code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" def lowercase ( _snake_case : int , _snake_case : int ) ->str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) __snake_case : Tuple = str(bin(_snake_case ) )[2:] # remove the leading "0b" __snake_case : List[Any] = str(bin(_snake_case ) )[2:] __snake_case : Any = max(len(_snake_case ) , len(_snake_case ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_snake_case ) , b_binary.zfill(_snake_case ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
102
from __future__ import annotations import numpy as np def a__ ( snake_case ): """simple docstring""" return np.maximum(0 , snake_case ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
0
"""simple docstring""" import ast import os import re import shutil import tempfile import unittest from unittest import mock import torch from accelerate.test_utils.examples import compare_against_test from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow from accelerate.utils import write_basic_config # DataLoaders built from `test_samples/MRPC` for quick testing # Should mock `{script_name}.get_dataloaders` via: # @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders) lowercase__ = [ 'cross_validation.py', 'gradient_accumulation.py', 'local_sgd.py', 'multi_process_metrics.py', 'memory.py', 'automatic_gradient_accumulation.py', 'fsdp_with_peak_mem_tracking.py', 'deepspeed_with_config_support.py', 'megatron_lm_gpt_pretraining.py', ] class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self , lowercase , lowercase , lowercase = None , lowercase = None) -> Union[str, Any]: '''simple docstring''' a__: List[Any] = None a__: Optional[Any] = os.path.abspath(os.path.join('examples' , 'by_feature')) a__: Optional[Any] = os.path.abspath('examples') for item in os.listdir(lowercase): if item not in EXCLUDE_EXAMPLES: a__: Dict = os.path.join(lowercase , lowercase) if os.path.isfile(lowercase) and ".py" in item_path: with self.subTest( tested_script=lowercase , feature_script=lowercase , tested_section='main()' if parser_only else 'training_function()' , ): a__: List[Any] = compare_against_test( os.path.join(lowercase , lowercase) , lowercase , lowercase , lowercase) a__: Dict = '\n'.join(lowercase) if special_strings is not None: for string in special_strings: a__: Union[str, Any] = diff.replace(lowercase , '') self.assertEqual(lowercase , '') def lowerCamelCase_ ( self) -> int: '''simple docstring''' self.one_complete_example('complete_nlp_example.py' , lowercase) self.one_complete_example('complete_nlp_example.py' , lowercase) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Dict = os.path.abspath(os.path.join('examples' , 'cv_example.py')) a__: Tuple = [ ' ' * 16 + '{\n\n', ' ' * 20 + '"accuracy": eval_metric["accuracy"],\n\n', ' ' * 20 + '"f1": eval_metric["f1"],\n\n', ' ' * 20 + '"train_loss": total_loss.item() / len(train_dataloader),\n\n', ' ' * 20 + '"epoch": epoch,\n\n', ' ' * 16 + '},\n\n', ' ' * 16 + 'step=epoch,\n', ' ' * 12, ' ' * 8 + 'for step, batch in enumerate(active_dataloader):\n', ] self.one_complete_example('complete_cv_example.py' , lowercase , lowercase , lowercase) self.one_complete_example('complete_cv_example.py' , lowercase , lowercase , lowercase) @mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} ) class __snake_case ( __lowerCAmelCase ): a__ = False @classmethod def lowerCamelCase_ ( cls) -> List[str]: '''simple docstring''' super().setUpClass() a__: Dict = tempfile.mkdtemp() a__: Optional[int] = os.path.join(cls._tmpdir , 'default_config.yml') write_basic_config(save_location=cls.configPath) a__: List[str] = ['accelerate', 'launch', '--config_file', cls.configPath] @classmethod def lowerCamelCase_ ( cls) -> List[str]: '''simple docstring''' super().tearDownClass() shutil.rmtree(cls._tmpdir) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Optional[Any] = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps epoch\n --output_dir {self.tmpdir}\n '.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'epoch_0'))) def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Any = f'\n examples/by_feature/checkpointing.py\n --checkpointing_steps 1\n --output_dir {self.tmpdir}\n '.split() a__: Tuple = run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(self.tmpdir , 'step_2'))) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: Optional[Any] = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "epoch_0")}\n '.split() a__: Optional[int] = run_command(self._launch_args + testargs , return_stdout=lowercase) self.assertNotIn('epoch 0:' , lowercase) self.assertIn('epoch 1:' , lowercase) def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: int = f'\n examples/by_feature/checkpointing.py\n --resume_from_checkpoint {os.path.join(self.tmpdir , "step_2")}\n '.split() a__: List[str] = run_command(self._launch_args + testargs , return_stdout=lowercase) if torch.cuda.is_available(): a__: Union[str, Any] = torch.cuda.device_count() else: a__: Optional[int] = 1 if num_processes > 1: self.assertNotIn('epoch 0:' , lowercase) self.assertIn('epoch 1:' , lowercase) else: self.assertIn('epoch 0:' , lowercase) self.assertIn('epoch 1:' , lowercase) @slow def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' a__: Dict = '\n examples/by_feature/cross_validation.py\n --num_folds 2\n '.split() with mock.patch.dict(os.environ , {'TESTING_MOCKED_DATALOADERS': '0'}): a__: Union[str, Any] = run_command(self._launch_args + testargs , return_stdout=lowercase) a__: Union[str, Any] = re.findall('({.+})' , lowercase) a__: Dict = [r for r in results if 'accuracy' in r][-1] a__: Optional[Any] = ast.literal_eval(lowercase) self.assertGreaterEqual(results['accuracy'] , 0.75) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: str = ['examples/by_feature/multi_process_metrics.py'] run_command(self._launch_args + testargs) @require_trackers @mock.patch.dict(os.environ , {'WANDB_MODE': 'offline'}) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: a__: List[str] = f'\n examples/by_feature/tracking.py\n --with_tracking\n --project_dir {tmpdir}\n '.split() run_command(self._launch_args + testargs) self.assertTrue(os.path.exists(os.path.join(lowercase , 'tracking'))) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: int = ['examples/by_feature/gradient_accumulation.py'] run_command(self._launch_args + testargs) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: Union[str, Any] = ['examples/by_feature/local_sgd.py'] run_command(self._launch_args + testargs)
203
"""simple docstring""" import gc import inspect import unittest import torch from parameterized import parameterized from diffusers import PriorTransformer from diffusers.utils import floats_tensor, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin enable_full_determinism() class __snake_case ( __lowerCAmelCase , unittest.TestCase ): a__ = PriorTransformer a__ = """hidden_states""" @property def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: Union[str, Any] = 4 a__: Any = 8 a__: Optional[Any] = 7 a__: Tuple = floats_tensor((batch_size, embedding_dim)).to(lowercase) a__: Optional[int] = floats_tensor((batch_size, embedding_dim)).to(lowercase) a__: List[str] = floats_tensor((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase_ ( self , lowercase=0) -> str: '''simple docstring''' torch.manual_seed(lowercase) a__: Optional[Any] = 4 a__: Optional[Any] = 8 a__: Union[str, Any] = 7 a__: Optional[Any] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: List[str] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: Tuple = torch.randn((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } @property def lowerCamelCase_ ( self) -> str: '''simple docstring''' return (4, 8) @property def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return (4, 8) def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: int = { 'num_attention_heads': 2, 'attention_head_dim': 4, 'num_layers': 2, 'embedding_dim': 8, 'num_embeddings': 7, 'additional_embeddings': 4, } a__: Union[str, Any] = self.dummy_input return init_dict, inputs_dict def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__ , a__: Union[str, Any] = PriorTransformer.from_pretrained( 'hf-internal-testing/prior-dummy' , output_loading_info=lowercase) self.assertIsNotNone(lowercase) self.assertEqual(len(loading_info['missing_keys']) , 0) model.to(lowercase) a__: Any = model(**self.dummy_input)[0] assert hidden_states is not None, "Make sure output is not None" def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__ , a__: Tuple = self.prepare_init_args_and_inputs_for_common() a__: Any = self.model_class(**lowercase) a__: str = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: Tuple = [*signature.parameters.keys()] a__: List[Any] = ['hidden_states', 'timestep'] self.assertListEqual(arg_names[:2] , lowercase) def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: str = PriorTransformer.from_pretrained('hf-internal-testing/prior-dummy') a__: str = model.to(lowercase) if hasattr(lowercase , 'set_default_attn_processor'): model.set_default_attn_processor() a__: Dict = self.get_dummy_seed_input() with torch.no_grad(): a__: str = model(**lowercase)[0] a__: str = output[0, :5].flatten().cpu() print(lowercase) # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. a__: Any = torch.tensor([-1.3436, -0.2870, 0.7538, 0.4368, -0.0239]) self.assertTrue(torch_all_close(lowercase , lowercase , rtol=1e-2)) @slow class __snake_case ( unittest.TestCase ): def lowerCamelCase_ ( self , lowercase=1 , lowercase=7_68 , lowercase=77 , lowercase=0) -> int: '''simple docstring''' torch.manual_seed(lowercase) a__: Union[str, Any] = batch_size a__: List[str] = embedding_dim a__: str = num_embeddings a__: Tuple = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: List[str] = torch.randn((batch_size, embedding_dim)).to(lowercase) a__: str = torch.randn((batch_size, num_embeddings, embedding_dim)).to(lowercase) return { "hidden_states": hidden_states, "timestep": 2, "proj_embedding": proj_embedding, "encoder_hidden_states": encoder_hidden_states, } def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @parameterized.expand( [ # fmt: off [13, [-0.5861, 0.1283, -0.0931, 0.0882, 0.4476, 0.1329, -0.0498, 0.0640]], [37, [-0.4913, 0.0110, -0.0483, 0.0541, 0.4954, -0.0170, 0.0354, 0.1651]], # fmt: on ]) def lowerCamelCase_ ( self , lowercase , lowercase) -> str: '''simple docstring''' a__: Tuple = PriorTransformer.from_pretrained('kandinsky-community/kandinsky-2-1-prior' , subfolder='prior') model.to(lowercase) a__: Optional[Any] = self.get_dummy_seed_input(seed=lowercase) with torch.no_grad(): a__: Optional[int] = model(**lowercase)[0] assert list(sample.shape) == [1, 7_68] a__: List[str] = sample[0, :8].flatten().cpu() print(lowercase) a__: Union[str, Any] = torch.tensor(lowercase) assert torch_all_close(lowercase , lowercase , atol=1e-3)
203
1
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model __lowercase = """0.12""" # assumed parallelism: 8 if is_torch_available(): import torch def lowercase ( A_ , A_ , A_=None )-> List[Any]: '''simple docstring''' if rng is None: a : Union[str, Any] = random.Random() a : Tuple = 1 for dim in shape: total_dims *= dim a : Optional[Any] = [] for _ in range(A_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) a : Dict = np.array(A_ , dtype=jnp.intaa ).reshape(A_ ) return output def lowercase ( A_ , A_=None )-> List[str]: '''simple docstring''' a : Optional[int] = ids_tensor(A_ , vocab_size=2 , rng=A_ ) # make sure that at least one token is attended to for each batch a : Tuple = 1 return attn_mask @require_flax class _A : """simple docstring""" UpperCAmelCase : Dict = None UpperCAmelCase : Dict = () def __snake_case ( self : Optional[int]): a , a : int = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 a : Dict = 2 a : Tuple = inputs["input_ids"].shape[-1] // 2 a : List[Any] = inputs["input_ids"][:max_batch_size, :sequence_length] a : str = jnp.ones_like(__UpperCAmelCase) a : str = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens a : Any = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` a : int = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def __snake_case ( self : Optional[Any]): a , a , a , a : Optional[int] = self._get_input_ids_and_config() a : Union[str, Any] = False a : str = max_length a : Dict = 0 for model_class in self.all_generative_model_classes: a : Union[str, Any] = model_class(__UpperCAmelCase) a : Optional[Any] = model_class.__name__[4:] # Skip the "Flax" at the beginning a : Optional[Any] = getattr(__UpperCAmelCase , __UpperCAmelCase) a : int = pt_model_class(__UpperCAmelCase).eval() a : str = load_flax_weights_in_pytorch_model(__UpperCAmelCase , flax_model.params) a : Tuple = flax_model.generate(__UpperCAmelCase).sequences a : Tuple = pt_model.generate(torch.tensor(__UpperCAmelCase , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: a : Tuple = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def __snake_case ( self : Dict): a , a , a , a : Dict = self._get_input_ids_and_config() a : Optional[Any] = False a : Dict = max_length for model_class in self.all_generative_model_classes: a : Optional[int] = model_class(__UpperCAmelCase) a : List[str] = model.generate(__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : str = jit(model.generate) a : List[str] = jit_generate(__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : Optional[int]): a , a , a , a : Dict = self._get_input_ids_and_config() a : Union[str, Any] = True a : List[Any] = max_length for model_class in self.all_generative_model_classes: a : Dict = model_class(__UpperCAmelCase) a : str = model.generate(__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : Optional[int] = jit(model.generate) a : Tuple = jit_generate(__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : Union[str, Any]): a , a , a , a : List[Any] = self._get_input_ids_and_config() a : List[str] = False a : str = max_length a : List[Any] = 2 for model_class in self.all_generative_model_classes: a : Tuple = model_class(__UpperCAmelCase) a : Union[str, Any] = model.generate(__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : List[Any] = jit(model.generate) a : Optional[Any] = jit_generate(__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : int): a , a , a , a : Any = self._get_input_ids_and_config() a : int = False a : str = max_length a : str = 2 a : Optional[int] = 2 for model_class in self.all_generative_model_classes: a : str = model_class(__UpperCAmelCase) a : str = model.generate(__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def __snake_case ( self : List[Any]): a , a , a , a : Optional[int] = self._get_input_ids_and_config() a : Any = True a : List[Any] = max_length a : Tuple = 0.8 a : int = 10 a : Union[str, Any] = 0.3 a : Any = 1 a : Optional[int] = 8 a : Any = 9 for model_class in self.all_generative_model_classes: a : int = model_class(__UpperCAmelCase) a : Any = model.generate(__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : Optional[Any] = jit(model.generate) a : Any = jit_generate(__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : Optional[int]): a , a , a , a : str = self._get_input_ids_and_config() a : Tuple = max_length a : int = 1 a : int = 8 a : List[Any] = 9 for model_class in self.all_generative_model_classes: a : List[Any] = model_class(__UpperCAmelCase) a : Optional[Any] = model.generate(__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : Any = jit(model.generate) a : List[str] = jit_generate(__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : Dict): a , a , a , a : int = self._get_input_ids_and_config() a : Optional[Any] = max_length a : Dict = 2 a : Tuple = 1 a : Optional[Any] = 8 a : Dict = 9 for model_class in self.all_generative_model_classes: a : Any = model_class(__UpperCAmelCase) a : List[str] = model.generate(__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : Dict = jit(model.generate) a : Tuple = jit_generate(__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : Optional[int]): a , a , a , a : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left a : Optional[int] = attention_mask.at[(0, 0)].set(0) a : List[str] = False a : str = max_length for model_class in self.all_generative_model_classes: a : Any = model_class(__UpperCAmelCase) a : Any = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : List[Any] = jit(model.generate) a : Tuple = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : List[Any]): a , a , a , a : List[Any] = self._get_input_ids_and_config() # pad attention mask on the left a : Tuple = attention_mask.at[(0, 0)].set(0) a : Any = True a : Union[str, Any] = max_length for model_class in self.all_generative_model_classes: a : Dict = model_class(__UpperCAmelCase) a : List[Any] = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : Dict = jit(model.generate) a : Dict = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def __snake_case ( self : Dict): a , a , a , a : Any = self._get_input_ids_and_config() # pad attention mask on the left a : Dict = attention_mask.at[(0, 0)].set(0) a : str = 2 a : Optional[int] = max_length for model_class in self.all_generative_model_classes: a : List[str] = model_class(__UpperCAmelCase) a : int = model.generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase).sequences self.assertEqual(generation_outputs.shape[-1] , __UpperCAmelCase) a : str = jit(model.generate) a : Tuple = jit_generate(__UpperCAmelCase , attention_mask=__UpperCAmelCase).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class _A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self : Any): a : List[Any] = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-bert") a : int = FlaxAutoModelForCausalLM.from_pretrained("hf-internal-testing/tiny-bert-flax-only") a : Union[str, Any] = "Hello world" a : str = tokenizer(__UpperCAmelCase , return_tensors="np").input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(__UpperCAmelCase , "do_samples"): model.generate(__UpperCAmelCase , do_samples=__UpperCAmelCase) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(__UpperCAmelCase , "foo"): a : Tuple = {"foo": "bar"} model.generate(__UpperCAmelCase , **__UpperCAmelCase)
40
"""simple docstring""" import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def __lowercase ( _a="" ): snake_case_ : List[str] = tempfile.mkdtemp() return os.path.join(_a , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : str ): snake_case_ : int = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : Optional[int] = AgentAudio(lowercase_ ) snake_case_ : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowercase_ ) ) # Ensure that the file contains the same value as the original tensor snake_case_, snake_case_ : int = sf.read(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , torch.tensor(lowercase_ ) , atol=1E-4 ) ) def _snake_case ( self : Optional[int] ): snake_case_ : Any = torch.rand(12 , dtype=torch.floataa ) - 0.5 snake_case_ : List[str] = get_new_path(suffix='''.wav''' ) sf.write(lowercase_ , lowercase_ , 16000 ) snake_case_ : Tuple = AgentAudio(lowercase_ ) self.assertTrue(torch.allclose(lowercase_ , agent_type.to_raw() , atol=1E-4 ) ) self.assertEqual(agent_type.to_string() , lowercase_ ) @require_vision @require_torch class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Tuple ): snake_case_ : List[Any] = torch.randint(0 , 256 , (64, 64, 3) ) snake_case_ : str = AgentImage(lowercase_ ) snake_case_ : Union[str, Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowercase_ , agent_type._tensor , atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def _snake_case ( self : str ): snake_case_ : Any = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : Optional[int] = Image.open(lowercase_ ) snake_case_ : Tuple = AgentImage(lowercase_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) def _snake_case ( self : str ): snake_case_ : int = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png''' snake_case_ : Dict = Image.open(lowercase_ ) snake_case_ : List[str] = AgentImage(lowercase_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowercase_ ) ) class _UpperCAmelCase ( unittest.TestCase): def _snake_case ( self : Any ): snake_case_ : Tuple = '''Hey!''' snake_case_ : Optional[Any] = AgentText(lowercase_ ) self.assertEqual(lowercase_ , agent_type.to_string() ) self.assertEqual(lowercase_ , agent_type.to_raw() ) self.assertEqual(lowercase_ , lowercase_ )
264
0
import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[Any]: '''simple docstring''' if "cls_token" in name: lowerCAmelCase : str = name.replace('cls_token', 'vit.embeddings.cls_token' ) if "mask_token" in name: lowerCAmelCase : str = name.replace('mask_token', 'decoder.mask_token' ) if "decoder_pos_embed" in name: lowerCAmelCase : List[str] = name.replace('decoder_pos_embed', 'decoder.decoder_pos_embed' ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase : Dict = name.replace('pos_embed', 'vit.embeddings.position_embeddings' ) if "patch_embed.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.proj', 'vit.embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: lowerCAmelCase : Union[str, Any] = name.replace('patch_embed.norm', 'vit.embeddings.norm' ) if "decoder_blocks" in name: lowerCAmelCase : Dict = name.replace('decoder_blocks', 'decoder.decoder_layers' ) if "blocks" in name: lowerCAmelCase : Tuple = name.replace('blocks', 'vit.encoder.layer' ) if "attn.proj" in name: lowerCAmelCase : Union[str, Any] = name.replace('attn.proj', 'attention.output.dense' ) if "attn" in name: lowerCAmelCase : Optional[Any] = name.replace('attn', 'attention.self' ) if "norm1" in name: lowerCAmelCase : Any = name.replace('norm1', 'layernorm_before' ) if "norm2" in name: lowerCAmelCase : Dict = name.replace('norm2', 'layernorm_after' ) if "mlp.fc1" in name: lowerCAmelCase : Tuple = name.replace('mlp.fc1', 'intermediate.dense' ) if "mlp.fc2" in name: lowerCAmelCase : Union[str, Any] = name.replace('mlp.fc2', 'output.dense' ) if "decoder_embed" in name: lowerCAmelCase : Dict = name.replace('decoder_embed', 'decoder.decoder_embed' ) if "decoder_norm" in name: lowerCAmelCase : Tuple = name.replace('decoder_norm', 'decoder.decoder_norm' ) if "decoder_pred" in name: lowerCAmelCase : Optional[Any] = name.replace('decoder_pred', 'decoder.decoder_pred' ) if "norm.weight" in name and "decoder" not in name: lowerCAmelCase : List[Any] = name.replace('norm.weight', 'vit.layernorm.weight' ) if "norm.bias" in name and "decoder" not in name: lowerCAmelCase : Optional[Any] = name.replace('norm.bias', 'vit.layernorm.bias' ) return name def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> List[str]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowerCAmelCase : Union[str, Any] = orig_state_dict.pop(_UpperCAmelCase ) if "qkv" in key: lowerCAmelCase : Any = key.split('.' ) lowerCAmelCase : Optional[Any] = int(key_split[1] ) if "decoder_blocks" in key: lowerCAmelCase : Optional[int] = config.decoder_hidden_size lowerCAmelCase : str = 'decoder.decoder_layers.' if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : Dict = val[dim : dim * 2, :] lowerCAmelCase : Optional[int] = val[-dim:, :] elif "bias" in key: lowerCAmelCase : List[Any] = val[:dim] lowerCAmelCase : Dict = val[dim : dim * 2] lowerCAmelCase : Any = val[-dim:] else: lowerCAmelCase : Optional[int] = config.hidden_size lowerCAmelCase : int = 'vit.encoder.layer.' if "weight" in key: lowerCAmelCase : Tuple = val[:dim, :] lowerCAmelCase : List[Any] = val[dim : dim * 2, :] lowerCAmelCase : List[str] = val[-dim:, :] elif "bias" in key: lowerCAmelCase : List[Any] = val[:dim] lowerCAmelCase : Tuple = val[dim : dim * 2] lowerCAmelCase : List[str] = val[-dim:] else: lowerCAmelCase : int = val return orig_state_dict def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase ) -> Dict: '''simple docstring''' lowerCAmelCase : Optional[int] = ViTMAEConfig() if "large" in checkpoint_url: lowerCAmelCase : int = 1_024 lowerCAmelCase : Any = 4_096 lowerCAmelCase : Dict = 24 lowerCAmelCase : str = 16 elif "huge" in checkpoint_url: lowerCAmelCase : Union[str, Any] = 14 lowerCAmelCase : str = 1_280 lowerCAmelCase : int = 5_120 lowerCAmelCase : Any = 32 lowerCAmelCase : Union[str, Any] = 16 lowerCAmelCase : Optional[int] = ViTMAEForPreTraining(_UpperCAmelCase ) lowerCAmelCase : List[str] = torch.hub.load_state_dict_from_url(_UpperCAmelCase, map_location='cpu' )['model'] lowerCAmelCase : Optional[Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : List[Any] = convert_state_dict(_UpperCAmelCase, _UpperCAmelCase ) model.load_state_dict(_UpperCAmelCase ) model.eval() lowerCAmelCase : List[Any] = 'https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg' lowerCAmelCase : int = Image.open(requests.get(_UpperCAmelCase, stream=_UpperCAmelCase ).raw ) lowerCAmelCase : Union[str, Any] = ViTMAEImageProcessor(size=config.image_size ) lowerCAmelCase : int = image_processor(images=_UpperCAmelCase, return_tensors='pt' ) # forward pass torch.manual_seed(2 ) lowerCAmelCase : Optional[int] = model(**_UpperCAmelCase ) lowerCAmelCase : int = outputs.logits if "large" in checkpoint_url: lowerCAmelCase : str = torch.tensor( [[-0.7_3_0_9, -0.7_1_2_8, -1.0_1_6_9], [-1.0_1_6_1, -0.9_0_5_8, -1.1_8_7_8], [-1.0_4_7_8, -0.9_4_1_1, -1.1_9_1_1]] ) elif "huge" in checkpoint_url: lowerCAmelCase : Tuple = torch.tensor( [[-1.1_5_9_9, -0.9_1_9_9, -1.2_2_2_1], [-1.1_9_5_2, -0.9_2_6_9, -1.2_3_0_7], [-1.2_1_4_3, -0.9_3_3_7, -1.2_2_6_2]] ) else: lowerCAmelCase : List[Any] = torch.tensor( [[-0.9_1_9_2, -0.8_4_8_1, -1.1_2_5_9], [-1.1_3_4_9, -1.0_0_3_4, -1.2_5_9_9], [-1.1_7_5_7, -1.0_4_2_9, -1.2_7_2_6]] ) # verify logits assert torch.allclose(logits[0, :3, :3], _UpperCAmelCase, atol=1e-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": __A : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) __A : Tuple = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __A : List[Any] = trt.Logger(trt.Logger.WARNING) __A : Optional[Any] = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __A : List[Any] = logging.getLogger(__name__) __A : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--onnx_model_path''', default=None, type=str, required=True, help='''Path to ONNX model: ''', ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''The output directory where the model checkpoints and predictions will be written.''', ) # Other parameters parser.add_argument( '''--tokenizer_name''', default='''''', type=str, required=True, help='''Pretrained tokenizer name or path if not the same as model_name''', ) parser.add_argument( '''--version_2_with_negative''', action='''store_true''', help='''If true, the SQuAD examples contain some that do not have an answer.''', ) parser.add_argument( '''--null_score_diff_threshold''', type=float, default=0.0, help='''If null_score - best_non_null is greater than the threshold predict null.''', ) parser.add_argument( '''--max_seq_length''', default=384, type=int, help=( '''The maximum total input sequence length after WordPiece tokenization. Sequences ''' '''longer than this will be truncated, and sequences shorter than this will be padded.''' ), ) parser.add_argument( '''--doc_stride''', default=128, type=int, help='''When splitting up a long document into chunks, how much stride to take between chunks.''', ) parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''') parser.add_argument( '''--n_best_size''', default=20, type=int, help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''', ) parser.add_argument( '''--max_answer_length''', default=30, type=int, help=( '''The maximum length of an answer that can be generated. This is needed because the start ''' '''and end predictions are not conditioned on one another.''' ), ) parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''') parser.add_argument( '''--dataset_name''', type=str, default=None, required=True, help='''The name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--dataset_config_name''', type=str, default=None, help='''The configuration name of the dataset to use (via the datasets library).''', ) parser.add_argument( '''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.''' ) parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''') parser.add_argument( '''--fp16''', action='''store_true''', help='''Whether to use 16-bit (mixed) precision instead of 32-bit''', ) parser.add_argument( '''--int8''', action='''store_true''', help='''Whether to use INT8''', ) __A : List[str] = parser.parse_args() if args.tokenizer_name: __A : List[Any] = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) logger.info('''Training/evaluation parameters %s''', args) __A : List[Any] = args.per_device_eval_batch_size __A : Any = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __A : Any = True __A : Union[str, Any] = '''temp_engine/bert-fp32.engine''' if args.fpaa: __A : List[str] = '''temp_engine/bert-fp16.engine''' if args.inta: __A : Dict = '''temp_engine/bert-int8.engine''' # import ONNX file if not os.path.exists('''temp_engine'''): os.makedirs('''temp_engine''') __A : Optional[int] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, '''rb''') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __A : str = [network.get_input(i) for i in range(network.num_inputs)] __A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __A : Dict = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __A : List[Any] = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __A : Union[str, Any] = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, '''wb''') as f: f.write(engine.serialize()) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) -> Any: '''simple docstring''' lowerCAmelCase : Dict = np.asarray(inputs['input_ids'], dtype=np.intaa ) lowerCAmelCase : Optional[int] = np.asarray(inputs['attention_mask'], dtype=np.intaa ) lowerCAmelCase : Dict = np.asarray(inputs['token_type_ids'], dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0], input_ids.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[1], attention_mask.ravel(), _UpperCAmelCase ) cuda.memcpy_htod_async(d_inputs[2], token_type_ids.ravel(), _UpperCAmelCase ) # start time lowerCAmelCase : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(_UpperCAmelCase ) for d_inp in d_inputs] + [int(_UpperCAmelCase ), int(_UpperCAmelCase )], stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) cuda.memcpy_dtoh_async(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) # Synchronize the stream and take time stream.synchronize() # end time lowerCAmelCase : List[str] = time.time() lowerCAmelCase : Tuple = end_time - start_time lowerCAmelCase : Union[str, Any] = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __A : List[str] = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __A : Union[str, Any] = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('''Evaluation requires a dataset name''') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __A : int = raw_datasets['''validation'''].column_names __A : int = '''question''' if '''question''' in column_names else column_names[0] __A : List[str] = '''context''' if '''context''' in column_names else column_names[1] __A : int = '''answers''' if '''answers''' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __A : str = tokenizer.padding_side == '''right''' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) __A : Union[str, Any] = min(args.max_seq_length, tokenizer.model_max_length) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> Tuple: '''simple docstring''' lowerCAmelCase : Any = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowerCAmelCase : Union[str, Any] = tokenizer( examples[question_column_name if pad_on_right else context_column_name], examples[context_column_name if pad_on_right else question_column_name], truncation='only_second' if pad_on_right else 'only_first', max_length=_UpperCAmelCase, stride=args.doc_stride, return_overflowing_tokens=_UpperCAmelCase, return_offsets_mapping=_UpperCAmelCase, padding='max_length', ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowerCAmelCase : List[Any] = tokenized_examples.pop('overflow_to_sample_mapping' ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowerCAmelCase : Tuple = [] for i in range(len(tokenized_examples['input_ids'] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowerCAmelCase : Optional[Any] = tokenized_examples.sequence_ids(_UpperCAmelCase ) lowerCAmelCase : Optional[int] = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowerCAmelCase : List[str] = sample_mapping[i] tokenized_examples["example_id"].append(examples['id'][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowerCAmelCase : List[Any] = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples['offset_mapping'][i] ) ] return tokenized_examples __A : int = raw_datasets['''validation'''] # Validation Feature Creation __A : Any = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='''Running tokenizer on validation dataset''', ) __A : List[str] = default_data_collator __A : int = eval_dataset.remove_columns(['''example_id''', '''offset_mapping''']) __A : Union[str, Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase="eval" ) -> int: '''simple docstring''' lowerCAmelCase : str = postprocess_qa_predictions( examples=_UpperCAmelCase, features=_UpperCAmelCase, predictions=_UpperCAmelCase, version_2_with_negative=args.version_2_with_negative, n_best_size=args.n_best_size, max_answer_length=args.max_answer_length, null_score_diff_threshold=args.null_score_diff_threshold, output_dir=args.output_dir, prefix=_UpperCAmelCase, ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowerCAmelCase : Union[str, Any] = [ {'id': k, 'prediction_text': v, 'no_answer_probability': 0.0} for k, v in predictions.items() ] else: lowerCAmelCase : List[Any] = [{'id': k, 'prediction_text': v} for k, v in predictions.items()] lowerCAmelCase : Optional[Any] = [{'id': ex['id'], 'answers': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=_UpperCAmelCase, label_ids=_UpperCAmelCase ) __A : List[Any] = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''') # Evaluation! logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path) with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ) -> List[str]: '''simple docstring''' return trt.volume(engine.get_binding_shape(_UpperCAmelCase ) ) * engine.get_binding_dtype(_UpperCAmelCase ).itemsize # Allocate device memory for inputs and outputs. __A : List[str] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __A : int = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) __A : Tuple = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('''***** Running Evaluation *****''') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') __A : Union[str, Any] = 0.0 __A : Optional[Any] = 0 __A : Optional[Any] = timeit.default_timer() __A : Optional[int] = None for step, batch in enumerate(eval_dataloader): __A , __A : str = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __A , __A : str = outputs __A : Optional[Any] = torch.tensor(start_logits) __A : Any = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __A : int = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __A : Union[str, Any] = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __A : int = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __A : str = nested_truncate(all_preds, len(eval_dataset)) __A : Any = timeit.default_timer() - start_time logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter)) logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000)) logger.info('''Total Number of Inference = %d''', niter) __A : List[Any] = post_processing_function(eval_examples, eval_dataset, all_preds) __A : str = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
323
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _SCREAMING_SNAKE_CASE ( UpperCamelCase=None ): """simple docstring""" if subparsers is not None: lowerCAmelCase__ : List[str] = subparsers.add_parser("""test""" ) else: lowerCAmelCase__ : List[str] = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=a__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have """ """such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed """ """with \'huggingface\'.""" ) , ) if subparsers is not None: parser.set_defaults(func=a__ ) return parser def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Dict = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: lowerCAmelCase__ : Union[str, Any] = script_name else: lowerCAmelCase__ : List[str] = f"""--config_file={args.config_file} {script_name}""" lowerCAmelCase__ : str = ['''accelerate-launch'''] + test_args.split() lowerCAmelCase__ : Optional[int] = execute_subprocess_async(a__ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[str] = test_command_parser() lowerCAmelCase__ : Tuple = parser.parse_args() test_command(a__ ) if __name__ == "__main__": main()
37
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class a_ ( a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : jnp.ndarray @flax_register_to_config class a_ ( nn.Module , a__ , a__ ): """simple docstring""" __SCREAMING_SNAKE_CASE : int = 32 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : int = 4 __SCREAMING_SNAKE_CASE : Tuple[str] = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __SCREAMING_SNAKE_CASE : Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") __SCREAMING_SNAKE_CASE : Union[bool, Tuple[bool]] = False __SCREAMING_SNAKE_CASE : Tuple[int] = (320, 640, 1280, 1280) __SCREAMING_SNAKE_CASE : int = 2 __SCREAMING_SNAKE_CASE : Union[int, Tuple[int]] = 8 __SCREAMING_SNAKE_CASE : Optional[Union[int, Tuple[int]]] = None __SCREAMING_SNAKE_CASE : int = 1280 __SCREAMING_SNAKE_CASE : float = 0.0 __SCREAMING_SNAKE_CASE : bool = False __SCREAMING_SNAKE_CASE : jnp.dtype = jnp.floataa __SCREAMING_SNAKE_CASE : bool = True __SCREAMING_SNAKE_CASE : int = 0 __SCREAMING_SNAKE_CASE : bool = False def __lowerCAmelCase ( self , _lowerCamelCase ) ->FrozenDict: # init input tensors SCREAMING_SNAKE_CASE : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Tuple = jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = jax.random.split(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Tuple = {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def __lowerCAmelCase ( self ) ->int: SCREAMING_SNAKE_CASE : List[str] = self.block_out_channels SCREAMING_SNAKE_CASE : Optional[int] = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( '''At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.''' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE : List[str] = self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE : Tuple = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE : Dict = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Optional[Any] = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE : str = output_channel SCREAMING_SNAKE_CASE : int = block_out_channels[i] SCREAMING_SNAKE_CASE : List[Any] = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : str = down_blocks # mid SCREAMING_SNAKE_CASE : int = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up SCREAMING_SNAKE_CASE : str = [] SCREAMING_SNAKE_CASE : str = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : int = list(reversed(_lowerCamelCase ) ) SCREAMING_SNAKE_CASE : List[str] = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Union[str, Any] = reversed_block_out_channels[i] SCREAMING_SNAKE_CASE : Tuple = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] SCREAMING_SNAKE_CASE : Dict = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": SCREAMING_SNAKE_CASE : str = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE : Optional[int] = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = output_channel SCREAMING_SNAKE_CASE : Tuple = up_blocks # out SCREAMING_SNAKE_CASE : Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) SCREAMING_SNAKE_CASE : Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase=None , _lowerCamelCase=None , _lowerCamelCase = True , _lowerCamelCase = False , ) ->Union[FlaxUNetaDConditionOutput, Tuple]: # 1. time if not isinstance(_lowerCamelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE : int = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE : List[str] = timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.expand_dims(_lowerCamelCase , 0 ) SCREAMING_SNAKE_CASE : List[str] = self.time_proj(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = self.time_embedding(_lowerCamelCase ) # 2. pre-process SCREAMING_SNAKE_CASE : int = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE : List[Any] = self.conv_in(_lowerCamelCase ) # 3. down SCREAMING_SNAKE_CASE : Optional[int] = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: SCREAMING_SNAKE_CASE : int = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE : Dict = new_down_block_res_samples # 4. mid SCREAMING_SNAKE_CASE : Optional[Any] = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: SCREAMING_SNAKE_CASE : Optional[Any] = down_block_res_samples[-(self.layers_per_block + 1) :] SCREAMING_SNAKE_CASE : Optional[int] = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): SCREAMING_SNAKE_CASE : str = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: SCREAMING_SNAKE_CASE : Optional[int] = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process SCREAMING_SNAKE_CASE : Optional[int] = self.conv_norm_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = nn.silu(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Dict = self.conv_out(_lowerCamelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
313
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _a : str = logging.get_logger(__name__) _a : str = """▁""" _a : List[str] = {"""vocab_file""": """sentencepiece.bpe.model"""} _a : List[str] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } _a : str = { """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off _a : Optional[Any] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class _UpperCAmelCase ( lowerCAmelCase_ ): a : Optional[Any] =VOCAB_FILES_NAMES a : Tuple =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple =PRETRAINED_VOCAB_FILES_MAP a : int =["""input_ids""", """attention_mask"""] a : List[int] =[] a : List[int] =[] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="</s>",__SCREAMING_SNAKE_CASE="<s>",__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE=None,__SCREAMING_SNAKE_CASE=False,**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = AddedToken(__SCREAMING_SNAKE_CASE,lstrip=__SCREAMING_SNAKE_CASE,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs __lowerCAmelCase = legacy_behaviour super().__init__( bos_token=__SCREAMING_SNAKE_CASE,eos_token=__SCREAMING_SNAKE_CASE,unk_token=__SCREAMING_SNAKE_CASE,sep_token=__SCREAMING_SNAKE_CASE,cls_token=__SCREAMING_SNAKE_CASE,pad_token=__SCREAMING_SNAKE_CASE,mask_token=__SCREAMING_SNAKE_CASE,tokenizer_file=__SCREAMING_SNAKE_CASE,src_lang=__SCREAMING_SNAKE_CASE,tgt_lang=__SCREAMING_SNAKE_CASE,additional_special_tokens=__SCREAMING_SNAKE_CASE,sp_model_kwargs=self.sp_model_kwargs,legacy_behaviour=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) __lowerCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } __lowerCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} __lowerCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} __lowerCAmelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) __lowerCAmelCase = src_lang if src_lang is not None else """eng_Latn""" __lowerCAmelCase = self.lang_code_to_id[self._src_lang] __lowerCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): '''simple docstring''' __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = d # for backward compatibility if not hasattr(self,"""sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ ( self ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ ( self ): '''simple docstring''' return self._src_lang @src_lang.setter def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE,token_ids_a=__SCREAMING_SNAKE_CASE,already_has_special_tokens=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = [1] * len(self.prefix_tokens ) __lowerCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) __lowerCAmelCase = src_lang __lowerCAmelCase = self(__SCREAMING_SNAKE_CASE,add_special_tokens=__SCREAMING_SNAKE_CASE,return_tensors=__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = tgt_lang_id return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self.sp_model.encode(__SCREAMING_SNAKE_CASE,out_type=__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE,""" """ ).strip() return out_string def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return __lowerCAmelCase = os.path.join( __SCREAMING_SNAKE_CASE,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file,__SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE,"""wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = "eng_Latn",__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = "fra_Latn",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' __lowerCAmelCase = src_lang __lowerCAmelCase = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ ( self ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCAmelCase = [self.cur_lang_code] __lowerCAmelCase = [self.eos_token_id] def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: __lowerCAmelCase = [] __lowerCAmelCase = [self.eos_token_id, self.cur_lang_code] else: __lowerCAmelCase = [self.cur_lang_code] __lowerCAmelCase = [self.eos_token_id]
46
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : str =KandinskyVaaInpaintPipeline a : int =["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a : str =[ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Dict =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00,beta_schedule="""linear""",beta_start=0.0_0085,beta_end=0.012,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,steps_offset=1,prediction_type="""epsilon""",thresholding=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase = np.ones((64, 64),dtype=np.floataa ) __lowerCAmelCase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((7_68, 7_68),dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,mask_image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
1
"""simple docstring""" from __future__ import annotations def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): if days_between_payments <= 0: raise ValueError("days_between_payments must be > 0" ) if daily_interest_rate < 0: raise ValueError("daily_interest_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * daily_interest_rate * days_between_payments def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): if number_of_compounding_periods <= 0: raise ValueError("number_of_compounding_periods must be > 0" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("nominal_annual_interest_rate_percentage must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase, ): if number_of_years <= 0: raise ValueError("number_of_years must be > 0" ) if nominal_annual_percentage_rate < 0: raise ValueError("nominal_annual_percentage_rate must be >= 0" ) if principal <= 0: raise ValueError("principal must be > 0" ) return compound_interest( __lowerCamelCase, nominal_annual_percentage_rate / 365, number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
61
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase ={ "configuration_time_series_transformer": [ "TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TimeSeriesTransformerConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase =[ "TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TimeSeriesTransformerForPrediction", "TimeSeriesTransformerModel", "TimeSeriesTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys __UpperCAmelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
67
0
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class __magic_name__ (__lowercase ): def __a ( self ) -> List[str]: lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def __a ( self ) -> int: with self.assertRaises(_a ): lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def __a ( self ) -> Optional[int]: with self.assertRaises(_a ): lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def __a ( self ) -> Any: lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __a ( self ) -> Optional[int]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def __a ( self ) -> Dict: lowerCAmelCase_ = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def __a ( self ) -> int: lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def __a ( self ) -> Tuple: lowerCAmelCase_ = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __a ( self ) -> Optional[Any]: with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def __a ( self ) -> List[str]: lowerCAmelCase_ = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def __a ( self ) -> int: import PIL.Image lowerCAmelCase_ = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=_a ) as mock_cast_to_python_objects: lowerCAmelCase_ = pa.array(TypedSequence([{"path": None, "bytes": b"image_bytes"}, pil_image] , type=Image() ) ) lowerCAmelCase_ , lowerCAmelCase_ = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , _a ) self.assertFalse(kwargs["optimize_list_casting"] ) def A(__a: Optional[Any] , __a: int ): lowerCAmelCase_ = pa.BufferReader(__a ) if isinstance(__a , pa.Buffer ) else pa.memory_map(__a ) lowerCAmelCase_ = pa.ipc.open_stream(__a ) lowerCAmelCase_ = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: int , __a: int ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A(): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=__a , features=__a ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata lowerCAmelCase_ = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ = pa.ipc.open_stream(__a ) lowerCAmelCase_ = f.read_all() lowerCAmelCase_ = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(__a ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def A(__a: int ): lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def A(__a: Any ): lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: with pytest.raises(__a ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def A(__a: int ): lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter( stream=__a , writer_batch_size=__a , hash_salt="split_name" , check_duplicates=__a , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: List[str] , __a: int ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: Union[str, Any] , __a: List[Any] ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def A(__a: Dict , __a: Dict ): lowerCAmelCase_ = pa.BufferOutputStream() lowerCAmelCase_ = pa.schema(__a ) if fields else None with ArrowWriter(stream=__a , schema=__a , writer_batch_size=__a ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def A(): with tempfile.TemporaryDirectory() as tmp_dir: lowerCAmelCase_ = {"col_1": pa.string(), "col_2": pa.intaa()} lowerCAmelCase_ = os.path.join(__a , "test.arrow" ) with ArrowWriter(path=__a , schema=pa.schema(__a ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(__a , metadata=writer._schema.metadata ) _check_output(__a , 1 ) def A(__a: str ): if pa.types.is_list(__a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def A(__a: Tuple , __a: Any ): if isinstance(lst[0] , __a ): change_first_primitive_element_in_list(lst[0] , __a ) else: lowerCAmelCase_ = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A(__a: Any , __a: str , __a: int ): lowerCAmelCase_ = pa.array(TypedSequence(__a , optimized_int_type=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def A(__a: Tuple , __a: str , __a: Optional[int] ): # in range lowerCAmelCase_ = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications lowerCAmelCase_ = copy.deepcopy(__a ) lowerCAmelCase_ = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(__a , __a ) lowerCAmelCase_ = pa.array(OptimizedTypedSequence(__a , col=__a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def A(__a: Dict , __a: List[str] ): lowerCAmelCase_ = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=__a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def A(__a: Union[str, Any] ): lowerCAmelCase_ = "mock://dataset-train.arrow" with ArrowWriter(path=__a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(__a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(__a ) def A(): lowerCAmelCase_ = pa.BufferOutputStream() with ParquetWriter(stream=__a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) lowerCAmelCase_ , lowerCAmelCase_ = writer.finalize() assert num_examples == 2 assert num_bytes > 0 lowerCAmelCase_ = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ = pq.read_table(__a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def A(__a: Tuple , __a: Dict ): import PIL.Image lowerCAmelCase_ = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(__a , format="png" ) lowerCAmelCase_ = pa.BufferOutputStream() with ParquetWriter( stream=__a , features=Features({"image": Image()} ) , embed_local_files=__a ) as writer: writer.write({"image": image_path} ) writer.finalize() lowerCAmelCase_ = pa.BufferReader(output.getvalue() ) lowerCAmelCase_ = pq.read_table(__a ) lowerCAmelCase_ = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , __a ) with open(__a , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def A(): lowerCAmelCase_ = pa.schema([pa.field("col_1" , pa.string() , nullable=__a )] ) lowerCAmelCase_ = pa.BufferOutputStream() with ArrowWriter(stream=__a ) as writer: writer._build_writer(inferred_schema=__a ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
371
from __future__ import annotations def A(__a: dict , __a: str ): lowerCAmelCase_ , lowerCAmelCase_ = set(__a ), [start] while stack: lowerCAmelCase_ = stack.pop() explored.add(__a ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(__a ) return explored lowerCamelCase__ = { '''A''': ['''B''', '''C''', '''D'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F'''], '''D''': ['''B''', '''D'''], '''E''': ['''B''', '''F'''], '''F''': ['''C''', '''E''', '''G'''], '''G''': ['''F'''], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, '''A'''))
22
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { """asapp/sew-d-tiny-100k""": """https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json""", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class _lowerCAmelCase ( snake_case_ ): __UpperCAmelCase : List[Any] = '''sew-d''' def __init__( self , UpperCamelCase__=32 , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=2 , UpperCamelCase__=512 , UpperCamelCase__=256 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=("p2c", "c2p") , UpperCamelCase__="layer_norm" , UpperCamelCase__="gelu_python" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__=0.02 , UpperCamelCase__=1e-7 , UpperCamelCase__=1e-5 , UpperCamelCase__="group" , UpperCamelCase__="gelu" , UpperCamelCase__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , UpperCamelCase__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , UpperCamelCase__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , UpperCamelCase__=False , UpperCamelCase__=128 , UpperCamelCase__=16 , UpperCamelCase__=True , UpperCamelCase__=0.05 , UpperCamelCase__=10 , UpperCamelCase__=2 , UpperCamelCase__=0.0 , UpperCamelCase__=10 , UpperCamelCase__=0 , UpperCamelCase__="mean" , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=256 , UpperCamelCase__=0 , UpperCamelCase__=1 , UpperCamelCase__=2 , **UpperCamelCase__ , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__ , pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ ) snake_case : Tuple = hidden_size snake_case : Dict = feat_extract_norm snake_case : Optional[int] = feat_extract_activation snake_case : List[str] = list(UpperCamelCase__ ) snake_case : Any = list(UpperCamelCase__ ) snake_case : Any = list(UpperCamelCase__ ) snake_case : Tuple = conv_bias snake_case : int = num_conv_pos_embeddings snake_case : Any = num_conv_pos_embedding_groups snake_case : Optional[int] = len(self.conv_dim ) snake_case : Optional[Any] = num_hidden_layers snake_case : List[Any] = intermediate_size snake_case : str = squeeze_factor snake_case : Tuple = max_position_embeddings snake_case : Optional[int] = position_buckets snake_case : List[Any] = share_att_key snake_case : int = relative_attention snake_case : Any = norm_rel_ebd snake_case : Optional[Any] = list(UpperCamelCase__ ) snake_case : Optional[int] = hidden_act snake_case : int = num_attention_heads snake_case : Optional[Any] = hidden_dropout snake_case : List[Any] = attention_dropout snake_case : Any = activation_dropout snake_case : Union[str, Any] = feat_proj_dropout snake_case : str = final_dropout snake_case : Optional[Any] = layer_norm_eps snake_case : str = feature_layer_norm_eps snake_case : int = initializer_range snake_case : Any = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' F'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 snake_case : Optional[int] = apply_spec_augment snake_case : Tuple = mask_time_prob snake_case : Optional[int] = mask_time_length snake_case : List[str] = mask_time_min_masks snake_case : List[str] = mask_feature_prob snake_case : Dict = mask_feature_length snake_case : List[Any] = mask_feature_min_masks # ctc loss snake_case : int = ctc_loss_reduction snake_case : Optional[Any] = ctc_zero_infinity # sequence classification snake_case : Any = use_weighted_layer_sum snake_case : Optional[Any] = classifier_proj_size @property def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
203
