperCamelCase = 10 _UpperCamelCase = self.tokenizer(lowerCAmelCase__ , max_length=lowerCAmelCase__ , truncation=lowerCAmelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase__ ) self.assertEqual(len(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case__ ( self : List[Any] ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [250026, 250001] ) def snake_case__ ( self : int ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = tempfile.mkdtemp() _UpperCamelCase = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase__ ) _UpperCamelCase = MBartTokenizer.from_pretrained(lowerCAmelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase__ ) @require_torch def snake_case__ ( self : Any ) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , return_tensors='''pt''' ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def snake_case__ ( self : Optional[Any] ) -> int: '''simple docstring''' _UpperCamelCase = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) _UpperCamelCase = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) _UpperCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def snake_case__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _UpperCamelCase = self.tokenizer(self.src_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=3 , return_tensors='''pt''' ) _UpperCamelCase = self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=10 , return_tensors='''pt''' ) _UpperCamelCase = targets['''input_ids'''] _UpperCamelCase = shift_tokens_right(lowerCAmelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def snake_case__ ( self : Tuple ) -> Tuple: '''simple docstring''' _UpperCamelCase = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowerCAmelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 250004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 250001, } , )
324
0
"""simple docstring""" class __lowercase : """simple docstring""" def __init__( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = n SCREAMING_SNAKE_CASE_ : Tuple = [None] * self.n SCREAMING_SNAKE_CASE_ : Any = 0 # index of the first element SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 def __len__( self ): """simple docstring""" return self.size def UpperCamelCase__ ( self ): """simple docstring""" return self.size == 0 def UpperCamelCase__ ( self ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" if self.size >= self.n: raise Exception('QUEUE IS FULL' ) SCREAMING_SNAKE_CASE_ : str = data SCREAMING_SNAKE_CASE_ : Optional[Any] = (self.rear + 1) % self.n self.size += 1 return self def UpperCamelCase__ ( self ): """simple docstring""" if self.size == 0: raise Exception('UNDERFLOW' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.array[self.front] SCREAMING_SNAKE_CASE_ : List[Any] = None SCREAMING_SNAKE_CASE_ : Union[str, Any] = (self.front + 1) % self.n self.size -= 1 return temp
362
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase = 42 _UpperCAmelCase = None _UpperCAmelCase = None def a__ ( ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(1 ) SCREAMING_SNAKE_CASE_ : Any = Node(2 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = Node(3 ) SCREAMING_SNAKE_CASE_ : int = Node(4 ) SCREAMING_SNAKE_CASE_ : List[str] = Node(5 ) return tree def a__ ( A__ ): return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def a__ ( A__ ): return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def a__ ( A__ ): return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def a__ ( A__ ): return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] if root is None: return output SCREAMING_SNAKE_CASE_ : int = deque([root] ) while process_queue: SCREAMING_SNAKE_CASE_ : List[str] = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] def populate_output(A__, A__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(A__, A__ ) return output def a__ ( A__, A__ ): SCREAMING_SNAKE_CASE_ : list[Any] = [] def populate_output(A__, A__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(A__, A__ ) return output def a__ ( A__ ): if root is None: return [] SCREAMING_SNAKE_CASE_ : list[Sequence[Node | None]] = [] SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 SCREAMING_SNAKE_CASE_ : Optional[Any] = height(A__ ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : List[Any] = 1 else: output.append(get_nodes_from_right_to_left(A__, A__ ) ) SCREAMING_SNAKE_CASE_ : Optional[Any] = 0 return output def a__ ( ): # Main function for testing. SCREAMING_SNAKE_CASE_ : Optional[int] = make_tree() print(F'''In-order Traversal: {inorder(A__ )}''' ) print(F'''Pre-order Traversal: {preorder(A__ )}''' ) print(F'''Post-order Traversal: {postorder(A__ )}''', '\n' ) print(F'''Height of Tree: {height(A__ )}''', '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(A__ ), '\n' ) print('Level-wise order Traversal: ' ) for level in range(1, height(A__ ) + 1 ): print(F'''Level {level}:''', get_nodes_from_left_to_right(A__, level=A__ ) ) print('\nZigZag order Traversal: ' ) print(zigzag(A__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
162
0
import math import unittest def _a ( SCREAMING_SNAKE_CASE_ : int ): assert isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCAmelCase__ ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class a__ ( unittest.TestCase ): def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(1_1 ) ) self.assertTrue(is_prime(1_3 ) ) self.assertTrue(is_prime(1_7 ) ) self.assertTrue(is_prime(1_9 ) ) self.assertTrue(is_prime(2_3 ) ) self.assertTrue(is_prime(2_9 ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" with self.assertRaises(lowercase_ ): is_prime(-1_9 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
92
'''simple docstring''' import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCAmelCase, unittest.TestCase): UpperCamelCase__ = PriorTransformer UpperCamelCase__ = '''hidden_states''' @property def SCREAMING_SNAKE_CASE_ ( self : int ): lowercase_ : Optional[Any] = 4 lowercase_ : int = 8 lowercase_ : Union[str, Any] = 7 lowercase_ : List[str] = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = floats_tensor((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[Any]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : int = 4 lowercase_ : Any = 8 lowercase_ : Tuple = 7 lowercase_ : Union[str, Any] = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Tuple = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Union[str, Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def SCREAMING_SNAKE_CASE_ ( self : str ): return (4, 8) @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): return (4, 8) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): lowercase_ : Optional[Any] = { """num_attention_heads""": 2, """attention_head_dim""": 4, """num_layers""": 2, """embedding_dim""": 8, """num_embeddings""": 7, """additional_embeddings""": 4, } lowercase_ : List[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ , lowercase_ : Tuple = PriorTransformer.from_pretrained( """hf-internal-testing/prior-dummy""" , output_loading_info=lowercase_ ) self.assertIsNotNone(lowercase_ ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(lowercase_ ) lowercase_ : Optional[int] = model(**self.dummy_input )[0] assert hidden_states is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE_ ( self : Any ): lowercase_ , lowercase_ : str = self.prepare_init_args_and_inputs_for_common() lowercase_ : List[Any] = self.model_class(**lowercase_ ) lowercase_ : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase_ : Any = [*signature.parameters.keys()] lowercase_ : Optional[Any] = ["""hidden_states""", """timestep"""] self.assertListEqual(arg_names[:2] , lowercase_ ) def SCREAMING_SNAKE_CASE_ ( self : List[str] ): lowercase_ : Optional[Any] = PriorTransformer.from_pretrained("""hf-internal-testing/prior-dummy""" ) lowercase_ : Any = model.to(lowercase_ ) if hasattr(lowercase_ , """set_default_attn_processor""" ): model.set_default_attn_processor() lowercase_ : Any = self.get_dummy_seed_input() with torch.no_grad(): lowercase_ : List[str] = model(**lowercase_ )[0] lowercase_ : Tuple = output[0, :5].flatten().cpu() print(lowercase_ ) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. lowercase_ : Dict = torch.tensor([-1.34_36, -0.28_70, 0.75_38, 0.43_68, -0.02_39] ) self.assertTrue(torch_all_close(lowercase_ , lowercase_ , rtol=1E-2 ) ) @slow class __magic_name__ ( unittest.TestCase): def SCREAMING_SNAKE_CASE_ ( self : List[Any] , lowercase_ : Union[str, Any]=1 , lowercase_ : Optional[Any]=768 , lowercase_ : Tuple=77 , lowercase_ : Optional[int]=0 ): torch.manual_seed(lowercase_ ) lowercase_ : Optional[Any] = batch_size lowercase_ : int = embedding_dim lowercase_ : int = num_embeddings lowercase_ : Dict = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : Any = torch.randn((batch_size, embedding_dim) ).to(lowercase_ ) lowercase_ : List[Any] = torch.randn((batch_size, num_embeddings, embedding_dim) ).to(lowercase_ ) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def SCREAMING_SNAKE_CASE_ ( self : Any ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.58_61, 0.12_83, -0.09_31, 0.08_82, 0.44_76, 0.13_29, -0.04_98, 0.06_40]], [37, [-0.49_13, 0.01_10, -0.04_83, 0.05_41, 0.49_54, -0.01_70, 0.03_54, 0.16_51]], # fmt: on ] ) def SCREAMING_SNAKE_CASE_ ( self : int , lowercase_ : Any , lowercase_ : List[str] ): lowercase_ : List[Any] = PriorTransformer.from_pretrained("""kandinsky-community/kandinsky-2-1-prior""" , subfolder="""prior""" ) model.to(lowercase_ ) lowercase_ : Optional[Any] = self.get_dummy_seed_input(seed=lowercase_ ) with torch.no_grad(): lowercase_ : Tuple = model(**lowercase_ )[0] assert list(sample.shape ) == [1, 768] lowercase_ : Union[str, Any] = sample[0, :8].flatten().cpu() print(lowercase_ ) lowercase_ : Optional[Any] = torch.tensor(lowercase_ ) assert torch_all_close(lowercase_ , lowercase_ , atol=1E-3 )
239
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__: str = logging.get_logger(__name__) __magic_name__: Optional[int] = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class snake_case__ ( _lowerCAmelCase ): lowercase__ : str = '''levit''' def __init__( self , lowerCAmelCase__=2_24 , lowerCAmelCase__=3 , lowerCAmelCase__=3 , lowerCAmelCase__=2 , lowerCAmelCase__=1 , lowerCAmelCase__=16 , lowerCAmelCase__=[1_28, 2_56, 3_84] , lowerCAmelCase__=[4, 8, 12] , lowerCAmelCase__=[4, 4, 4] , lowerCAmelCase__=[16, 16, 16] , lowerCAmelCase__=0 , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=[2, 2, 2] , lowerCAmelCase__=0.0_2 , **lowerCAmelCase__ , ) -> Tuple: super().__init__(**lowerCAmelCase__ ) __magic_name__ : str = image_size __magic_name__ : int = num_channels __magic_name__ : Dict = kernel_size __magic_name__ : int = stride __magic_name__ : str = padding __magic_name__ : List[str] = hidden_sizes __magic_name__ : List[Any] = num_attention_heads __magic_name__ : Union[str, Any] = depths __magic_name__ : List[Any] = key_dim __magic_name__ : Union[str, Any] = drop_path_rate __magic_name__ : Union[str, Any] = patch_size __magic_name__ : Tuple = attention_ratio __magic_name__ : Union[str, Any] = mlp_ratio __magic_name__ : List[str] = initializer_range __magic_name__ : Dict = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class snake_case__ ( _lowerCAmelCase ): lowercase__ : Optional[int] = version.parse('''1.11''' ) @property def __magic_name__ ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __magic_name__ ( self ) -> float: return 1e-4
358
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class snake_case__ ( unittest.TestCase ): def __magic_name__ ( self ) -> int: __magic_name__ : List[str] = tempfile.mkdtemp() # fmt: off __magic_name__ : Union[str, Any] = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on __magic_name__ : Any = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) __magic_name__ : int = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] __magic_name__ : Any = {"""unk_token""": """<unk>"""} __magic_name__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) __magic_name__ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(lowerCAmelCase__ ) ) __magic_name__ : int = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], """image_std""": [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } __magic_name__ : List[str] = os.path.join(self.tmpdirname , lowerCAmelCase__ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> List[str]: return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Any: return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **lowerCAmelCase__ ) def __magic_name__ ( self , **lowerCAmelCase__ ) -> Optional[Any]: return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __magic_name__ ( self ) -> int: shutil.rmtree(self.tmpdirname ) def __magic_name__ ( self ) -> int: __magic_name__ : str = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] __magic_name__ : Any = [Image.fromarray(np.moveaxis(lowerCAmelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __magic_name__ ( self ) -> Union[str, Any]: __magic_name__ : Any = self.get_tokenizer() __magic_name__ : str = self.get_rust_tokenizer() __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) __magic_name__ : Optional[int] = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCAmelCase__ ) __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) __magic_name__ : List[Any] = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCAmelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Optional[int]: __magic_name__ : Optional[Any] = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __magic_name__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __magic_name__ : Any = self.get_image_processor(do_normalize=lowerCAmelCase__ ) __magic_name__ : Tuple = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowerCAmelCase__ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCAmelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCAmelCase__ ) def __magic_name__ ( self ) -> Dict: __magic_name__ : int = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : Union[str, Any] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Dict = self.prepare_image_inputs() __magic_name__ : Any = image_processor(lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : str = processor(images=lowerCAmelCase__ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Union[str, Any] = self.get_image_processor() __magic_name__ : int = self.get_tokenizer() __magic_name__ : int = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Optional[int] = """lower newer""" __magic_name__ : Tuple = processor(text=lowerCAmelCase__ , return_tensors="""np""" ) __magic_name__ : Optional[int] = tokenizer(lowerCAmelCase__ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : Tuple = self.get_image_processor() __magic_name__ : Union[str, Any] = self.get_tokenizer() __magic_name__ : List[str] = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Any = """lower newer""" __magic_name__ : Union[str, Any] = self.prepare_image_inputs() __magic_name__ : int = processor(text=lowerCAmelCase__ , images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Optional[Any]: __magic_name__ : Dict = """google/owlvit-base-patch32""" __magic_name__ : int = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : List[Any] = ["""cat""", """nasa badge"""] __magic_name__ : Any = processor(text=lowerCAmelCase__ ) __magic_name__ : Dict = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> List[Any]: __magic_name__ : List[str] = """google/owlvit-base-patch32""" __magic_name__ : Optional[Any] = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : Tuple = [["""cat""", """nasa badge"""], ["""person"""]] __magic_name__ : Tuple = processor(text=lowerCAmelCase__ ) __magic_name__ : str = 16 __magic_name__ : str = len(lowerCAmelCase__ ) __magic_name__ : int = max([len(lowerCAmelCase__ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[int] = """google/owlvit-base-patch32""" __magic_name__ : Any = OwlViTProcessor.from_pretrained(lowerCAmelCase__ ) __magic_name__ : str = ["""cat""", """nasa badge"""] __magic_name__ : List[str] = processor(text=lowerCAmelCase__ ) __magic_name__ : List[Any] = 16 __magic_name__ : Any = inputs["""input_ids"""] __magic_name__ : Optional[Any] = [ [4_94_06, 23_68, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4_94_06, 68_41, 1_13_01, 4_94_07, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def __magic_name__ ( self ) -> Tuple: __magic_name__ : List[str] = self.get_image_processor() __magic_name__ : Dict = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Tuple = self.prepare_image_inputs() __magic_name__ : List[Any] = self.prepare_image_inputs() __magic_name__ : List[str] = processor(images=lowerCAmelCase__ , query_images=lowerCAmelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCAmelCase__ ): processor() def __magic_name__ ( self ) -> Any: __magic_name__ : Optional[Any] = self.get_image_processor() __magic_name__ : List[Any] = self.get_tokenizer() __magic_name__ : Tuple = OwlViTProcessor(tokenizer=lowerCAmelCase__ , image_processor=lowerCAmelCase__ ) __magic_name__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __magic_name__ : Optional[Any] = processor.batch_decode(lowerCAmelCase__ ) __magic_name__ : Optional[int] = tokenizer.batch_decode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
138
0
import pytest from datasets import inspect_metric, list_metrics, load_metric @pytest.fixture def lowercase_ ( _lowerCamelCase : int): monkeypatch.setattr("datasets.utils.deprecation_utils._emitted_deprecation_warnings" , set()) @pytest.fixture def lowercase_ ( _lowerCamelCase : Union[str, Any]): class snake_case_ : def __init__( self : int , lowercase_ : Dict ) -> Tuple: lowercase__ : List[Any] = metric_id class snake_case_ : __A : Any = [MetricMock(__A ) for metric_id in ["accuracy", "mse", "precision", "codeparrot/apps_metric"]] def __UpperCamelCase ( self : Tuple ) -> Tuple: return self._metrics monkeypatch.setattr("datasets.inspect.huggingface_hub" , HfhMock()) @pytest.mark.parametrize( "func, args" , [(load_metric, ("metrics/mse",)), (list_metrics, ()), (inspect_metric, ("metrics/mse", "tmp_path"))]) def lowercase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : str , _lowerCamelCase : Tuple , _lowerCamelCase : Dict): if "tmp_path" in args: lowercase__ : Any = tuple(arg if arg != "tmp_path" else tmp_path for arg in args) with pytest.warns(_lowerCamelCase , match="https://huggingface.co/docs/evaluate"): func(*_lowerCamelCase)
87
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class _A( unittest.TestCase ): """simple docstring""" def __init__( self , _A , _A=7 , _A=3 , _A=30 , _A=400 , _A=True , _A=None , _A=True , _A=[0.5, 0.5, 0.5] , _A=[0.5, 0.5, 0.5] , _A=True , _A=1 / 255 , _A=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : List[Any] = size if size is not None else {'shortest_edge': 18, 'longest_edge': 1333} __A : Union[str, Any] = parent __A : Optional[int] = batch_size __A : int = num_channels __A : int = min_resolution __A : Any = max_resolution __A : List[Any] = do_resize __A : List[Any] = size __A : Union[str, Any] = do_normalize __A : Optional[int] = image_mean __A : Optional[int] = image_std __A : int = do_rescale __A : str = rescale_factor __A : Tuple = do_pad def UpperCAmelCase_ ( self ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase_ ( self , _A , _A=False ): if not batched: __A : List[str] = image_inputs[0] if isinstance(_A , Image.Image ): __A , __A : int = image.size else: __A , __A : Any = image.shape[1], image.shape[2] if w < h: __A : List[Any] = int(self.size['shortest_edge'] * h / w ) __A : List[Any] = self.size['shortest_edge'] elif w > h: __A : Union[str, Any] = self.size['shortest_edge'] __A : str = int(self.size['shortest_edge'] * w / h ) else: __A : Dict = self.size['shortest_edge'] __A : str = self.size['shortest_edge'] else: __A : int = [] for image in image_inputs: __A , __A : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : List[str] = max(_A , key=lambda _A : item[0] )[0] __A : str = max(_A , key=lambda _A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class _A( snake_case__ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = YolosImageProcessor if is_vision_available() else None def UpperCAmelCase_ ( self ): __A : Dict = YolosImageProcessingTester(self ) @property def UpperCAmelCase_ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase_ ( self ): __A : str = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_A , 'image_mean' ) ) self.assertTrue(hasattr(_A , 'image_std' ) ) self.assertTrue(hasattr(_A , 'do_normalize' ) ) self.assertTrue(hasattr(_A , 'do_resize' ) ) self.assertTrue(hasattr(_A , 'size' ) ) def UpperCAmelCase_ ( self ): __A : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 18, 'longest_edge': 1333} ) self.assertEqual(image_processor.do_pad , _A ) __A : Dict = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=_A ) self.assertEqual(image_processor.size , {'shortest_edge': 42, 'longest_edge': 84} ) self.assertEqual(image_processor.do_pad , _A ) def UpperCAmelCase_ ( self ): pass def UpperCAmelCase_ ( self ): # Initialize image_processing __A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A ) for image in image_inputs: self.assertIsInstance(_A , Image.Image ) # Test not batched input __A : Any = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(_A , batched=_A ) __A : str = image_processing(_A , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , numpify=_A ) for image in image_inputs: self.assertIsInstance(_A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : List[Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processing __A : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test not batched input __A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values __A , __A : Union[str, Any] = self.image_processor_tester.get_expected_values(_A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Optional[int] = image_processing(_A , return_tensors='pt' ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(_A , batched=_A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase_ ( self ): # Initialize image_processings __A : Tuple = self.image_processing_class(**self.image_processor_dict ) __A : Any = self.image_processing_class(do_resize=_A , do_normalize=_A , do_rescale=_A ) # create random PyTorch tensors __A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_A , torchify=_A ) for image in image_inputs: self.assertIsInstance(_A , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __A : Optional[int] = image_processing_a.pad(_A , return_tensors='pt' ) __A : Optional[int] = image_processing_a(_A , return_tensors='pt' ) self.assertTrue( torch.allclose(encoded_images_with_method['pixel_values'] , encoded_images['pixel_values'] , atol=1e-4 ) ) @slow def UpperCAmelCase_ ( self ): # prepare image and target __A : List[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_annotations.txt' , 'r' ) as f: __A : Optional[Any] = json.loads(f.read() ) __A : Optional[Any] = {'image_id': 39769, 'annotations': target} # encode them __A : str = YolosImageProcessor.from_pretrained('hustvl/yolos-small' ) __A : List[Any] = image_processing(images=_A , annotations=_A , return_tensors='pt' ) # verify pixel values __A : List[Any] = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : List[Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Any = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Optional[int] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify orig_size __A : int = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : str = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) ) @slow def UpperCAmelCase_ ( self ): # prepare image, target and masks_path __A : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) with open('./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt' , 'r' ) as f: __A : Tuple = json.loads(f.read() ) __A : Any = {'file_name': '000000039769.png', 'image_id': 39769, 'segments_info': target} __A : List[Any] = pathlib.Path('./tests/fixtures/tests_samples/COCO/coco_panoptic' ) # encode them __A : Any = YolosImageProcessor(format='coco_panoptic' ) __A : List[Any] = image_processing(images=_A , annotations=_A , masks_path=_A , return_tensors='pt' ) # verify pixel values __A : Any = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding['pixel_values'].shape , _A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['pixel_values'][0, 0, 0, :3] , _A , atol=1e-4 ) ) # verify area __A : int = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['labels'][0]['area'] , _A ) ) # verify boxes __A : Optional[int] = torch.Size([6, 4] ) self.assertEqual(encoding['labels'][0]['boxes'].shape , _A ) __A : Optional[Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['labels'][0]['boxes'][0] , _A , atol=1e-3 ) ) # verify image_id __A : Union[str, Any] = torch.tensor([39769] ) self.assertTrue(torch.allclose(encoding['labels'][0]['image_id'] , _A ) ) # verify is_crowd __A : Tuple = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['labels'][0]['iscrowd'] , _A ) ) # verify class_labels __A : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding['labels'][0]['class_labels'] , _A ) ) # verify masks __A : Tuple = 822873 self.assertEqual(encoding['labels'][0]['masks'].sum().item() , _A ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding['labels'][0]['orig_size'] , _A ) ) # verify size __A : int = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding['labels'][0]['size'] , _A ) )
280
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ : int = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[str] = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys UpperCAmelCase_ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
62
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = {'''vocab_file''': '''sentencepiece.bpe.model'''} UpperCAmelCase_ : str = { '''vocab_file''': { '''moussaKam/mbarthez''': '''https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez''': '''https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model''', '''moussaKam/barthez-orangesum-title''': ( '''https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model''' ), }, } UpperCAmelCase_ : List[Any] = { '''moussaKam/mbarthez''': 10_24, '''moussaKam/barthez''': 10_24, '''moussaKam/barthez-orangesum-title''': 10_24, } UpperCAmelCase_ : List[str] = '''▁''' class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : int = PRETRAINED_VOCAB_FILES_MAP snake_case__ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self : int , __lowerCamelCase : Dict , __lowerCamelCase : List[str]="<s>" , __lowerCamelCase : str="</s>" , __lowerCamelCase : List[str]="</s>" , __lowerCamelCase : Optional[int]="<s>" , __lowerCamelCase : Optional[int]="<unk>" , __lowerCamelCase : Optional[Any]="<pad>" , __lowerCamelCase : str="<mask>" , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : Any , ): # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase :int = AddedToken(__lowerCamelCase , lstrip=__lowerCamelCase , rstrip=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) else mask_token UpperCamelCase :int = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , sep_token=__lowerCamelCase , cls_token=__lowerCamelCase , pad_token=__lowerCamelCase , mask_token=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) UpperCamelCase :Union[str, Any] = vocab_file UpperCamelCase :List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowerCamelCase ) ) UpperCamelCase :Optional[int] = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} UpperCamelCase :Tuple = len(self.sp_model ) - 1 UpperCamelCase :List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def _A ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase :Any = [self.cls_token_id] UpperCamelCase :Dict = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _A ( self : Dict , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__lowerCamelCase )) + [1] return [1] + ([0] * len(__lowerCamelCase )) + [1, 1] + ([0] * len(__lowerCamelCase )) + [1] def _A ( self : int , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None ): UpperCamelCase :Any = [self.sep_token_id] UpperCamelCase :int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def _A ( self : List[Any] ): return len(self.sp_model ) def _A ( self : Any ): UpperCamelCase :Optional[int] = {self.convert_ids_to_tokens(__lowerCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _A ( self : int , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase :List[Any] = self.sp_model.PieceToId(__lowerCamelCase ) return spm_id if spm_id else self.unk_token_id def _A ( self : Union[str, Any] , __lowerCamelCase : Union[str, Any] ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : Union[str, Any] ): UpperCamelCase :List[Any] = [] UpperCamelCase :str = """""" UpperCamelCase :Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCamelCase ) + token UpperCamelCase :List[str] = True UpperCamelCase :Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) UpperCamelCase :Optional[Any] = False out_string += self.sp_model.decode(__lowerCamelCase ) return out_string.strip() def __getstate__( self : str ): UpperCamelCase :Tuple = self.__dict__.copy() UpperCamelCase :str = None return state def __setstate__( self : Tuple , __lowerCamelCase : Optional[int] ): UpperCamelCase :Any = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase :Any = {} UpperCamelCase :str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def _A ( self : str , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): if not os.path.isdir(__lowerCamelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase :Union[str, Any] = os.path.join( __lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCamelCase , """wb""" ) as fi: UpperCamelCase :List[str] = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (out_vocab_file,)
62
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = tempfile.mkdtemp() lowerCamelCase_ : int = BlipImageProcessor() lowerCamelCase_ : List[Any] = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) lowerCamelCase_ : List[Any] = BertTokenizerFast.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) lowerCamelCase_ : Union[str, Any] = InstructBlipProcessor(A , A , A ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ (self , **A ): return AutoProcessor.from_pretrained(self.tmpdirname , **A ).tokenizer def UpperCAmelCase__ (self , **A ): return AutoProcessor.from_pretrained(self.tmpdirname , **A ).image_processor def UpperCAmelCase__ (self , **A ): return AutoProcessor.from_pretrained(self.tmpdirname , **A ).qformer_tokenizer def UpperCAmelCase__ (self ): shutil.rmtree(self.tmpdirname ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = [np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta )] lowerCamelCase_ : Union[str, Any] = [Image.fromarray(np.moveaxis(A , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase__ (self ): lowerCamelCase_ : Any = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) lowerCamelCase_ : str = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) lowerCamelCase_ : int = self.get_image_processor(do_normalize=A , padding_value=1.0 ) lowerCamelCase_ : Dict = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=A , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , A ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , A ) self.assertIsInstance(processor.qformer_tokenizer , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Optional[int] = self.get_image_processor() lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : str = self.get_qformer_tokenizer() lowerCamelCase_ : Optional[Any] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Union[str, Any] = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = image_processor(A , return_tensors='''np''' ) lowerCamelCase_ : Tuple = processor(images=A , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Union[str, Any] = self.get_tokenizer() lowerCamelCase_ : str = self.get_qformer_tokenizer() lowerCamelCase_ : Any = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Union[str, Any] = '''lower newer''' lowerCamelCase_ : Union[str, Any] = processor(text=A ) lowerCamelCase_ : List[Any] = tokenizer(A , return_token_type_ids=A ) lowerCamelCase_ : str = qformer_tokenizer(A , return_token_type_ids=A ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor['''qformer_''' + key] ) def UpperCAmelCase__ (self ): lowerCamelCase_ : Union[str, Any] = self.get_image_processor() lowerCamelCase_ : Dict = self.get_tokenizer() lowerCamelCase_ : Tuple = self.get_qformer_tokenizer() lowerCamelCase_ : Optional[Any] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Any = '''lower newer''' lowerCamelCase_ : int = self.prepare_image_inputs() lowerCamelCase_ : Optional[Any] = processor(text=A , images=A ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , ) # test if it raises when no input is passed with pytest.raises(A ): processor() def UpperCAmelCase__ (self ): lowerCamelCase_ : Dict = self.get_image_processor() lowerCamelCase_ : Dict = self.get_tokenizer() lowerCamelCase_ : List[str] = self.get_qformer_tokenizer() lowerCamelCase_ : List[str] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCamelCase_ : Optional[int] = processor.batch_decode(A ) lowerCamelCase_ : int = tokenizer.batch_decode(A ) self.assertListEqual(A , A ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[Any] = self.get_image_processor() lowerCamelCase_ : List[Any] = self.get_tokenizer() lowerCamelCase_ : List[str] = self.get_qformer_tokenizer() lowerCamelCase_ : Union[str, Any] = InstructBlipProcessor( tokenizer=A , image_processor=A , qformer_tokenizer=A ) lowerCamelCase_ : Optional[int] = '''lower newer''' lowerCamelCase_ : Tuple = self.prepare_image_inputs() lowerCamelCase_ : Optional[int] = processor(text=A , images=A ) self.assertListEqual( list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''qformer_input_ids''', '''qformer_attention_mask''', '''pixel_values'''] , )
318