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case = { """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def __lowerCAmelCase ( lowercase : Any ) -> Union[str, Any]: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def __lowerCAmelCase ( lowercase : int , lowercase : Dict ) -> Tuple: """simple docstring""" if args.student_type == "roberta": snake_case : List[str] = False elif args.student_type == "gpt2": snake_case : Optional[int] = False def __lowerCAmelCase ( lowercase : Optional[Any] , lowercase : Optional[int] ) -> Optional[Any]: """simple docstring""" if args.student_type == "roberta": snake_case : Optional[Any] = False def __lowerCAmelCase ( ) -> int: """simple docstring""" snake_case : Any = argparse.ArgumentParser(description="Training" ) parser.add_argument("--force" , action="store_true" , help="Overwrite dump_path if it already exists." ) parser.add_argument( "--dump_path" , type=lowercase , required=lowercase , help="The output directory (log, checkpoints, parameters, etc.)" ) parser.add_argument( "--data_file" , type=lowercase , required=lowercase , help="The binarized file (tokenized + tokens_to_ids) and grouped by sequence." , ) parser.add_argument( "--student_type" , type=lowercase , choices=["distilbert", "roberta", "gpt2"] , required=lowercase , help="The student type (DistilBERT, RoBERTa)." , ) parser.add_argument("--student_config" , type=lowercase , required=lowercase , help="Path to the student configuration." ) parser.add_argument( "--student_pretrained_weights" , default=lowercase , type=lowercase , help="Load student initialization checkpoint." ) parser.add_argument( "--teacher_type" , choices=["bert", "roberta", "gpt2"] , required=lowercase , help="Teacher type (BERT, RoBERTa)." ) parser.add_argument("--teacher_name" , type=lowercase , required=lowercase , help="The teacher model." ) parser.add_argument("--temperature" , default=2.0 , type=lowercase , help="Temperature for the softmax temperature." ) parser.add_argument( "--alpha_ce" , default=0.5 , type=lowercase , help="Linear weight for the distillation loss. Must be >=0." ) parser.add_argument( "--alpha_mlm" , default=0.0 , type=lowercase , help="Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag." , ) parser.add_argument("--alpha_clm" , default=0.5 , type=lowercase , help="Linear weight for the CLM loss. Must be >=0." ) parser.add_argument("--alpha_mse" , default=0.0 , type=lowercase , help="Linear weight of the MSE loss. Must be >=0." ) parser.add_argument( "--alpha_cos" , default=0.0 , type=lowercase , help="Linear weight of the cosine embedding loss. Must be >=0." ) parser.add_argument( "--mlm" , action="store_true" , help="The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM." ) parser.add_argument( "--mlm_mask_prop" , default=0.15 , type=lowercase , help="Proportion of tokens for which we need to make a prediction." , ) parser.add_argument("--word_mask" , default=0.8 , type=lowercase , help="Proportion of tokens to mask out." ) parser.add_argument("--word_keep" , default=0.1 , type=lowercase , help="Proportion of tokens to keep." ) parser.add_argument("--word_rand" , default=0.1 , type=lowercase , help="Proportion of tokens to randomly replace." ) parser.add_argument( "--mlm_smoothing" , default=0.7 , type=lowercase , help="Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec)." , ) parser.add_argument("--token_counts" , type=lowercase , help="The token counts in the data_file for MLM." ) parser.add_argument( "--restrict_ce_to_mask" , action="store_true" , help="If true, compute the distillation loss only the [MLM] prediction distribution." , ) parser.add_argument( "--freeze_pos_embs" , action="store_true" , help="Freeze positional embeddings during distillation. For student_type in ['roberta', 'gpt2'] only." , ) parser.add_argument( "--freeze_token_type_embds" , action="store_true" , help="Freeze token type embeddings during distillation if existent. For student_type in ['roberta'] only." , ) parser.add_argument("--n_epoch" , type=lowercase , default=3 , help="Number of pass on the whole dataset." ) parser.add_argument("--batch_size" , type=lowercase , default=5 , help="Batch size (for each process)." ) parser.add_argument( "--group_by_size" , action="store_false" , help="If true, group sequences that have similar length into the same batch. Default is true." , ) parser.add_argument( "--gradient_accumulation_steps" , type=lowercase , default=50 , help="Gradient accumulation for larger training batches." , ) parser.add_argument("--warmup_prop" , default=0.05 , type=lowercase , help="Linear warmup proportion." ) parser.add_argument("--weight_decay" , default=0.0 , type=lowercase , help="Weight decay if we apply some." ) parser.add_argument("--learning_rate" , default=5e-4 , type=lowercase , help="The initial learning rate for Adam." ) parser.add_argument("--adam_epsilon" , default=1e-6 , type=lowercase , help="Epsilon for Adam optimizer." ) parser.add_argument("--max_grad_norm" , default=5.0 , type=lowercase , help="Max gradient norm." ) parser.add_argument("--initializer_range" , default=0.02 , type=lowercase , help="Random initialization range." ) parser.add_argument( "--fp16" , action="store_true" , help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit" , ) parser.add_argument( "--fp16_opt_level" , type=lowercase , default="O1" , help=( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." "See details at https://nvidia.github.io/apex/amp.html" ) , ) parser.add_argument("--n_gpu" , type=lowercase , default=1 , help="Number of GPUs in the node." ) parser.add_argument("--local_rank" , type=lowercase , default=-1 , help="Distributed training - Local rank" ) parser.add_argument("--seed" , type=lowercase , default=56 , help="Random seed" ) parser.add_argument("--log_interval" , type=lowercase , default=500 , help="Tensorboard logging interval." ) parser.add_argument("--checkpoint_interval" , type=lowercase , default=4000 , help="Checkpoint interval." ) snake_case : str = parser.parse_args() sanity_checks(lowercase ) # ARGS # init_gpu_params(lowercase ) set_seed(lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite' " itUse `--force` if you want to overwrite it" ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'Experiment will be dumped and logged in {args.dump_path}' ) # SAVE PARAMS # logger.info(F'Param: {args}' ) with open(os.path.join(args.dump_path , "parameters.json" ) , "w" ) as f: json.dump(vars(lowercase ) , lowercase , indent=4 ) git_log(args.dump_path ) snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.student_type] snake_case ,snake_case ,snake_case : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # snake_case : int = teacher_tokenizer_class.from_pretrained(args.teacher_name ) snake_case : Any = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): snake_case : List[str] = tokenizer.all_special_tokens.index(lowercase ) snake_case : Optional[int] = tokenizer.all_special_ids[idx] logger.info(F'Special tokens {special_tok_ids}' ) snake_case : Any = special_tok_ids snake_case : Dict = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'Loading data from {args.data_file}' ) with open(args.data_file , "rb" ) as fp: snake_case : Optional[int] = pickle.load(lowercase ) if args.mlm: logger.info(F'Loading token counts from {args.token_counts} (already pre-computed)' ) with open(args.token_counts , "rb" ) as fp: snake_case : Dict = pickle.load(lowercase ) snake_case : str = np.maximum(lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): snake_case : str = 0.0 # do not predict special tokens snake_case : Dict = torch.from_numpy(lowercase ) else: snake_case : Tuple = None snake_case : str = LmSeqsDataset(params=lowercase , data=lowercase ) logger.info("Data loader created." ) # STUDENT # logger.info(F'Loading student config from {args.student_config}' ) snake_case : str = student_config_class.from_pretrained(args.student_config ) snake_case : Optional[int] = True if args.student_pretrained_weights is not None: logger.info(F'Loading pretrained weights from {args.student_pretrained_weights}' ) snake_case : Optional[int] = student_model_class.from_pretrained(args.student_pretrained_weights , config=lowercase ) else: snake_case : Union[str, Any] = student_model_class(lowercase ) if args.n_gpu > 0: student.to(F'cuda:{args.local_rank}' ) logger.info("Student loaded." ) # TEACHER # snake_case : List[Any] = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=lowercase ) if args.n_gpu > 0: teacher.to(F'cuda:{args.local_rank}' ) logger.info(F'Teacher loaded from {args.teacher_name}.' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(lowercase , lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(lowercase , lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() snake_case : Optional[Any] = Distiller( params=lowercase , dataset=lowercase , token_probs=lowercase , student=lowercase , teacher=lowercase ) distiller.train() logger.info("Let's go get some drinks." ) if __name__ == "__main__": main()
203
1
"""simple docstring""" import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration lowercase__ = 50_0000 lowercase__ , lowercase__ = os.path.split(__file__) lowercase__ = os.path.join(RESULTS_BASEPATH, """results""", RESULTS_FILENAME.replace(""".py""", """.json""")) @get_duration def _snake_case ( lowercase__ , **lowercase__ ): _lowerCamelCase : Union[str, Any] = dataset.map(**lowercase__ ) @get_duration def _snake_case ( lowercase__ , **lowercase__ ): _lowerCamelCase : int = dataset.filter(**lowercase__ ) def _snake_case ( ): _lowerCamelCase : int = {'num examples': SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: _lowerCamelCase : Tuple = datasets.Features({'text': datasets.Value('string' ), 'numbers': datasets.Value('float32' )} ) _lowerCamelCase : Tuple = generate_example_dataset( os.path.join(lowercase__ , 'dataset.arrow' ) , lowercase__ , num_examples=lowercase__ ) _lowerCamelCase : Optional[int] = transformers.AutoTokenizer.from_pretrained('bert-base-cased' , use_fast=lowercase__ ) def tokenize(lowercase__ ): return tokenizer(examples['text'] ) _lowerCamelCase : Dict = map(lowercase__ ) _lowerCamelCase : Union[str, Any] = map(lowercase__ , batched=lowercase__ ) _lowerCamelCase : Dict = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='numpy' ): _lowerCamelCase : Optional[Any] = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='pandas' ): _lowerCamelCase : str = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='torch' , columns='numbers' ): _lowerCamelCase : Tuple = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) with dataset.formatted_as(type='tensorflow' , columns='numbers' ): _lowerCamelCase : Optional[int] = map(lowercase__ , function=lambda lowercase__ : None , batched=lowercase__ ) _lowerCamelCase : Tuple = map(lowercase__ , function=lowercase__ , batched=lowercase__ ) _lowerCamelCase : Optional[Any] = filter(lowercase__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(lowercase__ , 'wb' ) as f: f.write(json.dumps(lowercase__ ).encode('utf-8' ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
12
"""simple docstring""" def _snake_case ( lowercase__ ): # if the collection is empty, returns empty if collection == []: return [] # get some information about the collection _lowerCamelCase : List[str] = len(lowercase__ ) _lowerCamelCase : List[str] = max(lowercase__ ) _lowerCamelCase : List[str] = min(lowercase__ ) # create the counting array _lowerCamelCase : List[Any] = coll_max + 1 - coll_min _lowerCamelCase : List[Any] = [0] * counting_arr_length # count how much a number appears in the collection for number in collection: counting_arr[number - coll_min] += 1 # sum each position with it's predecessors. now, counting_arr[i] tells # us how many elements <= i has in the collection for i in range(1 , lowercase__ ): _lowerCamelCase : Optional[int] = counting_arr[i] + counting_arr[i - 1] # create the output collection _lowerCamelCase : Dict = [0] * coll_len # place the elements in the output, respecting the original order (stable # sort) from end to begin, updating counting_arr for i in reversed(range(0 , lowercase__ ) ): _lowerCamelCase : Any = collection[i] counting_arr[collection[i] - coll_min] -= 1 return ordered def _snake_case ( lowercase__ ): return "".join([chr(lowercase__ ) for i in counting_sort([ord(lowercase__ ) for c in string] )] ) if __name__ == "__main__": # Test string sort assert counting_sort_string("""thisisthestring""") == "eghhiiinrsssttt" lowercase__ = input("""Enter numbers separated by a comma:\n""").strip() lowercase__ = [int(item) for item in user_input.split(""",""")] print(counting_sort(unsorted))
12
1
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import ViTMAEConfig, ViTMAEForPreTraining, ViTMAEImageProcessor def __A ( lowerCamelCase_ ): """simple docstring""" if "cls_token" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("""cls_token""" , """vit.embeddings.cls_token""" ) if "mask_token" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("""mask_token""" , """decoder.mask_token""" ) if "decoder_pos_embed" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: SCREAMING_SNAKE_CASE : Optional[int] = name.replace("""pos_embed""" , """vit.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: SCREAMING_SNAKE_CASE : str = name.replace("""patch_embed.proj""" , """vit.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("""patch_embed.norm""" , """vit.embeddings.norm""" ) if "decoder_blocks" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("""decoder_blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""blocks""" , """vit.encoder.layer""" ) if "attn.proj" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: SCREAMING_SNAKE_CASE : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: SCREAMING_SNAKE_CASE : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: SCREAMING_SNAKE_CASE : Any = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: SCREAMING_SNAKE_CASE : Dict = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: SCREAMING_SNAKE_CASE : int = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: SCREAMING_SNAKE_CASE : Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name: SCREAMING_SNAKE_CASE : Union[str, Any] = name.replace("""norm.weight""" , """vit.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name: SCREAMING_SNAKE_CASE : Optional[Any] = name.replace("""norm.bias""" , """vit.layernorm.bias""" ) return name def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" for key in orig_state_dict.copy().keys(): SCREAMING_SNAKE_CASE : Union[str, Any] = orig_state_dict.pop(lowerCamelCase_ ) if "qkv" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = key.split(""".""" ) SCREAMING_SNAKE_CASE : str = int(key_split[1] ) if "decoder_blocks" in key: SCREAMING_SNAKE_CASE : int = config.decoder_hidden_size SCREAMING_SNAKE_CASE : Union[str, Any] = """decoder.decoder_layers.""" if "weight" in key: SCREAMING_SNAKE_CASE : Union[str, Any] = val[:dim, :] SCREAMING_SNAKE_CASE : List[str] = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : int = val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE : Tuple = val[:dim] SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Dict = val[-dim:] else: SCREAMING_SNAKE_CASE : Tuple = config.hidden_size SCREAMING_SNAKE_CASE : List[Any] = """vit.encoder.layer.""" if "weight" in key: SCREAMING_SNAKE_CASE : Optional[int] = val[:dim, :] SCREAMING_SNAKE_CASE : Dict = val[dim : dim * 2, :] SCREAMING_SNAKE_CASE : str = val[-dim:, :] elif "bias" in key: SCREAMING_SNAKE_CASE : Optional[Any] = val[:dim] SCREAMING_SNAKE_CASE : List[Any] = val[dim : dim * 2] SCREAMING_SNAKE_CASE : Optional[int] = val[-dim:] else: SCREAMING_SNAKE_CASE : List[Any] = val return orig_state_dict def __A ( lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = ViTMAEConfig() if "large" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = 10_24 SCREAMING_SNAKE_CASE : Optional[Any] = 40_96 SCREAMING_SNAKE_CASE : Any = 24 SCREAMING_SNAKE_CASE : Optional[int] = 16 elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE : Dict = 14 SCREAMING_SNAKE_CASE : Union[str, Any] = 12_80 SCREAMING_SNAKE_CASE : Any = 51_20 SCREAMING_SNAKE_CASE : Optional[Any] = 32 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : List[str] = ViTMAEForPreTraining(lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location="""cpu""" )["""model"""] SCREAMING_SNAKE_CASE : Tuple = ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE : List[Any] = convert_state_dict(lowerCamelCase_ , lowerCamelCase_ ) model.load_state_dict(lowerCamelCase_ ) model.eval() SCREAMING_SNAKE_CASE : Optional[Any] = """https://user-images.githubusercontent.com/11435359/147738734-196fd92f-9260-48d5-ba7e-bf103d29364d.jpg""" SCREAMING_SNAKE_CASE : Optional[Any] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) SCREAMING_SNAKE_CASE : Dict = ViTMAEImageProcessor(size=config.image_size ) SCREAMING_SNAKE_CASE : Any = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE : List[str] = model(**lowerCamelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = outputs.logits if "large" in checkpoint_url: SCREAMING_SNAKE_CASE : Tuple = torch.tensor( [[-0.7_309, -0.7_128, -1.0_169], [-1.0_161, -0.9_058, -1.1_878], [-1.0_478, -0.9_411, -1.1_911]] ) elif "huge" in checkpoint_url: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-1.1_599, -0.9_199, -1.2_221], [-1.1_952, -0.9_269, -1.2_307], [-1.2_143, -0.9_337, -1.2_262]] ) else: SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor( [[-0.9_192, -0.8_481, -1.1_259], [-1.1_349, -1.0_034, -1.2_599], [-1.1_757, -1.0_429, -1.2_726]] ) # verify logits assert torch.allclose(logits[0, :3, :3] , lowerCamelCase_ , atol=1E-4 ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://dl.fbaipublicfiles.com/mae/visualize/mae_visualize_vit_base.pth""", type=str, help="""URL of the checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) __UpperCAmelCase = parser.parse_args() convert_vit_mae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
323
'''simple docstring''' # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
323
1
import os import re import shutil from argparse import ArgumentParser, Namespace from datasets.commands import BaseDatasetsCLICommand from datasets.utils.logging import get_logger a_ = '<<<<<<< This should probably be modified because it mentions: ' a_ = '=======\n>>>>>>>\n' a_ = [ 'TextEncoderConfig', 'ByteTextEncoder', 'SubwordTextEncoder', 'encoder_config', 'maybe_build_from_corpus', 'manual_dir', ] a_ = [ # (pattern, replacement) # Order is important here for some replacements (r'tfds\.core', r'datasets'), (r'tf\.io\.gfile\.GFile', r'open'), (r'tf\.([\w\d]+)', r'datasets.Value(\'\1\')'), (r'tfds\.features\.Text\(\)', r'datasets.Value(\'string\')'), (r'tfds\.features\.Text\(', r'datasets.Value(\'string\'),'), (r'features\s*=\s*tfds.features.FeaturesDict\(', r'features=datasets.Features('), (r'tfds\.features\.FeaturesDict\(', r'dict('), (r'The TensorFlow Datasets Authors', r'The TensorFlow Datasets Authors and the HuggingFace Datasets Authors'), (r'tfds\.', r'datasets.'), (r'dl_manager\.manual_dir', r'self.config.data_dir'), (r'self\.builder_config', r'self.config'), ] def __lowercase ( lowerCamelCase : Namespace ): return ConvertCommand(args.tfds_path , args.datasets_directory ) class _lowercase ( snake_case_ ): @staticmethod def SCREAMING_SNAKE_CASE__ ( snake_case : ArgumentParser ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : Tuple = parser.add_parser( 'convert' , help='Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.' , ) train_parser.add_argument( '--tfds_path' , type=snake_case , required=snake_case , help='Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.' , ) train_parser.add_argument( '--datasets_directory' , type=snake_case , required=snake_case , help='Path to the HuggingFace Datasets folder.' ) train_parser.set_defaults(func=snake_case ) def __init__( self : int , snake_case : str , snake_case : str , *snake_case : Tuple ) -> Any: """simple docstring""" UpperCamelCase_ : List[Any] = get_logger('datasets-cli/converting' ) UpperCamelCase_ : Optional[Any] = tfds_path UpperCamelCase_ : Union[str, Any] = datasets_directory def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Tuple: """simple docstring""" if os.path.isdir(self._tfds_path ): UpperCamelCase_ : Dict = os.path.abspath(self._tfds_path ) elif os.path.isfile(self._tfds_path ): UpperCamelCase_ : int = os.path.dirname(self._tfds_path ) else: raise ValueError('--tfds_path is neither a directory nor a file. Please check path.' ) UpperCamelCase_ : Optional[Any] = os.path.abspath(self._datasets_directory ) self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}" ) UpperCamelCase_ : Optional[Any] = [] UpperCamelCase_ : str = [] UpperCamelCase_ : List[str] = {} if os.path.isdir(self._tfds_path ): UpperCamelCase_ : List[Any] = os.listdir(snake_case ) else: UpperCamelCase_ : Union[str, Any] = [os.path.basename(self._tfds_path )] for f_name in file_names: self._logger.info(f"Looking at file {f_name}" ) UpperCamelCase_ : List[str] = os.path.join(snake_case , snake_case ) UpperCamelCase_ : str = os.path.join(snake_case , snake_case ) if not os.path.isfile(snake_case ) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name: self._logger.info('Skipping file' ) continue with open(snake_case , encoding='utf-8' ) as f: UpperCamelCase_ : Dict = f.readlines() UpperCamelCase_ : int = [] UpperCamelCase_ : Any = False UpperCamelCase_ : List[str] = False UpperCamelCase_ : str = [] for line in lines: UpperCamelCase_ : List[str] = line # Convert imports if "import tensorflow.compat.v2 as tf" in out_line: continue elif "@tfds.core" in out_line: continue elif "builder=self" in out_line: continue elif "import tensorflow_datasets.public_api as tfds" in out_line: UpperCamelCase_ : List[Any] = 'import datasets\n' elif "import tensorflow" in out_line: # order is important here UpperCamelCase_ : Optional[Any] = '' continue elif "from absl import logging" in out_line: UpperCamelCase_ : Dict = 'from datasets import logging\n' elif "getLogger" in out_line: UpperCamelCase_ : Optional[Any] = out_line.replace('getLogger' , 'get_logger' ) elif any(expression in out_line for expression in TO_HIGHLIGHT ): UpperCamelCase_ : str = True UpperCamelCase_ : str = list(filter(lambda snake_case : e in out_line , snake_case ) ) out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(snake_case ) + '\n' ) out_lines.append(snake_case ) out_lines.append(snake_case ) continue else: for pattern, replacement in TO_CONVERT: UpperCamelCase_ : Union[str, Any] = re.sub(snake_case , snake_case , snake_case ) # Take care of saving utilities (to later move them together with main script) if "tensorflow_datasets" in out_line: UpperCamelCase_ : Union[str, Any] = re.match(R'from\stensorflow_datasets.*import\s([^\.\r\n]+)' , snake_case ) tfds_imports.extend(imp.strip() for imp in match.group(1 ).split(',' ) ) UpperCamelCase_ : Any = 'from . import ' + match.group(1 ) # Check we have not forget anything if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line: raise ValueError(f"Error converting {out_line.strip()}" ) if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line: UpperCamelCase_ : Any = True out_lines.append(snake_case ) if is_builder or "wmt" in f_name: # We create a new directory for each dataset UpperCamelCase_ : List[Any] = f_name.replace('.py' , '' ) UpperCamelCase_ : int = os.path.join(snake_case , snake_case ) UpperCamelCase_ : int = os.path.join(snake_case , snake_case ) os.makedirs(snake_case , exist_ok=snake_case ) self._logger.info(f"Adding directory {output_dir}" ) imports_to_builder_map.update({imp: output_dir for imp in tfds_imports} ) else: # Utilities will be moved at the end utils_files.append(snake_case ) if needs_manual_update: with_manual_update.append(snake_case ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.writelines(snake_case ) self._logger.info(f"Converted in {output_file}" ) for utils_file in utils_files: try: UpperCamelCase_ : Dict = os.path.basename(snake_case ) UpperCamelCase_ : Optional[Any] = imports_to_builder_map[f_name.replace('.py' , '' )] self._logger.info(f"Moving {dest_folder} to {utils_file}" ) shutil.copy(snake_case , snake_case ) except KeyError: self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually." ) if with_manual_update: for file_path in with_manual_update: self._logger.warning( f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'." )
50
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class _lowercase ( snake_case_ , snake_case_ , unittest.TestCase ): lowercase = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( { 'feature-extraction': TFMobileBertModel, 'fill-mask': TFMobileBertForMaskedLM, 'question-answering': TFMobileBertForQuestionAnswering, 'text-classification': TFMobileBertForSequenceClassification, 'token-classification': TFMobileBertForTokenClassification, 'zero-shot': TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : Dict=False ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case ) if return_labels: if model_class in get_values(snake_case ): UpperCamelCase_ : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa ) return inputs_dict class _lowercase ( snake_case_ ): def __init__( self : Tuple , snake_case : Optional[int] , snake_case : Optional[Any]=1_3 , snake_case : Optional[Any]=7 , snake_case : Any=True , snake_case : Optional[int]=True , snake_case : Union[str, Any]=True , snake_case : Optional[Any]=True , snake_case : List[Any]=9_9 , snake_case : int=3_2 , snake_case : str=3_2 , snake_case : str=2 , snake_case : List[Any]=4 , snake_case : Tuple=3_7 , snake_case : Any="gelu" , snake_case : str=0.1 , snake_case : Tuple=0.1 , snake_case : Optional[Any]=5_1_2 , snake_case : Optional[int]=1_6 , snake_case : List[Any]=2 , snake_case : Dict=0.02 , snake_case : List[str]=3 , snake_case : Any=4 , snake_case : Any=None , ) -> int: """simple docstring""" UpperCamelCase_ : Union[str, Any] = parent UpperCamelCase_ : Any = batch_size UpperCamelCase_ : List[str] = seq_length UpperCamelCase_ : List[Any] = is_training UpperCamelCase_ : Optional[Any] = use_input_mask UpperCamelCase_ : Tuple = use_token_type_ids UpperCamelCase_ : Optional[int] = use_labels UpperCamelCase_ : Dict = vocab_size UpperCamelCase_ : Dict = hidden_size UpperCamelCase_ : List[str] = num_hidden_layers UpperCamelCase_ : Tuple = num_attention_heads UpperCamelCase_ : Optional[int] = intermediate_size UpperCamelCase_ : int = hidden_act UpperCamelCase_ : List[str] = hidden_dropout_prob UpperCamelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCamelCase_ : Tuple = max_position_embeddings UpperCamelCase_ : Tuple = type_vocab_size UpperCamelCase_ : Optional[Any] = type_sequence_label_size UpperCamelCase_ : Any = initializer_range UpperCamelCase_ : Tuple = num_labels UpperCamelCase_ : Tuple = num_choices UpperCamelCase_ : Tuple = scope UpperCamelCase_ : Dict = embedding_size def SCREAMING_SNAKE_CASE__ ( self : str ) -> str: """simple docstring""" UpperCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_ : Optional[Any] = None if self.use_input_mask: UpperCamelCase_ : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase_ : Union[str, Any] = None if self.use_token_type_ids: UpperCamelCase_ : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase_ : Optional[int] = None UpperCamelCase_ : Tuple = None UpperCamelCase_ : Dict = None if self.use_labels: UpperCamelCase_ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase_ : Tuple = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase_ : Union[str, Any] = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE__ ( self : Dict , snake_case : str , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Tuple , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] ) -> int: """simple docstring""" UpperCamelCase_ : str = TFMobileBertModel(config=snake_case ) UpperCamelCase_ : Optional[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Union[str, Any] = model(snake_case ) UpperCamelCase_ : Optional[Any] = [input_ids, input_mask] UpperCamelCase_ : List[Any] = model(snake_case ) UpperCamelCase_ : Union[str, Any] = model(snake_case ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : Any , snake_case : Dict , snake_case : int ) -> Union[str, Any]: """simple docstring""" UpperCamelCase_ : List[str] = TFMobileBertForMaskedLM(config=snake_case ) UpperCamelCase_ : Optional[int] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case : Any , snake_case : int , snake_case : int , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = TFMobileBertForNextSentencePrediction(config=snake_case ) UpperCamelCase_ : Any = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : List[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case : Optional[Any] , snake_case : List[Any] , snake_case : int , snake_case : str , snake_case : str , snake_case : Any , snake_case : List[Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : List[str] = TFMobileBertForPreTraining(config=snake_case ) UpperCamelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Any = model(snake_case ) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : Dict , snake_case : List[str] , snake_case : str , snake_case : List[str] , snake_case : List[Any] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : List[Any] = self.num_labels UpperCamelCase_ : Dict = TFMobileBertForSequenceClassification(config=snake_case ) UpperCamelCase_ : List[Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : List[Any] = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case : Tuple , snake_case : Any , snake_case : Optional[int] , snake_case : Optional[Any] , snake_case : str , snake_case : List[str] , snake_case : Any ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.num_choices UpperCamelCase_ : Dict = TFMobileBertForMultipleChoice(config=snake_case ) UpperCamelCase_ : int = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : int = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : List[str] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase_ : Optional[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } UpperCamelCase_ : int = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case : Optional[int] , snake_case : Tuple , snake_case : str , snake_case : str , snake_case : Optional[int] , snake_case : str , snake_case : List[str] ) -> Optional[int]: """simple docstring""" UpperCamelCase_ : Any = self.num_labels UpperCamelCase_ : Optional[Any] = TFMobileBertForTokenClassification(config=snake_case ) UpperCamelCase_ : str = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Tuple = model(snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self : int , snake_case : Tuple , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[str] ) -> List[str]: """simple docstring""" UpperCamelCase_ : Optional[Any] = TFMobileBertForQuestionAnswering(config=snake_case ) UpperCamelCase_ : int = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} UpperCamelCase_ : Tuple = model(snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : Tuple = self.prepare_config_and_inputs() ( ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ( UpperCamelCase_ ), ) : Union[str, Any] = config_and_inputs UpperCamelCase_ : Tuple = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> int: """simple docstring""" UpperCamelCase_ : Union[str, Any] = TFMobileBertModelTest.TFMobileBertModelTester(self ) UpperCamelCase_ : str = ConfigTester(self , config_class=snake_case , hidden_size=3_7 ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self : int ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" UpperCamelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> str: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Dict: """simple docstring""" UpperCamelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : int ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> str: """simple docstring""" UpperCamelCase_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> str: """simple docstring""" UpperCamelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case ) @slow def SCREAMING_SNAKE_CASE__ ( self : str ) -> Tuple: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: UpperCamelCase_ : Optional[Any] = TFMobileBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_tf class _lowercase ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: """simple docstring""" UpperCamelCase_ : Any = TFMobileBertForPreTraining.from_pretrained('google/mobilebert-uncased' ) UpperCamelCase_ : List[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase_ : List[str] = model(snake_case )[0] UpperCamelCase_ : Any = [1, 6, 3_0_5_2_2] self.assertEqual(output.shape , snake_case ) UpperCamelCase_ : Dict = tf.constant( [ [ [-4.5919547, -9.248295, -9.645256], [-6.7306175, -6.440284, -6.6052837], [-7.2743506, -6.7847915, -6.024673], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 )
50
1
"""simple docstring""" from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): import torch from transformers.modeling_outputs import BaseModelOutput from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): def __init__( self , **lowercase ) -> Optional[int]: super().__init__(**lowercase ) if self.framework == "tf": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) requires_backends(self , """vision""" ) self.check_model_type(lowercase ) def __call__( self , lowercase , lowercase = None , **lowercase , ) -> List[str]: if "text_queries" in kwargs: lowerCAmelCase = kwargs.pop("""text_queries""" ) if isinstance(lowercase , (str, Image.Image) ): lowerCAmelCase = {"""image""": image, """candidate_labels""": candidate_labels} else: lowerCAmelCase = image lowerCAmelCase = super().__call__(lowercase , **lowercase ) return results def _snake_case ( self , **lowercase ) -> List[str]: lowerCAmelCase = {} if "threshold" in kwargs: lowerCAmelCase = kwargs["""threshold"""] if "top_k" in kwargs: lowerCAmelCase = kwargs["""top_k"""] return {}, {}, postprocess_params def _snake_case ( self , lowercase ) -> List[str]: lowerCAmelCase = load_image(inputs["""image"""] ) lowerCAmelCase = inputs["""candidate_labels"""] if isinstance(lowercase , lowercase ): lowerCAmelCase = candidate_labels.split(""",""" ) lowerCAmelCase = torch.tensor([[image.height, image.width]] , dtype=torch.intaa ) for i, candidate_label in enumerate(lowercase ): lowerCAmelCase = self.tokenizer(lowercase , return_tensors=self.framework ) lowerCAmelCase = self.image_processor(lowercase , return_tensors=self.framework ) yield { "is_last": i == len(lowercase ) - 1, "target_size": target_size, "candidate_label": candidate_label, **text_inputs, **image_features, } def _snake_case ( self , lowercase ) -> str: lowerCAmelCase = model_inputs.pop("""target_size""" ) lowerCAmelCase = model_inputs.pop("""candidate_label""" ) lowerCAmelCase = model_inputs.pop("""is_last""" ) lowerCAmelCase = self.model(**lowercase ) lowerCAmelCase = {"""target_size""": target_size, """candidate_label""": candidate_label, """is_last""": is_last, **outputs} return model_outputs def _snake_case ( self , lowercase , lowercase=0.1 , lowercase=None ) -> List[str]: lowerCAmelCase = [] for model_output in model_outputs: lowerCAmelCase = model_output["""candidate_label"""] lowerCAmelCase = BaseModelOutput(lowercase ) lowerCAmelCase = self.image_processor.post_process_object_detection( outputs=lowercase , threshold=lowercase , target_sizes=model_output["""target_size"""] )[0] for index in outputs["scores"].nonzero(): lowerCAmelCase = outputs["""scores"""][index].item() lowerCAmelCase = self._get_bounding_box(outputs["""boxes"""][index][0] ) lowerCAmelCase = {"""score""": score, """label""": label, """box""": box} results.append(lowercase ) lowerCAmelCase = sorted(lowercase , key=lambda lowercase : x["score"] , reverse=lowercase ) if top_k: lowerCAmelCase = results[:top_k] return results def _snake_case ( self , lowercase ) -> Dict[str, int]: if self.framework != "pt": raise ValueError("""The ZeroShotObjectDetectionPipeline is only available in PyTorch.""" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = box.int().tolist() lowerCAmelCase = { """xmin""": xmin, """ymin""": ymin, """xmax""": xmax, """ymax""": ymax, } return bbox
46
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _SCREAMING_SNAKE_CASE = Features({'text': Value('string' )} ) _SCREAMING_SNAKE_CASE = Features({} ) _SCREAMING_SNAKE_CASE = "text" @property def _snake_case ( self ) -> Dict[str, str]: return {self.text_column: "text"}
46
1
"""simple docstring""" import json import os import unittest from transformers.models.ctrl.tokenization_ctrl import VOCAB_FILES_NAMES, CTRLTokenizer from ...test_tokenization_common import TokenizerTesterMixin class UpperCamelCase__( a_ , unittest.TestCase ): lowerCAmelCase__ : List[Any] = CTRLTokenizer lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Optional[int] = False def snake_case__ ( self ) -> List[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A__ = ['adapt', 're@@', 'a@@', 'apt', 'c@@', 't', '<unk>'] A__ = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) A__ = ['#version: 0.2', 'a p', 'ap t</w>', 'r e', 'a d', 'ad apt</w>', ''] A__ = {'unk_token': '<unk>'} A__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) A__ = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCAmelCase ) ) def snake_case__ ( self ,**__UpperCAmelCase ) -> List[str]: kwargs.update(self.special_tokens_map ) return CTRLTokenizer.from_pretrained(self.tmpdirname ,**__UpperCAmelCase ) def snake_case__ ( self ,__UpperCAmelCase ) -> Optional[int]: A__ = 'adapt react readapt apt' A__ = 'adapt react readapt apt' return input_text, output_text def snake_case__ ( self ) -> Optional[Any]: A__ = CTRLTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) A__ = 'adapt react readapt apt' A__ = 'adapt re@@ a@@ c@@ t re@@ adapt apt'.split() A__ = tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase ,__UpperCAmelCase ) A__ = tokens + [tokenizer.unk_token] A__ = [0, 1, 2, 4, 5, 1, 0, 3, 6] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) ,__UpperCAmelCase )
350
"""simple docstring""" __lowerCamelCase = "\n# Transformers 설치 방법\n! pip install transformers datasets\n# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" __lowerCamelCase = [{"type": "code", "content": INSTALL_CONTENT}] __lowerCamelCase = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
154
0
import os import pytest import yaml from datasets.features.features import Features, Value from datasets.info import DatasetInfo, DatasetInfosDict @pytest.mark.parametrize( "files" ,[ ["full:README.md", "dataset_infos.json"], ["empty:README.md", "dataset_infos.json"], ["dataset_infos.json"], ["full:README.md"], ] ,) def __snake_case ( __UpperCamelCase : Any ,__UpperCamelCase : int ): """simple docstring""" A_ = tmp_path_factory.mktemp("dset_infos_dir" ) if "full:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("---\ndataset_info:\n dataset_size: 42\n---" ) if "empty:README.md" in files: with open(dataset_infos_dir / "README.md" ,"w" ) as f: f.write("" ) # we want to support dataset_infos.json for backward compatibility if "dataset_infos.json" in files: with open(dataset_infos_dir / "dataset_infos.json" ,"w" ) as f: f.write("{\"default\": {\"dataset_size\": 42}}" ) A_ = DatasetInfosDict.from_directory(__lowercase ) assert dataset_infos assert dataset_infos["default"].dataset_size == 42 @pytest.mark.parametrize( "dataset_info" ,[ DatasetInfo(), DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,), ] ,) def __snake_case ( __UpperCamelCase : Tuple ,__UpperCamelCase : DatasetInfo ): """simple docstring""" A_ = str(__lowercase ) dataset_info.write_to_directory(__lowercase ) A_ = DatasetInfo.from_directory(__lowercase ) assert dataset_info == reloaded assert os.path.exists(os.path.join(__lowercase ,"dataset_info.json" ) ) def __snake_case ( ): """simple docstring""" A_ = DatasetInfo( description="foo" ,citation="bar" ,homepage="https://foo.bar" ,license="CC0" ,features=Features({"a": Value("int32" )} ) ,post_processed={} ,supervised_keys=() ,task_templates=[] ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train", "num_examples": 42}] ,download_checksums={} ,download_size=1337 ,post_processing_size=442 ,dataset_size=1234 ,size_in_bytes=1337 + 442 + 1234 ,) A_ = dataset_info._to_yaml_dict() assert sorted(__lowercase ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML ) for key in DatasetInfo._INCLUDED_INFO_IN_YAML: assert key in dataset_info_yaml_dict assert isinstance(dataset_info_yaml_dict[key] ,(list, dict, int, str) ) A_ = yaml.safe_dump(__lowercase ) A_ = yaml.safe_load(__lowercase ) assert dataset_info_yaml_dict == reloaded def __snake_case ( ): """simple docstring""" A_ = DatasetInfo() A_ = dataset_info._to_yaml_dict() assert dataset_info_yaml_dict == {} @pytest.mark.parametrize( "dataset_infos_dict" ,[ DatasetInfosDict(), DatasetInfosDict({"default": DatasetInfo()} ), DatasetInfosDict({"my_config_name": DatasetInfo()} ), DatasetInfosDict( { "default": DatasetInfo( description="foo" ,features=Features({"a": Value("int32" )} ) ,builder_name="builder" ,config_name="config" ,version="1.0.0" ,splits=[{"name": "train"}] ,download_size=42 ,) } ), DatasetInfosDict( { "v1": DatasetInfo(dataset_size=42 ), "v2": DatasetInfo(dataset_size=1337 ), } ), ] ,) def __snake_case ( __UpperCamelCase : int ,__UpperCamelCase : DatasetInfosDict ): """simple docstring""" A_ = str(__lowercase ) dataset_infos_dict.write_to_directory(__lowercase ) A_ = DatasetInfosDict.from_directory(__lowercase ) # the config_name of the dataset_infos_dict take over the attribute for config_name, dataset_info in dataset_infos_dict.items(): A_ = config_name # the yaml representation doesn't include fields like description or citation # so we just test that we can recover what we can from the yaml A_ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() ) assert dataset_infos_dict == reloaded if dataset_infos_dict: assert os.path.exists(os.path.join(__lowercase ,"README.md" ) )
312
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: __SCREAMING_SNAKE_CASE :List[Any] = None __SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE :List[str] = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} __SCREAMING_SNAKE_CASE :List[Any] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json''', }, } __SCREAMING_SNAKE_CASE :Optional[Any] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __SCREAMING_SNAKE_CASE :Optional[int] = '''▁''' class A_ ( lowerCAmelCase_ ): _lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES _lowerCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : int = AlbertTokenizer def __init__( self : Optional[Any] , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=None , snake_case_ : Optional[Any]=True , snake_case_ : str=True , snake_case_ : Tuple=False , snake_case_ : List[Any]="[CLS]" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : str="<unk>" , snake_case_ : Union[str, Any]="[SEP]" , snake_case_ : List[Any]="<pad>" , snake_case_ : List[str]="[CLS]" , snake_case_ : int="[MASK]" , **snake_case_ : Any , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _UpperCAmelCase = ( AddedToken(snake_case_ , lstrip=snake_case_ , rstrip=snake_case_ , normalized=snake_case_ ) if isinstance(snake_case_ , snake_case_ ) else mask_token ) super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , remove_space=snake_case_ , keep_accents=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , **snake_case_ , ) _UpperCAmelCase = do_lower_case _UpperCAmelCase = remove_space _UpperCAmelCase = keep_accents _UpperCAmelCase = vocab_file _UpperCAmelCase = False if not self.vocab_file else True def lowercase ( self : Union[str, Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowercase ( self : Dict , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): _UpperCAmelCase = [self.sep_token_id] _UpperCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Optional[Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return _UpperCAmelCase = os.path.join( snake_case_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case_ ): copyfile(self.vocab_file , snake_case_ ) return (out_vocab_file,)
22
0
"""simple docstring""" # Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position lowerCamelCase_ = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip lowerCamelCase_ = concatenate_datasets lowerCamelCase_ = DownloadConfig lowerCamelCase_ = DownloadManager lowerCamelCase_ = DownloadMode lowerCamelCase_ = DownloadConfig lowerCamelCase_ = DownloadMode lowerCamelCase_ = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
253
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { '''microsoft/table-transformer-detection''': ( '''https://huggingface.co/microsoft/table-transformer-detection/resolve/main/config.json''' ), } class UpperCamelCase_ (__A ): __magic_name__ = '''table-transformer''' __magic_name__ = ['''past_key_values'''] __magic_name__ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', } def __init__( self : List[Any] , lowerCAmelCase_ : List[Any]=True , lowerCAmelCase_ : Union[str, Any]=None , lowerCAmelCase_ : Optional[Any]=3 , lowerCAmelCase_ : Optional[Any]=100 , lowerCAmelCase_ : Optional[int]=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Tuple=8 , lowerCAmelCase_ : Dict=6 , lowerCAmelCase_ : List[Any]=2_048 , lowerCAmelCase_ : Optional[int]=8 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : str=True , lowerCAmelCase_ : Optional[int]="relu" , lowerCAmelCase_ : List[Any]=256 , lowerCAmelCase_ : Optional[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.0 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Dict=0.0_2 , lowerCAmelCase_ : Any=1.0 , lowerCAmelCase_ : Any=False , lowerCAmelCase_ : Dict="sine" , lowerCAmelCase_ : Optional[Any]="resnet50" , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : int=1 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : Any=1 , lowerCAmelCase_ : List[str]=1 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Optional[Any]=0.1 , **lowerCAmelCase_ : Dict , ) -> Union[str, Any]: if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) UpperCAmelCase_ : Union[str, Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Dict = backbone_config.get("model_type" ) UpperCAmelCase_ : str = CONFIG_MAPPING[backbone_model_type] UpperCAmelCase_ : Any = config_class.from_dict(lowerCAmelCase_ ) # set timm attributes to None UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : str = None, None, None UpperCAmelCase_ : int = use_timm_backbone UpperCAmelCase_ : int = backbone_config UpperCAmelCase_ : Dict = num_channels UpperCAmelCase_ : Optional[Any] = num_queries UpperCAmelCase_ : List[str] = d_model UpperCAmelCase_ : Union[str, Any] = encoder_ffn_dim UpperCAmelCase_ : Optional[Any] = encoder_layers UpperCAmelCase_ : List[str] = encoder_attention_heads UpperCAmelCase_ : int = decoder_ffn_dim UpperCAmelCase_ : int = decoder_layers UpperCAmelCase_ : Optional[int] = decoder_attention_heads UpperCAmelCase_ : List[str] = dropout UpperCAmelCase_ : Dict = attention_dropout UpperCAmelCase_ : Union[str, Any] = activation_dropout UpperCAmelCase_ : Optional[int] = activation_function UpperCAmelCase_ : int = init_std UpperCAmelCase_ : Any = init_xavier_std UpperCAmelCase_ : Union[str, Any] = encoder_layerdrop UpperCAmelCase_ : Dict = decoder_layerdrop UpperCAmelCase_ : Union[str, Any] = encoder_layers UpperCAmelCase_ : Any = auxiliary_loss UpperCAmelCase_ : List[str] = position_embedding_type UpperCAmelCase_ : Dict = backbone UpperCAmelCase_ : Optional[int] = use_pretrained_backbone UpperCAmelCase_ : Tuple = dilation # Hungarian matcher UpperCAmelCase_ : Optional[Any] = class_cost UpperCAmelCase_ : List[Any] = bbox_cost UpperCAmelCase_ : Optional[int] = giou_cost # Loss coefficients UpperCAmelCase_ : Optional[int] = mask_loss_coefficient UpperCAmelCase_ : List[str] = dice_loss_coefficient UpperCAmelCase_ : Union[str, Any] = bbox_loss_coefficient UpperCAmelCase_ : Union[str, Any] = giou_loss_coefficient UpperCAmelCase_ : Dict = eos_coefficient super().__init__(is_encoder_decoder=lowerCAmelCase_ , **lowerCAmelCase_ ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return self.d_model class UpperCamelCase_ (__A ): __magic_name__ = version.parse('''1.11''' ) @property def _SCREAMING_SNAKE_CASE ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> float: return 1e-5 @property def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> int: return 12
253
1
import json import os import tempfile import transformers import datasets from utils import generate_example_dataset, get_duration UpperCAmelCase_ = 500_000 UpperCAmelCase_ , UpperCAmelCase_ = os.path.split(__file__) UpperCAmelCase_ = os.path.join(RESULTS_BASEPATH, 'results', RESULTS_FILENAME.replace('.py', '.json')) @get_duration def lowerCamelCase__ ( A__ : datasets.Dataset , **A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = dataset.map(**A__ ) @get_duration def lowerCamelCase__ ( A__ : datasets.Dataset , **A__ : Optional[Any] ): '''simple docstring''' __lowerCamelCase = dataset.filter(**A__ ) def lowerCamelCase__ ( ): '''simple docstring''' __lowerCamelCase = {"""num examples""": SPEED_TEST_N_EXAMPLES} with tempfile.TemporaryDirectory() as tmp_dir: __lowerCamelCase = datasets.Features({"""text""": datasets.Value("""string""" ), """numbers""": datasets.Value("""float32""" )} ) __lowerCamelCase = generate_example_dataset( os.path.join(A__ , """dataset.arrow""" ) , A__ , num_examples=A__ ) __lowerCamelCase = transformers.AutoTokenizer.from_pretrained("""bert-base-cased""" , use_fast=A__ ) def tokenize(A__ : str ): return tokenizer(examples["""text"""] ) __lowerCamelCase = map(A__ ) __lowerCamelCase = map(A__ , batched=A__ ) __lowerCamelCase = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type="""numpy""" ): __lowerCamelCase = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type="""pandas""" ): __lowerCamelCase = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type="""torch""" , columns="""numbers""" ): __lowerCamelCase = map(A__ , function=lambda A__ : None , batched=A__ ) with dataset.formatted_as(type="""tensorflow""" , columns="""numbers""" ): __lowerCamelCase = map(A__ , function=lambda A__ : None , batched=A__ ) __lowerCamelCase = map(A__ , function=A__ , batched=A__ ) __lowerCamelCase = filter(A__ ) # Activate later when tokenizer support batched inputs # with dataset.formatted_as(type='numpy'): # times[func.__name__ + " fast-tokenizer batched numpy"] = func(dataset, function=tokenize, batched=True) with open(A__ , """wb""" ) as f: f.write(json.dumps(A__ ).encode("""utf-8""" ) ) if __name__ == "__main__": # useful to run the profiler benchmark_map_filter()
12
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version('>=', FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType UpperCAmelCase_ = get_logger(__name__) def lowerCamelCase__ ( A__ : Union[str, Any] , A__ : str , A__ : Any , A__ : Dict , A__ : Any=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) if accelerator.process_index == 0: logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving model to {output_model_file}' ) torch.save(A__ , A__ ) logger.info(f'Model saved to {output_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving model to {ckpt_dir}' ) __lowerCamelCase = {"""model""": state_dict} dist_cp.save_state_dict( state_dict=A__ , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Model saved to {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : Dict , A__ : int , A__ : List[str] , A__ : Any=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(A__ ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( """Set the `sync_module_states` flag to `True` so that model states are synced across processes when """ """initializing FSDP object""" ) return __lowerCamelCase = f'{MODEL_NAME}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}.bin' __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: __lowerCamelCase = ( f'{MODEL_NAME}_rank{accelerator.process_index}.bin' if model_index == 0 else f'{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading model from {input_model_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Model loaded from {input_model_file}' ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: __lowerCamelCase = ( os.path.join(A__ , f'{MODEL_NAME}_{model_index}' ) if f'{MODEL_NAME}' not in input_dir else input_dir ) logger.info(f'Loading model from {ckpt_dir}' ) __lowerCamelCase = {"""model""": model.state_dict()} dist_cp.load_state_dict( state_dict=A__ , storage_reader=dist_cp.FileSystemReader(A__ ) , planner=DefaultLoadPlanner() , ) __lowerCamelCase = state_dict["""model"""] logger.info(f'Model loaded from {ckpt_dir}' ) model.load_state_dict(A__ ) def lowerCamelCase__ ( A__ : List[str] , A__ : List[str] , A__ : str , A__ : Dict , A__ : Optional[Any] , A__ : Optional[int]=0 ): '''simple docstring''' os.makedirs(A__ , exist_ok=A__ ) with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): __lowerCamelCase = FSDP.optim_state_dict(A__ , A__ ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Saving Optimizer state to {output_optimizer_file}' ) torch.save(A__ , A__ ) logger.info(f'Optimizer state saved in {output_optimizer_file}' ) else: __lowerCamelCase = os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) os.makedirs(A__ , exist_ok=A__ ) logger.info(f'Saving Optimizer state to {ckpt_dir}' ) dist_cp.save_state_dict( state_dict={"""optimizer""": optim_state} , storage_writer=dist_cp.FileSystemWriter(A__ ) , planner=DefaultSavePlanner() , ) logger.info(f'Optimizer state saved in {ckpt_dir}' ) def lowerCamelCase__ ( A__ : int , A__ : List[str] , A__ : int , A__ : Any , A__ : Union[str, Any] , A__ : List[Any]=0 ): '''simple docstring''' accelerator.wait_for_everyone() with FSDP.state_dict_type( A__ , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: __lowerCamelCase = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: __lowerCamelCase = ( f'{OPTIMIZER_NAME}.bin' if optimizer_index == 0 else f'{OPTIMIZER_NAME}_{optimizer_index}.bin' ) __lowerCamelCase = os.path.join(A__ , A__ ) logger.info(f'Loading Optimizer state from {input_optimizer_file}' ) __lowerCamelCase = torch.load(A__ ) logger.info(f'Optimizer state loaded from {input_optimizer_file}' ) else: __lowerCamelCase = ( os.path.join(A__ , f'{OPTIMIZER_NAME}_{optimizer_index}' ) if f'{OPTIMIZER_NAME}' not in input_dir else input_dir ) logger.info(f'Loading Optimizer from {ckpt_dir}' ) __lowerCamelCase = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key="""optimizer""" , storage_reader=dist_cp.FileSystemReader(A__ ) , ) __lowerCamelCase = optim_state["""optimizer"""] logger.info(f'Optimizer loaded from {ckpt_dir}' ) __lowerCamelCase = FSDP.optim_state_dict_to_load(A__ , A__ , A__ ) optimizer.load_state_dict(A__ )
12
1
'''simple docstring''' from random import randint from tempfile import TemporaryFile import numpy as np def _lowerCamelCase ( lowerCamelCase_ : str , lowerCamelCase_ : List[str] , lowerCamelCase_ : int ): """simple docstring""" UpperCAmelCase_ : Optional[int] = 0 if start < end: UpperCAmelCase_ : Optional[int] = randint(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : List[str] = a[end] UpperCAmelCase_ : str = a[pivot] UpperCAmelCase_ : List[Any] = temp UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = _in_place_partition(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) count += _in_place_quick_sort(lowerCamelCase_ , lowerCamelCase_ , p - 1 ) count += _in_place_quick_sort(lowerCamelCase_ , p + 1 , lowerCamelCase_ ) return count def _lowerCamelCase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : str ): """simple docstring""" UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[int] = randint(lowerCamelCase_ , lowerCamelCase_ ) UpperCAmelCase_ : int = a[end] UpperCAmelCase_ : str = a[pivot] UpperCAmelCase_ : Dict = temp UpperCAmelCase_ : List[Any] = start - 1 for index in range(lowerCamelCase_ , lowerCamelCase_ ): count += 1 if a[index] < a[end]: # check if current val is less than pivot value UpperCAmelCase_ : int = new_pivot_index + 1 UpperCAmelCase_ : List[Any] = a[new_pivot_index] UpperCAmelCase_ : List[Any] = a[index] UpperCAmelCase_ : Optional[int] = temp UpperCAmelCase_ : int = a[new_pivot_index + 1] UpperCAmelCase_ : Any = a[end] UpperCAmelCase_ : List[Any] = temp return new_pivot_index + 1, count snake_case__ : Optional[int] = TemporaryFile() snake_case__ : Any = 100 # 1000 elements are to be sorted snake_case__ , snake_case__ : Union[str, Any] = 0, 1 # mean and standard deviation snake_case__ : Tuple = np.random.normal(mu, sigma, p) np.save(outfile, X) print('''The array is''') print(X) outfile.seek(0) # using the same array snake_case__ : str = np.load(outfile) snake_case__ : Optional[Any] = len(M) - 1 snake_case__ : Union[str, Any] = _in_place_quick_sort(M, 0, r) print( '''No of Comparisons for 100 elements selected from a standard normal distribution''' '''is :''' ) print(z)
274
'''simple docstring''' def _lowerCamelCase ( lowerCamelCase_ : int , lowerCamelCase_ : int ): """simple docstring""" return int(input_a == input_a == 0 ) def _lowerCamelCase ( ): """simple docstring""" print('Truth Table of NOR Gate:' ) print('| Input 1 | Input 2 | Output |' ) print(F'''| 0 | 0 | {nor_gate(0 , 0 )} |''' ) print(F'''| 0 | 1 | {nor_gate(0 , 1 )} |''' ) print(F'''| 1 | 0 | {nor_gate(1 , 0 )} |''' ) print(F'''| 1 | 1 | {nor_gate(1 , 1 )} |''' ) if __name__ == "__main__": import doctest doctest.testmod() main()
274
1
from __future__ import annotations class lowerCAmelCase : def __init__( self : str , UpperCAmelCase : int ) -> None: lowerCamelCase__ : int = data lowerCamelCase__ : Node | None = None lowerCamelCase__ : Node | None = None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> None: # In Order traversal of the tree if tree: display(tree.left ) print(tree.data ) display(tree.right ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> bool: if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def SCREAMING_SNAKE_CASE ( ) -> None: # Main function for testing. lowerCamelCase__ : Tuple = Node(1 ) lowerCamelCase__ : Tuple = Node(2 ) lowerCamelCase__ : List[Any] = Node(3 ) lowerCamelCase__ : Optional[Any] = Node(4 ) lowerCamelCase__ : Dict = Node(5 ) lowerCamelCase__ : Union[str, Any] = Node(6 ) lowerCamelCase__ : Optional[int] = Node(7 ) lowerCamelCase__ : Dict = Node(8 ) lowerCamelCase__ : List[Any] = Node(9 ) print(is_full_binary_tree(_UpperCAmelCase ) ) print(depth_of_tree(_UpperCAmelCase ) ) print('Tree is: ' ) display(_UpperCAmelCase ) if __name__ == "__main__": main()
50