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __lowercase : Any = logging.get_logger(__name__) __lowercase : Any = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __lowercase : List[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: lowerCamelCase_ : Dict = model_type_to_module_name(_lowercase ) lowerCamelCase_ : Any = importlib.import_module(F""".{module_name}""" , '''transformers.models''' ) try: return getattr(_lowercase , _lowercase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_lowercase , '''__name__''' , _lowercase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowerCamelCase_ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_lowercase , _lowercase ): return getattr(_lowercase , _lowercase ) return None def lowercase_ ( _lowercase , _lowercase = None , _lowercase = False , _lowercase = False , _lowercase = None , _lowercase = None , _lowercase = None , _lowercase = False , **_lowercase , ) -> List[str]: '''simple docstring''' lowerCamelCase_ : Optional[int] = get_file_from_repo( _lowercase , _lowercase , cache_dir=_lowercase , force_download=_lowercase , resume_download=_lowercase , proxies=_lowercase , use_auth_token=_lowercase , revision=_lowercase , local_files_only=_lowercase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_lowercase , encoding='''utf-8''' ) as reader: return json.load(_lowercase ) class __lowercase : def __init__(self ): raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(A ) def UpperCAmelCase__ (cls , A , **A ): lowerCamelCase_ : Optional[Any] = kwargs.pop('''config''' , A ) lowerCamelCase_ : Union[str, Any] = kwargs.pop('''trust_remote_code''' , A ) lowerCamelCase_ : List[Any] = True lowerCamelCase_, lowerCamelCase_ : List[Any] = FeatureExtractionMixin.get_feature_extractor_dict(A , **A ) lowerCamelCase_ : Tuple = config_dict.get('''feature_extractor_type''' , A ) lowerCamelCase_ : List[Any] = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): lowerCamelCase_ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(A , A ): lowerCamelCase_ : List[str] = AutoConfig.from_pretrained(A , **A ) # It could be in `config.feature_extractor_type`` lowerCamelCase_ : Union[str, Any] = getattr(A , '''feature_extractor_type''' , A ) if hasattr(A , '''auto_map''' ) and "AutoFeatureExtractor" in config.auto_map: lowerCamelCase_ : Optional[int] = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: lowerCamelCase_ : Any = feature_extractor_class_from_name(A ) lowerCamelCase_ : Optional[int] = feature_extractor_auto_map is not None lowerCamelCase_ : Optional[Any] = feature_extractor_class is not None or type(A ) in FEATURE_EXTRACTOR_MAPPING lowerCamelCase_ : int = resolve_trust_remote_code( A , A , A , A ) if has_remote_code and trust_remote_code: lowerCamelCase_ : Any = get_class_from_dynamic_module( A , A , **A ) lowerCamelCase_ : List[Any] = kwargs.pop('''code_revision''' , A ) if os.path.isdir(A ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(A , **A ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(A , **A ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(A ) in FEATURE_EXTRACTOR_MAPPING: lowerCamelCase_ : Optional[int] = FEATURE_EXTRACTOR_MAPPING[type(A )] return feature_extractor_class.from_dict(A , **A ) raise ValueError( F"""Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a """ F"""`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following """ F"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def UpperCAmelCase__ (A , A ): FEATURE_EXTRACTOR_MAPPING.register(A , A )
318
1
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def a__ ( lowercase : List[str], lowercase : Union[str, Any], lowercase : List[Any] ) -> Optional[int]: """simple docstring""" _UpperCamelCase = OmegaConf.load(lowercase ) _UpperCamelCase = torch.load(lowercase, map_location='''cpu''' )['''model'''] _UpperCamelCase = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCamelCase = {} _UpperCamelCase = '''first_stage_model.''' for key in keys: if key.startswith(lowercase ): _UpperCamelCase = state_dict[key] # extract state_dict for UNetLDM _UpperCamelCase = {} _UpperCamelCase = '''model.diffusion_model.''' for key in keys: if key.startswith(lowercase ): _UpperCamelCase = state_dict[key] _UpperCamelCase = config.model.params.first_stage_config.params _UpperCamelCase = config.model.params.unet_config.params _UpperCamelCase = VQModel(**lowercase ).eval() vqvae.load_state_dict(lowercase ) _UpperCamelCase = UNetLDMModel(**lowercase ).eval() unet.load_state_dict(lowercase ) _UpperCamelCase = DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule='''scaled_linear''', beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=lowercase, ) _UpperCamelCase = LDMPipeline(lowercase, lowercase, lowercase ) pipeline.save_pretrained(lowercase ) if __name__ == "__main__": lowercase__ : List[str] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) lowercase__ : Dict = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
362
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : Tuple = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : int = 'trocr' _snake_case : List[str] = ['past_key_values'] _snake_case : Tuple = { 'num_attention_heads': 'decoder_attention_heads', 'hidden_size': 'd_model', 'num_hidden_layers': 'decoder_layers', } def __init__( self : Tuple , lowerCAmelCase__ : Union[str, Any]=50265 , lowerCAmelCase__ : List[Any]=1024 , lowerCAmelCase__ : List[str]=12 , lowerCAmelCase__ : int=16 , lowerCAmelCase__ : List[Any]=4096 , lowerCAmelCase__ : Optional[int]="gelu" , lowerCAmelCase__ : int=512 , lowerCAmelCase__ : Optional[Any]=0.1 , lowerCAmelCase__ : Optional[int]=0.0 , lowerCAmelCase__ : Dict=0.0 , lowerCAmelCase__ : Tuple=2 , lowerCAmelCase__ : Dict=0.02 , lowerCAmelCase__ : Tuple=0.0 , lowerCAmelCase__ : int=True , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Any=True , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : Optional[int]=1 , lowerCAmelCase__ : List[Any]=0 , lowerCAmelCase__ : Any=2 , **lowerCAmelCase__ : Optional[int] , ) -> Any: '''simple docstring''' _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=lowerCAmelCase__ , bos_token_id=lowerCAmelCase__ , eos_token_id=lowerCAmelCase__ , decoder_start_token_id=lowerCAmelCase__ , **lowerCAmelCase__ , )
287
0
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Optional[int] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :List[str]=0.0 , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :str = "geglu" , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = False , lowerCAmelCase__ :bool = True , lowerCAmelCase__ :str = "layer_norm" , lowerCAmelCase__ :bool = False , ) -> Tuple: super().__init__() __SCREAMING_SNAKE_CASE : Optional[Any] = only_cross_attention __SCREAMING_SNAKE_CASE : int = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' __SCREAMING_SNAKE_CASE : List[str] = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( f'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to''' f''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE : Dict = AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Union[str, Any] = AdaLayerNormZero(lowerCAmelCase__ , lowerCAmelCase__ ) else: __SCREAMING_SNAKE_CASE : Dict = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = Attention( query_dim=lowerCAmelCase__ , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=lowerCAmelCase__ , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. __SCREAMING_SNAKE_CASE : Optional[int] = ( AdaLayerNorm(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Dict = Attention( query_dim=lowerCAmelCase__ , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=lowerCAmelCase__ , dim_head=lowerCAmelCase__ , dropout=lowerCAmelCase__ , bias=lowerCAmelCase__ , upcast_attention=lowerCAmelCase__ , ) # is self-attn if encoder_hidden_states is none else: __SCREAMING_SNAKE_CASE : Dict = None __SCREAMING_SNAKE_CASE : Dict = None # 3. Feed-forward __SCREAMING_SNAKE_CASE : Tuple = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = FeedForward(lowerCAmelCase__ , dropout=lowerCAmelCase__ , activation_fn=lowerCAmelCase__ , final_dropout=lowerCAmelCase__ ) # let chunk size default to None __SCREAMING_SNAKE_CASE : int = None __SCREAMING_SNAKE_CASE : int = 0 def __magic_name__( self :List[str] , lowerCAmelCase__ :Optional[int] , lowerCAmelCase__ :int ) -> Union[str, Any]: # Sets chunk feed-forward __SCREAMING_SNAKE_CASE : Tuple = chunk_size __SCREAMING_SNAKE_CASE : str = dim def __magic_name__( self :Tuple , lowerCAmelCase__ :torch.FloatTensor , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.FloatTensor] = None , lowerCAmelCase__ :Optional[torch.LongTensor] = None , lowerCAmelCase__ :Dict[str, Any] = None , lowerCAmelCase__ :Optional[torch.LongTensor] = None , ) -> List[Any]: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: __SCREAMING_SNAKE_CASE : Optional[Any] = self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) elif self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.norma( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=hidden_states.dtype ) else: __SCREAMING_SNAKE_CASE : List[Any] = self.norma(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = cross_attention_kwargs if cross_attention_kwargs is not None else {} __SCREAMING_SNAKE_CASE : Any = self.attna( lowerCAmelCase__ , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : List[str] = gate_msa.unsqueeze(1 ) * attn_output __SCREAMING_SNAKE_CASE : Union[str, Any] = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: __SCREAMING_SNAKE_CASE : Optional[Any] = ( self.norma(lowerCAmelCase__ , lowerCAmelCase__ ) if self.use_ada_layer_norm else self.norma(lowerCAmelCase__ ) ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.attna( lowerCAmelCase__ , encoder_hidden_states=lowerCAmelCase__ , attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE : str = attn_output + hidden_states # 3. Feed-forward __SCREAMING_SNAKE_CASE : int = self.norma(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( f'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' ) __SCREAMING_SNAKE_CASE : List[str] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cat( [self.ff(lowerCAmelCase__ ) for hid_slice in norm_hidden_states.chunk(lowerCAmelCase__ , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: __SCREAMING_SNAKE_CASE : int = self.ff(lowerCAmelCase__ ) if self.use_ada_layer_norm_zero: __SCREAMING_SNAKE_CASE : Union[str, Any] = gate_mlp.unsqueeze(1 ) * ff_output __SCREAMING_SNAKE_CASE : Tuple = ff_output + hidden_states return hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :int = 4 , lowerCAmelCase__ :float = 0.0 , lowerCAmelCase__ :str = "geglu" , lowerCAmelCase__ :bool = False , ) -> Optional[Any]: super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = int(dim * mult ) __SCREAMING_SNAKE_CASE : Optional[Any] = dim_out if dim_out is not None else dim if activation_fn == "gelu": __SCREAMING_SNAKE_CASE : Tuple = GELU(lowerCAmelCase__ , lowerCAmelCase__ ) if activation_fn == "gelu-approximate": __SCREAMING_SNAKE_CASE : int = GELU(lowerCAmelCase__ , lowerCAmelCase__ , approximate='''tanh''' ) elif activation_fn == "geglu": __SCREAMING_SNAKE_CASE : List[str] = GEGLU(lowerCAmelCase__ , lowerCAmelCase__ ) elif activation_fn == "geglu-approximate": __SCREAMING_SNAKE_CASE : int = ApproximateGELU(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList([] ) # project in self.net.append(lowerCAmelCase__ ) # project dropout self.net.append(nn.Dropout(lowerCAmelCase__ ) ) # project out self.net.append(nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(lowerCAmelCase__ ) ) def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> Any: for module in self.net: __SCREAMING_SNAKE_CASE : str = module(lowerCAmelCase__ ) return hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :List[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :str = "none" ) -> Optional[int]: super().__init__() __SCREAMING_SNAKE_CASE : Tuple = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = approximate def __magic_name__( self :int , lowerCAmelCase__ :Optional[int] ) -> Tuple: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def __magic_name__( self :int , lowerCAmelCase__ :Union[str, Any] ) -> int: __SCREAMING_SNAKE_CASE : Tuple = self.proj(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.gelu(lowerCAmelCase__ ) return hidden_states class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Dict , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Optional[Any]: super().__init__() __SCREAMING_SNAKE_CASE : Dict = nn.Linear(lowerCAmelCase__ , dim_out * 2 ) def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[Any] ) -> Optional[Any]: if gate.device.type != "mps": return F.gelu(lowerCAmelCase__ ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] ) -> Dict: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = self.proj(lowerCAmelCase__ ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(lowerCAmelCase__ ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :List[str] , lowerCAmelCase__ :int , lowerCAmelCase__ :int ) -> Tuple: super().__init__() __SCREAMING_SNAKE_CASE : Dict = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ ) def __magic_name__( self :Tuple , lowerCAmelCase__ :List[Any] ) -> Union[str, Any]: __SCREAMING_SNAKE_CASE : Dict = self.proj(lowerCAmelCase__ ) return x * torch.sigmoid(1.702 * x ) class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :Dict ) -> Any: super().__init__() __SCREAMING_SNAKE_CASE : Dict = nn.Embedding(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = nn.SiLU() __SCREAMING_SNAKE_CASE : Any = nn.Linear(lowerCAmelCase__ , embedding_dim * 2 ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ ) def __magic_name__( self :Any , lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Dict ) -> Any: __SCREAMING_SNAKE_CASE : Any = self.linear(self.silu(self.emb(lowerCAmelCase__ ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = torch.chunk(lowerCAmelCase__ , 2 ) __SCREAMING_SNAKE_CASE : str = self.norm(lowerCAmelCase__ ) * (1 + scale) + shift return x class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :Any , lowerCAmelCase__ :Any , lowerCAmelCase__ :str ) -> Dict: super().__init__() __SCREAMING_SNAKE_CASE : List[Any] = CombinedTimestepLabelEmbeddings(lowerCAmelCase__ , lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Any = nn.SiLU() __SCREAMING_SNAKE_CASE : int = nn.Linear(lowerCAmelCase__ , 6 * embedding_dim , bias=lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : int = nn.LayerNorm(lowerCAmelCase__ , elementwise_affine=lowerCAmelCase__ , eps=1E-6 ) def __magic_name__( self :Dict , lowerCAmelCase__ :Any , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any]=None ) -> List[Any]: __SCREAMING_SNAKE_CASE : Optional[int] = self.linear(self.silu(self.emb(lowerCAmelCase__ , lowerCAmelCase__ , hidden_dtype=lowerCAmelCase__ ) ) ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = emb.chunk(6 , dim=1 ) __SCREAMING_SNAKE_CASE : Optional[int] = self.norm(lowerCAmelCase__ ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class _lowercase ( nn.Module ): '''simple docstring''' def __init__( self :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[str] = None , lowerCAmelCase__ :float = 1E-5 ) -> Tuple: super().__init__() __SCREAMING_SNAKE_CASE : Dict = num_groups __SCREAMING_SNAKE_CASE : Optional[Any] = eps if act_fn is None: __SCREAMING_SNAKE_CASE : Optional[int] = None else: __SCREAMING_SNAKE_CASE : str = get_activation(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.Linear(lowerCAmelCase__ , out_dim * 2 ) def __magic_name__( self :int , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] ) -> Optional[int]: if self.act: __SCREAMING_SNAKE_CASE : Dict = self.act(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = self.linear(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : Dict = emb[:, :, None, None] __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = emb.chunk(2 , dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = F.group_norm(lowerCAmelCase__ , self.num_groups , eps=self.eps ) __SCREAMING_SNAKE_CASE : List[Any] = x * (1 + scale) + shift return x
9
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A__ : lowercase = 42 lowercase = None lowercase = None def UpperCAmelCase__ ( ) -> Node | None: A_ = Node(1 ) A_ = Node(2 ) A_ = Node(3 ) A_ = Node(4 ) A_ = Node(5 ) return tree def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return (max(height(root.left ), height(root.right ) ) + 1) if root else 0 def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Sequence[Node | None]: A_ = [] if root is None: return output A_ = deque([root] ) while process_queue: A_ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Sequence[Node | None]: A_ = [] def populate_output(UpperCAmelCase__, UpperCAmelCase__ ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left, level - 1 ) populate_output(root.right, level - 1 ) populate_output(UpperCAmelCase__, UpperCAmelCase__ ) return output def UpperCAmelCase__ ( UpperCAmelCase__, UpperCAmelCase__ ) -> Sequence[Node | None]: A_ = [] def populate_output(UpperCAmelCase__, UpperCAmelCase__ ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right, level - 1 ) populate_output(root.left, level - 1 ) populate_output(UpperCAmelCase__, UpperCAmelCase__ ) return output def UpperCAmelCase__ ( UpperCAmelCase__ ) -> Sequence[Node | None] | list[Any]: if root is None: return [] A_ = [] A_ = 0 A_ = height(UpperCAmelCase__ ) for h in range(1, height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(UpperCAmelCase__, UpperCAmelCase__ ) ) A_ = 1 else: output.append(get_nodes_from_right_to_left(UpperCAmelCase__, UpperCAmelCase__ ) ) A_ = 0 return output def UpperCAmelCase__ ( ) -> None: # Main function for testing. A_ = make_tree() print(F'''In-order Traversal: {inorder(UpperCAmelCase__ )}''' ) print(F'''Pre-order Traversal: {preorder(UpperCAmelCase__ )}''' ) print(F'''Post-order Traversal: {postorder(UpperCAmelCase__ )}''', """\n""" ) print(F'''Height of Tree: {height(UpperCAmelCase__ )}''', """\n""" ) print("""Complete Level Order Traversal: """ ) print(level_order(UpperCAmelCase__ ), """\n""" ) print("""Level-wise order Traversal: """ ) for level in range(1, height(UpperCAmelCase__ ) + 1 ): print(F'''Level {level}:''', get_nodes_from_left_to_right(UpperCAmelCase__, level=UpperCAmelCase__ ) ) print("""\nZigZag order Traversal: """ ) print(zigzag(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
162
0
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging a_ = logging.get_logger(__name__) a_ = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """marian""" snake_case_ = ["""past_key_values"""] snake_case_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : Optional[Any] , __lowercase : List[str]=5_81_01 , __lowercase : Optional[int]=None , __lowercase : Tuple=10_24 , __lowercase : Union[str, Any]=12 , __lowercase : List[Any]=40_96 , __lowercase : Optional[int]=16 , __lowercase : List[str]=12 , __lowercase : str=40_96 , __lowercase : Optional[Any]=16 , __lowercase : List[str]=0.0 , __lowercase : List[str]=0.0 , __lowercase : Optional[Any]=True , __lowercase : List[str]=True , __lowercase : Optional[Any]="gelu" , __lowercase : int=10_24 , __lowercase : Optional[Any]=0.1 , __lowercase : int=0.0 , __lowercase : List[str]=0.0 , __lowercase : int=0.02 , __lowercase : List[str]=5_81_00 , __lowercase : int=False , __lowercase : str=5_81_00 , __lowercase : List[str]=0 , __lowercase : Union[str, Any]=0 , __lowercase : str=True , **__lowercase : Union[str, Any] , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =vocab_size SCREAMING_SNAKE_CASE__ : Optional[Any] =decoder_vocab_size or vocab_size SCREAMING_SNAKE_CASE__ : str =max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] =d_model SCREAMING_SNAKE_CASE__ : List[str] =encoder_ffn_dim SCREAMING_SNAKE_CASE__ : Optional[Any] =encoder_layers SCREAMING_SNAKE_CASE__ : Optional[Any] =encoder_attention_heads SCREAMING_SNAKE_CASE__ : List[Any] =decoder_ffn_dim SCREAMING_SNAKE_CASE__ : Union[str, Any] =decoder_layers SCREAMING_SNAKE_CASE__ : int =decoder_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] =dropout SCREAMING_SNAKE_CASE__ : List[str] =attention_dropout SCREAMING_SNAKE_CASE__ : int =activation_dropout SCREAMING_SNAKE_CASE__ : List[Any] =activation_function SCREAMING_SNAKE_CASE__ : int =init_std SCREAMING_SNAKE_CASE__ : Optional[Any] =encoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple =decoder_layerdrop SCREAMING_SNAKE_CASE__ : Tuple =use_cache SCREAMING_SNAKE_CASE__ : str =encoder_layers SCREAMING_SNAKE_CASE__ : Union[str, Any] =scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE__ : Dict =share_encoder_decoder_embeddings super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __magic_name__ ( self : int ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : List[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ : Optional[int] ={0: '''batch'''} SCREAMING_SNAKE_CASE__ : List[Any] ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : Any ={0: '''batch''', 1: '''decoder_sequence'''} SCREAMING_SNAKE_CASE__ : Tuple ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. SCREAMING_SNAKE_CASE__ : str =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.num_layers for i in range(__lowercase ): SCREAMING_SNAKE_CASE__ : Tuple ={0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Dict ={0: '''batch''', 2: '''past_sequence + sequence'''} else: SCREAMING_SNAKE_CASE__ : str =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __magic_name__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =super().outputs else: SCREAMING_SNAKE_CASE__ : List[str] =super(__lowercase , self ).outputs if self.use_past: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Dict =self.num_layers for i in range(__lowercase ): SCREAMING_SNAKE_CASE__ : List[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} SCREAMING_SNAKE_CASE__ : Any ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __magic_name__ ( self : Dict , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Optional[int] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Generate decoder inputs SCREAMING_SNAKE_CASE__ : str =seq_length if not self.use_past else 1 SCREAMING_SNAKE_CASE__ : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] ={F"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} SCREAMING_SNAKE_CASE__ : str =dict(**__lowercase , **__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =common_inputs['''input_ids'''].shape SCREAMING_SNAKE_CASE__ : Dict =common_inputs['''decoder_input_ids'''].shape[1] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : int =self.num_attention_heads SCREAMING_SNAKE_CASE__ : Optional[Any] =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : int =decoder_seq_length + 3 SCREAMING_SNAKE_CASE__ : Optional[int] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : Any =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase , __lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : str =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any =self.num_layers SCREAMING_SNAKE_CASE__ : Any =min(__lowercase , __lowercase ) SCREAMING_SNAKE_CASE__ : List[str] =max(__lowercase , __lowercase ) - min_num_layers SCREAMING_SNAKE_CASE__ : Optional[int] ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. SCREAMING_SNAKE_CASE__ : str =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase , __lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __magic_name__ ( self : Optional[int] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: SCREAMING_SNAKE_CASE__ : Dict =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values SCREAMING_SNAKE_CASE__ : Optional[int] =seqlen + 2 SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Union[str, Any] =self.num_layers SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] =self.num_attention_heads SCREAMING_SNAKE_CASE__ : Dict =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) SCREAMING_SNAKE_CASE__ : str =common_inputs['''attention_mask'''].dtype SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) SCREAMING_SNAKE_CASE__ : int =[ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __magic_name__ ( self : Optional[Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : int =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX SCREAMING_SNAKE_CASE__ : Optional[Any] =tokenizer.num_special_tokens_to_add(__lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence SCREAMING_SNAKE_CASE__ : int =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size SCREAMING_SNAKE_CASE__ : Optional[int] =dict(tokenizer(__lowercase , return_tensors=__lowercase ) ) return common_inputs def __magic_name__ ( self : List[Any] , __lowercase : PreTrainedTokenizer , __lowercase : int = -1 , __lowercase : int = -1 , __lowercase : bool = False , __lowercase : Optional[TensorType] = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : Any =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) else: SCREAMING_SNAKE_CASE__ : List[Any] =self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) return common_inputs def __magic_name__ ( self : Any , __lowercase : Any , __lowercase : Optional[Any] , __lowercase : str , __lowercase : List[Any] ) -> Any: if self.task in ["default", "seq2seq-lm"]: SCREAMING_SNAKE_CASE__ : str =super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase ) else: SCREAMING_SNAKE_CASE__ : str =super(__lowercase , self )._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase ) @property def __magic_name__ ( self : Tuple ) -> float: return 1e-4
222
'''simple docstring''' from __future__ import annotations def _a( UpperCamelCase__ : List[str], UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : int, UpperCamelCase__ : List[str] ): # noqa: E741 '''simple docstring''' while r - l > 1: SCREAMING_SNAKE_CASE__ : List[str] =(l + r) // 2 if v[m] >= key: SCREAMING_SNAKE_CASE__ : Dict =m else: SCREAMING_SNAKE_CASE__ : Any =m # noqa: E741 return r def _a( UpperCamelCase__ : list[int] ): '''simple docstring''' if len(UpperCamelCase__ ) == 0: return 0 SCREAMING_SNAKE_CASE__ : List[Any] =[0] * len(UpperCamelCase__ ) SCREAMING_SNAKE_CASE__ : Dict =1 SCREAMING_SNAKE_CASE__ : Union[str, Any] =v[0] for i in range(1, len(UpperCamelCase__ ) ): if v[i] < tail[0]: SCREAMING_SNAKE_CASE__ : List[Any] =v[i] elif v[i] > tail[length - 1]: SCREAMING_SNAKE_CASE__ : int =v[i] length += 1 else: SCREAMING_SNAKE_CASE__ : Union[str, Any] =v[i] return length if __name__ == "__main__": import doctest doctest.testmod()
222
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a__ : Any =None a__ : Union[str, Any] =logging.get_logger(__name__) a__ : Optional[int] ={'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} a__ : Optional[Any] ={ '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } a__ : Dict ={ '''facebook/nllb-large-en-ro''': 1_024, '''facebook/nllb-200-distilled-600M''': 1_024, } # fmt: off a__ : str =['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class snake_case ( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : List[Any] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Tuple =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : List[Any] =["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ : Optional[Any] =NllbTokenizer SCREAMING_SNAKE_CASE_ : List[int] =[] SCREAMING_SNAKE_CASE_ : List[int] =[] def __init__( self : int , __A : int=None , __A : Dict=None , __A : Optional[int]="<s>" , __A : List[str]="</s>" , __A : str="</s>" , __A : str="<s>" , __A : Tuple="<unk>" , __A : Any="<pad>" , __A : Any="<mask>" , __A : str=None , __A : Union[str, Any]=None , __A : Optional[Any]=None , __A : Union[str, Any]=False , **__A : Dict , ): # Mask token behave like a normal word, i.e. include the space before it __UpperCamelCase = AddedToken(UpperCAmelCase_ , lstrip=UpperCAmelCase_ , rstrip=UpperCAmelCase_ ) if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) else mask_token __UpperCamelCase = legacy_behaviour super().__init__( vocab_file=UpperCAmelCase_ , tokenizer_file=UpperCAmelCase_ , bos_token=UpperCAmelCase_ , eos_token=UpperCAmelCase_ , sep_token=UpperCAmelCase_ , cls_token=UpperCAmelCase_ , unk_token=UpperCAmelCase_ , pad_token=UpperCAmelCase_ , mask_token=UpperCAmelCase_ , src_lang=UpperCAmelCase_ , tgt_lang=UpperCAmelCase_ , additional_special_tokens=UpperCAmelCase_ , legacy_behaviour=UpperCAmelCase_ , **UpperCAmelCase_ , ) __UpperCamelCase = vocab_file __UpperCamelCase = False if not self.vocab_file else True __UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens} ) __UpperCamelCase = { lang_code: self.convert_tokens_to_ids(UpperCAmelCase_ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } __UpperCamelCase = src_lang if src_lang is not None else 'eng_Latn' __UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) __UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _lowerCamelCase ( self : Union[str, Any] ): return self._src_lang @src_lang.setter def _lowerCamelCase ( self : List[Any] , __A : str ): __UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _lowerCamelCase ( self : Optional[int] , __A : List[int] , __A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _lowerCamelCase ( self : Optional[Any] , __A : List[int] , __A : Optional[List[int]] = None ): __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCamelCase ( self : Tuple , __A : str , __A : str , __A : Optional[str] , __A : Optional[str] , **__A : Any ): if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase = src_lang __UpperCamelCase = self(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ ) __UpperCamelCase = self.convert_tokens_to_ids(UpperCAmelCase_ ) __UpperCamelCase = tgt_lang_id return inputs def _lowerCamelCase ( self : Union[str, Any] , __A : List[str] , __A : str = "eng_Latn" , __A : Optional[List[str]] = None , __A : str = "fra_Latn" , **__A : Tuple , ): __UpperCamelCase = src_lang __UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowerCamelCase ( self : Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def _lowerCamelCase ( self : Optional[int] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _lowerCamelCase ( self : Dict , __A : Dict ): __UpperCamelCase = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: __UpperCamelCase = [self.cur_lang_code] __UpperCamelCase = [self.eos_token_id] __UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase ( self : List[str] , __A : str ): __UpperCamelCase = self.convert_tokens_to_ids(UpperCAmelCase_ ) if self.legacy_behaviour: __UpperCamelCase = [] __UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: __UpperCamelCase = [self.cur_lang_code] __UpperCamelCase = [self.eos_token_id] __UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) __UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) __UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str , pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _lowerCamelCase ( self : Tuple , __A : str , __A : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.' ) if not os.path.isdir(UpperCAmelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory.''' ) return __UpperCamelCase = os.path.join( UpperCAmelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCAmelCase_ ): copyfile(self.vocab_file , UpperCAmelCase_ ) return (out_vocab_file,)
53
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> np.ndarray: '''simple docstring''' lowerCAmelCase : Dict = cva.getAffineTransform(_UpperCAmelCase, _UpperCAmelCase ) return cva.warpAffine(_UpperCAmelCase, _UpperCAmelCase, (rows, cols) ) if __name__ == "__main__": # read original image __A : List[str] = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value __A : int = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __A , __A : Optional[Any] = gray_img.shape # set different points to rotate image __A : int = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __A : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __A : Optional[int] = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __A : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __A : List[str] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __A : Union[str, Any] = plt.figure(1) __A : Optional[Any] = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
138
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = ShapEImgaImgPipeline __A = ["image"] __A = ["image"] __A = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] __A = False @property def UpperCamelCase_ (self ): """simple docstring""" return 32 @property def UpperCamelCase_ (self ): """simple docstring""" return 32 @property def UpperCamelCase_ (self ): """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase_ (self ): """simple docstring""" return 8 @property def UpperCamelCase_ (self ): """simple docstring""" torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a = CLIPVisionModel(lowerCamelCase_ ) return model @property def UpperCamelCase_ (self ): """simple docstring""" a = CLIPImageProcessor( crop_size=224 , do_center_crop=lowerCamelCase_ , do_normalize=lowerCamelCase_ , do_resize=lowerCamelCase_ , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=224 , ) return image_processor @property def UpperCamelCase_ (self ): """simple docstring""" torch.manual_seed(0 ) a = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } a = PriorTransformer(**lowerCamelCase_ ) return model @property def UpperCamelCase_ (self ): """simple docstring""" torch.manual_seed(0 ) a = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**lowerCamelCase_ ) return model def UpperCamelCase_ (self ): """simple docstring""" a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_image_processor a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1024 , prediction_type="sample" , use_karras_sigmas=lowerCamelCase_ , clip_sample=lowerCamelCase_ , clip_sample_range=1.0 , ) a = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_=0 ): """simple docstring""" a = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowerCamelCase_ ) ).to(lowerCamelCase_ ) if str(lowerCamelCase_ ).startswith("mps" ): a = torch.manual_seed(lowerCamelCase_ ) else: a = torch.Generator(device=lowerCamelCase_ ).manual_seed(lowerCamelCase_ ) a = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def UpperCamelCase_ (self ): """simple docstring""" a = "cpu" a = self.get_dummy_components() a = self.pipeline_class(**lowerCamelCase_ ) a = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = pipe(**self.get_dummy_inputs(lowerCamelCase_ ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase_ (self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCamelCase_ (self ): """simple docstring""" a = torch_device == "cpu" a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase_ , relax_max_difference=lowerCamelCase_ , ) def UpperCamelCase_ (self ): """simple docstring""" a = self.get_dummy_components() a = self.pipeline_class(**lowerCamelCase_ ) a = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = 1 a = 2 a = self.get_dummy_inputs(lowerCamelCase_ ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**lowerCamelCase_ , num_images_per_prompt=lowerCamelCase_ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCamelCase_ (self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ (self ): """simple docstring""" a = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) a = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) a = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) a = pipe.to(lowerCamelCase_ ) pipe.set_progress_bar_config(disable=lowerCamelCase_ ) a = torch.Generator(device=lowerCamelCase_ ).manual_seed(0 ) a = pipe( lowerCamelCase_ , generator=lowerCamelCase_ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase_ , lowerCamelCase_ )
71
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import SegformerImageProcessor, SwinConfig, UperNetConfig, UperNetForSemanticSegmentation def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = 384 a = 7 if "tiny" in model_name: a = 96 a = (2, 2, 6, 2) a = (3, 6, 12, 24) elif "small" in model_name: a = 96 a = (2, 2, 18, 2) a = (3, 6, 12, 24) elif "base" in model_name: a = 128 a = (2, 2, 18, 2) a = (4, 8, 16, 32) a = 12 a = 512 elif "large" in model_name: a = 192 a = (2, 2, 18, 2) a = (6, 12, 24, 48) a = 12 a = 768 # set label information a = 150 a = "huggingface/label-files" a = "ade20k-id2label.json" a = json.load(open(hf_hub_download(A , A , repo_type="dataset" ) , "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = {v: k for k, v in idalabel.items()} a = SwinConfig( embed_dim=A , depths=A , num_heads=A , window_size=A , out_features=["stage1", "stage2", "stage3", "stage4"] , ) a = UperNetConfig( backbone_config=A , auxiliary_in_channels=A , num_labels=A , idalabel=A , labelaid=A , ) return config def a( A : Optional[Any] ) -> Tuple: """simple docstring""" a = [] # fmt: off # stem rename_keys.append(("backbone.patch_embed.projection.weight", "backbone.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.patch_embed.projection.bias", "backbone.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.patch_embed.norm.weight", "backbone.embeddings.norm.weight") ) rename_keys.append(("backbone.patch_embed.norm.bias", "backbone.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_before.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_bias_table''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.relative_position_index''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.proj.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.norm2.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.layernorm_after.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.0.0.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.weight''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.weight''') ) rename_keys.append((f'''backbone.stages.{i}.blocks.{j}.ffn.layers.1.bias''', f'''backbone.encoder.layers.{i}.blocks.{j}.output.dense.bias''') ) if i < 3: rename_keys.append((f'''backbone.stages.{i}.downsample.reduction.weight''', f'''backbone.encoder.layers.{i}.downsample.reduction.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.weight''', f'''backbone.encoder.layers.{i}.downsample.norm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.downsample.norm.bias''', f'''backbone.encoder.layers.{i}.downsample.norm.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def a( A : List[str] , A : List[str] , A : Dict ) -> Any: """simple docstring""" a = dct.pop(A ) a = val def a( A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): a = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.weight''' ) a = state_dict.pop(f'''backbone.stages.{i}.blocks.{j}.attn.w_msa.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[:dim, :] a = in_proj_bias[: dim] a = in_proj_weight[ dim : dim * 2, : ] a = in_proj_bias[ dim : dim * 2 ] a = in_proj_weight[ -dim :, : ] a = in_proj_bias[-dim :] # fmt: on def a( A : Optional[int] ) -> Optional[Any]: """simple docstring""" a , a = x.shape a = x.reshape(A , 4 , in_channel // 4 ) a = x[:, [0, 2, 1, 3], :].transpose(1 , 2 ).reshape(A , A ) return x def a( A : int ) -> Dict: """simple docstring""" a , a = x.shape a = x.reshape(A , in_channel // 4 , 4 ) a = x[:, :, [0, 2, 1, 3]].transpose(1 , 2 ).reshape(A , A ) return x def a( A : List[Any] ) -> Dict: """simple docstring""" a = x.shape[0] a = x.reshape(4 , in_channel // 4 ) a = x[[0, 2, 1, 3], :].transpose(0 , 1 ).reshape(A ) return x def a( A : Optional[Any] ) -> List[str]: """simple docstring""" a = x.shape[0] a = x.reshape(in_channel // 4 , 4 ) a = x[:, [0, 2, 1, 3]].transpose(0 , 1 ).reshape(A ) return x def a( A : Any , A : int , A : Dict ) -> Union[str, Any]: """simple docstring""" a = { "upernet-swin-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth", "upernet-swin-small": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth", "upernet-swin-base": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth", "upernet-swin-large": "https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k/upernet_swin_large_patch4_window12_512x512_pretrain_384x384_22K_160k_ade20k_20220318_091743-9ba68901.pth", } a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(A , map_location="cpu" , file_name=A )[ "state_dict" ] for name, param in state_dict.items(): print(A , param.shape ) a = get_upernet_config(A ) a = UperNetForSemanticSegmentation(A ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): a = state_dict.pop(A ) if "bn" in key: a = key.replace("bn" , "batch_norm" ) a = val # rename keys a = create_rename_keys(A ) for src, dest in rename_keys: rename_key(A , A , A ) read_in_q_k_v(A , config.backbone_config ) # fix downsample parameters for key, value in state_dict.items(): if "downsample" in key: if "reduction" in key: a = reverse_correct_unfold_reduction_order(A ) if "norm" in key: a = reverse_correct_unfold_norm_order(A ) model.load_state_dict(A ) # verify on image a = "https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" a = Image.open(requests.get(A , stream=A ).raw ).convert("RGB" ) a = SegformerImageProcessor() a = processor(A , return_tensors="pt" ).pixel_values with torch.no_grad(): a = model(A ) a = outputs.logits print(logits.shape ) print("First values of logits:" , logits[0, 0, :3, :3] ) # assert values if model_name == "upernet-swin-tiny": a = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ) elif model_name == "upernet-swin-small": a = torch.tensor( [[-7.1_921, -7.1_921, -6.9_532], [-7.1_921, -7.1_921, -6.9_532], [-7.0_908, -7.0_908, -6.8_534]] ) elif model_name == "upernet-swin-base": a = torch.tensor( [[-6.5_851, -6.5_851, -6.4_330], [-6.5_851, -6.5_851, -6.4_330], [-6.4_763, -6.4_763, -6.3_254]] ) elif model_name == "upernet-swin-large": a = torch.tensor( [[-7.5_297, -7.5_297, -7.3_802], [-7.5_297, -7.5_297, -7.3_802], [-7.4_044, -7.4_044, -7.2_586]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , A , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(A ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(A ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": _lowercase: Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-swin-tiny", type=str, choices=[F"""upernet-swin-{size}""" for size in ["tiny", "small", "base", "large"]], help="Name of the Swin + UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowercase: int = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
71
1
from __future__ import annotations import math class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ ) -> None: __UpperCamelCase =size # approximate the overall size of segment tree with given value __UpperCamelCase =[0 for i in range(0 , 4 * size )] # create array to store lazy update __UpperCamelCase =[0 for i in range(0 , 4 * size )] __UpperCamelCase =[0 for i in range(0 , 4 * size )] # flag for lazy update def _a ( self , A_ ) -> int: return idx * 2 def _a ( self , A_ ) -> int: return idx * 2 + 1 def _a ( self , A_ , A_ , A_ , A_ ) -> None: if left_element == right_element: __UpperCamelCase =a[left_element - 1] else: __UpperCamelCase =(left_element + right_element) // 2 self.build(self.left(A_ ) , A_ , A_ , A_ ) self.build(self.right(A_ ) , mid + 1 , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ ) -> bool: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: __UpperCamelCase =val if left_element != right_element: __UpperCamelCase =val __UpperCamelCase =val __UpperCamelCase =True __UpperCamelCase =True return True __UpperCamelCase =(left_element + right_element) // 2 self.update(self.left(A_ ) , A_ , A_ , A_ , A_ , A_ ) self.update(self.right(A_ ) , mid + 1 , A_ , A_ , A_ , A_ ) __UpperCamelCase =max( self.segment_tree[self.left(A_ )] , self.segment_tree[self.right(A_ )] ) return True def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> int | float: if self.flag[idx] is True: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =False if left_element != right_element: __UpperCamelCase =self.lazy[idx] __UpperCamelCase =self.lazy[idx] __UpperCamelCase =True __UpperCamelCase =True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] __UpperCamelCase =(left_element + right_element) // 2 __UpperCamelCase =self.query(self.left(A_ ) , A_ , A_ , A_ , A_ ) __UpperCamelCase =self.query(self.right(A_ ) , mid + 1 , A_ , A_ , A_ ) return max(A_ , A_ ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A_ , A_ ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _A = 15 _A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
62
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "" ): __UpperCamelCase =url or 'https://www.imdb.com/chart/top/?ref_=nv_mv_250' __UpperCamelCase =BeautifulSoup(requests.get(SCREAMING_SNAKE_CASE__ ).text , 'html.parser' ) __UpperCamelCase =soup.find_all('td' , attrs='titleColumn' ) __UpperCamelCase =soup.find_all('td' , class_='ratingColumn imdbRating' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) } def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str = "IMDb_Top_250_Movies.csv" ): __UpperCamelCase =get_imdb_top_aaa_movies() with open(SCREAMING_SNAKE_CASE__ , 'w' , newline='' ) as out_file: __UpperCamelCase =csv.writer(SCREAMING_SNAKE_CASE__ ) writer.writerow(['Movie title', 'IMDb rating'] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
62
1
def _a ( lowerCamelCase: str , lowerCamelCase: list[str] ) -> str: '''simple docstring''' __A = '''''' for word_or_phrase in separated: if not isinstance(lowerCamelCase , lowerCamelCase ): raise Exception('''join() accepts only strings to be joined''' ) joined += word_or_phrase + separator return joined.strip(lowerCamelCase ) if __name__ == "__main__": from doctest import testmod testmod()
250
def _a ( lowerCamelCase: Optional[Any] , lowerCamelCase: str , lowerCamelCase: Tuple , lowerCamelCase: Union[str, Any] ) -> str: '''simple docstring''' __A = [False] * len(lowerCamelCase ) __A = [] queue.append(lowerCamelCase ) __A = True while queue: __A = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(lowerCamelCase ) __A = True __A = u return visited[t] def _a ( lowerCamelCase: Tuple , lowerCamelCase: Union[str, Any] , lowerCamelCase: Optional[Any] ) -> Optional[int]: '''simple docstring''' __A = [-1] * (len(lowerCamelCase )) __A = 0 while bfs(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): __A = float('''Inf''' ) __A = sink while s != source: # Find the minimum value in select path __A = min(lowerCamelCase , graph[parent[s]][s] ) __A = parent[s] max_flow += path_flow __A = sink while v != source: __A = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __A = parent[v] return max_flow snake_case__ : List[Any] = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] snake_case__ , snake_case__ : List[Any] = 0, 5 print(ford_fulkerson(graph, source, sink))
250
1
"""simple docstring""" import requests from bsa import BeautifulSoup def lowercase ( A_ = "AAPL" )-> Any: '''simple docstring''' a : List[str] = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' a : int = BeautifulSoup(requests.get(A_ ).text , "html.parser" ) a : int = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("div" , class_=class_ ).find("span" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
40
from __future__ import annotations import collections import pprint from pathlib import Path def _a ( lowerCamelCase ): return "".join(sorted(lowerCamelCase ) ) def _a ( lowerCamelCase ): return word_by_signature[signature(lowerCamelCase )] _lowerCamelCase =Path(__file__).parent.joinpath("""words.txt""").read_text(encoding="""utf-8""") _lowerCamelCase =sorted({word.strip().lower() for word in data.splitlines()}) _lowerCamelCase =collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _lowerCamelCase ={word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("""anagrams.txt""", """w""") as file: file.write("""all_anagrams = \n """) file.write(pprint.pformat(all_anagrams))
287
0
from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def __UpperCamelCase ( _lowerCAmelCase ) -> Any: """simple docstring""" A : str = prime_factors(lowercase__ ) if is_square_free(lowercase__ ): return -1 if len(lowercase__ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
363
from argparse import ArgumentParser from .env import EnvironmentCommand def __UpperCamelCase ( ) -> Dict: """simple docstring""" A : str = ArgumentParser("""Diffusers CLI tool""" , usage="""diffusers-cli <command> [<args>]""" ) A : int = parser.add_subparsers(help="""diffusers-cli command helpers""" ) # Register commands EnvironmentCommand.register_subcommand(_lowerCAmelCase ) # Let's go A : str = parser.parse_args() if not hasattr(_lowerCAmelCase , """func""" ): parser.print_help() exit(1 ) # Run A : Any = args.func(_lowerCAmelCase ) service.run() if __name__ == "__main__": main()
115
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _UpperCAmelCase : List[str] = logging.get_logger(__name__) _UpperCAmelCase : Tuple = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase ( _SCREAMING_SNAKE_CASE ): __lowercase : Dict = "bert" def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=0 , A_="absolute" , A_=True , A_=None , **A_ , ) -> int: """simple docstring""" super().__init__(pad_token_id=A_ , **A_ ) UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = position_embedding_type UpperCamelCase = use_cache UpperCamelCase = classifier_dropout class lowercase ( _SCREAMING_SNAKE_CASE ): @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: UpperCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
222
import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class lowercase ( unittest.TestCase ): def __UpperCamelCase ( self , A_ ) -> List[str]: """simple docstring""" for model_result in results.values(): for batch_size, sequence_length in zip(model_result['bs'] , model_result['ss'] ): UpperCamelCase = model_result['result'][batch_size][sequence_length] self.assertIsNotNone(A_ ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sgugger/tiny-distilbert-classification' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , only_pretrain_model=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , torchscript=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , fpaa=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) # set architectures equal to `None` UpperCamelCase = None UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> List[str]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == 'cpu' , 'Can\'t do half precision' ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , fpaa=A_ , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tinier_bart' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def __UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = 'sshleifer/tinier_bart' UpperCamelCase = AutoConfig.from_pretrained(A_ ) UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ , configs=[config] ) UpperCamelCase = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def __UpperCamelCase ( self ) -> str: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , save_to_csv=A_ , sequence_lengths=[8] , batch_sizes=[1] , inference_time_csv_file=os.path.join(A_ , 'inf_time.csv' ) , train_memory_csv_file=os.path.join(A_ , 'train_mem.csv' ) , inference_memory_csv_file=os.path.join(A_ , 'inf_mem.csv' ) , train_time_csv_file=os.path.join(A_ , 'train_time.csv' ) , env_info_csv_file=os.path.join(A_ , 'env.csv' ) , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) benchmark.run() self.assertTrue(Path(os.path.join(A_ , 'inf_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'train_time.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'inf_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'train_mem.csv' ) ).exists() ) self.assertTrue(Path(os.path.join(A_ , 'env.csv' ) ).exists() ) def __UpperCamelCase ( self ) -> List[Any]: """simple docstring""" UpperCamelCase = 'sshleifer/tiny-gpt2' def _check_summary_is_not_empty(A_ ): self.assertTrue(hasattr(A_ , 'sequential' ) ) self.assertTrue(hasattr(A_ , 'cumulative' ) ) self.assertTrue(hasattr(A_ , 'current' ) ) self.assertTrue(hasattr(A_ , 'total' ) ) with tempfile.TemporaryDirectory() as tmp_dir: UpperCamelCase = PyTorchBenchmarkArguments( models=[MODEL_ID] , training=A_ , inference=A_ , sequence_lengths=[8] , batch_sizes=[1] , log_filename=os.path.join(A_ , 'log.txt' ) , log_print=A_ , trace_memory_line_by_line=A_ , multi_process=A_ , ) UpperCamelCase = PyTorchBenchmark(A_ ) UpperCamelCase = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(A_ , 'log.txt' ) ).exists() )
222
1
"""simple docstring""" from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase__ = "\n Examples:\n ```py\n >>> import torch\n >>> import numpy as np\n\n >>> from diffusers import KandinskyV22PriorPipeline, KandinskyV22ControlnetPipeline\n >>> from transformers import pipeline\n >>> from diffusers.utils import load_image\n\n\n >>> def make_hint(image, depth_estimator):\n ... image = depth_estimator(image)[\"depth\"]\n ... image = np.array(image)\n ... image = image[:, :, None]\n ... image = np.concatenate([image, image, image], axis=2)\n ... detected_map = torch.from_numpy(image).float() / 255.0\n ... hint = detected_map.permute(2, 0, 1)\n ... return hint\n\n\n >>> depth_estimator = pipeline(\"depth-estimation\")\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16\n ... )\n >>> pipe_prior = pipe_prior.to(\"cuda\")\n\n >>> pipe = KandinskyV22ControlnetPipeline.from_pretrained(\n ... \"kandinsky-community/kandinsky-2-2-controlnet-depth\", torch_dtype=torch.float16\n ... )\n >>> pipe = pipe.to(\"cuda\")\n\n\n >>> img = load_image(\n ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\"\n ... \"/kandinsky/cat.png\"\n ... ).resize((768, 768))\n\n >>> hint = make_hint(img, depth_estimator).unsqueeze(0).half().to(\"cuda\")\n\n >>> prompt = \"A robot, 4k photo\"\n >>> negative_prior_prompt = \"lowres, text, error, cropped, worst quality, low quality, jpeg artifacts, ugly, duplicate, morbid, mutilated, out of frame, extra fingers, mutated hands, poorly drawn hands, poorly drawn face, mutation, deformed, blurry, dehydrated, bad anatomy, bad proportions, extra limbs, cloned face, disfigured, gross proportions, malformed limbs, missing arms, missing legs, extra arms, extra legs, fused fingers, too many fingers, long neck, username, watermark, signature\"\n\n >>> generator = torch.Generator(device=\"cuda\").manual_seed(43)\n\n >>> image_emb, zero_image_emb = pipe_prior(\n ... prompt=prompt, negative_prompt=negative_prior_prompt, generator=generator\n ... ).to_tuple()\n\n >>> images = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... hint=hint,\n ... num_inference_steps=50,\n ... generator=generator,\n ... height=768,\n ... width=768,\n ... ).images\n\n >>> images[0].save(\"robot_cat.png\")\n ```\n" def _UpperCAmelCase ( __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Dict=8 ) -> Union[str, Any]: _snake_case = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 _snake_case = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class lowerCAmelCase__ ( _SCREAMING_SNAKE_CASE ): def __init__( self : int , _lowerCamelCase : UNetaDConditionModel , _lowerCamelCase : DDPMScheduler , _lowerCamelCase : VQModel , ): super().__init__() self.register_modules( unet=_lowerCamelCase , scheduler=_lowerCamelCase , movq=_lowerCamelCase , ) _snake_case = 2 ** (len(self.movq.config.block_out_channels ) - 1) def lowercase ( self : int , _lowerCamelCase : Tuple , _lowerCamelCase : Any , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int ): if latents is None: _snake_case = randn_tensor(_lowerCamelCase , generator=_lowerCamelCase , device=_lowerCamelCase , dtype=_lowerCamelCase ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) _snake_case = latents.to(_lowerCamelCase ) _snake_case = latents * scheduler.init_noise_sigma return latents def lowercase ( self : List[Any] , _lowerCamelCase : str=0 ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''' ) _snake_case = torch.device(f'''cuda:{gpu_id}''' ) _snake_case = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Dict , _lowerCamelCase : List[str]=0 ): if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0''' ): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''' ) _snake_case = torch.device(f'''cuda:{gpu_id}''' ) if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_lowerCamelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) _snake_case = None for cpu_offloaded_model in [self.unet, self.movq]: _snake_case = cpu_offload_with_hook(_lowerCamelCase , _lowerCamelCase , prev_module_hook=_lowerCamelCase ) # We'll offload the last model manually. _snake_case = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowercase ( self : List[Any] ): if not hasattr(self.unet , '''_hf_hook''' ): return self.device for module in self.unet.modules(): if ( hasattr(_lowerCamelCase , '''_hf_hook''' ) and hasattr(module._hf_hook , '''execution_device''' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_lowerCamelCase ) def __call__( self : List[Any] , _lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCamelCase : Union[torch.FloatTensor, List[torch.FloatTensor]] , _lowerCamelCase : torch.FloatTensor , _lowerCamelCase : int = 512 , _lowerCamelCase : int = 512 , _lowerCamelCase : int = 100 , _lowerCamelCase : float = 4.0 , _lowerCamelCase : int = 1 , _lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _lowerCamelCase : Optional[torch.FloatTensor] = None , _lowerCamelCase : Optional[str] = "pil" , _lowerCamelCase : bool = True , ): _snake_case = self._execution_device _snake_case = guidance_scale > 1.0 if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = torch.cat(_lowerCamelCase , dim=0 ) if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = torch.cat(_lowerCamelCase , dim=0 ) if isinstance(_lowerCamelCase , _lowerCamelCase ): _snake_case = torch.cat(_lowerCamelCase , dim=0 ) _snake_case = image_embeds.shape[0] * num_images_per_prompt if do_classifier_free_guidance: _snake_case = image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) _snake_case = negative_image_embeds.repeat_interleave(_lowerCamelCase , dim=0 ) _snake_case = hint.repeat_interleave(_lowerCamelCase , dim=0 ) _snake_case = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) _snake_case = torch.cat([hint, hint] , dim=0 ).to(dtype=self.unet.dtype , device=_lowerCamelCase ) self.scheduler.set_timesteps(_lowerCamelCase , device=_lowerCamelCase ) _snake_case = self.scheduler.timesteps _snake_case = self.movq.config.latent_channels _snake_case = downscale_height_and_width(_lowerCamelCase , _lowerCamelCase , self.movq_scale_factor ) # create initial latent _snake_case = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , self.scheduler , ) for i, t in enumerate(self.progress_bar(_lowerCamelCase ) ): # expand the latents if we are doing classifier free guidance _snake_case = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents _snake_case = {"""image_embeds""": image_embeds, """hint""": hint} _snake_case = self.unet( sample=_lowerCamelCase , timestep=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , added_cond_kwargs=_lowerCamelCase , return_dict=_lowerCamelCase , )[0] if do_classifier_free_guidance: _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) _snake_case = noise_pred.chunk(2 ) _snake_case = variance_pred.chunk(2 ) _snake_case = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) _snake_case = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , '''variance_type''' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): _snake_case = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 _snake_case = self.scheduler.step( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , generator=_lowerCamelCase , )[0] # post-processing _snake_case = self.movq.decode(_lowerCamelCase , force_not_quantize=_lowerCamelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(f'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' ) if output_type in ["np", "pil"]: _snake_case = image * 0.5 + 0.5 _snake_case = image.clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(_lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowerCamelCase )
350
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bert import BertTokenizer UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} UpperCAmelCase__ = { 'vocab_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/vocab.txt', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/vocab.txt', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/vocab.txt', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/vocab.txt', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/vocab.txt' ), 'bert-base-multilingual-cased': 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/vocab.txt', 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/vocab.txt', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/vocab.txt', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/vocab.txt' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/vocab.txt' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/vocab.txt' ), 'bert-base-german-dbmdz-cased': 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/vocab.txt', 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/vocab.txt' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/vocab.txt' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'bert-base-uncased': 'https://huggingface.co/bert-base-uncased/resolve/main/tokenizer.json', 'bert-large-uncased': 'https://huggingface.co/bert-large-uncased/resolve/main/tokenizer.json', 'bert-base-cased': 'https://huggingface.co/bert-base-cased/resolve/main/tokenizer.json', 'bert-large-cased': 'https://huggingface.co/bert-large-cased/resolve/main/tokenizer.json', 'bert-base-multilingual-uncased': ( 'https://huggingface.co/bert-base-multilingual-uncased/resolve/main/tokenizer.json' ), 'bert-base-multilingual-cased': ( 'https://huggingface.co/bert-base-multilingual-cased/resolve/main/tokenizer.json' ), 'bert-base-chinese': 'https://huggingface.co/bert-base-chinese/resolve/main/tokenizer.json', 'bert-base-german-cased': 'https://huggingface.co/bert-base-german-cased/resolve/main/tokenizer.json', 'bert-large-uncased-whole-word-masking': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking': ( 'https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/tokenizer.json' ), 'bert-large-uncased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-large-cased-whole-word-masking-finetuned-squad': ( 'https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/tokenizer.json' ), 'bert-base-cased-finetuned-mrpc': ( 'https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-cased': ( 'https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/tokenizer.json' ), 'bert-base-german-dbmdz-uncased': ( 'https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-cased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/tokenizer.json' ), 'TurkuNLP/bert-base-finnish-uncased-v1': ( 'https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/tokenizer.json' ), 'wietsedv/bert-base-dutch-cased': ( 'https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/tokenizer.json' ), }, } UpperCAmelCase__ = { 'bert-base-uncased': 512, 'bert-large-uncased': 512, 'bert-base-cased': 512, 'bert-large-cased': 512, 'bert-base-multilingual-uncased': 512, 'bert-base-multilingual-cased': 512, 'bert-base-chinese': 512, 'bert-base-german-cased': 512, 'bert-large-uncased-whole-word-masking': 512, 'bert-large-cased-whole-word-masking': 512, 'bert-large-uncased-whole-word-masking-finetuned-squad': 512, 'bert-large-cased-whole-word-masking-finetuned-squad': 512, 'bert-base-cased-finetuned-mrpc': 512, 'bert-base-german-dbmdz-cased': 512, 'bert-base-german-dbmdz-uncased': 512, 'TurkuNLP/bert-base-finnish-cased-v1': 512, 'TurkuNLP/bert-base-finnish-uncased-v1': 512, 'wietsedv/bert-base-dutch-cased': 512, } UpperCAmelCase__ = { 'bert-base-uncased': {'do_lower_case': True}, 'bert-large-uncased': {'do_lower_case': True}, 'bert-base-cased': {'do_lower_case': False}, 'bert-large-cased': {'do_lower_case': False}, 'bert-base-multilingual-uncased': {'do_lower_case': True}, 'bert-base-multilingual-cased': {'do_lower_case': False}, 'bert-base-chinese': {'do_lower_case': False}, 'bert-base-german-cased': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking': {'do_lower_case': False}, 'bert-large-uncased-whole-word-masking-finetuned-squad': {'do_lower_case': True}, 'bert-large-cased-whole-word-masking-finetuned-squad': {'do_lower_case': False}, 'bert-base-cased-finetuned-mrpc': {'do_lower_case': False}, 'bert-base-german-dbmdz-cased': {'do_lower_case': False}, 'bert-base-german-dbmdz-uncased': {'do_lower_case': True}, 'TurkuNLP/bert-base-finnish-cased-v1': {'do_lower_case': False}, 'TurkuNLP/bert-base-finnish-uncased-v1': {'do_lower_case': True}, 'wietsedv/bert-base-dutch-cased': {'do_lower_case': False}, } class lowerCAmelCase__ ( A_ ): __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_INIT_CONFIGURATION __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = BertTokenizer def __init__( self : Optional[int] , _lowerCamelCase : int=None , _lowerCamelCase : Optional[int]=None , _lowerCamelCase : Tuple=True , _lowerCamelCase : Optional[int]="[UNK]" , _lowerCamelCase : Any="[SEP]" , _lowerCamelCase : Any="[PAD]" , _lowerCamelCase : List[Any]="[CLS]" , _lowerCamelCase : Dict="[MASK]" , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Any=None , **_lowerCamelCase : int , ): super().__init__( _lowerCamelCase , tokenizer_file=_lowerCamelCase , do_lower_case=_lowerCamelCase , unk_token=_lowerCamelCase , sep_token=_lowerCamelCase , pad_token=_lowerCamelCase , cls_token=_lowerCamelCase , mask_token=_lowerCamelCase , tokenize_chinese_chars=_lowerCamelCase , strip_accents=_lowerCamelCase , **_lowerCamelCase , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _lowerCamelCase ) != do_lower_case or normalizer_state.get('''strip_accents''' , _lowerCamelCase ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _lowerCamelCase ) != tokenize_chinese_chars ): _snake_case = getattr(_lowerCamelCase , normalizer_state.pop('''type''' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**_lowerCamelCase ) _snake_case = do_lower_case def lowercase ( self : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[Any]=None ): _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Optional[Any] , _lowerCamelCase : List[int] , _lowerCamelCase : Optional[List[int]] = None ): _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Optional[int] , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): _snake_case = self._tokenizer.model.save(_lowerCamelCase , name=_lowerCamelCase ) return tuple(_lowerCamelCase )
40
0
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class __A ( a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Any =( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ : Dict =( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ : List[str] =False UpperCamelCase__ : Any =False def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=False ): """simple docstring""" __UpperCamelCase : Optional[int] =super()._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ , return_labels=lowerCamelCase__ ) if return_labels: if model_class in get_values(lowerCamelCase__ ): __UpperCamelCase : str =tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class __A ( a ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , ): """simple docstring""" __UpperCamelCase : List[Any] =parent __UpperCamelCase : List[Any] =batch_size __UpperCamelCase : Dict =seq_length __UpperCamelCase : Dict =is_training __UpperCamelCase : Tuple =use_input_mask __UpperCamelCase : List[Any] =use_token_type_ids __UpperCamelCase : int =use_labels __UpperCamelCase : List[Any] =vocab_size __UpperCamelCase : Optional[Any] =hidden_size __UpperCamelCase : str =num_hidden_layers __UpperCamelCase : Optional[Any] =num_attention_heads __UpperCamelCase : str =intermediate_size __UpperCamelCase : Tuple =hidden_act __UpperCamelCase : int =hidden_dropout_prob __UpperCamelCase : Any =attention_probs_dropout_prob __UpperCamelCase : List[str] =max_position_embeddings __UpperCamelCase : int =type_vocab_size __UpperCamelCase : Union[str, Any] =type_sequence_label_size __UpperCamelCase : Optional[int] =initializer_range __UpperCamelCase : Optional[Any] =num_labels __UpperCamelCase : Any =num_choices __UpperCamelCase : Tuple =scope __UpperCamelCase : Optional[int] =embedding_size def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase : int =None if self.use_input_mask: __UpperCamelCase : str =random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase : List[Any] =None if self.use_token_type_ids: __UpperCamelCase : Optional[int] =ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCamelCase : int =None __UpperCamelCase : Any =None __UpperCamelCase : Tuple =None if self.use_labels: __UpperCamelCase : str =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase : Any =ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase : int =ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase : Dict =MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFMobileBertModel(config=lowerCamelCase__ ) __UpperCamelCase : Any ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : int =model(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =[input_ids, input_mask] __UpperCamelCase : Any =model(lowerCamelCase__ ) __UpperCamelCase : Optional[int] =model(lowerCamelCase__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Union[str, Any] =TFMobileBertForMaskedLM(config=lowerCamelCase__ ) __UpperCamelCase : str ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : List[Any] =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =TFMobileBertForNextSentencePrediction(config=lowerCamelCase__ ) __UpperCamelCase : List[Any] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : List[str] =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : Dict =TFMobileBertForPreTraining(config=lowerCamelCase__ ) __UpperCamelCase : List[Any] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Union[str, Any] =model(lowerCamelCase__ ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =self.num_labels __UpperCamelCase : Optional[int] =TFMobileBertForSequenceClassification(config=lowerCamelCase__ ) __UpperCamelCase : int ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Optional[int] =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =self.num_choices __UpperCamelCase : Tuple =TFMobileBertForMultipleChoice(config=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Any =tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Dict =tf.tile(tf.expand_dims(lowerCamelCase__ , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase : Any ={ 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase : str =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : List[str] =self.num_labels __UpperCamelCase : str =TFMobileBertForTokenClassification(config=lowerCamelCase__ ) __UpperCamelCase : int ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" __UpperCamelCase : str =TFMobileBertForQuestionAnswering(config=lowerCamelCase__ ) __UpperCamelCase : Optional[int] ={'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase : Optional[Any] =model(lowerCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) : Optional[Any] =config_and_inputs __UpperCamelCase : Any ={'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =TFMobileBertModelTest.TFMobileBertModelTester(self ) __UpperCamelCase : Tuple =ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 ) def __lowercase ( self ): """simple docstring""" self.config_tester.run_common_tests() def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase__ ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase__ ) @slow def __lowercase ( self ): """simple docstring""" for model_name in ["google/mobilebert-uncased"]: __UpperCamelCase : Tuple =TFMobileBertModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) @require_tf class __A ( unittest.TestCase ): """simple docstring""" @slow def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) __UpperCamelCase : int =tf.constant([[0, 1, 2, 3, 4, 5]] ) __UpperCamelCase : Union[str, Any] =model(lowerCamelCase__ )[0] __UpperCamelCase : List[Any] =[1, 6, 30522] self.assertEqual(output.shape , lowerCamelCase__ ) __UpperCamelCase : List[Any] =tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , lowerCamelCase__ , atol=1E-4 )