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase : def __init__( self : Tuple , UpperCAmelCase : Dict , UpperCAmelCase : Union[str, Any]=99 , UpperCAmelCase : str=13 , UpperCAmelCase : List[str]=7 , UpperCAmelCase : str=9 , UpperCAmelCase : Optional[int]=True , UpperCAmelCase : str=True , UpperCAmelCase : Any=False , UpperCAmelCase : Union[str, Any]=32 , UpperCAmelCase : List[str]=5 , UpperCAmelCase : Tuple=4 , UpperCAmelCase : Union[str, Any]=37 , UpperCAmelCase : int=8 , UpperCAmelCase : List[str]=0.1 , UpperCAmelCase : Any=0.0_0_2 , UpperCAmelCase : Optional[Any]=1 , UpperCAmelCase : List[Any]=0 , UpperCAmelCase : Union[str, Any]=0 , UpperCAmelCase : Tuple=None , UpperCAmelCase : Optional[Any]=None , ) -> Union[str, Any]: lowerCamelCase__ : int = parent lowerCamelCase__ : Any = batch_size lowerCamelCase__ : Optional[int] = encoder_seq_length lowerCamelCase__ : int = decoder_seq_length # For common tests lowerCamelCase__ : List[str] = self.decoder_seq_length lowerCamelCase__ : Optional[int] = is_training lowerCamelCase__ : List[Any] = use_attention_mask lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Union[str, Any] = vocab_size lowerCamelCase__ : Union[str, Any] = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : str = d_ff lowerCamelCase__ : Optional[Any] = relative_attention_num_buckets lowerCamelCase__ : Any = dropout_rate lowerCamelCase__ : Any = initializer_factor lowerCamelCase__ : Union[str, Any] = eos_token_id lowerCamelCase__ : List[str] = pad_token_id lowerCamelCase__ : List[str] = decoder_start_token_id lowerCamelCase__ : List[Any] = None lowerCamelCase__ : Optional[Any] = decoder_layers def A_ ( self : List[Any] ) -> int: return TaConfig.from_pretrained('google/umt5-base' ) def A_ ( self : List[Any] , UpperCAmelCase : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Tuple=None , UpperCAmelCase : List[str]=None , UpperCAmelCase : str=None , UpperCAmelCase : Optional[Any]=None , UpperCAmelCase : Optional[Any]=None , ) -> List[str]: if attention_mask is None: lowerCamelCase__ : Optional[Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase__ : Optional[Any] = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase__ : int = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=UpperCAmelCase ) if decoder_head_mask is None: lowerCamelCase__ : Dict = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) if cross_attn_head_mask is None: lowerCamelCase__ : Dict = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=UpperCAmelCase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def A_ ( self : str ) -> List[str]: lowerCamelCase__ : Any = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase__ : List[str] = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Union[str, Any] = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase__ : Dict = self.get_config() lowerCamelCase__ : Tuple = config.num_attention_heads lowerCamelCase__ : Any = self.prepare_inputs_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return config, input_dict def A_ ( self : Tuple ) -> Union[str, Any]: lowerCamelCase__ , lowerCamelCase__ : Dict = self.prepare_config_and_inputs() return config, inputs_dict def A_ ( self : Optional[int] ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Union[str, Any] ) -> Dict: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def A_ ( self : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : int , UpperCAmelCase : str , UpperCAmelCase : Any , UpperCAmelCase : Dict , ) -> str: lowerCamelCase__ : Dict = UMTaModel(config=UpperCAmelCase ) model.to(UpperCAmelCase ) model.eval() lowerCamelCase__ : Optional[int] = model( input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase , attention_mask=UpperCAmelCase , decoder_attention_mask=UpperCAmelCase , ) lowerCamelCase__ : Any = model(input_ids=UpperCAmelCase , decoder_input_ids=UpperCAmelCase ) lowerCamelCase__ : Dict = result.last_hidden_state lowerCamelCase__ : Any = result.past_key_values lowerCamelCase__ : List[Any] = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(UpperCAmelCase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def A_ ( self : Optional[int] , UpperCAmelCase : str , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[Any] , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[Any] , ) -> Optional[int]: lowerCamelCase__ : List[Any] = UMTaModel(config=UpperCAmelCase ).get_decoder().to(UpperCAmelCase ).eval() # first forward pass lowerCamelCase__ : Tuple = model(UpperCAmelCase , use_cache=UpperCAmelCase ) lowerCamelCase__ : List[Any] = model(UpperCAmelCase ) lowerCamelCase__ : int = model(UpperCAmelCase , use_cache=UpperCAmelCase ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) ) self.parent.assertTrue(len(UpperCAmelCase ) == len(UpperCAmelCase ) + 1 ) lowerCamelCase__ , lowerCamelCase__ : Dict = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase__ : Optional[int] = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase__ : List[Any] = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase__ : List[str] = model(UpperCAmelCase )['last_hidden_state'] lowerCamelCase__ : str = model(UpperCAmelCase , past_key_values=UpperCAmelCase )['last_hidden_state'] # select random slice lowerCamelCase__ : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase__ : List[str] = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase , UpperCAmelCase , atol=1e-3 ) ) def A_ ( self : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , ) -> Tuple: lowerCamelCase__ : Union[str, Any] = UMTaModel(config=UpperCAmelCase ).to(UpperCAmelCase ).half().eval() lowerCamelCase__ : Optional[int] = model(**UpperCAmelCase )['last_hidden_state'] self.parent.assertFalse(torch.isnan(UpperCAmelCase ).any().item() ) @require_torch class lowerCAmelCase ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase, unittest.TestCase ): UpperCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) UpperCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () UpperCAmelCase__ = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests UpperCAmelCase__ = [0.8, 0.9] def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Union[str, Any] = UMTaModelTester(self ) @unittest.skip('Test has a segmentation fault on torch 1.8.0' ) def A_ ( self : Tuple ) -> int: lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Tuple = UMTaModel(config_and_inputs[0] ).to(UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( UpperCAmelCase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , F"""{tmpdirname}/t5_test.onnx""" , export_params=UpperCAmelCase , opset_version=9 , input_names=['input_ids', 'decoder_input_ids'] , ) @unittest.skipIf(torch_device == 'cpu' , 'Cant do half precision' ) def A_ ( self : Tuple ) -> Optional[Any]: lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*UpperCAmelCase ) def A_ ( self : List[Any] ) -> str: lowerCamelCase__ : int = ['encoder_attentions', 'decoder_attentions', 'cross_attentions'] lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs[0] lowerCamelCase__ : Any = UMTaForConditionalGeneration(UpperCAmelCase ).eval() model.to(UpperCAmelCase ) lowerCamelCase__ : Tuple = { 'head_mask': torch.zeros(config.num_layers , config.num_heads , device=UpperCAmelCase ), 'decoder_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), 'cross_attn_head_mask': torch.zeros(config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ), } for attn_name, (name, mask) in zip(UpperCAmelCase , head_masking.items() ): lowerCamelCase__ : Union[str, Any] = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase__ : Union[str, Any] = torch.ones( config.num_decoder_layers , config.num_heads , device=UpperCAmelCase ) lowerCamelCase__ : Tuple = model.generate( config_and_inputs[1]['input_ids'] , num_beams=1 , max_length=3 , output_attentions=UpperCAmelCase , return_dict_in_generate=UpperCAmelCase , **UpperCAmelCase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase__ : Union[str, Any] = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('Does not work on the tiny model as we keep hitting edge cases.' ) def A_ ( self : Optional[Any] ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): @slow @unittest.skip( 'Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged' ) def A_ ( self : Any ) -> int: lowerCamelCase__ : Optional[Any] = UMTaForConditionalGeneration.from_pretrained('google/umt5-small' , return_dict=UpperCAmelCase ).to(UpperCAmelCase ) lowerCamelCase__ : List[str] = AutoTokenizer.from_pretrained('google/umt5-small' , use_fast=UpperCAmelCase , legacy=UpperCAmelCase ) lowerCamelCase__ : Dict = [ 'Bonjour monsieur <extra_id_0> bien <extra_id_1>.', 'No se como puedo <extra_id_0>.', 'This is the reason why we <extra_id_0> them.', 'The <extra_id_0> walks in <extra_id_1>, seats', 'A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.', ] lowerCamelCase__ : Tuple = tokenizer(UpperCAmelCase , return_tensors='pt' , padding=UpperCAmelCase ).input_ids # fmt: off lowerCamelCase__ : Any = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = model.generate(input_ids.to(UpperCAmelCase ) ) lowerCamelCase__ : List[Any] = [ '<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>', '<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', '<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>', ] lowerCamelCase__ : Union[str, Any] = tokenizer.batch_decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase )
50
1
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[int] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = '' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 256 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = 0 def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : Any ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = cva.imread(__a , 0 ) SCREAMING_SNAKE_CASE__ = copy.deepcopy(self.img ) SCREAMING_SNAKE_CASE__ = plt.hist(self.img.ravel() , 256 , [0, 256] , label='''x''' ) SCREAMING_SNAKE_CASE__ = np.sum(__a ) for i in range(len(__a ) ): SCREAMING_SNAKE_CASE__ = x[i] / self.k self.sk += prk SCREAMING_SNAKE_CASE__ = (self.L - 1) * self.sk if self.rem != 0: SCREAMING_SNAKE_CASE__ = int(last % last ) SCREAMING_SNAKE_CASE__ = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(__a ) SCREAMING_SNAKE_CASE__ = int(np.ma.count(self.img ) / self.img[1].size ) SCREAMING_SNAKE_CASE__ = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): SCREAMING_SNAKE_CASE__ = self.img[j][i] if num != self.last_list[num]: SCREAMING_SNAKE_CASE__ = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def lowercase_ ( self : List[Any] ) -> Tuple: plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowercase_ ( self : List[str] ) -> List[str]: cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _SCREAMING_SNAKE_CASE : Union[str, Any] = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''') _SCREAMING_SNAKE_CASE : Any = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
350
from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Any = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : int = { '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class UpperCAmelCase__ ( A__ ): """simple docstring""" a = "decision_transformer" a = ["past_key_values"] a = { "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Tuple , __lowerCamelCase : Any=17 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[Any]=128 , __lowerCamelCase : Union[str, Any]=4096 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=1 , __lowerCamelCase : List[Any]=1024 , __lowerCamelCase : Any=3 , __lowerCamelCase : Dict=1 , __lowerCamelCase : List[Any]=None , __lowerCamelCase : str="relu" , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : int=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : str=1e-5 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : int=True , __lowerCamelCase : Tuple=True , __lowerCamelCase : Optional[int]=5_0256 , __lowerCamelCase : Tuple=5_0256 , __lowerCamelCase : int=False , __lowerCamelCase : Optional[int]=False , **__lowerCamelCase : Tuple , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = state_dim SCREAMING_SNAKE_CASE__ = act_dim SCREAMING_SNAKE_CASE__ = hidden_size SCREAMING_SNAKE_CASE__ = max_ep_len SCREAMING_SNAKE_CASE__ = action_tanh SCREAMING_SNAKE_CASE__ = vocab_size SCREAMING_SNAKE_CASE__ = n_positions SCREAMING_SNAKE_CASE__ = n_layer SCREAMING_SNAKE_CASE__ = n_head SCREAMING_SNAKE_CASE__ = n_inner SCREAMING_SNAKE_CASE__ = activation_function SCREAMING_SNAKE_CASE__ = resid_pdrop SCREAMING_SNAKE_CASE__ = embd_pdrop SCREAMING_SNAKE_CASE__ = attn_pdrop SCREAMING_SNAKE_CASE__ = layer_norm_epsilon SCREAMING_SNAKE_CASE__ = initializer_range SCREAMING_SNAKE_CASE__ = scale_attn_weights SCREAMING_SNAKE_CASE__ = use_cache SCREAMING_SNAKE_CASE__ = scale_attn_by_inverse_layer_idx SCREAMING_SNAKE_CASE__ = reorder_and_upcast_attn SCREAMING_SNAKE_CASE__ = bos_token_id SCREAMING_SNAKE_CASE__ = eos_token_id super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase )
218
0
'''simple docstring''' def _lowerCamelCase ( lowercase : bytes ) -> str: return "".join([hex(lowercase )[2:].zfill(2 ).upper() for byte in list(lowercase )] ) def _lowerCamelCase ( lowercase : str ) -> bytes: # Check data validity, following RFC3548 # https://www.ietf.org/rfc/rfc3548.txt if (len(lowercase ) % 2) != 0: raise ValueError( "Base16 encoded data is invalid:\nData does not have an even number of hex digits." ) # Check the character set - the standard base16 alphabet # is uppercase according to RFC3548 section 6 if not set(lowercase ) <= set("0123456789ABCDEF" ): raise ValueError( "Base16 encoded data is invalid:\nData is not uppercase hex or it contains invalid characters." ) # For every two hexadecimal digits (= a byte), turn it into an integer. # Then, string the result together into bytes, and return it. return bytes(int(data[i] + data[i + 1] , 16 ) for i in range(0 , len(lowercase ) , 2 ) ) if __name__ == "__main__": import doctest doctest.testmod()
63
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A : Optional[Any] = {'configuration_fnet': ['FNET_PRETRAINED_CONFIG_ARCHIVE_MAP', 'FNetConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = ['FNetTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[Any] = ['FNetTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : List[str] = [ 'FNET_PRETRAINED_MODEL_ARCHIVE_LIST', 'FNetForMaskedLM', 'FNetForMultipleChoice', 'FNetForNextSentencePrediction', 'FNetForPreTraining', 'FNetForQuestionAnswering', 'FNetForSequenceClassification', 'FNetForTokenClassification', 'FNetLayer', 'FNetModel', 'FNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
154
0
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __A : Any = '▁' __A : Union[str, Any] = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , unittest.TestCase): _UpperCamelCase:Any = BertGenerationTokenizer _UpperCamelCase:List[str] = False _UpperCamelCase:List[Any] = True def _snake_case ( self )-> Optional[int]: super().setUp() lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _snake_case ( self )-> Any: lowerCamelCase_ ="""<s>""" lowerCamelCase_ =1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )-> Union[str, Any]: lowerCamelCase_ =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , 1002 ) def _snake_case ( self )-> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def _snake_case ( self )-> Any: lowerCamelCase_ =BertGenerationTokenizer(_SCREAMING_SNAKE_CASE , keep_accents=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) , [285, 46, 10, 170, 382] , ) lowerCamelCase_ =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCamelCase_ =tokenizer.convert_tokens_to_ids(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCamelCase_ =tokenizer.convert_ids_to_tokens(_SCREAMING_SNAKE_CASE ) self.assertListEqual( _SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def _snake_case ( self )-> str: return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def _snake_case ( self )-> Optional[int]: lowerCamelCase_ ="""Hello World!""" lowerCamelCase_ =[1_8536, 2260, 101] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @slow def _snake_case ( self )-> List[str]: lowerCamelCase_ =( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCamelCase_ =[ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_SCREAMING_SNAKE_CASE , self.big_tokenizer.encode(_SCREAMING_SNAKE_CASE ) ) @require_torch @slow def _snake_case ( self )-> Any: import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCamelCase_ =list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCamelCase_ =""" """.join(_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.encode_plus(_SCREAMING_SNAKE_CASE , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_SCREAMING_SNAKE_CASE ) lowerCamelCase_ =BertGenerationConfig() lowerCamelCase_ =BertGenerationEncoder(_SCREAMING_SNAKE_CASE ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_SCREAMING_SNAKE_CASE ) model(**_SCREAMING_SNAKE_CASE ) @slow def _snake_case ( self )-> int: # fmt: off lowerCamelCase_ ={"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_SCREAMING_SNAKE_CASE , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
367
import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": __A : Optional[int] = pd.read_csv('sample_data.csv', header=None) __A : Optional[Any] = df.shape[:1][0] # If you're using some other dataset input the target column __A : Tuple = df.iloc[:, 1:2] __A : Tuple = actual_data.values.reshape(len_data, 1) __A : str = MinMaxScaler().fit_transform(actual_data) __A : List[str] = 10 __A : Any = 5 __A : Optional[Any] = 20 __A : List[str] = len_data - periods * look_back __A : str = actual_data[:division] __A : int = actual_data[division - look_back :] __A, __A : List[str] = [], [] __A, __A : Union[str, Any] = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) __A : List[Any] = np.array(train_x) __A : Tuple = np.array(test_x) __A : Any = np.array([list(i.ravel()) for i in train_y]) __A : List[Any] = np.array([list(i.ravel()) for i in test_y]) __A : Union[str, Any] = Sequential() model.add(LSTM(1_28, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(1_28, 1))) model.add(Dense(forward_days)) model.compile(loss='mean_squared_error', optimizer='adam') __A : Tuple = model.fit( x_train, y_train, epochs=1_50, verbose=1, shuffle=True, batch_size=4 ) __A : Optional[int] = model.predict(x_test)
49
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase : Dict = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : Tuple = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def A_ ( a , a , a=8 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 SCREAMING_SNAKE_CASE_ : Optional[int] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class _A ( __magic_name__): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__() self.register_modules( text_encoder=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , unet=_SCREAMING_SNAKE_CASE , scheduler=_SCREAMING_SNAKE_CASE , movq=_SCREAMING_SNAKE_CASE , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if latents is None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = randn_tensor(_SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE , dtype=_SCREAMING_SNAKE_CASE ) else: if latents.shape != shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE_ : str = latents.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : int = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = len(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=77 , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ : Dict = text_inputs.input_ids SCREAMING_SNAKE_CASE_ : Dict = self.tokenizer(_SCREAMING_SNAKE_CASE , padding='longest' , return_tensors='pt' ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : int = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( 'The following part of your input was truncated because CLIP can only handle sequences up to' f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_input_ids.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = text_inputs.attention_mask.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[str] = prompt_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_encoder_hidden_states.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : List[Any] = text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE_ : Optional[int] = [''] * batch_size elif type(_SCREAMING_SNAKE_CASE ) is not type(_SCREAMING_SNAKE_CASE ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(_SCREAMING_SNAKE_CASE )} !=" f" {type(_SCREAMING_SNAKE_CASE )}." ) elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = [negative_prompt] elif batch_size != len(_SCREAMING_SNAKE_CASE ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(_SCREAMING_SNAKE_CASE )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" ' the batch size of `prompt`.' ) else: SCREAMING_SNAKE_CASE_ : Any = negative_prompt SCREAMING_SNAKE_CASE_ : int = self.tokenizer( _SCREAMING_SNAKE_CASE , padding='max_length' , max_length=77 , truncation=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_tensors='pt' , ) SCREAMING_SNAKE_CASE_ : List[str] = uncond_input.input_ids.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : List[Any] = uncond_input.attention_mask.to(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.text_encoder( input_ids=_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ : Dict = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ : int = negative_prompt_embeds.repeat(1 , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = uncond_text_encoder_hidden_states.shape[1] SCREAMING_SNAKE_CASE_ : int = uncond_text_encoder_hidden_states.repeat(1 , _SCREAMING_SNAKE_CASE , 1 ) SCREAMING_SNAKE_CASE_ : Dict = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , _SCREAMING_SNAKE_CASE , -1 ) SCREAMING_SNAKE_CASE_ : int = uncond_text_mask.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) SCREAMING_SNAKE_CASE_ : int = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) SCREAMING_SNAKE_CASE_ : str = torch.device(f"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE_ : List[Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version('>=' , '0.17.0.dev0' ): from accelerate import cpu_offload_with_hook else: raise ImportError('`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.' ) SCREAMING_SNAKE_CASE_ : int = torch.device(f"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to('cpu' , silence_dtype_warnings=_SCREAMING_SNAKE_CASE ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = cpu_offload_with_hook(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) if self.safety_checker is not None: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = cpu_offload_with_hook(self.safety_checker , _SCREAMING_SNAKE_CASE , prev_module_hook=_SCREAMING_SNAKE_CASE ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_ : Dict = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase ( self ): """simple docstring""" if not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_SCREAMING_SNAKE_CASE , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(_SCREAMING_SNAKE_CASE ) def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 512 , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 4.0 , _SCREAMING_SNAKE_CASE = 1 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "pil" , _SCREAMING_SNAKE_CASE = True , ): """simple docstring""" if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = 1 elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = len(_SCREAMING_SNAKE_CASE ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(_SCREAMING_SNAKE_CASE )}" ) SCREAMING_SNAKE_CASE_ : Any = self._execution_device SCREAMING_SNAKE_CASE_ : Any = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ : Optional[Any] = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = self._encode_prompt( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Dict = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : Optional[int] = torch.cat(_SCREAMING_SNAKE_CASE , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : List[Any] = image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : Dict = negative_image_embeds.repeat_interleave(_SCREAMING_SNAKE_CASE , dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=_SCREAMING_SNAKE_CASE ) self.scheduler.set_timesteps(_SCREAMING_SNAKE_CASE , device=_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.scheduler.timesteps SCREAMING_SNAKE_CASE_ : Optional[int] = self.unet.config.in_channels SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = get_new_h_w(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE_ : Optional[Any] = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.scheduler , ) for i, t in enumerate(self.progress_bar(_SCREAMING_SNAKE_CASE ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ : int = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ : Dict = {'text_embeds': prompt_embeds, 'image_embeds': image_embeds} SCREAMING_SNAKE_CASE_ : Any = self.unet( sample=_SCREAMING_SNAKE_CASE , timestep=_SCREAMING_SNAKE_CASE , encoder_hidden_states=_SCREAMING_SNAKE_CASE , added_cond_kwargs=_SCREAMING_SNAKE_CASE , return_dict=_SCREAMING_SNAKE_CASE , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : List[Any] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , 'variance_type' ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.scheduler.step( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , generator=_SCREAMING_SNAKE_CASE , ).prev_sample # post-processing SCREAMING_SNAKE_CASE_ : Dict = self.movq.decode(_SCREAMING_SNAKE_CASE , force_not_quantize=_SCREAMING_SNAKE_CASE )['sample'] if output_type not in ["pt", "np", "pil"]: raise ValueError(f"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_ : Optional[Any] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ : Optional[Any] = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : List[str] = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : Optional[Any] = self.numpy_to_pil(_SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=_SCREAMING_SNAKE_CASE )
253
lowerCAmelCase : Optional[Any] = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' lowerCAmelCase : Dict = [{'type': 'code', 'content': INSTALL_CONTENT}] lowerCAmelCase : int = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
253
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCamelCase : Union[str, Any] = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCamelCase : List[Any] = TaTokenizerFast UpperCamelCase : List[str] = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = [ "MT5EncoderModel", "MT5ForConditionalGeneration", "MT5ForQuestionAnswering", "MT5Model", "MT5PreTrainedModel", "MT5Stack", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[Any] = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCamelCase : Optional[int] = _LazyModule( __name__, globals()["__file__"], _import_structure, extra_objects={"MT5Tokenizer": MTaTokenizer, "MT5TokenizerFast": MTaTokenizerFast}, module_spec=__spec__, )
263
"""simple docstring""" from __future__ import annotations from typing import Any def A ( snake_case :list ) -> int: if not postfix_notation: return 0 __UpperCamelCase = {'+', '-', '*', '/'} __UpperCamelCase = [] for token in postfix_notation: if token in operations: __UpperCamelCase , __UpperCamelCase = stack.pop(), stack.pop() if token == "+": stack.append(a + b ) elif token == "-": stack.append(a - b ) elif token == "*": stack.append(a * b ) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1 ) else: stack.append(a // b ) else: stack.append(int(snake_case ) ) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
263
1
def __lowerCamelCase ( __a :float , __a :float ) -> float: """simple docstring""" if mass < 0: raise ValueError("""The mass of a body cannot be negative""" ) return 0.5 * mass * abs(__a ) * abs(__a ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
274
from math import ceil def __lowerCamelCase ( __a :int = 1_0_0_1 ) -> int: """simple docstring""" A__ = 1 for i in range(1 , int(ceil(n / 2.0 ) ) ): A__ = 2 * i + 1 A__ = 2 * i A__ = total + 4 * odd**2 - 6 * even return total if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution()) else: try: A : List[str] = int(sys.argv[1]) print(solution(n)) except ValueError: print('''Invalid entry - please enter a number''')
274
1
import argparse from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_controlnet_from_original_ckpt if __name__ == "__main__": __lowerCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--original_config_file''', type=str, required=True, help='''The YAML config file corresponding to the original architecture.''', ) parser.add_argument( '''--num_in_channels''', default=None, type=int, help='''The number of input channels. If `None` number of input channels will be automatically inferred.''', ) parser.add_argument( '''--image_size''', default=512, type=int, help=( '''The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2''' ''' Base. Use 768 for Stable Diffusion v2.''' ), ) parser.add_argument( '''--extract_ema''', action='''store_true''', help=( '''Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights''' ''' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield''' ''' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.''' ), ) parser.add_argument( '''--upcast_attention''', action='''store_true''', help=( '''Whether the attention computation should always be upcasted. This is necessary when running stable''' ''' diffusion 2.1.''' ), ) parser.add_argument( '''--from_safetensors''', action='''store_true''', help='''If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.''', ) parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : List[str] ) -> int: """simple docstring""" if string == "True": return True elif string == "False": return False else: raise ValueError(f"""could not parse string as bool {string}""" ) parser.add_argument( '''--use_linear_projection''', help='''Override for use linear projection''', required=False, type=parse_bool ) parser.add_argument('''--cross_attention_dim''', help='''Override for cross attention_dim''', required=False, type=int) __lowerCamelCase : List[Any] = parser.parse_args() __lowerCamelCase : List[str] = download_controlnet_from_original_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, extract_ema=args.extract_ema, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, use_linear_projection=args.use_linear_projection, cross_attention_dim=args.cross_attention_dim, ) controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
204
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): @slow def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_lowercase ).to(_lowercase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) SCREAMING_SNAKE_CASE__ = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids SCREAMING_SNAKE_CASE__ = model(input_ids.to(_lowercase ) , labels=labels.to(_lowercase ) ).loss SCREAMING_SNAKE_CASE__ = -(labels.shape[-1] * loss.item()) SCREAMING_SNAKE_CASE__ = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
204
1
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def UpperCamelCase_( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str ): """simple docstring""" if openai_config_file == "": __a =OpenAIGPTConfig() else: __a =OpenAIGPTConfig.from_json_file(_snake_case ) __a =OpenAIGPTModel(_snake_case ) # Load weights from numpy load_tf_weights_in_openai_gpt(_snake_case , _snake_case , _snake_case ) # Save pytorch-model __a =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __a =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , _snake_case ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(_snake_case , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": _lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--openai_checkpoint_folder_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--openai_config_file", default="", type=str, help=( "An optional config json file corresponding to the pre-trained OpenAI model. \n" "This specifies the model architecture." ), ) _lowerCAmelCase : int = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
218
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time _lowerCAmelCase : Optional[Any] = Lock() def UpperCamelCase_( _snake_case : List[str] , _snake_case : Optional[int] , _snake_case : Dict , _snake_case : Any , _snake_case : List[str] , _snake_case : Tuple , _snake_case : List[str] ): """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_snake_case ) process_lock.release() # receive your right neighbor's value process_lock.acquire() __a =rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left __a =min(_snake_case , _snake_case ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_snake_case ) process_lock.release() # receive your left neighbor's value process_lock.acquire() __a =lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right __a =max(_snake_case , _snake_case ) # after all swaps are performed, send the values back to main result_pipe[1].send(_snake_case ) def UpperCamelCase_( _snake_case : List[str] ): """simple docstring""" __a =[] __a =[] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop __a =Pipe() __a =Pipe() process_array_.append( Process( target=_snake_case , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) __a =temp_rs __a =temp_rr for i in range(1 , len(_snake_case ) - 1 ): __a =Pipe() __a =Pipe() process_array_.append( Process( target=_snake_case , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) __a =temp_rs __a =temp_rr process_array_.append( Process( target=_snake_case , args=( len(_snake_case ) - 1, arr[len(_snake_case ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_snake_case ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_snake_case ) ): __a =result_pipe[p][0].recv() process_array_[p].join() return arr def UpperCamelCase_( ): """simple docstring""" __a =list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_snake_case ) __a =odd_even_transposition(_snake_case ) print('Sorted List\n' ) print(*_snake_case ) if __name__ == "__main__": main()
218
1
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a__ ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) a = get_activation("gelu" ) self.assertTrue(torch.allclose(gelu_python(A ) , torch_builtin(A ) ) ) self.assertFalse(torch.allclose(gelu_python(A ) , gelu_new(A ) ) ) def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = torch.tensor([-100, -1, -0.1, 0, 0.1, 1.0, 100] ) a = get_activation("gelu" ) a = get_activation("gelu_10" ) a = torch_builtin(A ) a = geluaa(A ) a = torch.where(y_gelu_aa < 1_0.0 , 1 , 0 ) self.assertTrue(torch.max(A ).item() == 1_0.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' get_activation("gelu" ) get_activation("gelu_10" ) get_activation("gelu_fast" ) get_activation("gelu_new" ) get_activation("gelu_python" ) get_activation("gelu_pytorch_tanh" ) get_activation("linear" ) get_activation("mish" ) get_activation("quick_gelu" ) get_activation("relu" ) get_activation("sigmoid" ) get_activation("silu" ) get_activation("swish" ) get_activation("tanh" ) with self.assertRaises(A ): get_activation("bogus" ) with self.assertRaises(A ): get_activation(A ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = get_activation("gelu" ) a = 1 a = get_activation("gelu" ) self.assertEqual(acta.a , 1 ) with self.assertRaises(A ): a = acta.a
180
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ : Any = logging.get_logger(__name__) lowercase__ : int = { "asapp/sew-d-tiny-100k": "https://huggingface.co/asapp/sew-d-tiny-100k/resolve/main/config.json", # See all SEW-D models at https://huggingface.co/models?filter=sew-d } class a__ ( UpperCamelCase__ ): a : Optional[Any] = """sew-d""" def __init__( self , A=32 , A=768 , A=12 , A=12 , A=3072 , A=2 , A=512 , A=256 , A=True , A=True , A=("p2c", "c2p") , A="layer_norm" , A="gelu_python" , A=0.1 , A=0.1 , A=0.1 , A=0.0 , A=0.1 , A=0.0_2 , A=1e-7 , A=1e-5 , A="group" , A="gelu" , A=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , A=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , A=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , A=False , A=128 , A=16 , A=True , A=0.0_5 , A=10 , A=2 , A=0.0 , A=10 , A=0 , A="mean" , A=False , A=False , A=256 , A=0 , A=1 , A=2 , **A , ) -> Dict: '''simple docstring''' super().__init__(**A , pad_token_id=A , bos_token_id=A , eos_token_id=A ) a = hidden_size a = feat_extract_norm a = feat_extract_activation a = list(A ) a = list(A ) a = list(A ) a = conv_bias a = num_conv_pos_embeddings a = num_conv_pos_embedding_groups a = len(self.conv_dim ) a = num_hidden_layers a = intermediate_size a = squeeze_factor a = max_position_embeddings a = position_buckets a = share_att_key a = relative_attention a = norm_rel_ebd a = list(A ) a = hidden_act a = num_attention_heads a = hidden_dropout a = attention_dropout a = activation_dropout a = feat_proj_dropout a = final_dropout a = layer_norm_eps a = feature_layer_norm_eps a = initializer_range a = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," F'''but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)''' F'''= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 a = apply_spec_augment a = mask_time_prob a = mask_time_length a = mask_time_min_masks a = mask_feature_prob a = mask_feature_length a = mask_feature_min_masks # ctc loss a = ctc_loss_reduction a = ctc_zero_infinity # sequence classification a = use_weighted_layer_sum a = classifier_proj_size @property def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' return functools.reduce(operator.mul , self.conv_stride , 1 )
180
1
import os from typing import Optional import fsspec from fsspec.archive import AbstractArchiveFileSystem from fsspec.utils import DEFAULT_BLOCK_SIZE class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''''' A__ = ( None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz ) A__ = None # compression type in fsspec. ex: "gzip" A__ = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz def __init__( self : List[str] , __lowerCamelCase : str = "" , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[dict] = None , **__lowerCamelCase : Tuple ): '''simple docstring''' super().__init__(self , **__SCREAMING_SNAKE_CASE ) # always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode lowerCamelCase__ : int = fsspec.open( __SCREAMING_SNAKE_CASE , mode="rb" , protocol=__SCREAMING_SNAKE_CASE , compression=self.compression , client_kwargs={ "requote_redirect_url": False, # see https://github.com/huggingface/datasets/pull/5459 "trust_env": True, # Enable reading proxy env variables. **(target_options or {}).pop("client_kwargs" , {} ), # To avoid issues if it was already passed. } , **(target_options or {}) , ) lowerCamelCase__ : Optional[Any] = os.path.basename(self.file.path.split("::" )[0] ) lowerCamelCase__ : List[str] = ( self.compressed_name[: self.compressed_name.rindex("." )] if "." in self.compressed_name else self.compressed_name ) lowerCamelCase__ : Tuple = None @classmethod def lowerCAmelCase ( cls : Optional[Any] , __lowerCamelCase : int ): '''simple docstring''' return super()._strip_protocol(__SCREAMING_SNAKE_CASE ).lstrip("/" ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' if self.dir_cache is None: lowerCamelCase__ : Any = {**self.file.fs.info(self.file.path ), "name": self.uncompressed_name} lowerCamelCase__ : Optional[Any] = {f["name"]: f} def lowerCAmelCase ( self : Any , __lowerCamelCase : str ): '''simple docstring''' return self.file.open().read() def lowerCAmelCase ( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : str = "rb" , __lowerCamelCase : int=None , __lowerCamelCase : int=True , __lowerCamelCase : str=None , **__lowerCamelCase : int , ): '''simple docstring''' lowerCamelCase__ : int = self._strip_protocol(__SCREAMING_SNAKE_CASE ) if mode != "rb": raise ValueError(f"Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'" ) return self.file.open() class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''bz2''' A__ = '''bz2''' A__ = '''.bz2''' class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''gzip''' A__ = '''gzip''' A__ = '''.gz''' class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''lz4''' A__ = '''lz4''' A__ = '''.lz4''' class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''xz''' A__ = '''xz''' A__ = '''.xz''' class _lowercase ( __UpperCAmelCase): """simple docstring""" A__ = '''zstd''' A__ = '''zstd''' A__ = '''.zst''' def __init__( self : List[Any] , __lowerCamelCase : str , __lowerCamelCase : str = "rb" , __lowerCamelCase : Optional[str] = None , __lowerCamelCase : Optional[dict] = None , __lowerCamelCase : int = DEFAULT_BLOCK_SIZE , **__lowerCamelCase : str , ): '''simple docstring''' super().__init__( fo=__SCREAMING_SNAKE_CASE , mode=__SCREAMING_SNAKE_CASE , target_protocol=__SCREAMING_SNAKE_CASE , target_options=__SCREAMING_SNAKE_CASE , block_size=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) # We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2: # # File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open # out.close = close # AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only # # see https://github.com/intake/filesystem_spec/issues/725 lowerCamelCase__ : Tuple = self.file.__enter__ class _lowercase : """simple docstring""" def __init__( self : str , __lowerCamelCase : List[Any] ): '''simple docstring''' lowerCamelCase__ : Tuple = file_ def __enter__( self : Union[str, Any] ): '''simple docstring''' self._file.__enter__() return self def __exit__( self : Optional[int] , *__lowerCamelCase : Union[str, Any] , **__lowerCamelCase : int ): '''simple docstring''' self._file.__exit__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __iter__( self : Tuple ): '''simple docstring''' return iter(self._file ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' return next(self._file ) def __getattr__( self : Optional[int] , __lowerCamelCase : Any ): '''simple docstring''' return getattr(self._file , __SCREAMING_SNAKE_CASE ) def fixed_enter(*__lowerCamelCase : int , **__lowerCamelCase : Tuple ): return WrappedFile(_enter(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) ) lowerCamelCase__ : int = fixed_enter
184
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __snake_case :str = logging.get_logger(__name__) __snake_case :int = {'''vocab_file''': '''vocab.txt'''} __snake_case :List[Any] = { '''vocab_file''': { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt''', } } __snake_case :List[str] = { '''YituTech/conv-bert-base''': 512, '''YituTech/conv-bert-medium-small''': 512, '''YituTech/conv-bert-small''': 512, } __snake_case :Optional[int] = { '''YituTech/conv-bert-base''': {'''do_lower_case''': True}, '''YituTech/conv-bert-medium-small''': {'''do_lower_case''': True}, '''YituTech/conv-bert-small''': {'''do_lower_case''': True}, } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION UpperCamelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase__ : int = ConvBertTokenizer def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Dict=None , __SCREAMING_SNAKE_CASE : Tuple=True , __SCREAMING_SNAKE_CASE : Optional[int]="[UNK]" , __SCREAMING_SNAKE_CASE : int="[SEP]" , __SCREAMING_SNAKE_CASE : List[Any]="[PAD]" , __SCREAMING_SNAKE_CASE : int="[CLS]" , __SCREAMING_SNAKE_CASE : Optional[int]="[MASK]" , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : Union[str, Any]=None , **__SCREAMING_SNAKE_CASE : Dict , ): '''simple docstring''' super().__init__( __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , do_lower_case=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenize_chinese_chars=__SCREAMING_SNAKE_CASE , strip_accents=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get('''lowercase''' , __SCREAMING_SNAKE_CASE) != do_lower_case or normalizer_state.get('''strip_accents''' , __SCREAMING_SNAKE_CASE) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , __SCREAMING_SNAKE_CASE) != tokenize_chinese_chars ): __a = getattr(__SCREAMING_SNAKE_CASE , normalizer_state.pop('''type''')) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**__SCREAMING_SNAKE_CASE) __a = do_lower_case def _lowerCamelCase ( self : int , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Any=None): '''simple docstring''' __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : List[int] , __SCREAMING_SNAKE_CASE : Optional[List[int]] = None): '''simple docstring''' __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def _lowerCamelCase ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[str] = None): '''simple docstring''' __a = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE) return tuple(__SCREAMING_SNAKE_CASE)
49
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _lowercase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): a = """hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline""" def lowerCamelCase_ ( self: str , UpperCamelCase__: List[str]=0 ): lowerCamelCase__ : List[Any] = np.random.RandomState(UpperCamelCase__ ) lowerCamelCase__ : List[str] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : List[str] = self.get_dummy_inputs() lowerCamelCase__ : Optional[int] = pipe(**UpperCamelCase__ ).images lowerCamelCase__ : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ : Union[str, Any] = np.array([0.65_072, 0.58_492, 0.48_219, 0.55_521, 0.53_180, 0.55_939, 0.50_697, 0.39_800, 0.46_455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self: str ): lowerCamelCase__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCamelCase__ : Optional[int] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = self.get_dummy_inputs() lowerCamelCase__ : List[Any] = pipe(**UpperCamelCase__ ).images lowerCamelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ : Optional[Any] = np.array([0.65_863, 0.59_425, 0.49_326, 0.56_313, 0.53_875, 0.56_627, 0.51_065, 0.39_777, 0.46_330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : List[str] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCamelCase__ : Tuple = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.get_dummy_inputs() lowerCamelCase__ : str = pipe(**UpperCamelCase__ ).images lowerCamelCase__ : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ : str = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self: Dict ): lowerCamelCase__ : Dict = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCamelCase__ : Optional[int] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.get_dummy_inputs() lowerCamelCase__ : Union[str, Any] = pipe(**UpperCamelCase__ ).images lowerCamelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ : Union[str, Any] = np.array([0.53_755, 0.60_786, 0.47_402, 0.49_488, 0.51_869, 0.49_819, 0.47_985, 0.38_957, 0.44_279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCamelCase__ : str = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.get_dummy_inputs() lowerCamelCase__ : Any = pipe(**UpperCamelCase__ ).images lowerCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ : Tuple = np.array([0.53_817, 0.60_812, 0.47_384, 0.49_530, 0.51_894, 0.49_814, 0.47_984, 0.38_958, 0.44_271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self: str ): lowerCamelCase__ : str = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) lowerCamelCase__ : List[str] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Tuple = self.get_dummy_inputs() lowerCamelCase__ : int = pipe(**UpperCamelCase__ ).images lowerCamelCase__ : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) lowerCamelCase__ : Dict = np.array([0.53_895, 0.60_808, 0.47_933, 0.49_608, 0.51_886, 0.49_950, 0.48_053, 0.38_957, 0.44_200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : List[str] = self.get_dummy_inputs() lowerCamelCase__ : Any = 3 * [inputs['''prompt''']] # forward lowerCamelCase__ : List[str] = pipe(**UpperCamelCase__ ) lowerCamelCase__ : Tuple = output.images[0, -3:, -3:, -1] lowerCamelCase__ : Tuple = self.get_dummy_inputs() lowerCamelCase__ : List[Any] = 3 * [inputs.pop("""prompt""" )] lowerCamelCase__ : List[str] = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) lowerCamelCase__ : Tuple = text_inputs['''input_ids'''] lowerCamelCase__ : int = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] lowerCamelCase__ : List[Any] = prompt_embeds # forward lowerCamelCase__ : Optional[Any] = pipe(**UpperCamelCase__ ) lowerCamelCase__ : List[Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : Optional[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Optional[int] = self.get_dummy_inputs() lowerCamelCase__ : Any = 3 * ['''this is a negative prompt'''] lowerCamelCase__ : Any = negative_prompt lowerCamelCase__ : Tuple = 3 * [inputs['''prompt''']] # forward lowerCamelCase__ : List[str] = pipe(**UpperCamelCase__ ) lowerCamelCase__ : Any = output.images[0, -3:, -3:, -1] lowerCamelCase__ : Tuple = self.get_dummy_inputs() lowerCamelCase__ : Optional[Any] = 3 * [inputs.pop("""prompt""" )] lowerCamelCase__ : str = [] for p in [prompt, negative_prompt]: lowerCamelCase__ : int = pipe.tokenizer( UpperCamelCase__ , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=UpperCamelCase__ , return_tensors="""np""" , ) lowerCamelCase__ : int = text_inputs['''input_ids'''] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) lowerCamelCase__ : List[str] = embeds # forward lowerCamelCase__ : List[Any] = pipe(**UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1e-4 @nightly @require_onnxruntime @require_torch_gpu class _lowercase ( unittest.TestCase ): @property def lowerCamelCase_ ( self: int ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Any = ort.SessionOptions() lowerCamelCase__ : Optional[Any] = False return options def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Tuple = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = '''A painting of a squirrel eating a burger''' np.random.seed(0 ) lowerCamelCase__ : List[str] = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) lowerCamelCase__ : Union[str, Any] = output.images lowerCamelCase__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : Tuple = np.array([0.0_452, 0.0_390, 0.0_087, 0.0_350, 0.0_617, 0.0_364, 0.0_544, 0.0_523, 0.0_720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Optional[Any] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowerCamelCase__ : Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : int = '''open neural network exchange''' lowerCamelCase__ : int = np.random.RandomState(0 ) lowerCamelCase__ : str = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) lowerCamelCase__ : Optional[Any] = output.images lowerCamelCase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : str = np.array([0.2_867, 0.1_974, 0.1_481, 0.7_294, 0.7_251, 0.6_667, 0.4_194, 0.5_642, 0.6_486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : Tuple = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) lowerCamelCase__ : str = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : List[str] = '''open neural network exchange''' lowerCamelCase__ : Tuple = np.random.RandomState(0 ) lowerCamelCase__ : int = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=UpperCamelCase__ , output_type="""np""" ) lowerCamelCase__ : List[Any] = output.images lowerCamelCase__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowerCamelCase__ : str = np.array([0.2_306, 0.1_959, 0.1_593, 0.6_549, 0.6_394, 0.5_408, 0.5_065, 0.6_010, 0.6_161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Tuple = 0 def test_callback_fn(UpperCamelCase__: int , UpperCamelCase__: int , UpperCamelCase__: np.ndarray ) -> None: lowerCamelCase__ : List[str] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) lowerCamelCase__ : str = latents[0, -3:, -3:, -1] lowerCamelCase__ : Any = np.array( [-0.6_772, -0.3_835, -1.2_456, 0.1_905, -1.0_974, 0.6_967, -1.9_353, 0.0_178, 1.0_167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) lowerCamelCase__ : List[Any] = latents[0, -3:, -3:, -1] lowerCamelCase__ : int = np.array( [-0.3_351, 0.2_241, -0.1_837, -0.2_325, -0.6_577, 0.3_393, -0.0_241, 0.5_899, 1.3_875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1e-3 lowerCamelCase__ : List[str] = False lowerCamelCase__ : Any = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) lowerCamelCase__ : Tuple = '''Andromeda galaxy in a bottle''' lowerCamelCase__ : Union[str, Any] = np.random.RandomState(0 ) pipe( prompt=UpperCamelCase__ , num_inference_steps=5 , guidance_scale=7.5 , generator=UpperCamelCase__ , callback=UpperCamelCase__ , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : str = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=UpperCamelCase__ , feature_extractor=UpperCamelCase__ , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert pipe.safety_checker is None lowerCamelCase__ : List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = OnnxStableDiffusionPipeline.from_pretrained(UpperCamelCase__ ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCamelCase__ : Tuple = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
367
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": _A : List[Any] =argparse.ArgumentParser() parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--txt2img_unclip''', default='''kakaobrain/karlo-v1-alpha''', type=str, required=False, help='''The pretrained txt2img unclip.''', ) _A : Dict =parser.parse_args() _A : List[str] =UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) _A : Any =CLIPImageProcessor() _A : Union[str, Any] =CLIPVisionModelWithProjection.from_pretrained('''openai/clip-vit-large-patch14''') _A : Union[str, Any] =UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
129
0
"""simple docstring""" import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , A , A=1_3 , A=3_0 , A=2 , A=3 , A=True , A=True , A=3_2 , A=5 , A=4 , A=3_7 , A="gelu" , A=0.1 , A=0.1 , A=1_0 , A=0.02 , ) -> Dict: _UpperCAmelCase : Union[str, Any] = parent _UpperCAmelCase : Any = batch_size _UpperCAmelCase : Union[str, Any] = image_size _UpperCAmelCase : Optional[int] = patch_size _UpperCAmelCase : Union[str, Any] = num_channels _UpperCAmelCase : List[str] = is_training _UpperCAmelCase : List[Any] = use_labels _UpperCAmelCase : Optional[Any] = hidden_size _UpperCAmelCase : List[Any] = num_hidden_layers _UpperCAmelCase : Union[str, Any] = num_attention_heads _UpperCAmelCase : int = intermediate_size _UpperCAmelCase : Dict = hidden_act _UpperCAmelCase : List[str] = hidden_dropout_prob _UpperCAmelCase : Dict = attention_probs_dropout_prob _UpperCAmelCase : Dict = type_sequence_label_size _UpperCAmelCase : Union[str, Any] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : List[str] = (image_size // patch_size) ** 2 _UpperCAmelCase : List[str] = num_patches + 1 def __lowerCAmelCase ( self ) -> Tuple: _UpperCAmelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase : str = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=A , initializer_range=self.initializer_range , ) return config, pixel_values def __lowerCAmelCase ( self , A , A ) -> List[str]: _UpperCAmelCase : str = FlaxViTModel(config=A ) _UpperCAmelCase : List[str] = model(A ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase : Tuple = (self.image_size, self.image_size) _UpperCAmelCase : List[Any] = (self.patch_size, self.patch_size) _UpperCAmelCase : List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def __lowerCAmelCase ( self , A , A ) -> List[str]: _UpperCAmelCase : Any = self.type_sequence_label_size _UpperCAmelCase : Tuple = FlaxViTForImageClassification(config=A ) _UpperCAmelCase : List[Any] = model(A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase : Dict = 1 _UpperCAmelCase : List[str] = FlaxViTForImageClassification(A ) _UpperCAmelCase : Tuple = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase : Union[str, Any] = model(A ) def __lowerCAmelCase ( self ) -> List[str]: _UpperCAmelCase : int = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) : Any = config_and_inputs _UpperCAmelCase : Optional[int] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_flax class _UpperCAmelCase ( a ,unittest.TestCase ): '''simple docstring''' a__ =(FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def __lowerCAmelCase ( self ) -> None: _UpperCAmelCase : List[str] = FlaxViTModelTester(self ) _UpperCAmelCase : str = ConfigTester(self , config_class=A , has_text_modality=A , hidden_size=3_7 ) def __lowerCAmelCase ( self ) -> int: self.config_tester.run_common_tests() def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def __lowerCAmelCase ( self ) -> Optional[Any]: _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A ) def __lowerCAmelCase ( self ) -> Any: _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase : Optional[Any] = model_class(A ) _UpperCAmelCase : Tuple = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase : int = [*signature.parameters.keys()] _UpperCAmelCase : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A ) def __lowerCAmelCase ( self ) -> Optional[int]: _UpperCAmelCase , _UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Dict = self._prepare_for_class(A , A ) _UpperCAmelCase : Union[str, Any] = model_class(A ) @jax.jit def model_jitted(A , **A ): return model(pixel_values=A , **A ) with self.subTest('''JIT Enabled''' ): _UpperCAmelCase : List[str] = model_jitted(**A ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): _UpperCAmelCase : Tuple = model_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def __lowerCAmelCase ( self ) -> str: for model_class_name in self.all_model_classes: _UpperCAmelCase : Union[str, Any] = model_class_name.from_pretrained('''google/vit-base-patch16-224''' ) _UpperCAmelCase : Tuple = model(np.ones((1, 3, 2_2_4, 2_2_4) ) ) self.assertIsNotNone(A )
263
"""simple docstring""" def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase : List[str] = str(bin(UpperCamelCase__ ) )[2:] # remove the leading "0b" _UpperCAmelCase : str = str(bin(UpperCamelCase__ ) )[2:] _UpperCAmelCase : List[str] = max(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) return "0b" + "".join( str(int('''1''' in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(UpperCamelCase__ ) , b_binary.zfill(UpperCamelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
263
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ :Union[str, Any] = logging.get_logger(__name__) A_ :Tuple = { '''kssteven/ibert-roberta-base''': '''https://huggingface.co/kssteven/ibert-roberta-base/resolve/main/config.json''', '''kssteven/ibert-roberta-large''': '''https://huggingface.co/kssteven/ibert-roberta-large/resolve/main/config.json''', '''kssteven/ibert-roberta-large-mnli''': ( '''https://huggingface.co/kssteven/ibert-roberta-large-mnli/resolve/main/config.json''' ), } class __A ( a ): """simple docstring""" UpperCamelCase__ : Any ="""ibert""" def __init__( self , lowerCamelCase__=30522 , lowerCamelCase__=768 , lowerCamelCase__=12 , lowerCamelCase__=12 , lowerCamelCase__=3072 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=1E-12 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=False , lowerCamelCase__="none" , **lowerCamelCase__ , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __UpperCamelCase : Tuple =vocab_size __UpperCamelCase : List[str] =hidden_size __UpperCamelCase : Optional[Any] =num_hidden_layers __UpperCamelCase : int =num_attention_heads __UpperCamelCase : Any =hidden_act __UpperCamelCase : str =intermediate_size __UpperCamelCase : List[str] =hidden_dropout_prob __UpperCamelCase : Optional[Any] =attention_probs_dropout_prob __UpperCamelCase : Union[str, Any] =max_position_embeddings __UpperCamelCase : Dict =type_vocab_size __UpperCamelCase : Any =initializer_range __UpperCamelCase : Optional[int] =layer_norm_eps __UpperCamelCase : int =position_embedding_type __UpperCamelCase : int =quant_mode __UpperCamelCase : Any =force_dequant class __A ( a ): """simple docstring""" @property def __lowercase ( self ): """simple docstring""" if self.task == "multiple-choice": __UpperCamelCase : List[str] ={0: 'batch', 1: 'choice', 2: 'sequence'} else: __UpperCamelCase : Dict ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
354
import itertools import math def A ( a_ ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 ,int(math.sqrt(a_ ) + 1 ) ,6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def A ( ) -> Tuple: __UpperCamelCase : Optional[Any] =2 while True: if is_prime(a_ ): yield num num += 1 def A ( a_ = 10_001 ) -> int: return next(itertools.islice(prime_generator() ,nth - 1 ,a_ ) ) if __name__ == "__main__": print(f"{solution() = }")
245
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _SCREAMING_SNAKE_CASE ( lowercase : np.ndarray , lowercase : np.ndarray , lowercase : np.ndarray , lowercase : int , lowercase : int ): '''simple docstring''' lowerCamelCase_ = cva.getAffineTransform(lowercase , lowercase ) return cva.warpAffine(lowercase , lowercase , (rows, cols) ) if __name__ == "__main__": # read original image lowerCamelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value lowerCamelCase : str = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape lowerCamelCase , lowerCamelCase : Union[str, Any] = gray_img.shape # set different points to rotate image lowerCamelCase : int = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) lowerCamelCase : int = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) lowerCamelCase : Dict = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) lowerCamelCase : Tuple = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list lowerCamelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations lowerCamelCase : Dict = plt.figure(1) lowerCamelCase : str = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
204
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase : Optional[Any] = { "configuration_whisper": ["WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP", "WhisperConfig", "WhisperOnnxConfig"], "feature_extraction_whisper": ["WhisperFeatureExtractor"], "processing_whisper": ["WhisperProcessor"], "tokenization_whisper": ["WhisperTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Tuple = ["WhisperTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "WhisperForConditionalGeneration", "WhisperModel", "WhisperPreTrainedModel", "WhisperForAudioClassification", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] = [ "TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWhisperForConditionalGeneration", "TFWhisperModel", "TFWhisperPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : str = [ "FlaxWhisperForConditionalGeneration", "FlaxWhisperModel", "FlaxWhisperPreTrainedModel", "FlaxWhisperForAudioClassification", ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys lowerCamelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
204
1