71
import re def A ( a_ ) -> bool: __UpperCamelCase : Any =re.compile( r'^(?:0|94|\+94|0{2}94)' r'7(0|1|2|4|5|6|7|8)' r'(-| |)' r'\d{7}$' ) return bool(re.search(a_ ,a_ ) ) if __name__ == "__main__": A_ :List[str] = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
71
1
"""simple docstring""" import unittest from diffusers.models.unet_ad_blocks import * # noqa F403 from diffusers.utils import torch_device from .test_unet_blocks_common import UNetBlockTesterMixin class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Any = DownBlockaD # noqa F405 a__ : Tuple = "down" def a ( self : Optional[Any] ): __UpperCAmelCase = [-0.0_232, -0.9_869, 0.8_054, -0.0_637, -0.1_688, -1.4_264, 0.4_470, -1.3_394, 0.0_904] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Dict = ResnetDownsampleBlockaD # noqa F405 a__ : int = "down" def a ( self : Any ): __UpperCAmelCase = [0.0_710, 0.2_410, -0.7_320, -1.0_757, -1.1_343, 0.3_540, -0.0_133, -0.2_576, 0.0_948] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Dict = AttnDownBlockaD # noqa F405 a__ : int = "down" def a ( self : List[str] ): __UpperCAmelCase = [0.0_636, 0.8_964, -0.6_234, -1.0_131, 0.0_844, 0.4_935, 0.3_437, 0.0_911, -0.2_957] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Dict = CrossAttnDownBlockaD # noqa F405 a__ : List[Any] = "down" def a ( self : Dict ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def a ( self : str ): __UpperCAmelCase = [0.2_238, -0.7_396, -0.2_255, -0.3_829, 0.1_925, 1.1_665, 0.0_603, -0.7_295, 0.1_983] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Tuple = SimpleCrossAttnDownBlockaD # noqa F405 a__ : Optional[Any] = "down" @property def a ( self : Optional[int] ): return super().get_dummy_input(include_encoder_hidden_states=_lowerCamelCase ) def a ( self : Optional[int] ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def a ( self : Dict ): __UpperCAmelCase = [0.7_921, -0.0_992, -0.1_962, -0.7_695, -0.4_242, 0.7_804, 0.4_737, 0.2_765, 0.3_338] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Any = SkipDownBlockaD # noqa F405 a__ : List[str] = "down" @property def a ( self : Dict ): return super().get_dummy_input(include_skip_sample=_lowerCamelCase ) def a ( self : str ): __UpperCAmelCase = [-0.0_845, -0.2_087, -0.2_465, 0.0_971, 0.1_900, -0.0_484, 0.2_664, 0.4_179, 0.5_069] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Union[str, Any] = AttnSkipDownBlockaD # noqa F405 a__ : Union[str, Any] = "down" @property def a ( self : int ): return super().get_dummy_input(include_skip_sample=_lowerCamelCase ) def a ( self : Any ): __UpperCAmelCase = [0.5_539, 0.1_609, 0.4_924, 0.0_537, -0.1_995, 0.4_050, 0.0_979, -0.2_721, -0.0_642] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Any = DownEncoderBlockaD # noqa F405 a__ : int = "down" @property def a ( self : Optional[int] ): return super().get_dummy_input(include_temb=_lowerCamelCase ) def a ( self : Optional[Any] ): __UpperCAmelCase = { '''in_channels''': 32, '''out_channels''': 32, } __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[int] ): __UpperCAmelCase = [1.1_102, 0.5_302, 0.4_872, -0.0_023, -0.8_042, 0.0_483, -0.3_489, -0.5_632, 0.7_626] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : int = AttnDownEncoderBlockaD # noqa F405 a__ : str = "down" @property def a ( self : List[str] ): return super().get_dummy_input(include_temb=_lowerCamelCase ) def a ( self : Union[str, Any] ): __UpperCAmelCase = { '''in_channels''': 32, '''out_channels''': 32, } __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a ( self : List[str] ): __UpperCAmelCase = [0.8_966, -0.1_486, 0.8_568, 0.8_141, -0.9_046, -0.1_342, -0.0_972, -0.7_417, 0.1_538] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : str = UNetMidBlockaD # noqa F405 a__ : List[str] = "mid" def a ( self : Any ): __UpperCAmelCase = { '''in_channels''': 32, '''temb_channels''': 1_28, } __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a ( self : List[str] ): __UpperCAmelCase = [-0.1_062, 1.7_248, 0.3_494, 1.4_569, -0.0_910, -1.2_421, -0.9_984, 0.6_736, 1.0_028] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Tuple = UNetMidBlockaDCrossAttn # noqa F405 a__ : Dict = "mid" def a ( self : Optional[int] ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def a ( self : List[str] ): __UpperCAmelCase = [0.0_187, 2.4_220, 0.4_484, 1.1_203, -0.6_121, -1.5_122, -0.8_270, 0.7_851, 1.8_335] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : int = UNetMidBlockaDSimpleCrossAttn # noqa F405 a__ : Union[str, Any] = "mid" @property def a ( self : Any ): return super().get_dummy_input(include_encoder_hidden_states=_lowerCamelCase ) def a ( self : List[Any] ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def a ( self : int ): __UpperCAmelCase = [0.7_143, 1.9_974, 0.5_448, 1.3_977, 0.1_282, -1.1_237, -1.4_238, 0.5_530, 0.8_880] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Optional[Any] = UpBlockaD # noqa F405 a__ : List[str] = "up" @property def a ( self : str ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCamelCase ) def a ( self : int ): __UpperCAmelCase = [-0.2_041, -0.4_165, -0.3_022, 0.0_041, -0.6_628, -0.7_053, 0.1_928, -0.0_325, 0.0_523] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Union[str, Any] = ResnetUpsampleBlockaD # noqa F405 a__ : Tuple = "up" @property def a ( self : Optional[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCamelCase ) def a ( self : Optional[Any] ): __UpperCAmelCase = [0.2_287, 0.3_549, -0.1_346, 0.4_797, -0.1_715, -0.9_649, 0.7_305, -0.5_864, -0.6_244] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Union[str, Any] = CrossAttnUpBlockaD # noqa F405 a__ : List[str] = "up" @property def a ( self : Dict ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCamelCase ) def a ( self : List[Any] ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def a ( self : int ): __UpperCAmelCase = [-0.1_403, -0.3_515, -0.0_420, -0.1_425, 0.3_167, 0.5_094, -0.2_181, 0.5_931, 0.5_582] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Tuple = SimpleCrossAttnUpBlockaD # noqa F405 a__ : Dict = "up" @property def a ( self : List[str] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCamelCase , include_encoder_hidden_states=_lowerCamelCase ) def a ( self : Dict ): __UpperCAmelCase = super().prepare_init_args_and_inputs_for_common() __UpperCAmelCase = 32 return init_dict, inputs_dict def a ( self : List[str] ): __UpperCAmelCase = [0.2_645, 0.1_480, 0.0_909, 0.8_044, -0.9_758, -0.9_083, 0.0_994, -1.1_453, -0.7_402] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Tuple = AttnUpBlockaD # noqa F405 a__ : List[str] = "up" @property def a ( self : List[Any] ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCamelCase ) @unittest.skipIf(torch_device == '''mps''' , '''MPS result is not consistent''' ) def a ( self : int ): __UpperCAmelCase = [0.0_979, 0.1_326, 0.0_021, 0.0_659, 0.2_249, 0.0_059, 0.1_132, 0.5_952, 0.1_033] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : int = SkipUpBlockaD # noqa F405 a__ : List[str] = "up" @property def a ( self : Any ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCamelCase ) def a ( self : List[str] ): __UpperCAmelCase = [-0.0_893, -0.1_234, -0.1_506, -0.0_332, 0.0_123, -0.0_211, 0.0_566, 0.0_143, 0.0_362] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Dict = AttnSkipUpBlockaD # noqa F405 a__ : List[str] = "up" @property def a ( self : Tuple ): return super().get_dummy_input(include_res_hidden_states_tuple=_lowerCamelCase ) def a ( self : List[Any] ): __UpperCAmelCase = [0.0_361, 0.0_617, 0.2_787, -0.0_350, 0.0_342, 0.3_421, -0.0_843, 0.0_913, 0.3_015] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Any = UpDecoderBlockaD # noqa F405 a__ : Any = "up" @property def a ( self : str ): return super().get_dummy_input(include_temb=_lowerCamelCase ) def a ( self : Any ): __UpperCAmelCase = {'''in_channels''': 32, '''out_channels''': 32} __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a ( self : Optional[Any] ): __UpperCAmelCase = [0.4_404, 0.1_998, -0.9_886, -0.3_320, -0.3_128, -0.7_034, -0.6_955, -0.2_338, -0.3_137] super().test_output(_lowerCamelCase ) class _UpperCAmelCase ( a__ , unittest.TestCase ): a__ : Dict = AttnUpDecoderBlockaD # noqa F405 a__ : List[Any] = "up" @property def a ( self : Any ): return super().get_dummy_input(include_temb=_lowerCamelCase ) def a ( self : Optional[Any] ): __UpperCAmelCase = {'''in_channels''': 32, '''out_channels''': 32} __UpperCAmelCase = self.dummy_input return init_dict, inputs_dict def a ( self : List[str] ): __UpperCAmelCase = [0.6_738, 0.4_491, 0.1_055, 1.0_710, 0.7_316, 0.3_339, 0.3_352, 0.1_023, 0.3_568] super().test_output(_lowerCamelCase )
354
"""simple docstring""" import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _UpperCAmelCase ( unittest.TestCase ): a__ : Optional[int] = MODEL_FOR_MASKED_LM_MAPPING a__ : Tuple = TF_MODEL_FOR_MASKED_LM_MAPPING def a ( self : List[str] ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def a ( self : Tuple ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_80_15, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_55_06, '''token_str''': ''' accuser''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : Optional[int] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 29_41, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, ] , ) __UpperCAmelCase = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(_lowercase , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_56_76, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_64_16, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def a ( self : Any ): __UpperCAmelCase = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() __UpperCAmelCase = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(_lowercase , _lowercase ) @slow @require_torch def a ( self : int ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(_lowercase ) @slow @require_tf def a ( self : Optional[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(_lowercase ) def a ( self : Dict , _lowercase : str ): __UpperCAmelCase = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is John''', '''score''': 0.008, '''token''': 6_10, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.007, '''token''': 15_73, '''token_str''': ''' Chris'''}, ] , ) __UpperCAmelCase = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(_lowercase ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.251, '''token''': 22_01, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.214, '''token''': 1_27_90, '''token_str''': ''' Lyon''', }, ] , ) __UpperCAmelCase = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(_lowercase ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.005, '''token''': 34_99, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.000, '''token''': 1_36_06, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.000, '''token''': 29_41, '''token_str''': ''' Te'''}, ] , ) @require_torch def a ( self : List[Any] ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) @require_tf def a ( self : str ): __UpperCAmelCase = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) __UpperCAmelCase = None __UpperCAmelCase = None self.run_pipeline_test(_lowercase , [] ) def a ( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : Optional[int] , _lowercase : Tuple ): if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = [ F'''This is another {tokenizer.mask_token} test''', ] return fill_masker, examples def a ( self : int , _lowercase : Tuple , _lowercase : Tuple ): __UpperCAmelCase = fill_masker.tokenizer __UpperCAmelCase = fill_masker.model __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token}''' , ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}'''] ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = fill_masker([F'''This is a {tokenizer.mask_token}''', F'''Another {tokenizer.mask_token} great test.'''] ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , ) with self.assertRaises(_lowercase ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(_lowercase ): fill_masker('''This is''' ) self.run_test_top_k(_lowercase , _lowercase ) self.run_test_targets(_lowercase , _lowercase ) self.run_test_top_k_targets(_lowercase , _lowercase ) self.fill_mask_with_duplicate_targets_and_top_k(_lowercase , _lowercase ) self.fill_mask_with_multiple_masks(_lowercase , _lowercase ) def a ( self : Optional[Any] , _lowercase : Optional[Any] , _lowercase : List[Any] ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = sorted(vocab.keys() )[:2] # Pipeline argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , targets=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Call argument __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , _lowercase ) __UpperCAmelCase = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(_lowercase ) ) # Score equivalence __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''token_str'''] for top_mask in outputs] __UpperCAmelCase = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ) == set(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=_lowercase ) __UpperCAmelCase = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) # Raises with invalid with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets=[''''''] ) with self.assertRaises(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , targets='''''' ) def a ( self : List[Any] , _lowercase : Tuple , _lowercase : Optional[Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase , top_k=2 ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ] , ) self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Optional[int] , _lowercase : int , _lowercase : Tuple ): __UpperCAmelCase = tokenizer.get_vocab() __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) # top_k=2, ntargets=3 __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=2 , targets=_lowercase ) # If we use the most probably targets, and filter differently, we should still # have the same results __UpperCAmelCase = [el['''token_str'''] for el in sorted(_lowercase , key=lambda _lowercase : x["score"] , reverse=_lowercase )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(_lowercase ).issubset(_lowercase ): __UpperCAmelCase = fill_masker(F'''This is a {tokenizer.mask_token}''' , top_k=3 , targets=_lowercase ) # They should yield exactly the same result self.assertEqual(nested_simplify(_lowercase ) , nested_simplify(_lowercase ) ) def a ( self : Union[str, Any] , _lowercase : Tuple , _lowercase : Union[str, Any] ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = tokenizer.get_vocab() # String duplicates + id duplicates __UpperCAmelCase = sorted(vocab.keys() )[:3] __UpperCAmelCase = [targets[0], targets[1], targets[0], targets[2], targets[1]] __UpperCAmelCase = fill_masker(F'''My name is {tokenizer.mask_token}''' , targets=_lowercase , top_k=10 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(_lowercase ) , 3 ) def a ( self : Dict , _lowercase : Dict , _lowercase : Any ): __UpperCAmelCase = FillMaskPipeline(model=_lowercase , tokenizer=_lowercase ) __UpperCAmelCase = fill_masker( F'''This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}''' , top_k=2 ) self.assertEqual( _lowercase , [ [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], [ {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, {'''sequence''': ANY(_lowercase ), '''score''': ANY(_lowercase ), '''token''': ANY(_lowercase ), '''token_str''': ANY(_lowercase )}, ], ] , )
86
0
'''simple docstring''' import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() _snake_case = logging.get_logger(__name__) def _A ( snake_case , snake_case , snake_case ) -> Optional[int]: _lowercase : Tuple = os.path.abspath(snake_case ) logger.info(F'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model _lowercase : Optional[Any] = tf.train.list_variables(snake_case ) _lowercase : Optional[int] = [] _lowercase : List[Any] = [] _lowercase : Union[str, Any] = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") _lowercase : Tuple = full_name.split("/" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(F'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(F'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' _lowercase : str = name[1:] # figure out how many levels deep the name is _lowercase : str = 0 for _name in name: if _name.startswith("layer_with_weights" ): depth += 1 else: break layer_depth.append(snake_case ) # read data _lowercase : str = tf.train.load_variable(snake_case , snake_case ) names.append("/".join(snake_case ) ) arrays.append(snake_case ) logger.info(F'''Read a total of {len(snake_case ):,} layers''' ) # Sanity check if len(set(snake_case ) ) != 1: raise ValueError(F'''Found layer names with different depths (layer depth {list(set(snake_case ) )})''' ) _lowercase : Optional[Any] = list(set(snake_case ) )[0] if layer_depth != 1: raise ValueError( "The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP" " heads." ) # convert layers logger.info("Converting weights..." ) for full_name, array in zip(snake_case , snake_case ): _lowercase : Optional[int] = full_name.split("/" ) _lowercase : Union[str, Any] = model _lowercase : int = [] for i, m_name in enumerate(snake_case ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("layer_with_weights" ): _lowercase : Any = int(m_name.split("-" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["embeddings", "LayerNorm"] ) _lowercase : str = getattr(snake_case , "embeddings" ) _lowercase : int = getattr(snake_case , "LayerNorm" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["encoder", "layer", str(layer_num - 4 )] ) _lowercase : int = getattr(snake_case , "encoder" ) _lowercase : Union[str, Any] = getattr(snake_case , "layer" ) _lowercase : Optional[int] = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["pooler", "dense"] ) _lowercase : List[str] = getattr(snake_case , "pooler" ) _lowercase : str = getattr(snake_case , "dense" ) elif m_name == "embeddings": trace.append("embeddings" ) _lowercase : Optional[Any] = getattr(snake_case , "embeddings" ) if layer_num == 0: trace.append("word_embeddings" ) _lowercase : Tuple = getattr(snake_case , "word_embeddings" ) elif layer_num == 1: trace.append("position_embeddings" ) _lowercase : List[Any] = getattr(snake_case , "position_embeddings" ) elif layer_num == 2: trace.append("token_type_embeddings" ) _lowercase : int = getattr(snake_case , "token_type_embeddings" ) else: raise ValueError(F'''Unknown embedding layer with name {full_name}''' ) trace.append("weight" ) _lowercase : str = getattr(snake_case , "weight" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["attention", "self"] ) _lowercase : Dict = getattr(snake_case , "attention" ) _lowercase : Optional[int] = getattr(snake_case , "self" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["attention", "output", "LayerNorm"] ) _lowercase : List[Any] = getattr(snake_case , "attention" ) _lowercase : Optional[int] = getattr(snake_case , "output" ) _lowercase : Dict = getattr(snake_case , "LayerNorm" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["attention", "output", "dense"] ) _lowercase : Dict = getattr(snake_case , "attention" ) _lowercase : int = getattr(snake_case , "output" ) _lowercase : Union[str, Any] = getattr(snake_case , "dense" ) elif m_name == "_output_dense": # output dense trace.extend(["output", "dense"] ) _lowercase : Dict = getattr(snake_case , "output" ) _lowercase : Optional[Any] = getattr(snake_case , "dense" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["output", "LayerNorm"] ) _lowercase : Optional[Any] = getattr(snake_case , "output" ) _lowercase : List[str] = getattr(snake_case , "LayerNorm" ) elif m_name == "_key_dense": # attention key trace.append("key" ) _lowercase : List[Any] = getattr(snake_case , "key" ) elif m_name == "_query_dense": # attention query trace.append("query" ) _lowercase : Optional[int] = getattr(snake_case , "query" ) elif m_name == "_value_dense": # attention value trace.append("value" ) _lowercase : str = getattr(snake_case , "value" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["intermediate", "dense"] ) _lowercase : List[Any] = getattr(snake_case , "intermediate" ) _lowercase : Any = getattr(snake_case , "dense" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("output" ) _lowercase : Union[str, Any] = getattr(snake_case , "output" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("bias" ) _lowercase : Optional[Any] = getattr(snake_case , "bias" ) elif m_name in ["kernel", "gamma"]: trace.append("weight" ) _lowercase : List[Any] = getattr(snake_case , "weight" ) else: logger.warning(F'''Ignored {m_name}''' ) # for certain layers reshape is necessary _lowercase : Tuple = ".".join(snake_case ) if re.match(r"(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)" , snake_case ) or re.match( r"(\S+)\.attention\.output\.dense\.weight" , snake_case ): _lowercase : int = array.reshape(pointer.data.shape ) if "kernel" in full_name: _lowercase : str = array.transpose() if pointer.shape == array.shape: _lowercase : List[Any] = torch.from_numpy(snake_case ) else: raise ValueError( F'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' F''' {array.shape}''' ) logger.info(F'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def _A ( snake_case , snake_case , snake_case ) -> str: # Instantiate model logger.info(F'''Loading model based on config from {config_path}...''' ) _lowercase : Union[str, Any] = BertConfig.from_json_file(snake_case ) _lowercase : Optional[int] = BertModel(snake_case ) # Load weights from checkpoint logger.info(F'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(snake_case , snake_case , snake_case ) # Save pytorch-model logger.info(F'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": _snake_case = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) _snake_case = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
250
'''simple docstring''' class a__ : def __init__( self , _UpperCamelCase ): """simple docstring""" _lowercase : Tuple = n _lowercase : Any = [None] * self.n _lowercase : Tuple = 0 # index of the first element _lowercase : Union[str, Any] = 0 _lowercase : str = 0 def __len__( self ): """simple docstring""" return self.size def _lowerCamelCase ( self ): """simple docstring""" return self.size == 0 def _lowerCamelCase ( self ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if self.size >= self.n: raise Exception("QUEUE IS FULL" ) _lowercase : Optional[int] = data _lowercase : Dict = (self.rear + 1) % self.n self.size += 1 return self def _lowerCamelCase ( self ): """simple docstring""" if self.size == 0: raise Exception("UNDERFLOW" ) _lowercase : Optional[Any] = self.array[self.front] _lowercase : List[Any] = None _lowercase : int = (self.front + 1) % self.n self.size -= 1 return temp
250
1
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: lowercase__ : str = None lowercase__ : List[Any] = logging.get_logger(__name__) lowercase__ : int = {'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} lowercase__ : Union[str, Any] = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), }, 'tokenizer_file': { 'facebook/mbart-large-en-ro': 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json', 'facebook/mbart-large-cc25': 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json', }, } lowercase__ : Union[str, Any] = { 'facebook/mbart-large-en-ro': 10_24, 'facebook/mbart-large-cc25': 10_24, } # fmt: off lowercase__ : Dict = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" _snake_case : Any = VOCAB_FILES_NAMES _snake_case : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _snake_case : Any = ['input_ids', 'attention_mask'] _snake_case : str = MBartTokenizer _snake_case : List[int] = [] _snake_case : List[int] = [] def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : int="<s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : str="</s>" , lowerCAmelCase__ : Any="<s>" , lowerCAmelCase__ : List[str]="<unk>" , lowerCAmelCase__ : str="<pad>" , lowerCAmelCase__ : Union[str, Any]="<mask>" , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : List[str]=None , lowerCAmelCase__ : Any=None , **lowerCAmelCase__ : Any , ) -> List[str]: '''simple docstring''' _UpperCamelCase = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token super().__init__( vocab_file=lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , src_lang=lowerCAmelCase__ , tgt_lang=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , ) _UpperCamelCase = vocab_file _UpperCamelCase = False if not self.vocab_file else True _UpperCamelCase = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) _UpperCamelCase = { lang_code: self.convert_tokens_to_ids(lowerCAmelCase__ ) for lang_code in FAIRSEQ_LANGUAGE_CODES } _UpperCamelCase = src_lang if src_lang is not None else '''en_XX''' _UpperCamelCase = self.convert_tokens_to_ids(self._src_lang ) _UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def snake_case__ ( self : int ) -> str: '''simple docstring''' return self._src_lang @src_lang.setter def snake_case__ ( self : Optional[int] , lowerCAmelCase__ : str ) -> None: '''simple docstring''' _UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def snake_case__ ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def snake_case__ ( self : Tuple , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def snake_case__ ( self : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] , lowerCAmelCase__ : Optional[str] , **lowerCAmelCase__ : List[str] ) -> Optional[int]: '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _UpperCamelCase = src_lang _UpperCamelCase = self(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , **lowerCAmelCase__ ) _UpperCamelCase = self.convert_tokens_to_ids(lowerCAmelCase__ ) _UpperCamelCase = tgt_lang_id return inputs def snake_case__ ( self : str , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str = "en_XX" , lowerCAmelCase__ : Optional[List[str]] = None , lowerCAmelCase__ : str = "ro_RO" , **lowerCAmelCase__ : Tuple , ) -> BatchEncoding: '''simple docstring''' _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) def snake_case__ ( self : str ) -> Optional[Any]: '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def snake_case__ ( self : int ) -> str: '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def snake_case__ ( self : Dict , lowerCAmelCase__ : Union[str, Any] ) -> None: '''simple docstring''' _UpperCamelCase = self.convert_tokens_to_ids(lowerCAmelCase__ ) _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] _UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str ) -> None: '''simple docstring''' _UpperCamelCase = self.convert_tokens_to_ids(lowerCAmelCase__ ) _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] _UpperCamelCase = self.convert_ids_to_tokens(self.prefix_tokens ) _UpperCamelCase = self.convert_ids_to_tokens(self.suffix_tokens ) _UpperCamelCase = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def snake_case__ ( self : str , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(lowerCAmelCase__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory.""" ) return _UpperCamelCase = os.path.join( lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase__ ): copyfile(self.vocab_file , lowerCAmelCase__ ) return (out_vocab_file,)
287
'''simple docstring''' import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC lowercase__ : List[Any] = parse(importlib.metadata.version('torch')) def a__ ( lowercase : Union[str, Version], lowercase : str, lowercase : str ) -> List[str]: """simple docstring""" if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(F"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) _UpperCamelCase = STR_OPERATION_TO_FUNC[operation] if isinstance(lowercase, lowercase ): _UpperCamelCase = parse(importlib.metadata.version(lowercase ) ) return operation(lowercase, parse(lowercase ) ) def a__ ( lowercase : str, lowercase : str ) -> List[Any]: """simple docstring""" return compare_versions(lowercase, lowercase, lowercase )
287
1
"""simple docstring""" import os from argparse import ArgumentParser from typing import List import torch.utils.data from datasets import Dataset, IterableDataset from datasets.distributed import split_dataset_by_node a__ : Any = 4 a__ : Dict = 3 class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" pass def UpperCAmelCase__ (lowerCAmelCase_ ): '''simple docstring''' for shard in shards: for i in range(lowerCAmelCase_ ): yield {"i": i, "shard": shard} def UpperCAmelCase__ (): '''simple docstring''' __SCREAMING_SNAKE_CASE = int(os.environ["RANK"] ) __SCREAMING_SNAKE_CASE = int(os.environ["WORLD_SIZE"] ) __SCREAMING_SNAKE_CASE = ArgumentParser() parser.add_argument("--streaming" , type=lowerCAmelCase_ ) parser.add_argument("--local_rank" , type=lowerCAmelCase_ ) parser.add_argument("--num_workers" , type=lowerCAmelCase_ , default=0 ) __SCREAMING_SNAKE_CASE = parser.parse_args() __SCREAMING_SNAKE_CASE = args.streaming __SCREAMING_SNAKE_CASE = args.num_workers __SCREAMING_SNAKE_CASE = {"shards": [f"""shard_{shard_idx}""" for shard_idx in range(lowerCAmelCase_ )]} __SCREAMING_SNAKE_CASE = IterableDataset.from_generator(lowerCAmelCase_ , gen_kwargs=lowerCAmelCase_ ) if not streaming: __SCREAMING_SNAKE_CASE = Dataset.from_list(list(lowerCAmelCase_ ) ) __SCREAMING_SNAKE_CASE = split_dataset_by_node(lowerCAmelCase_ , rank=lowerCAmelCase_ , world_size=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = torch.utils.data.DataLoader(lowerCAmelCase_ , num_workers=lowerCAmelCase_ ) __SCREAMING_SNAKE_CASE = NUM_SHARDS * NUM_ITEMS_PER_SHARD __SCREAMING_SNAKE_CASE = full_size // world_size expected_local_size += int(rank < (full_size % world_size) ) __SCREAMING_SNAKE_CASE = sum(1 for _ in dataloader ) if local_size != expected_local_size: raise FailedTestError(f"""local_size {local_size} != expected_local_size {expected_local_size}""" ) if __name__ == "__main__": main()
54
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCamelCase__ ( ctypes.Structure ): """simple docstring""" __a = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": __UpperCAmelCase : Dict = CursorInfo() __UpperCAmelCase : Any = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) __UpperCAmelCase : Tuple = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def lowerCamelCase ( ) -> Optional[int]: '''simple docstring''' if os.name == "nt": __UpperCAmelCase : str = CursorInfo() __UpperCAmelCase : int = ctypes.windll.kernelaa.GetStdHandle(-1_1 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) __UpperCAmelCase : Union[str, Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_UpperCamelCase , ctypes.byref(_UpperCamelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def lowerCamelCase ( ) -> str: '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
115
0
def lowerCAmelCase_ ( __A, __A, __A, __A, __A, __A ) -> Tuple: '''simple docstring''' if index == r: for j in range(__A ): print(data[j], end=" " ) print(" " ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location UpperCAmelCase__ = arr[i] combination_util(__A, __A, __A, index + 1, __A, i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(__A, __A, __A, __A, __A, i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = [0] * r # Print all combination using temporary array 'data[]' combination_util(__A, __A, __A, 0, __A, 0 ) if __name__ == "__main__": # Driver code to check the function above UpperCamelCase__ = [1_0, 2_0, 3_0, 4_0, 5_0] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
143
from __future__ import annotations def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = str(__A ) return n == n[::-1] def lowerCAmelCase_ ( __A = 1_000_000 ) -> Optional[int]: '''simple docstring''' UpperCAmelCase__ = 0 for i in range(1, __A ): if is_palindrome(__A ) and is_palindrome(bin(__A ).split("b" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
143
1
def a__ ( A_ ): '''simple docstring''' __magic_name__ = [int(A_ ) for i in ip_va_address.split(""".""" ) if i.isdigit()] return len(A_ ) == 4 and all(0 <= int(A_ ) <= 254 for octet in octets ) if __name__ == "__main__": __lowerCAmelCase : List[str] = input().strip() __lowerCAmelCase : int = 'valid' if is_ip_va_address_valid(ip) else 'invalid' print(F'''{ip} is a {valid_or_invalid} IP v4 address.''')