import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: _a = False _a = logging.get_logger(__name__) _a = 'ybelkada/fonts' def _A ( ) -> str: '''simple docstring''' if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( F"""You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use """ "Pix2StructImageProcessor. Please upgrade torch.") def _A ( UpperCamelCase_ : str, UpperCamelCase_ : Tuple, UpperCamelCase_ : Optional[Any]) -> Optional[int]: '''simple docstring''' requires_backends(UpperCamelCase_, ["torch"]) _check_torch_version() __lowercase = image_tensor.unsqueeze(0) __lowercase = torch.nn.functional.unfold(UpperCamelCase_, (patch_height, patch_width), stride=(patch_height, patch_width)) __lowercase = patches.reshape(image_tensor.size(0), image_tensor.size(1), UpperCamelCase_, UpperCamelCase_, -1) __lowercase = patches.permute(0, 4, 2, 3, 1).reshape( image_tensor.size(2) // patch_height, image_tensor.size(3) // patch_width, image_tensor.size(1) * patch_height * patch_width, ) return patches.unsqueeze(0) def _A ( UpperCamelCase_ : str, UpperCamelCase_ : int = 36, UpperCamelCase_ : str = "black", UpperCamelCase_ : str = "white", UpperCamelCase_ : int = 5, UpperCamelCase_ : int = 5, UpperCamelCase_ : int = 5, UpperCamelCase_ : int = 5, UpperCamelCase_ : Optional[bytes] = None, UpperCamelCase_ : Optional[str] = None, ) -> Image.Image: '''simple docstring''' requires_backends(UpperCamelCase_, "vision") # Add new lines so that each line is no more than 80 characters. __lowercase = textwrap.TextWrapper(width=80) __lowercase = wrapper.wrap(text=UpperCamelCase_) __lowercase = "\n".join(UpperCamelCase_) if font_bytes is not None and font_path is None: __lowercase = io.BytesIO(UpperCamelCase_) elif font_path is not None: __lowercase = font_path else: __lowercase = hf_hub_download(UpperCamelCase_, "Arial.TTF") __lowercase = ImageFont.truetype(UpperCamelCase_, encoding="UTF-8", size=UpperCamelCase_) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __lowercase = ImageDraw.Draw(Image.new("RGB", (1, 1), UpperCamelCase_)) __lowercase ,__lowercase ,__lowercase ,__lowercase = temp_draw.textbbox((0, 0), UpperCamelCase_, UpperCamelCase_) # Create the actual image with a bit of padding around the text. __lowercase = text_width + left_padding + right_padding __lowercase = text_height + top_padding + bottom_padding __lowercase = Image.new("RGB", (image_width, image_height), UpperCamelCase_) __lowercase = ImageDraw.Draw(UpperCamelCase_) draw.text(xy=(left_padding, top_padding), text=UpperCamelCase_, fill=UpperCamelCase_, font=UpperCamelCase_) return image def _A ( UpperCamelCase_ : np.ndarray, UpperCamelCase_ : str, **UpperCamelCase_ : Dict) -> Tuple: '''simple docstring''' requires_backends(UpperCamelCase_, "vision") # Convert to PIL image if necessary __lowercase = to_pil_image(UpperCamelCase_) __lowercase = render_text(UpperCamelCase_, **UpperCamelCase_) __lowercase = max(header_image.width, image.width) __lowercase = int(image.height * (new_width / image.width)) __lowercase = int(header_image.height * (new_width / header_image.width)) __lowercase = Image.new("RGB", (new_width, new_height + new_header_height), "white") new_image.paste(header_image.resize((new_width, new_header_height)), (0, 0)) new_image.paste(image.resize((new_width, new_height)), (0, new_header_height)) # Convert back to the original framework if necessary __lowercase = to_numpy_array(UpperCamelCase_) if infer_channel_dimension_format(UpperCamelCase_) == ChannelDimension.LAST: __lowercase = to_channel_dimension_format(UpperCamelCase_, ChannelDimension.LAST) return new_image class _lowerCAmelCase ( lowercase ): """simple docstring""" __UpperCAmelCase : Any = ["flattened_patches"] def __init__( self : Dict, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : bool = True, UpperCAmelCase__ : Dict[str, int] = None, UpperCAmelCase__ : int = 2_0_4_8, UpperCAmelCase__ : bool = False, **UpperCAmelCase__ : Dict, ): super().__init__(**UpperCAmelCase__ ) __lowercase = patch_size if patch_size is not None else {"height": 1_6, "width": 1_6} __lowercase = do_normalize __lowercase = do_convert_rgb __lowercase = max_patches __lowercase = is_vqa def _lowercase ( self : List[Any], UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : int, UpperCAmelCase__ : dict, **UpperCAmelCase__ : Optional[Any] ): requires_backends(self.extract_flattened_patches, "torch" ) _check_torch_version() # convert to torch __lowercase = to_channel_dimension_format(UpperCAmelCase__, ChannelDimension.FIRST ) __lowercase = torch.from_numpy(UpperCAmelCase__ ) __lowercase ,__lowercase = patch_size["height"], patch_size["width"] __lowercase ,__lowercase = get_image_size(UpperCAmelCase__ ) # maximize scale s.t. __lowercase = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width) ) __lowercase = max(min(math.floor(scale * image_height / patch_height ), UpperCAmelCase__ ), 1 ) __lowercase = max(min(math.floor(scale * image_width / patch_width ), UpperCAmelCase__ ), 1 ) __lowercase = max(num_feasible_rows * patch_height, 1 ) __lowercase = max(num_feasible_cols * patch_width, 1 ) __lowercase = torch.nn.functional.interpolate( image.unsqueeze(0 ), size=(resized_height, resized_width), mode="bilinear", align_corners=UpperCAmelCase__, antialias=UpperCAmelCase__, ).squeeze(0 ) # [1, rows, columns, patch_height * patch_width * image_channels] __lowercase = torch_extract_patches(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = patches.shape __lowercase = patches_shape[1] __lowercase = patches_shape[2] __lowercase = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __lowercase = patches.reshape([rows * columns, depth] ) # [rows * columns, 1] __lowercase = torch.arange(UpperCAmelCase__ ).reshape([rows, 1] ).repeat(1, UpperCAmelCase__ ).reshape([rows * columns, 1] ) __lowercase = torch.arange(UpperCAmelCase__ ).reshape([1, columns] ).repeat(UpperCAmelCase__, 1 ).reshape([rows * columns, 1] ) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __lowercase = row_ids.to(torch.floataa ) __lowercase = col_ids.to(torch.floataa ) # [rows * columns, 2 + patch_height * patch_width * image_channels] __lowercase = torch.cat([row_ids, col_ids, patches], -1 ) # [max_patches, 2 + patch_height * patch_width * image_channels] __lowercase = torch.nn.functional.pad(UpperCAmelCase__, [0, 0, 0, max_patches - (rows * columns)] ).float() __lowercase = to_numpy_array(UpperCAmelCase__ ) return result def _lowercase ( self : Dict, UpperCAmelCase__ : np.ndarray, UpperCAmelCase__ : Optional[Union[str, ChannelDimension]] = None, **UpperCAmelCase__ : List[Any] ): if image.dtype == np.uinta: __lowercase = image.astype(np.floataa ) # take mean across the whole `image` __lowercase = np.mean(UpperCAmelCase__ ) __lowercase = np.std(UpperCAmelCase__ ) __lowercase = max(UpperCAmelCase__, 1.0 / math.sqrt(np.prod(image.shape ) ) ) return normalize(UpperCAmelCase__, mean=UpperCAmelCase__, std=UpperCAmelCase__, **UpperCAmelCase__ ) def _lowercase ( self : Dict, UpperCAmelCase__ : ImageInput, UpperCAmelCase__ : Optional[str] = None, UpperCAmelCase__ : bool = None, UpperCAmelCase__ : Optional[bool] = None, UpperCAmelCase__ : Optional[int] = None, UpperCAmelCase__ : Optional[Dict[str, int]] = None, UpperCAmelCase__ : Optional[Union[str, TensorType]] = None, UpperCAmelCase__ : ChannelDimension = ChannelDimension.FIRST, **UpperCAmelCase__ : Optional[int], ): __lowercase = do_normalize if do_normalize is not None else self.do_normalize __lowercase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase = patch_size if patch_size is not None else self.patch_size __lowercase = max_patches if max_patches is not None else self.max_patches __lowercase = self.is_vqa if kwargs.get("data_format", UpperCAmelCase__ ) is not None: raise ValueError("data_format is not an accepted input as the outputs are " ) __lowercase = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. __lowercase = [to_numpy_array(UpperCAmelCase__ ) for image in images] if is_vqa: if header_text is None: raise ValueError("A header text must be provided for VQA models." ) __lowercase = kwargs.pop("font_bytes", UpperCAmelCase__ ) __lowercase = kwargs.pop("font_path", UpperCAmelCase__ ) if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = [header_text] * len(UpperCAmelCase__ ) __lowercase = [ render_header(UpperCAmelCase__, header_text[i], font_bytes=UpperCAmelCase__, font_path=UpperCAmelCase__ ) for i, image in enumerate(UpperCAmelCase__ ) ] if do_normalize: __lowercase = [self.normalize(image=UpperCAmelCase__ ) for image in images] # convert to torch tensor and permute __lowercase = [ self.extract_flattened_patches(image=UpperCAmelCase__, max_patches=UpperCAmelCase__, patch_size=UpperCAmelCase__ ) for image in images ] # create attention mask in numpy __lowercase = [(image.sum(axis=-1 ) != 0).astype(np.floataa ) for image in images] __lowercase = BatchFeature( data={"flattened_patches": images, "attention_mask": attention_masks}, tensor_type=UpperCAmelCase__ ) return encoded_outputs
354
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _a = 'bert-base-cased' _a = 'google/pegasus-xsum' _a = [' Sam ate lunch today.', 'Sams lunch ingredients.'] _a = ['A very interesting story about what I ate for lunch.', 'Avocado, celery, turkey, coffee'] _a = 'patrickvonplaten/t5-tiny-random' _a = 'sshleifer/bart-tiny-random' _a = 'sshleifer/tiny-mbart' _a = 'sshleifer/tiny-marian-en-de' def _A ( UpperCamelCase_ : Path, UpperCamelCase_ : list) -> Optional[Any]: '''simple docstring''' __lowercase = "\n".join(UpperCamelCase_) Path(UpperCamelCase_).open("w").writelines(UpperCamelCase_) def _A ( UpperCamelCase_ : Union[str, Any]) -> int: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCamelCase_, F"""{split}.source"""), UpperCamelCase_) _dump_articles(os.path.join(UpperCamelCase_, F"""{split}.target"""), UpperCamelCase_) return tmp_dir class _lowerCAmelCase ( lowercase ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) @slow def _lowercase ( self : List[Any], UpperCAmelCase__ : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __lowercase ,__lowercase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=UpperCAmelCase__, max_target_length=UpperCAmelCase__, src_lang=UpperCAmelCase__, tgt_lang=UpperCAmelCase__, ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(UpperCAmelCase__, UpperCAmelCase__ ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __lowercase = shift_tokens_right(batch["labels"], tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def _lowercase ( self : Dict, UpperCAmelCase__ : int ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in ARTICLES ) __lowercase = max(len(tokenizer.encode(UpperCAmelCase__ ) ) for a in SUMMARIES ) __lowercase = 4 __lowercase = LegacySeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=2_0, max_target_length=UpperCAmelCase__, ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=2, collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 2_0 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def _lowercase ( self : str ): __lowercase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __lowercase = tmp_dir.joinpath("train.source" ).open().readlines() __lowercase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(UpperCAmelCase__, UpperCAmelCase__, 1_2_8, UpperCAmelCase__ ) __lowercase = {x.name for x in tmp_dir.iterdir()} __lowercase = {x.name for x in save_dir.iterdir()} __lowercase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(UpperCAmelCase__ ) < len(UpperCAmelCase__ ) assert len(UpperCAmelCase__ ) == 1 assert len(packed_examples[0] ) == sum(len(UpperCAmelCase__ ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE, reason="This test requires fairseq" ) def _lowercase ( self : List[str] ): if not FAIRSEQ_AVAILABLE: return __lowercase ,__lowercase ,__lowercase = self._get_dataset(max_len=6_4 ) __lowercase = 6_4 __lowercase = ds.make_dynamic_sampler(UpperCAmelCase__, required_batch_size_multiple=UpperCAmelCase__ ) __lowercase = [len(UpperCAmelCase__ ) for x in batch_sampler] assert len(set(UpperCAmelCase__ ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) # no dropped or added examples __lowercase = DataLoader(UpperCAmelCase__, batch_sampler=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2 ) __lowercase = [] __lowercase = [] for batch in data_loader: __lowercase = batch["input_ids"].shape __lowercase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __lowercase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(UpperCAmelCase__ ) if num_src_tokens > (max_tokens * 1.1): failures.append(UpperCAmelCase__ ) assert num_src_per_batch[0] == max(UpperCAmelCase__ ) if failures: raise AssertionError(F"""too many tokens in {len(UpperCAmelCase__ )} batches""" ) def _lowercase ( self : Any ): __lowercase ,__lowercase ,__lowercase = self._get_dataset(max_len=5_1_2 ) __lowercase = 2 __lowercase = ds.make_sortish_sampler(UpperCAmelCase__, shuffle=UpperCAmelCase__ ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2 ) __lowercase = DataLoader(UpperCAmelCase__, batch_size=UpperCAmelCase__, collate_fn=ds.collate_fn, num_workers=2, sampler=UpperCAmelCase__ ) __lowercase = tokenizer.pad_token_id def count_pad_tokens(UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any]="input_ids" ): return [batch[k].eq(UpperCAmelCase__ ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(UpperCAmelCase__, k="labels" ) ) < sum(count_pad_tokens(UpperCAmelCase__, k="labels" ) ) assert sum(count_pad_tokens(UpperCAmelCase__ ) ) < sum(count_pad_tokens(UpperCAmelCase__ ) ) assert len(UpperCAmelCase__ ) == len(UpperCAmelCase__ ) def _lowercase ( self : List[Any], UpperCAmelCase__ : int=1_0_0_0, UpperCAmelCase__ : str=1_2_8 ): if os.getenv("USE_REAL_DATA", UpperCAmelCase__ ): __lowercase = "examples/seq2seq/wmt_en_ro" __lowercase = max_len * 2 * 6_4 if not Path(UpperCAmelCase__ ).joinpath("train.len" ).exists(): save_len_file(UpperCAmelCase__, UpperCAmelCase__ ) else: __lowercase = "examples/seq2seq/test_data/wmt_en_ro" __lowercase = max_len * 4 save_len_file(UpperCAmelCase__, UpperCAmelCase__ ) __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__ ) __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=UpperCAmelCase__, type_path="train", max_source_length=UpperCAmelCase__, max_target_length=UpperCAmelCase__, n_obs=UpperCAmelCase__, ) return ds, max_tokens, tokenizer def _lowercase ( self : Union[str, Any] ): __lowercase ,__lowercase ,__lowercase = self._get_dataset() __lowercase = set(DistributedSortishSampler(UpperCAmelCase__, 2_5_6, num_replicas=2, rank=0, add_extra_examples=UpperCAmelCase__ ) ) __lowercase = set(DistributedSortishSampler(UpperCAmelCase__, 2_5_6, num_replicas=2, rank=1, add_extra_examples=UpperCAmelCase__ ) ) assert idsa.intersection(UpperCAmelCase__ ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ], ) def _lowercase ( self : int, UpperCAmelCase__ : Optional[Any] ): __lowercase = AutoTokenizer.from_pretrained(UpperCAmelCase__, use_fast=UpperCAmelCase__ ) if tok_name == MBART_TINY: __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path="train", max_source_length=4, max_target_length=8, src_lang="EN", tgt_lang="FR", ) __lowercase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __lowercase = SeqaSeqDataset( UpperCAmelCase__, data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ), type_path="train", max_source_length=4, max_target_length=8, ) __lowercase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(UpperCAmelCase__ ) == 1 if tok_name == BART_TINY else len(UpperCAmelCase__ ) == 0
144
0
# # This a `torch.distributed` diagnostics script that checks that all GPUs in the cluster (one or # many nodes) can talk to each other via nccl and allocate gpu memory. # # To run first adjust the number of processes and nodes: # # python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # You may need to add --master_addr $MASTER_ADDR --master_port $MASTER_PORT if using a custom addr:port # # You can also use the rdzv API: --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT --rdzv_backend c10d # # use torch.distributed.launch instead of torch.distributed.run for torch < 1.9 # # If you get a hanging in `barrier` calls you have some network issues, you may try to debug this with: # # NCCL_DEBUG=INFO python -m torch.distributed.run --nproc_per_node 2 --nnodes 1 torch-distributed-gpu-test.py # # which should tell you what's going on behind the scenes. # # # This script can be run via `srun` in the SLURM environment as well. Here is a SLURM script that # runs on 2 nodes of 4 gpus per node: # # #SBATCH --job-name=test-nodes # name # #SBATCH --nodes=2 # nodes # #SBATCH --ntasks-per-node=1 # crucial - only 1 task per dist per node! # #SBATCH --cpus-per-task=10 # number of cores per tasks # #SBATCH --gres=gpu:4 # number of gpus # #SBATCH --time 0:05:00 # maximum execution time (HH:MM:SS) # #SBATCH --output=%x-%j.out # output file name # # GPUS_PER_NODE=4 # MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1) # MASTER_PORT=6000 # # srun --jobid $SLURM_JOBID bash -c 'python -m torch.distributed.run \ # --nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES --node_rank $SLURM_PROCID \ # --master_addr $MASTER_ADDR --master_port $MASTER_PORT \ # torch-distributed-gpu-test.py' # import fcntl import os import socket import torch import torch.distributed as dist def snake_case ( *snake_case__ :Optional[Any]) -> Optional[Any]: with open(snake_case__ , """r""") as fh: fcntl.flock(snake_case__ , fcntl.LOCK_EX) try: print(*snake_case__) finally: fcntl.flock(snake_case__ , fcntl.LOCK_UN) _SCREAMING_SNAKE_CASE = int(os.environ['LOCAL_RANK']) torch.cuda.set_device(local_rank) _SCREAMING_SNAKE_CASE = torch.device('cuda', local_rank) _SCREAMING_SNAKE_CASE = socket.gethostname() _SCREAMING_SNAKE_CASE = F'''[{hostname}-{local_rank}]''' try: # test distributed dist.init_process_group('nccl') dist.all_reduce(torch.ones(1).to(device), op=dist.ReduceOp.SUM) dist.barrier() # test cuda is available and can allocate memory torch.cuda.is_available() torch.ones(1).cuda(local_rank) # global rank _SCREAMING_SNAKE_CASE = dist.get_rank() _SCREAMING_SNAKE_CASE = dist.get_world_size() printflock(F'''{gpu} is OK (global rank: {rank}/{world_size})''') dist.barrier() if rank == 0: printflock(F'''pt={torch.__version__}, cuda={torch.version.cuda}, nccl={torch.cuda.nccl.version()}''') except Exception: printflock(F'''{gpu} is broken''') raise
180
from math import isqrt def snake_case ( snake_case__ :int) -> bool: return all(number % divisor != 0 for divisor in range(2 , isqrt(snake_case__) + 1)) def snake_case ( snake_case__ :int = 10**6) -> int: _A = 0 _A = 1 _A = 7 while prime_candidate < max_prime: primes_count += is_prime(snake_case__) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(F'''{solution() = }''')
180
1
"""simple docstring""" from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { '''huggingface/informer-tourism-monthly''': ( '''https://huggingface.co/huggingface/informer-tourism-monthly/resolve/main/config.json''' ), # See all Informer models at https://huggingface.co/models?filter=informer } class __SCREAMING_SNAKE_CASE ( UpperCamelCase ): snake_case_ = 'informer' snake_case_ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', 'num_hidden_layers': 'encoder_layers', } def __init__( self : Optional[int] , snake_case : Any = None , snake_case : Optional[int] = None , snake_case : Union[str, Any] = "student_t" , snake_case : Optional[int] = "nll" , snake_case : Dict = 1 , snake_case : List[str] = None , snake_case : int = "mean" , snake_case : List[str] = 0 , snake_case : Tuple = 0 , snake_case : List[Any] = 0 , snake_case : Optional[Any] = 0 , snake_case : List[str] = None , snake_case : Union[str, Any] = None , snake_case : Tuple = 64 , snake_case : Optional[Any] = 32 , snake_case : List[Any] = 32 , snake_case : int = 2 , snake_case : Tuple = 2 , snake_case : Any = 2 , snake_case : Optional[Any] = 2 , snake_case : str = True , snake_case : int = "gelu" , snake_case : Dict = 0.05 , snake_case : List[Any] = 0.1 , snake_case : int = 0.1 , snake_case : Union[str, Any] = 0.1 , snake_case : Optional[int] = 0.1 , snake_case : str = 100 , snake_case : List[str] = 0.02 , snake_case : str=True , snake_case : Union[str, Any] = "prob" , snake_case : Any = 5 , snake_case : List[str] = True , **snake_case : Any , ): '''simple docstring''' A__ : Union[str, Any] = prediction_length A__ : List[Any] = context_length or prediction_length A__ : List[Any] = distribution_output A__ : str = loss A__ : List[str] = input_size A__ : List[str] = num_time_features A__ : str = lags_sequence if lags_sequence is not None else [1, 2, 3, 4, 5, 6, 7] A__ : str = scaling A__ : Union[str, Any] = num_dynamic_real_features A__ : List[Any] = num_static_real_features A__ : str = num_static_categorical_features # set cardinality if cardinality and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( """The cardinality should be a list of the same length as `num_static_categorical_features`""" ) A__ : List[Any] = cardinality else: A__ : int = [0] # set embedding_dimension if embedding_dimension and num_static_categorical_features > 0: if len(__a ) != num_static_categorical_features: raise ValueError( """The embedding dimension should be a list of the same length as `num_static_categorical_features`""" ) A__ : Any = embedding_dimension else: A__ : int = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] A__ : Optional[Any] = num_parallel_samples # Transformer architecture configuration A__ : int = input_size * len(self.lags_sequence ) + self._number_of_features A__ : Any = d_model A__ : List[Any] = encoder_attention_heads A__ : List[str] = decoder_attention_heads A__ : int = encoder_ffn_dim A__ : str = decoder_ffn_dim A__ : Tuple = encoder_layers A__ : List[str] = decoder_layers A__ : Any = dropout A__ : Any = attention_dropout A__ : Dict = activation_dropout A__ : Union[str, Any] = encoder_layerdrop A__ : Optional[int] = decoder_layerdrop A__ : List[str] = activation_function A__ : Dict = init_std A__ : List[str] = use_cache # Informer A__ : Tuple = attention_type A__ : int = sampling_factor A__ : Dict = distil super().__init__(is_encoder_decoder=__a , **__a ) @property def _UpperCamelCase ( self : Any ): '''simple docstring''' return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
362
"""simple docstring""" import argparse import glob import importlib.util import os import re import black from doc_builder.style_doc import style_docstrings_in_code # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_copies.py A_ = '''src/diffusers''' A_ = '''.''' # This is to make sure the diffusers module imported is the one in the repo. A_ = importlib.util.spec_from_file_location( '''diffusers''', os.path.join(DIFFUSERS_PATH, '''__init__.py'''), submodule_search_locations=[DIFFUSERS_PATH], ) A_ = spec.loader.load_module() def _lowerCAmelCase ( UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ) ->Any: return line.startswith(UpperCAmelCase__ ) or len(UpperCAmelCase__ ) <= 1 or re.search(R"""^\s*\)(\s*->.*:|:)\s*$""", UpperCAmelCase__ ) is not None def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Union[str, Any]: A__ : Any = object_name.split(""".""" ) A__ : int = 0 # First let's find the module where our object lives. A__ : str = parts[i] while i < len(UpperCAmelCase__ ) and not os.path.isfile(os.path.join(UpperCAmelCase__, f'{module}.py' ) ): i += 1 if i < len(UpperCAmelCase__ ): A__ : Union[str, Any] = os.path.join(UpperCAmelCase__, parts[i] ) if i >= len(UpperCAmelCase__ ): raise ValueError(f'`object_name` should begin with the name of a module of diffusers but got {object_name}.' ) with open(os.path.join(UpperCAmelCase__, f'{module}.py' ), """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : List[Any] = f.readlines() # Now let's find the class / func in the code! A__ : Optional[Any] = """""" A__ : Any = 0 for name in parts[i + 1 :]: while ( line_index < len(UpperCAmelCase__ ) and re.search(Rf'^{indent}(class|def)\s+{name}(\(|\:)', lines[line_index] ) is None ): line_index += 1 indent += " " line_index += 1 if line_index >= len(UpperCAmelCase__ ): raise ValueError(f' {object_name} does not match any function or class in {module}.' ) # We found the beginning of the class / func, now let's find the end (when the indent diminishes). A__ : List[Any] = line_index while line_index < len(UpperCAmelCase__ ) and _should_continue(lines[line_index], UpperCAmelCase__ ): line_index += 1 # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : List[Any] = lines[start_index:line_index] return "".join(UpperCAmelCase__ ) A_ = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''') A_ = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''') A_ = re.compile(r'''<FILL\s+[^>]*>''') def _lowerCAmelCase ( UpperCAmelCase__ : List[str] ) ->Optional[Any]: A__ : Dict = code.split("""\n""" ) A__ : List[Any] = 0 while idx < len(UpperCAmelCase__ ) and len(lines[idx] ) == 0: idx += 1 if idx < len(UpperCAmelCase__ ): return re.search(R"""^(\s*)\S""", lines[idx] ).groups()[0] return "" def _lowerCAmelCase ( UpperCAmelCase__ : Optional[Any] ) ->int: A__ : str = len(get_indent(UpperCAmelCase__ ) ) > 0 if has_indent: A__ : Union[str, Any] = f'class Bla:\n{code}' A__ : Optional[Any] = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_1_9, preview=UpperCAmelCase__ ) A__ : Tuple = black.format_str(UpperCAmelCase__, mode=UpperCAmelCase__ ) A__ , A__ : List[Any] = style_docstrings_in_code(UpperCAmelCase__ ) return result[len("""class Bla:\n""" ) :] if has_indent else result def _lowerCAmelCase ( UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict=False ) ->List[Any]: with open(UpperCAmelCase__, """r""", encoding="""utf-8""", newline="""\n""" ) as f: A__ : int = f.readlines() A__ : Dict = [] A__ : List[str] = 0 # Not a for loop cause `lines` is going to change (if `overwrite=True`). while line_index < len(UpperCAmelCase__ ): A__ : Dict = _re_copy_warning.search(lines[line_index] ) if search is None: line_index += 1 continue # There is some copied code here, let's retrieve the original. A__ , A__ , A__ : Dict = search.groups() A__ : Tuple = find_code_in_diffusers(UpperCAmelCase__ ) A__ : int = get_indent(UpperCAmelCase__ ) A__ : List[str] = line_index + 1 if indent == theoretical_indent else line_index + 2 A__ : Tuple = theoretical_indent A__ : Optional[Any] = start_index # Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment. A__ : Tuple = True while line_index < len(UpperCAmelCase__ ) and should_continue: line_index += 1 if line_index >= len(UpperCAmelCase__ ): break A__ : Optional[int] = lines[line_index] A__ : Tuple = _should_continue(UpperCAmelCase__, UpperCAmelCase__ ) and re.search(f'^{indent}# End copy', UpperCAmelCase__ ) is None # Clean up empty lines at the end (if any). while len(lines[line_index - 1] ) <= 1: line_index -= 1 A__ : Dict = lines[start_index:line_index] A__ : Tuple = """""".join(UpperCAmelCase__ ) # Remove any nested `Copied from` comments to avoid circular copies A__ : Optional[int] = [line for line in theoretical_code.split("""\n""" ) if _re_copy_warning.search(UpperCAmelCase__ ) is None] A__ : Optional[Any] = """\n""".join(UpperCAmelCase__ ) # Before comparing, use the `replace_pattern` on the original code. if len(UpperCAmelCase__ ) > 0: A__ : int = replace_pattern.replace("""with""", """""" ).split(""",""" ) A__ : List[Any] = [_re_replace_pattern.search(UpperCAmelCase__ ) for p in patterns] for pattern in patterns: if pattern is None: continue A__ , A__ , A__ : Union[str, Any] = pattern.groups() A__ : Union[str, Any] = re.sub(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) if option.strip() == "all-casing": A__ : List[Any] = re.sub(obja.lower(), obja.lower(), UpperCAmelCase__ ) A__ : Tuple = re.sub(obja.upper(), obja.upper(), UpperCAmelCase__ ) # Blackify after replacement. To be able to do that, we need the header (class or function definition) # from the previous line A__ : Optional[int] = blackify(lines[start_index - 1] + theoretical_code ) A__ : List[Any] = theoretical_code[len(lines[start_index - 1] ) :] # Test for a diff and act accordingly. if observed_code != theoretical_code: diffs.append([object_name, start_index] ) if overwrite: A__ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:] A__ : Tuple = start_index + 1 if overwrite and len(UpperCAmelCase__ ) > 0: # Warn the user a file has been modified. print(f'Detected changes, rewriting {filename}.' ) with open(UpperCAmelCase__, """w""", encoding="""utf-8""", newline="""\n""" ) as f: f.writelines(UpperCAmelCase__ ) return diffs def _lowerCAmelCase ( UpperCAmelCase__ : bool = False ) ->Any: A__ : Dict = glob.glob(os.path.join(UpperCAmelCase__, """**/*.py""" ), recursive=UpperCAmelCase__ ) A__ : str = [] for filename in all_files: A__ : Any = is_copy_consistent(UpperCAmelCase__, UpperCAmelCase__ ) diffs += [f'- {filename}: copy does not match {d[0]} at line {d[1]}' for d in new_diffs] if not overwrite and len(UpperCAmelCase__ ) > 0: A__ : Any = """\n""".join(UpperCAmelCase__ ) raise Exception( """Found the following copy inconsistencies:\n""" + diff + """\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.""" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') A_ = parser.parse_args() check_copies(args.fix_and_overwrite)
296
0
'''simple docstring''' from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def _UpperCamelCase ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase__ = tau * frequency / samplerate UpperCamelCase__ = sin(__A ) UpperCamelCase__ = cos(__A ) UpperCamelCase__ = _sin / (2 * q_factor) UpperCamelCase__ = (1 - _cos) / 2 UpperCamelCase__ = 1 - _cos UpperCamelCase__ = 1 + alpha UpperCamelCase__ = -2 * _cos UpperCamelCase__ = 1 - alpha UpperCamelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase__ = tau * frequency / samplerate UpperCamelCase__ = sin(__A ) UpperCamelCase__ = cos(__A ) UpperCamelCase__ = _sin / (2 * q_factor) UpperCamelCase__ = (1 + _cos) / 2 UpperCamelCase__ = -1 - _cos UpperCamelCase__ = 1 + alpha UpperCamelCase__ = -2 * _cos UpperCamelCase__ = 1 - alpha UpperCamelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase__ = tau * frequency / samplerate UpperCamelCase__ = sin(__A ) UpperCamelCase__ = cos(__A ) UpperCamelCase__ = _sin / (2 * q_factor) UpperCamelCase__ = _sin / 2 UpperCamelCase__ = 0 UpperCamelCase__ = -ba UpperCamelCase__ = 1 + alpha UpperCamelCase__ = -2 * _cos UpperCamelCase__ = 1 - alpha UpperCamelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( __A , __A , __A = 1 / sqrt(2 ) ) -> IIRFilter: '''simple docstring''' UpperCamelCase__ = tau * frequency / samplerate UpperCamelCase__ = sin(__A ) UpperCamelCase__ = cos(__A ) UpperCamelCase__ = _sin / (2 * q_factor) UpperCamelCase__ = 1 - alpha UpperCamelCase__ = -2 * _cos UpperCamelCase__ = 1 + alpha UpperCamelCase__ = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def _UpperCamelCase ( __A , __A , __A , __A = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' UpperCamelCase__ = tau * frequency / samplerate UpperCamelCase__ = sin(__A ) UpperCamelCase__ = cos(__A ) UpperCamelCase__ = _sin / (2 * q_factor) UpperCamelCase__ = 10 ** (gain_db / 40) UpperCamelCase__ = 1 + alpha * big_a UpperCamelCase__ = -2 * _cos UpperCamelCase__ = 1 - alpha * big_a UpperCamelCase__ = 1 + alpha / big_a UpperCamelCase__ = -2 * _cos UpperCamelCase__ = 1 - alpha / big_a UpperCamelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( __A , __A , __A , __A = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' UpperCamelCase__ = tau * frequency / samplerate UpperCamelCase__ = sin(__A ) UpperCamelCase__ = cos(__A ) UpperCamelCase__ = _sin / (2 * q_factor) UpperCamelCase__ = 10 ** (gain_db / 40) UpperCamelCase__ = (big_a + 1) - (big_a - 1) * _cos UpperCamelCase__ = (big_a + 1) + (big_a - 1) * _cos UpperCamelCase__ = (big_a - 1) - (big_a + 1) * _cos UpperCamelCase__ = (big_a - 1) + (big_a + 1) * _cos UpperCamelCase__ = 2 * sqrt(__A ) * alpha UpperCamelCase__ = big_a * (pmc + aaa) UpperCamelCase__ = 2 * big_a * mpc UpperCamelCase__ = big_a * (pmc - aaa) UpperCamelCase__ = ppmc + aaa UpperCamelCase__ = -2 * pmpc UpperCamelCase__ = ppmc - aaa UpperCamelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def _UpperCamelCase ( __A , __A , __A , __A = 1 / sqrt(2 ) , ) -> IIRFilter: '''simple docstring''' UpperCamelCase__ = tau * frequency / samplerate UpperCamelCase__ = sin(__A ) UpperCamelCase__ = cos(__A ) UpperCamelCase__ = _sin / (2 * q_factor) UpperCamelCase__ = 10 ** (gain_db / 40) UpperCamelCase__ = (big_a + 1) - (big_a - 1) * _cos UpperCamelCase__ = (big_a + 1) + (big_a - 1) * _cos UpperCamelCase__ = (big_a - 1) - (big_a + 1) * _cos UpperCamelCase__ = (big_a - 1) + (big_a + 1) * _cos UpperCamelCase__ = 2 * sqrt(__A ) * alpha UpperCamelCase__ = big_a * (ppmc + aaa) UpperCamelCase__ = -2 * big_a * pmpc UpperCamelCase__ = big_a * (ppmc - aaa) UpperCamelCase__ = pmc + aaa UpperCamelCase__ = 2 * mpc UpperCamelCase__ = pmc - aaa UpperCamelCase__ = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
80
def lowerCAmelCase__ ( ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = [] lowerCAmelCase__ : List[str] = 1 while len(lowerCamelCase_) < 1E6: constant.append(str(lowerCamelCase_)) i += 1 lowerCAmelCase__ : Union[str, Any] = ''''''.join(lowerCamelCase_) return ( int(constant[0]) * int(constant[9]) * int(constant[99]) * int(constant[999]) * int(constant[9999]) * int(constant[99999]) * int(constant[999999]) ) if __name__ == "__main__": print(solution())
129
0
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase: str = logging.get_logger(__name__) __lowercase: str = {"vocab_file": "vocab.json", "merges_file": "merges.txt"} __lowercase: Optional[int] = { "vocab_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json" ), }, "merges_file": { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt", "allenai/longformer-large-4096": ( "https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt" ), "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt" ), }, } __lowercase: str = { "allenai/longformer-base-4096": 4_096, "allenai/longformer-large-4096": 4_096, "allenai/longformer-large-4096-finetuned-triviaqa": 4_096, "allenai/longformer-base-4096-extra.pos.embd.only": 4_096, "allenai/longformer-large-4096-extra.pos.embd.only": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE__( ) -> str: '''simple docstring''' UpperCamelCase__ = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) UpperCamelCase__ = bs[:] UpperCamelCase__ = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 UpperCamelCase__ = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def SCREAMING_SNAKE_CASE__( _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = set() UpperCamelCase__ = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCamelCase__ = char return pairs class UpperCAmelCase ( SCREAMING_SNAKE_CASE__): _lowerCamelCase : Any = VOCAB_FILES_NAMES _lowerCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _lowerCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCamelCase : Dict = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any], a_ : Tuple, a_ : Tuple, a_ : str="replace", a_ : int="<s>", a_ : Any="</s>", a_ : Union[str, Any]="</s>", a_ : List[str]="<s>", a_ : Optional[Any]="<unk>", a_ : Tuple="<pad>", a_ : Dict="<mask>", a_ : Any=False, **a_ : Dict, ): """simple docstring""" UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else bos_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else eos_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else sep_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else cls_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else unk_token UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ = AddedToken(a_, lstrip=a_, rstrip=a_ ) if isinstance(a_, a_ ) else mask_token super().__init__( errors=a_, bos_token=a_, eos_token=a_, unk_token=a_, sep_token=a_, cls_token=a_, pad_token=a_, mask_token=a_, add_prefix_space=a_, **a_, ) with open(a_, encoding="utf-8" ) as vocab_handle: UpperCamelCase__ = json.load(a_ ) UpperCamelCase__ = {v: k for k, v in self.encoder.items()} UpperCamelCase__ = errors # how to handle errors in decoding UpperCamelCase__ = bytes_to_unicode() UpperCamelCase__ = {v: k for k, v in self.byte_encoder.items()} with open(a_, encoding="utf-8" ) as merges_handle: UpperCamelCase__ = merges_handle.read().split("\n" )[1:-1] UpperCamelCase__ = [tuple(merge.split() ) for merge in bpe_merges] UpperCamelCase__ = dict(zip(a_, range(len(a_ ) ) ) ) UpperCamelCase__ = {} UpperCamelCase__ = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions UpperCamelCase__ = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowercase_ ( self : Dict ): """simple docstring""" return len(self.encoder ) def lowercase_ ( self : Optional[int] ): """simple docstring""" return dict(self.encoder, **self.added_tokens_encoder ) def lowercase_ ( self : Any, a_ : Union[str, Any] ): """simple docstring""" if token in self.cache: return self.cache[token] UpperCamelCase__ = tuple(a_ ) UpperCamelCase__ = get_pairs(a_ ) if not pairs: return token while True: UpperCamelCase__ = min(a_, key=lambda a_ : self.bpe_ranks.get(a_, float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCamelCase__ , UpperCamelCase__ = bigram UpperCamelCase__ = [] UpperCamelCase__ = 0 while i < len(a_ ): try: UpperCamelCase__ = word.index(a_, a_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCamelCase__ = j if word[i] == first and i < len(a_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCamelCase__ = tuple(a_ ) UpperCamelCase__ = new_word if len(a_ ) == 1: break else: UpperCamelCase__ = get_pairs(a_ ) UpperCamelCase__ = " ".join(a_ ) UpperCamelCase__ = word return word def lowercase_ ( self : List[Any], a_ : List[str] ): """simple docstring""" UpperCamelCase__ = [] for token in re.findall(self.pat, a_ ): UpperCamelCase__ = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a_ ).split(" " ) ) return bpe_tokens def lowercase_ ( self : int, a_ : Any ): """simple docstring""" return self.encoder.get(a_, self.encoder.get(self.unk_token ) ) def lowercase_ ( self : Union[str, Any], a_ : Tuple ): """simple docstring""" return self.decoder.get(a_ ) def lowercase_ ( self : Tuple, a_ : Tuple ): """simple docstring""" UpperCamelCase__ = "".join(a_ ) UpperCamelCase__ = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8", errors=self.errors ) return text def lowercase_ ( self : Optional[int], a_ : str, a_ : Optional[str] = None ): """simple docstring""" if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join( a_, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a_, "w", encoding="utf-8" ) as f: f.write(json.dumps(self.encoder, indent=2, sort_keys=a_, ensure_ascii=a_ ) + "\n" ) UpperCamelCase__ = 0 with open(a_, "w", encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda a_ : kv[1] ): if index != token_index: logger.warning( f'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) UpperCamelCase__ = token_index writer.write(" ".join(a_ ) + "\n" ) index += 1 return vocab_file, merge_file def lowercase_ ( self : List[str], a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] UpperCamelCase__ = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase_ ( self : List[Any], a_ : List[int], a_ : Optional[List[int]] = None, a_ : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_, token_ids_a=a_, already_has_special_tokens=a_ ) if token_ids_a is None: return [1] + ([0] * len(a_ )) + [1] return [1] + ([0] * len(a_ )) + [1, 1] + ([0] * len(a_ )) + [1] def lowercase_ ( self : Any, a_ : List[int], a_ : Optional[List[int]] = None ): """simple docstring""" UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase_ ( self : int, a_ : str, a_ : Optional[Any]=False, **a_ : List[str] ): """simple docstring""" UpperCamelCase__ = kwargs.pop("add_prefix_space", self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a_ ) > 0 and not text[0].isspace()): UpperCamelCase__ = " " + text return (text, kwargs)
31
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE__( _UpperCamelCase : int | float | str , _UpperCamelCase : int | float | str ) -> list[str]: '''simple docstring''' if nth_term == "": return [""] UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = int(_UpperCamelCase ) UpperCamelCase__ = [] for temp in range(int(_UpperCamelCase ) ): series.append(F'1 / {pow(temp + 1 , int(_UpperCamelCase ) )}' if series else "1" ) return series if __name__ == "__main__": import doctest doctest.testmod() __lowercase: Dict = int(input("Enter the last number (nth term) of the P-Series")) __lowercase: Optional[int] = int(input("Enter the power for P-Series")) print("Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p") print(p_series(nth_term, power))
31
1
'''simple docstring''' from manim import * class snake_case ( lowercase ): """simple docstring""" def snake_case ( self ): """simple docstring""" lowerCamelCase_ = Rectangle(height=0.5 , width=0.5 ) lowerCamelCase_ = Rectangle(height=0.25 , width=0.25 ) lowerCamelCase_ = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = Text("CPU" , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) lowerCamelCase_ = [mem.copy() for i in range(4 )] lowerCamelCase_ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = Text("GPU" , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase__ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = Text("Model" , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase__ ) lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(UpperCAmelCase__ ): rect.set_stroke(UpperCAmelCase__ ) lowerCamelCase_ = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=UpperCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCAmelCase__ , buff=0.0 ) self.add(UpperCAmelCase__ ) model_cpu_arr.append(UpperCAmelCase__ ) self.add(*UpperCAmelCase__ , *UpperCAmelCase__ , *UpperCAmelCase__ ) lowerCamelCase_ = [mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = Text("Loaded Checkpoint" , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCAmelCase__ ) lowerCamelCase_ = [] lowerCamelCase_ = [] for i, rect in enumerate(UpperCAmelCase__ ): lowerCamelCase_ = fill.copy().set_fill(UpperCAmelCase__ , opacity=0.7 ) target.move_to(UpperCAmelCase__ ) ckpt_arr.append(UpperCAmelCase__ ) lowerCamelCase_ = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCAmelCase__ ) self.add(*UpperCAmelCase__ , *UpperCAmelCase__ ) lowerCamelCase_ = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) lowerCamelCase_ = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase_ = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(UpperCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase__ ) lowerCamelCase_ = MarkupText( f'''Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = [meta_mem.copy() for i in range(6 )] lowerCamelCase_ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) lowerCamelCase_ = Text("Disk" , font_size=24 ) lowerCamelCase_ = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) disk.move_to([-4.0, -1.25, 0] ) self.play(Write(UpperCAmelCase__ , run_time=3 ) , Write(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) ) lowerCamelCase_ = [] for i, rect in enumerate(UpperCAmelCase__ ): lowerCamelCase_ = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(FadeOut(UpperCAmelCase__ ) ) lowerCamelCase_ = MarkupText(f'''Then, the checkpoint is removed from memory\nthrough garbage collection.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__ , run_time=3 ) ) self.play( FadeOut(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , *UpperCAmelCase__ ) , ) self.wait()
55
from unittest.mock import patch import pyspark from datasets.packaged_modules.spark.spark import ( Spark, SparkExamplesIterable, _generate_iterable_examples, ) from ..utils import ( require_dill_gt_0_3_2, require_not_windows, ) def __lowercase ( _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : str = [] for part_id in partition_order: SCREAMING_SNAKE_CASE : Tuple = df.where(F"SPARK_PARTITION_ID() = {part_id}" ).collect() for row_idx, row in enumerate(_A ): expected_row_ids_and_row_dicts.append((F"{part_id}_{row_idx}", row.asDict()) ) return expected_row_ids_and_row_dicts @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE : List[str] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : str = spark.range(100 ).repartition(1 ) SCREAMING_SNAKE_CASE : str = Spark(_A ) # The id ints will be converted to Pyarrow int64s, so each row will be 8 bytes. Setting a max_shard_size of 16 means # that each partition can hold 2 rows. spark_builder._repartition_df_if_needed(max_shard_size=16 ) # Given that the dataframe has 100 rows and each partition has 2 rows, we expect 50 partitions. assert spark_builder.df.rdd.getNumPartitions() == 50 @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Tuple: SCREAMING_SNAKE_CASE : Optional[int] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : Tuple = spark.range(10 ).repartition(2 ) SCREAMING_SNAKE_CASE : Any = [1, 0] SCREAMING_SNAKE_CASE : Dict = _generate_iterable_examples(_A , _A ) # Reverse the partitions. SCREAMING_SNAKE_CASE : Optional[int] = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , _A ) for i, (row_id, row_dict) in enumerate(generate_fn() ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE : Union[str, Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : List[str] = spark.range(10 ).repartition(1 ) SCREAMING_SNAKE_CASE : Optional[Any] = SparkExamplesIterable(_A ) assert it.n_shards == 1 for i, (row_id, row_dict) in enumerate(_A ): assert row_id == F"0_{i}" assert row_dict == {"id": i} @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> Any: SCREAMING_SNAKE_CASE : Tuple = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : Any = spark.range(30 ).repartition(3 ) # Mock the generator so that shuffle reverses the partition indices. with patch("""numpy.random.Generator""" ) as generator_mock: SCREAMING_SNAKE_CASE : int = lambda _A : x.reverse() SCREAMING_SNAKE_CASE : int = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , [2, 1, 0] ) SCREAMING_SNAKE_CASE : Any = SparkExamplesIterable(_A ).shuffle_data_sources(_A ) assert shuffled_it.n_shards == 3 for i, (row_id, row_dict) in enumerate(_A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = expected_row_ids_and_row_dicts[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> str: SCREAMING_SNAKE_CASE : Dict = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : Optional[Any] = spark.range(20 ).repartition(4 ) # Partitions 0 and 2 SCREAMING_SNAKE_CASE : str = SparkExamplesIterable(_A ).shard_data_sources(worker_id=0 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : List[Any] = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , [0, 2] ) for i, (row_id, row_dict) in enumerate(_A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict # Partitions 1 and 3 SCREAMING_SNAKE_CASE : int = SparkExamplesIterable(_A ).shard_data_sources(worker_id=1 , num_workers=2 ) assert shard_it_a.n_shards == 2 SCREAMING_SNAKE_CASE : Tuple = _get_expected_row_ids_and_row_dicts_for_partition_order(_A , [1, 3] ) for i, (row_id, row_dict) in enumerate(_A ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = expected_row_ids_and_row_dicts_a[i] assert row_id == expected_row_id assert row_dict == expected_row_dict @require_not_windows @require_dill_gt_0_3_2 def __lowercase ( ) -> List[Any]: SCREAMING_SNAKE_CASE : Optional[Any] = pyspark.sql.SparkSession.builder.master("""local[*]""" ).appName("""pyspark""" ).getOrCreate() SCREAMING_SNAKE_CASE : str = spark.range(100 ).repartition(1 ) SCREAMING_SNAKE_CASE : Any = Spark(_A ) # Choose a small max_shard_size for maximum partitioning. spark_builder._repartition_df_if_needed(max_shard_size=1 ) # The new number of partitions should not be greater than the number of rows. assert spark_builder.df.rdd.getNumPartitions() == 100
245
0
'''simple docstring''' import sys from typing import Tuple import numpy as np import torch from PIL import Image from torch import nn from transformers.image_utils import PILImageResampling from utils import img_tensorize class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ,_lowerCamelCase=sys.maxsize ) -> Optional[Any]: '''simple docstring''' __lowercase = '''bilinear''' __lowercase = max_size __lowercase = short_edge_length def __call__(self ,_lowerCamelCase ) -> str: '''simple docstring''' __lowercase = [] for img in imgs: __lowercase , __lowercase = img.shape[:2] # later: provide list and randomly choose index for resize __lowercase = np.random.randint(self.short_edge_length[0] ,self.short_edge_length[1] + 1 ) if size == 0: return img __lowercase = size * 1.0 / min(_lowerCamelCase ,_lowerCamelCase ) if h < w: __lowercase , __lowercase = size, scale * w else: __lowercase , __lowercase = scale * h, size if max(_lowerCamelCase ,_lowerCamelCase ) > self.max_size: __lowercase = self.max_size * 1.0 / max(_lowerCamelCase ,_lowerCamelCase ) __lowercase = newh * scale __lowercase = neww * scale __lowercase = int(neww + 0.5 ) __lowercase = int(newh + 0.5 ) if img.dtype == np.uinta: __lowercase = Image.fromarray(_lowerCamelCase ) __lowercase = pil_image.resize((neww, newh) ,PILImageResampling.BILINEAR ) __lowercase = np.asarray(_lowerCamelCase ) else: __lowercase = img.permute(2 ,0 ,1 ).unsqueeze(0 ) # 3, 0, 1) # hw(c) -> nchw __lowercase = nn.functional.interpolate( _lowerCamelCase ,(newh, neww) ,mode=self.interp_method ,align_corners=_lowerCamelCase ).squeeze(0 ) img_augs.append(_lowerCamelCase ) return img_augs class __lowercase : '''simple docstring''' def __init__(self ,_lowerCamelCase ) -> Union[str, Any]: '''simple docstring''' __lowercase = ResizeShortestEdge([cfg.INPUT.MIN_SIZE_TEST, cfg.INPUT.MIN_SIZE_TEST] ,cfg.INPUT.MAX_SIZE_TEST ) __lowercase = cfg.INPUT.FORMAT __lowercase = cfg.SIZE_DIVISIBILITY __lowercase = cfg.PAD_VALUE __lowercase = cfg.INPUT.MAX_SIZE_TEST __lowercase = cfg.MODEL.DEVICE __lowercase = torch.tensor(cfg.MODEL.PIXEL_STD ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = torch.tensor(cfg.MODEL.PIXEL_MEAN ).to(self.device ).view(len(cfg.MODEL.PIXEL_STD ) ,1 ,1 ) __lowercase = lambda _lowerCamelCase : (x - self.pixel_mean) / self.pixel_std def _UpperCAmelCase (self ,_lowerCamelCase ) -> Dict: '''simple docstring''' __lowercase = tuple(max(_lowerCamelCase ) for s in zip(*[img.shape for img in images] ) ) __lowercase = [im.shape[-2:] for im in images] __lowercase = [ nn.functional.pad( _lowerCamelCase ,[0, max_size[-1] - size[1], 0, max_size[-2] - size[0]] ,value=self.pad_value ,) for size, im in zip(_lowerCamelCase ,_lowerCamelCase ) ] return torch.stack(_lowerCamelCase ), torch.tensor(_lowerCamelCase ) def __call__(self ,_lowerCamelCase ,_lowerCamelCase=False ) -> Tuple: '''simple docstring''' with torch.no_grad(): if not isinstance(_lowerCamelCase ,_lowerCamelCase ): __lowercase = [images] if single_image: assert len(_lowerCamelCase ) == 1 for i in range(len(_lowerCamelCase ) ): if isinstance(images[i] ,torch.Tensor ): images.insert(_lowerCamelCase ,images.pop(_lowerCamelCase ).to(self.device ).float() ) elif not isinstance(images[i] ,torch.Tensor ): images.insert( _lowerCamelCase ,torch.as_tensor(img_tensorize(images.pop(_lowerCamelCase ) ,input_format=self.input_format ) ) .to(self.device ) .float() ,) # resize smallest edge __lowercase = torch.tensor([im.shape[:2] for im in images] ) __lowercase = self.aug(_lowerCamelCase ) # transpose images and convert to torch tensors # images = [torch.as_tensor(i.astype("float32")).permute(2, 0, 1).to(self.device) for i in images] # now normalize before pad to avoid useless arithmetic __lowercase = [self.normalizer(_lowerCamelCase ) for x in images] # now pad them to do the following operations __lowercase , __lowercase = self.pad(_lowerCamelCase ) # Normalize if self.size_divisibility > 0: raise NotImplementedError() # pad __lowercase = torch.true_divide(_lowerCamelCase ,_lowerCamelCase ) if single_image: return images[0], sizes[0], scales_yx[0] else: return images, sizes, scales_yx def _lowerCAmelCase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ): boxes[:, 0::2] *= scale_yx[:, 1] boxes[:, 1::2] *= scale_yx[:, 0] return boxes def _lowerCAmelCase ( lowerCamelCase_ : str , lowerCamelCase_ : Tuple[int, int] ): assert torch.isfinite(lowerCamelCase_ ).all(), "Box tensor contains infinite or NaN!" __lowercase , __lowercase = box_size tensor[:, 0].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 1].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 2].clamp_(min=0 , max=lowerCamelCase_ ) tensor[:, 3].clamp_(min=0 , max=lowerCamelCase_ )
217
'''simple docstring''' import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint _SCREAMING_SNAKE_CASE = { '''169M''': 1_2, '''430M''': 2_4, '''1B5''': 2_4, '''3B''': 3_2, '''7B''': 3_2, '''14B''': 4_0, } _SCREAMING_SNAKE_CASE = { '''169M''': 7_6_8, '''430M''': 1_0_2_4, '''1B5''': 2_0_4_8, '''3B''': 2_5_6_0, '''7B''': 4_0_9_6, '''14B''': 5_1_2_0, } def _lowerCAmelCase ( lowerCamelCase_ : Dict ): __lowercase = list(state_dict.keys() ) for name in state_dict_keys: __lowercase = state_dict.pop(lowerCamelCase_ ) # emb -> embedding if name.startswith('''emb.''' ): __lowercase = name.replace('''emb.''' , '''embeddings.''' ) # ln_0 -> pre_ln (only present at block 0) if name.startswith('''blocks.0.ln0''' ): __lowercase = name.replace('''blocks.0.ln0''' , '''blocks.0.pre_ln''' ) # att -> attention __lowercase = re.sub(r'''blocks\.(\d+)\.att''' , r'''blocks.\1.attention''' , lowerCamelCase_ ) # ffn -> feed_forward __lowercase = re.sub(r'''blocks\.(\d+)\.ffn''' , r'''blocks.\1.feed_forward''' , lowerCamelCase_ ) # time_mix_k -> time_mix_key and reshape if name.endswith('''.time_mix_k''' ): __lowercase = name.replace('''.time_mix_k''' , '''.time_mix_key''' ) # time_mix_v -> time_mix_value and reshape if name.endswith('''.time_mix_v''' ): __lowercase = name.replace('''.time_mix_v''' , '''.time_mix_value''' ) # time_mix_r -> time_mix_key and reshape if name.endswith('''.time_mix_r''' ): __lowercase = name.replace('''.time_mix_r''' , '''.time_mix_receptance''' ) if name != "head.weight": __lowercase = '''rwkv.''' + name __lowercase = weight return state_dict def _lowerCAmelCase ( lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : List[Any]=None , lowerCamelCase_ : Any=False , lowerCamelCase_ : int=None ): # 1. If possible, build the tokenizer. if tokenizer_file is None: print('''No `--tokenizer_file` provided, we will use the default tokenizer.''' ) __lowercase = 5_0_2_7_7 __lowercase = AutoTokenizer.from_pretrained('''EleutherAI/gpt-neox-20b''' ) else: __lowercase = PreTrainedTokenizerFast(tokenizer_file=lowerCamelCase_ ) __lowercase = len(lowerCamelCase_ ) tokenizer.save_pretrained(lowerCamelCase_ ) # 2. Build the config __lowercase = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __lowercase = candidate break if size is None: raise ValueError('''Could not infer the size, please provide it with the `--size` argument.''' ) if size not in possible_sizes: raise ValueError(f"`size` should be one of {possible_sizes}, got {size}." ) __lowercase = RwkvConfig( vocab_size=lowerCamelCase_ , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(lowerCamelCase_ ) # 3. Download model file then convert state_dict __lowercase = hf_hub_download(lowerCamelCase_ , lowerCamelCase_ ) __lowercase = torch.load(lowerCamelCase_ , map_location='''cpu''' ) __lowercase = convert_state_dict(lowerCamelCase_ ) # 4. Split in shards and save __lowercase , __lowercase = shard_checkpoint(lowerCamelCase_ ) for shard_file, shard in shards.items(): torch.save(lowerCamelCase_ , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) if index is not None: __lowercase = os.path.join(lowerCamelCase_ , lowerCamelCase_ ) # Save the index as well with open(lowerCamelCase_ , '''w''' , encoding='''utf-8''' ) as f: __lowercase = json.dumps(lowerCamelCase_ , indent=2 , sort_keys=lowerCamelCase_ ) + '''\n''' f.write(lowerCamelCase_ ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( '''Cleaning up shards. This may error with an OOM error, it this is the case don\'t worry you still have converted the model.''' ) __lowercase = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __lowercase = torch.load(os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(lowerCamelCase_ , lowerCamelCase_ ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError('''Please provide a `model_name` to push the model to the Hub.''' ) __lowercase = AutoModelForCausalLM.from_pretrained(lowerCamelCase_ ) model.push_to_hub(lowerCamelCase_ , max_shard_size='''2GB''' ) tokenizer.push_to_hub(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--repo_id''', default=None, type=str, required=True, help='''Repo ID from which to pull the checkpoint.''' ) parser.add_argument( '''--checkpoint_file''', default=None, type=str, required=True, help='''Name of the checkpoint file in the repo.''' ) parser.add_argument( '''--output_dir''', default=None, type=str, required=True, help='''Where to save the converted model.''' ) parser.add_argument( '''--tokenizer_file''', default=None, type=str, help='''Path to the tokenizer file to use (if not provided, only the model is converted).''', ) parser.add_argument( '''--size''', default=None, type=str, help='''Size of the model. Will be inferred from the `checkpoint_file` if not passed.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Push to the Hub the converted model.''', ) parser.add_argument( '''--model_name''', default=None, type=str, help='''Name of the pushed model on the Hub, including the username / organization.''', ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
217
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available SCREAMING_SNAKE_CASE__ = { 'configuration_transfo_xl': ['TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TransfoXLConfig'], 'tokenization_transfo_xl': ['TransfoXLCorpus', 'TransfoXLTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'AdaptiveEmbedding', 'TransfoXLForSequenceClassification', 'TransfoXLLMHeadModel', 'TransfoXLModel', 'TransfoXLPreTrainedModel', 'load_tf_weights_in_transfo_xl', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ 'TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFAdaptiveEmbedding', 'TFTransfoXLForSequenceClassification', 'TFTransfoXLLMHeadModel', 'TFTransfoXLMainLayer', 'TFTransfoXLModel', 'TFTransfoXLPreTrainedModel', ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
150
"""simple docstring""" from sklearn.metrics import fa_score import datasets A__ : List[str] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' A__ : List[Any] = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' A__ : Optional[int] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : int ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) , reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] , ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : int=None , snake_case__ : Optional[int]=1 , snake_case__ : int="binary" , snake_case__ : List[str]=None ): lowerCamelCase_ : str =fa_score( snake_case__ , snake_case__ , labels=snake_case__ , pos_label=snake_case__ , average=snake_case__ , sample_weight=snake_case__ ) return {"f1": float(snake_case__ ) if score.size == 1 else score}
144
0
from string import ascii_uppercase UpperCamelCase = {char: i for i, char in enumerate(ascii_uppercase)} UpperCamelCase = dict(enumerate(ascii_uppercase)) def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) _SCREAMING_SNAKE_CASE = 0 while True: if x == i: _SCREAMING_SNAKE_CASE = 0 if len(snake_case__ ) == len(snake_case__ ): break key += key[i] i += 1 return key def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = 0 for letter in message: if letter == " ": cipher_text += " " else: _SCREAMING_SNAKE_CASE = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __lowerCamelCase ( snake_case__ ,snake_case__ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = """""" _SCREAMING_SNAKE_CASE = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: _SCREAMING_SNAKE_CASE = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __lowerCamelCase ( ) -> None: """simple docstring""" _SCREAMING_SNAKE_CASE = """THE GERMAN ATTACK""" _SCREAMING_SNAKE_CASE = """SECRET""" _SCREAMING_SNAKE_CASE = generate_key(snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = cipher_text(snake_case__ ,snake_case__ ) print(F'Encrypted Text = {s}' ) print(F'Original Text = {original_text(snake_case__ ,snake_case__ )}' ) if __name__ == "__main__": import doctest doctest.testmod() main()
125
UpperCamelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} UpperCamelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(snake_case__ ,snake_case__ ,snake_case__ ) order.append(snake_case__ ) return order def __lowerCamelCase ( snake_case__ ,snake_case__ ,snake_case__ ) -> list[int]: """simple docstring""" _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(snake_case__ ,snake_case__ ,snake_case__ ) return component def __lowerCamelCase ( snake_case__ ) -> list[list[int]]: """simple docstring""" _SCREAMING_SNAKE_CASE = len(snake_case__ ) * [False] _SCREAMING_SNAKE_CASE = {vert: [] for vert in range(len(snake_case__ ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(snake_case__ ) _SCREAMING_SNAKE_CASE = [] for i, was_visited in enumerate(snake_case__ ): if not was_visited: order += topology_sort(snake_case__ ,snake_case__ ,snake_case__ ) _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = len(snake_case__ ) * [False] for i in range(len(snake_case__ ) ): _SCREAMING_SNAKE_CASE = order[len(snake_case__ ) - i - 1] if not visited[vert]: _SCREAMING_SNAKE_CASE = find_components(snake_case__ ,snake_case__ ,snake_case__ ) components_list.append(snake_case__ ) return components_list
125
1
'''simple docstring''' import math def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase_ : Union[str, Any] = F'''Input value of [number={number}] must be an integer''' raise TypeError(__SCREAMING_SNAKE_CASE ) if number < 1: lowercase_ : Union[str, Any] = F'''Input value of [number={number}] must be > 0''' raise ValueError(__SCREAMING_SNAKE_CASE ) elif number == 1: return 3 elif number == 2: return 5 else: lowercase_ : Any = int(math.log(number // 3 , 2 ) ) + 2 lowercase_ : List[str] = [3, 5] lowercase_ : Any = 2 lowercase_ : Union[str, Any] = 3 for block in range(1 , __SCREAMING_SNAKE_CASE ): for _ in range(__SCREAMING_SNAKE_CASE ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(1_1): _lowercase : Any = 0 try: _lowercase : List[str] = proth(number) except ValueError: print(f"""ValueError: there is no {number}th Proth number""") continue print(f"""The {number}th Proth number: {value}""")
93
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset SCREAMING_SNAKE_CASE_ = random.Random() def __lowercase ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Tuple: '''simple docstring''' if rng is None: SCREAMING_SNAKE_CASE = global_rng SCREAMING_SNAKE_CASE = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any] ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[int]=7 ,lowerCamelCase__ : Optional[Any]=400 ,lowerCamelCase__ : List[str]=2000 ,lowerCamelCase__ : List[str]=2048 ,lowerCamelCase__ : Any=128 ,lowerCamelCase__ : List[str]=1 ,lowerCamelCase__ : str=512 ,lowerCamelCase__ : Optional[Any]=30 ,lowerCamelCase__ : Tuple=44100 ,) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = min_seq_length SCREAMING_SNAKE_CASE = max_seq_length SCREAMING_SNAKE_CASE = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) SCREAMING_SNAKE_CASE = spectrogram_length SCREAMING_SNAKE_CASE = feature_size SCREAMING_SNAKE_CASE = num_audio_channels SCREAMING_SNAKE_CASE = hop_length SCREAMING_SNAKE_CASE = chunk_length SCREAMING_SNAKE_CASE = sampling_rate def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ,lowerCamelCase__ : Tuple=False ,lowerCamelCase__ : Union[str, Any]=False ) -> str: '''simple docstring''' def _flatten(lowerCamelCase__ : List[Any] ): return list(itertools.chain(*lowerCamelCase__ ) ) if equal_length: SCREAMING_SNAKE_CASE = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size SCREAMING_SNAKE_CASE = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length ,self.max_seq_length ,self.seq_length_diff ) ] if numpify: SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : List[Any] = TvltFeatureExtractor def SCREAMING_SNAKE_CASE__ ( self : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = TvltFeatureExtractionTester(self ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ ,"""spectrogram_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""feature_size""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""num_audio_channels""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""hop_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""chunk_length""" ) ) self.assertTrue(hasattr(lowerCamelCase__ ,"""sampling_rate""" ) ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = feat_extract_first.save_pretrained(lowerCamelCase__ )[0] check_json_file_has_correct_format(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_pretrained(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: SCREAMING_SNAKE_CASE = os.path.join(lowerCamelCase__ ,"""feat_extract.json""" ) feat_extract_first.to_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.feature_extraction_class.from_json_file(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feat_extract_first.to_dict() SCREAMING_SNAKE_CASE = feat_extract_second.to_dict() SCREAMING_SNAKE_CASE = dict_first.pop("""mel_filters""" ) SCREAMING_SNAKE_CASE = dict_second.pop("""mel_filters""" ) self.assertTrue(np.allclose(lowerCamelCase__ ,lowerCamelCase__ ) ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self : str ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in range(800 ,1400 ,200 )] SCREAMING_SNAKE_CASE = [np.asarray(lowerCamelCase__ ) for speech_input in speech_inputs] # Test not batched input SCREAMING_SNAKE_CASE = feature_extractor(np_speech_inputs[0] ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking SCREAMING_SNAKE_CASE = feature_extractor( lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ,mask_audio=lowerCamelCase__ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. SCREAMING_SNAKE_CASE = [floats_list((1, x) )[0] for x in (800, 800, 800)] SCREAMING_SNAKE_CASE = np.asarray(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""np""" ,sampling_rate=44100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def SCREAMING_SNAKE_CASE__ ( self : Any ,lowerCamelCase__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" ,"""clean""" ,split="""validation""" ) # automatic decoding with librispeech SCREAMING_SNAKE_CASE = ds.sort("""id""" ).select(range(lowerCamelCase__ ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = self._load_datasamples(1 ) SCREAMING_SNAKE_CASE = TvltFeatureExtractor() SCREAMING_SNAKE_CASE = feature_extractor(lowerCamelCase__ ,return_tensors="""pt""" ).audio_values self.assertEquals(audio_values.shape ,(1, 1, 192, 128) ) SCREAMING_SNAKE_CASE = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] ,lowerCamelCase__ ,atol=1e-4 ) )
296
0
def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = int(__a ) # Initialize Result snake_case_ : Tuple = [] # Traverse through all denomination for denomination in reversed(__a ): # Find denominations while int(__a ) >= int(__a ): total_value -= int(__a ) answer.append(__a ) # Append the "answers" array return answer # Driver Code if __name__ == "__main__": _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = """0""" if ( input("""Do you want to enter your denominations ? (yY/n): """).strip().lower() == "y" ): _SCREAMING_SNAKE_CASE = int(input("""Enter the number of denominations you want to add: """).strip()) for i in range(0, n): denominations.append(int(input(F'''Denomination {i}: ''').strip())) _SCREAMING_SNAKE_CASE = input("""Enter the change you want to make in Indian Currency: """).strip() else: # All denominations of Indian Currency if user does not enter _SCREAMING_SNAKE_CASE = [1, 2, 5, 10, 20, 50, 1_00, 5_00, 20_00] _SCREAMING_SNAKE_CASE = input("""Enter the change you want to make: """).strip() if int(value) == 0 or int(value) < 0: print("""The total value cannot be zero or negative.""") else: print(F'''Following is minimal change for {value}: ''') _SCREAMING_SNAKE_CASE = find_minimum_change(denominations, value) # Print result for i in range(len(answer)): print(answer[i], end=""" """)
88
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
88
1
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : list , _UpperCAmelCase : int = 0 ) -> list: """simple docstring""" _UpperCAmelCase : str = length or len(_UpperCAmelCase ) _UpperCAmelCase : Tuple = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = list_data[i + 1], list_data[i] _UpperCAmelCase : str = True return list_data if not swapped else bubble_sort(_UpperCAmelCase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
31
'''simple docstring''' import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def UpperCamelCase_ ( _UpperCAmelCase : dict ) -> tuple: """simple docstring""" return (data["data"], data["target"]) def UpperCamelCase_ ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : np.ndarray ) -> XGBClassifier: """simple docstring""" _UpperCAmelCase : Any = XGBClassifier() classifier.fit(_UpperCAmelCase , _UpperCAmelCase ) return classifier def UpperCamelCase_ ( ) -> None: """simple docstring""" _UpperCAmelCase : List[str] = load_iris() _UpperCAmelCase , _UpperCAmelCase : Dict = data_handling(_UpperCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : str = train_test_split( _UpperCAmelCase , _UpperCAmelCase , test_size=0.2_5 ) _UpperCAmelCase : Optional[Any] = iris["target_names"] # Create an XGBoost Classifier from the training data _UpperCAmelCase : Tuple = xgboost(_UpperCAmelCase , _UpperCAmelCase ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , display_labels=_UpperCAmelCase , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
31
1
import math from collections.abc import Iterator from itertools import takewhile def lowerCAmelCase_ ( _lowercase : int) -> bool: """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase) + 1) , 6): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase_ ( ) -> Iterator[int]: """simple docstring""" a__ : Optional[int] = 2 while True: if is_prime(_lowercase): yield num num += 1 def lowerCAmelCase_ ( _lowercase : int = 200_0000) -> int: """simple docstring""" return sum(takewhile(lambda _lowercase: x < n , prime_generator())) if __name__ == "__main__": print(f'{solution() = }')
368
from __future__ import annotations def lowerCAmelCase_ ( _lowercase : float , _lowercase : float , _lowercase : float , ) -> tuple[str, float]: """simple docstring""" if (stress, tangential_force, area).count(0) != 1: raise ValueError("""You cannot supply more or less than 2 values""") elif stress < 0: raise ValueError("""Stress cannot be negative""") elif tangential_force < 0: raise ValueError("""Tangential Force cannot be negative""") elif area < 0: raise ValueError("""Area cannot be negative""") elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
266
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "microsoft/biogpt": "https://huggingface.co/microsoft/biogpt/resolve/main/config.json", # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Optional[Any] = """biogpt""" def __init__( self : Optional[int] , UpperCamelCase__ : Optional[Any]=4_2_3_8_4 , UpperCamelCase__ : str=1_0_2_4 , UpperCamelCase__ : List[Any]=2_4 , UpperCamelCase__ : Optional[Any]=1_6 , UpperCamelCase__ : List[Any]=4_0_9_6 , UpperCamelCase__ : int="gelu" , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Tuple=1_0_2_4 , UpperCamelCase__ : Tuple=0.02 , UpperCamelCase__ : Optional[Any]=1e-12 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : Tuple=True , UpperCamelCase__ : Union[str, Any]=0.0 , UpperCamelCase__ : Tuple=0.0 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Dict=0 , UpperCamelCase__ : str=2 , **UpperCamelCase__ : Dict , )-> Tuple: '''simple docstring''' __lowerCAmelCase: Optional[int] = vocab_size __lowerCAmelCase: List[Any] = max_position_embeddings __lowerCAmelCase: Union[str, Any] = hidden_size __lowerCAmelCase: List[str] = num_hidden_layers __lowerCAmelCase: Optional[Any] = num_attention_heads __lowerCAmelCase: List[Any] = intermediate_size __lowerCAmelCase: Union[str, Any] = hidden_act __lowerCAmelCase: Union[str, Any] = hidden_dropout_prob __lowerCAmelCase: int = attention_probs_dropout_prob __lowerCAmelCase: Optional[int] = initializer_range __lowerCAmelCase: List[Any] = layer_norm_eps __lowerCAmelCase: str = scale_embedding __lowerCAmelCase: Optional[Any] = use_cache __lowerCAmelCase: Optional[int] = layerdrop __lowerCAmelCase: Optional[int] = activation_dropout super().__init__(pad_token_id=UpperCamelCase__ , bos_token_id=UpperCamelCase__ , eos_token_id=UpperCamelCase__ , **UpperCamelCase__)
217
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __A = logging.get_logger(__name__) __A = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : str = """deformable_detr""" SCREAMING_SNAKE_CASE_ : int = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self : int , UpperCamelCase__ : int=True , UpperCamelCase__ : str=None , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3_0_0 , UpperCamelCase__ : Optional[int]=1_0_2_4 , UpperCamelCase__ : int=6 , UpperCamelCase__ : List[Any]=1_0_2_4 , UpperCamelCase__ : List[Any]=8 , UpperCamelCase__ : str=6 , UpperCamelCase__ : str=1_0_2_4 , UpperCamelCase__ : Union[str, Any]=8 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : str=True , UpperCamelCase__ : List[Any]="relu" , UpperCamelCase__ : Tuple=2_5_6 , UpperCamelCase__ : Tuple=0.1 , UpperCamelCase__ : Optional[int]=0.0 , UpperCamelCase__ : Dict=0.0 , UpperCamelCase__ : Optional[Any]=0.02 , UpperCamelCase__ : Dict=1.0 , UpperCamelCase__ : Dict=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]="sine" , UpperCamelCase__ : Any="resnet50" , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Any=False , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : List[str]=4 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : List[str]=False , UpperCamelCase__ : Optional[int]=3_0_0 , UpperCamelCase__ : int=False , UpperCamelCase__ : List[Any]=1 , UpperCamelCase__ : Optional[Any]=5 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : str=1 , UpperCamelCase__ : int=1 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Tuple=2 , UpperCamelCase__ : Optional[Any]=0.1 , UpperCamelCase__ : Union[str, Any]=0.25 , UpperCamelCase__ : List[Any]=False , **UpperCamelCase__ : Dict , )-> Optional[int]: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`.") if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") __lowerCAmelCase: List[Any] = CONFIG_MAPPING["resnet"](out_features=["stage4"]) elif isinstance(UpperCamelCase__ , UpperCamelCase__): __lowerCAmelCase: int = backbone_config.get("model_type") __lowerCAmelCase: List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase: Any = config_class.from_dict(UpperCamelCase__) __lowerCAmelCase: int = use_timm_backbone __lowerCAmelCase: Any = backbone_config __lowerCAmelCase: Tuple = num_channels __lowerCAmelCase: str = num_queries __lowerCAmelCase: List[str] = max_position_embeddings __lowerCAmelCase: List[Any] = d_model __lowerCAmelCase: Union[str, Any] = encoder_ffn_dim __lowerCAmelCase: Tuple = encoder_layers __lowerCAmelCase: List[str] = encoder_attention_heads __lowerCAmelCase: Any = decoder_ffn_dim __lowerCAmelCase: Union[str, Any] = decoder_layers __lowerCAmelCase: List[Any] = decoder_attention_heads __lowerCAmelCase: List[Any] = dropout __lowerCAmelCase: Optional[Any] = attention_dropout __lowerCAmelCase: Union[str, Any] = activation_dropout __lowerCAmelCase: Union[str, Any] = activation_function __lowerCAmelCase: Dict = init_std __lowerCAmelCase: int = init_xavier_std __lowerCAmelCase: str = encoder_layerdrop __lowerCAmelCase: Union[str, Any] = auxiliary_loss __lowerCAmelCase: List[Any] = position_embedding_type __lowerCAmelCase: str = backbone __lowerCAmelCase: Tuple = use_pretrained_backbone __lowerCAmelCase: int = dilation # deformable attributes __lowerCAmelCase: Union[str, Any] = num_feature_levels __lowerCAmelCase: Optional[Any] = encoder_n_points __lowerCAmelCase: Dict = decoder_n_points __lowerCAmelCase: Optional[Any] = two_stage __lowerCAmelCase: Tuple = two_stage_num_proposals __lowerCAmelCase: int = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher __lowerCAmelCase: str = class_cost __lowerCAmelCase: List[str] = bbox_cost __lowerCAmelCase: List[str] = giou_cost # Loss coefficients __lowerCAmelCase: Tuple = mask_loss_coefficient __lowerCAmelCase: int = dice_loss_coefficient __lowerCAmelCase: Any = bbox_loss_coefficient __lowerCAmelCase: str = giou_loss_coefficient __lowerCAmelCase: int = eos_coefficient __lowerCAmelCase: Tuple = focal_alpha __lowerCAmelCase: Optional[Any] = disable_custom_kernels super().__init__(is_encoder_decoder=UpperCamelCase__ , **UpperCamelCase__) @property def lowercase_ ( self : List[Any])-> int: '''simple docstring''' return self.encoder_attention_heads @property def lowercase_ ( self : Optional[Any])-> int: '''simple docstring''' return self.d_model def lowercase_ ( self : Union[str, Any])-> List[str]: '''simple docstring''' __lowerCAmelCase: Tuple = copy.deepcopy(self.__dict__) if self.backbone_config is not None: __lowerCAmelCase: str = self.backbone_config.to_dict() __lowerCAmelCase: Tuple = self.__class__.model_type return output
217
1
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed UpperCamelCase_ ={ """distilbert""": (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), """roberta""": (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), """bert""": (BertConfig, BertForMaskedLM, BertTokenizer), """gpt2""": (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def a_ ( _lowercase ): assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def a_ ( _lowercase , _lowercase ): if args.student_type == "roberta": _UpperCamelCase : int = False elif args.student_type == "gpt2": _UpperCamelCase : Any = False def a_ ( _lowercase , _lowercase ): if args.student_type == "roberta": _UpperCamelCase : int = False def a_ ( ): _UpperCamelCase : Dict = argparse.ArgumentParser(description='''Training''' ) parser.add_argument('''--force''' , action='''store_true''' , help='''Overwrite dump_path if it already exists.''' ) parser.add_argument( '''--dump_path''' , type=_lowercase , required=_lowercase , help='''The output directory (log, checkpoints, parameters, etc.)''' ) parser.add_argument( '''--data_file''' , type=_lowercase , required=_lowercase , help='''The binarized file (tokenized + tokens_to_ids) and grouped by sequence.''' , ) parser.add_argument( '''--student_type''' , type=_lowercase , choices=['''distilbert''', '''roberta''', '''gpt2'''] , required=_lowercase , help='''The student type (DistilBERT, RoBERTa).''' , ) parser.add_argument('''--student_config''' , type=_lowercase , required=_lowercase , help='''Path to the student configuration.''' ) parser.add_argument( '''--student_pretrained_weights''' , default=_lowercase , type=_lowercase , help='''Load student initialization checkpoint.''' ) parser.add_argument( '''--teacher_type''' , choices=['''bert''', '''roberta''', '''gpt2'''] , required=_lowercase , help='''Teacher type (BERT, RoBERTa).''' ) parser.add_argument('''--teacher_name''' , type=_lowercase , required=_lowercase , help='''The teacher model.''' ) parser.add_argument('''--temperature''' , default=2.0 , type=_lowercase , help='''Temperature for the softmax temperature.''' ) parser.add_argument( '''--alpha_ce''' , default=0.5 , type=_lowercase , help='''Linear weight for the distillation loss. Must be >=0.''' ) parser.add_argument( '''--alpha_mlm''' , default=0.0 , type=_lowercase , help='''Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.''' , ) parser.add_argument('''--alpha_clm''' , default=0.5 , type=_lowercase , help='''Linear weight for the CLM loss. Must be >=0.''' ) parser.add_argument('''--alpha_mse''' , default=0.0 , type=_lowercase , help='''Linear weight of the MSE loss. Must be >=0.''' ) parser.add_argument( '''--alpha_cos''' , default=0.0 , type=_lowercase , help='''Linear weight of the cosine embedding loss. Must be >=0.''' ) parser.add_argument( '''--mlm''' , action='''store_true''' , help='''The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.''' ) parser.add_argument( '''--mlm_mask_prop''' , default=0.15 , type=_lowercase , help='''Proportion of tokens for which we need to make a prediction.''' , ) parser.add_argument('''--word_mask''' , default=0.8 , type=_lowercase , help='''Proportion of tokens to mask out.''' ) parser.add_argument('''--word_keep''' , default=0.1 , type=_lowercase , help='''Proportion of tokens to keep.''' ) parser.add_argument('''--word_rand''' , default=0.1 , type=_lowercase , help='''Proportion of tokens to randomly replace.''' ) parser.add_argument( '''--mlm_smoothing''' , default=0.7 , type=_lowercase , help='''Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).''' , ) parser.add_argument('''--token_counts''' , type=_lowercase , help='''The token counts in the data_file for MLM.''' ) parser.add_argument( '''--restrict_ce_to_mask''' , action='''store_true''' , help='''If true, compute the distillation loss only the [MLM] prediction distribution.''' , ) parser.add_argument( '''--freeze_pos_embs''' , action='''store_true''' , help='''Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.''' , ) parser.add_argument( '''--freeze_token_type_embds''' , action='''store_true''' , help='''Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.''' , ) parser.add_argument('''--n_epoch''' , type=_lowercase , default=3 , help='''Number of pass on the whole dataset.''' ) parser.add_argument('''--batch_size''' , type=_lowercase , default=5 , help='''Batch size (for each process).''' ) parser.add_argument( '''--group_by_size''' , action='''store_false''' , help='''If true, group sequences that have similar length into the same batch. Default is true.''' , ) parser.add_argument( '''--gradient_accumulation_steps''' , type=_lowercase , default=50 , help='''Gradient accumulation for larger training batches.''' , ) parser.add_argument('''--warmup_prop''' , default=0.05 , type=_lowercase , help='''Linear warmup proportion.''' ) parser.add_argument('''--weight_decay''' , default=0.0 , type=_lowercase , help='''Weight decay if we apply some.''' ) parser.add_argument('''--learning_rate''' , default=5E-4 , type=_lowercase , help='''The initial learning rate for Adam.''' ) parser.add_argument('''--adam_epsilon''' , default=1E-6 , type=_lowercase , help='''Epsilon for Adam optimizer.''' ) parser.add_argument('''--max_grad_norm''' , default=5.0 , type=_lowercase , help='''Max gradient norm.''' ) parser.add_argument('''--initializer_range''' , default=0.02 , type=_lowercase , help='''Random initialization range.''' ) parser.add_argument( '''--fp16''' , action='''store_true''' , help='''Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit''' , ) parser.add_argument( '''--fp16_opt_level''' , type=_lowercase , default='''O1''' , help=( '''For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].''' '''See details at https://nvidia.github.io/apex/amp.html''' ) , ) parser.add_argument('''--n_gpu''' , type=_lowercase , default=1 , help='''Number of GPUs in the node.''' ) parser.add_argument('''--local_rank''' , type=_lowercase , default=-1 , help='''Distributed training - Local rank''' ) parser.add_argument('''--seed''' , type=_lowercase , default=56 , help='''Random seed''' ) parser.add_argument('''--log_interval''' , type=_lowercase , default=500 , help='''Tensorboard logging interval.''' ) parser.add_argument('''--checkpoint_interval''' , type=_lowercase , default=4000 , help='''Checkpoint interval.''' ) _UpperCamelCase : Dict = parser.parse_args() sanity_checks(_lowercase ) # ARGS # init_gpu_params(_lowercase ) set_seed(_lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F"""Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite""" ''' itUse `--force` if you want to overwrite it''' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F"""Experiment will be dumped and logged in {args.dump_path}""" ) # SAVE PARAMS # logger.info(F"""Param: {args}""" ) with open(os.path.join(args.dump_path , '''parameters.json''' ) , '''w''' ) as f: json.dump(vars(_lowercase ) , _lowercase , indent=4 ) git_log(args.dump_path ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : Dict = MODEL_CLASSES[args.student_type] _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _UpperCamelCase : Union[str, Any] = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _UpperCamelCase : str = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _UpperCamelCase : Optional[int] = tokenizer.all_special_tokens.index(_lowercase ) _UpperCamelCase : Any = tokenizer.all_special_ids[idx] logger.info(F"""Special tokens {special_tok_ids}""" ) _UpperCamelCase : Union[str, Any] = special_tok_ids _UpperCamelCase : List[Any] = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F"""Loading data from {args.data_file}""" ) with open(args.data_file , '''rb''' ) as fp: _UpperCamelCase : Optional[Any] = pickle.load(_lowercase ) if args.mlm: logger.info(F"""Loading token counts from {args.token_counts} (already pre-computed)""" ) with open(args.token_counts , '''rb''' ) as fp: _UpperCamelCase : List[str] = pickle.load(_lowercase ) _UpperCamelCase : Dict = np.maximum(_lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _UpperCamelCase : Optional[int] = 0.0 # do not predict special tokens _UpperCamelCase : List[Any] = torch.from_numpy(_lowercase ) else: _UpperCamelCase : Optional[int] = None _UpperCamelCase : str = LmSeqsDataset(params=_lowercase , data=_lowercase ) logger.info('''Data loader created.''' ) # STUDENT # logger.info(F"""Loading student config from {args.student_config}""" ) _UpperCamelCase : Dict = student_config_class.from_pretrained(args.student_config ) _UpperCamelCase : Dict = True if args.student_pretrained_weights is not None: logger.info(F"""Loading pretrained weights from {args.student_pretrained_weights}""" ) _UpperCamelCase : Union[str, Any] = student_model_class.from_pretrained(args.student_pretrained_weights , config=_lowercase ) else: _UpperCamelCase : Tuple = student_model_class(_lowercase ) if args.n_gpu > 0: student.to(F"""cuda:{args.local_rank}""" ) logger.info('''Student loaded.''' ) # TEACHER # _UpperCamelCase : Tuple = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_lowercase ) if args.n_gpu > 0: teacher.to(F"""cuda:{args.local_rank}""" ) logger.info(F"""Teacher loaded from {args.teacher_name}.""" ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_lowercase , _lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_lowercase , _lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _UpperCamelCase : Union[str, Any] = Distiller( params=_lowercase , dataset=_lowercase , token_probs=_lowercase , student=_lowercase , teacher=_lowercase ) distiller.train() logger.info('''Let\'s go get some drinks.''' ) if __name__ == "__main__": main()
128
"""simple docstring""" from ...processing_utils import ProcessorMixin class _a ( _lowerCAmelCase ): UpperCamelCase = ['''image_processor''', '''feature_extractor'''] UpperCamelCase = '''TvltImageProcessor''' UpperCamelCase = '''TvltFeatureExtractor''' def __init__( self : Union[str, Any], lowerCAmelCase__ : str, lowerCAmelCase__ : List[str] ) -> Optional[Any]: '''simple docstring''' super().__init__(image_processor=lowerCAmelCase__, feature_extractor=lowerCAmelCase__ ) _UpperCamelCase : List[str] = image_processor _UpperCamelCase : int = feature_extractor def __call__( self : List[str], lowerCAmelCase__ : Optional[int]=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Dict=None, lowerCAmelCase__ : str=None, lowerCAmelCase__ : Optional[int]=False, lowerCAmelCase__ : str=False, *lowerCAmelCase__ : List[str], **lowerCAmelCase__ : Optional[int], ) -> Dict: '''simple docstring''' if images is None and audio is None: raise ValueError('''You need to specify either an `images` or `audio` input to process.''' ) _UpperCamelCase : Optional[int] = None if images is not None: _UpperCamelCase : Optional[int] = self.image_processor(lowerCAmelCase__, mask_pixel=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ ) if images_mixed is not None: _UpperCamelCase : str = self.image_processor(lowerCAmelCase__, is_mixed=lowerCAmelCase__, *lowerCAmelCase__, **lowerCAmelCase__ ) if audio is not None: _UpperCamelCase : Union[str, Any] = self.feature_extractor( lowerCAmelCase__, *lowerCAmelCase__, sampling_rate=lowerCAmelCase__, mask_audio=lowerCAmelCase__, **lowerCAmelCase__ ) _UpperCamelCase : str = {} if audio is not None: output_dict.update(lowerCAmelCase__ ) if images is not None: output_dict.update(lowerCAmelCase__ ) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase__ ) return output_dict @property def snake_case ( self : List[str] ) -> Tuple: '''simple docstring''' _UpperCamelCase : List[str] = self.image_processor.model_input_names _UpperCamelCase : List[Any] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names ) )
128
1
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version snake_case_ : Dict = get_logger(__name__) class __a : __a : List[Any] = "dummy_data" __a : Optional[int] = "datasets" __a : Dict = False def __init__( self : str , __magic_name__ : str , __magic_name__ : str , __magic_name__ : Union[Version, str] , __magic_name__ : Optional[str] = None , __magic_name__ : bool = False , __magic_name__ : bool = True , __magic_name__ : Optional[List[Callable]] = None , ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Optional[int] = dataset_name UpperCAmelCase_ : Union[str, Any] = cache_dir UpperCAmelCase_ : List[Any] = use_local_dummy_data UpperCAmelCase_ : Optional[int] = config # download_callbacks take a single url as input UpperCAmelCase_ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root UpperCAmelCase_ : Any = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general UpperCAmelCase_ : List[Any] = str(__magic_name__ ) # to be downloaded UpperCAmelCase_ : Optional[Any] = None UpperCAmelCase_ : Tuple = None @property def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" if self._dummy_file is None: UpperCAmelCase_ : Dict = self.download_dummy_data() return self._dummy_file @property def UpperCAmelCase__ ( self : List[str] ) -> Tuple: """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join('''dummy''' , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join('''dummy''' , self.version_name ) @property def UpperCAmelCase__ ( self : Dict ) -> List[str]: """simple docstring""" return os.path.join(self.dummy_data_folder , '''dummy_data.zip''' ) def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) UpperCAmelCase_ : Union[str, Any] = cached_path( __magic_name__ , cache_dir=self.cache_dir , extract_compressed_file=__magic_name__ , force_extract=__magic_name__ ) return os.path.join(__magic_name__ , self.dummy_file_name ) @property def UpperCAmelCase__ ( self : Optional[Any] ) -> Tuple: """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def UpperCAmelCase__ ( self : str ) -> List[str]: """simple docstring""" if self._bucket_url is None: UpperCAmelCase_ : List[Any] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '''/''' ) ) return self._bucket_url @property def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , '''/''' ).split('''/''' )[:-1] ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : List[Any] , *__magic_name__ : Tuple ) -> List[Any]: """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested UpperCAmelCase_ : str = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned UpperCAmelCase_ : str = self.dummy_file_name # special case when data_url is a dict if isinstance(__magic_name__ , __magic_name__ ): return self.create_dummy_data_dict(__magic_name__ , __magic_name__ ) elif isinstance(__magic_name__ , (list, tuple) ): return self.create_dummy_data_list(__magic_name__ , __magic_name__ ) else: return self.create_dummy_data_single(__magic_name__ , __magic_name__ ) def UpperCAmelCase__ ( self : str , __magic_name__ : Optional[int] , *__magic_name__ : Any ) -> str: """simple docstring""" return self.download_and_extract(__magic_name__ ) def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Optional[Any] ) -> Dict: """simple docstring""" return self.download_and_extract(__magic_name__ ) def UpperCAmelCase__ ( self : List[Any] , __magic_name__ : Any , *__magic_name__ : Tuple , **__magic_name__ : Any ) -> Dict: """simple docstring""" return path def UpperCAmelCase__ ( self : Dict ) -> Dict: """simple docstring""" return {} def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : str , __magic_name__ : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase_ : List[str] = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__magic_name__ , __magic_name__ ): for single_url in single_urls: download_callback(__magic_name__ ) else: UpperCAmelCase_ : Optional[int] = single_urls download_callback(__magic_name__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__magic_name__ , __magic_name__ ): UpperCAmelCase_ : Any = [os.path.join(__magic_name__ , urllib.parse.quote_plus(Path(__magic_name__ ).name ) ) for x in single_urls] else: UpperCAmelCase_ : List[str] = single_urls UpperCAmelCase_ : List[str] = os.path.join(__magic_name__ , urllib.parse.quote_plus(Path(__magic_name__ ).name ) ) UpperCAmelCase_ : Any = value # make sure that values are unique if all(isinstance(__magic_name__ , __magic_name__ ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique UpperCAmelCase_ : str = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def UpperCAmelCase__ ( self : Union[str, Any] , __magic_name__ : Optional[int] , __magic_name__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" UpperCAmelCase_ : Tuple = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one UpperCAmelCase_ : Any = all(bool(re.findall('''[0-9]{3,}-of-[0-9]{3,}''' , __magic_name__ ) ) for url in data_url ) UpperCAmelCase_ : Optional[Any] = all( url.startswith('''https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed''' ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): UpperCAmelCase_ : Dict = [data_url[0]] * len(__magic_name__ ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__magic_name__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase_ : Optional[Any] = os.path.join(__magic_name__ , urllib.parse.quote_plus(single_url.split('''/''' )[-1] ) ) dummy_data_list.append(__magic_name__ ) return dummy_data_list def UpperCAmelCase__ ( self : Tuple , __magic_name__ : Optional[Any] , __magic_name__ : Dict ) -> Tuple: """simple docstring""" for download_callback in self.download_callbacks: download_callback(__magic_name__ ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus UpperCAmelCase_ : str = os.path.join(__magic_name__ , urllib.parse.quote_plus(data_url.split('''/''' )[-1] ) ) if os.path.exists(__magic_name__ ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def UpperCAmelCase__ ( self : Dict ) -> str: """simple docstring""" pass def UpperCAmelCase__ ( self : Optional[int] ) -> List[str]: """simple docstring""" pass def UpperCAmelCase__ ( self : Optional[int] , __magic_name__ : str ) -> Any: """simple docstring""" def _iter_archive_members(__magic_name__ : List[Any] ): # this preserves the order of the members inside the ZIP archive UpperCAmelCase_ : str = Path(self.dummy_file ).parent UpperCAmelCase_ : Optional[Any] = path.relative_to(__magic_name__ ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: UpperCAmelCase_ : str = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__magic_name__ ) UpperCAmelCase_ : str = Path(__magic_name__ ) UpperCAmelCase_ : Dict = _iter_archive_members(__magic_name__ ) if self.use_local_dummy_data else path.rglob('''*''' ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith(('''.''', '''__''') ): yield file_path.relative_to(__magic_name__ ).as_posix(), file_path.open('''rb''' ) def UpperCAmelCase__ ( self : str , __magic_name__ : Dict ) -> Tuple: """simple docstring""" if not isinstance(__magic_name__ , __magic_name__ ): UpperCAmelCase_ : Any = [paths] for path in paths: if os.path.isfile(__magic_name__ ): if os.path.basename(__magic_name__ ).startswith(('''.''', '''__''') ): return yield path else: for dirpath, dirnames, filenames in os.walk(__magic_name__ ): if os.path.basename(__magic_name__ ).startswith(('''.''', '''__''') ): continue dirnames.sort() for filename in sorted(__magic_name__ ): if filename.startswith(('''.''', '''__''') ): continue yield os.path.join(__magic_name__ , __magic_name__ )
125
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") snake_case_ : List[str] = logging.getLogger(__name__) @dataclass class __a : __a : Optional[str] = field( default="tab_fact" , metadata={"help": "The name of the dataset to use (via the datasets library)."} ) __a : Optional[str] = field( default="tab_fact" , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} , ) __a : int = field( default=1_024 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) __a : bool = field( default=lowerCamelCase , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) __a : bool = field( default=lowerCamelCase , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) __a : Optional[int] = field( default=lowerCamelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "A csv or a json file containing the training data."} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "A csv or a json file containing the validation data."} ) __a : Optional[str] = field(default=lowerCamelCase , metadata={"help": "A csv or a json file containing the test data."} ) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError('''Need either a GLUE task, a training/validation file or a dataset name.''' ) else: UpperCAmelCase_ : Dict = self.train_file.split('''.''' )[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." UpperCAmelCase_ : Union[str, Any] = self.validation_file.split('''.''' )[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class __a : __a : str = field( default=lowerCamelCase , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) __a : Optional[str] = field( default=lowerCamelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) __a : bool = field( default=lowerCamelCase , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) __a : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) __a : bool = field( default=lowerCamelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) def lowerCamelCase_ ( ) -> List[Any]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. UpperCAmelCase_ : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : int = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', handlers=[logging.StreamHandler(sys.stdout )], ) UpperCAmelCase_ : List[str] = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE__ ) datasets.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE__ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Detecting last checkpoint. UpperCAmelCase_ : Tuple = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: UpperCAmelCase_ : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. UpperCAmelCase_ : List[Any] = load_dataset( data_args.dataset_name, data_args.dataset_config_name, cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. UpperCAmelCase_ : Dict = {'''train''': data_args.train_file, '''validation''': data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: UpperCAmelCase_ : Dict = data_args.train_file.split('''.''' )[-1] UpperCAmelCase_ : Union[str, Any] = data_args.test_file.split('''.''' )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." UpperCAmelCase_ : int = data_args.test_file else: raise ValueError('''Need either a GLUE task or a test file for `do_predict`.''' ) for key in data_files.keys(): logger.info(F"""load a local file for {key}: {data_files[key]}""" ) if data_args.train_file.endswith('''.csv''' ): # Loading a dataset from local csv files UpperCAmelCase_ : List[Any] = load_dataset('''csv''', data_files=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files UpperCAmelCase_ : int = load_dataset('''json''', data_files=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels UpperCAmelCase_ : Optional[Any] = raw_datasets['''train'''].features['''label'''].names UpperCAmelCase_ : List[str] = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. UpperCAmelCase_ : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path, num_labels=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # load tapex tokenizer UpperCAmelCase_ : str = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path, cache_dir=model_args.cache_dir, use_fast=model_args.use_fast_tokenizer, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, add_prefix_space=SCREAMING_SNAKE_CASE__, ) UpperCAmelCase_ : Union[str, Any] = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('''.ckpt''' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE__, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # Padding strategy if data_args.pad_to_max_length: UpperCAmelCase_ : Optional[int] = '''max_length''' else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch UpperCAmelCase_ : Dict = False # Some models have set the order of the labels to use, so let's make sure we do use it. UpperCAmelCase_ : Tuple = {'''Refused''': 0, '''Entailed''': 1} UpperCAmelCase_ : Tuple = {0: '''Refused''', 1: '''Entailed'''} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"""The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the""" F"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) UpperCAmelCase_ : int = min(data_args.max_seq_length, tokenizer.model_max_length ) def preprocess_tabfact_function(SCREAMING_SNAKE_CASE__ : Optional[int] ): # Tokenize the texts def _convert_table_text_to_pandas(SCREAMING_SNAKE_CASE__ : Tuple ): UpperCAmelCase_ : List[str] = [_table_row.split('''#''' ) for _table_row in _table_text.strip('''\n''' ).split('''\n''' )] UpperCAmelCase_ : Any = pd.DataFrame.from_records(_table_content[1:], columns=_table_content[0] ) return _table_pd UpperCAmelCase_ : Optional[Any] = examples['''statement'''] UpperCAmelCase_ : Union[str, Any] = list(map(_convert_table_text_to_pandas, examples['''table_text'''] ) ) UpperCAmelCase_ : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__, padding=SCREAMING_SNAKE_CASE__, max_length=SCREAMING_SNAKE_CASE__, truncation=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : List[Any] = examples['''label'''] return result with training_args.main_process_first(desc='''dataset map pre-processing''' ): UpperCAmelCase_ : List[str] = raw_datasets.map( SCREAMING_SNAKE_CASE__, batched=SCREAMING_SNAKE_CASE__, load_from_cache_file=not data_args.overwrite_cache, desc='''Running tokenizer on dataset''', ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError('''--do_train requires a train dataset''' ) UpperCAmelCase_ : Any = raw_datasets['''train'''] if data_args.max_train_samples is not None: UpperCAmelCase_ : Dict = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError('''--do_eval requires a validation dataset''' ) UpperCAmelCase_ : str = raw_datasets['''validation'''] if data_args.max_eval_samples is not None: UpperCAmelCase_ : Any = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError('''--do_predict requires a test dataset''' ) UpperCAmelCase_ : Dict = raw_datasets['''test'''] if data_args.max_predict_samples is not None: UpperCAmelCase_ : List[str] = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(SCREAMING_SNAKE_CASE__ ) ), 3 ): logger.info(F"""Sample {index} of the training set: {train_dataset[index]}.""" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(SCREAMING_SNAKE_CASE__ : EvalPrediction ): UpperCAmelCase_ : Any = p.predictions[0] if isinstance(p.predictions, SCREAMING_SNAKE_CASE__ ) else p.predictions UpperCAmelCase_ : Optional[int] = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: UpperCAmelCase_ : Optional[Any] = default_data_collator elif training_args.fpaa: UpperCAmelCase_ : str = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__, pad_to_multiple_of=8 ) else: UpperCAmelCase_ : List[Any] = None # Initialize our Trainer UpperCAmelCase_ : int = Trainer( model=SCREAMING_SNAKE_CASE__, args=SCREAMING_SNAKE_CASE__, train_dataset=train_dataset if training_args.do_train else None, eval_dataset=eval_dataset if training_args.do_eval else None, compute_metrics=SCREAMING_SNAKE_CASE__, tokenizer=SCREAMING_SNAKE_CASE__, data_collator=SCREAMING_SNAKE_CASE__, ) # Training if training_args.do_train: UpperCAmelCase_ : Dict = None if training_args.resume_from_checkpoint is not None: UpperCAmelCase_ : Union[str, Any] = training_args.resume_from_checkpoint elif last_checkpoint is not None: UpperCAmelCase_ : Optional[int] = last_checkpoint UpperCAmelCase_ : Dict = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Any = train_result.metrics UpperCAmelCase_ : Tuple = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(SCREAMING_SNAKE_CASE__ ) ) UpperCAmelCase_ : List[Any] = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics('''train''', SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''train''', SCREAMING_SNAKE_CASE__ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) UpperCAmelCase_ : Union[str, Any] = trainer.evaluate(eval_dataset=SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : int = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(SCREAMING_SNAKE_CASE__ ) UpperCAmelCase_ : Tuple = min(SCREAMING_SNAKE_CASE__, len(SCREAMING_SNAKE_CASE__ ) ) trainer.log_metrics('''eval''', SCREAMING_SNAKE_CASE__ ) trainer.save_metrics('''eval''', SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info('''*** Predict ***''' ) # Removing the `label` columns because it contains -1 and Trainer won't like that. UpperCAmelCase_ : Optional[int] = predict_dataset.remove_columns('''label''' ) UpperCAmelCase_ : Union[str, Any] = trainer.predict(SCREAMING_SNAKE_CASE__, metric_key_prefix='''predict''' ).predictions UpperCAmelCase_ : Any = np.argmax(SCREAMING_SNAKE_CASE__, axis=1 ) UpperCAmelCase_ : int = os.path.join(training_args.output_dir, '''predict_results_tabfact.txt''' ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__, '''w''' ) as writer: logger.info('''***** Predict Results *****''' ) writer.write('''index\tprediction\n''' ) for index, item in enumerate(SCREAMING_SNAKE_CASE__ ): UpperCAmelCase_ : Dict = label_list[item] writer.write(F"""{index}\t{item}\n""" ) UpperCAmelCase_ : Optional[int] = {'''finetuned_from''': model_args.model_name_or_path, '''tasks''': '''text-classification'''} if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE__ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE__ ) def lowerCamelCase_ ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[int]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
125
1
import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class A ( UpperCAmelCase_ ): def lowercase_ (self : int , __UpperCAmelCase : str ) -> str: """simple docstring""" with open(__UpperCAmelCase , encoding="utf-8" ) as input_file: UpperCAmelCase__ = re.compile(r"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)" ) UpperCAmelCase__ = input_file.read() UpperCAmelCase__ = regexp.search(__UpperCAmelCase ) return match def lowercase_ (self : Dict , __UpperCAmelCase : str ) -> Any: """simple docstring""" with open(__UpperCAmelCase , encoding="utf-8" ) as input_file: UpperCAmelCase__ = re.compile(r"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL ) UpperCAmelCase__ = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` UpperCAmelCase__ = regexp.finditer(__UpperCAmelCase ) UpperCAmelCase__ = [match for match in matches if match is not None and match.group(1 ) is not None] return matches[0] if matches else None def lowercase_ (self : Dict ) -> Any: """simple docstring""" UpperCAmelCase__ = Path("./datasets" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_encoding_on_file_open(str(__UpperCAmelCase ) ): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""" ) def lowercase_ (self : Any ) -> Optional[Any]: """simple docstring""" UpperCAmelCase__ = Path("./datasets" ) UpperCAmelCase__ = list(dataset_paths.absolute().glob("**/*.py" ) ) for dataset in dataset_files: if self._no_print_statements(str(__UpperCAmelCase ) ): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""" )
143
from __future__ import annotations import unittest from transformers import DistilBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.distilbert.modeling_tf_distilbert import ( TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFDistilBertForMaskedLM, TFDistilBertForMultipleChoice, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertModel, ) class A : def __init__(self : Tuple , __UpperCAmelCase : str , ) -> Dict: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = 1_3 UpperCAmelCase__ = 7 UpperCAmelCase__ = True UpperCAmelCase__ = True UpperCAmelCase__ = False UpperCAmelCase__ = True UpperCAmelCase__ = 9_9 UpperCAmelCase__ = 3_2 UpperCAmelCase__ = 2 UpperCAmelCase__ = 4 UpperCAmelCase__ = 3_7 UpperCAmelCase__ = "gelu" UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 0.1 UpperCAmelCase__ = 5_1_2 UpperCAmelCase__ = 1_6 UpperCAmelCase__ = 2 UpperCAmelCase__ = 0.02 UpperCAmelCase__ = 3 UpperCAmelCase__ = 4 UpperCAmelCase__ = None def lowercase_ (self : int ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_input_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None UpperCAmelCase__ = None UpperCAmelCase__ = None if self.use_labels: UpperCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Tuple , __UpperCAmelCase : Tuple ) -> Tuple: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) UpperCAmelCase__ = [input_ids, input_mask] UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ (self : str , __UpperCAmelCase : int , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Any , __UpperCAmelCase : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForMaskedLM(config=__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ (self : int , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : List[str] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = TFDistilBertForQuestionAnswering(config=__UpperCAmelCase ) UpperCAmelCase__ = { "input_ids": input_ids, "attention_mask": input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForSequenceClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ (self : Optional[int] , __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str , __UpperCAmelCase : Any ) -> int: """simple docstring""" UpperCAmelCase__ = self.num_choices UpperCAmelCase__ = TFDistilBertForMultipleChoice(__UpperCAmelCase ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) UpperCAmelCase__ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, } UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase_ (self : Dict , __UpperCAmelCase : Tuple , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Tuple , __UpperCAmelCase : List[str] , __UpperCAmelCase : Any , __UpperCAmelCase : Optional[int] ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.num_labels UpperCAmelCase__ = TFDistilBertForTokenClassification(__UpperCAmelCase ) UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} UpperCAmelCase__ = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase_ (self : Any ) -> Dict: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() ((UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__) , (UpperCAmelCase__)) = config_and_inputs UpperCAmelCase__ = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): __UpperCAmelCase : Union[str, Any] = ( ( TFDistilBertModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDistilBertForSequenceClassification, TFDistilBertForTokenClassification, TFDistilBertForMultipleChoice, ) if is_tf_available() else None ) __UpperCAmelCase : Optional[int] = ( { 'feature-extraction': TFDistilBertModel, 'fill-mask': TFDistilBertForMaskedLM, 'question-answering': TFDistilBertForQuestionAnswering, 'text-classification': TFDistilBertForSequenceClassification, 'token-classification': TFDistilBertForTokenClassification, 'zero-shot': TFDistilBertForSequenceClassification, } if is_tf_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : str = False def lowercase_ (self : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = TFDistilBertModelTester(self ) UpperCAmelCase__ = ConfigTester(self , config_class=__UpperCAmelCase , dim=3_7 ) def lowercase_ (self : Any ) -> int: """simple docstring""" self.config_tester.run_common_tests() def lowercase_ (self : int ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*__UpperCAmelCase ) def lowercase_ (self : Optional[int] ) -> int: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*__UpperCAmelCase ) def lowercase_ (self : Any ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*__UpperCAmelCase ) def lowercase_ (self : List[str] ) -> str: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*__UpperCAmelCase ) def lowercase_ (self : Dict ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*__UpperCAmelCase ) def lowercase_ (self : str ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*__UpperCAmelCase ) @slow def lowercase_ (self : Optional[int] ) -> Optional[int]: """simple docstring""" for model_name in list(TF_DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1] ): UpperCAmelCase__ = TFDistilBertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf class A ( unittest.TestCase ): @slow def lowercase_ (self : List[Any] ) -> Dict: """simple docstring""" UpperCAmelCase__ = TFDistilBertModel.from_pretrained("distilbert-base-uncased" ) UpperCAmelCase__ = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCAmelCase__ = model(__UpperCAmelCase )[0] UpperCAmelCase__ = [1, 6, 7_6_8] self.assertEqual(output.shape , __UpperCAmelCase ) UpperCAmelCase__ = tf.constant( [ [ [0.19261885, -0.13732955, 0.4119799], [0.22150156, -0.07422661, 0.39037204], [0.22756018, -0.0896414, 0.3701467], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 )
143
1
from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class UpperCAmelCase_ ( _A ): '''simple docstring''' a__ = 42 class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , UpperCamelCase__ : List[Any]=3 , UpperCamelCase__ : str=3 , UpperCamelCase__ : List[Any]=("DownEncoderBlock2D",) , UpperCamelCase__ : Optional[Any]=(64,) , UpperCamelCase__ : Optional[Any]=2 , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Optional[Any]="silu" , UpperCamelCase__ : List[str]=True , ) -> str: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = torch.nn.Convad( UpperCamelCase__ , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) # down __magic_name__ = block_out_channels[0] for i, down_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_down_block( UpperCamelCase__ , num_layers=self.layers_per_block , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , add_downsample=not is_final_block , resnet_eps=1E-6 , downsample_padding=0 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) self.down_blocks.append(UpperCamelCase__ ) # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # out __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = 2 * out_channels if double_z else out_channels __magic_name__ = nn.Convad(block_out_channels[-1] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : List[str] , UpperCamelCase__ : Optional[Any] ) -> int: """simple docstring""" __magic_name__ = x __magic_name__ = self.conv_in(UpperCamelCase__ ) if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : int ): def custom_forward(*UpperCamelCase__ : str ): return module(*UpperCamelCase__ ) return custom_forward # down if is_torch_version(""">=""" , """1.11.0""" ): for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: for down_block in self.down_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ ) # middle __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , UpperCamelCase__ ) else: # down for down_block in self.down_blocks: __magic_name__ = down_block(UpperCamelCase__ ) # middle __magic_name__ = self.mid_block(UpperCamelCase__ ) # post-process __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] , UpperCamelCase__ : int=3 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : List[Any]=("UpDecoderBlock2D",) , UpperCamelCase__ : List[Any]=(64,) , UpperCamelCase__ : Dict=2 , UpperCamelCase__ : int=32 , UpperCamelCase__ : Optional[int]="silu" , UpperCamelCase__ : Tuple="group" , ) -> Dict: """simple docstring""" super().__init__() __magic_name__ = layers_per_block __magic_name__ = nn.Convad( UpperCamelCase__ , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) __magic_name__ = None __magic_name__ = nn.ModuleList([] ) __magic_name__ = in_channels if norm_type == """spatial""" else None # mid __magic_name__ = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , output_scale_factor=1 , resnet_time_scale_shift="""default""" if norm_type == """group""" else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=UpperCamelCase__ , temb_channels=UpperCamelCase__ , ) # up __magic_name__ = list(reversed(UpperCamelCase__ ) ) __magic_name__ = reversed_block_out_channels[0] for i, up_block_type in enumerate(UpperCamelCase__ ): __magic_name__ = output_channel __magic_name__ = reversed_block_out_channels[i] __magic_name__ = i == len(UpperCamelCase__ ) - 1 __magic_name__ = get_up_block( UpperCamelCase__ , num_layers=self.layers_per_block + 1 , in_channels=UpperCamelCase__ , out_channels=UpperCamelCase__ , prev_output_channel=UpperCamelCase__ , add_upsample=not is_final_block , resnet_eps=1E-6 , resnet_act_fn=UpperCamelCase__ , resnet_groups=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , temb_channels=UpperCamelCase__ , resnet_time_scale_shift=UpperCamelCase__ , ) self.up_blocks.append(UpperCamelCase__ ) __magic_name__ = output_channel # out if norm_type == "spatial": __magic_name__ = SpatialNorm(block_out_channels[0] , UpperCamelCase__ ) else: __magic_name__ = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=UpperCamelCase__ , eps=1E-6 ) __magic_name__ = nn.SiLU() __magic_name__ = nn.Convad(block_out_channels[0] , UpperCamelCase__ , 3 , padding=1 ) __magic_name__ = False def _lowercase ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple=None ) -> Tuple: """simple docstring""" __magic_name__ = z __magic_name__ = self.conv_in(UpperCamelCase__ ) __magic_name__ = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(UpperCamelCase__ : Optional[int] ): def custom_forward(*UpperCamelCase__ : int ): return module(*UpperCamelCase__ ) return custom_forward if is_torch_version(""">=""" , """1.11.0""" ): # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ , use_reentrant=UpperCamelCase__ ) else: # middle __magic_name__ = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = torch.utils.checkpoint.checkpoint(create_custom_forward(UpperCamelCase__ ) , UpperCamelCase__ , UpperCamelCase__ ) else: # middle __magic_name__ = self.mid_block(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = sample.to(UpperCamelCase__ ) # up for up_block in self.up_blocks: __magic_name__ = up_block(UpperCamelCase__ , UpperCamelCase__ ) # post-process if latent_embeds is None: __magic_name__ = self.conv_norm_out(UpperCamelCase__ ) else: __magic_name__ = self.conv_norm_out(UpperCamelCase__ , UpperCamelCase__ ) __magic_name__ = self.conv_act(UpperCamelCase__ ) __magic_name__ = self.conv_out(UpperCamelCase__ ) return sample class UpperCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Dict="random" , UpperCamelCase__ : List[Any]=False , UpperCamelCase__ : Dict=True ) -> Optional[Any]: """simple docstring""" super().__init__() __magic_name__ = n_e __magic_name__ = vq_embed_dim __magic_name__ = beta __magic_name__ = legacy __magic_name__ = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) __magic_name__ = remap if self.remap is not None: self.register_buffer("""used""" , torch.tensor(np.load(self.remap ) ) ) __magic_name__ = self.used.shape[0] __magic_name__ = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": __magic_name__ = self.re_embed __magic_name__ = self.re_embed + 1 print( F'''Remapping {self.n_e} indices to {self.re_embed} indices. ''' F'''Using {self.unknown_index} for unknown indices.''' ) else: __magic_name__ = n_e __magic_name__ = sane_index_shape def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : Dict ) -> Union[str, Any]: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) __magic_name__ = (inds[:, :, None] == used[None, None, ...]).long() __magic_name__ = match.argmax(-1 ) __magic_name__ = match.sum(2 ) < 1 if self.unknown_index == "random": __magic_name__ = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: __magic_name__ = self.unknown_index return new.reshape(UpperCamelCase__ ) def _lowercase ( self : Optional[Any] , UpperCamelCase__ : str ) -> Tuple: """simple docstring""" __magic_name__ = inds.shape assert len(UpperCamelCase__ ) > 1 __magic_name__ = inds.reshape(ishape[0] , -1 ) __magic_name__ = self.used.to(UpperCamelCase__ ) if self.re_embed > self.used.shape[0]: # extra token __magic_name__ = 0 # simply set to zero __magic_name__ = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , UpperCamelCase__ ) return back.reshape(UpperCamelCase__ ) def _lowercase ( self : List[str] , UpperCamelCase__ : List[str] ) -> List[str]: """simple docstring""" __magic_name__ = z.permute(0 , 2 , 3 , 1 ).contiguous() __magic_name__ = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z __magic_name__ = torch.argmin(torch.cdist(UpperCamelCase__ , self.embedding.weight ) , dim=1 ) __magic_name__ = self.embedding(UpperCamelCase__ ).view(z.shape ) __magic_name__ = None __magic_name__ = None # compute loss for embedding if not self.legacy: __magic_name__ = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: __magic_name__ = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients __magic_name__ = z + (z_q - z).detach() # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: __magic_name__ = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis __magic_name__ = self.remap_to_used(UpperCamelCase__ ) __magic_name__ = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: __magic_name__ = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def _lowercase ( self : Union[str, Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] ) -> int: """simple docstring""" if self.remap is not None: __magic_name__ = indices.reshape(shape[0] , -1 ) # add batch axis __magic_name__ = self.unmap_to_all(UpperCamelCase__ ) __magic_name__ = indices.reshape(-1 ) # flatten again # get quantized latent vectors __magic_name__ = self.embedding(UpperCamelCase__ ) if shape is not None: __magic_name__ = z_q.view(UpperCamelCase__ ) # reshape back to match original input shape __magic_name__ = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class UpperCAmelCase_ ( _A ): '''simple docstring''' def __init__( self : Dict , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple=False ) -> Optional[int]: """simple docstring""" __magic_name__ = parameters __magic_name__ , __magic_name__ = torch.chunk(UpperCamelCase__ , 2 , dim=1 ) __magic_name__ = torch.clamp(self.logvar , -30.0 , 20.0 ) __magic_name__ = deterministic __magic_name__ = torch.exp(0.5 * self.logvar ) __magic_name__ = torch.exp(self.logvar ) if self.deterministic: __magic_name__ = __magic_name__ = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def _lowercase ( self : Tuple , UpperCamelCase__ : Optional[torch.Generator] = None ) -> torch.FloatTensor: """simple docstring""" __magic_name__ = randn_tensor( self.mean.shape , generator=UpperCamelCase__ , device=self.parameters.device , dtype=self.parameters.dtype ) __magic_name__ = self.mean + self.std * sample return x def _lowercase ( self : Dict , UpperCamelCase__ : Optional[int]=None ) -> Any: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def _lowercase ( self : Optional[int] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict=[1, 2, 3] ) -> Optional[int]: """simple docstring""" if self.deterministic: return torch.Tensor([0.0] ) __magic_name__ = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=UpperCamelCase__ ) def _lowercase ( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self.mean