88
"""simple docstring""" import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _A ( _a ,unittest.TestCase ): """simple docstring""" UpperCAmelCase : Dict = KandinskyVaaControlnetPipeline UpperCAmelCase : List[str] = ["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCAmelCase : Optional[Any] = ["""image_embeds""", """negative_image_embeds""", """hint"""] UpperCAmelCase : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] UpperCAmelCase : Optional[int] = False @property def __snake_case ( self : Optional[Any]): return 32 @property def __snake_case ( self : Dict): return 32 @property def __snake_case ( self : Dict): return self.time_input_dim @property def __snake_case ( self : Any): return self.time_input_dim * 4 @property def __snake_case ( self : str): return 100 @property def __snake_case ( self : str): torch.manual_seed(0) a : str = { "in_channels": 8, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image_hint", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } a : Dict = UNetaDConditionModel(**__UpperCAmelCase) return model @property def __snake_case ( self : str): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def __snake_case ( self : Union[str, Any]): torch.manual_seed(0) a : Dict = VQModel(**self.dummy_movq_kwargs) return model def __snake_case ( self : Optional[Any]): a : Optional[Any] = self.dummy_unet a : int = self.dummy_movq a : str = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="linear" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=__UpperCAmelCase , set_alpha_to_one=__UpperCAmelCase , steps_offset=1 , prediction_type="epsilon" , thresholding=__UpperCAmelCase , ) a : Optional[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __snake_case ( self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : int=0): a : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) a : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( __UpperCAmelCase) # create hint a : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(__UpperCAmelCase)).to(__UpperCAmelCase) if str(__UpperCAmelCase).startswith("mps"): a : Union[str, Any] = torch.manual_seed(__UpperCAmelCase) else: a : List[Any] = torch.Generator(device=__UpperCAmelCase).manual_seed(__UpperCAmelCase) a : str = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "hint": hint, "generator": generator, "height": 64, "width": 64, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __snake_case ( self : Dict): a : str = "cpu" a : Tuple = self.get_dummy_components() a : Dict = self.pipeline_class(**__UpperCAmelCase) a : Optional[int] = pipe.to(__UpperCAmelCase) pipe.set_progress_bar_config(disable=__UpperCAmelCase) a : Optional[Any] = pipe(**self.get_dummy_inputs(__UpperCAmelCase)) a : Any = output.images a : Any = pipe( **self.get_dummy_inputs(__UpperCAmelCase) , return_dict=__UpperCAmelCase , )[0] a : Union[str, Any] = image[0, -3:, -3:, -1] a : int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) a : Tuple = np.array( [0.6_959_826, 0.868_279, 0.7_558_092, 0.68_769_467, 0.85_805_804, 0.65_977_496, 0.44_885_302, 0.5_959_111, 0.4_251_595]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Optional[int]): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __snake_case ( self : List[str]): a : List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy") a : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/hint_image_cat.png") a : List[Any] = torch.from_numpy(np.array(__UpperCAmelCase)).float() / 255.0 a : str = hint.permute(2 , 0 , 1).unsqueeze(0) a : Optional[int] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa) pipe_prior.to(__UpperCAmelCase) a : List[str] = KandinskyVaaControlnetPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-controlnet-depth" , torch_dtype=torch.floataa) a : int = pipeline.to(__UpperCAmelCase) pipeline.set_progress_bar_config(disable=__UpperCAmelCase) a : Tuple = "A robot, 4k photo" a : Any = torch.Generator(device="cuda").manual_seed(0) a , a : int = pipe_prior( __UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=5 , negative_prompt="" , ).to_tuple() a : str = torch.Generator(device="cuda").manual_seed(0) a : Union[str, Any] = pipeline( image_embeds=__UpperCAmelCase , negative_image_embeds=__UpperCAmelCase , hint=__UpperCAmelCase , generator=__UpperCAmelCase , num_inference_steps=100 , output_type="np" , ) a : str = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__UpperCAmelCase , __UpperCAmelCase)
40
0
"""simple docstring""" def UpperCamelCase__( UpperCamelCase__ : str )->Optional[Any]: A__ = [] A__ = [] A__ = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator A__ = len(UpperCamelCase__ ) if (len(UpperCamelCase__ ) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8 ) , '''Stack'''.center(UpperCamelCase__ ) , '''Postfix'''.center(UpperCamelCase__ ) , sep=''' | ''' , ) print('''-''' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCamelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCamelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCamelCase__ ) == 0: stack.append(UpperCamelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCamelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCamelCase__ ) # push x to stack print( x.center(8 ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=''' | ''' , ) # Output in tabular format while len(UpperCamelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ''' '''.center(8 ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , (''''''.join(UpperCamelCase__ )).ljust(UpperCamelCase__ ) , sep=''' | ''' , ) # Output in tabular format return "".join(UpperCamelCase__ ) # return Postfix as str def UpperCamelCase__( UpperCamelCase__ : Dict )->Dict: A__ = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCamelCase__ ) ): if infix[i] == "(": A__ = ''')''' # change "(" to ")" elif infix[i] == ")": A__ = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(UpperCamelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a__: Optional[Any] = input('\nEnter an Infix Equation = ') # Input an Infix equation a__: int = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
352
from __future__ import annotations import string from itertools import cycle, product from pathlib import Path a__: str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) a__: list[int] = [ord(letter) for letter in string.ascii_lowercase] a__: set[int] = {ord(char) for char in VALID_CHARS} a__: list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def UpperCamelCase__( UpperCamelCase__ : list[int] , UpperCamelCase__ : tuple[int, ...] )->str | None: A__ = "" A__ = 42 A__ = 42 A__ = 42 for keychar, cipherchar in zip(cycle(UpperCamelCase__ ) , UpperCamelCase__ ): A__ = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(UpperCamelCase__ ) return decoded def UpperCamelCase__( UpperCamelCase__ : list[int] )->list[str]: A__ = [] for key in product(UpperCamelCase__ , repeat=3 ): A__ = try_key(UpperCamelCase__ , UpperCamelCase__ ) if encoded is not None: possibles.append(UpperCamelCase__ ) return possibles def UpperCamelCase__( UpperCamelCase__ : list[str] , UpperCamelCase__ : str )->list[str]: return [possible for possible in possibles if common_word in possible.lower()] def UpperCamelCase__( UpperCamelCase__ : str = "p059_cipher.txt" )->int: A__ = 42 A__ = 42 A__ = 42 A__ = 42 A__ = Path(UpperCamelCase__ ).parent.joinpath(UpperCamelCase__ ).read_text(encoding='''utf-8''' ) A__ = [int(UpperCamelCase__ ) for number in data.strip().split(''',''' )] A__ = filter_valid_chars(UpperCamelCase__ ) for common_word in COMMON_WORDS: A__ = filter_common_word(UpperCamelCase__ , UpperCamelCase__ ) if len(UpperCamelCase__ ) == 1: break A__ = possibles[0] return sum(ord(UpperCamelCase__ ) for char in decoded_text ) if __name__ == "__main__": print(F"{solution() = }")
39
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) lowerCamelCase : Dict = {'configuration_deit': ['DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'DeiTConfig', 'DeiTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = ['DeiTFeatureExtractor'] lowerCamelCase : Optional[int] = ['DeiTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ 'DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'DeiTForImageClassification', 'DeiTForImageClassificationWithTeacher', 'DeiTForMaskedImageModeling', 'DeiTModel', 'DeiTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Optional[Any] = [ 'TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFDeiTForImageClassification', 'TFDeiTForImageClassificationWithTeacher', 'TFDeiTForMaskedImageModeling', 'TFDeiTModel', 'TFDeiTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_deit import DEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, DeiTConfig, DeiTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_deit import DeiTFeatureExtractor from .image_processing_deit import DeiTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deit import ( DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, DeiTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deit import ( TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, TFDeiTPreTrainedModel, ) else: import sys lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
2
"""simple docstring""" import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class A__ ( _lowerCamelCase): A_ : Any = ['image_processor', 'tokenizer'] A_ : Optional[Any] = 'AutoImageProcessor' A_ : str = 'AutoTokenizer' def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Any = kwargs.pop('feature_extractor' ) __lowerCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = self.image_processor __lowerCAmelCase : Tuple = False def __call__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = kwargs.pop('images' , _SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Any = kwargs.pop('text' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: __lowerCAmelCase : Dict = args[0] __lowerCAmelCase : Union[str, Any] = args[1:] if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: __lowerCAmelCase : Union[str, Any] = self.image_processor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: __lowerCAmelCase : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif images is None: return encodings else: __lowerCAmelCase : Union[str, Any] = encodings['input_ids'] return inputs def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def __lowerCamelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @contextmanager def __lowerCamelCase ( self ): warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your images inputs, or in a separate call.' ) __lowerCAmelCase : Any = True __lowerCAmelCase : Dict = self.tokenizer yield __lowerCAmelCase : Optional[int] = self.image_processor __lowerCAmelCase : Optional[Any] = False def __lowerCamelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , _SCREAMING_SNAKE_CASE=None ): if added_vocab is None: __lowerCAmelCase : str = self.tokenizer.get_added_vocab() __lowerCAmelCase : List[Any] = {} while tokens: __lowerCAmelCase : int = re.search(R'<s_(.*?)>' , _SCREAMING_SNAKE_CASE , re.IGNORECASE ) if start_token is None: break __lowerCAmelCase : Union[str, Any] = start_token.group(1 ) __lowerCAmelCase : Tuple = re.search(Rf"</s_{key}>" , _SCREAMING_SNAKE_CASE , re.IGNORECASE ) __lowerCAmelCase : str = start_token.group() if end_token is None: __lowerCAmelCase : Optional[int] = tokens.replace(_SCREAMING_SNAKE_CASE , '' ) else: __lowerCAmelCase : Optional[Any] = end_token.group() __lowerCAmelCase : Tuple = re.escape(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Tuple = re.escape(_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Dict = re.search(f"{start_token_escaped}(.*?){end_token_escaped}" , _SCREAMING_SNAKE_CASE , re.IGNORECASE ) if content is not None: __lowerCAmelCase : List[str] = content.group(1 ).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node __lowerCAmelCase : int = self.tokenajson(_SCREAMING_SNAKE_CASE , is_inner_value=_SCREAMING_SNAKE_CASE , added_vocab=_SCREAMING_SNAKE_CASE ) if value: if len(_SCREAMING_SNAKE_CASE ) == 1: __lowerCAmelCase : Tuple = value[0] __lowerCAmelCase : Tuple = value else: # leaf nodes __lowerCAmelCase : Any = [] for leaf in content.split(R'<sep/>' ): __lowerCAmelCase : List[Any] = leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": __lowerCAmelCase : Dict = leaf[1:-2] # for categorical special tokens output[key].append(_SCREAMING_SNAKE_CASE ) if len(output[key] ) == 1: __lowerCAmelCase : str = output[key][0] __lowerCAmelCase : Dict = tokens[tokens.find(_SCREAMING_SNAKE_CASE ) + len(_SCREAMING_SNAKE_CASE ) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_SCREAMING_SNAKE_CASE , added_vocab=_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def __lowerCamelCase ( self ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _SCREAMING_SNAKE_CASE , ) return self.image_processor
86
0
"""simple docstring""" import numpy as np class lowercase_ : def __init__( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) def UpperCamelCase ( self , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): if red is not None: _snake_case : Optional[int] = red if green is not None: _snake_case : Optional[Any] = green if blue is not None: _snake_case : Tuple = blue if red_edge is not None: _snake_case : str = red_edge if nir is not None: _snake_case : List[Any] = nir return True def UpperCamelCase ( self , lowercase_="" , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None , lowercase_=None ): self.set_matricies(red=__snake_case , green=__snake_case , blue=__snake_case , red_edge=__snake_case , nir=__snake_case ) _snake_case : int = { 'ARVI2': self.arvaa, 'CCCI': self.ccci, 'CVI': self.cvi, 'GLI': self.gli, 'NDVI': self.ndvi, 'BNDVI': self.bndvi, 'redEdgeNDVI': self.red_edge_ndvi, 'GNDVI': self.gndvi, 'GBNDVI': self.gbndvi, 'GRNDVI': self.grndvi, 'RBNDVI': self.rbndvi, 'PNDVI': self.pndvi, 'ATSAVI': self.atsavi, 'BWDRVI': self.bwdrvi, 'CIgreen': self.ci_green, 'CIrededge': self.ci_rededge, 'CI': self.ci, 'CTVI': self.ctvi, 'GDVI': self.gdvi, 'EVI': self.evi, 'GEMI': self.gemi, 'GOSAVI': self.gosavi, 'GSAVI': self.gsavi, 'Hue': self.hue, 'IVI': self.ivi, 'IPVI': self.ipvi, 'I': self.i, 'RVI': self.rvi, 'MRVI': self.mrvi, 'MSAVI': self.m_savi, 'NormG': self.norm_g, 'NormNIR': self.norm_nir, 'NormR': self.norm_r, 'NGRDI': self.ngrdi, 'RI': self.ri, 'S': self.s, 'IF': self._if, 'DVI': self.dvi, 'TVI': self.tvi, 'NDRE': self.ndre, } try: return funcs[index]() except KeyError: print("Index not in the list!" ) return False def UpperCamelCase ( self ): return -0.18 + (1.17 * ((self.nir - self.red) / (self.nir + self.red))) def UpperCamelCase ( self ): return ((self.nir - self.redEdge) / (self.nir + self.redEdge)) / ( (self.nir - self.red) / (self.nir + self.red) ) def UpperCamelCase ( self ): return self.nir * (self.red / (self.green**2)) def UpperCamelCase ( self ): return (2 * self.green - self.red - self.blue) / ( 2 * self.green + self.red + self.blue ) def UpperCamelCase ( self ): return (self.nir - self.red) / (self.nir + self.red) def UpperCamelCase ( self ): return (self.nir - self.blue) / (self.nir + self.blue) def UpperCamelCase ( self ): return (self.redEdge - self.red) / (self.redEdge + self.red) def UpperCamelCase ( self ): return (self.nir - self.green) / (self.nir + self.green) def UpperCamelCase ( self ): return (self.nir - (self.green + self.blue)) / ( self.nir + (self.green + self.blue) ) def UpperCamelCase ( self ): return (self.nir - (self.green + self.red)) / ( self.nir + (self.green + self.red) ) def UpperCamelCase ( self ): return (self.nir - (self.blue + self.red)) / (self.nir + (self.blue + self.red)) def UpperCamelCase ( self ): return (self.nir - (self.green + self.red + self.blue)) / ( self.nir + (self.green + self.red + self.blue) ) def UpperCamelCase ( self , lowercase_=0.08 , lowercase_=1.22 , lowercase_=0.03 ): return a * ( (self.nir - a * self.red - b) / (a * self.nir + self.red - a * b + x * (1 + a**2)) ) def UpperCamelCase ( self ): return (0.1 * self.nir - self.blue) / (0.1 * self.nir + self.blue) def UpperCamelCase ( self ): return (self.nir / self.green) - 1 def UpperCamelCase ( self ): return (self.nir / self.redEdge) - 1 def UpperCamelCase ( self ): return (self.red - self.blue) / self.red def UpperCamelCase ( self ): _snake_case : List[Any] = self.ndvi() return ((ndvi + 0.5) / (abs(ndvi + 0.5 ))) * (abs(ndvi + 0.5 ) ** (1 / 2)) def UpperCamelCase ( self ): return self.nir - self.green def UpperCamelCase ( self ): return 2.5 * ( (self.nir - self.red) / (self.nir + 6 * self.red - 7.5 * self.blue + 1) ) def UpperCamelCase ( self ): _snake_case : Union[str, Any] = (2 * (self.nir**2 - self.red**2) + 1.5 * self.nir + 0.5 * self.red) / ( self.nir + self.red + 0.5 ) return n * (1 - 0.25 * n) - (self.red - 0.125) / (1 - self.red) def UpperCamelCase ( self , lowercase_=0.16 ): return (self.nir - self.green) / (self.nir + self.green + y) def UpperCamelCase ( self , lowercase_=0.5 ): return ((self.nir - self.green) / (self.nir + self.green + n)) * (1 + n) def UpperCamelCase ( self ): return np.arctan( ((2 * self.red - self.green - self.blue) / 30.5) * (self.green - self.blue) ) def UpperCamelCase ( self , lowercase_=None , lowercase_=None ): return (self.nir - b) / (a * self.red) def UpperCamelCase ( self ): return (self.nir / ((self.nir + self.red) / 2)) * (self.ndvi() + 1) def UpperCamelCase ( self ): return (self.red + self.green + self.blue) / 30.5 def UpperCamelCase ( self ): return self.nir / self.red def UpperCamelCase ( self ): return (self.rvi() - 1) / (self.rvi() + 1) def UpperCamelCase ( self ): return ( (2 * self.nir + 1) - ((2 * self.nir + 1) ** 2 - 8 * (self.nir - self.red)) ** (1 / 2) ) / 2 def UpperCamelCase ( self ): return self.green / (self.nir + self.red + self.green) def UpperCamelCase ( self ): return self.nir / (self.nir + self.red + self.green) def UpperCamelCase ( self ): return self.red / (self.nir + self.red + self.green) def UpperCamelCase ( self ): return (self.green - self.red) / (self.green + self.red) def UpperCamelCase ( self ): return (self.red - self.green) / (self.red + self.green) def UpperCamelCase ( self ): _snake_case : Optional[Any] = np.max([np.max(self.red ), np.max(self.green ), np.max(self.blue )] ) _snake_case : Union[str, Any] = np.min([np.min(self.red ), np.min(self.green ), np.min(self.blue )] ) return (max_value - min_value) / max_value def UpperCamelCase ( self ): return (2 * self.red - self.green - self.blue) / (self.green - self.blue) def UpperCamelCase ( self ): return self.nir / self.red def UpperCamelCase ( self ): return (self.ndvi() + 0.5) ** (1 / 2) def UpperCamelCase ( self ): return (self.nir - self.redEdge) / (self.nir + self.redEdge)
358
def snake_case (__lowercase ) -> list[int]: '''simple docstring''' if num <= 0: raise ValueError("Input must be a positive integer" ) _snake_case : Any = [True] * (num + 1) _snake_case : str = 2 while p * p <= num: if primes[p]: for i in range(p * p , num + 1 , __lowercase ): _snake_case : Optional[int] = False p += 1 return [prime for prime in range(2 , num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : Any = int(input('Enter a positive integer: ').strip()) print(prime_sieve_eratosthenes(user_num))
284
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase ={ """configuration_longformer""": [ """LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongformerConfig""", """LongformerOnnxConfig""", ], """tokenization_longformer""": ["""LongformerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =["""LongformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongformerForMaskedLM""", """LongformerForMultipleChoice""", """LongformerForQuestionAnswering""", """LongformerForSequenceClassification""", """LongformerForTokenClassification""", """LongformerModel""", """LongformerPreTrainedModel""", """LongformerSelfAttention""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLongformerForMaskedLM""", """TFLongformerForMultipleChoice""", """TFLongformerForQuestionAnswering""", """TFLongformerForSequenceClassification""", """TFLongformerForTokenClassification""", """TFLongformerModel""", """TFLongformerPreTrainedModel""", """TFLongformerSelfAttention""", ] if TYPE_CHECKING: from .configuration_longformer import ( LONGFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, LongformerConfig, LongformerOnnxConfig, ) from .tokenization_longformer import LongformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_longformer_fast import LongformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longformer import ( LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, LongformerForMaskedLM, LongformerForMultipleChoice, LongformerForQuestionAnswering, LongformerForSequenceClassification, LongformerForTokenClassification, LongformerModel, LongformerPreTrainedModel, LongformerSelfAttention, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_longformer import ( TF_LONGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFLongformerForMaskedLM, TFLongformerForMultipleChoice, TFLongformerForQuestionAnswering, TFLongformerForSequenceClassification, TFLongformerForTokenClassification, TFLongformerModel, TFLongformerPreTrainedModel, TFLongformerSelfAttention, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
287
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger _lowerCamelCase =get_logger(__name__) class A__ : def __init__( self , __magic_name__ = None ): lowerCamelCase : Dict = ( os.path.join(__magic_name__ , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) lowerCamelCase : List[str] = Extractor def UpperCamelCase__ ( self , __magic_name__ ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" lowerCamelCase : int = os.path.abspath(__magic_name__ ) return os.path.join(self.extract_dir , hash_url_to_filename(__magic_name__ ) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ ): return force_extract or ( not os.path.isfile(__magic_name__ ) and not (os.path.isdir(__magic_name__ ) and os.listdir(__magic_name__ )) ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = False ): lowerCamelCase : Union[str, Any] = self.extractor.infer_extractor_format(__magic_name__ ) if not extractor_format: return input_path lowerCamelCase : int = self._get_output_path(__magic_name__ ) if self._do_extract(__magic_name__ , __magic_name__ ): self.extractor.extract(__magic_name__ , __magic_name__ , __magic_name__ ) return output_path class A__ ( __SCREAMING_SNAKE_CASE): @classmethod @abstractmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): ... @staticmethod @abstractmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): ... class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[bytes] = [] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with open(__magic_name__ , """rb""" ) as f: return f.read(__magic_name__ ) @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = b"" ): if not magic_number: lowerCamelCase : Optional[Any] = max(len(__magic_name__ ) for cls_magic_number in cls.magic_numbers ) try: lowerCamelCase : Tuple = cls.read_magic_number(__magic_name__ , __magic_name__ ) except OSError: return False return any(magic_number.startswith(__magic_name__ ) for cls_magic_number in cls.magic_numbers ) class A__ ( __SCREAMING_SNAKE_CASE): @classmethod def UpperCamelCase__ ( cls , __magic_name__ , **__magic_name__ ): return tarfile.is_tarfile(__magic_name__ ) @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): def resolved(__magic_name__ ) -> str: return os.path.realpath(os.path.abspath(__magic_name__ ) ) def badpath(__magic_name__ , __magic_name__ ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(__magic_name__ , __magic_name__ ) ).startswith(__magic_name__ ) def badlink(__magic_name__ , __magic_name__ ) -> bool: # Links are interpreted relative to the directory containing the link lowerCamelCase : List[str] = resolved(os.path.join(__magic_name__ , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=__magic_name__ ) lowerCamelCase : Optional[Any] = resolved(__magic_name__ ) for finfo in members: if badpath(finfo.name , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(__magic_name__ , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(__magic_name__ , __magic_name__ ): logger.error(F'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase : Dict = tarfile.open(__magic_name__ ) tar_file.extractall(__magic_name__ , members=TarExtractor.safemembers(__magic_name__ , __magic_name__ ) ) tar_file.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : str = [B"""\x1F\x8B"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with gzip.open(__magic_name__ , """rb""" ) as gzip_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Optional[int] = [ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = b"" ): if super().is_extractable(__magic_name__ , magic_number=__magic_name__ ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(__magic_name__ , """rb""" ) as fp: lowerCamelCase : List[str] = _EndRecData(__magic_name__ ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: lowerCamelCase : List[Any] = fp.read(__magic_name__ ) # CD is where we expect it to be if len(__magic_name__ ) == sizeCentralDir: lowerCamelCase : str = struct.unpack(__magic_name__ , __magic_name__ ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with zipfile.ZipFile(__magic_name__ , """r""" ) as zip_file: zip_file.extractall(__magic_name__ ) zip_file.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[str] = [B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with lzma.open(__magic_name__ ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any = [B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.RARFILE_AVAILABLE: raise ImportError("""Please pip install rarfile""" ) import rarfile os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) lowerCamelCase : Union[str, Any] = rarfile.RarFile(__magic_name__ ) rf.extractall(__magic_name__ ) rf.close() class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Tuple = [B"""\x28\xb5\x2F\xFD"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.ZSTANDARD_AVAILABLE: raise ImportError("""Please pip install zstandard""" ) import zstandard as zstd lowerCamelCase : int = zstd.ZstdDecompressor() with open(__magic_name__ , """rb""" ) as ifh, open(__magic_name__ , """wb""" ) as ofh: dctx.copy_stream(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : Any = [B"""\x42\x5A\x68"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): with bza.open(__magic_name__ , """rb""" ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = [B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.PY7ZR_AVAILABLE: raise ImportError("""Please pip install py7zr""" ) import pyazr os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) with pyazr.SevenZipFile(__magic_name__ , """r""" ) as archive: archive.extractall(__magic_name__ ) class A__ ( __SCREAMING_SNAKE_CASE): _UpperCAmelCase : List[Any] = [B"""\x04\x22\x4D\x18"""] @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): if not config.LZ4_AVAILABLE: raise ImportError("""Please pip install lz4""" ) import lza.frame with lza.frame.open(__magic_name__ , """rb""" ) as compressed_file: with open(__magic_name__ , """wb""" ) as extracted_file: shutil.copyfileobj(__magic_name__ , __magic_name__ ) class A__ : # Put zip file to the last, b/c it is possible wrongly detected as zip (I guess it means: as tar or gzip) _UpperCAmelCase : Dict[str, Type[BaseExtractor]] = { "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def UpperCamelCase__ ( cls ): return max( len(__magic_name__ ) for extractor in cls.extractors.values() if issubclass(__magic_name__ , __magic_name__ ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def UpperCamelCase__ ( __magic_name__ , __magic_name__ ): try: return MagicNumberBaseExtractor.read_magic_number(__magic_name__ , magic_number_length=__magic_name__ ) except OSError: return b"" @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ = False ): warnings.warn( """Method 'is_extractable' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'infer_extractor_format' instead.""" , category=__magic_name__ , ) lowerCamelCase : int = cls.infer_extractor_format(__magic_name__ ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def UpperCamelCase__ ( cls , __magic_name__ ): # <Added version="2.4.0"/> lowerCamelCase : Dict = cls._get_magic_number_max_length() lowerCamelCase : Optional[Any] = cls._read_magic_number(__magic_name__ , __magic_name__ ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(__magic_name__ , magic_number=__magic_name__ ): return extractor_format @classmethod def UpperCamelCase__ ( cls , __magic_name__ , __magic_name__ , __magic_name__ = None , __magic_name__ = "deprecated" , ): os.makedirs(os.path.dirname(__magic_name__ ) , exist_ok=__magic_name__ ) # Prevent parallel extractions lowerCamelCase : Tuple = str(Path(__magic_name__ ).with_suffix(""".lock""" ) ) with FileLock(__magic_name__ ): shutil.rmtree(__magic_name__ , ignore_errors=__magic_name__ ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(__magic_name__ , __magic_name__ ): # passed as positional arg warnings.warn( """Parameter 'extractor' was deprecated in version 2.4.0 and will be removed in 3.0.0. """ """Use 'extractor_format' instead.""" , category=__magic_name__ , ) lowerCamelCase : int = extractor if extractor != """deprecated""" else extractor_format else: lowerCamelCase : Optional[int] = cls.extractors[extractor_format] return extractor.extract(__magic_name__ , __magic_name__ ) else: warnings.warn( """Parameter 'extractor_format' was made required in version 2.4.0 and not passing it will raise an """ """exception in 3.0.0.""" , category=__magic_name__ , ) for extractor in cls.extractors.values(): if extractor.is_extractable(__magic_name__ ): return extractor.extract(__magic_name__ , __magic_name__ )
287
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : str = { '''configuration_blip''': [ '''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BlipConfig''', '''BlipTextConfig''', '''BlipVisionConfig''', ], '''processing_blip''': ['''BlipProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Optional[Any] = ['''BlipImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = [ '''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BlipModel''', '''BlipPreTrainedModel''', '''BlipForConditionalGeneration''', '''BlipForQuestionAnswering''', '''BlipVisionModel''', '''BlipTextModel''', '''BlipForImageTextRetrieval''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Union[str, Any] = [ '''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBlipModel''', '''TFBlipPreTrainedModel''', '''TFBlipForConditionalGeneration''', '''TFBlipForQuestionAnswering''', '''TFBlipVisionModel''', '''TFBlipTextModel''', '''TFBlipForImageTextRetrieval''', ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys A : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
227
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available A : Optional[int] = { '''configuration_mask2former''': [ '''MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Mask2FormerConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = ['''Mask2FormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Dict = [ '''MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Mask2FormerForUniversalSegmentation''', '''Mask2FormerModel''', '''Mask2FormerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys A : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
227
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Any = logging.get_logger(__name__) lowerCAmelCase__ : Optional[Any] = { '''studio-ousia/luke-base''': '''https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json''', '''studio-ousia/luke-large''': '''https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json''', } class __snake_case ( _lowerCamelCase ): __lowerCamelCase = """luke""" def __init__( self , __UpperCamelCase=50267 , __UpperCamelCase=500000 , __UpperCamelCase=768 , __UpperCamelCase=256 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1E-12 , __UpperCamelCase=True , __UpperCamelCase=None , __UpperCamelCase=1 , __UpperCamelCase=0 , __UpperCamelCase=2 , **__UpperCamelCase , ) -> Tuple: '''simple docstring''' super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) snake_case__ : Dict = vocab_size snake_case__ : List[str] = entity_vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : Dict = entity_emb_size snake_case__ : Tuple = num_hidden_layers snake_case__ : Any = num_attention_heads snake_case__ : Union[str, Any] = hidden_act snake_case__ : List[str] = intermediate_size snake_case__ : Tuple = hidden_dropout_prob snake_case__ : str = attention_probs_dropout_prob snake_case__ : str = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : Optional[Any] = initializer_range snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[int] = use_entity_aware_attention snake_case__ : Optional[Any] = classifier_dropout
143
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class __snake_case : def __init__( self , __UpperCamelCase , ) -> str: '''simple docstring''' snake_case__ : Optional[int] = parent snake_case__ : Union[str, Any] = 13 snake_case__ : int = 7 snake_case__ : str = True snake_case__ : Dict = True snake_case__ : Tuple = False snake_case__ : Union[str, Any] = True snake_case__ : Dict = 99 snake_case__ : Tuple = 32 snake_case__ : Optional[int] = 2 snake_case__ : Dict = 4 snake_case__ : Dict = 37 snake_case__ : Any = 'gelu' snake_case__ : Any = 0.1 snake_case__ : Any = 0.1 snake_case__ : List[Any] = 512 snake_case__ : Optional[Any] = 16 snake_case__ : Optional[int] = 2 snake_case__ : List[Any] = 0.0_2 snake_case__ : Tuple = 3 snake_case__ : Dict = 4 snake_case__ : Tuple = None def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Optional[Any] = None if self.use_input_mask: snake_case__ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Any = None snake_case__ : Union[str, Any] = None snake_case__ : Tuple = None if self.use_labels: snake_case__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : List[str] = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : List[str] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Dict: '''simple docstring''' snake_case__ : Optional[int] = TFDistilBertModel(config=__UpperCamelCase ) snake_case__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : List[str] = model(__UpperCamelCase ) snake_case__ : Union[str, Any] = [input_ids, input_mask] snake_case__ : Optional[int] = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : str = TFDistilBertForMaskedLM(config=__UpperCamelCase ) snake_case__ : int = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> List[Any]: '''simple docstring''' snake_case__ : Dict = TFDistilBertForQuestionAnswering(config=__UpperCamelCase ) snake_case__ : Tuple = { 'input_ids': input_ids, 'attention_mask': input_mask, } snake_case__ : Optional[Any] = model(__UpperCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : List[str] = self.num_labels snake_case__ : Tuple = TFDistilBertForSequenceClassification(__UpperCamelCase ) snake_case__ : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: '''simple docstring''' snake_case__ : Optional[int] = self.num_choices snake_case__ : str = TFDistilBertForMultipleChoice(__UpperCamelCase ) snake_case__ : Dict = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Tuple = tf.tile(tf.expand_dims(__UpperCamelCase , 1 ) , (1, self.num_choices, 1) ) snake_case__ : Dict = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, } snake_case__ : Any = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __a ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = self.num_labels snake_case__ : Optional[int] = TFDistilBertForTokenClassification(__UpperCamelCase ) snake_case__ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask} snake_case__ : str = model(__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[Any] = self.prepare_config_and_inputs() ((snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__) , (snake_case__)) : Tuple = config_and_inputs snake_case__ : List[str] = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class __snake_case ( _lowerCamelCase ,_lowerCamelCase ,unittest.TestCase ): __lowerCamelCase = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __lowerCamelCase = ( { """feature-extraction""": TFDistilBertModel, """fill-mask""": TFDistilBertForMaskedLM, """question-answering""": TFDistilBertForQuestionAnswering, """text-classification""": TFDistilBertForSequenceClassification, """token-classification""": TFDistilBertForTokenClassification, """zero-shot""": TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Dict = TFDistilBertModelTester(self ) snake_case__ : Tuple = ConfigTester(self , config_class=__UpperCamelCase , dim=37 ) def __a ( self ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCamelCase ) def __a ( self ) -> List[str]: '''simple docstring''' snake_case__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCamelCase ) def __a ( self ) -> Optional[Any]: '''simple docstring''' snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCamelCase ) def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCamelCase ) def __a ( self ) -> Optional[int]: '''simple docstring''' snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCamelCase ) @slow def __a ( self ) -> Any: '''simple docstring''' for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): snake_case__ : Optional[Any] = TFDistilBertModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @require_tf class __snake_case ( unittest.TestCase ): @slow def __a ( self ) -> Any: '''simple docstring''' snake_case__ : Optional[int] = TFDistilBertModel.from_pretrained('distilbert-base-uncased' ) snake_case__ : Any = tf.constant([[0, 1, 2, 3, 4, 5]] ) snake_case__ : Dict = model(__UpperCamelCase )[0] snake_case__ : Optional[int] = [1, 6, 768] self.assertEqual(output.shape , __UpperCamelCase ) snake_case__ : List[Any] = tf.constant( [ [ [0.1_9_2_6_1_8_8_5, -0.1_3_7_3_2_9_5_5, 0.4_1_1_9_7_9_9], [0.2_2_1_5_0_1_5_6, -0.0_7_4_2_2_6_6_1, 0.3_9_0_3_7_2_0_4], [0.2_2_7_5_6_0_1_8, -0.0_8_9_6_4_1_4, 0.3_7_0_1_4_6_7], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-4 )