88
import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" __magic_name__ = torch.nn.Linear(10 , 10 ) __magic_name__ = torch.optim.SGD(model.parameters() , 0.1 ) __magic_name__ = Accelerator() __magic_name__ = accelerator.prepare(UpperCamelCase__ ) try: pickle.loads(pickle.dumps(UpperCamelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
88
1
from collections import deque from .hash_table import HashTable class A ( A_ ): def __init__(self , *lowerCAmelCase , **lowerCAmelCase ): super().__init__(*lowerCAmelCase , **lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase ): __lowercase= deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCAmelCase ) __lowercase= self.values[key] def _A (self ): return ( sum(self.charge_factor - len(lowerCAmelCase ) for slot in self.values ) / self.size_table * self.charge_factor ) def _A (self , lowerCAmelCase , lowerCAmelCase=None ): if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase ) == 0 ): return key return super()._collision_resolution(lowerCAmelCase , lowerCAmelCase )
304
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig lowerCAmelCase = { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/config.json''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/config.json''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/config.json''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/config.json''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/config.json''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/config.json''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/config.json''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/config.json''', } class A ( A_ ): UpperCamelCase_ : Optional[int] ='''albert''' def __init__(self , lowerCAmelCase=3_0_0_0_0 , lowerCAmelCase=1_2_8 , lowerCAmelCase=4_0_9_6 , lowerCAmelCase=1_2 , lowerCAmelCase=1 , lowerCAmelCase=6_4 , lowerCAmelCase=1_6_3_8_4 , lowerCAmelCase=1 , lowerCAmelCase="gelu_new" , lowerCAmelCase=0 , lowerCAmelCase=0 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1E-12 , lowerCAmelCase=0.1 , lowerCAmelCase="absolute" , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase=3 , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) __lowercase= vocab_size __lowercase= embedding_size __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_hidden_groups __lowercase= num_attention_heads __lowercase= inner_group_num __lowercase= hidden_act __lowercase= intermediate_size __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_vocab_size __lowercase= initializer_range __lowercase= layer_norm_eps __lowercase= classifier_dropout_prob __lowercase= position_embedding_type class A ( A_ ): @property def _A (self ): if self.task == "multiple-choice": __lowercase= {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowercase= {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
304
1
"""simple docstring""" from __future__ import annotations class a : """simple docstring""" def __init__( self: int , UpperCamelCase: List[Any]=None ): """simple docstring""" A__ = data A__ = None def __repr__( self: Union[str, Any] ): """simple docstring""" A__ = [] A__ = self while temp: string_rep.append(f"""{temp.data}""" ) A__ = temp.next return "->".join(_lowerCamelCase ) def _snake_case ( UpperCAmelCase_ : Dict ): if not elements_list: raise Exception("""The Elements List is empty""" ) A__ = A__ = Node(elements_list[0] ) for i in range(1 , len(__UpperCamelCase ) ): A__ = Node(elements_list[i] ) A__ = current.next return head def _snake_case ( UpperCAmelCase_ : List[Any] ): if head_node is not None and isinstance(__UpperCamelCase , __UpperCamelCase ): print_reverse(head_node.next ) print(head_node.data ) def _snake_case ( ): from doctest import testmod testmod() A__ = make_linked_list([14, 52, 14, 12, 43] ) print("""Linked List:""" ) print(__UpperCamelCase ) print("""Elements in Reverse:""" ) print_reverse(__UpperCamelCase ) if __name__ == "__main__": main()
335
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : List[Any], _lowerCamelCase : int, _lowerCamelCase : List[Any]=7, _lowerCamelCase : int=3, _lowerCamelCase : Optional[Any]=18, _lowerCamelCase : Any=30, _lowerCamelCase : str=4_00, _lowerCamelCase : int=True, _lowerCamelCase : Union[str, Any]=None, _lowerCamelCase : str=True, ): '''simple docstring''' __A = size if size is not None else {'''height''': 18, '''width''': 18} __A = parent __A = batch_size __A = num_channels __A = image_size __A = min_resolution __A = max_resolution __A = do_resize __A = size __A = apply_ocr def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Optional[int] = LayoutLMvaImageProcessor if is_pytesseract_available() else None def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = LayoutLMvaImageProcessingTester(self ) @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase, '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''size''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''apply_ocr''' ) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'''height''': 18, '''width''': 18} ) __A = self.image_processing_class.from_dict(self.image_processor_dict, size=42 ) self.assertEqual(image_processor.size, {'''height''': 42, '''width''': 42} ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, Image.Image ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ) self.assertEqual( encoding.pixel_values.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) self.assertIsInstance(encoding.words, _lowerCamelCase ) self.assertIsInstance(encoding.boxes, _lowerCamelCase ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, np.ndarray ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' # Initialize image_processing __A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A = prepare_image_inputs(self.image_processor_tester, equal_resolution=_lowerCamelCase, torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase, torch.Tensor ) # Test not batched input __A = image_processing(image_inputs[0], return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) # Test batched __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ), ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' # with apply_OCR = True __A = LayoutLMvaImageProcessor() from datasets import load_dataset __A = load_dataset('''hf-internal-testing/fixtures_docvqa''', split='''test''' ) __A = Image.open(ds[0]['''file'''] ).convert('''RGB''' ) __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) ) self.assertEqual(len(encoding.words ), len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 __A = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 __A = [[[1_41, 57, 2_14, 69], [2_28, 58, 2_52, 69], [1_41, 75, 2_16, 88], [2_30, 79, 2_80, 88], [1_42, 2_60, 2_18, 2_73], [2_30, 2_61, 2_55, 2_73], [1_43, 2_79, 2_18, 2_90], [2_31, 2_82, 2_90, 2_91], [1_43, 3_42, 2_18, 3_54], [2_31, 3_45, 2_89, 3_55], [2_02, 3_62, 2_27, 3_73], [1_43, 3_79, 2_20, 3_92], [2_31, 3_82, 2_91, 3_94], [1_44, 7_14, 2_20, 7_26], [2_31, 7_15, 2_56, 7_26], [1_44, 7_32, 2_20, 7_45], [2_32, 7_36, 2_91, 7_47], [1_44, 7_69, 2_18, 7_82], [2_31, 7_70, 2_56, 7_82], [1_41, 7_88, 2_02, 8_01], [2_15, 7_91, 2_74, 8_04], [1_43, 8_26, 2_04, 8_38], [2_15, 8_26, 2_40, 8_38], [1_42, 8_44, 2_02, 8_57], [2_15, 8_47, 2_74, 8_59], [3_34, 57, 4_27, 69], [4_40, 57, 5_22, 69], [3_69, 75, 4_61, 88], [4_69, 75, 5_16, 88], [5_28, 76, 5_62, 88], [5_70, 76, 6_67, 88], [6_75, 75, 7_11, 87], [7_21, 79, 7_78, 88], [7_89, 75, 8_40, 88], [3_69, 97, 4_70, 1_07], [4_84, 94, 5_07, 1_06], [5_18, 94, 5_62, 1_07], [5_76, 94, 6_55, 1_10], [6_68, 94, 7_92, 1_09], [8_04, 95, 8_29, 1_07], [3_69, 1_13, 4_65, 1_25], [4_77, 1_16, 5_47, 1_25], [5_62, 1_13, 6_58, 1_25], [6_71, 1_16, 7_48, 1_25], [7_61, 1_13, 8_11, 1_25], [3_69, 1_31, 4_65, 1_43], [4_77, 1_33, 5_48, 1_43], [5_63, 1_30, 6_98, 1_45], [7_10, 1_30, 8_02, 1_46], [3_36, 1_71, 4_12, 1_83], [4_23, 1_71, 5_72, 1_83], [5_82, 1_70, 7_16, 1_84], [7_28, 1_71, 8_17, 1_87], [8_29, 1_71, 8_44, 1_86], [3_38, 1_97, 4_82, 2_12], [5_07, 1_96, 5_57, 2_09], [5_69, 1_96, 5_95, 2_08], [6_10, 1_96, 7_02, 2_09], [5_05, 2_14, 5_83, 2_26], [5_95, 2_14, 6_56, 2_27], [6_70, 2_15, 8_07, 2_27], [3_35, 2_59, 5_43, 2_74], [5_56, 2_59, 7_08, 2_72], [3_72, 2_79, 4_22, 2_91], [4_35, 2_79, 4_60, 2_91], [4_74, 2_79, 5_74, 2_92], [5_87, 2_78, 6_64, 2_91], [6_76, 2_78, 7_38, 2_91], [7_51, 2_79, 8_34, 2_91], [3_72, 2_98, 4_34, 3_10], [3_35, 3_41, 4_83, 3_54], [4_97, 3_41, 6_55, 3_54], [6_67, 3_41, 7_28, 3_54], [7_40, 3_41, 8_25, 3_54], [3_35, 3_60, 4_30, 3_72], [4_42, 3_60, 5_34, 3_72], [5_45, 3_59, 6_87, 3_72], [6_97, 3_60, 7_54, 3_72], [7_65, 3_60, 8_23, 3_73], [3_34, 3_78, 4_28, 3_91], [4_40, 3_78, 5_77, 3_94], [5_90, 3_78, 7_05, 3_91], [7_20, 3_78, 8_01, 3_91], [3_34, 3_97, 4_00, 4_09], [3_70, 4_16, 5_29, 4_29], [5_44, 4_16, 5_76, 4_32], [5_87, 4_16, 6_65, 4_28], [6_77, 4_16, 8_14, 4_29], [3_72, 4_35, 4_52, 4_50], [4_65, 4_34, 4_95, 4_47], [5_11, 4_34, 6_00, 4_47], [6_11, 4_36, 6_37, 4_47], [6_49, 4_36, 6_94, 4_51], [7_05, 4_38, 8_24, 4_47], [3_69, 4_53, 4_52, 4_66], [4_64, 4_54, 5_09, 4_66], [5_22, 4_53, 6_11, 4_69], [6_25, 4_53, 7_92, 4_69], [3_70, 4_72, 5_56, 4_88], [5_70, 4_72, 6_84, 4_87], [6_97, 4_72, 7_18, 4_85], [7_32, 4_72, 8_35, 4_88], [3_69, 4_90, 4_11, 5_03], [4_25, 4_90, 4_84, 5_03], [4_96, 4_90, 6_35, 5_06], [6_45, 4_90, 7_07, 5_03], [7_18, 4_91, 7_61, 5_03], [7_71, 4_90, 8_40, 5_03], [3_36, 5_10, 3_74, 5_21], [3_88, 5_10, 4_47, 5_22], [4_60, 5_10, 4_89, 5_21], [5_03, 5_10, 5_80, 5_22], [5_92, 5_09, 7_36, 5_25], [7_45, 5_09, 7_70, 5_22], [7_81, 5_09, 8_40, 5_22], [3_38, 5_28, 4_34, 5_41], [4_48, 5_28, 5_96, 5_41], [6_09, 5_27, 6_87, 5_40], [7_00, 5_28, 7_92, 5_41], [3_36, 5_46, 3_97, 5_59], [4_07, 5_46, 4_31, 5_59], [4_43, 5_46, 5_25, 5_60], [5_37, 5_46, 6_80, 5_62], [6_88, 5_46, 7_14, 5_59], [7_22, 5_46, 8_37, 5_62], [3_36, 5_65, 4_49, 5_81], [4_61, 5_65, 4_85, 5_77], [4_97, 5_65, 6_65, 5_81], [6_81, 5_65, 7_18, 5_77], [7_32, 5_65, 8_37, 5_80], [3_37, 5_84, 4_38, 5_97], [4_52, 5_83, 5_21, 5_96], [5_35, 5_84, 6_77, 5_99], [6_90, 5_83, 7_87, 5_96], [8_01, 5_83, 8_25, 5_96], [3_38, 6_02, 4_78, 6_15], [4_92, 6_02, 5_30, 6_14], [5_43, 6_02, 6_38, 6_15], [6_50, 6_02, 6_76, 6_14], [6_88, 6_02, 7_88, 6_15], [8_02, 6_02, 8_43, 6_14], [3_37, 6_21, 5_02, 6_33], [5_16, 6_21, 6_15, 6_37], [6_29, 6_21, 7_74, 6_36], [7_89, 6_21, 8_27, 6_33], [3_37, 6_39, 4_18, 6_52], [4_32, 6_40, 5_71, 6_53], [5_87, 6_39, 7_31, 6_55], [7_43, 6_39, 7_69, 6_52], [7_80, 6_39, 8_41, 6_52], [3_38, 6_58, 4_40, 6_73], [4_55, 6_58, 4_91, 6_70], [5_08, 6_58, 6_02, 6_71], [6_16, 6_58, 6_38, 6_70], [6_54, 6_58, 8_35, 6_74], [3_37, 6_77, 4_29, 6_89], [3_37, 7_14, 4_82, 7_26], [4_95, 7_14, 5_48, 7_26], [5_61, 7_14, 6_83, 7_26], [3_38, 7_70, 4_61, 7_82], [4_74, 7_69, 5_54, 7_85], [4_89, 7_88, 5_62, 8_03], [5_76, 7_88, 6_43, 8_01], [6_56, 7_87, 7_51, 8_04], [7_64, 7_88, 8_44, 8_01], [3_34, 8_25, 4_21, 8_38], [4_30, 8_24, 5_74, 8_38], [5_84, 8_24, 7_23, 8_41], [3_35, 8_44, 4_50, 8_57], [4_64, 8_43, 5_83, 8_60], [6_28, 8_62, 7_55, 8_75], [7_69, 8_61, 8_48, 8_78]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words, _lowerCamelCase ) self.assertListEqual(encoding.boxes, _lowerCamelCase ) # with apply_OCR = False __A = LayoutLMvaImageProcessor(apply_ocr=_lowerCamelCase ) __A = image_processing(_lowerCamelCase, return_tensors='''pt''' ) self.assertEqual(encoding.pixel_values.shape, (1, 3, 2_24, 2_24) )
266
0
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ASTConfig from transformers.testing_utils import require_torch, require_torchaudio, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_torchaudio_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ASTForAudioClassification, ASTModel from transformers.models.audio_spectrogram_transformer.modeling_audio_spectrogram_transformer import ( AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_torchaudio_available(): import torchaudio from transformers import ASTFeatureExtractor class UpperCAmelCase_ : def __init__( self : int , snake_case_ : Union[str, Any] , snake_case_ : Dict=13 , snake_case_ : Optional[int]=2 , snake_case_ : Union[str, Any]=24 , snake_case_ : Any=16 , snake_case_ : Optional[Any]=True , snake_case_ : Tuple=True , snake_case_ : Union[str, Any]=32 , snake_case_ : str=5 , snake_case_ : Union[str, Any]=4 , snake_case_ : Optional[Any]=37 , snake_case_ : Any="gelu" , snake_case_ : Tuple=0.1 , snake_case_ : Tuple=0.1 , snake_case_ : str=10 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : List[str]=None , snake_case_ : Any=2 , snake_case_ : Any=2 , ) -> int: '''simple docstring''' A__ = parent A__ = batch_size A__ = patch_size A__ = max_length A__ = num_mel_bins A__ = is_training A__ = use_labels A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = type_sequence_label_size A__ = initializer_range A__ = scope A__ = frequency_stride A__ = time_stride # in AST, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) A__ = (self.num_mel_bins - self.patch_size) // self.frequency_stride + 1 A__ = (self.max_length - self.patch_size) // self.time_stride + 1 A__ = frequency_out_dimension * time_out_dimension A__ = num_patches + 2 def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ = floats_tensor([self.batch_size, self.max_length, self.num_mel_bins] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, input_values, labels def __magic_name__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' return ASTConfig( patch_size=self.patch_size , max_length=self.max_length , num_mel_bins=self.num_mel_bins , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , frequency_stride=self.frequency_stride , time_stride=self.time_stride , ) def __magic_name__ ( self : Dict , snake_case_ : Optional[int] , snake_case_ : Dict , snake_case_ : Optional[int] ) -> int: '''simple docstring''' A__ = ASTModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() A__ = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __magic_name__ ( self : List[str] ) -> int: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ), ( A__ ), ( A__ ), ) = config_and_inputs A__ = {"input_values": input_values} return config, inputs_dict @require_torch class UpperCAmelCase_ ( A_, A_, unittest.TestCase ): lowercase__ = ( ( ASTModel, ASTForAudioClassification, ) if is_torch_available() else () ) lowercase__ = ( {'''audio-classification''': ASTForAudioClassification, '''feature-extraction''': ASTModel} if is_torch_available() else {} ) lowercase__ = False lowercase__ = False lowercase__ = False lowercase__ = False def __magic_name__ ( self : Dict , snake_case_ : str , snake_case_ : str , snake_case_ : List[str] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] ) -> List[Any]: '''simple docstring''' if pipeline_test_casse_name == "AudioClassificationPipelineTests": return True return False def __magic_name__ ( self : Dict ) -> Optional[Any]: '''simple docstring''' A__ = ASTModelTester(self ) A__ = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def __magic_name__ ( self : Optional[int] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="AST does not use inputs_embeds" ) def __magic_name__ ( self : List[str] ) -> int: '''simple docstring''' pass def __magic_name__ ( self : List[str] ) -> Tuple: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def __magic_name__ ( self : int ) -> str: '''simple docstring''' A__, A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A__ = model_class(snake_case_ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["input_values"] self.assertListEqual(arg_names[:1] , snake_case_ ) def __magic_name__ ( self : Dict ) -> Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) @slow def __magic_name__ ( self : List[str] ) -> List[str]: '''simple docstring''' for model_name in AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = ASTModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _SCREAMING_SNAKE_CASE ( ) -> str: A__ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" ) A__, A__ = torchaudio.load(lowercase_ ) return audio, sampling_rate @require_torch @require_torchaudio class UpperCAmelCase_ ( unittest.TestCase ): @cached_property def __magic_name__ ( self : Tuple ) -> int: '''simple docstring''' return ( ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ) if is_torchaudio_available() else None ) @slow def __magic_name__ ( self : Dict ) -> List[Any]: '''simple docstring''' A__ = self.default_feature_extractor A__ = ASTForAudioClassification.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593" ).to(snake_case_ ) A__ = self.default_feature_extractor A__, A__ = prepare_audio() A__ = audio.squeeze().numpy() A__ = feature_extractor(snake_case_ , sampling_rate=snake_case_ , return_tensors="pt" ).to(snake_case_ ) # forward pass with torch.no_grad(): A__ = model(**snake_case_ ) # verify the logits A__ = torch.Size((1, 527) ) self.assertEqual(outputs.logits.shape , snake_case_ ) A__ = torch.tensor([-0.8760, -7.0042, -8.6602] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case_ , atol=1e-4 ) )
230
"""simple docstring""" SCREAMING_SNAKE_CASE = "Alexander Joslin" import operator as op from .stack import Stack def _SCREAMING_SNAKE_CASE ( lowercase_ ) -> int: A__ = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} A__ = Stack() A__ = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase_ ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase_ ) elif i == ")": # RULE 4 A__ = operator_stack.peek() operator_stack.pop() A__ = operand_stack.peek() operand_stack.pop() A__ = operand_stack.peek() operand_stack.pop() A__ = operators[opr](lowercase_ , lowercase_ ) operand_stack.push(lowercase_ ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": SCREAMING_SNAKE_CASE = "(5 + ((4 * 2) * (2 + 3)))" # answer = 45 print(f'{equation} = {dijkstras_two_stack_algorithm(equation)}')
230
1
from __future__ import annotations UpperCAmelCase : Union[str, Any] ={ """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class _lowercase : '''simple docstring''' def __init__( self , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = graph # mapping node to its parent in resulting breadth first tree UpperCamelCase_ = {} UpperCamelCase_ = source_vertex def _lowerCamelCase ( self ): '''simple docstring''' UpperCamelCase_ = {self.source_vertex} UpperCamelCase_ = None UpperCamelCase_ = [self.source_vertex] # first in first out queue while queue: UpperCamelCase_ = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(snake_case__ ) UpperCamelCase_ = vertex queue.append(snake_case__ ) def _lowerCamelCase ( self , snake_case__ ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex UpperCamelCase_ = self.parent.get(snake_case__ ) if target_vertex_parent is None: UpperCamelCase_ = ( F"""No path from vertex: {self.source_vertex} to vertex: {target_vertex}""" ) raise ValueError(snake_case__ ) return self.shortest_path(snake_case__ ) + F"""->{target_vertex}""" if __name__ == "__main__": UpperCAmelCase : str =Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
128
from typing import List, Optional, Union import numpy as np import PIL import torch from PIL import Image from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) UpperCAmelCase : Optional[int] =logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase : Any =""" Examples: ```py >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline >>> from diffusers.utils import load_image >>> import torch >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-prior\", torch_dtype=torch.float16 ... ) >>> pipe_prior.to(\"cuda\") >>> prompt = \"A red cartoon frog, 4k\" >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False) >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained( ... \"kandinsky-community/kandinsky-2-2-decoder\", torch_dtype=torch.float16 ... ) >>> pipe.to(\"cuda\") >>> init_image = load_image( ... \"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main\" ... \"/kandinsky/frog.png\" ... ) >>> image = pipe( ... image=init_image, ... image_embeds=image_emb, ... negative_image_embeds=zero_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... strength=0.2, ... ).images >>> image[0].save(\"red_frog.png\") ``` """ def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=8): UpperCamelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCamelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor def _lowerCAmelCase (_lowerCAmelCase , _lowerCAmelCase=5_12 , _lowerCAmelCase=5_12): UpperCamelCase_ = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1) UpperCamelCase_ = np.array(pil_image.convert("RGB")) UpperCamelCase_ = arr.astype(np.floataa) / 127.5 - 1 UpperCamelCase_ = np.transpose(_lowerCAmelCase , [2, 0, 1]) UpperCamelCase_ = torch.from_numpy(_lowerCAmelCase).unsqueeze(0) return image class _lowercase (a_ ): '''simple docstring''' def __init__( self , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' super().__init__() self.register_modules( unet=snake_case__ , scheduler=snake_case__ , movq=snake_case__ , ) UpperCamelCase_ = 2 ** (len(self.movq.config.block_out_channels ) - 1) def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' UpperCamelCase_ = min(int(num_inference_steps * strength ) , snake_case__ ) UpperCamelCase_ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase_ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def _lowerCamelCase ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=None ): '''simple docstring''' if not isinstance(snake_case__ , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( F"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(snake_case__ )}""" ) UpperCamelCase_ = image.to(device=snake_case__ , dtype=snake_case__ ) UpperCamelCase_ = batch_size * num_images_per_prompt if image.shape[1] == 4: UpperCamelCase_ = image else: if isinstance(snake_case__ , snake_case__ ) and len(snake_case__ ) != batch_size: raise ValueError( F"""You have passed a list of generators of length {len(snake_case__ )}, but requested an effective batch""" F""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) elif isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [ self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(snake_case__ ) ] UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) else: UpperCamelCase_ = self.movq.encode(snake_case__ ).latent_dist.sample(snake_case__ ) UpperCamelCase_ = self.movq.config.scaling_factor * init_latents UpperCamelCase_ = torch.cat([init_latents] , dim=0 ) UpperCamelCase_ = init_latents.shape UpperCamelCase_ = randn_tensor(snake_case__ , generator=snake_case__ , device=snake_case__ , dtype=snake_case__ ) # get latents UpperCamelCase_ = self.scheduler.add_noise(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = init_latents return latents def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) UpperCamelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(snake_case__ , snake_case__ ) def _lowerCamelCase ( self , snake_case__=0 ): '''simple docstring''' if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) UpperCamelCase_ = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=snake_case__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCamelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCamelCase_ , UpperCamelCase_ = cpu_offload_with_hook(snake_case__ , snake_case__ , prev_module_hook=snake_case__ ) # We'll offload the last model manually. UpperCamelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _lowerCamelCase ( self ): '''simple docstring''' if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(snake_case__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(snake_case__ ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 512 , snake_case__ = 512 , snake_case__ = 100 , snake_case__ = 4.0 , snake_case__ = 0.3 , snake_case__ = 1 , snake_case__ = None , snake_case__ = "pil" , snake_case__ = True , ): '''simple docstring''' UpperCamelCase_ = self._execution_device UpperCamelCase_ = guidance_scale > 1.0 if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) UpperCamelCase_ = image_embeds.shape[0] if isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = torch.cat(snake_case__ , dim=0 ) if do_classifier_free_guidance: UpperCamelCase_ = image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = negative_image_embeds.repeat_interleave(snake_case__ , dim=0 ) UpperCamelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=snake_case__ ) if not isinstance(snake_case__ , snake_case__ ): UpperCamelCase_ = [image] if not all(isinstance(snake_case__ , (PIL.Image.Image, torch.Tensor) ) for i in image ): raise ValueError( F"""Input is in incorrect format: {[type(snake_case__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor""" ) UpperCamelCase_ = torch.cat([prepare_image(snake_case__ , snake_case__ , snake_case__ ) for i in image] , dim=0 ) UpperCamelCase_ = image.to(dtype=image_embeds.dtype , device=snake_case__ ) UpperCamelCase_ = self.movq.encode(snake_case__ )["latents"] UpperCamelCase_ = latents.repeat_interleave(snake_case__ , dim=0 ) self.scheduler.set_timesteps(snake_case__ , device=snake_case__ ) UpperCamelCase_ , UpperCamelCase_ = self.get_timesteps(snake_case__ , snake_case__ , snake_case__ ) UpperCamelCase_ = timesteps[:1].repeat(batch_size * num_images_per_prompt ) UpperCamelCase_ , UpperCamelCase_ = downscale_height_and_width(snake_case__ , snake_case__ , self.movq_scale_factor ) UpperCamelCase_ = self.prepare_latents( snake_case__ , snake_case__ , snake_case__ , snake_case__ , image_embeds.dtype , snake_case__ , snake_case__ ) for i, t in enumerate(self.progress_bar(snake_case__ ) ): # expand the latents if we are doing classifier free guidance UpperCamelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase_ = {"image_embeds": image_embeds} UpperCamelCase_ = self.unet( sample=snake_case__ , timestep=snake_case__ , encoder_hidden_states=snake_case__ , added_cond_kwargs=snake_case__ , return_dict=snake_case__ , )[0] if do_classifier_free_guidance: UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) UpperCamelCase_ , UpperCamelCase_ = noise_pred.chunk(2 ) UpperCamelCase_ , UpperCamelCase_ = variance_pred.chunk(2 ) UpperCamelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCamelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCamelCase_ , UpperCamelCase_ = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase_ = self.scheduler.step( snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ , )[0] # post-processing UpperCamelCase_ = self.movq.decode(snake_case__ , force_not_quantize=snake_case__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: UpperCamelCase_ = image * 0.5 + 0.5 UpperCamelCase_ = image.clamp(0 , 1 ) UpperCamelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCamelCase_ = self.numpy_to_pil(snake_case__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=snake_case__ )
128
1
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / """utils""")) from test_module.custom_configuration import CustomConfig # noqa E402 _UpperCamelCase = get_tests_dir("""fixtures/dummy-config.json""") class lowerCamelCase__ ( unittest.TestCase ): def _UpperCamelCase ( self ): UpperCAmelCase = 0 def _UpperCamelCase ( self ): self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("""transformers.models.auto""" ) ) def _UpperCamelCase ( self ): UpperCAmelCase = AutoConfig.from_pretrained("""bert-base-uncased""" ) self.assertIsInstance(A ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = AutoConfig.from_pretrained(A ) self.assertIsInstance(A ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = AutoConfig.from_pretrained(A ) self.assertIsInstance(A ,A ) def _UpperCamelCase ( self ): UpperCAmelCase = AutoConfig.for_model("""roberta""" ) self.assertIsInstance(A ,A ) def _UpperCamelCase ( self ): with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. UpperCAmelCase = os.path.join(A ,"""fake-roberta""" ) os.makedirs(A ,exist_ok=A ) with open(os.path.join(A ,"""config.json""" ) ,"""w""" ) as f: f.write(json.dumps({} ) ) UpperCAmelCase = AutoConfig.from_pretrained(A ) self.assertEqual(type(A ) ,A ) def _UpperCamelCase ( self ): try: AutoConfig.register("""custom""" ,A ) # Wrong model type will raise an error with self.assertRaises(A ): AutoConfig.register("""model""" ,A ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(A ): AutoConfig.register("""bert""" ,A ) # Now that the config is registered, it can be used as any other config with the auto-API UpperCAmelCase = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) UpperCAmelCase = AutoConfig.from_pretrained(A ) self.assertIsInstance(A ,A ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _UpperCamelCase ( self ): with self.assertRaisesRegex( A ,"""bert-base is not a local folder and is not a valid model identifier""" ): UpperCAmelCase = AutoConfig.from_pretrained("""bert-base""" ) def _UpperCamelCase ( self ): with self.assertRaisesRegex( A ,r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCAmelCase = AutoConfig.from_pretrained(A ,revision="""aaaaaa""" ) def _UpperCamelCase ( self ): with self.assertRaisesRegex( A ,"""hf-internal-testing/no-config-test-repo does not appear to have a file named config.json.""" ,): UpperCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/no-config-test-repo""" ) def _UpperCamelCase ( self ): # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(A ): UpperCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(A ): UpperCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=A ) UpperCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=A ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(A ) UpperCAmelCase = AutoConfig.from_pretrained(A ,trust_remote_code=A ) self.assertEqual(reloaded_config.__class__.__name__ ,"""NewModelConfig""" ) def _UpperCamelCase ( self ): class lowerCamelCase__ ( snake_case ): SCREAMING_SNAKE_CASE = '''new-model''' try: AutoConfig.register("""new-model""" ,A ) # If remote code is not set, the default is to use local UpperCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote code is disabled, we load the local one. UpperCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=A ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfigLocal""" ) # If remote is enabled, we load from the Hub UpperCAmelCase = AutoConfig.from_pretrained("""hf-internal-testing/test_dynamic_model""" ,trust_remote_code=A ) self.assertEqual(config.__class__.__name__ ,"""NewModelConfig""" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
356
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( """The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion""" ) _UpperCamelCase = None _UpperCamelCase = { """7B""": 11008, """13B""": 13824, """30B""": 17920, """65B""": 22016, """70B""": 28672, } _UpperCamelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _a ( _snake_case , _snake_case=1 , _snake_case=256 ): """simple docstring""" return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _a ( _snake_case ): """simple docstring""" with open(_snake_case , """r""" ) as f: return json.load(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" with open(_snake_case , """w""" ) as f: json.dump(_snake_case , _snake_case ) def _a ( _snake_case , _snake_case , _snake_case , _snake_case=True ): """simple docstring""" os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = os.path.join(_snake_case , """tmp""" ) os.makedirs(_snake_case , exist_ok=_snake_case ) UpperCAmelCase = read_json(os.path.join(_snake_case , """params.json""" ) ) UpperCAmelCase = NUM_SHARDS[model_size] UpperCAmelCase = params["""n_layers"""] UpperCAmelCase = params["""n_heads"""] UpperCAmelCase = n_heads // num_shards UpperCAmelCase = params["""dim"""] UpperCAmelCase = dim // n_heads UpperCAmelCase = 10000.0 UpperCAmelCase = 1.0 / (base ** (torch.arange(0 , _snake_case , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: UpperCAmelCase = params["""n_kv_heads"""] # for GQA / MQA UpperCAmelCase = n_heads_per_shard // num_key_value_heads UpperCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints UpperCAmelCase = n_heads UpperCAmelCase = n_heads_per_shard UpperCAmelCase = dim # permute for sliced rotary def permute(_snake_case , _snake_case=n_heads , _snake_case=dim , _snake_case=dim ): return w.view(_snake_case , dima // n_heads // 2 , 2 , _snake_case ).transpose(1 , 2 ).reshape(_snake_case , _snake_case ) print(F'''Fetching all parameters from the checkpoint at {input_base_path}.''' ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) UpperCAmelCase = torch.load(os.path.join(_snake_case , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded UpperCAmelCase = [ torch.load(os.path.join(_snake_case , F'''consolidated.{i:02d}.pth''' ) , map_location="""cpu""" ) for i in range(_snake_case ) ] UpperCAmelCase = 0 UpperCAmelCase = {"""weight_map""": {}} for layer_i in range(_snake_case ): UpperCAmelCase = F'''pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { F'''model.layers.{layer_i}.self_attn.q_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wq.weight'''] ), F'''model.layers.{layer_i}.self_attn.k_proj.weight''': permute( loaded[F'''layers.{layer_i}.attention.wk.weight'''] ), F'''model.layers.{layer_i}.self_attn.v_proj.weight''': loaded[F'''layers.{layer_i}.attention.wv.weight'''], F'''model.layers.{layer_i}.self_attn.o_proj.weight''': loaded[F'''layers.{layer_i}.attention.wo.weight'''], F'''model.layers.{layer_i}.mlp.gate_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w1.weight'''], F'''model.layers.{layer_i}.mlp.down_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w2.weight'''], F'''model.layers.{layer_i}.mlp.up_proj.weight''': loaded[F'''layers.{layer_i}.feed_forward.w3.weight'''], F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[F'''layers.{layer_i}.attention_norm.weight'''], F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[F'''layers.{layer_i}.ffn_norm.weight'''], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. UpperCAmelCase = { F'''model.layers.{layer_i}.input_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.attention_norm.weight''' ].clone(), F'''model.layers.{layer_i}.post_attention_layernorm.weight''': loaded[0][ F'''layers.{layer_i}.ffn_norm.weight''' ].clone(), } UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wq.weight'''].view(_snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) ) UpperCAmelCase = permute( torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wk.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) , _snake_case , _snake_case , _snake_case , ) UpperCAmelCase = torch.cat( [ loaded[i][F'''layers.{layer_i}.attention.wv.weight'''].view( _snake_case , _snake_case , _snake_case ) for i in range(_snake_case ) ] , dim=0 , ).reshape(_snake_case , _snake_case ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.attention.wo.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w1.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w2.weight'''] for i in range(_snake_case )] , dim=1 ) UpperCAmelCase = torch.cat( [loaded[i][F'''layers.{layer_i}.feed_forward.w3.weight'''] for i in range(_snake_case )] , dim=0 ) UpperCAmelCase = inv_freq for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) UpperCAmelCase = F'''pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin''' if model_size == "7B": # Unsharded UpperCAmelCase = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: UpperCAmelCase = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_snake_case )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_snake_case )] , dim=0 ), } for k, v in state_dict.items(): UpperCAmelCase = filename param_count += v.numel() torch.save(_snake_case , os.path.join(_snake_case , _snake_case ) ) # Write configs UpperCAmelCase = {"""total_size""": param_count * 2} write_json(_snake_case , os.path.join(_snake_case , """pytorch_model.bin.index.json""" ) ) UpperCAmelCase = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 UpperCAmelCase = params["""multiple_of"""] if """multiple_of""" in params else 256 UpperCAmelCase = LlamaConfig( hidden_size=_snake_case , intermediate_size=compute_intermediate_size(_snake_case , _snake_case , _snake_case ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_snake_case , ) config.save_pretrained(_snake_case ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) UpperCAmelCase = LlamaForCausalLM.from_pretrained(_snake_case , torch_dtype=torch.floataa , low_cpu_mem_usage=_snake_case ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_snake_case , safe_serialization=_snake_case ) shutil.rmtree(_snake_case ) def _a ( _snake_case , _snake_case ): """simple docstring""" UpperCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F'''Saving a {tokenizer_class.__name__} to {tokenizer_path}.''' ) UpperCAmelCase = tokenizer_class(_snake_case ) tokenizer.save_pretrained(_snake_case ) def _a ( ): """simple docstring""" UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_snake_case , help="""Whether or not to save using `safetensors`.""" ) UpperCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) UpperCAmelCase = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _snake_case ) if __name__ == "__main__": main()
234
0
import json import os import shutil import tempfile from unittest import TestCase from transformers import BartTokenizer, BartTokenizerFast, DPRQuestionEncoderTokenizer, DPRQuestionEncoderTokenizerFast from transformers.models.bart.configuration_bart import BartConfig from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES as DPR_VOCAB_FILES_NAMES from transformers.models.dpr.configuration_dpr import DPRConfig from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES as BART_VOCAB_FILES_NAMES from transformers.testing_utils import require_faiss, require_tokenizers, require_torch, slow from transformers.utils import is_datasets_available, is_faiss_available, is_torch_available if is_torch_available() and is_datasets_available() and is_faiss_available(): from transformers.models.rag.configuration_rag import RagConfig from transformers.models.rag.tokenization_rag import RagTokenizer @require_faiss @require_torch class __snake_case ( _lowerCamelCase ): def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : Optional[int] = tempfile.mkdtemp() snake_case__ : Optional[int] = 8 # DPR tok snake_case__ : Tuple = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] snake_case__ : str = os.path.join(self.tmpdirname , 'dpr_tokenizer' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case__ : Tuple = os.path.join(__UpperCamelCase , DPR_VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) # BART tok snake_case__ : Tuple = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] snake_case__ : int = dict(zip(__UpperCamelCase , range(len(__UpperCamelCase ) ) ) ) snake_case__ : Optional[Any] = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] snake_case__ : Dict = {'unk_token': '<unk>'} snake_case__ : Union[str, Any] = os.path.join(self.tmpdirname , 'bart_tokenizer' ) os.makedirs(__UpperCamelCase , exist_ok=__UpperCamelCase ) snake_case__ : int = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['vocab_file'] ) snake_case__ : List[Any] = os.path.join(__UpperCamelCase , BART_VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(__UpperCamelCase ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(__UpperCamelCase ) ) def __a ( self ) -> DPRQuestionEncoderTokenizer: '''simple docstring''' return DPRQuestionEncoderTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'dpr_tokenizer' ) ) def __a ( self ) -> BartTokenizer: '''simple docstring''' return BartTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'bart_tokenizer' ) ) def __a ( self ) -> Optional[int]: '''simple docstring''' shutil.rmtree(self.tmpdirname ) @require_tokenizers def __a ( self ) -> Union[str, Any]: '''simple docstring''' snake_case__ : str = os.path.join(self.tmpdirname , 'rag_tokenizer' ) snake_case__ : Optional[Any] = RagConfig(question_encoder=DPRConfig().to_dict() , generator=BartConfig().to_dict() ) snake_case__ : str = RagTokenizer(question_encoder=self.get_dpr_tokenizer() , generator=self.get_bart_tokenizer() ) rag_config.save_pretrained(__UpperCamelCase ) rag_tokenizer.save_pretrained(__UpperCamelCase ) snake_case__ : str = RagTokenizer.from_pretrained(__UpperCamelCase , config=__UpperCamelCase ) self.assertIsInstance(new_rag_tokenizer.question_encoder , __UpperCamelCase ) self.assertEqual(new_rag_tokenizer.question_encoder.get_vocab() , rag_tokenizer.question_encoder.get_vocab() ) self.assertIsInstance(new_rag_tokenizer.generator , __UpperCamelCase ) self.assertEqual(new_rag_tokenizer.generator.get_vocab() , rag_tokenizer.generator.get_vocab() ) @slow def __a ( self ) -> Dict: '''simple docstring''' snake_case__ : List[Any] = RagTokenizer.from_pretrained('facebook/rag-token-nq' ) snake_case__ : List[str] = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] snake_case__ : int = tokenizer(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) @slow def __a ( self ) -> str: '''simple docstring''' snake_case__ : Any = RagTokenizer.from_pretrained('facebook/rag-sequence-nq' ) snake_case__ : Tuple = [ 'who got the first nobel prize in physics', 'when is the next deadpool movie being released', 'which mode is used for short wave broadcast service', 'who is the owner of reading football club', 'when is the next scandal episode coming out', 'when is the last time the philadelphia won the superbowl', 'what is the most current adobe flash player version', 'how many episodes are there in dragon ball z', 'what is the first step in the evolution of the eye', 'where is gall bladder situated in human body', 'what is the main mineral in lithium batteries', 'who is the president of usa right now', 'where do the greasers live in the outsiders', 'panda is a national animal of which country', 'what is the name of manchester united stadium', ] snake_case__ : List[str] = tokenizer(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase )
143
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand lowerCAmelCase__ : str = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) lowerCAmelCase__ : Optional[int] = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) lowerCAmelCase__ : Optional[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) lowerCAmelCase__ : List[Any] = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) lowerCAmelCase__ : Any = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) lowerCAmelCase__ : Dict = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) lowerCAmelCase__ : Optional[int] = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def UpperCamelCase__ ( ) -> Any: snake_case__ , snake_case__ : List[str] = randrange(len(A__ ) ), randrange(len(A__ ) ) snake_case__ : str = ['Loss', 'Tie', 'Win'][(play >= oppo) + (play > oppo)] snake_case__ , snake_case__ : Any = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def UpperCamelCase__ ( A__ = 100 ) -> Optional[int]: return (generate_random_hand() for _ in range(A__ )) @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ )._is_flush() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Any: assert PokerHand(A__ )._is_straight() == expected @pytest.mark.parametrize('hand, expected, card_values' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Dict: snake_case__ : Optional[int] = PokerHand(A__ ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> str: assert PokerHand(A__ )._is_same_kind() == expected @pytest.mark.parametrize('hand, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ ) -> Optional[Any]: assert PokerHand(A__ )._hand_type == expected @pytest.mark.parametrize('hand, other, expected' , A__ ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> int: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected @pytest.mark.parametrize('hand, other, expected' , generate_random_hands() ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> Union[str, Any]: assert PokerHand(A__ ).compare_with(PokerHand(A__ ) ) == expected def UpperCamelCase__ ( ) -> Union[str, Any]: snake_case__ : Union[str, Any] = [PokerHand(A__ ) for hand in SORTED_HANDS] snake_case__ : Optional[Any] = poker_hands.copy() shuffle(A__ ) snake_case__ : Tuple = chain(sorted(A__ ) ) for index, hand in enumerate(A__ ): assert hand == poker_hands[index] def UpperCamelCase__ ( ) -> str: # Test that five high straights are compared correctly. snake_case__ : int = [PokerHand('2D AC 3H 4H 5S' ), PokerHand('2S 3H 4H 5S 6C' )] pokerhands.sort(reverse=A__ ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def UpperCamelCase__ ( ) -> Union[str, Any]: # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. snake_case__ : Optional[int] = PokerHand('2C 4S AS 3D 5C' ) snake_case__ : Optional[int] = True snake_case__ : Tuple = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def UpperCamelCase__ ( ) -> List[str]: # Problem number 54 from Project Euler # Testing from poker_hands.txt file snake_case__ : Any = 0 snake_case__ : Optional[Any] = os.path.abspath(os.path.dirname(A__ ) ) snake_case__ : List[str] = os.path.join(A__ , 'poker_hands.txt' ) with open(A__ ) as file_hand: for line in file_hand: snake_case__ : Tuple = line[:14].strip() snake_case__ : List[str] = line[15:].strip() snake_case__ , snake_case__ : Any = PokerHand(A__ ), PokerHand(A__ ) snake_case__ : Tuple = player.compare_with(A__ ) if output == "Win": answer += 1 assert answer == 376
143
1
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def __lowerCamelCase ( lowerCamelCase__ : np.ndarray , lowerCamelCase__ : np.ndarray ): '''simple docstring''' return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowerCamelCase__ , lowerCamelCase__ ) ) ) def __lowerCamelCase ( lowerCamelCase__ : np.ndarray , lowerCamelCase__ : np.ndarray ): '''simple docstring''' if dataset.ndim != value_array.ndim: lowerCamelCase = ( """Wrong input data's dimensions... """ f'dataset : {dataset.ndim}, value_array : {value_array.ndim}' ) raise ValueError(lowerCamelCase__ ) try: if dataset.shape[1] != value_array.shape[1]: lowerCamelCase = ( """Wrong input data's shape... """ f'dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}' ) raise ValueError(lowerCamelCase__ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: lowerCamelCase = ( """Input data have different datatype... """ f'dataset : {dataset.dtype}, value_array : {value_array.dtype}' ) raise TypeError(lowerCamelCase__ ) lowerCamelCase = [] for value in value_array: lowerCamelCase = euclidean(lowerCamelCase__ , dataset[0] ) lowerCamelCase = dataset[0].tolist() for dataset_value in dataset[1:]: lowerCamelCase = euclidean(lowerCamelCase__ , lowerCamelCase__ ) if dist > temp_dist: lowerCamelCase = temp_dist lowerCamelCase = dataset_value.tolist() answer.append([vector, dist] ) return answer def __lowerCamelCase ( lowerCamelCase__ : np.ndarray , lowerCamelCase__ : np.ndarray ): '''simple docstring''' return np.dot(lowerCamelCase__ , lowerCamelCase__ ) / (norm(lowerCamelCase__ ) * norm(lowerCamelCase__ )) if __name__ == "__main__": import doctest doctest.testmod()
66
import gc import math import unittest import torch from diffusers import UNetaDModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) enable_full_determinism() class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : Union[str, Any] = UNetaDModel UpperCamelCase : Union[str, Any] = "sample" @property def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = { """block_out_channels""": (32, 64), """down_block_types""": ("""DownBlock2D""", """AttnDownBlock2D"""), """up_block_types""": ("""AttnUpBlock2D""", """UpBlock2D"""), """attention_head_dim""": 3, """out_channels""": 3, """in_channels""": 3, """layers_per_block""": 2, """sample_size""": 32, } lowerCamelCase = self.dummy_input return init_dict, inputs_dict class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : int = UNetaDModel UpperCamelCase : Dict = "sample" @property def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 4 lowerCamelCase = (32, 32) lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor([10] ).to(A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Tuple: '''simple docstring''' return (4, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (4, 32, 32) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = { """sample_size""": 32, """in_channels""": 4, """out_channels""": 4, """layers_per_block""": 2, """block_out_channels""": (32, 64), """attention_head_dim""": 32, """down_block_types""": ("""DownBlock2D""", """DownBlock2D"""), """up_block_types""": ("""UpBlock2D""", """UpBlock2D"""), } lowerCamelCase = self.dummy_input return init_dict, inputs_dict def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model.to(A ) lowerCamelCase = model(**self.dummy_input ).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != """cuda""" , """This test is supposed to run on GPU""" ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" , output_loading_info=A ) model_accelerate.to(A ) model_accelerate.eval() lowerCamelCase = torch.randn( 1 , model_accelerate.config.in_channels , model_accelerate.config.sample_size , model_accelerate.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) lowerCamelCase = model_accelerate(A , A )["""sample"""] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained( """fusing/unet-ldm-dummy-update""" , output_loading_info=A , low_cpu_mem_usage=A ) model_normal_load.to(A ) model_normal_load.eval() lowerCamelCase = model_normal_load(A , A )["""sample"""] assert torch_all_close(A , A , rtol=1e-3 ) def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/unet-ldm-dummy-update""" ) model.eval() model.to(A ) lowerCamelCase = torch.randn( 1 , model.config.in_channels , model.config.sample_size , model.config.sample_size , generator=torch.manual_seed(0 ) , ) lowerCamelCase = noise.to(A ) lowerCamelCase = torch.tensor([10] * noise.shape[0] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-3 ) ) class __lowercase ( a_ , a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : List[str] = UNetaDModel UpperCamelCase : Optional[int] = "sample" @property def __A ( self , A=(32, 32) ) -> List[Any]: '''simple docstring''' lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = floats_tensor((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [10] ).to(dtype=torch.intaa , device=A ) return {"sample": noise, "timestep": time_step} @property def __A ( self ) -> Optional[int]: '''simple docstring''' return (3, 32, 32) @property def __A ( self ) -> Dict: '''simple docstring''' return (3, 32, 32) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = { """block_out_channels""": [32, 64, 64, 64], """in_channels""": 3, """layers_per_block""": 1, """out_channels""": 3, """time_embedding_type""": """fourier""", """norm_eps""": 1e-6, """mid_block_scale_factor""": math.sqrt(2.0 ), """norm_num_groups""": None, """down_block_types""": [ """SkipDownBlock2D""", """AttnSkipDownBlock2D""", """SkipDownBlock2D""", """SkipDownBlock2D""", ], """up_block_types""": [ """SkipUpBlock2D""", """SkipUpBlock2D""", """AttnSkipUpBlock2D""", """SkipUpBlock2D""", ], } lowerCamelCase = self.dummy_input return init_dict, inputs_dict @slow def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase , lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" , output_loading_info=A ) self.assertIsNotNone(A ) self.assertEqual(len(loading_info["""missing_keys"""] ) , 0 ) model.to(A ) lowerCamelCase = self.dummy_input lowerCamelCase = floats_tensor((4, 3) + (2_56, 2_56) ).to(A ) lowerCamelCase = noise lowerCamelCase = model(**A ) assert image is not None, "Make sure output is not None" @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""google/ncsnpp-celebahq-256""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (2_56, 2_56) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-4842.8691, -6499.6631, -3800.1953, -7978.2686, -10980.7129, -20028.8535, 8148.2822, 2342.2905, 567.7608] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = UNetaDModel.from_pretrained("""fusing/ncsnpp-ffhq-ve-dummy-update""" ) model.to(A ) lowerCamelCase = 4 lowerCamelCase = 3 lowerCamelCase = (32, 32) lowerCamelCase = torch.ones((batch_size, num_channels) + sizes ).to(A ) lowerCamelCase = torch.tensor(batch_size * [1e-4] ).to(A ) with torch.no_grad(): lowerCamelCase = model(A , A ).sample lowerCamelCase = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off lowerCamelCase = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256] ) # fmt: on self.assertTrue(torch_all_close(A , A , rtol=1e-2 ) ) def __A ( self ) -> List[str]: '''simple docstring''' pass
66
1
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class snake_case__ ( tf.keras.layers.Layer): def __init__( self : Dict , _A : Dict , _A : str , _A : Optional[int] , _A : Union[str, Any] , _A : Optional[Any]=1 , _A : Any=False , **_A : Optional[Any] ) -> Any: super().__init__(**_A ) UpperCAmelCase_ : Optional[Any] = vocab_size UpperCAmelCase_ : List[Any] = d_embed UpperCAmelCase_ : Any = d_proj UpperCAmelCase_ : Tuple = cutoffs + [vocab_size] UpperCAmelCase_ : List[Any] = [0] + self.cutoffs UpperCAmelCase_ : Dict = div_val UpperCAmelCase_ : Any = self.cutoffs[0] UpperCAmelCase_ : Optional[int] = len(self.cutoffs ) - 1 UpperCAmelCase_ : Any = self.shortlist_size + self.n_clusters UpperCAmelCase_ : Union[str, Any] = keep_order UpperCAmelCase_ : Any = [] UpperCAmelCase_ : List[Any] = [] def A ( self : str , _A : str ) -> Union[str, Any]: if self.n_clusters > 0: UpperCAmelCase_ : str = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=_A , name='''cluster_weight''' ) UpperCAmelCase_ : Tuple = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=_A , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCAmelCase_ : Any = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=_A , name=F"out_projs_._{i}" , ) self.out_projs.append(_A ) else: self.out_projs.append(_A ) UpperCAmelCase_ : Any = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._weight" , ) UpperCAmelCase_ : Optional[int] = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCAmelCase_ : Optional[Any] = self.d_embed // (self.div_val**i) UpperCAmelCase_ : Optional[Any] = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=_A , name=F"out_projs_._{i}" ) self.out_projs.append(_A ) UpperCAmelCase_ : int = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._weight" , ) UpperCAmelCase_ : str = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=_A , name=F"out_layers_._{i}_._bias" , ) self.out_layers.append((weight, bias) ) super().build(_A ) @staticmethod def A ( _A : List[Any] , _A : Optional[int] , _A : List[Any] , _A : Union[str, Any]=None ) -> int: UpperCAmelCase_ : Optional[int] = x if proj is not None: UpperCAmelCase_ : Dict = tf.einsum('''ibd,ed->ibe''' , _A , _A ) return tf.einsum('''ibd,nd->ibn''' , _A , _A ) + b @staticmethod def A ( _A : Union[str, Any] , _A : Union[str, Any] ) -> Any: UpperCAmelCase_ : Optional[Any] = shape_list(_A ) UpperCAmelCase_ : Optional[int] = tf.range(lp_size[0] , dtype=target.dtype ) UpperCAmelCase_ : Tuple = tf.stack([r, target] , 1 ) return tf.gather_nd(_A , _A ) def A ( self : int , _A : Optional[Any] , _A : Union[str, Any] , _A : Any=True , _A : Optional[Any]=False ) -> List[Any]: UpperCAmelCase_ : str = 0 if self.n_clusters == 0: UpperCAmelCase_ : Any = self._logit(_A , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCAmelCase_ : Tuple = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=_A , logits=_A ) UpperCAmelCase_ : Any = tf.nn.log_softmax(_A , axis=-1 ) else: UpperCAmelCase_ : Tuple = shape_list(_A ) UpperCAmelCase_ : List[Any] = [] UpperCAmelCase_ : Dict = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCAmelCase_ , UpperCAmelCase_ : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCAmelCase_ : Optional[Any] = (target >= l_idx) & (target < r_idx) UpperCAmelCase_ : List[str] = tf.where(_A ) UpperCAmelCase_ : int = tf.boolean_mask(_A , _A ) - l_idx if self.div_val == 1: UpperCAmelCase_ : Union[str, Any] = self.out_layers[0][0][l_idx:r_idx] UpperCAmelCase_ : Optional[Any] = self.out_layers[0][1][l_idx:r_idx] else: UpperCAmelCase_ : Union[str, Any] = self.out_layers[i][0] UpperCAmelCase_ : int = self.out_layers[i][1] if i == 0: UpperCAmelCase_ : Optional[int] = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCAmelCase_ : Optional[Any] = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCAmelCase_ : List[str] = self._logit(_A , _A , _A , self.out_projs[0] ) UpperCAmelCase_ : Union[str, Any] = tf.nn.log_softmax(_A ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCAmelCase_ : Any = tf.boolean_mask(_A , _A ) UpperCAmelCase_ : List[str] = self._gather_logprob(_A , _A ) else: UpperCAmelCase_ : Any = self._logit(_A , _A , _A , self.out_projs[i] ) UpperCAmelCase_ : Union[str, Any] = tf.nn.log_softmax(_A ) UpperCAmelCase_ : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCAmelCase_ : Tuple = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(_A ) if target is not None: UpperCAmelCase_ : List[Any] = tf.boolean_mask(_A , _A ) UpperCAmelCase_ : Any = tf.boolean_mask(_A , _A ) UpperCAmelCase_ : Tuple = self._gather_logprob(_A , _A ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(_A , -cur_logprob , shape_list(_A ) ) UpperCAmelCase_ : int = tf.concat(_A , axis=-1 ) if target is not None: if return_mean: UpperCAmelCase_ : Optional[Any] = tf.reduce_mean(_A ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(_A ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(_A , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
304
'''simple docstring''' import argparse import collections import os import re import tempfile import pandas as pd from datasets import Dataset from huggingface_hub import hf_hub_download, upload_folder from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/update_metadata.py _UpperCamelCase : Optional[int] = 'src/transformers' # This is to make sure the transformers module imported is the one in the repo. _UpperCamelCase : List[str] = direct_transformers_import(TRANSFORMERS_PATH) # Regexes that match TF/Flax/PT model names. _UpperCamelCase : Tuple = re.compile(R'TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') _UpperCamelCase : str = re.compile(R'Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes. _UpperCamelCase : Optional[int] = re.compile(R'(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)') # Fill this with tuples (pipeline_tag, model_mapping, auto_model) _UpperCamelCase : List[str] = [ ('pretraining', 'MODEL_FOR_PRETRAINING_MAPPING_NAMES', 'AutoModelForPreTraining'), ('feature-extraction', 'MODEL_MAPPING_NAMES', 'AutoModel'), ('audio-classification', 'MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioClassification'), ('text-generation', 'MODEL_FOR_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForCausalLM'), ('automatic-speech-recognition', 'MODEL_FOR_CTC_MAPPING_NAMES', 'AutoModelForCTC'), ('image-classification', 'MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForImageClassification'), ('image-segmentation', 'MODEL_FOR_IMAGE_SEGMENTATION_MAPPING_NAMES', 'AutoModelForImageSegmentation'), ('fill-mask', 'MODEL_FOR_MASKED_LM_MAPPING_NAMES', 'AutoModelForMaskedLM'), ('object-detection', 'MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForObjectDetection'), ( 'zero-shot-object-detection', 'MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING_NAMES', 'AutoModelForZeroShotObjectDetection', ), ('question-answering', 'MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForQuestionAnswering'), ('text2text-generation', 'MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES', 'AutoModelForSeq2SeqLM'), ('text-classification', 'MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForSequenceClassification'), ('automatic-speech-recognition', 'MODEL_FOR_SPEECH_SEQ_2_SEQ_MAPPING_NAMES', 'AutoModelForSpeechSeq2Seq'), ( 'table-question-answering', 'MODEL_FOR_TABLE_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForTableQuestionAnswering', ), ('token-classification', 'MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForTokenClassification'), ('multiple-choice', 'MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES', 'AutoModelForMultipleChoice'), ( 'next-sentence-prediction', 'MODEL_FOR_NEXT_SENTENCE_PREDICTION_MAPPING_NAMES', 'AutoModelForNextSentencePrediction', ), ( 'audio-frame-classification', 'MODEL_FOR_AUDIO_FRAME_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForAudioFrameClassification', ), ('audio-xvector', 'MODEL_FOR_AUDIO_XVECTOR_MAPPING_NAMES', 'AutoModelForAudioXVector'), ( 'document-question-answering', 'MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForDocumentQuestionAnswering', ), ( 'visual-question-answering', 'MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING_NAMES', 'AutoModelForVisualQuestionAnswering', ), ('image-to-text', 'MODEL_FOR_FOR_VISION_2_SEQ_MAPPING_NAMES', 'AutoModelForVision2Seq'), ( 'zero-shot-image-classification', 'MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForZeroShotImageClassification', ), ('depth-estimation', 'MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES', 'AutoModelForDepthEstimation'), ('video-classification', 'MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES', 'AutoModelForVideoClassification'), ('mask-generation', 'MODEL_FOR_MASK_GENERATION_MAPPING_NAMES', 'AutoModelForMaskGeneration'), ] def __UpperCAmelCase ( A : Optional[int] ) -> int: UpperCAmelCase_ : Dict = re.finditer('''.+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)''' , A ) return [m.group(0 ) for m in matches] def __UpperCAmelCase ( ) -> str: UpperCAmelCase_ : Optional[int] = transformers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES UpperCAmelCase_ : Optional[Any] = { config.replace('''Config''' , '''''' ): model_type for model_type, config in config_maping_names.items() } # Dictionaries flagging if each model prefix has a backend in PT/TF/Flax. UpperCAmelCase_ : Dict = collections.defaultdict(A ) UpperCAmelCase_ : str = collections.defaultdict(A ) UpperCAmelCase_ : int = collections.defaultdict(A ) # Let's lookup through all transformers object (once) and find if models are supported by a given backend. for attr_name in dir(A ): UpperCAmelCase_ : int = None if _re_tf_models.match(A ) is not None: UpperCAmelCase_ : Optional[Any] = tf_models UpperCAmelCase_ : Optional[int] = _re_tf_models.match(A ).groups()[0] elif _re_flax_models.match(A ) is not None: UpperCAmelCase_ : int = flax_models UpperCAmelCase_ : Any = _re_flax_models.match(A ).groups()[0] elif _re_pt_models.match(A ) is not None: UpperCAmelCase_ : Union[str, Any] = pt_models UpperCAmelCase_ : List[Any] = _re_pt_models.match(A ).groups()[0] if lookup_dict is not None: while len(A ) > 0: if attr_name in model_prefix_to_model_type: UpperCAmelCase_ : Optional[int] = True break # Try again after removing the last word in the name UpperCAmelCase_ : List[Any] = ''''''.join(camel_case_split(A )[:-1] ) UpperCAmelCase_ : Tuple = set(list(pt_models.keys() ) + list(tf_models.keys() ) + list(flax_models.keys() ) ) UpperCAmelCase_ : List[Any] = list(A ) all_models.sort() UpperCAmelCase_ : Dict = {'''model_type''': all_models} UpperCAmelCase_ : Tuple = [pt_models[t] for t in all_models] UpperCAmelCase_ : Dict = [tf_models[t] for t in all_models] UpperCAmelCase_ : Optional[int] = [flax_models[t] for t in all_models] # Now let's use the auto-mapping names to make sure UpperCAmelCase_ : int = {} for t in all_models: if t in transformers_module.models.auto.processing_auto.PROCESSOR_MAPPING_NAMES: UpperCAmelCase_ : Any = '''AutoProcessor''' elif t in transformers_module.models.auto.tokenization_auto.TOKENIZER_MAPPING_NAMES: UpperCAmelCase_ : Union[str, Any] = '''AutoTokenizer''' elif t in transformers_module.models.auto.feature_extraction_auto.FEATURE_EXTRACTOR_MAPPING_NAMES: UpperCAmelCase_ : int = '''AutoFeatureExtractor''' else: # Default to AutoTokenizer if a model has nothing, for backward compatibility. UpperCAmelCase_ : Dict = '''AutoTokenizer''' UpperCAmelCase_ : str = [processors[t] for t in all_models] return pd.DataFrame(A ) def __UpperCAmelCase ( A : Optional[int] ) -> str: UpperCAmelCase_ : int = [ transformers_module.models.auto.modeling_auto, transformers_module.models.auto.modeling_tf_auto, transformers_module.models.auto.modeling_flax_auto, ] for pipeline_tag, model_mapping, auto_class in PIPELINE_TAGS_AND_AUTO_MODELS: UpperCAmelCase_ : Tuple = [model_mapping, F"TF_{model_mapping}", F"FLAX_{model_mapping}"] UpperCAmelCase_ : Tuple = [auto_class, F"TF_{auto_class}", F"Flax_{auto_class}"] # Loop through all three frameworks for module, cls, mapping in zip(A , A , A ): # The type of pipeline may not exist in this framework if not hasattr(A , A ): continue # First extract all model_names UpperCAmelCase_ : List[str] = [] for name in getattr(A , A ).values(): if isinstance(A , A ): model_names.append(A ) else: model_names.extend(list(A ) ) # Add pipeline tag and auto model class for those models table.update({model_name: (pipeline_tag, cls) for model_name in model_names} ) return table def __UpperCAmelCase ( A : int , A : Any ) -> Tuple: UpperCAmelCase_ : Tuple = get_frameworks_table() UpperCAmelCase_ : Any = Dataset.from_pandas(A ) UpperCAmelCase_ : str = hf_hub_download( '''huggingface/transformers-metadata''' , '''pipeline_tags.json''' , repo_type='''dataset''' , token=A ) UpperCAmelCase_ : Union[str, Any] = Dataset.from_json(A ) UpperCAmelCase_ : Optional[int] = { tags_dataset[i]['''model_class''']: (tags_dataset[i]['''pipeline_tag'''], tags_dataset[i]['''auto_class''']) for i in range(len(A ) ) } UpperCAmelCase_ : str = update_pipeline_and_auto_class_table(A ) # Sort the model classes to avoid some nondeterministic updates to create false update commits. UpperCAmelCase_ : Union[str, Any] = sorted(table.keys() ) UpperCAmelCase_ : Optional[Any] = pd.DataFrame( { '''model_class''': model_classes, '''pipeline_tag''': [table[m][0] for m in model_classes], '''auto_class''': [table[m][1] for m in model_classes], } ) UpperCAmelCase_ : Dict = Dataset.from_pandas(A ) with tempfile.TemporaryDirectory() as tmp_dir: frameworks_dataset.to_json(os.path.join(A , '''frameworks.json''' ) ) tags_dataset.to_json(os.path.join(A , '''pipeline_tags.json''' ) ) if commit_sha is not None: UpperCAmelCase_ : List[str] = ( F"Update with commit {commit_sha}\n\nSee: " F"https://github.com/huggingface/transformers/commit/{commit_sha}" ) else: UpperCAmelCase_ : int = '''Update''' upload_folder( repo_id='''huggingface/transformers-metadata''' , folder_path=A , repo_type='''dataset''' , token=A , commit_message=A , ) def __UpperCAmelCase ( ) -> int: UpperCAmelCase_ : str = {tag: cls for tag, _, cls in PIPELINE_TAGS_AND_AUTO_MODELS} UpperCAmelCase_ : List[str] = transformers_module.pipelines.SUPPORTED_TASKS UpperCAmelCase_ : List[str] = [] for key in pipeline_tasks: if key not in in_table: UpperCAmelCase_ : Optional[Any] = pipeline_tasks[key]['''pt'''] if isinstance(A , (list, tuple) ): UpperCAmelCase_ : Dict = model[0] UpperCAmelCase_ : Any = model.__name__ if model not in in_table.values(): missing.append(A ) if len(A ) > 0: UpperCAmelCase_ : List[Any] = ''', '''.join(A ) raise ValueError( '''The following pipeline tags are not present in the `PIPELINE_TAGS_AND_AUTO_MODELS` constant inside ''' F"`utils/update_metadata.py`: {msg}. Please add them!" ) if __name__ == "__main__": _UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument('--token', type=str, help='The token to use to push to the transformers-metadata dataset.') parser.add_argument('--commit_sha', type=str, help='The sha of the commit going with this update.') parser.add_argument('--check-only', action='store_true', help='Activate to just check all pipelines are present.') _UpperCamelCase : Tuple = parser.parse_args() if args.check_only: check_pipeline_tags() else: update_metadata(args.token, args.commit_sha)
304
1
"""simple docstring""" from __future__ import annotations from math import pi def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if inductance < 0: raise ValueError("""Inductance cannot be negative""" ) if frequency < 0: raise ValueError("""Frequency cannot be negative""" ) if reactance < 0: raise ValueError("""Inductive reactance cannot be negative""" ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
371
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) lowerCamelCase : str = { '''facebook/nllb-moe-54B''': '''https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''nllb-moe''' _A : List[str] = ['''past_key_values'''] _A : Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Dict , __a : List[str]=128112 , __a : List[Any]=1024 , __a : List[Any]=12 , __a : Union[str, Any]=4096 , __a : List[str]=16 , __a : int=12 , __a : Optional[int]=4096 , __a : str=16 , __a : List[Any]=0.05 , __a : Any=0.05 , __a : Dict=True , __a : Optional[Any]=True , __a : List[Any]="relu" , __a : Tuple=1024 , __a : Optional[Any]=0.1 , __a : Tuple=0.1 , __a : Any=0.0 , __a : Optional[Any]=0.02 , __a : List[str]=2 , __a : Union[str, Any]=True , __a : List[Any]=False , __a : Tuple="float32" , __a : Optional[int]=False , __a : Optional[int]=128 , __a : str=64 , __a : Dict=4 , __a : str=4 , __a : List[str]=0.001 , __a : List[Any]=0.001 , __a : Optional[Any]="all" , __a : Optional[int]=False , __a : int=False , __a : int=1.0 , __a : Dict=0.2 , __a : Tuple=1 , __a : Optional[Any]=0 , __a : List[Any]=2 , __a : Any=False , **__a : Any , ) -> Any: """simple docstring""" __lowercase : int = vocab_size __lowercase : List[Any] = max_position_embeddings __lowercase : Tuple = d_model __lowercase : str = encoder_ffn_dim __lowercase : List[str] = encoder_layers __lowercase : int = encoder_attention_heads __lowercase : List[Any] = decoder_ffn_dim __lowercase : int = decoder_layers __lowercase : Optional[int] = decoder_attention_heads __lowercase : Union[str, Any] = dropout __lowercase : str = attention_dropout __lowercase : Any = activation_dropout __lowercase : List[Any] = activation_function __lowercase : List[str] = init_std __lowercase : Optional[int] = encoder_layerdrop __lowercase : str = decoder_layerdrop __lowercase : Dict = use_cache __lowercase : Optional[Any] = encoder_layers __lowercase : str = scale_embedding # scale factor will be sqrt(d_model) if True __lowercase : List[Any] = router_z_loss_coef __lowercase : Tuple = router_aux_loss_coef __lowercase : str = decoder_sparse_step __lowercase : Any = encoder_sparse_step __lowercase : str = num_experts __lowercase : List[Any] = expert_capacity __lowercase : int = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(F"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}" ) __lowercase : Optional[int] = router_dtype __lowercase : Any = router_ignore_padding_tokens __lowercase : Optional[Any] = batch_prioritized_routing __lowercase : str = second_expert_policy __lowercase : List[str] = normalize_router_prob_before_dropping __lowercase : List[Any] = moe_eval_capacity_token_fraction __lowercase : List[str] = moe_token_dropout __lowercase : Optional[Any] = output_router_logits super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , **__a , )
306
0
from typing import Dict, Iterable, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging A__ = logging.get_logger(__name__) class a ( __lowerCamelCase ): __lowerCAmelCase : Optional[int] = ["""pixel_values"""] def __init__( self :int ,__lowercase :bool = True ,__lowercase :Dict[str, int] = None ,__lowercase :PILImageResampling = PILImageResampling.BICUBIC ,__lowercase :bool = True ,__lowercase :Dict[str, int] = None ,__lowercase :bool = True ,__lowercase :Union[int, float] = 1 / 2_5_5 ,__lowercase :bool = True ,__lowercase :Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_MEAN ,__lowercase :Optional[Union[float, Iterable[float]]] = IMAGENET_DEFAULT_STD ,**__lowercase :List[Any] ,): super().__init__(**__lowercase ) snake_case__ : List[str] = size if size is not None else {'''shortest_edge''': 2_2_4} snake_case__ : int = get_size_dict(__lowercase ,default_to_square=__lowercase ) snake_case__ : List[Any] = crop_size if crop_size is not None else {'''height''': 2_2_4, '''width''': 2_2_4} snake_case__ : Any = get_size_dict(__lowercase ,param_name='''crop_size''' ) snake_case__ : Union[str, Any] = do_resize snake_case__ : Dict = size snake_case__ : Optional[int] = resample snake_case__ : Dict = do_center_crop snake_case__ : str = crop_size snake_case__ : str = do_rescale snake_case__ : int = rescale_factor snake_case__ : str = do_normalize snake_case__ : Any = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN snake_case__ : Dict = image_std if image_std is not None else IMAGENET_DEFAULT_STD def __lowerCamelCase ( self :Dict ,__lowercase :np.ndarray ,__lowercase :Dict[str, int] ,__lowercase :PILImageResampling = PILImageResampling.BICUBIC ,__lowercase :Optional[Union[str, ChannelDimension]] = None ,**__lowercase :List[Any] ,): snake_case__ : str = get_size_dict(__lowercase ,default_to_square=__lowercase ) # size_dict is a dict with either keys "height" and "width" or "shortest_edge" if "shortest_edge" in size: snake_case__ : Any = int((2_5_6 / 2_2_4) * size['''shortest_edge'''] ) snake_case__ : int = get_resize_output_image_size(__lowercase ,size=__lowercase ,default_to_square=__lowercase ) snake_case__ : List[str] = {'''height''': output_size[0], '''width''': output_size[1]} if "height" not in size_dict or "width" not in size_dict: raise ValueError( F"""Size dict must have keys 'height' and 'width' or 'shortest_edge'. Got {size_dict.keys()}""" ) return resize( __lowercase ,size=(size_dict['''height'''], size_dict['''width''']) ,resample=__lowercase ,data_format=__lowercase ,**__lowercase ) def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :np.ndarray ,__lowercase :Dict[str, int] ,__lowercase :Optional[Union[str, ChannelDimension]] = None ,**__lowercase :Optional[int] ,): snake_case__ : Any = get_size_dict(__lowercase ) if "height" not in size or "width" not in size: raise ValueError(F"""Size dict must have keys 'height' and 'width'. Got {size.keys()}""" ) return center_crop(__lowercase ,size=(size['''height'''], size['''width''']) ,data_format=__lowercase ,**__lowercase ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :np.ndarray ,__lowercase :Union[int, float] ,__lowercase :Optional[Union[str, ChannelDimension]] = None ,**__lowercase :List[Any] ,): return rescale(__lowercase ,scale=__lowercase ,data_format=__lowercase ,**__lowercase ) def __lowerCamelCase ( self :str ,__lowercase :np.ndarray ,__lowercase :Union[float, List[float]] ,__lowercase :Union[float, List[float]] ,__lowercase :Optional[Union[str, ChannelDimension]] = None ,**__lowercase :Optional[Any] ,): return normalize(__lowercase ,mean=__lowercase ,std=__lowercase ,data_format=__lowercase ,**__lowercase ) def __lowerCamelCase ( self :int ,__lowercase :ImageInput ,__lowercase :Optional[bool] = None ,__lowercase :Optional[Dict[str, int]] = None ,__lowercase :PILImageResampling = None ,__lowercase :Optional[bool] = None ,__lowercase :Optional[Dict[str, int]] = None ,__lowercase :Optional[bool] = None ,__lowercase :Optional[float] = None ,__lowercase :Optional[bool] = None ,__lowercase :Optional[Union[float, Iterable[float]]] = None ,__lowercase :Optional[Union[float, Iterable[float]]] = None ,__lowercase :Optional[TensorType] = None ,__lowercase :ChannelDimension = ChannelDimension.FIRST ,**__lowercase :int ,): snake_case__ : str = do_resize if do_resize is not None else self.do_resize snake_case__ : List[Any] = resample if resample is not None else self.resample snake_case__ : int = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ : List[str] = do_rescale if do_rescale is not None else self.do_rescale snake_case__ : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ : List[str] = do_normalize if do_normalize is not None else self.do_normalize snake_case__ : Optional[Any] = image_mean if image_mean is not None else self.image_mean snake_case__ : Optional[int] = image_std if image_std is not None else self.image_std snake_case__ : Tuple = size if size is not None else self.size snake_case__ : List[Any] = get_size_dict(__lowercase ,default_to_square=__lowercase ) snake_case__ : Union[str, Any] = crop_size if crop_size is not None else self.crop_size snake_case__ : Optional[int] = get_size_dict(__lowercase ,param_name='''crop_size''' ) snake_case__ : str = make_list_of_images(__lowercase ) if not valid_images(__lowercase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # All transformations expect numpy arrays. snake_case__ : Tuple = [to_numpy_array(__lowercase ) for image in images] if do_resize: snake_case__ : Dict = [self.resize(__lowercase ,__lowercase ,__lowercase ) for image in images] if do_center_crop: snake_case__ : Any = [self.center_crop(__lowercase ,__lowercase ) for image in images] if do_rescale: snake_case__ : Tuple = [self.rescale(__lowercase ,__lowercase ) for image in images] if do_normalize: snake_case__ : Optional[Any] = [self.normalize(__lowercase ,__lowercase ,__lowercase ) for image in images] snake_case__ : int = [to_channel_dimension_format(__lowercase ,__lowercase ) for image in images] snake_case__ : Union[str, Any] = {'''pixel_values''': images} return BatchFeature(data=__lowercase ,tensor_type=__lowercase )
230
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import SPIECE_UNDERLINE, logging A__ = logging.get_logger(__name__) A__ = {'''vocab_file''': '''spiece.model'''} A__ = { '''vocab_file''': { '''TsinghuaAI/CPM-Generate''': '''https://huggingface.co/TsinghuaAI/CPM-Generate/resolve/main/spiece.model''', } } class a ( __lowerCamelCase ): def __init__( self :Union[str, Any] ,__lowercase :Optional[Any] ,__lowercase :int=False ,__lowercase :int=True ,__lowercase :Optional[int]=False ,__lowercase :List[str]="<s>" ,__lowercase :str="</s>" ,__lowercase :Dict="<unk>" ,__lowercase :Optional[int]="<sep>" ,__lowercase :Tuple="<pad>" ,__lowercase :Union[str, Any]="<cls>" ,__lowercase :Dict="<mask>" ,__lowercase :List[Any]=["<eop>", "<eod>"] ,__lowercase :Optional[Dict[str, Any]] = None ,**__lowercase :int ,): snake_case__ : Any = AddedToken(__lowercase ,lstrip=__lowercase ,rstrip=__lowercase ) if isinstance(__lowercase ,__lowercase ) else mask_token snake_case__ : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowercase ,remove_space=__lowercase ,keep_accents=__lowercase ,bos_token=__lowercase ,eos_token=__lowercase ,unk_token=__lowercase ,sep_token=__lowercase ,pad_token=__lowercase ,cls_token=__lowercase ,mask_token=__lowercase ,additional_special_tokens=__lowercase ,sp_model_kwargs=self.sp_model_kwargs ,**__lowercase ,) snake_case__ : Optional[Any] = 3 snake_case__ : List[str] = do_lower_case snake_case__ : Union[str, Any] = remove_space snake_case__ : Tuple = keep_accents snake_case__ : List[str] = vocab_file snake_case__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowercase ) try: import jieba except ModuleNotFoundError as error: raise error.__class__( '''You need to install jieba to use CpmTokenizer or CpmTokenizerFast. ''' '''See https://pypi.org/project/jieba/ for installation.''' ) snake_case__ : List[Any] = jieba snake_case__ : Union[str, Any] = str.maketrans(''' \n''' ,'''\u2582\u2583''' ) @property # Copied from transformers.models.xlnet.tokenization_xlnet.XLNetTokenizer.vocab_size def __lowerCamelCase ( self :Union[str, Any] ): return len(self.sp_model ) def __lowerCamelCase ( self :Any ): snake_case__ : Optional[Any] = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self :List[str] ): snake_case__ : Optional[Any] = self.__dict__.copy() snake_case__ : Optional[int] = None return state def __setstate__( self :int ,__lowercase :str ): snake_case__ : Tuple = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): snake_case__ : List[Any] = {} snake_case__ : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCamelCase ( self :Dict ,__lowercase :Optional[int] ): if self.remove_space: snake_case__ : int = ''' '''.join(inputs.strip().split() ) else: snake_case__ : Tuple = inputs snake_case__ : List[Any] = outputs.replace('''``''' ,'''"''' ).replace('''\'\'''' ,'''"''' ) if not self.keep_accents: snake_case__ : Any = unicodedata.normalize('''NFKD''' ,__lowercase ) snake_case__ : Dict = ''''''.join([c for c in outputs if not unicodedata.combining(__lowercase )] ) if self.do_lower_case: snake_case__ : str = outputs.lower() return outputs def __lowerCamelCase ( self :Optional[Any] ,__lowercase :str ): snake_case__ : Dict = self.preprocess_text(__lowercase ) snake_case__ : Any = self.sp_model.encode(__lowercase ,out_type=__lowercase ) snake_case__ : List[str] = [] for piece in pieces: if len(__lowercase ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): snake_case__ : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowercase ,'''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: snake_case__ : Optional[Any] = cur_pieces[1:] else: snake_case__ : Optional[Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowercase ) else: new_pieces.append(__lowercase ) return new_pieces def __lowerCamelCase ( self :Union[str, Any] ,__lowercase :Dict ): return self.sp_model.PieceToId(__lowercase ) def __lowerCamelCase ( self :Tuple ,__lowercase :Optional[int] ): return self.sp_model.IdToPiece(__lowercase ) def __lowerCamelCase ( self :Tuple ,__lowercase :List[Any] ): snake_case__ : Union[str, Any] = ''''''.join(__lowercase ).replace(__lowercase ,''' ''' ).strip() return out_string def __lowerCamelCase ( self :List[Any] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : Optional[Any] = [self.sep_token_id] snake_case__ : str = [self.cls_token_id] if token_ids_a is None: return token_ids_a + sep + cls return token_ids_a + sep + token_ids_a + sep + cls def __lowerCamelCase ( self :str ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ,__lowercase :bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase ,token_ids_a=__lowercase ,already_has_special_tokens=__lowercase ) if token_ids_a is not None: return ([0] * len(__lowercase )) + [1] + ([0] * len(__lowercase )) + [1, 1] return ([0] * len(__lowercase )) + [1, 1] def __lowerCamelCase ( self :List[str] ,__lowercase :List[int] ,__lowercase :Optional[List[int]] = None ): snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Optional[Any] = [2] if token_ids_a is None: return len(token_ids_a + sep ) * [0] + cls_segment_id return len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] + cls_segment_id def __lowerCamelCase ( self :Optional[int] ,__lowercase :str ,__lowercase :Optional[str] = None ): if not os.path.isdir(__lowercase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ : Union[str, Any] = os.path.join( __lowercase ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,__lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase ,'''wb''' ) as fi: snake_case__ : str = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def __lowerCamelCase ( self :Union[str, Any] ,*__lowercase :Optional[int] ,**__lowercase :Dict ): snake_case__ : Dict = super()._decode(*__lowercase ,**__lowercase ) snake_case__ : List[Any] = text.replace(''' ''' ,'''''' ).replace('''\u2582''' ,''' ''' ).replace('''\u2583''' ,'''\n''' ) return text
230
1
def __A ( __lowerCamelCase = 5000_0000 ) -> int: a = set() a = int((limit - 24) ** (1 / 2) ) a = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , __lowerCamelCase ) ) ) for primea in primes: a = primea * primea for primea in primes: a = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: a = primea * primea * primea * primea a = square + cube + tetr if total >= limit: break ret.add(__lowerCamelCase ) return len(__lowerCamelCase ) if __name__ == "__main__": print(F'{solution() = }')
347
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
1
class _A : def __init__( self : str , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' __a = None __a = None __a = graph self._normalize_graph(lowerCamelCase__ , lowerCamelCase__) __a = len(lowerCamelCase__) __a = None def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' if sources is int: __a = [sources] if sinks is int: __a = [sinks] if len(lowerCamelCase__) == 0 or len(lowerCamelCase__) == 0: return __a = sources[0] __a = sinks[0] # make fake vertex if there are more # than one source or sink if len(lowerCamelCase__) > 1 or len(lowerCamelCase__) > 1: __a = 0 for i in sources: max_input_flow += sum(self.graph[i]) __a = len(self.graph) + 1 for room in self.graph: room.insert(0 , 0) self.graph.insert(0 , [0] * size) for i in sources: __a = max_input_flow __a = 0 __a = len(self.graph) + 1 for room in self.graph: room.append(0) self.graph.append([0] * size) for i in sinks: __a = max_input_flow __a = size - 1 def _lowerCamelCase ( self : List[str]): '''simple docstring''' if self.maximum_flow_algorithm is None: raise Exception('''You need to set maximum flow algorithm before.''') if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def _lowerCamelCase ( self : Dict , __SCREAMING_SNAKE_CASE : Any): '''simple docstring''' __a = algorithm(self) class _A : def __init__( self : str , __SCREAMING_SNAKE_CASE : Tuple): '''simple docstring''' __a = flow_network __a = flow_network.verticesCount __a = flow_network.sourceIndex __a = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that __a = flow_network.graph __a = False def _lowerCamelCase ( self : str): '''simple docstring''' if not self.executed: self._algorithm() __a = True def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' pass class _A ( UpperCAmelCase__ ): def __init__( self : str , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' super().__init__(lowerCamelCase__) # use this to save your result __a = -1 def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' if not self.executed: raise Exception('''You should execute algorithm before using its result!''') return self.maximum_flow class _A ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' super().__init__(lowerCamelCase__) __a = [[0] * self.verticies_count for i in range(self.verticies_count)] __a = [0] * self.verticies_count __a = [0] * self.verticies_count def _lowerCamelCase ( self : str): '''simple docstring''' __a = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index]): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule __a = [ i for i in range(self.verticies_count) if i != self.source_index and i != self.sink_index ] # move through list __a = 0 while i < len(lowerCamelCase__): __a = vertices_list[i] __a = self.heights[vertex_index] self.process_vertex(lowerCamelCase__) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(lowerCamelCase__)) __a = 0 else: i += 1 __a = sum(self.preflow[self.source_index]) def _lowerCamelCase ( self : str , __SCREAMING_SNAKE_CASE : int): '''simple docstring''' while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(lowerCamelCase__ , lowerCamelCase__) self.relabel(lowerCamelCase__) def _lowerCamelCase ( self : List[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Dict): '''simple docstring''' __a = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def _lowerCamelCase ( self : List[str] , __SCREAMING_SNAKE_CASE : List[str]): '''simple docstring''' __a = None for to_index in range(self.verticies_count): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): __a = self.heights[to_index] if min_height is not None: __a = min_height + 1 if __name__ == "__main__": __snake_case :Union[str, Any] = [0] __snake_case :Any = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __snake_case :Union[str, Any] = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __snake_case :Optional[Any] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __snake_case :Tuple = flow_network.find_maximum_flow() print(f'maximum flow is {maximum_flow}')
49
'''simple docstring''' from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent lowerCamelCase__ = {'UserAgent': UserAgent().random} def __lowerCAmelCase (__lowerCAmelCase ): _UpperCAmelCase : List[str] = script.contents[0] _UpperCAmelCase : Any = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class lowerCAmelCase__ : def __init__( self : str , lowerCamelCase__ : List[Any] ) ->List[str]: '''simple docstring''' _UpperCAmelCase : List[Any] = F"""https://www.instagram.com/{username}/""" _UpperCAmelCase : Dict = self.get_json() def lowerCAmelCase__ ( self : Any ) ->dict: '''simple docstring''' _UpperCAmelCase : Optional[int] = requests.get(self.url , headers=lowerCamelCase__ ).text _UpperCAmelCase : Any = BeautifulSoup(lowerCamelCase__ , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Optional[Any] ) ->str: '''simple docstring''' return F"""{self.__class__.__name__}('{self.username}')""" def __str__( self : List[Any] ) ->str: '''simple docstring''' return F"""{self.fullname} ({self.username}) is {self.biography}""" @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self.user_data["username"] @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self.user_data["full_name"] @property def lowerCAmelCase__ ( self : Optional[int] ) ->str: '''simple docstring''' return self.user_data["biography"] @property def lowerCAmelCase__ ( self : int ) ->str: '''simple docstring''' return self.user_data["business_email"] @property def lowerCAmelCase__ ( self : str ) ->str: '''simple docstring''' return self.user_data["external_url"] @property def lowerCAmelCase__ ( self : Tuple ) ->int: '''simple docstring''' return self.user_data["edge_followed_by"]["count"] @property def lowerCAmelCase__ ( self : str ) ->int: '''simple docstring''' return self.user_data["edge_follow"]["count"] @property def lowerCAmelCase__ ( self : Any ) ->int: '''simple docstring''' return self.user_data["edge_owner_to_timeline_media"]["count"] @property def lowerCAmelCase__ ( self : List[Any] ) ->str: '''simple docstring''' return self.user_data["profile_pic_url_hd"] @property def lowerCAmelCase__ ( self : Optional[Any] ) ->bool: '''simple docstring''' return self.user_data["is_verified"] @property def lowerCAmelCase__ ( self : int ) ->bool: '''simple docstring''' return self.user_data["is_private"] def __lowerCAmelCase (__lowerCAmelCase = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions _UpperCAmelCase : Dict = InstagramUser(__lowerCAmelCase ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , __lowerCAmelCase ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120_000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "support@github.com" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() lowerCamelCase__ = InstagramUser('github') print(instagram_user) print(F'''{instagram_user.number_of_posts = }''') print(F'''{instagram_user.number_of_followers = }''') print(F'''{instagram_user.number_of_followings = }''') print(F'''{instagram_user.email = }''') print(F'''{instagram_user.website = }''') print(F'''{instagram_user.profile_picture_url = }''') print(F'''{instagram_user.is_verified = }''') print(F'''{instagram_user.is_private = }''')
234
0
'''simple docstring''' from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_herbert import HerbertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase__ = { '''vocab_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/vocab.json''' }, '''merges_file''': { '''allegro/herbert-base-cased''': '''https://huggingface.co/allegro/herbert-base-cased/resolve/main/merges.txt''' }, } lowerCAmelCase__ = {'''allegro/herbert-base-cased''': 514} lowerCAmelCase__ = {} class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : str = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : Optional[Any] = PRETRAINED_INIT_CONFIGURATION SCREAMING_SNAKE_CASE : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Optional[int] = HerbertTokenizer def __init__( self : List[Any] ,lowercase__ : List[str]=None ,lowercase__ : List[str]=None ,lowercase__ : List[Any]=None ,lowercase__ : Optional[Any]="<s>" ,lowercase__ : Any="<unk>" ,lowercase__ : Any="<pad>" ,lowercase__ : Tuple="<mask>" ,lowercase__ : Union[str, Any]="</s>" ,**lowercase__ : Optional[Any] ,): super().__init__( lowercase__ ,lowercase__ ,tokenizer_file=lowercase__ ,cls_token=lowercase__ ,unk_token=lowercase__ ,pad_token=lowercase__ ,mask_token=lowercase__ ,sep_token=lowercase__ ,**lowercase__ ,) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.cls_token_id] __lowercase = [self.sep_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ,lowercase__ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase__ ,token_ids_a=lowercase__ ,already_has_special_tokens=lowercase__ ) if token_ids_a is None: return [1] + ([0] * len(lowercase__ )) + [1] return [1] + ([0] * len(lowercase__ )) + [1] + ([0] * len(lowercase__ )) + [1] def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : List[int] ,lowercase__ : Optional[List[int]] = None ): __lowercase = [self.sep_token_id] __lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : str ,lowercase__ : Optional[str] = None ): __lowercase = self._tokenizer.model.save(lowercase__ ,name=lowercase__ ) return tuple(lowercase__ )
52
'''simple docstring''' from __future__ import annotations import unittest from transformers import FunnelConfig, is_tf_available from transformers.testing_utils import require_tf from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, ) class lowercase_ : """simple docstring""" def __init__( self : List[str] ,lowercase__ : str ,lowercase__ : List[str]=1_3 ,lowercase__ : str=7 ,lowercase__ : Tuple=True ,lowercase__ : Dict=True ,lowercase__ : str=True ,lowercase__ : Optional[Any]=True ,lowercase__ : List[str]=9_9 ,lowercase__ : int=[1, 1, 2] ,lowercase__ : int=1 ,lowercase__ : Tuple=3_2 ,lowercase__ : Union[str, Any]=4 ,lowercase__ : Tuple=8 ,lowercase__ : Any=3_7 ,lowercase__ : Union[str, Any]="gelu_new" ,lowercase__ : Tuple=0.1 ,lowercase__ : int=0.1 ,lowercase__ : Optional[int]=0.0 ,lowercase__ : Union[str, Any]=5_1_2 ,lowercase__ : Dict=3 ,lowercase__ : Union[str, Any]=0.0_2 ,lowercase__ : Any=3 ,lowercase__ : Tuple=4 ,lowercase__ : Dict=None ,lowercase__ : List[Any]=False ,): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_input_mask __lowercase = use_token_type_ids __lowercase = use_labels __lowercase = vocab_size __lowercase = block_sizes __lowercase = num_decoder_layers __lowercase = d_model __lowercase = n_head __lowercase = d_head __lowercase = d_inner __lowercase = hidden_act __lowercase = hidden_dropout __lowercase = attention_dropout __lowercase = activation_dropout __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = 2 __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = initializer_std # Used in the tests to check the size of the first attention layer __lowercase = n_head # Used in the tests to check the size of the first hidden state __lowercase = self.d_model # Used in the tests to check the number of output hidden states/attentions __lowercase = sum(self.block_sizes ) + (0 if base else self.num_decoder_layers) # FunnelModel adds two hidden layers: input embeddings and the sum of the upsampled encoder hidden state with # the last hidden state of the first block (which is the first hidden state of the decoder). if not base: __lowercase = self.num_hidden_layers + 2 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) __lowercase = ids_tensor([self.batch_size] ,self.num_choices ) __lowercase = FunnelConfig( vocab_size=self.vocab_size ,block_sizes=self.block_sizes ,num_decoder_layers=self.num_decoder_layers ,d_model=self.d_model ,n_head=self.n_head ,d_head=self.d_head ,d_inner=self.d_inner ,hidden_act=self.hidden_act ,hidden_dropout=self.hidden_dropout ,attention_dropout=self.attention_dropout ,activation_dropout=self.activation_dropout ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_std=self.initializer_std ,) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : List[str] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : List[str] ,lowercase__ : str ,): __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) __lowercase = False __lowercase = TFFunnelModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : List[Any] ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Optional[Any] ,lowercase__ : Tuple ,lowercase__ : Union[str, Any] ,): __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) __lowercase = [input_ids, input_mask] __lowercase = model(lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 3, self.d_model) ) __lowercase = False __lowercase = TFFunnelBaseModel(config=lowercase__ ) __lowercase = model(lowercase__ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, 2, self.d_model) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Dict ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,lowercase__ : Dict ,): __lowercase = TFFunnelForPreTraining(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[int] ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : List[str] ,lowercase__ : Optional[int] ,lowercase__ : Union[str, Any] ,lowercase__ : Tuple ,): __lowercase = TFFunnelForMaskedLM(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self : Any ,lowercase__ : Optional[Any] ,lowercase__ : List[Any] ,lowercase__ : str ,lowercase__ : List[Any] ,lowercase__ : int ,lowercase__ : Tuple ,lowercase__ : List[str] ,): __lowercase = self.num_labels __lowercase = TFFunnelForSequenceClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Tuple ,lowercase__ : Optional[int] ,lowercase__ : Optional[Any] ,lowercase__ : Any ,lowercase__ : Tuple ,): __lowercase = self.num_choices __lowercase = TFFunnelForMultipleChoice(config=lowercase__ ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = tf.tile(tf.expand_dims(lowercase__ ,1 ) ,(1, self.num_choices, 1) ) __lowercase = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def SCREAMING_SNAKE_CASE ( self : List[str] ,lowercase__ : Any ,lowercase__ : Tuple ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : Any ,lowercase__ : str ,lowercase__ : Any ,): __lowercase = self.num_labels __lowercase = TFFunnelForTokenClassification(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self : List[Any] ,lowercase__ : str ,lowercase__ : Any ,lowercase__ : int ,lowercase__ : Optional[Any] ,lowercase__ : Union[str, Any] ,lowercase__ : Optional[Any] ,lowercase__ : List[str] ,): __lowercase = TFFunnelForQuestionAnswering(config=lowercase__ ) __lowercase = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} __lowercase = model(lowercase__ ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): __lowercase = self.prepare_config_and_inputs() ( ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ( __lowercase ) , ) = config_and_inputs __lowercase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class lowercase_ (lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = ( ( TFFunnelModel, TFFunnelForMaskedLM, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForTokenClassification, ) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : int = ( { 'feature-extraction': (TFFunnelBaseModel, TFFunnelModel), 'fill-mask': TFFunnelForMaskedLM, 'question-answering': TFFunnelForQuestionAnswering, 'text-classification': TFFunnelForSequenceClassification, 'token-classification': TFFunnelForTokenClassification, 'zero-shot': TFFunnelForSequenceClassification, } if is_tf_available() else {} ) SCREAMING_SNAKE_CASE : Optional[Any] = False SCREAMING_SNAKE_CASE : List[str] = False def SCREAMING_SNAKE_CASE ( self : int ): __lowercase = TFFunnelModelTester(self ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Tuple ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase__ ) @require_tf class lowercase_ (lowerCamelCase__ , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = ( (TFFunnelBaseModel, TFFunnelForMultipleChoice, TFFunnelForSequenceClassification) if is_tf_available() else () ) SCREAMING_SNAKE_CASE : Optional[int] = False SCREAMING_SNAKE_CASE : Tuple = False def SCREAMING_SNAKE_CASE ( self : Dict ): __lowercase = TFFunnelModelTester(self ,base=lowercase__ ) __lowercase = ConfigTester(self ,config_class=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_base_model(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase__ )
52
1
"""simple docstring""" import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" , """False""" ) ) is not True , reason="""Skipping test because should only be run when releasing minor transformers version""" , ) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_5_0, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 6_0_0, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: Optional[int] ) -> Optional[Any]: if self.framework == "pytorch": subprocess.run( f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="""utf-8""" , check=snake_case , ) assert hasattr(self , """env""" ) def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple=1 ) -> Optional[int]: # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-single""" , instance_count=snake_case , instance_type=self.instance_type , debugger_hook_config=snake_case , hyperparameters={**self.env.hyperparameters, """model_name_or_path""": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version="""py36""" , ) def lowerCAmelCase_ ( self: Optional[Any] , snake_case: str ) -> Any: TrainingJobAnalytics(snake_case ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" ) def lowerCAmelCase_ ( self: List[str] ) -> int: # create estimator snake_case_ :int = self.create_estimator() # run training estimator.fit() # result dataframe snake_case_ :List[str] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis snake_case_ :List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_accuracy"""]["""value"""] ) snake_case_ :List[Any] = list(result_metrics_df[result_metrics_df.metric_name == """eval_loss"""]["""value"""] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping snake_case_ :Union[str, Any] = ( Session().describe_training_job(estimator.latest_training_job.name ).get("""TrainingTimeInSeconds""" , 999_999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["""eval_accuracy"""] for t in eval_accuracy ) assert all(t <= self.results["""eval_loss"""] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"""{estimator.latest_training_job.name}.json""" , """w""" ) as outfile: json.dump({"""train_time""": train_runtime, """eval_accuracy""": eval_accuracy, """eval_loss""": eval_loss} , snake_case )
66
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowerCamelCase ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' _A : str = StableDiffusionSAGPipeline _A : Optional[Any] = TEXT_TO_IMAGE_PARAMS _A : Any = TEXT_TO_IMAGE_BATCH_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS _A : List[str] = False def lowerCAmelCase_ ( self: Optional[Any] ) -> str: torch.manual_seed(0 ) snake_case_ :Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) snake_case_ :Any = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="""scaled_linear""" , clip_sample=snake_case , set_alpha_to_one=snake_case , ) torch.manual_seed(0 ) snake_case_ :Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) snake_case_ :Union[str, Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) snake_case_ :Tuple = CLIPTextModel(snake_case ) snake_case_ :str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) snake_case_ :Dict = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase_ ( self: List[str] , snake_case: Tuple , snake_case: List[str]=0 ) -> str: if str(snake_case ).startswith("""mps""" ): snake_case_ :Tuple = torch.manual_seed(snake_case ) else: snake_case_ :Optional[int] = torch.Generator(device=snake_case ).manual_seed(snake_case ) snake_case_ :Any = { """prompt""": """.""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 1.0, """sag_scale""": 1.0, """output_type""": """numpy""", } return inputs def lowerCAmelCase_ ( self: Optional[int] ) -> str: super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self: int ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self: int ) -> List[str]: snake_case_ :Any = StableDiffusionSAGPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Union[str, Any] = """.""" snake_case_ :str = torch.manual_seed(0 ) snake_case_ :str = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :List[Any] = output.images snake_case_ :Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :List[Any] = np.array([0.1_5_6_8, 0.1_7_3_8, 0.1_6_9_5, 0.1_6_9_3, 0.1_5_0_7, 0.1_7_0_5, 0.1_5_4_7, 0.1_7_5_1, 0.1_9_4_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: Dict ) -> str: snake_case_ :Tuple = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :Optional[int] = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Union[str, Any] = torch.manual_seed(0 ) snake_case_ :Tuple = sag_pipe( [prompt] , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" ) snake_case_ :Optional[int] = output.images snake_case_ :Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) snake_case_ :Tuple = np.array([0.3_4_5_9, 0.2_8_7_6, 0.2_5_3_7, 0.3_0_0_2, 0.2_6_7_1, 0.2_1_6_0, 0.3_0_2_6, 0.2_2_6_2, 0.2_3_7_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCAmelCase_ ( self: List[str] ) -> List[str]: snake_case_ :Optional[int] = StableDiffusionSAGPipeline.from_pretrained("""stabilityai/stable-diffusion-2-1-base""" ) snake_case_ :int = sag_pipe.to(snake_case ) sag_pipe.set_progress_bar_config(disable=snake_case ) snake_case_ :Tuple = """.""" snake_case_ :Optional[int] = torch.manual_seed(0 ) snake_case_ :List[str] = sag_pipe( [prompt] , width=768 , height=512 , generator=snake_case , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type="""np""" , ) snake_case_ :Optional[Any] = output.images assert image.shape == (1, 512, 768, 3)
66
1
from __future__ import annotations import math def __lowerCamelCase ( __lowerCAmelCase : int ) -> list[int]: if num <= 0: snake_case = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(a__ ) snake_case = [True] * (num + 1) snake_case = [] snake_case = 2 snake_case = int(math.sqrt(a__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a__ ) # Set multiples of start be False for i in range(start * start , num + 1 , a__ ): if sieve[i] is True: snake_case = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(a__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
359
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
0
from __future__ import annotations import math def _a ( a :Dict ) -> list[int]: if num <= 0: a = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(snake_case__ ) a = [True] * (num + 1) a = [] a = 2 a = int(math.sqrt(snake_case__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(snake_case__ ) # Set multiples of start be False for i in range(start * start , num + 1 , snake_case__ ): if sieve[i] is True: a = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(snake_case__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("Enter a positive integer: ").strip())))
0
import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DPMSolverMultistepScheduler, TextToVideoSDPipeline, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, load_numpy, skip_mps, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCAmelCase (_UpperCAmelCase ,unittest.TestCase ): __snake_case : List[Any] = TextToVideoSDPipeline __snake_case : Optional[int] = TEXT_TO_IMAGE_PARAMS __snake_case : Dict = TEXT_TO_IMAGE_BATCH_PARAMS # No `output_type`. __snake_case : Optional[int] = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self: int ): '''simple docstring''' torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """CrossAttnDownBlock3D""", """DownBlock3D""") , up_block_types=("""UpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""", """CrossAttnUpBlock3D""") , cross_attention_dim=32 , attention_head_dim=4 , ) _SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=UpperCAmelCase_ , set_alpha_to_one=UpperCAmelCase_ , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="""gelu""" , projection_dim=512 , ) _SCREAMING_SNAKE_CASE = CLIPTextModel(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) _SCREAMING_SNAKE_CASE = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def UpperCamelCase ( self: Union[str, Any] , UpperCAmelCase_: Tuple , UpperCAmelCase_: Dict=0 ): '''simple docstring''' if str(UpperCAmelCase_ ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase_ ) else: _SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """pt""", } return inputs def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = """cpu""" # ensure determinism for the device-dependent torch.Generator _SCREAMING_SNAKE_CASE = self.get_dummy_components() _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline(**UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = sd_pipe.to(UpperCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = self.get_dummy_inputs(UpperCAmelCase_ ) _SCREAMING_SNAKE_CASE = """np""" _SCREAMING_SNAKE_CASE = sd_pipe(**UpperCAmelCase_ ).frames _SCREAMING_SNAKE_CASE = frames[0][-3:, -3:, -1] assert frames[0].shape == (64, 64, 3) _SCREAMING_SNAKE_CASE = np.array([1_58.0, 1_60.0, 1_53.0, 1_25.0, 1_00.0, 1_21.0, 1_11.0, 93.0, 1_13.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' self._test_attention_slicing_forward_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=3E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def UpperCamelCase ( self: List[Any] ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=UpperCAmelCase_ , expected_max_diff=1E-2 ) @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' pass @unittest.skip(reason="""Batching needs to be properly figured out first for this pipeline.""" ) def UpperCamelCase ( self: int ): '''simple docstring''' pass @unittest.skip(reason="""`num_images_per_prompt` argument is not supported for this pipeline.""" ) def UpperCamelCase ( self: Optional[int] ): '''simple docstring''' pass def UpperCamelCase ( self: Optional[Any] ): '''simple docstring''' return super().test_progress_bar() @slow @skip_mps class __UpperCAmelCase (unittest.TestCase ): def UpperCamelCase ( self: List[Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=25 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2 def UpperCamelCase ( self: Union[str, Any] ): '''simple docstring''' _SCREAMING_SNAKE_CASE = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/text_to_video/video_2step.npy""" ) _SCREAMING_SNAKE_CASE = TextToVideoSDPipeline.from_pretrained("""damo-vilab/text-to-video-ms-1.7b""" ) _SCREAMING_SNAKE_CASE = pipe.to("""cuda""" ) _SCREAMING_SNAKE_CASE = """Spiderman is surfing""" _SCREAMING_SNAKE_CASE = torch.Generator(device="""cpu""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE = pipe(UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=2 , output_type="""pt""" ).frames _SCREAMING_SNAKE_CASE = video_frames.cpu().numpy() assert np.abs(expected_video - video ).mean() < 5E-2
306
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : List[Any] = ['image_processor', 'tokenizer'] lowerCAmelCase : Optional[int] = 'CLIPImageProcessor' lowerCAmelCase : Optional[int] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self : Tuple ,_UpperCAmelCase : Dict=None ,_UpperCAmelCase : List[str]=None ,**_UpperCAmelCase : int ): _a : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' ,_UpperCAmelCase ,) _a : Optional[int] = kwargs.pop('feature_extractor' ) _a : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase ,_UpperCAmelCase ) def __call__( self : Union[str, Any] ,_UpperCAmelCase : List[str]=None ,_UpperCAmelCase : Optional[int]=None ,_UpperCAmelCase : Any=None ,**_UpperCAmelCase : Tuple ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _a : Optional[int] = self.tokenizer(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) if images is not None: _a : List[str] = self.image_processor(_UpperCAmelCase ,return_tensors=_UpperCAmelCase ,**_UpperCAmelCase ) if text is not None and images is not None: _a : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) ,tensor_type=_UpperCAmelCase ) def __lowercase ( self : Any ,*_UpperCAmelCase : Dict ,**_UpperCAmelCase : Optional[Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase ,**_UpperCAmelCase ) def __lowercase ( self : Tuple ,*_UpperCAmelCase : Optional[Any] ,**_UpperCAmelCase : str ): return self.tokenizer.decode(*_UpperCAmelCase ,**_UpperCAmelCase ) @property def __lowercase ( self : List[str] ): _a : Tuple = self.tokenizer.model_input_names _a : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' ,_UpperCAmelCase ,) return self.image_processor_class @property def __lowercase ( self : Union[str, Any] ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' ,_UpperCAmelCase ,) return self.image_processor
356
'''simple docstring''' def __lowerCamelCase ( lowerCAmelCase_ ) -> list: if any(not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) or x < 0 for x in sequence ): raise TypeError('Sequence must be list of non-negative integers' ) for _ in range(len(lowerCAmelCase_ ) ): for i, (rod_upper, rod_lower) in enumerate(zip(lowerCAmelCase_ , sequence[1:] ) ): if rod_upper > rod_lower: sequence[i] -= rod_upper - rod_lower sequence[i + 1] += rod_upper - rod_lower return sequence if __name__ == "__main__": assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9]
107
0
"""simple docstring""" def _a ( _SCREAMING_SNAKE_CASE = 50_000_000 ) -> int: snake_case_ = set() snake_case_ = int((limit - 24) ** (1 / 2) ) snake_case_ = set(range(3 , prime_square_limit + 1 , 2 ) ) primes.add(2 ) for p in range(3 , prime_square_limit + 1 , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , prime_square_limit + 1 , _SCREAMING_SNAKE_CASE ) ) ) for primea in primes: snake_case_ = primea * primea for primea in primes: snake_case_ = primea * primea * primea if square + cube >= limit - 16: break for primea in primes: snake_case_ = primea * primea * primea * primea snake_case_ = square + cube + tetr if total >= limit: break ret.add(_SCREAMING_SNAKE_CASE ) return len(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": print(f"""{solution() = }""")
347
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : Tuple=0.02 , ) ->List[str]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = rotary_dim snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = None snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) ->Tuple: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowercase: List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = FlaxGPTJModelTester(self ) def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) snake_case_ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) snake_case_ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = False snake_case_ = model.config.eos_token_id snake_case_ = jax.jit(model.generate ) snake_case_ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) snake_case_ = fx_state with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) snake_case_ = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
347
1