143
1
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class A__ : A__ = 42 A__ = None A__ = None def _lowerCAmelCase ( ) -> Node | None: """simple docstring""" _SCREAMING_SNAKE_CASE =Node(1 ) _SCREAMING_SNAKE_CASE =Node(2 ) _SCREAMING_SNAKE_CASE =Node(3 ) _SCREAMING_SNAKE_CASE =Node(4 ) _SCREAMING_SNAKE_CASE =Node(5 ) return tree def _lowerCAmelCase ( _UpperCamelCase : Node | None ) -> list[int]: """simple docstring""" return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _lowerCAmelCase ( _UpperCamelCase : Node | None ) -> list[int]: """simple docstring""" return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _lowerCAmelCase ( _UpperCamelCase : Node | None ) -> list[int]: """simple docstring""" return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _lowerCAmelCase ( _UpperCamelCase : Node | None ) -> int: """simple docstring""" return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _lowerCAmelCase ( _UpperCamelCase : Node | None ) -> Sequence[Node | None]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] if root is None: return output _SCREAMING_SNAKE_CASE =deque([root] ) while process_queue: _SCREAMING_SNAKE_CASE =process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _lowerCAmelCase ( _UpperCamelCase : Node | None , _UpperCamelCase : int ) -> Sequence[Node | None]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] def populate_output(_UpperCamelCase : Node | None , _UpperCamelCase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(_UpperCamelCase , _UpperCamelCase ) return output def _lowerCAmelCase ( _UpperCamelCase : Node | None , _UpperCamelCase : int ) -> Sequence[Node | None]: """simple docstring""" _SCREAMING_SNAKE_CASE =[] def populate_output(_UpperCamelCase : Node | None , _UpperCamelCase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(_UpperCamelCase , _UpperCamelCase ) return output def _lowerCAmelCase ( _UpperCamelCase : Node | None ) -> Sequence[Node | None] | list[Any]: """simple docstring""" if root is None: return [] _SCREAMING_SNAKE_CASE =[] _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =height(_UpperCamelCase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(_UpperCamelCase , _UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =1 else: output.append(get_nodes_from_right_to_left(_UpperCamelCase , _UpperCamelCase ) ) _SCREAMING_SNAKE_CASE =0 return output def _lowerCAmelCase ( ) -> None: # Main function for testing. """simple docstring""" _SCREAMING_SNAKE_CASE =make_tree() print(f"In-order Traversal: {inorder(_UpperCamelCase )}" ) print(f"Pre-order Traversal: {preorder(_UpperCamelCase )}" ) print(f"Post-order Traversal: {postorder(_UpperCamelCase )}" , '\n' ) print(f"Height of Tree: {height(_UpperCamelCase )}" , '\n' ) print('Complete Level Order Traversal: ' ) print(level_order(_UpperCamelCase ) , '\n' ) print('Level-wise order Traversal: ' ) for level in range(1 , height(_UpperCamelCase ) + 1 ): print(f"Level {level}:" , get_nodes_from_left_to_right(_UpperCamelCase , level=_UpperCamelCase ) ) print('\nZigZag order Traversal: ' ) print(zigzag(_UpperCamelCase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
114
'''simple docstring''' def _lowerCAmelCase ( _UpperCamelCase : int = 50 ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE =[[0] * 3 for _ in range(length + 1 )] for row_length in range(length + 1 ): for tile_length in range(2 , 5 ): for tile_start in range(row_length - tile_length + 1 ): different_colour_ways_number[row_length][tile_length - 2] += ( different_colour_ways_number[row_length - tile_start - tile_length][ tile_length - 2 ] + 1 ) return sum(different_colour_ways_number[length] ) if __name__ == "__main__": print(f'''{solution() = }''')
114
1
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion # and https://github.com/hojonathanho/diffusion import math from dataclasses import dataclass from typing import List, Optional, Tuple, Union import numpy as np import torch from diffusers.configuration_utils import ConfigMixin, register_to_config from diffusers.schedulers.scheduling_utils import SchedulerMixin from diffusers.utils import BaseOutput, deprecate @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->DDIM class UpperCAmelCase ( snake_case__ ): '''simple docstring''' __UpperCamelCase : Tuple = 42 __UpperCamelCase : Optional[Any] = None def lowerCamelCase__ ( a , a=0.999 , a="cosine" , ) -> Union[str, Any]: if alpha_transform_type == "cosine": def alpha_bar_fn(a ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(a ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) _A: List[str] = [] for i in range(__lowerCAmelCase ): _A: Union[str, Any] = i / num_diffusion_timesteps _A: str = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__lowerCAmelCase ) / alpha_bar_fn(__lowerCAmelCase ) , __lowerCAmelCase ) ) return torch.tensor(__lowerCAmelCase , dtype=torch.floataa ) class UpperCAmelCase ( snake_case__ , snake_case__ ): '''simple docstring''' __UpperCamelCase : Dict = 1 @register_to_config def __init__( self : List[Any] , lowerCAmelCase_ : Optional[int] = 1_0_0_0 , lowerCAmelCase_ : List[Any] = 0.0001 , lowerCAmelCase_ : Union[str, Any] = 0.02 , lowerCAmelCase_ : Optional[int] = "linear" , lowerCAmelCase_ : List[str] = None , lowerCAmelCase_ : Any = True , lowerCAmelCase_ : Union[str, Any] = True , lowerCAmelCase_ : str = 0 , lowerCAmelCase_ : List[str] = "epsilon" , lowerCAmelCase_ : Any = 1.0 , **lowerCAmelCase_ : List[Any] , ): """simple docstring""" if kwargs.get('''set_alpha_to_one''' , lowerCAmelCase_ ) is not None: _A: Tuple = ( '''The `set_alpha_to_one` argument is deprecated. Please use `set_alpha_to_zero` instead.''' ) deprecate('''set_alpha_to_one''' , '''1.0.0''' , lowerCAmelCase_ , standard_warn=lowerCAmelCase_ ) _A: Dict = kwargs['''set_alpha_to_one'''] if trained_betas is not None: _A: Dict = torch.tensor(lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "linear": _A: Any = torch.linspace(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. _A: Optional[Any] = ( torch.linspace(beta_start**0.5 , beta_end**0.5 , lowerCAmelCase_ , dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule _A: Any = betas_for_alpha_bar(lowerCAmelCase_ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) _A: Any = 1.0 - self.betas _A: Union[str, Any] = torch.cumprod(self.alphas , dim=0 ) # At every step in inverted ddim, we are looking into the next alphas_cumprod # For the final step, there is no next alphas_cumprod, and the index is out of bounds # `set_alpha_to_zero` decides whether we set this parameter simply to zero # in this case, self.step() just output the predicted noise # or whether we use the final alpha of the "non-previous" one. _A: Dict = torch.tensor(0.0 ) if set_alpha_to_zero else self.alphas_cumprod[-1] # standard deviation of the initial noise distribution _A: List[str] = 1.0 # setable values _A: int = None _A: Any = torch.from_numpy(np.arange(0 , lowerCAmelCase_ ).copy().astype(np.intaa ) ) def __magic_name__ ( self : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple = None ): """simple docstring""" return sample def __magic_name__ ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] = None ): """simple docstring""" if num_inference_steps > self.config.num_train_timesteps: raise ValueError( F"""`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:""" F""" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle""" F""" maximal {self.config.num_train_timesteps} timesteps.""" ) _A: Any = num_inference_steps _A: Any = self.config.num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 _A: Union[str, Any] = (np.arange(0 , lowerCAmelCase_ ) * step_ratio).round().copy().astype(np.intaa ) _A: int = torch.from_numpy(lowerCAmelCase_ ).to(lowerCAmelCase_ ) self.timesteps += self.config.steps_offset def __magic_name__ ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] = 0.0 , lowerCAmelCase_ : List[str] = False , lowerCAmelCase_ : Union[str, Any] = None , lowerCAmelCase_ : Dict = True , ): """simple docstring""" _A: List[Any] = timestep + self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas # change original implementation to exactly match noise levels for analogous forward process _A: Union[str, Any] = self.alphas_cumprod[timestep] _A: Tuple = ( self.alphas_cumprod[prev_timestep] if prev_timestep < self.config.num_train_timesteps else self.final_alpha_cumprod ) _A: List[str] = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf if self.config.prediction_type == "epsilon": _A: Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 _A: Tuple = model_output elif self.config.prediction_type == "sample": _A: Any = model_output _A: Dict = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 elif self.config.prediction_type == "v_prediction": _A: int = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output _A: Optional[Any] = (alpha_prod_t**0.5) * model_output + (beta_prod_t**0.5) * sample else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, or""" ''' `v_prediction`''' ) # 4. Clip or threshold "predicted x_0" if self.config.clip_sample: _A: Tuple = pred_original_sample.clamp( -self.config.clip_sample_range , self.config.clip_sample_range ) # 5. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A: int = (1 - alpha_prod_t_prev) ** 0.5 * pred_epsilon # 6. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf _A: Union[str, Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if not return_dict: return (prev_sample, pred_original_sample) return DDIMSchedulerOutput(prev_sample=lowerCAmelCase_ , pred_original_sample=lowerCAmelCase_ ) def __len__( self : Optional[int] ): """simple docstring""" return self.config.num_train_timesteps
121
from __future__ import annotations def __A ( __lowerCAmelCase )-> list[int]: """simple docstring""" _UpperCAmelCase = 2 _UpperCAmelCase = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(__lowerCAmelCase ) if n > 1: factors.append(__lowerCAmelCase ) return factors if __name__ == "__main__": import doctest doctest.testmod()
39
0
import cmath import math def a__ ( A__, A__, A__, A__ ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = math.radians(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = math.radians(SCREAMING_SNAKE_CASE__ ) # Convert voltage and current to rectangular form SCREAMING_SNAKE_CASE_ : Optional[int] = cmath.rect(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE_ : Dict = cmath.rect(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
367
# Lint as: python3 import itertools import os import re lowerCAmelCase__ : Optional[int] =re.compile(R'([A-Z]+)([A-Z][a-z])') lowerCAmelCase__ : List[Any] =re.compile(R'([a-z\d])([A-Z])') lowerCAmelCase__ : Dict =re.compile(R'(?<!_)_(?!_)') lowerCAmelCase__ : int =re.compile(R'(_{2,})') lowerCAmelCase__ : Optional[Any] =R'^\w+(\.\w+)*$' lowerCAmelCase__ : List[Any] =R'<>:/\|?*' def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Dict = _uppercase_uppercase_re.sub(r'\1_\2', A__ ) SCREAMING_SNAKE_CASE_ : List[str] = _lowercase_uppercase_re.sub(r'\1_\2', A__ ) return name.lower() def a__ ( A__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = _single_underscore_re.split(A__ ) SCREAMING_SNAKE_CASE_ : str = [_multiple_underscores_re.split(A__ ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(A__ ) if n != '' ) def a__ ( A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(A__ ) def a__ ( A__, A__ ): if os.path.basename(A__ ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re, A__ ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(A__ )}-{split}''' def a__ ( A__, A__, A__, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' SCREAMING_SNAKE_CASE_ : List[Any] = os.path.join(A__, A__ ) return F'''{filepath}*''' def a__ ( A__, A__, A__, A__=None, A__=None ): SCREAMING_SNAKE_CASE_ : Tuple = filename_prefix_for_split(A__, A__ ) SCREAMING_SNAKE_CASE_ : Dict = os.path.join(A__, A__ ) if shard_lengths: SCREAMING_SNAKE_CASE_ : Dict = len(A__ ) SCREAMING_SNAKE_CASE_ : Any = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(A__ )] if filetype_suffix: SCREAMING_SNAKE_CASE_ : Optional[int] = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: SCREAMING_SNAKE_CASE_ : Optional[Any] = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
162
0
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ = 1000 ) -> int: _a , _a : Union[str, Any] = 1, 1 _a : Dict = 2 while True: _a : Any = 0 _a : Optional[Any] = fa + fa _a , _a : Union[str, Any] = fa, f index += 1 for _ in str(lowerCAmelCase_ ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
89
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _snake_case : Dict = {'configuration_mra': ['MRA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MraConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case : Optional[int] = [ 'MRA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MraForMaskedLM', 'MraForMultipleChoice', 'MraForQuestionAnswering', 'MraForSequenceClassification', 'MraForTokenClassification', 'MraLayer', 'MraModel', 'MraPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys _snake_case : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure)
284
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __A = logging.get_logger(__name__) class lowerCamelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
341
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __A = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
341
1
import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class _lowercase : """simple docstring""" def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return None class _lowercase : """simple docstring""" def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" return None class _lowercase ( unittest.TestCase ): """simple docstring""" __A = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def UpperCamelCase_ (self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , "tf" , 12 , **lowerCamelCase_ ) @require_torch @slow def UpperCamelCase_ (self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(lowerCamelCase_ , "pt" , 12 , **lowerCamelCase_ ) @require_torch @slow def UpperCamelCase_ (self ): """simple docstring""" from transformers import BertModel a = ["[UNK]", "[SEP]", "[CLS]", "[PAD]", "[MASK]", "some", "other", "words"] with NamedTemporaryFile(mode="w+t" ) as vocab_file: vocab_file.write("\n".join(lowerCamelCase_ ) ) vocab_file.flush() a = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: a = BertModel(BertConfig(vocab_size=len(lowerCamelCase_ ) ) ) model.save_pretrained(lowerCamelCase_ ) self._test_export(lowerCamelCase_ , "pt" , 12 , lowerCamelCase_ ) @require_tf @slow def UpperCamelCase_ (self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: a = self._test_export(lowerCamelCase_ , "tf" , 12 , **lowerCamelCase_ ) a = quantize(Path(lowerCamelCase_ ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) @require_torch @slow def UpperCamelCase_ (self ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: a = self._test_export(lowerCamelCase_ , "pt" , 12 , **lowerCamelCase_ ) a = quantize(lowerCamelCase_ ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(lowerCamelCase_ ).stat().st_size: self.fail("Quantized model is bigger than initial ONNX model" ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=None , **lowerCamelCase_ ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: a = Path(lowerCamelCase_ ).joinpath("model.onnx" ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) return path except Exception as e: self.fail(lowerCamelCase_ ) @require_torch @require_tokenizers @slow def UpperCamelCase_ (self ): """simple docstring""" from transformers import BertModel a = BertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) a = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , "pt" ) @require_tf @require_tokenizers @slow def UpperCamelCase_ (self ): """simple docstring""" from transformers import TFBertModel a = TFBertModel(BertConfig.from_pretrained("lysandre/tiny-bert-random" ) ) a = BertTokenizerFast.from_pretrained("lysandre/tiny-bert-random" ) self._test_infer_dynamic_axis(lowerCamelCase_ , lowerCamelCase_ , "tf" ) def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = FeatureExtractionPipeline(lowerCamelCase_ , lowerCamelCase_ ) a = ["input_ids", "token_type_ids", "attention_mask", "output_0", "output_1"] a , a , a , a = infer_shapes(lowerCamelCase_ , lowerCamelCase_ ) # Assert all variables are present self.assertEqual(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , lowerCamelCase_ ) self.assertSequenceEqual(variable_names[3:] , lowerCamelCase_ ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: "batch", 1: "sequence"} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes["output_0"] , {0: "batch", 1: "sequence"} ) self.assertDictEqual(shapes["output_1"] , {0: "batch"} ) def UpperCamelCase_ (self ): """simple docstring""" a = ["input_ids", "attention_mask", "token_type_ids"] a = {"input_ids": [1, 2, 3, 4], "attention_mask": [0, 0, 0, 0], "token_type_ids": [1, 1, 1, 1]} a , a = ensure_valid_input(FuncContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(lowerCamelCase_ ) , 3 ) # Should have exactly the same input names self.assertEqual(set(lowerCamelCase_ ) , set(lowerCamelCase_ ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(lowerCamelCase_ , (tokens["input_ids"], tokens["token_type_ids"], tokens["attention_mask"]) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) a , a = ensure_valid_input(FuncNonContiguousArgs() , lowerCamelCase_ , lowerCamelCase_ ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(lowerCamelCase_ ) , 1 ) self.assertEqual(len(lowerCamelCase_ ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens["input_ids"] ) self.assertEqual(ordered_input_names[0] , "input_ids" ) def UpperCamelCase_ (self ): """simple docstring""" a = generate_identified_filename(Path("/home/something/my_fake_model.onnx" ) , "-test" ) self.assertEqual("/home/something/my_fake_model-test.onnx" , generated.as_posix() )
227
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip _lowercase: Tuple = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def a( A : Optional[Any] ) -> str: """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def a( A : Dict , A : List[Any] , A : str ) -> List[str]: """simple docstring""" return max(metric_fn(A , A ) for gt in ground_truths ) def a( A : str , A : Optional[Any] , A : Optional[Any] ) -> Optional[int]: """simple docstring""" a = [line.strip() for line in open(A , "r" ).readlines()] a = [] if args.gold_data_mode == "qa": a = pd.read_csv(A , sep="\t" , header=A ) for answer_list in data[1]: a = ast.literal_eval(A ) answers.append(A ) else: a = [line.strip() for line in open(A , "r" ).readlines()] a = [[reference] for reference in references] a = a = a = 0 for prediction, ground_truths in zip(A , A ): total += 1 em += metric_max_over_ground_truths(A , A , A ) fa += metric_max_over_ground_truths(A , A , A ) a = 100.0 * em / total a = 100.0 * fa / total logger.info(f'''F1: {fa:.2f}''' ) logger.info(f'''EM: {em:.2f}''' ) def a( A : Dict , A : str , A : List[str] ) -> List[Any]: """simple docstring""" a = args.k a = [line.strip() for line in open(A , "r" ).readlines()] a = [line.strip() for line in open(A , "r" ).readlines()] a = a = 0 for hypo, reference in zip(A , A ): a = set(hypo.split("\t" )[:k] ) a = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a = 100.0 * em / total logger.info(f'''Precision@{k}: {em: .2f}''' ) def a( A : Dict , A : Any , A : List[Any] ) -> Any: """simple docstring""" def strip_title(A : Any ): if title.startswith("\"" ): a = title[1:] if title.endswith("\"" ): a = title[:-1] return title a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A , )["input_ids"].to(args.device ) a = rag_model.rag.question_encoder(A ) a = question_enc_outputs[0] a = rag_model.retriever( A , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) a = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a = [] for docs in all_docs: a = [strip_title(A ) for title in docs["title"]] provenance_strings.append("\t".join(A ) ) return provenance_strings def a( A : Union[str, Any] , A : Optional[int] , A : Tuple ) -> Tuple: """simple docstring""" with torch.no_grad(): a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( A , return_tensors="pt" , padding=A , truncation=A ) a = inputs_dict.input_ids.to(args.device ) a = inputs_dict.attention_mask.to(args.device ) a = rag_model.generate( # rag_model overwrites generate A , attention_mask=A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a = rag_model.retriever.generator_tokenizer.batch_decode(A , skip_special_tokens=A ) if args.print_predictions: for q, a in zip(A , A ): logger.info("Q: {} - A: {}".format(A , A ) ) return answers def a( ) -> Any: """simple docstring""" a = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=A , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=A , choices=["exact", "compressed", "legacy"] , type=A , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=A , type=A , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=A , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=A , type=A , required=A , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=A , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=A , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=A , type=A , required=A , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=A , type=A , required=A , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=A , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=A , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=A , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=A , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=A , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=A , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) a = parser.parse_args() a = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def a( A : Any ) -> Optional[Any]: """simple docstring""" a = {} if args.model_type is None: a = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): a = RagTokenForGeneration if args.model_type == "rag_token" else RagSequenceForGeneration a = args.n_docs if args.index_name is not None: a = args.index_name if args.index_path is not None: a = args.index_path else: a = BartForConditionalGeneration a = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , A ) a = get_scores if args.eval_mode == "e2e" else get_precision_at_k a = evaluate_batch_eae if args.eval_mode == "e2e" else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(A , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(A ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): a = RagRetriever.from_pretrained(A , **A ) a = model_class.from_pretrained(A , retriever=A , **A ) model.retriever.init_retrieval() else: a = model_class.from_pretrained(A , **A ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: a = [] for line in tqdm(A ): questions.append(line.strip() ) if len(A ) == args.eval_batch_size: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) + "\n" ) preds_file.flush() a = [] if len(A ) > 0: a = evaluate_batch_fn(A , A , A ) preds_file.write("\n".join(A ) ) preds_file.flush() score_fn(A , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": _lowercase: Optional[int] = get_args() main(args)
227
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 UpperCAmelCase_ : Tuple = get_tests_dir('fixtures') UpperCAmelCase_ : Union[str, Any] = get_tests_dir('fixtures/dummy_feature_extractor_config.json') UpperCAmelCase_ : Tuple = get_tests_dir('fixtures/dummy-config.json') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> int: a_ : Any = 0 def SCREAMING_SNAKE_CASE ( self : int ) -> Dict: a_ : int = AutoFeatureExtractor.from_pretrained('facebook/wav2vec2-base-960h' ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : str ) -> Optional[Any]: a_ : Tuple = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: with tempfile.TemporaryDirectory() as tmpdirname: a_ : List[str] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally a_ : Dict = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ).to_dict() config_dict.pop('feature_extractor_type' ) a_ : Any = WavaVecaFeatureExtractor(**SCREAMING_SNAKE_CASE__ ) # save in new folder model_config.save_pretrained(SCREAMING_SNAKE_CASE__ ) config.save_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) # make sure private variable is not incorrectly saved a_ : Tuple = json.loads(config.to_json_string() ) self.assertTrue('_processor_class' not in dict_as_saved ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Union[str, Any]: a_ : Optional[Any] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Any ) -> Optional[int]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , 'bert-base is not a local folder and is not a valid model identifier' ): a_ : List[Any] = AutoFeatureExtractor.from_pretrained('bert-base' ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)' ): a_ : List[str] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , revision='aaaaaa' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: with self.assertRaisesRegex( SCREAMING_SNAKE_CASE__ , 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.' , ): a_ : List[Any] = AutoFeatureExtractor.from_pretrained('hf-internal-testing/config-no-model' ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> int: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): a_ : List[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) # If remote code is disabled, we can't load this config. with self.assertRaises(SCREAMING_SNAKE_CASE__ ): a_ : Optional[Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) a_ : List[str] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : List[Any] = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE__ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(SCREAMING_SNAKE_CASE__ ): AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # Now that the config is registered, it can be used as any other config with the auto-API a_ : int = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE__ ) a_ : Any = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def SCREAMING_SNAKE_CASE ( self : Any ) -> List[str]: class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : List[str] = True try: AutoConfig.register('custom' , SCREAMING_SNAKE_CASE__ ) AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # If remote code is not set, the default is to use local a_ : Union[str, Any] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote code is disabled, we load the local one. a_ : Dict = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(feature_extractor.is_local ) # If remote is enabled, we load from the Hub a_ : Optional[int] = AutoFeatureExtractor.from_pretrained( 'hf-internal-testing/test_dynamic_feature_extractor' , trust_remote_code=SCREAMING_SNAKE_CASE__ ) self.assertEqual(feature_extractor.__class__.__name__ , 'NewFeatureExtractor' ) self.assertTrue(not hasattr(SCREAMING_SNAKE_CASE__ , 'is_local' ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
120
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow UpperCAmelCase_ : str = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) UpperCAmelCase_ : Optional[int] = logging.getLogger() def SCREAMING_SNAKE_CASE_ ( ) -> Any: """simple docstring""" a_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('-f' ) a_ : Optional[Any] = parser.parse_args() return args.f def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : List[Any]="eval" ) -> Optional[int]: """simple docstring""" a_ : List[Any] = os.path.join(__A , F"""{split}_results.json""" ) if os.path.exists(__A ): with open(__A , 'r' ) as f: return json.load(__A ) raise ValueError(F"""can't find {path}""" ) UpperCAmelCase_ : str = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def SCREAMING_SNAKE_CASE ( self : Any ) -> Tuple: a_ : Optional[Any] = self.get_auto_remove_tmp_dir() a_ : List[str] = F""" run_glue.py --model_name_or_path distilbert-base-uncased --output_dir {tmp_dir} --train_file ./tests/fixtures/tests_samples/MRPC/train.csv --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --learning_rate=1e-4 --eval_steps=2 --warmup_steps=2 --seed=42 --max_seq_length=128 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_flax_glue.main() a_ : str = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) @slow def SCREAMING_SNAKE_CASE ( self : Any ) -> str: a_ : List[str] = self.get_auto_remove_tmp_dir() a_ : Union[str, Any] = F""" run_clm_flax.py --model_name_or_path distilgpt2 --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --block_size 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_clm_flax.main() a_ : List[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result['eval_perplexity'] , 1_0_0 ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> int: a_ : Tuple = self.get_auto_remove_tmp_dir() a_ : Dict = F""" run_summarization.py --model_name_or_path t5-small --train_file tests/fixtures/tests_samples/xsum/sample.json --validation_file tests/fixtures/tests_samples/xsum/sample.json --test_file tests/fixtures/tests_samples/xsum/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=8 --do_train --do_eval --do_predict --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 --predict_with_generate """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_summarization_flax.main() a_ : List[str] = get_results(SCREAMING_SNAKE_CASE__ , split='test' ) self.assertGreaterEqual(result['test_rouge1'] , 1_0 ) self.assertGreaterEqual(result['test_rouge2'] , 2 ) self.assertGreaterEqual(result['test_rougeL'] , 7 ) self.assertGreaterEqual(result['test_rougeLsum'] , 7 ) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: a_ : int = self.get_auto_remove_tmp_dir() a_ : Dict = F""" run_mlm.py --model_name_or_path distilroberta-base --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --output_dir {tmp_dir} --overwrite_output_dir --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --logging_steps 2 --eval_steps 2 --do_train --do_eval --num_train_epochs=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_mlm_flax.main() a_ : List[Any] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertLess(result['eval_perplexity'] , 4_2 ) @slow def SCREAMING_SNAKE_CASE ( self : Tuple ) -> List[str]: a_ : str = self.get_auto_remove_tmp_dir() a_ : List[str] = F""" run_t5_mlm_flax.py --model_name_or_path t5-small --train_file ./tests/fixtures/sample_text.txt --validation_file ./tests/fixtures/sample_text.txt --do_train --do_eval --max_seq_length 128 --per_device_train_batch_size 4 --per_device_eval_batch_size 4 --num_train_epochs 2 --logging_steps 2 --eval_steps 2 --output_dir {tmp_dir} --overwrite_output_dir """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_ta_mlm_flax.main() a_ : Dict = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.42 ) @slow def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: # with so little data distributed training needs more epochs to get the score on par with 0/1 gpu a_ : int = 7 if get_gpu_count() > 1 else 2 a_ : Dict = self.get_auto_remove_tmp_dir() a_ : Tuple = F""" run_flax_ner.py --model_name_or_path bert-base-uncased --train_file tests/fixtures/tests_samples/conll/sample.json --validation_file tests/fixtures/tests_samples/conll/sample.json --output_dir {tmp_dir} --overwrite_output_dir --do_train --do_eval --warmup_steps=2 --learning_rate=2e-4 --logging_steps 2 --eval_steps 2 --per_device_train_batch_size=2 --per_device_eval_batch_size=2 --num_train_epochs={epochs} --seed 7 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_flax_ner.main() a_ : List[str] = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_accuracy'] , 0.75 ) self.assertGreaterEqual(result['eval_f1'] , 0.3 ) @slow def SCREAMING_SNAKE_CASE ( self : List[str] ) -> int: a_ : List[str] = self.get_auto_remove_tmp_dir() a_ : int = F""" run_qa.py --model_name_or_path bert-base-uncased --version_2_with_negative --train_file tests/fixtures/tests_samples/SQUAD/sample.json --validation_file tests/fixtures/tests_samples/SQUAD/sample.json --output_dir {tmp_dir} --overwrite_output_dir --num_train_epochs=3 --warmup_steps=2 --do_train --do_eval --logging_steps 2 --eval_steps 2 --learning_rate=2e-4 --per_device_train_batch_size=2 --per_device_eval_batch_size=1 """.split() with patch.object(SCREAMING_SNAKE_CASE__ , 'argv' , SCREAMING_SNAKE_CASE__ ): run_qa.main() a_ : str = get_results(SCREAMING_SNAKE_CASE__ ) self.assertGreaterEqual(result['eval_f1'] , 3_0 ) self.assertGreaterEqual(result['eval_exact'] , 3_0 )
120
1
from __future__ import annotations def lowerCamelCase__ ( __lowerCamelCase : dict , __lowerCamelCase : str ): __UpperCAmelCase , __UpperCAmelCase : str = set(__lowerCamelCase ), [start] while stack: __UpperCAmelCase : Tuple = stack.pop() explored.add(__lowerCamelCase ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__lowerCamelCase ) return explored a : Union[str, Any] = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
114
def lowerCamelCase__ ( __lowerCamelCase : Tuple , __lowerCamelCase : Union[str, Any] ): __UpperCAmelCase : Tuple = [1] for i in range(2 , __lowerCamelCase ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" __UpperCAmelCase : Optional[Any] = [] __UpperCAmelCase : str = list(range(__lowerCamelCase ) ) # Find permutation while factorials: __UpperCAmelCase : Any = factorials.pop() __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = divmod(__lowerCamelCase , __lowerCamelCase ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
114
1
import os from typing import Dict, List, Tuple, TypeVar, Union __A : List[Any] = TypeVar('T') __A : Dict = Union[List[T], Tuple[T, ...]] __A : str = Union[T, List[T], Dict[str, T]] __A : Optional[Any] = Union[str, bytes, os.PathLike]
49
from math import pi, sqrt def __UpperCamelCase ( _A : float ) ->float: """simple docstring""" if num <= 0: raise ValueError("""math domain error""" ) if num > 1_7_1.5: raise OverflowError("""math range error""" ) elif num - int(_A ) not in (0, 0.5): raise NotImplementedError("""num must be an integer or a half-integer""" ) elif num == 0.5: return sqrt(_A ) else: return 1.0 if num == 1 else (num - 1) * gamma(num - 1 ) def __UpperCamelCase ( ) ->None: """simple docstring""" assert gamma(0.5 ) == sqrt(_A ) assert gamma(1 ) == 1.0 assert gamma(2 ) == 1.0 if __name__ == "__main__": from doctest import testmod testmod() __A : List[Any] = 1.0 while num: __A : str = float(input('Gamma of: ')) print(F"""gamma({num}) = {gamma(num)}""") print('\nEnter 0 to exit...')
49
1
'''simple docstring''' import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _UpperCamelCase ( __A , __A , __A , __A ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = FunnelConfig.from_json_file(__A ) print(F'''Building PyTorch model from configuration: {config}''' ) UpperCamelCase__ = FunnelBaseModel(__A ) if base_model else FunnelModel(__A ) # Load weights from tf checkpoint load_tf_weights_in_funnel(__A , __A , __A ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , __A ) if __name__ == "__main__": a__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--base_model', action='store_true', help='Whether you want just the base model (no decoder) or not.' ) a__ : str = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
80
'''simple docstring''' def UpperCAmelCase__ ( UpperCAmelCase__ ) -> bool: return str(UpperCAmelCase__ ) == str(UpperCAmelCase__ )[::-1] def UpperCAmelCase__ ( UpperCAmelCase__ ) -> int: return int(UpperCAmelCase__ ) + int(str(UpperCAmelCase__ )[::-1] ) def UpperCAmelCase__ ( UpperCAmelCase__ = 1_00_00 ) -> int: A_ = [] for num in range(1, UpperCAmelCase__ ): A_ = 0 A_ = num while iterations < 50: A_ = sum_reverse(UpperCAmelCase__ ) iterations += 1 if is_palindrome(UpperCAmelCase__ ): break else: lychrel_nums.append(UpperCAmelCase__ ) return len(UpperCAmelCase__ ) if __name__ == "__main__": print(f"""{solution() = }""")
162
0
from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL import torch from transformers import CLIPImageProcessor, CLIPVisionModel from ...models import PriorTransformer from ...pipelines import DiffusionPipeline from ...schedulers import HeunDiscreteScheduler from ...utils import ( BaseOutput, is_accelerate_available, logging, randn_tensor, replace_example_docstring, ) from .renderer import ShapERenderer a : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name a : int = """ Examples: ```py >>> from PIL import Image >>> import torch >>> from diffusers import DiffusionPipeline >>> from diffusers.utils import export_to_gif, load_image >>> device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\") >>> repo = \"openai/shap-e-img2img\" >>> pipe = DiffusionPipeline.from_pretrained(repo, torch_dtype=torch.float16) >>> pipe = pipe.to(device) >>> guidance_scale = 3.0 >>> image_url = \"https://hf.co/datasets/diffusers/docs-images/resolve/main/shap-e/corgi.png\" >>> image = load_image(image_url).convert(\"RGB\") >>> images = pipe( ... image, ... guidance_scale=guidance_scale, ... num_inference_steps=64, ... frame_size=256, ... ).images >>> gif_path = export_to_gif(images[0], \"corgi_3d.gif\") ``` """ @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A , ) -> Union[str, Any]: super().__init__() self.register_modules( prior=A , image_encoder=A , image_processor=A , scheduler=A , renderer=A , ) def _lowercase( self , A , A , A , A , A , A ) -> Any: if latents is None: UpperCAmelCase : Optional[Any] = randn_tensor(A , generator=A , device=A , dtype=A ) else: if latents.shape != shape: raise ValueError(f'''Unexpected latents shape, got {latents.shape}, expected {shape}''' ) UpperCAmelCase : Union[str, Any] = latents.to(A ) UpperCAmelCase : Any = latents * scheduler.init_noise_sigma return latents def _lowercase( self , A=0 ) -> Optional[int]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) UpperCAmelCase : Union[str, Any] = torch.device(f'''cuda:{gpu_id}''' ) UpperCAmelCase : Dict = [self.image_encoder, self.prior] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(A , A ) @property def _lowercase( self ) -> str: if self.device != torch.device("""meta""" ) or not hasattr(self.image_encoder , """_hf_hook""" ): return self.device for module in self.image_encoder.modules(): if ( hasattr(A , """_hf_hook""" ) and hasattr(module._hf_hook , """execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device def _lowercase( self , A , A , A , A , ) -> Optional[Any]: if isinstance(A , A ) and isinstance(image[0] , torch.Tensor ): UpperCAmelCase : Union[str, Any] = torch.cat(A , axis=0 ) if image[0].ndim == 4 else torch.stack(A , axis=0 ) if not isinstance(A , torch.Tensor ): UpperCAmelCase : Optional[Any] = self.image_processor(A , return_tensors="""pt""" ).pixel_values[0].unsqueeze(0 ) UpperCAmelCase : List[Any] = image.to(dtype=self.image_encoder.dtype , device=A ) UpperCAmelCase : Optional[int] = self.image_encoder(A )["""last_hidden_state"""] UpperCAmelCase : Tuple = image_embeds[:, 1:, :].contiguous() # batch_size, dim, 256 UpperCAmelCase : Tuple = image_embeds.repeat_interleave(A , dim=0 ) if do_classifier_free_guidance: UpperCAmelCase : Optional[int] = torch.zeros_like(A ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCAmelCase : Any = torch.cat([negative_image_embeds, image_embeds] ) return image_embeds @torch.no_grad() @replace_example_docstring(A ) def __call__( self , A , A = 1 , A = 25 , A = None , A = None , A = 4.0 , A = 64 , A = "pil" , A = True , ) -> str: if isinstance(A , PIL.Image.Image ): UpperCAmelCase : Union[str, Any] = 1 elif isinstance(A , torch.Tensor ): UpperCAmelCase : Any = image.shape[0] elif isinstance(A , A ) and isinstance(image[0] , (torch.Tensor, PIL.Image.Image) ): UpperCAmelCase : Any = len(A ) else: raise ValueError( f'''`image` has to be of type `PIL.Image.Image`, `torch.Tensor`, `List[PIL.Image.Image]` or `List[torch.Tensor]` but is {type(A )}''' ) UpperCAmelCase : Tuple = self._execution_device UpperCAmelCase : str = batch_size * num_images_per_prompt UpperCAmelCase : Optional[int] = guidance_scale > 1.0 UpperCAmelCase : int = self._encode_image(A , A , A , A ) # prior self.scheduler.set_timesteps(A , device=A ) UpperCAmelCase : Union[str, Any] = self.scheduler.timesteps UpperCAmelCase : Optional[Any] = self.prior.config.num_embeddings UpperCAmelCase : int = self.prior.config.embedding_dim UpperCAmelCase : Optional[Any] = self.prepare_latents( (batch_size, num_embeddings * embedding_dim) , image_embeds.dtype , A , A , A , self.scheduler , ) # YiYi notes: for testing only to match ldm, we can directly create a latents with desired shape: batch_size, num_embeddings, embedding_dim UpperCAmelCase : Dict = latents.reshape(latents.shape[0] , A , A ) for i, t in enumerate(self.progress_bar(A ) ): # expand the latents if we are doing classifier free guidance UpperCAmelCase : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCAmelCase : str = self.scheduler.scale_model_input(A , A ) UpperCAmelCase : int = self.prior( A , timestep=A , proj_embedding=A , ).predicted_image_embedding # remove the variance UpperCAmelCase : Optional[Any] = noise_pred.split( scaled_model_input.shape[2] , dim=2 ) # batch_size, num_embeddings, embedding_dim if do_classifier_free_guidance is not None: UpperCAmelCase : Dict = noise_pred.chunk(2 ) UpperCAmelCase : List[str] = noise_pred_uncond + guidance_scale * (noise_pred - noise_pred_uncond) UpperCAmelCase : Tuple = self.scheduler.step( A , timestep=A , sample=A , ).prev_sample if output_type == "latent": return ShapEPipelineOutput(images=A ) UpperCAmelCase : Union[str, Any] = [] for i, latent in enumerate(A ): print() UpperCAmelCase : List[str] = self.renderer.decode( latent[None, :] , A , size=A , ray_batch_size=4096 , n_coarse_samples=64 , n_fine_samples=128 , ) images.append(A ) UpperCAmelCase : Any = torch.stack(A ) if output_type not in ["np", "pil"]: raise ValueError(f'''Only the output types `pil` and `np` are supported not output_type={output_type}''' ) UpperCAmelCase : Dict = images.cpu().numpy() if output_type == "pil": UpperCAmelCase : Optional[int] = [self.numpy_to_pil(A ) for image in images] # Offload last model to CPU if hasattr(self , """final_offload_hook""" ) and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (images,) return ShapEPipelineOutput(images=A )
369
'''simple docstring''' # Function to print upper half of diamond (pyramid) def __lowerCamelCase ( _lowercase ) -> List[Any]: for i in range(0 , _lowercase ): for _ in range(0 , n - i - 1 ): # printing spaces print(""" """ , end="""""" ) for _ in range(0 , i + 1 ): # printing stars print("""* """ , end="""""" ) print() def __lowerCamelCase ( _lowercase ) -> Dict: for i in range(_lowercase , 0 , -1 ): for _ in range(_lowercase , 0 , -1 ): # printing stars print("""* """ , end="""""" ) print() for _ in range(n - i + 1 , 0 , -1 ): # printing spaces print(""" """ , end="""""" ) def __lowerCamelCase ( _lowercase ) -> List[Any]: if n <= 0: print(""" ... .... nothing printing :(""" ) return floyd(_lowercase ) # upper half reverse_floyd(_lowercase ) # lower half if __name__ == "__main__": print(R"""| /\ | |- | |- |--| |\ /| |-""") print(R"""|/ \| |- |_ |_ |__| | \/ | |_""") a : List[Any] = 1 while K: a : int = int(input("""enter the number and , and see the magic : """)) print() pretty_print(user_number) a : Tuple = int(input("""press 0 to exit... and 1 to continue...""")) print("""Good Bye...""")
338
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor __lowerCAmelCase = logging.get_logger(__name__) class _lowerCAmelCase ( __snake_case ): '''simple docstring''' def __init__(self , *UpperCAmelCase , **UpperCAmelCase ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , UpperCAmelCase , ) super().__init__(*UpperCAmelCase , **UpperCAmelCase )
341
'''simple docstring''' import os from typing import Dict, List, Tuple, TypeVar, Union __lowerCAmelCase = TypeVar('T') __lowerCAmelCase = Union[List[T], Tuple[T, ...]] __lowerCAmelCase = Union[T, List[T], Dict[str, T]] __lowerCAmelCase = Union[str, bytes, os.PathLike]
341
1
'''simple docstring''' def UpperCAmelCase ( a_ , a_ ) -> int: """simple docstring""" while second != 0: A_ : Union[str, Any] = first & second first ^= second A_ : List[Any] = c << 1 return first if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase__ : Optional[Any] = int(input('Enter the first number: ').strip()) UpperCamelCase__ : Optional[Any] = int(input('Enter the second number: ').strip()) print(f'{add(first, second) = }')
164
'''simple docstring''' from statistics import mean, stdev def UpperCAmelCase ( a_ , a_ = 3 ) -> list: """simple docstring""" A_ : Tuple = min(a_ ) A_ : Union[str, Any] = max(a_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , a_ ) for x in data] def UpperCAmelCase ( a_ , a_ = 3 ) -> list: """simple docstring""" A_ : List[str] = mean(a_ ) A_ : List[str] = stdev(a_ ) # standardize data return [round((x - mu) / (sigma) , a_ ) for x in data]
164
1
'''simple docstring''' from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" def __lowercase ( self : Dict ) -> Optional[Any]: lowerCAmelCase_ : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase , """embed_dim""" ) ) self.parent.assertTrue(hasattr(lowerCamelCase , """num_heads""" ) ) class __snake_case : """simple docstring""" def __init__( self : str , lowerCamelCase : Any , lowerCamelCase : Dict=13 , lowerCamelCase : List[Any]=64 , lowerCamelCase : int=3 , lowerCamelCase : List[Any]=[16, 48, 96] , lowerCamelCase : int=[1, 3, 6] , lowerCamelCase : str=[1, 2, 10] , lowerCamelCase : Optional[Any]=[7, 3, 3] , lowerCamelCase : List[Any]=[4, 2, 2] , lowerCamelCase : Tuple=[2, 1, 1] , lowerCamelCase : Any=[2, 2, 2] , lowerCamelCase : int=[False, False, True] , lowerCamelCase : Optional[int]=[0.0, 0.0, 0.0] , lowerCamelCase : Tuple=0.02 , lowerCamelCase : Any=1E-12 , lowerCamelCase : Tuple=True , lowerCamelCase : Dict=True , lowerCamelCase : int=2 , ) -> int: lowerCAmelCase_ : Any = parent lowerCAmelCase_ : Any = batch_size lowerCAmelCase_ : Any = image_size lowerCAmelCase_ : Dict = patch_sizes lowerCAmelCase_ : Dict = patch_stride lowerCAmelCase_ : Tuple = patch_padding lowerCAmelCase_ : Optional[int] = is_training lowerCAmelCase_ : Tuple = use_labels lowerCAmelCase_ : Union[str, Any] = num_labels lowerCAmelCase_ : Any = num_channels lowerCAmelCase_ : Optional[Any] = embed_dim lowerCAmelCase_ : str = num_heads lowerCAmelCase_ : Any = stride_kv lowerCAmelCase_ : List[Any] = depth lowerCAmelCase_ : int = cls_token lowerCAmelCase_ : Union[str, Any] = attention_drop_rate lowerCAmelCase_ : List[str] = initializer_range lowerCAmelCase_ : Tuple = layer_norm_eps def __lowercase ( self : Union[str, Any] ) -> Optional[int]: lowerCAmelCase_ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ : Any = None if self.use_labels: # create a random int32 tensor of given shape lowerCAmelCase_ : List[str] = ids_tensor([self.batch_size] , self.num_labels ) lowerCAmelCase_ : Tuple = self.get_config() return config, pixel_values, labels def __lowercase ( self : List[str] ) -> Optional[int]: return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def __lowercase ( self : Optional[Any] , lowerCamelCase : Optional[int] , lowerCamelCase : str , lowerCamelCase : Tuple ) -> Optional[int]: lowerCAmelCase_ : List[str] = TFCvtModel(config=lowerCamelCase ) lowerCAmelCase_ : Dict = model(lowerCamelCase , training=lowerCamelCase ) lowerCAmelCase_ : Dict = (self.image_size, self.image_size) lowerCAmelCase_, lowerCAmelCase_ : int = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase_ : Optional[Any] = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase_ : List[Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Union[str, Any] , lowerCamelCase : Tuple , lowerCamelCase : List[str] ) -> List[Any]: lowerCAmelCase_ : List[str] = self.num_labels lowerCAmelCase_ : List[Any] = TFCvtForImageClassification(lowerCamelCase ) lowerCAmelCase_ : str = model(lowerCamelCase , labels=lowerCamelCase , training=lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowercase ( self : Union[str, Any] ) -> Any: lowerCAmelCase_ : Tuple = self.prepare_config_and_inputs() lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ : List[str] = config_and_inputs lowerCAmelCase_ : Optional[Any] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __snake_case ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () lowercase = ( {'feature-extraction': TFCvtModel, 'image-classification': TFCvtForImageClassification} if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def __lowercase ( self : List[Any] ) -> str: lowerCAmelCase_ : Union[str, Any] = TFCvtModelTester(self ) lowerCAmelCase_ : Dict = TFCvtConfigTester(self , config_class=lowerCamelCase , has_text_modality=lowerCamelCase , hidden_size=37 ) def __lowercase ( self : Any ) -> Union[str, Any]: self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def __lowercase ( self : Optional[Any] ) -> List[str]: pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def __lowercase ( self : Tuple ) -> Tuple: pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def __lowercase ( self : str ) -> str: super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def __lowercase ( self : List[Any] ) -> int: super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def __lowercase ( self : Optional[Any] ) -> Any: lowerCAmelCase_ : Dict = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(lowerCamelCase ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: lowerCAmelCase_, lowerCAmelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : str = model_class(lowerCamelCase ) lowerCAmelCase_ : List[Any] = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ : Dict = [*signature.parameters.keys()] lowerCAmelCase_ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase ) def __lowercase ( self : int ) -> List[str]: def check_hidden_states_output(lowerCamelCase : List[Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Any ): lowerCAmelCase_ : str = model_class(lowerCamelCase ) lowerCAmelCase_ : str = model(**self._prepare_for_class(lowerCamelCase , lowerCamelCase ) ) lowerCAmelCase_ : int = outputs.hidden_states lowerCAmelCase_ : List[str] = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase ) , lowerCamelCase ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCAmelCase_, lowerCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ : Dict = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ : str = True check_hidden_states_output(lowerCamelCase , lowerCamelCase , lowerCamelCase ) def __lowercase ( self : List[Any] ) -> Optional[Any]: lowerCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase ) def __lowercase ( self : List[str] ) -> Union[str, Any]: lowerCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase ) @slow def __lowercase ( self : Optional[Any] ) -> Optional[int]: for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ : Union[str, Any] = TFCvtModel.from_pretrained(lowerCamelCase ) self.assertIsNotNone(lowerCamelCase ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" @cached_property def __lowercase ( self : Optional[Any] ) -> List[str]: return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : int = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) lowerCAmelCase_ : Optional[int] = self.default_image_processor lowerCAmelCase_ : List[str] = prepare_img() lowerCAmelCase_ : List[Any] = image_processor(images=lowerCamelCase , return_tensors="""tf""" ) # forward pass lowerCAmelCase_ : Union[str, Any] = model(**lowerCamelCase ) # verify the logits lowerCAmelCase_ : Dict = tf.TensorShape((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase ) lowerCAmelCase_ : str = tf.constant([0.9_285, 0.9_015, -0.3_150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , lowerCamelCase , atol=1E-4 ) )
120
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( _SCREAMING_SNAKE_CASE ,unittest.TestCase): """simple docstring""" lowercase = BioGptTokenizer lowercase = False def __lowercase ( self : List[Any] ) -> List[str]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCAmelCase_ : Optional[Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """w</w>""", """r</w>""", """t</w>""", """lo""", """low""", """er</w>""", """low</w>""", """lowest</w>""", """newer</w>""", """wider</w>""", """<unk>""", ] lowerCAmelCase_ : int = dict(zip(lowerCamelCase , range(len(lowerCamelCase ) ) ) ) lowerCAmelCase_ : int = ["""l o 123""", """lo w 1456""", """e r</w> 1789""", """"""] lowerCAmelCase_ : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase_ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" ) as fp: fp.write(json.dumps(lowerCamelCase ) ) with open(self.merges_file , """w""" ) as fp: fp.write("""\n""".join(lowerCamelCase ) ) def __lowercase ( self : Union[str, Any] , lowerCamelCase : Any ) -> List[str]: lowerCAmelCase_ : Dict = """lower newer""" lowerCAmelCase_ : str = """lower newer""" return input_text, output_text def __lowercase ( self : Optional[int] ) -> str: lowerCAmelCase_ : Any = BioGptTokenizer(self.vocab_file , self.merges_file ) lowerCAmelCase_ : int = """lower""" lowerCAmelCase_ : str = ["""low""", """er</w>"""] lowerCAmelCase_ : Any = tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : Dict = tokens + ["""<unk>"""] lowerCAmelCase_ : Optional[Any] = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase ) , lowerCamelCase ) @slow def __lowercase ( self : str ) -> Optional[Any]: lowerCAmelCase_ : Dict = BioGptTokenizer.from_pretrained("""microsoft/biogpt""" ) lowerCAmelCase_ : int = tokenizer.encode("""sequence builders""" , add_special_tokens=lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=lowerCamelCase ) lowerCAmelCase_ : str = tokenizer.build_inputs_with_special_tokens(lowerCamelCase ) lowerCAmelCase_ : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase , lowerCamelCase ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
120
1
"""simple docstring""" import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename UpperCamelCase_ = '''http://www.mocksite.com/file1.txt''' UpperCamelCase_ = '''"text": ["foo", "foo"]''' UpperCamelCase_ = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class snake_case : a_ : Union[str, Any] = 200 a_ : str = {'''Content-Length''': '''100'''} a_ : Any = {} def UpperCAmelCase__ ( self , **__UpperCAmelCase) ->Optional[Any]: return [bytes(__snake_case , "utf-8")] def UpperCamelCase ( *UpperCAmelCase , **UpperCAmelCase ) ->Tuple: """simple docstring""" return MockResponse() @pytest.mark.parametrize("urls_type" , [str, list, dict] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" import requests monkeypatch.setattr(__lowerCAmelCase , "request" , __lowerCAmelCase ) a_ = URL if issubclass(__lowerCAmelCase , __lowerCAmelCase ): a_ = url elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a_ = [url] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a_ = {"train": url} a_ = "dummy" a_ = "downloads" a_ = tmp_path a_ = DownloadConfig( cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , ) a_ = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) a_ = dl_manager.download(__lowerCAmelCase ) a_ = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): a_ = [downloaded_paths] a_ = [urls] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in downloaded_paths.keys() a_ = downloaded_paths.values() a_ = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] a_ = Path(__lowerCAmelCase ) a_ = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() a_ = downloaded_path.read_text() assert content == CONTENT a_ = downloaded_path.with_suffix(".json" ) assert metadata_downloaded_path.exists() a_ = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize("paths_type" , [str, list, dict] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = str(__lowerCAmelCase ) if issubclass(__lowerCAmelCase , __lowerCAmelCase ): a_ = filename elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a_ = [filename] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): a_ = {"train": filename} a_ = "dummy" a_ = xz_file.parent a_ = "extracted" a_ = DownloadConfig( cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , ) a_ = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) a_ = dl_manager.extract(__lowerCAmelCase ) a_ = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): a_ = [extracted_paths] a_ = [paths] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in extracted_paths.keys() a_ = extracted_paths.values() a_ = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] a_ = Path(__lowerCAmelCase ) a_ = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() a_ = extracted_path.read_text() a_ = text_file.read_text() assert extracted_file_content == expected_file_content def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Dict: """simple docstring""" assert path.endswith(".jsonl" ) for num_items, line in enumerate(__lowerCAmelCase , start=1 ): a_ = json.loads(line.decode("utf-8" ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize("archive_jsonl" , ["tar_jsonl_path", "zip_jsonl_path"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Optional[Any]: """simple docstring""" a_ = request.getfixturevalue(__lowerCAmelCase ) a_ = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize("archive_nested_jsonl" , ["tar_nested_jsonl_path", "zip_nested_jsonl_path"] ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = request.getfixturevalue(__lowerCAmelCase ) a_ = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def UpperCamelCase ( UpperCAmelCase ) ->List[str]: """simple docstring""" a_ = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ): assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
371
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase_ = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
303
0
def __snake_case ( _UpperCAmelCase ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection __a = len(_UpperCAmelCase ) __a = max(_UpperCAmelCase ) __a = min(_UpperCAmelCase ) # create the counting array __a = coll_max + 1 - coll_min __a = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , _UpperCAmelCase ): __a = counting_arr[i] + counting_arr[i - 1] # create the output collection __a = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , _UpperCAmelCase ) ): __a = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def __snake_case ( _UpperCAmelCase ): return "".join([chr(_UpperCAmelCase ) for i in counting_sort([ord(_UpperCAmelCase ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string('''thisisthestring''') == "eghhiiinrsssttt" __snake_case :Tuple = input('''Enter numbers separated by a comma:\n''').strip() __snake_case :Dict = [int(item) for item in user_input.split(''',''')] print(counting_sort(unsorted))
49
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __snake_case :Dict = '''bart''' __snake_case :Tuple = True @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = AutoTokenizer.from_pretrained('''yjernite/retribert-base-uncased''' ) __a = AutoModel.from_pretrained('''yjernite/retribert-base-uncased''' ).to('''cuda:0''' ) __a = qar_model.eval() else: __a , __a = (None, None) if MODEL_TYPE == "bart": __a = AutoTokenizer.from_pretrained('''yjernite/bart_eli5''' ) __a = AutoModelForSeqaSeqLM.from_pretrained('''yjernite/bart_eli5''' ).to('''cuda:0''' ) __a = torch.load('''seq2seq_models/eli5_bart_model_blm_2.pth''' ) sas_model.load_state_dict(save_dict['''model'''] ) __a = sas_model.eval() else: __a , __a = make_qa_sas_model( model_name='''t5-small''' , from_file='''seq2seq_models/eli5_t5_model_1024_4.pth''' , device='''cuda:0''' ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): if LOAD_DENSE_INDEX: __a = faiss.StandardGpuResources() __a = datasets.load_dataset(path='''wiki_snippets''' , name='''wiki40b_en_100_0''' )['''train'''] __a = np.memmap( '''wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat''' , dtype='''float32''' , mode='''r''' , shape=(wikiaab_passages.num_rows, 128) , ) __a = faiss.IndexFlatIP(128 ) __a = faiss.index_cpu_to_gpu(_UpperCAmelCase , 1 , _UpperCAmelCase ) wikiaab_gpu_index_flat.add(_UpperCAmelCase ) # TODO fix for larger GPU else: __a , __a = (None, None) __a = Elasticsearch([{'''host''': '''localhost''', '''port''': '''9200'''}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=_UpperCAmelCase ) def __snake_case ( ): __a = datasets.load_dataset('''eli5''' , name='''LFQA_reddit''' ) __a = elia['''train_eli5'''] __a = np.memmap( '''eli5_questions_reps.dat''' , dtype='''float32''' , mode='''r''' , shape=(elia_train.num_rows, 128) ) __a = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(_UpperCAmelCase ) return (elia_train, eli5_train_q_index) __snake_case ,__snake_case ,__snake_case :List[str] = load_indexes() __snake_case ,__snake_case ,__snake_case ,__snake_case :Dict = load_models() __snake_case ,__snake_case :Tuple = load_train_data() def __snake_case ( _UpperCAmelCase , _UpperCAmelCase=10 ): __a = embed_questions_for_retrieval([question] , _UpperCAmelCase , _UpperCAmelCase ) __a , __a = eli5_train_q_index.search(_UpperCAmelCase , _UpperCAmelCase ) __a = [elia_train[int(_UpperCAmelCase )] for i in I[0]] return nn_examples def __snake_case ( _UpperCAmelCase , _UpperCAmelCase="wiki40b" , _UpperCAmelCase="dense" , _UpperCAmelCase=10 ): if source == "none": __a , __a = (''' <P> '''.join(['''''' for _ in range(11 )] ).strip(), []) else: if method == "dense": __a , __a = query_qa_dense_index( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: __a , __a = query_es_index( _UpperCAmelCase , _UpperCAmelCase , index_name='''english_wiki40b_snippets_100w''' , n_results=_UpperCAmelCase , ) __a = [ (res['''article_title'''], res['''section_title'''].strip(), res['''score'''], res['''passage_text''']) for res in hit_lst ] __a = '''question: {} context: {}'''.format(_UpperCAmelCase , _UpperCAmelCase ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda _UpperCAmelCase : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda _UpperCAmelCase : None), } ) def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase=256 , _UpperCAmelCase=False , _UpperCAmelCase=2 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0.8 ): with torch.no_grad(): __a = qa_sas_generate( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , num_answers=1 , num_beams=_UpperCAmelCase , min_len=_UpperCAmelCase , max_len=_UpperCAmelCase , do_sample=_UpperCAmelCase , temp=_UpperCAmelCase , top_p=_UpperCAmelCase , top_k=_UpperCAmelCase , max_input_length=1024 , device='''cuda:0''' , )[0] return (answer, support_list) st.title('''Long Form Question Answering with ELI5''') # Start sidebar __snake_case :Dict = '''<img src=\'https://huggingface.co/front/assets/huggingface_logo.svg\'>''' __snake_case :int = ''' <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class="img-container"> <!-- Inline parent element --> %s </span> </body> </html> ''' % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __snake_case :int = ''' This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. ''' st.sidebar.markdown(description, unsafe_allow_html=True) __snake_case :Union[str, Any] = [ '''Answer the question''', '''View the retrieved document only''', '''View the most similar ELI5 question and answer''', '''Show me everything, please!''', ] __snake_case :int = st.sidebar.checkbox('''Demo options''') if demo_options: __snake_case :str = st.sidebar.selectbox( '''''', action_list, index=3, ) __snake_case :Tuple = action_list.index(action_st) __snake_case :Optional[int] = st.sidebar.selectbox( '''''', ['''Show full text of passages''', '''Show passage section titles'''], index=0, ) __snake_case :Dict = show_type == '''Show full text of passages''' else: __snake_case :Dict = 3 __snake_case :str = True __snake_case :Optional[Any] = st.sidebar.checkbox('''Retrieval options''') if retrieval_options: __snake_case :List[str] = ''' ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. ''' st.sidebar.markdown(retriever_info) __snake_case :Dict = st.sidebar.selectbox('''Which Wikipedia format should the model use?''', ['''wiki40b''', '''none''']) __snake_case :Optional[int] = st.sidebar.selectbox('''Which Wikipedia indexer should the model use?''', ['''dense''', '''sparse''', '''mixed''']) else: __snake_case :Optional[int] = '''wiki40b''' __snake_case :Dict = '''dense''' __snake_case :Dict = '''beam''' __snake_case :int = 2 __snake_case :str = 64 __snake_case :Tuple = 256 __snake_case :int = None __snake_case :List[Any] = None __snake_case :int = st.sidebar.checkbox('''Generation options''') if generate_options: __snake_case :Tuple = ''' ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder\'s output probabilities. ''' st.sidebar.markdown(generate_info) __snake_case :Tuple = st.sidebar.selectbox('''Would you like to use beam search or sample an answer?''', ['''beam''', '''sampled''']) __snake_case :Dict = st.sidebar.slider( '''Minimum generation length''', min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __snake_case :Dict = st.sidebar.slider( '''Maximum generation length''', min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __snake_case :List[str] = st.sidebar.slider('''Beam size''', min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __snake_case :Tuple = st.sidebar.slider( '''Nucleus sampling p''', min_value=0.1, max_value=1.0, value=0.9_5, step=0.0_1, format=None, key=None ) __snake_case :Any = st.sidebar.slider( '''Temperature''', min_value=0.1, max_value=1.0, value=0.7, step=0.0_1, format=None, key=None ) __snake_case :Any = None # start main text __snake_case :Dict = [ '''<MY QUESTION>''', '''How do people make chocolate?''', '''Why do we get a fever when we are sick?''', '''How can different animals perceive different colors?''', '''What is natural language processing?''', '''What\'s the best way to treat a sunburn?''', '''What exactly are vitamins ?''', '''How does nuclear energy provide electricity?''', '''What\'s the difference between viruses and bacteria?''', '''Why are flutes classified as woodwinds when most of them are made out of metal ?''', '''Why do people like drinking coffee even though it tastes so bad?''', '''What happens when wine ages? How does it make the wine taste better?''', '''If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?''', '''How can we set a date to the beginning or end of an artistic period? Doesn\'t the change happen gradually?''', '''How does New Zealand have so many large bird predators?''', ] __snake_case :int = st.selectbox( '''What would you like to ask? ---- select <MY QUESTION> to enter a new query''', questions_list, index=1, ) if question_s == "<MY QUESTION>": __snake_case :Optional[int] = st.text_input('''Enter your question here:''', '''''') else: __snake_case :Optional[int] = question_s if st.button('''Show me!'''): if action in [0, 1, 3]: if index_type == "mixed": __snake_case ,__snake_case :int = make_support(question, source=wiki_source, method='''dense''', n_results=10) __snake_case ,__snake_case :Optional[int] = make_support(question, source=wiki_source, method='''sparse''', n_results=10) __snake_case :Optional[Any] = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __snake_case :Union[str, Any] = support_list[:10] __snake_case :Optional[int] = '''<P> ''' + ''' <P> '''.join([res[-1] for res in support_list]) else: __snake_case ,__snake_case :Tuple = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __snake_case ,__snake_case :Optional[int] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == '''sampled'''), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown('''### The model generated answer is:''') st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown('''--- \n ### The model is drawing information from the following Wikipedia passages:''') for i, res in enumerate(support_list): __snake_case :Dict = '''https://en.wikipedia.org/wiki/{}'''.format(res[0].replace(''' ''', '''_''')) __snake_case :int = res[1].strip() if sec_titles == "": __snake_case :List[Any] = '''[{}]({})'''.format(res[0], wiki_url) else: __snake_case :Optional[int] = sec_titles.split(''' & ''') __snake_case :str = ''' & '''.join( ['''[{}]({}#{})'''.format(sec.strip(), wiki_url, sec.strip().replace(''' ''', '''_''')) for sec in sec_list] ) st.markdown( '''{0:02d} - **Article**: {1:<18} <br> _Section_: {2}'''.format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( '''> <span style="font-family:arial; font-size:10pt;">''' + res[-1] + '''</span>''', unsafe_allow_html=True ) if action in [2, 3]: __snake_case :str = find_nearest_training(question) __snake_case :str = nn_train_list[0] st.markdown( '''--- \n ### The most similar question in the ELI5 training set was: \n\n {}'''.format(train_exple['''title''']) ) __snake_case :Optional[Any] = [ '''{}. {}'''.format(i + 1, ''' \n'''.join([line.strip() for line in ans.split('''\n''') if line.strip() != ''''''])) for i, (ans, sc) in enumerate(zip(train_exple['''answers''']['''text'''], train_exple['''answers''']['''score'''])) if i == 0 or sc > 2 ] st.markdown('''##### Its answers were: \n\n {}'''.format('''\n'''.join(answers_st))) __snake_case :Tuple = ''' --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* ''' st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
49
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class lowerCAmelCase__ : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_12 , __SCREAMING_SNAKE_CASE=16 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ): """simple docstring""" lowercase_ : int = parent lowercase_ : List[str] = 13 lowercase_ : Union[str, Any] = 7 lowercase_ : Tuple = True lowercase_ : List[Any] = True lowercase_ : List[Any] = True lowercase_ : Tuple = True lowercase_ : List[Any] = 99 lowercase_ : int = 32 lowercase_ : Optional[int] = 2 lowercase_ : Optional[int] = 4 lowercase_ : Optional[Any] = 37 lowercase_ : List[str] = '''gelu''' lowercase_ : Union[str, Any] = 0.1 lowercase_ : Union[str, Any] = 0.1 lowercase_ : Any = 5_12 lowercase_ : Union[str, Any] = 16 lowercase_ : Optional[Any] = 2 lowercase_ : Any = 0.02 lowercase_ : List[Any] = 3 lowercase_ : int = 4 lowercase_ : Optional[Any] = None def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase_ : Optional[Any] = None if self.use_input_mask: lowercase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase_ : Tuple = None if self.use_token_type_ids: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase_ : Dict = None lowercase_ : List[str] = None lowercase_ : Union[str, Any] = None if self.use_labels: lowercase_ : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase_ : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) lowercase_ : Union[str, Any] = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__SCREAMING_SNAKE_CASE , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = TFRoFormerModel(config=__SCREAMING_SNAKE_CASE ) lowercase_ : int = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowercase_ : Dict = [input_ids, input_mask] lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) lowercase_ : Any = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = True lowercase_ : Tuple = TFRoFormerForCausalLM(config=__SCREAMING_SNAKE_CASE ) lowercase_ : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ : Any = model(__SCREAMING_SNAKE_CASE )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = TFRoFormerForMaskedLM(config=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ : Dict = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[int] = self.num_labels lowercase_ : List[str] = TFRoFormerForSequenceClassification(config=__SCREAMING_SNAKE_CASE ) lowercase_ : str = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Union[str, Any] = self.num_choices lowercase_ : str = TFRoFormerForMultipleChoice(config=__SCREAMING_SNAKE_CASE ) lowercase_ : Tuple = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Dict = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Optional[int] = tf.tile(tf.expand_dims(__SCREAMING_SNAKE_CASE , 1 ) , (1, self.num_choices, 1) ) lowercase_ : Dict = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowercase_ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = self.num_labels lowercase_ : Optional[int] = TFRoFormerForTokenClassification(config=__SCREAMING_SNAKE_CASE ) lowercase_ : Any = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ : Optional[int] = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Optional[Any] = TFRoFormerForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowercase_ : Tuple = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) : Any = config_and_inputs lowercase_ : List[str] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowerCAmelCase__ ( snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase_ = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) lowerCAmelCase_ = ( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[Any] = TFRoFormerModelTester(self ) lowercase_ : Tuple = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def _snake_case ( self ): """simple docstring""" self.config_tester.run_common_tests() def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self ): """simple docstring""" lowercase_ : Any = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): @slow def _snake_case ( self ): """simple docstring""" lowercase_ : str = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) lowercase_ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowercase_ : Dict = model(__SCREAMING_SNAKE_CASE )[0] # TODO Replace vocab size lowercase_ : str = 5_00_00 lowercase_ : List[Any] = [1, 6, vocab_size] self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. lowercase_ : Optional[int] = tf.constant( [ [ [-0.12_053_341, -1.0_264_901, 0.29_221_946], [-1.5_133_783, 0.197_433, 0.15_190_607], [-5.0_135_403, -3.900_256, -0.84_038_764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = 1e-4 def _snake_case ( self ): """simple docstring""" lowercase_ : Optional[int] = tf.constant([[4, 10]] ) lowercase_ : Any = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) lowercase_ : int = emba(input_ids.shape ) lowercase_ : List[str] = tf.constant( [[0.0_000, 0.0_000, 0.0_000, 1.0_000, 1.0_000, 1.0_000], [0.8_415, 0.0_464, 0.0_022, 0.5_403, 0.9_989, 1.0_000]] ) tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=self.tolerance ) def _snake_case ( self ): """simple docstring""" lowercase_ : Tuple = tf.constant( [ [0.0_000, 0.0_000, 0.0_000, 0.0_000, 0.0_000], [0.8_415, 0.8_219, 0.8_020, 0.7_819, 0.7_617], [0.9_093, 0.9_364, 0.9_581, 0.9_749, 0.9_870], ] ) lowercase_ : Optional[int] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_12 , embedding_dim=5_12 ) emba([2, 16, 5_12] ) lowercase_ : Union[str, Any] = emba.weight[:3, :5] tf.debugging.assert_near(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=self.tolerance ) @require_tf class lowerCAmelCase__ ( unittest.TestCase ): lowerCAmelCase_ = 1e-4 def _snake_case ( self ): """simple docstring""" lowercase_ : List[Any] = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 lowercase_ : int = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 1_00 lowercase_ : Optional[Any] = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) lowercase_ : List[Any] = embed_positions([2, 16, 7_68] )[None, None, :, :] lowercase_ , lowercase_ : Optional[Any] = TFRoFormerSelfAttention.apply_rotary_position_embeddings( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) lowercase_ : int = tf.constant( [ [0.0_000, 0.0_100, 0.0_200, 0.0_300, 0.0_400, 0.0_500, 0.0_600, 0.0_700], [-0.2_012, 0.8_897, 0.0_263, 0.9_401, 0.2_074, 0.9_463, 0.3_481, 0.9_343], [-1.7_057, 0.6_271, -1.2_145, 1.3_897, -0.6_303, 1.7_647, -0.1_173, 1.8_985], [-2.1_731, -1.6_397, -2.7_358, 0.2_854, -2.1_840, 1.7_183, -1.3_018, 2.4_871], [0.2_717, -3.6_173, -2.9_206, -2.1_988, -3.6_638, 0.3_858, -2.9_155, 2.2_980], [3.9_859, -2.1_580, -0.7_984, -4.4_904, -4.1_181, -2.0_252, -4.4_782, 1.1_253], ] ) lowercase_ : Dict = tf.constant( [ [0.0_000, -0.0_100, -0.0_200, -0.0_300, -0.0_400, -0.0_500, -0.0_600, -0.0_700], [0.2_012, -0.8_897, -0.0_263, -0.9_401, -0.2_074, -0.9_463, -0.3_481, -0.9_343], [1.7_057, -0.6_271, 1.2_145, -1.3_897, 0.6_303, -1.7_647, 0.1_173, -1.8_985], [2.1_731, 1.6_397, 2.7_358, -0.2_854, 2.1_840, -1.7_183, 1.3_018, -2.4_871], [-0.2_717, 3.6_173, 2.9_206, 2.1_988, 3.6_638, -0.3_858, 2.9_155, -2.2_980], [-3.9_859, 2.1_580, 0.7_984, 4.4_904, 4.1_181, 2.0_252, 4.4_782, -1.1_253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , __SCREAMING_SNAKE_CASE , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , __SCREAMING_SNAKE_CASE , atol=self.tolerance )
353
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowercase : Optional[Any] = logging.get_logger(__name__) _lowercase : str = "▁" _lowercase : Optional[int] = {"vocab_file": "sentencepiece.bpe.model"} _lowercase : Dict = { "vocab_file": { "facebook/xglm-564M": "https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model", } } _lowercase : Optional[Any] = { "facebook/xglm-564M": 2_0_4_8, } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE = None , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" lowercase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase_ : Optional[Any] = 7 lowercase_ : List[Any] = [F'''<madeupword{i}>''' for i in range(self.num_madeup_words )] lowercase_ : Tuple = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) lowercase_ : Dict = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase_ : List[Any] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase_ : Optional[Any] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase_ : Dict = len(self.sp_model ) lowercase_ : int = {F'''<madeupword{i}>''': sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" lowercase_ : List[Any] = self.__dict__.copy() lowercase_ : Optional[Any] = None lowercase_ : List[Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowercase_ : Optional[Any] = {} lowercase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase_ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) if token_ids_a is None: return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) return [1] + ([0] * len(__SCREAMING_SNAKE_CASE )) + [1, 1] + ([0] * len(__SCREAMING_SNAKE_CASE )) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def _snake_case ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def _snake_case ( self ): """simple docstring""" lowercase_ : Any = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase_ : str = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Dict = ''''''.join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , ''' ''' ).strip() return out_string def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ : str = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , '''wb''' ) as fi: lowercase_ : Optional[int] = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,)
264
0
import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html SCREAMING_SNAKE_CASE_ = '''platform''' import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class UpperCamelCase__ : '''simple docstring''' __snake_case : str = PegasusConfig __snake_case : List[Any] = {} __snake_case : Optional[Any] = """gelu""" def __init__( self : str ,lowerCamelCase__ : List[Any] ,lowerCamelCase__ : Dict=13 ,lowerCamelCase__ : Union[str, Any]=7 ,lowerCamelCase__ : Tuple=True ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : str=99 ,lowerCamelCase__ : Tuple=32 ,lowerCamelCase__ : List[Any]=5 ,lowerCamelCase__ : List[Any]=4 ,lowerCamelCase__ : List[str]=37 ,lowerCamelCase__ : Dict=0.1 ,lowerCamelCase__ : List[Any]=0.1 ,lowerCamelCase__ : List[Any]=20 ,lowerCamelCase__ : str=2 ,lowerCamelCase__ : Any=1 ,lowerCamelCase__ : int=0 ,) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = seq_length SCREAMING_SNAKE_CASE = is_training SCREAMING_SNAKE_CASE = use_labels SCREAMING_SNAKE_CASE = vocab_size SCREAMING_SNAKE_CASE = hidden_size SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = intermediate_size SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = attention_probs_dropout_prob SCREAMING_SNAKE_CASE = max_position_embeddings SCREAMING_SNAKE_CASE = eos_token_id SCREAMING_SNAKE_CASE = pad_token_id SCREAMING_SNAKE_CASE = bos_token_id def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length - 1] ,self.vocab_size ).clip(3 ,self.vocab_size ) SCREAMING_SNAKE_CASE = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) ,1 ) SCREAMING_SNAKE_CASE = np.concatenate([input_ids, eos_tensor] ,axis=1 ) SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) SCREAMING_SNAKE_CASE = self.config_cls( vocab_size=self.vocab_size ,d_model=self.hidden_size ,encoder_layers=self.num_hidden_layers ,decoder_layers=self.num_hidden_layers ,encoder_attention_heads=self.num_attention_heads ,decoder_attention_heads=self.num_attention_heads ,encoder_ffn_dim=self.intermediate_size ,decoder_ffn_dim=self.intermediate_size ,dropout=self.hidden_dropout_prob ,attention_dropout=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,eos_token_ids=[2] ,bos_token_id=self.bos_token_id ,pad_token_id=self.pad_token_id ,decoder_start_token_id=self.pad_token_id ,**self.config_updates ,) SCREAMING_SNAKE_CASE = prepare_pegasus_inputs_dict(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Any ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) ,dtype="""i4""" ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] ,__SCREAMING_SNAKE_CASE ,decoder_attention_mask=__SCREAMING_SNAKE_CASE ,past_key_values=__SCREAMING_SNAKE_CASE ,decoder_position_ids=__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] ,__SCREAMING_SNAKE_CASE ,decoder_attention_mask=__SCREAMING_SNAKE_CASE ,past_key_values=outputs_cache.past_key_values ,decoder_position_ids=__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F"""Max diff is {diff}""" ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ,lowerCamelCase__ : Union[str, Any] ,lowerCamelCase__ : Tuple ,lowerCamelCase__ : List[str] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = 20 SCREAMING_SNAKE_CASE = model_class_name(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] ) SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) SCREAMING_SNAKE_CASE = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] ,axis=-1 ,) SCREAMING_SNAKE_CASE = model.init_cache(decoder_input_ids.shape[0] ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] ,(decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) ,) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, :-1] ,__SCREAMING_SNAKE_CASE ,decoder_attention_mask=__SCREAMING_SNAKE_CASE ,past_key_values=__SCREAMING_SNAKE_CASE ,decoder_position_ids=__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] ,dtype="""i4""" ) SCREAMING_SNAKE_CASE = model.decode( decoder_input_ids[:, -1:] ,__SCREAMING_SNAKE_CASE ,past_key_values=outputs_cache.past_key_values ,decoder_attention_mask=__SCREAMING_SNAKE_CASE ,decoder_position_ids=__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE = model.decode(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,decoder_attention_mask=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 ,msg=F"""Max diff is {diff}""" ) def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , ) -> Optional[int]: '''simple docstring''' if attention_mask is None: SCREAMING_SNAKE_CASE = np.not_equal(snake_case__ , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: SCREAMING_SNAKE_CASE = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class UpperCamelCase__ ( UpperCamelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Optional[int] = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __snake_case : int = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __snake_case : int = True __snake_case : str = False __snake_case : Dict = False __snake_case : Tuple = False def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxPegasusModelTester(self ) SCREAMING_SNAKE_CASE = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = self._prepare_for_class(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) @jax.jit def encode_jitted(lowerCamelCase__ : Dict ,lowerCamelCase__ : List[str]=None ,**lowerCamelCase__ : Dict ): return model.encode(input_ids=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = encode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape ,output.shape ) def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE, SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): SCREAMING_SNAKE_CASE = model_class(__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = model.encode(inputs_dict["""input_ids"""] ,inputs_dict["""attention_mask"""] ) SCREAMING_SNAKE_CASE = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCamelCase__ : int ,lowerCamelCase__ : Optional[Any] ,lowerCamelCase__ : Any ): return model.decode( decoder_input_ids=__SCREAMING_SNAKE_CASE ,decoder_attention_mask=__SCREAMING_SNAKE_CASE ,encoder_outputs=__SCREAMING_SNAKE_CASE ,) with self.subTest("""JIT Enabled""" ): SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): SCREAMING_SNAKE_CASE = decode_jitted(**__SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(__SCREAMING_SNAKE_CASE ) ,len(__SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape ,output.shape ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> int: '''simple docstring''' for model_class_name in self.all_model_classes: SCREAMING_SNAKE_CASE = model_class_name.from_pretrained("""google/pegasus-large""" ,from_pt=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = np.ones((1, 1) ) SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) @slow def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = FlaxPegasusForConditionalGeneration.from_pretrained("""google/pegasus-xsum""" ) SCREAMING_SNAKE_CASE = PegasusTokenizer.from_pretrained("""google/pegasus-xsum""" ) SCREAMING_SNAKE_CASE = [ """ PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.""", """ The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning \'Oh I think you\'re nominated\'\", said Dappy.\"And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around.\"At the end of the day we\'re grateful to be where we are in our careers.\"If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" """, ] SCREAMING_SNAKE_CASE = [ """California\'s largest electricity provider has turned off power to hundreds of thousands of customers.""", """Pop group N-Dubz have revealed they were surprised to get four nominations for this year\'s Mobo Awards.""", ] SCREAMING_SNAKE_CASE = tokenizer(__SCREAMING_SNAKE_CASE ,return_tensors="""np""" ,truncation=__SCREAMING_SNAKE_CASE ,max_length=512 ,padding=__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE = model.generate(**__SCREAMING_SNAKE_CASE ,num_beams=2 ).sequences SCREAMING_SNAKE_CASE = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ,skip_special_tokens=__SCREAMING_SNAKE_CASE ) assert tgt_text == decoded
296
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ ( UpperCamelCase_ ): """simple docstring""" UpperCAmelCase_ : str = (DDPMScheduler,) def SCREAMING_SNAKE_CASE_ ( self , **__SCREAMING_SNAKE_CASE ) ->Optional[Any]: lowerCAmelCase = { '''num_train_timesteps''': 1000, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', '''variance_type''': '''fixed_small''', '''clip_sample''': True, } config.update(**__SCREAMING_SNAKE_CASE ) return config def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[Any]: for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1, 0.0_1, 0.1] , [0.0_0_2, 0.0_2, 0.2, 2] ): self.check_over_configs(beta_start=__SCREAMING_SNAKE_CASE , beta_end=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Dict: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: self.check_over_configs(thresholding=__SCREAMING_SNAKE_CASE ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=__SCREAMING_SNAKE_CASE , prediction_type=__SCREAMING_SNAKE_CASE , sample_max_value=__SCREAMING_SNAKE_CASE , ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[int]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: for t in [0, 500, 999]: self.check_over_forward(time_step=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Tuple: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_0_9_7_9 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.0_2 ) ) < 1e-5 def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_5_8.9_6_0_6 ) < 1e-2 assert abs(result_mean.item() - 0.3_3_7_2 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = self.dummy_model() lowerCAmelCase = self.dummy_sample_deter lowerCAmelCase = torch.manual_seed(0 ) for t in reversed(range(__SCREAMING_SNAKE_CASE ) ): # 1. predict noise residual lowerCAmelCase = model(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # 2. predict previous mean of sample x_t-1 lowerCAmelCase = scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance lowerCAmelCase = pred_prev_sample lowerCAmelCase = torch.sum(torch.abs(__SCREAMING_SNAKE_CASE ) ) lowerCAmelCase = torch.mean(torch.abs(__SCREAMING_SNAKE_CASE ) ) assert abs(result_sum.item() - 2_0_2.0_2_9_6 ) < 1e-2 assert abs(result_mean.item() - 0.2_6_3_1 ) < 1e-3 def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [100, 87, 50, 1, 0] scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) lowerCAmelCase = scheduler.timesteps for i, timestep in enumerate(__SCREAMING_SNAKE_CASE ): if i == len(__SCREAMING_SNAKE_CASE ) - 1: lowerCAmelCase = -1 else: lowerCAmelCase = timesteps[i + 1] lowerCAmelCase = scheduler.previous_timestep(__SCREAMING_SNAKE_CASE ) lowerCAmelCase = prev_t.item() self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Optional[Any]: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [100, 87, 50, 51, 0] with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''`custom_timesteps` must be in descending order.''' ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->str: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [100, 87, 50, 1, 0] lowerCAmelCase = len(__SCREAMING_SNAKE_CASE ) with self.assertRaises(__SCREAMING_SNAKE_CASE , msg='''Can only pass one of `num_inference_steps` or `custom_timesteps`.''' ): scheduler.set_timesteps(num_inference_steps=__SCREAMING_SNAKE_CASE , timesteps=__SCREAMING_SNAKE_CASE ) def SCREAMING_SNAKE_CASE_ ( self ) ->Any: lowerCAmelCase = self.scheduler_classes[0] lowerCAmelCase = self.get_scheduler_config() lowerCAmelCase = scheduler_class(**__SCREAMING_SNAKE_CASE ) lowerCAmelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( __SCREAMING_SNAKE_CASE , msg='''`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}''' , ): scheduler.set_timesteps(timesteps=__SCREAMING_SNAKE_CASE )
338
0
"""simple docstring""" import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) UpperCAmelCase : Optional[int] = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None): """simple docstring""" lowercase_ = self.layer[current_layer](lowerCAmelCase_ , lowerCAmelCase_ , head_mask[current_layer]) lowercase_ = layer_outputs[0] return hidden_states @add_start_docstrings( "The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top." , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Any , lowerCAmelCase_ : Dict): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = BertEncoderWithPabee(lowerCAmelCase_) self.init_weights() lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Dict , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = threshold def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Optional[Any]): """simple docstring""" lowercase_ = patience def _UpperCAmelCase ( self : Dict): """simple docstring""" lowercase_ = 0 lowercase_ = 0 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = self.inference_layers_num / self.inference_instances_num lowercase_ = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(lowerCAmelCase_) @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : int=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=False , ): """simple docstring""" if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""") elif input_ids is not None: lowercase_ = input_ids.size() elif inputs_embeds is not None: lowercase_ = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""") lowercase_ = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) if token_type_ids is None: lowercase_ = torch.zeros(lowerCAmelCase_ , dtype=torch.long , device=lowerCAmelCase_) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. lowercase_ = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: lowercase_ , lowercase_ , lowercase_ = encoder_hidden_states.size() lowercase_ = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: lowercase_ = torch.ones(lowerCAmelCase_ , device=lowerCAmelCase_) lowercase_ = self.invert_attention_mask(lowerCAmelCase_) else: lowercase_ = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] lowercase_ = self.get_head_mask(lowerCAmelCase_ , self.config.num_hidden_layers) lowercase_ = self.embeddings( input_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_) lowercase_ = embedding_output if self.training: lowercase_ = [] for i in range(self.config.num_hidden_layers): lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](output_dropout(lowerCAmelCase_)) res.append(lowerCAmelCase_) elif self.patience == 0: # Use all layers for inference lowercase_ = self.encoder( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , encoder_hidden_states=lowerCAmelCase_ , encoder_attention_mask=lowerCAmelCase_ , ) lowercase_ = self.pooler(encoder_outputs[0]) lowercase_ = [output_layers[self.config.num_hidden_layers - 1](lowerCAmelCase_)] else: lowercase_ = 0 lowercase_ = None lowercase_ = 0 for i in range(self.config.num_hidden_layers): calculated_layer_num += 1 lowercase_ = self.encoder.adaptive_forward( lowerCAmelCase_ , current_layer=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , head_mask=lowerCAmelCase_) lowercase_ = self.pooler(lowerCAmelCase_) lowercase_ = output_layers[i](lowerCAmelCase_) if regression: lowercase_ = logits.detach() if patient_result is not None: lowercase_ = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels) < self.regression_threshold: patient_counter += 1 else: lowercase_ = 0 else: lowercase_ = logits.detach().argmax(dim=1) if patient_result is not None: lowercase_ = patient_result.detach().argmax(dim=1) if (patient_result is not None) and torch.all(labels.eq(lowerCAmelCase_)): patient_counter += 1 else: lowercase_ = 0 lowercase_ = logits if patient_counter == self.patience: break lowercase_ = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( "Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of\n the pooled output) e.g. for GLUE tasks. " , __UpperCAmelCase , ) class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : Optional[Any] , lowerCAmelCase_ : str): """simple docstring""" super().__init__(lowerCAmelCase_) lowercase_ = config.num_labels lowercase_ = BertModelWithPabee(lowerCAmelCase_) lowercase_ = nn.Dropout(config.hidden_dropout_prob) lowercase_ = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels) for _ in range(config.num_hidden_layers)]) self.init_weights() @add_start_docstrings_to_model_forward(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=None , ): """simple docstring""" lowercase_ = self.bert( input_ids=lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , position_ids=lowerCAmelCase_ , head_mask=lowerCAmelCase_ , inputs_embeds=lowerCAmelCase_ , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) lowercase_ = (logits[-1],) if labels is not None: lowercase_ = None lowercase_ = 0 for ix, logits_item in enumerate(lowerCAmelCase_): if self.num_labels == 1: # We are doing regression lowercase_ = MSELoss() lowercase_ = loss_fct(logits_item.view(-1) , labels.view(-1)) else: lowercase_ = CrossEntropyLoss() lowercase_ = loss_fct(logits_item.view(-1 , self.num_labels) , labels.view(-1)) if total_loss is None: lowercase_ = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 lowercase_ = (total_loss / total_weights,) + outputs return outputs
362
"""simple docstring""" from __future__ import annotations from typing import Any class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , lowerCAmelCase_ : int = 6): """simple docstring""" lowercase_ = None lowercase_ = None self.create_linked_list(lowerCAmelCase_) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = Node() lowercase_ = current_node lowercase_ = current_node lowercase_ = current_node for _ in range(1 , lowerCAmelCase_): lowercase_ = Node() lowercase_ = current_node lowercase_ = previous_node lowercase_ = current_node lowercase_ = self.front lowercase_ = previous_node def _UpperCAmelCase ( self : Union[str, Any]): """simple docstring""" return ( self.front == self.rear and self.front is not None and self.front.data is None ) def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" self.check_can_perform_operation() return self.front.data if self.front else None def _UpperCAmelCase ( self : int , lowerCAmelCase_ : Any): """simple docstring""" if self.rear is None: return self.check_is_full() if not self.is_empty(): lowercase_ = self.rear.next if self.rear: lowercase_ = data def _UpperCAmelCase ( self : str): """simple docstring""" self.check_can_perform_operation() if self.rear is None or self.front is None: return None if self.front == self.rear: lowercase_ = self.front.data lowercase_ = None return data lowercase_ = self.front lowercase_ = old_front.next lowercase_ = old_front.data lowercase_ = None return data def _UpperCAmelCase ( self : Any): """simple docstring""" if self.is_empty(): raise Exception("""Empty Queue""") def _UpperCAmelCase ( self : Tuple): """simple docstring""" if self.rear and self.rear.next == self.front: raise Exception("""Full Queue""") class SCREAMING_SNAKE_CASE__ : def __init__( self : List[str]): """simple docstring""" lowercase_ = None lowercase_ = None lowercase_ = None if __name__ == "__main__": import doctest doctest.testmod()
313
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class A : # setable values lowerCamelCase : Optional[int] = None lowerCamelCase : Optional[jnp.ndarray] = None lowerCamelCase : Optional[jnp.ndarray] = None # sigma(t_i) @classmethod def A__ ( cls ) -> List[str]: '''simple docstring''' return cls() @dataclass class A ( __UpperCAmelCase ): lowerCamelCase : jnp.ndarray lowerCamelCase : jnp.ndarray lowerCamelCase : KarrasVeSchedulerState class A ( __UpperCAmelCase , __UpperCAmelCase ): @property def A__ ( self ) -> Optional[int]: '''simple docstring''' return True @register_to_config def __init__( self , lowerCamelCase__ = 0.02 , lowerCamelCase__ = 100 , lowerCamelCase__ = 1.0_07 , lowerCamelCase__ = 80 , lowerCamelCase__ = 0.05 , lowerCamelCase__ = 50 , ) -> Optional[Any]: '''simple docstring''' pass def A__ ( self ) -> str: '''simple docstring''' return KarrasVeSchedulerState.create() def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = () ) -> KarrasVeSchedulerState: '''simple docstring''' lowercase__ = jnp.arange(0 , lowerCamelCase__ )[::-1].copy() lowercase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=lowerCamelCase__ , schedule=jnp.array(lowerCamelCase__ , dtype=jnp.floataa ) , timesteps=lowerCamelCase__ , ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> Tuple[jnp.ndarray, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: lowercase__ = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: lowercase__ = 0 # sample eps ~ N(0, S_noise^2 * I) lowercase__ = random.split(lowerCamelCase__ , num=1 ) lowercase__ = self.config.s_noise * random.normal(key=lowerCamelCase__ , shape=sample.shape ) lowercase__ = sigma + gamma * sigma lowercase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' lowercase__ = sample_hat + sigma_hat * model_output lowercase__ = (sample_hat - pred_original_sample) / sigma_hat lowercase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , state=lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = True , ) -> Union[FlaxKarrasVeOutput, Tuple]: '''simple docstring''' lowercase__ = sample_prev + sigma_prev * model_output lowercase__ = (sample_prev - pred_original_sample) / sigma_prev lowercase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=lowerCamelCase__ , derivative=lowerCamelCase__ , state=lowerCamelCase__ ) def A__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple: '''simple docstring''' raise NotImplementedError()
164
'''simple docstring''' def _A ( ): return [list(range(1000 - i , -1000 - i , -1 ) ) for i in range(1000 )] __A = generate_large_matrix() __A = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _A ( lowercase__ ): assert all(row == sorted(lowercase__ , reverse=lowercase__ ) for row in grid ) assert all(list(lowercase__ ) == sorted(lowercase__ , reverse=lowercase__ ) for col in zip(*lowercase__ ) ) def _A ( lowercase__ ): lowercase__ = 0 lowercase__ = len(lowercase__ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowercase__ = (left + right) // 2 lowercase__ = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowercase__ = mid + 1 else: lowercase__ = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowercase__ ) def _A ( lowercase__ ): lowercase__ = 0 lowercase__ = len(grid[0] ) for i in range(len(lowercase__ ) ): lowercase__ = find_negative_index(grid[i][:bound] ) total += bound return (len(lowercase__ ) * len(grid[0] )) - total def _A ( lowercase__ ): return len([number for row in grid for number in row if number < 0] ) def _A ( lowercase__ ): lowercase__ = 0 for row in grid: for i, number in enumerate(lowercase__ ): if number < 0: total += len(lowercase__ ) - i break return total def _A ( ): from timeit import timeit print("""Running benchmarks""" ) lowercase__ = ( """from __main__ import count_negatives_binary_search, """ """count_negatives_brute_force, count_negatives_brute_force_with_break, grid""" ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowercase__ = timeit(f'''{func}(grid=grid)''' , setup=lowercase__ , number=500 ) print(f'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
164
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase = { """configuration_canine""": ["""CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CanineConfig"""], """tokenization_canine""": ["""CanineTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase = [ """CANINE_PRETRAINED_MODEL_ARCHIVE_LIST""", """CanineForMultipleChoice""", """CanineForQuestionAnswering""", """CanineForSequenceClassification""", """CanineForTokenClassification""", """CanineLayer""", """CanineModel""", """CaninePreTrainedModel""", """load_tf_weights_in_canine""", ] if TYPE_CHECKING: from .configuration_canine import CANINE_PRETRAINED_CONFIG_ARCHIVE_MAP, CanineConfig from .tokenization_canine import CanineTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_canine import ( CANINE_PRETRAINED_MODEL_ARCHIVE_LIST, CanineForMultipleChoice, CanineForQuestionAnswering, CanineForSequenceClassification, CanineForTokenClassification, CanineLayer, CanineModel, CaninePreTrainedModel, load_tf_weights_in_canine, ) else: import sys _lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
'''simple docstring''' from __future__ import annotations _lowerCamelCase = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def a__ ( _SCREAMING_SNAKE_CASE : list[list[int]] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : list[list[int]] , ) -> tuple[list[list[int]], list[list[int]]]: """simple docstring""" UpperCAmelCase_ : int = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the reference grid UpperCAmelCase_ : Tuple = 1 UpperCAmelCase_ : str = [ [0 for col in range(len(grid[0] ) )] for row in range(len(_SCREAMING_SNAKE_CASE ) ) ] # the action grid UpperCAmelCase_ : Tuple = init[0] UpperCAmelCase_ : List[Any] = init[1] UpperCAmelCase_ : Optional[Any] = 0 UpperCAmelCase_ : Optional[Any] = g + heuristic[x][y] # cost from starting cell to destination cell UpperCAmelCase_ : List[str] = [[f, g, x, y]] UpperCAmelCase_ : Tuple = False # flag that is set when search is complete UpperCAmelCase_ : Union[str, Any] = False # flag set if we can't find expand while not found and not resign: if len(_SCREAMING_SNAKE_CASE ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() UpperCAmelCase_ : Dict = cell.pop() UpperCAmelCase_ : Tuple = next_cell[2] UpperCAmelCase_ : str = next_cell[3] UpperCAmelCase_ : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: UpperCAmelCase_ : Optional[Any] = True else: for i in range(len(_SCREAMING_SNAKE_CASE ) ): # to try out different valid actions UpperCAmelCase_ : Union[str, Any] = x + DIRECTIONS[i][0] UpperCAmelCase_ : Optional[Any] = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(_SCREAMING_SNAKE_CASE ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: UpperCAmelCase_ : Any = g + cost UpperCAmelCase_ : Optional[Any] = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : List[str] = i UpperCAmelCase_ : Union[str, Any] = [] UpperCAmelCase_ : List[Any] = goal[0] UpperCAmelCase_ : str = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: UpperCAmelCase_ : Optional[int] = x - DIRECTIONS[action[x][y]][0] UpperCAmelCase_ : Optional[int] = y - DIRECTIONS[action[x][y]][1] UpperCAmelCase_ : Optional[Any] = xa UpperCAmelCase_ : List[str] = ya invpath.append([x, y] ) UpperCAmelCase_ : Tuple = [] for i in range(len(_SCREAMING_SNAKE_CASE ) ): path.append(invpath[len(_SCREAMING_SNAKE_CASE ) - 1 - i] ) return path, action if __name__ == "__main__": _lowerCamelCase = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] _lowerCamelCase = [0, 0] # all coordinates are given in format [y,x] _lowerCamelCase = [len(grid) - 1, len(grid[0]) - 1] _lowerCamelCase = 1 # the cost map which pushes the path closer to the goal _lowerCamelCase = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): _lowerCamelCase = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map _lowerCamelCase = 99 _lowerCamelCase , _lowerCamelCase = search(grid, init, goal, cost, heuristic) print("""ACTION MAP""") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
67
0