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Tuple = np.array([[1, item, train_mtch[i]] for i, item in enumerate(__UpperCamelCase )] ) lowerCAmelCase_ : str = np.array(__UpperCamelCase ) lowerCAmelCase_ : Optional[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , __UpperCamelCase ) ) , x.transpose() ) , __UpperCamelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : Union[str, Any] = (1, 2, 1) lowerCAmelCase_ : str = (1, 1, 0, 7) lowerCAmelCase_ : List[Any] = SARIMAX( __UpperCamelCase , exog=__UpperCamelCase , order=__UpperCamelCase , seasonal_order=__UpperCamelCase ) lowerCAmelCase_ : Optional[int] = model.fit(disp=__UpperCamelCase , maxiter=600 , method="nm" ) lowerCAmelCase_ : Optional[Any] = model_fit.predict(1 , len(__UpperCamelCase ) , exog=[test_match] ) return result[0] def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> float: """simple docstring""" lowerCAmelCase_ : int = SVR(kernel="rbf" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase_ : Dict = regressor.predict(__UpperCamelCase ) return y_pred[0] def __lowerCamelCase ( __UpperCamelCase ) -> float: """simple docstring""" train_user.sort() lowerCAmelCase_ : Optional[Any] = np.percentile(__UpperCamelCase , 25 ) lowerCAmelCase_ : List[Any] = np.percentile(__UpperCamelCase , 75 ) lowerCAmelCase_ : Union[str, Any] = qa - qa lowerCAmelCase_ : List[Any] = qa - (iqr * 0.1) return low_lim def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase ) -> bool: """simple docstring""" lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : Union[str, Any] = 0 for i in list_vote: if i > actual_result: lowerCAmelCase_ : Tuple = not_safe + 1 else: if abs(abs(__UpperCamelCase ) - abs(__UpperCamelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) lowercase__ = [[18231, 0.0, 1], [22621, 1.0, 2], [15675, 0.0, 3], [23583, 1.0, 4]] lowercase__ = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) lowercase__ = Normalizer().fit_transform(data_input_df.values) # split data lowercase__ = normalize_df[:, 2].tolist() lowercase__ = normalize_df[:, 0].tolist() lowercase__ = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) lowercase__ = normalize_df[:, [1, 2]].tolist() lowercase__ = x[: len(x) - 1] lowercase__ = x[len(x) - 1 :] # for linear regression & sarimax lowercase__ = total_date[: len(total_date) - 1] lowercase__ = total_user[: len(total_user) - 1] lowercase__ = total_match[: len(total_match) - 1] lowercase__ = total_date[len(total_date) - 1 :] lowercase__ = total_user[len(total_user) - 1 :] lowercase__ = total_match[len(total_match) - 1 :] # voting system with forecasting lowercase__ = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data lowercase__ = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
161
"""simple docstring""" import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {"""vocab_file""": """vocab.txt"""} lowercase__ = { """vocab_file""": { """openbmb/cpm-ant-10b""": """https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt""", }, } lowercase__ = { """openbmb/cpm-ant-10b""": 1024, } def __lowerCamelCase ( __UpperCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase_ : int = collections.OrderedDict() with open(__UpperCamelCase , "r" , encoding="utf-8" ) as reader: lowerCAmelCase_ : List[Any] = reader.readlines() for index, token in enumerate(__UpperCamelCase ): lowerCAmelCase_ : List[str] = token.rstrip("\n" ) lowerCAmelCase_ : str = index return vocab class __lowerCamelCase ( A__ ): '''simple docstring''' def __init__( self : Tuple , a_ : Dict , a_ : Optional[Any]="<unk>" , a_ : List[str]=2_00 ): lowerCAmelCase_ : int = vocab lowerCAmelCase_ : List[Any] = unk_token lowerCAmelCase_ : List[Any] = max_input_chars_per_word def lowerCamelCase ( self : Any , a_ : Optional[int] ): lowerCAmelCase_ : Optional[int] = list(a_ ) if len(a_ ) > self.max_input_chars_per_word: return [self.unk_token] lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = [] while start < len(a_ ): lowerCAmelCase_ : Any = len(a_ ) lowerCAmelCase_ : Any = None while start < end: lowerCAmelCase_ : Union[str, Any] = "".join(chars[start:end] ) if substr in self.vocab: lowerCAmelCase_ : Any = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(a_ ) lowerCAmelCase_ : int = end return sub_tokens class __lowerCamelCase ( A__ ): '''simple docstring''' a_ : str = VOCAB_FILES_NAMES a_ : int = PRETRAINED_VOCAB_FILES_MAP a_ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ : List[Any] = ["""input_ids""", """attention_mask"""] a_ : Union[str, Any] = False def __init__( self : Union[str, Any] , a_ : List[str] , a_ : Dict="<d>" , a_ : Tuple="</d>" , a_ : Tuple="<s>" , a_ : int="</s>" , a_ : Tuple="<pad>" , a_ : Dict="<unk>" , a_ : Any="</n>" , a_ : Optional[int]="</_>" , a_ : List[Any]="left" , **a_ : List[Any] , ): requires_backends(self , ["jieba"] ) super().__init__( bod_token=a_ , eod_token=a_ , bos_token=a_ , eos_token=a_ , pad_token=a_ , unk_token=a_ , line_token=a_ , space_token=a_ , padding_side=a_ , **a_ , ) lowerCAmelCase_ : Optional[Any] = bod_token lowerCAmelCase_ : Union[str, Any] = eod_token lowerCAmelCase_ : Optional[Any] = load_vocab(a_ ) lowerCAmelCase_ : List[str] = self.encoder[space_token] lowerCAmelCase_ : int = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] lowerCAmelCase_ : Tuple = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) lowerCAmelCase_ : Any = {v: k for k, v in self.encoder.items()} lowerCAmelCase_ : str = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def lowerCamelCase ( self : List[Any] ): return self.encoder[self.bod_token] @property def lowerCamelCase ( self : List[str] ): return self.encoder[self.eod_token] @property def lowerCamelCase ( self : int ): return self.encoder["\n"] @property def lowerCamelCase ( self : Tuple ): return len(self.encoder ) def lowerCamelCase ( self : Optional[int] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase ( self : Optional[int] , a_ : Any ): lowerCAmelCase_ : Optional[int] = [] for x in jieba.cut(a_ , cut_all=a_ ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(a_ ) ) return output_tokens def lowerCamelCase ( self : Optional[Any] , a_ : List[str] , **a_ : Tuple ): lowerCAmelCase_ : List[Any] = [i for i in token_ids if i >= 0] lowerCAmelCase_ : List[Any] = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(a_ , **a_ ) def lowerCamelCase ( self : Optional[Any] , a_ : Union[str, Any] ): return token in self.encoder def lowerCamelCase ( self : List[Any] , a_ : List[str] ): return "".join(a_ ) def lowerCamelCase ( self : Union[str, Any] , a_ : str ): return self.encoder.get(a_ , self.encoder.get(self.unk_token ) ) def lowerCamelCase ( self : Union[str, Any] , a_ : int ): return self.decoder.get(a_ , self.unk_token ) def lowerCamelCase ( self : List[str] , a_ : str , a_ : Optional[str] = None ): if os.path.isdir(a_ ): lowerCAmelCase_ : Union[str, Any] = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: lowerCAmelCase_ : Tuple = (filename_prefix + "-" if filename_prefix else "") + save_directory lowerCAmelCase_ : str = 0 if " " in self.encoder: lowerCAmelCase_ : Optional[int] = self.encoder[" "] del self.encoder[" "] if "\n" in self.encoder: lowerCAmelCase_ : Optional[int] = self.encoder["\n"] del self.encoder["\n"] lowerCAmelCase_ : int = collections.OrderedDict(sorted(self.encoder.items() , key=lambda a_ : x[1] ) ) with open(a_ , "w" , encoding="utf-8" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) lowerCAmelCase_ : List[Any] = token_index writer.write(token + "\n" ) index += 1 return (vocab_file,) def lowerCamelCase ( self : int , a_ : List[int] , a_ : List[int] = None ): if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def lowerCamelCase ( self : List[str] , a_ : List[int] , a_ : Optional[List[int]] = None , a_ : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a_ , token_ids_a=a_ , already_has_special_tokens=a_ ) if token_ids_a is not None: return [1] + ([0] * len(a_ )) + [1] + ([0] * len(a_ )) return [1] + ([0] * len(a_ ))
161
1
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class A__ : def __init__( self , A_ , ): '''simple docstring''' UpperCamelCase : int = parent UpperCamelCase : Union[str, Any] = 13 UpperCamelCase : Any = 7 UpperCamelCase : Any = True UpperCamelCase : List[str] = True UpperCamelCase : Optional[Any] = True UpperCamelCase : List[Any] = 99 UpperCamelCase : List[Any] = 32 UpperCamelCase : Optional[int] = 2 UpperCamelCase : List[Any] = 4 UpperCamelCase : Optional[Any] = 37 UpperCamelCase : Optional[Any] = "gelu" UpperCamelCase : int = 0.1 UpperCamelCase : Optional[int] = 0.1 UpperCamelCase : List[str] = 512 UpperCamelCase : Union[str, Any] = 16 UpperCamelCase : Tuple = 2 UpperCamelCase : List[Any] = 0.02 UpperCamelCase : Optional[int] = 3 UpperCamelCase : List[Any] = 4 UpperCamelCase : Optional[int] = None def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase : List[str] = None if self.use_input_mask: UpperCamelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : Optional[Any] = None UpperCamelCase : Any = None UpperCamelCase : Optional[Any] = None if self.use_labels: UpperCamelCase : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase : Dict = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCamelCase( self ): '''simple docstring''' ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Optional[int] = self.prepare_config_and_inputs() UpperCamelCase : Union[str, Any] = True UpperCamelCase : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[int] = TFEsmModel(config=A_ ) UpperCamelCase : Any = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase : int = model(A_ ) UpperCamelCase : List[Any] = [input_ids, input_mask] UpperCamelCase : int = model(A_ ) UpperCamelCase : Tuple = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Tuple = True UpperCamelCase : str = TFEsmModel(config=A_ ) UpperCamelCase : Optional[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "encoder_hidden_states": encoder_hidden_states, "encoder_attention_mask": encoder_attention_mask, } UpperCamelCase : Dict = model(A_ ) UpperCamelCase : Union[str, Any] = [input_ids, input_mask] UpperCamelCase : List[Any] = model(A_ , encoder_hidden_states=A_ ) # Also check the case where encoder outputs are not passed UpperCamelCase : List[str] = model(A_ , attention_mask=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[Any] = TFEsmForMaskedLM(config=A_ ) UpperCamelCase : Tuple = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __UpperCamelCase( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' UpperCamelCase : int = self.num_labels UpperCamelCase : Dict = TFEsmForTokenClassification(config=A_ ) UpperCamelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} UpperCamelCase : Dict = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[str] = self.prepare_config_and_inputs() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) : Any = config_and_inputs UpperCamelCase : str = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class A__ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCAmelCase :Any = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) _UpperCAmelCase :List[Any] = ( { 'feature-extraction': TFEsmModel, 'fill-mask': TFEsmForMaskedLM, 'text-classification': TFEsmForSequenceClassification, 'token-classification': TFEsmForTokenClassification, 'zero-shot': TFEsmForSequenceClassification, } if is_tf_available() else {} ) _UpperCAmelCase :Tuple = False _UpperCAmelCase :Optional[Any] = False def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = TFEsmModelTester(self ) UpperCamelCase : List[Any] = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __UpperCamelCase( self ): '''simple docstring''' self.config_tester.run_common_tests() def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __UpperCamelCase( self ): '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase : Union[str, Any] = TFEsmModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) @unittest.skip("Protein models do not support embedding resizing." ) def __UpperCamelCase( self ): '''simple docstring''' pass @unittest.skip("Protein models do not support embedding resizing." ) def __UpperCamelCase( self ): '''simple docstring''' pass def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase , UpperCamelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase : Dict = model_class(A_ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer UpperCamelCase : Optional[Any] = model.get_bias() assert isinstance(A_ , A_ ) for k, v in name.items(): assert isinstance(A_ , tf.Variable ) else: UpperCamelCase : str = model.get_output_embeddings() assert x is None UpperCamelCase : Dict = model.get_bias() assert name is None @require_tf class A__ ( unittest.TestCase ): @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Dict = TFEsmForMaskedLM.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCamelCase : Optional[int] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase : int = model(A_ )[0] UpperCamelCase : List[str] = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , A_ ) # compare the actual values for a slice. UpperCamelCase : str = tf.constant( [ [ [8.92_15_18, -10.58_98_14, -6.4_67_13_07], [-6.3_96_71_56, -13.91_13_77, -1.1_21_19_15], [-7.78_12_47, -13.95_15_57, -3.74_05_92], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[int] = TFEsmModel.from_pretrained("facebook/esm2_t6_8M_UR50D" ) UpperCamelCase : Optional[int] = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) UpperCamelCase : List[Any] = model(A_ )[0] # compare the actual values for a slice. UpperCamelCase : int = tf.constant( [ [ [0.14_44_30_92, 0.54_12_53_27, 0.3_24_77_39], [0.30_34_04_84, 0.00_52_66_76, 0.31_07_77_22], [0.32_27_80_43, -0.24_98_70_96, 0.3_41_46_28], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
52
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin __lowerCamelCase : str = random.Random() if is_torch_available(): import torch def A_ ( _lowerCAmelCase , _lowerCAmelCase=1.0 , _lowerCAmelCase=None , _lowerCAmelCase=None ) -> Optional[Any]: if rng is None: UpperCamelCase : Optional[int] = global_rng UpperCamelCase : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class A__ ( unittest.TestCase ): def __init__( self , A_ , A_=7 , A_=400 , A_=2000 , A_=1 , A_=0.0 , A_=1_6000 , A_=True , A_=True , ): '''simple docstring''' UpperCamelCase : Tuple = parent UpperCamelCase : List[Any] = batch_size UpperCamelCase : List[Any] = min_seq_length UpperCamelCase : List[str] = max_seq_length UpperCamelCase : int = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) UpperCamelCase : Union[str, Any] = feature_size UpperCamelCase : List[str] = padding_value UpperCamelCase : Optional[Any] = sampling_rate UpperCamelCase : List[str] = return_attention_mask UpperCamelCase : List[Any] = do_normalize def __UpperCamelCase( self ): '''simple docstring''' return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCamelCase( self , A_=False , A_=False ): '''simple docstring''' def _flatten(A_ ): return list(itertools.chain(*A_ ) ) if equal_length: UpperCamelCase : List[str] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size UpperCamelCase : Dict = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: UpperCamelCase : Union[str, Any] = [np.asarray(A_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class A__ ( __snake_case , unittest.TestCase ): _UpperCAmelCase :Optional[Any] = ASTFeatureExtractor def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Tuple = ASTFeatureExtractionTester(self ) def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 UpperCamelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] UpperCamelCase : Dict = [np.asarray(A_ ) for speech_input in speech_inputs] # Test not batched input UpperCamelCase : Dict = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values UpperCamelCase : Union[str, Any] = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test batched UpperCamelCase : Any = feat_extract(A_ , padding=A_ , return_tensors="np" ).input_values UpperCamelCase : Any = feat_extract(A_ , padding=A_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. UpperCamelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] UpperCamelCase : int = np.asarray(A_ ) UpperCamelCase : Any = feat_extract(A_ , return_tensors="np" ).input_values UpperCamelCase : List[str] = feat_extract(A_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(A_ , A_ ): self.assertTrue(np.allclose(A_ , A_ , atol=1e-3 ) ) @require_torch def __UpperCamelCase( self ): '''simple docstring''' import torch UpperCamelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) UpperCamelCase : int = np.random.rand(100 ).astype(np.floataa ) UpperCamelCase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: UpperCamelCase : List[Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) UpperCamelCase : List[str] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) def __UpperCamelCase( self , A_ ): '''simple docstring''' from datasets import load_dataset UpperCamelCase : Dict = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech UpperCamelCase : Any = ds.sort("id" ).select(range(A_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] @require_torch def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : Any = torch.tensor( [-0.98_94, -1.27_76, -0.90_66, -1.27_76, -0.93_49, -1.26_09, -1.03_86, -1.27_76, -1.15_61, -1.27_76, -1.20_52, -1.27_23, -1.21_90, -1.21_32, -1.27_76, -1.11_33, -1.19_53, -1.13_43, -1.15_84, -1.22_03, -1.17_70, -1.24_74, -1.23_81, -1.19_36, -0.92_70, -0.83_17, -0.80_49, -0.77_06, -0.75_65, -0.78_69] ) # fmt: on UpperCamelCase : List[Any] = self._load_datasamples(1 ) UpperCamelCase : Tuple = ASTFeatureExtractor() UpperCamelCase : str = feature_extractor(A_ , return_tensors="pt" ).input_values self.assertEquals(input_values.shape , (1, 1024, 128) ) self.assertTrue(torch.allclose(input_values[0, 0, :30] , A_ , atol=1e-4 ) )
52
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowerCamelCase : Union[str, Any] ={ '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : Any =[ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase : List[str] =[ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowerCamelCase : List[str] =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
196
from __future__ import annotations def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase ) -> list[int]: UpperCamelCase__ : Optional[Any] = 0 UpperCamelCase__ : Any = len(__lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: UpperCamelCase__ : Optional[int] = i + 1 else: UpperCamelCase__ : Dict = j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(F"""{two_pointer([2, 7, 11, 15], 9) = }""")
196
1
"""simple docstring""" # coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers a__ : Dict = '''3''' print('''Python version:''', sys.version) print('''transformers version:''', transformers.__version__) try: import torch print('''Torch version:''', torch.__version__) print('''Cuda available:''', torch.cuda.is_available()) print('''Cuda version:''', torch.version.cuda) print('''CuDNN version:''', torch.backends.cudnn.version()) print('''Number of GPUs available:''', torch.cuda.device_count()) print('''NCCL version:''', torch.cuda.nccl.version()) except ImportError: print('''Torch version:''', None) try: import deepspeed print('''DeepSpeed version:''', deepspeed.__version__) except ImportError: print('''DeepSpeed version:''', None) try: import tensorflow as tf print('''TensorFlow version:''', tf.__version__) print('''TF GPUs available:''', bool(tf.config.list_physical_devices('''GPU'''))) print('''Number of TF GPUs available:''', len(tf.config.list_physical_devices('''GPU'''))) except ImportError: print('''TensorFlow version:''', None)
54
'''simple docstring''' import os import sys import unittest lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[Any] = {'''BertModelTest''': '''BertModelTester'''} A : int = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Union[str, Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : str = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
3
0
'''simple docstring''' import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class lowercase__ ( lowercase , unittest.TestCase ): lowercase__ = PhobertTokenizer lowercase__ = False def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _UpperCamelCase : Any = ['T@@', 'i', 'I', 'R@@', 'r', 'e@@'] _UpperCamelCase : Union[str, Any] = dict(zip(lowerCamelCase__ ,range(len(lowerCamelCase__ ) ) ) ) _UpperCamelCase : int = ['#version: 0.2', 'l à</w>'] _UpperCamelCase : Dict = {'unk_token': '<unk>'} _UpperCamelCase : Tuple = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) _UpperCamelCase : str = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: for token in vocab_tokens: fp.write(F'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCamelCase__ ) ) def UpperCamelCase_ ( self : List[str] ,**lowerCamelCase__ : Optional[Any] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Tuple = 'Tôi là VinAI Research' _UpperCamelCase : List[str] = 'T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>' return input_text, output_text def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' _UpperCamelCase : List[Any] = PhobertTokenizer(self.vocab_file ,self.merges_file ,**self.special_tokens_map ) _UpperCamelCase : Union[str, Any] = 'Tôi là VinAI Research' _UpperCamelCase : Optional[int] = 'T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h'.split() _UpperCamelCase : Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ ,lowerCamelCase__ ) _UpperCamelCase : Optional[int] = tokens + [tokenizer.unk_token] _UpperCamelCase : Optional[int] = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) ,lowerCamelCase__ )
236
'''simple docstring''' from collections import OrderedDict from typing import Any, List, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast, PatchingSpec from ...utils import logging snake_case_ : int = logging.get_logger(__name__) snake_case_ : List[str] = { 'EleutherAI/gpt-j-6B': 'https://huggingface.co/EleutherAI/gpt-j-6B/resolve/main/config.json', # See all GPT-J models at https://huggingface.co/models?filter=gpt_j } class lowercase__ ( lowercase ): lowercase__ = """gptj""" lowercase__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any ,lowerCamelCase__ : Optional[Any]=50400 ,lowerCamelCase__ : Tuple=2048 ,lowerCamelCase__ : Tuple=4096 ,lowerCamelCase__ : int=28 ,lowerCamelCase__ : Optional[Any]=16 ,lowerCamelCase__ : Optional[Any]=64 ,lowerCamelCase__ : List[Any]=None ,lowerCamelCase__ : List[Any]="gelu_new" ,lowerCamelCase__ : Optional[Any]=0.0 ,lowerCamelCase__ : List[str]=0.0 ,lowerCamelCase__ : List[Any]=0.0 ,lowerCamelCase__ : Tuple=1E-5 ,lowerCamelCase__ : int=0.0_2 ,lowerCamelCase__ : Any=True ,lowerCamelCase__ : str=50256 ,lowerCamelCase__ : Any=50256 ,lowerCamelCase__ : Tuple=False ,**lowerCamelCase__ : Optional[Any] ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = vocab_size _UpperCamelCase : Optional[Any] = n_positions _UpperCamelCase : Union[str, Any] = n_embd _UpperCamelCase : Any = n_layer _UpperCamelCase : Optional[int] = n_head _UpperCamelCase : List[str] = n_inner _UpperCamelCase : List[Any] = rotary_dim _UpperCamelCase : int = activation_function _UpperCamelCase : Dict = resid_pdrop _UpperCamelCase : Any = embd_pdrop _UpperCamelCase : Union[str, Any] = attn_pdrop _UpperCamelCase : Union[str, Any] = layer_norm_epsilon _UpperCamelCase : Optional[Any] = initializer_range _UpperCamelCase : str = use_cache _UpperCamelCase : Union[str, Any] = bos_token_id _UpperCamelCase : Any = eos_token_id super().__init__( bos_token_id=lowerCamelCase__ ,eos_token_id=lowerCamelCase__ ,tie_word_embeddings=lowerCamelCase__ ,**lowerCamelCase__ ) class lowercase__ ( lowercase ): def __init__( self : Tuple ,lowerCamelCase__ : PretrainedConfig ,lowerCamelCase__ : str = "default" ,lowerCamelCase__ : List[PatchingSpec] = None ,lowerCamelCase__ : bool = False ,): '''simple docstring''' super().__init__(lowerCamelCase__ ,task=lowerCamelCase__ ,patching_specs=lowerCamelCase__ ,use_past=lowerCamelCase__ ) if not getattr(self._config ,'pad_token_id' ,lowerCamelCase__ ): # TODO: how to do that better? _UpperCamelCase : int = 0 @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[str] = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCamelCase__ ,direction='inputs' ) _UpperCamelCase : Tuple = {0: 'batch', 1: 'past_sequence + sequence'} else: _UpperCamelCase : Any = {0: 'batch', 1: 'sequence'} return common_inputs @property def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' return self._config.n_layer @property def UpperCamelCase_ ( self : List[str] ): '''simple docstring''' return self._config.n_head def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : PreTrainedTokenizer ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : int = -1 ,lowerCamelCase__ : bool = False ,lowerCamelCase__ : Optional[TensorType] = None ,): '''simple docstring''' _UpperCamelCase : Union[str, Any] = super(lowerCamelCase__ ,self ).generate_dummy_inputs( lowerCamelCase__ ,batch_size=lowerCamelCase__ ,seq_length=lowerCamelCase__ ,is_pair=lowerCamelCase__ ,framework=lowerCamelCase__ ) # We need to order the input in the way they appears in the forward() _UpperCamelCase : Tuple = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch _UpperCamelCase , _UpperCamelCase : str = common_inputs['input_ids'].shape # Not using the same length for past_key_values _UpperCamelCase : Optional[int] = seqlen + 2 _UpperCamelCase : List[Any] = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _UpperCamelCase : Optional[Any] = [ (torch.zeros(lowerCamelCase__ ), torch.zeros(lowerCamelCase__ )) for _ in range(self.num_layers ) ] _UpperCamelCase : Union[str, Any] = common_inputs['attention_mask'] if self.use_past: _UpperCamelCase : Any = ordered_inputs['attention_mask'].dtype _UpperCamelCase : List[str] = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCamelCase__ ,lowerCamelCase__ ,dtype=lowerCamelCase__ )] ,dim=1 ) return ordered_inputs @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return 13
236
1
"""simple docstring""" def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" def get_matched_characters(UpperCAmelCase , UpperCAmelCase ) -> str: a_ = [] a_ = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): a_ = int(max(0 , i - limit ) ) a_ = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(UpperCAmelCase ) a_ = F'''{_stra[0:_stra.index(UpperCAmelCase )]} {_stra[_stra.index(UpperCAmelCase ) + 1:]}''' return "".join(UpperCAmelCase ) # matching characters a_ = get_matched_characters(UpperCAmelCase , UpperCAmelCase ) a_ = get_matched_characters(UpperCAmelCase , UpperCAmelCase ) a_ = len(UpperCAmelCase ) # transposition a_ = ( len([(ca, ca) for ca, ca in zip(UpperCAmelCase , UpperCAmelCase ) if ca != ca] ) // 2 ) if not match_count: a_ = 0.0 else: a_ = ( 1 / 3 * ( match_count / len(UpperCAmelCase ) + match_count / len(UpperCAmelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters a_ = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
243
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Optional[Any] = logging.get_logger(__name__) __lowerCAmelCase : str = {'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class snake_case__ (_UpperCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = """openai-gpt""" SCREAMING_SNAKE_CASE_ : Tuple = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , __lowerCamelCase : List[str]=4_04_78 , __lowerCamelCase : List[Any]=5_12 , __lowerCamelCase : List[str]=7_68 , __lowerCamelCase : List[str]=12 , __lowerCamelCase : Optional[Any]=12 , __lowerCamelCase : str="gelu" , __lowerCamelCase : Optional[int]=0.1 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=0.1 , __lowerCamelCase : Any=1e-5 , __lowerCamelCase : Optional[int]=0.02 , __lowerCamelCase : Optional[int]="cls_index" , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Tuple=0.1 , **__lowerCamelCase : Union[str, Any] , ) -> List[str]: a = vocab_size a = n_positions a = n_embd a = n_layer a = n_head a = afn a = resid_pdrop a = embd_pdrop a = attn_pdrop a = layer_norm_epsilon a = initializer_range a = summary_type a = summary_use_proj a = summary_activation a = summary_first_dropout a = summary_proj_to_labels super().__init__(**__lowerCamelCase )
107
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __UpperCAmelCase = input('''Enter image url: ''').strip() print(f"""Downloading image from {url} ...""") __UpperCAmelCase = BeautifulSoup(requests.get(url).content, '''html.parser''') # The image URL is in the content field of the first meta tag with property og:image __UpperCAmelCase = soup.find('''meta''', {'''property''': '''og:image'''})['''content'''] __UpperCAmelCase = requests.get(image_url).content __UpperCAmelCase = f"""{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg""" with open(file_name, '''wb''') as fp: fp.write(image_data) print(f"""Done. Image saved to disk as {file_name}.""")
42
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCamelCase__ ( _a , _a ): @register_to_config def __init__( self : str , _a : int = 7_6_8 , ): super().__init__() a__: Optional[Any] =nn.Parameter(torch.zeros(1 , _a ) ) a__: List[str] =nn.Parameter(torch.ones(1 , _a ) ) def _lowerCamelCase ( self : Tuple , _a : Optional[Union[str, torch.device]] = None , _a : Optional[torch.dtype] = None , ): a__: str =nn.Parameter(self.mean.to(_a ).to(_a ) ) a__: List[Any] =nn.Parameter(self.std.to(_a ).to(_a ) ) return self def _lowerCamelCase ( self : List[Any] , _a : Dict ): a__: str =(embeds - self.mean) * 1.0 / self.std return embeds def _lowerCamelCase ( self : List[Any] , _a : str ): a__: Optional[Any] =(embeds * self.std) + self.mean return embeds
42
1
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a__ : List[str] = 1_6 a__ : Union[str, Any] = 3_2 def snake_case ( UpperCAmelCase , UpperCAmelCase = 1_6 )-> Dict: """simple docstring""" __A = AutoTokenizer.from_pretrained('bert-base-cased' ) __A = load_dataset('glue' , 'mrpc' ) def tokenize_function(UpperCAmelCase ): # max_length=None => use the model max length (it's actually the default) __A = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __A = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __A = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(UpperCAmelCase ): # On TPU it's best to pad everything to the same length or training will be very slow. __A = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __A = 1_6 elif accelerator.mixed_precision != "no": __A = 8 else: __A = None return tokenizer.pad( UpperCAmelCase , padding='longest' , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors='pt' , ) # Instantiate dataloaders. __A = DataLoader( tokenized_datasets['train'] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) __A = DataLoader( tokenized_datasets['validation'] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a__ : Tuple = mocked_dataloaders # noqa: F811 def snake_case ( UpperCAmelCase , UpperCAmelCase )-> List[Any]: """simple docstring""" # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , UpperCAmelCase ) == "1": __A = 2 # New Code # __A = int(args.gradient_accumulation_steps ) __A = int(args.local_sgd_steps ) # Initialize accelerator __A = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCAmelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __A = config['lr'] __A = int(config['num_epochs'] ) __A = int(config['seed'] ) __A = int(config['batch_size'] ) __A = evaluate.load('glue' , 'mrpc' ) set_seed(UpperCAmelCase ) __A , __A = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __A = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __A = model.to(accelerator.device ) # Instantiate optimizer __A = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler __A = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __A , __A , __A , __A , __A = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() with LocalSGD( accelerator=UpperCAmelCase , model=UpperCAmelCase , local_sgd_steps=UpperCAmelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCAmelCase ): __A = model(**UpperCAmelCase ) __A = output.loss accelerator.backward(UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __A = model(**UpperCAmelCase ) __A = outputs.logits.argmax(dim=-1 ) __A , __A = accelerator.gather_for_metrics((predictions, batch['labels']) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) __A = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'epoch {epoch}:' , UpperCAmelCase ) def snake_case ( )-> str: """simple docstring""" __A = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=UpperCAmelCase , default=UpperCAmelCase , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) # New Code # parser.add_argument( '--gradient_accumulation_steps' , type=UpperCAmelCase , default=1 , help='The number of minibatches to be ran before gradients are accumulated.' , ) parser.add_argument( '--local_sgd_steps' , type=UpperCAmelCase , default=8 , help='Number of local SGD steps or None to disable local SGD' ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) __A = parser.parse_args() __A = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
161
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ : List[Any] = { "configuration_vision_text_dual_encoder": ["VisionTextDualEncoderConfig"], "processing_vision_text_dual_encoder": ["VisionTextDualEncoderProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Tuple = ["VisionTextDualEncoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Union[str, Any] = ["FlaxVisionTextDualEncoderModel"] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Optional[int] = ["TFVisionTextDualEncoderModel"] if TYPE_CHECKING: from .configuration_vision_text_dual_encoder import VisionTextDualEncoderConfig from .processing_vision_text_dual_encoder import VisionTextDualEncoderProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_text_dual_encoder import VisionTextDualEncoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_text_dual_encoder import FlaxVisionTextDualEncoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_text_dual_encoder import TFVisionTextDualEncoderModel else: import sys a__ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure)
161
1
'''simple docstring''' import copy from typing import Dict, List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING _A : List[str] ={ '''facebook/mask2former-swin-small-coco-instance''': ( '''https://huggingface.co/facebook/mask2former-swin-small-coco-instance/blob/main/config.json''' ) # See all Mask2Former models at https://huggingface.co/models?filter=mask2former } _A : Tuple =logging.get_logger(__name__) class _lowercase ( _lowercase ): a = """mask2former""" a = ["""swin"""] a = {"""hidden_size""": """hidden_dim"""} def __init__( self: Any , UpperCamelCase__: Optional[Dict] = None , UpperCamelCase__: int = 256 , UpperCamelCase__: int = 256 , UpperCamelCase__: int = 256 , UpperCamelCase__: int = 1_024 , UpperCamelCase__: str = "relu" , UpperCamelCase__: int = 6 , UpperCamelCase__: int = 10 , UpperCamelCase__: int = 8 , UpperCamelCase__: float = 0.0 , UpperCamelCase__: int = 2_048 , UpperCamelCase__: bool = False , UpperCamelCase__: bool = False , UpperCamelCase__: int = 4 , UpperCamelCase__: int = 255 , UpperCamelCase__: int = 100 , UpperCamelCase__: float = 0.1 , UpperCamelCase__: float = 2.0 , UpperCamelCase__: float = 5.0 , UpperCamelCase__: float = 5.0 , UpperCamelCase__: int = 12_544 , UpperCamelCase__: float = 3.0 , UpperCamelCase__: float = 0.75 , UpperCamelCase__: float = 0.02 , UpperCamelCase__: float = 1.0 , UpperCamelCase__: bool = True , UpperCamelCase__: List[int] = [4, 8, 16, 32] , UpperCamelCase__: bool = None , **UpperCamelCase__: List[Any] , ): if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `Swin` backbone.""" ) lowerCamelCase__ : Optional[int] = CONFIG_MAPPING["""swin"""]( image_size=224 , in_channels=3 , patch_size=4 , embed_dim=96 , depths=[2, 2, 18, 2] , num_heads=[3, 6, 12, 24] , window_size=7 , drop_path_rate=0.3 , use_absolute_embeddings=UpperCamelCase__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] , ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): lowerCamelCase__ : Any = backbone_config.pop("""model_type""" ) lowerCamelCase__ : Any = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Union[str, Any] = config_class.from_dict(UpperCamelCase__ ) # verify that the backbone is supported if backbone_config.model_type not in self.backbones_supported: logger.warning_once( F'''Backbone {backbone_config.model_type} is not a supported model and may not be compatible with Mask2Former. ''' F'''Supported model types: {','.join(self.backbones_supported )}''' ) lowerCamelCase__ : Union[str, Any] = backbone_config lowerCamelCase__ : int = feature_size lowerCamelCase__ : str = mask_feature_size lowerCamelCase__ : Union[str, Any] = hidden_dim lowerCamelCase__ : str = encoder_feedforward_dim lowerCamelCase__ : Tuple = activation_function lowerCamelCase__ : Dict = encoder_layers lowerCamelCase__ : str = decoder_layers lowerCamelCase__ : Optional[int] = num_attention_heads lowerCamelCase__ : Any = dropout lowerCamelCase__ : Tuple = dim_feedforward lowerCamelCase__ : str = pre_norm lowerCamelCase__ : Any = enforce_input_projection lowerCamelCase__ : Dict = common_stride lowerCamelCase__ : int = ignore_value lowerCamelCase__ : List[str] = num_queries lowerCamelCase__ : int = no_object_weight lowerCamelCase__ : Optional[int] = class_weight lowerCamelCase__ : Any = mask_weight lowerCamelCase__ : Tuple = dice_weight lowerCamelCase__ : Tuple = train_num_points lowerCamelCase__ : List[str] = oversample_ratio lowerCamelCase__ : Any = importance_sample_ratio lowerCamelCase__ : Dict = init_std lowerCamelCase__ : int = init_xavier_std lowerCamelCase__ : Dict = use_auxiliary_loss lowerCamelCase__ : List[str] = feature_strides lowerCamelCase__ : Tuple = output_auxiliary_logits lowerCamelCase__ : Optional[int] = decoder_layers super().__init__(**UpperCamelCase__ ) @classmethod def lowerCamelCase_ ( cls: Optional[Any] , UpperCamelCase__: PretrainedConfig , **UpperCamelCase__: List[Any] ): return cls( backbone_config=UpperCamelCase__ , **UpperCamelCase__ , ) def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Dict = self.backbone_config.to_dict() lowerCamelCase__ : Union[str, Any] = self.__class__.model_type return output
129
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) _A : str ={ '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 1_000, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Union[str, Any] ={ '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 1_000, '''block_out_channels''': [192, 192 * 2, 192 * 3, 192 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''sample_size''': 256, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [256, 256, 256 * 2, 256 * 2, 256 * 4, 256 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } _A : Dict ={ '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : str ={ '''num_train_timesteps''': 201, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } _A : int ={ '''num_train_timesteps''': 151, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def SCREAMING_SNAKE_CASE_ (UpperCamelCase ) -> Dict: if isinstance(UpperCamelCase , UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("""boolean value expected""" ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=False ) -> Any: lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.0.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.in_layers.0.bias'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.weight'''] lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.in_layers.2.bias'''] lowerCamelCase__ : Optional[Any] = checkpoint[f'''{old_prefix}.emb_layers.1.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.emb_layers.1.bias'''] lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.out_layers.0.weight'''] lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.out_layers.0.bias'''] lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.out_layers.3.weight'''] lowerCamelCase__ : int = checkpoint[f'''{old_prefix}.out_layers.3.bias'''] if has_skip: lowerCamelCase__ : Tuple = checkpoint[f'''{old_prefix}.skip_connection.weight'''] lowerCamelCase__ : List[Any] = checkpoint[f'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> str: lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ : str = checkpoint[f'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) lowerCamelCase__ : Any = checkpoint[f'''{old_prefix}.norm.weight'''] lowerCamelCase__ : Optional[int] = checkpoint[f'''{old_prefix}.norm.bias'''] lowerCamelCase__ : List[Any] = weight_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : List[Any] = bias_q.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Any = weight_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = bias_k.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Dict = weight_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Union[str, Any] = bias_v.squeeze(-1 ).squeeze(-1 ) lowerCamelCase__ : Optional[Any] = ( checkpoint[f'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) lowerCamelCase__ : Dict = checkpoint[f'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> List[Any]: lowerCamelCase__ : str = torch.load(UpperCamelCase , map_location="""cpu""" ) lowerCamelCase__ : Optional[int] = {} lowerCamelCase__ : Optional[int] = checkpoint["""time_embed.0.weight"""] lowerCamelCase__ : List[Any] = checkpoint["""time_embed.0.bias"""] lowerCamelCase__ : int = checkpoint["""time_embed.2.weight"""] lowerCamelCase__ : Optional[Any] = checkpoint["""time_embed.2.bias"""] if unet_config["num_class_embeds"] is not None: lowerCamelCase__ : Optional[Any] = checkpoint["""label_emb.weight"""] lowerCamelCase__ : Tuple = checkpoint["""input_blocks.0.0.weight"""] lowerCamelCase__ : List[str] = checkpoint["""input_blocks.0.0.bias"""] lowerCamelCase__ : Optional[Any] = unet_config["""down_block_types"""] lowerCamelCase__ : Any = unet_config["""layers_per_block"""] lowerCamelCase__ : Any = unet_config["""attention_head_dim"""] lowerCamelCase__ : List[Any] = unet_config["""block_out_channels"""] lowerCamelCase__ : str = 1 lowerCamelCase__ : str = channels_list[0] for i, layer_type in enumerate(UpperCamelCase ): lowerCamelCase__ : List[Any] = channels_list[i] lowerCamelCase__ : List[Any] = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : int = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Tuple = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : List[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(UpperCamelCase ): lowerCamelCase__ : Tuple = f'''down_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : str = True if j == 0 and downsample_block_has_skip else False lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Any = f'''down_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Dict = f'''input_blocks.{current_layer}.1''' lowerCamelCase__ : Tuple = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''down_blocks.{i}.downsamplers.0''' lowerCamelCase__ : str = f'''input_blocks.{current_layer}.0''' lowerCamelCase__ : Union[str, Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 lowerCamelCase__ : Union[str, Any] = current_channels # hardcoded the mid-block for now lowerCamelCase__ : Any = """mid_block.resnets.0""" lowerCamelCase__ : Optional[Any] = """middle_block.0""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : List[Any] = """mid_block.attentions.0""" lowerCamelCase__ : Dict = """middle_block.1""" lowerCamelCase__ : int = convert_attention(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Any = """mid_block.resnets.1""" lowerCamelCase__ : Tuple = """middle_block.2""" lowerCamelCase__ : int = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Any = unet_config["""up_block_types"""] for i, layer_type in enumerate(UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : int = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : Optional[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Any = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Dict = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : List[str] = f'''output_blocks.{current_layer-1}.1''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): lowerCamelCase__ : str = f'''up_blocks.{i}.resnets.{j}''' lowerCamelCase__ : List[Any] = f'''output_blocks.{current_layer}.0''' lowerCamelCase__ : Optional[Any] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , has_skip=UpperCamelCase ) lowerCamelCase__ : Optional[Any] = f'''up_blocks.{i}.attentions.{j}''' lowerCamelCase__ : Any = f'''output_blocks.{current_layer}.1''' lowerCamelCase__ : Optional[int] = convert_attention( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) current_layer += 1 if i != len(UpperCamelCase ) - 1: lowerCamelCase__ : Tuple = f'''up_blocks.{i}.upsamplers.0''' lowerCamelCase__ : Tuple = f'''output_blocks.{current_layer-1}.2''' lowerCamelCase__ : List[str] = convert_resnet(UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) lowerCamelCase__ : Dict = checkpoint["""out.0.weight"""] lowerCamelCase__ : Dict = checkpoint["""out.0.bias"""] lowerCamelCase__ : Dict = checkpoint["""out.2.weight"""] lowerCamelCase__ : Tuple = checkpoint["""out.2.bias"""] return new_checkpoint if __name__ == "__main__": _A : Tuple =argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') _A : Tuple =parser.parse_args() _A : Optional[int] =strabool(args.class_cond) _A : List[str] =os.path.basename(args.unet_path) print(F'Checkpoint: {ckpt_name}') # Get U-Net config if "imagenet64" in ckpt_name: _A : int =IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Tuple =LSUN_256_UNET_CONFIG elif "test" in ckpt_name: _A : Any =TEST_UNET_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') if not args.class_cond: _A : str =None _A : Optional[int] =con_pt_to_diffuser(args.unet_path, unet_config) _A : Optional[int] =UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: _A : Tuple =CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: _A : int =CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): _A : Union[str, Any] =CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F'Checkpoint type {ckpt_name} is not currently supported.') _A : str =CMStochasticIterativeScheduler(**scheduler_config) _A : Optional[Any] =ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
129
1
import numpy as np import torch from torch.utils.data import Dataset from utils import logger class __a ( __UpperCamelCase ): def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' lowercase__: Any = params lowercase__: List[Any] = np.array(lowerCAmelCase__ ) lowercase__: Optional[Any] = np.array([len(lowerCAmelCase__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> List[Any]: '''simple docstring''' return len(self.lengths ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def SCREAMING_SNAKE_CASE__ ( self ) -> Union[str, Any]: '''simple docstring''' lowercase__: Any = self.params.max_model_input_size lowercase__: Dict = self.lengths > max_len logger.info(F'Splitting {sum(lowerCAmelCase__ )} too long sequences.' ) def divide_chunks(lowerCAmelCase__ , lowerCAmelCase__ ): return [l[i : i + n] for i in range(0 , len(lowerCAmelCase__ ) , lowerCAmelCase__ )] lowercase__: str = [] lowercase__: List[str] = [] if self.params.mlm: lowercase__ , lowercase__: str = self.params.special_tok_ids['cls_token'], self.params.special_tok_ids['sep_token'] else: lowercase__ , lowercase__: int = self.params.special_tok_ids['bos_token'], self.params.special_tok_ids['eos_token'] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__: Optional[Any] = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: lowercase__: int = np.insert(lowerCAmelCase__ , 0 , lowerCAmelCase__ ) if sub_s[-1] != sep_id: lowercase__: Union[str, Any] = np.insert(lowerCAmelCase__ , len(lowerCAmelCase__ ) , lowerCAmelCase__ ) assert len(lowerCAmelCase__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(lowerCAmelCase__ ) new_tok_ids.extend(lowerCAmelCase__ ) new_lengths.extend([len(lowerCAmelCase__ ) for l in sub_seqs] ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) lowercase__: Union[str, Any] = np.array(lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ) -> Tuple: '''simple docstring''' lowercase__: Dict = len(self ) lowercase__: Union[str, Any] = self.lengths > 11 lowercase__: List[Any] = self.token_ids[indices] lowercase__: Optional[Any] = self.lengths[indices] lowercase__: List[str] = len(self ) logger.info(F'Remove {init_size - new_size} too short (<=11 tokens) sequences.' ) def SCREAMING_SNAKE_CASE__ ( self ) -> int: '''simple docstring''' if "unk_token" not in self.params.special_tok_ids: return else: lowercase__: List[str] = self.params.special_tok_ids['unk_token'] lowercase__: str = len(self ) lowercase__: Tuple = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__: Any = (unk_occs / self.lengths) < 0.5 lowercase__: Tuple = self.token_ids[indices] lowercase__: str = self.lengths[indices] lowercase__: Dict = len(self ) logger.info(F'Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).' ) def SCREAMING_SNAKE_CASE__ ( self ) -> str: '''simple docstring''' if not self.params.is_master: return logger.info(F'{len(self )} sequences' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: Union[str, Any] = [t[0] for t in batch] lowercase__: Dict = [t[1] for t in batch] assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ) # Max for paddings lowercase__: List[Any] = max(lowerCAmelCase__ ) # Pad token ids if self.params.mlm: lowercase__: Dict = self.params.special_tok_ids['pad_token'] else: lowercase__: Optional[Any] = self.params.special_tok_ids['unk_token'] lowercase__: int = [list(t.astype(lowerCAmelCase__ ) ) + [pad_idx] * (max_seq_len_ - len(lowerCAmelCase__ )) for t in token_ids] assert len(tk_ ) == len(lowerCAmelCase__ ) assert all(len(lowerCAmelCase__ ) == max_seq_len_ for t in tk_ ) lowercase__: Tuple = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__: Optional[Any] = torch.tensor(lowerCAmelCase__ ) # (bs) return tk_t, lg_t
196
from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax __lowerCAmelCase = logging.get_logger(__name__) @add_end_docstrings(__UpperCamelCase ) class __a ( __UpperCamelCase ): def __init__( self , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' super().__init__(**lowerCAmelCase__ ) requires_backends(self , 'vision' ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == 'tf' else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' return super().__call__(lowerCAmelCase__ , **lowerCAmelCase__ ) def SCREAMING_SNAKE_CASE__ ( self , **lowerCAmelCase__ ) -> Dict: '''simple docstring''' lowercase__: int = {} if "candidate_labels" in kwargs: lowercase__: Dict = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: lowercase__: List[Any] = kwargs['hypothesis_template'] return preprocess_params, {}, {} def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__="This is a photo of {}." ) -> int: '''simple docstring''' lowercase__: Optional[int] = load_image(lowerCAmelCase__ ) lowercase__: Dict = self.image_processor(images=[image] , return_tensors=self.framework ) lowercase__: Tuple = candidate_labels lowercase__: List[str] = [hypothesis_template.format(lowerCAmelCase__ ) for x in candidate_labels] lowercase__: Optional[Any] = self.tokenizer(lowerCAmelCase__ , return_tensors=self.framework , padding=lowerCAmelCase__ ) lowercase__: str = [text_inputs] return inputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> int: '''simple docstring''' lowercase__: str = model_inputs.pop('candidate_labels' ) lowercase__: List[str] = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] , lowerCAmelCase__ ): lowercase__: Any = text_inputs[0] else: # Batching case. lowercase__: Optional[int] = text_inputs[0][0] lowercase__: Tuple = self.model(**lowerCAmelCase__ , **lowerCAmelCase__ ) lowercase__: Any = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_image, } return model_outputs def SCREAMING_SNAKE_CASE__ ( self , lowerCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' lowercase__: Tuple = model_outputs.pop('candidate_labels' ) lowercase__: Dict = model_outputs['logits'][0] if self.framework == "pt": lowercase__: Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) lowercase__: Dict = probs.tolist() if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): lowercase__: Dict = [scores] elif self.framework == "tf": lowercase__: Optional[int] = stable_softmax(lowerCAmelCase__ , axis=-1 ) lowercase__: Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F'Unsupported framework: {self.framework}' ) lowercase__: List[Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCAmelCase__ , lowerCAmelCase__ ) , key=lambda lowerCAmelCase__ : -x[0] ) ] return result
196
1
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Optional[int] = """\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } """ UpperCamelCase : Optional[Any] = """\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve """ UpperCamelCase : str = """ Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: \"c\" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric('mauve') >>> predictions = [\"hello there\", \"general kenobi\"] >>> references = [\"hello there\", \"general kenobi\"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence'), 'references': datasets.Value('string' , id='sequence'), }) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def SCREAMING_SNAKE_CASE_ ( self : str , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : int=None , UpperCAmelCase_ : Any=None , UpperCAmelCase_ : Optional[int]=None , UpperCAmelCase_ : Tuple="auto" , UpperCAmelCase_ : Any=-1 , UpperCAmelCase_ : Optional[int]=0.9 , UpperCAmelCase_ : Union[str, Any]=5 , UpperCAmelCase_ : int=5_0_0 , UpperCAmelCase_ : int="gpt2-large" , UpperCAmelCase_ : Tuple=-1 , UpperCAmelCase_ : Dict=1_0_2_4 , UpperCAmelCase_ : List[str]=2_5 , UpperCAmelCase_ : int=5 , UpperCAmelCase_ : Any=True , UpperCAmelCase_ : str=2_5 , ): """simple docstring""" a : List[str] = compute_mauve( p_text=UpperCAmelCase_ , q_text=UpperCAmelCase_ , p_features=UpperCAmelCase_ , q_features=UpperCAmelCase_ , p_tokens=UpperCAmelCase_ , q_tokens=UpperCAmelCase_ , num_buckets=UpperCAmelCase_ , pca_max_data=UpperCAmelCase_ , kmeans_explained_var=UpperCAmelCase_ , kmeans_num_redo=UpperCAmelCase_ , kmeans_max_iter=UpperCAmelCase_ , featurize_model_name=UpperCAmelCase_ , device_id=UpperCAmelCase_ , max_text_length=UpperCAmelCase_ , divergence_curve_discretization_size=UpperCAmelCase_ , mauve_scaling_factor=UpperCAmelCase_ , verbose=UpperCAmelCase_ , seed=UpperCAmelCase_ , ) return out
345
'''simple docstring''' from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class UpperCamelCase ( a_ ): """simple docstring""" A : Optional[int] = ["vqvae"] def __init__( self : List[str] , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Mel , UpperCAmelCase_ : Union[DDIMScheduler, DDPMScheduler] , ): """simple docstring""" super().__init__() self.register_modules(unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , mel=UpperCAmelCase_ , vqvae=UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ ( self : List[str]): """simple docstring""" return 5_0 if isinstance(self.scheduler , UpperCAmelCase_) else 1_0_0_0 @torch.no_grad() def __call__( self : Dict , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = None , UpperCAmelCase_ : np.ndarray = None , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = None , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Generator = None , UpperCAmelCase_ : float = 0 , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : torch.Tensor = None , UpperCAmelCase_ : Optional[Any]=True , ): """simple docstring""" a : Optional[Any] = steps or self.get_default_steps() self.scheduler.set_timesteps(UpperCAmelCase_) a : Optional[Any] = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a : Dict = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=UpperCAmelCase_ , device=self.device , ) a : Tuple = noise a : Optional[int] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(UpperCAmelCase_ , UpperCAmelCase_) a : List[Any] = self.mel.audio_slice_to_image(UpperCAmelCase_) a : str = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a : List[str] = (input_image / 2_5_5) * 2 - 1 a : Any = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a : List[Any] = self.vqvae.encode(torch.unsqueeze(UpperCAmelCase_ , 0)).latent_dist.sample( generator=UpperCAmelCase_)[0] a : str = self.vqvae.config.scaling_factor * input_images if start_step > 0: a : Union[str, Any] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , self.scheduler.timesteps[start_step - 1]) a : Dict = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a : List[Any] = int(mask_start_secs * pixels_per_second) a : Optional[Any] = int(mask_end_secs * pixels_per_second) a : Optional[int] = self.scheduler.add_noise(UpperCAmelCase_ , UpperCAmelCase_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , UpperCAmelCase_): a : Dict = self.unet(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_)['sample'] else: a : str = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] if isinstance(self.scheduler , UpperCAmelCase_): a : List[Any] = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] else: a : Any = self.scheduler.step( model_output=UpperCAmelCase_ , timestep=UpperCAmelCase_ , sample=UpperCAmelCase_ , generator=UpperCAmelCase_ , )['prev_sample'] if mask is not None: if mask_start > 0: a : str = mask[:, step, :, :mask_start] if mask_end > 0: a : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a : List[str] = 1 / self.vqvae.config.scaling_factor * images a : str = self.vqvae.decode(UpperCAmelCase_)['sample'] a : Tuple = (images / 2 + 0.5).clamp(0 , 1) a : Any = images.cpu().permute(0 , 2 , 3 , 1).numpy() a : List[str] = (images * 2_5_5).round().astype('uint8') a : Tuple = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(UpperCAmelCase_ , mode='RGB').convert('L') for _ in images)) a : List[str] = [self.mel.image_to_audio(UpperCAmelCase_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(UpperCAmelCase_)[:, np.newaxis, :]) , **ImagePipelineOutput(UpperCAmelCase_)) @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( self : List[Any] , UpperCAmelCase_ : List[Image.Image] , UpperCAmelCase_ : int = 5_0): """simple docstring""" assert isinstance(self.scheduler , UpperCAmelCase_) self.scheduler.set_timesteps(UpperCAmelCase_) a : Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a : Tuple = (sample / 2_5_5) * 2 - 1 a : int = torch.Tensor(UpperCAmelCase_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a : Optional[Any] = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a : Optional[Any] = self.scheduler.alphas_cumprod[t] a : List[Any] = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a : List[str] = 1 - alpha_prod_t a : Optional[Any] = self.unet(UpperCAmelCase_ , UpperCAmelCase_)['sample'] a : Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a : Dict = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a : Union[str, Any] = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : torch.Tensor , UpperCAmelCase_ : float): """simple docstring""" a : List[Any] = acos(torch.dot(torch.flatten(UpperCAmelCase_) , torch.flatten(UpperCAmelCase_)) / torch.norm(UpperCAmelCase_) / torch.norm(UpperCAmelCase_)) return sin((1 - alpha) * theta) * xa / sin(UpperCAmelCase_) + sin(alpha * theta) * xa / sin(UpperCAmelCase_)
345
1
from __future__ import annotations def UpperCAmelCase__ ( lowerCamelCase ): if len(lowerCamelCase ) == 0: return array lowercase , lowercase :Optional[Any] = min(lowerCamelCase ), max(lowerCamelCase ) # Compute the variables lowercase :Optional[int] = _max - _min + 1 lowercase , lowercase :Any = [0] * holes_range, [0] * holes_range # Make the sorting. for i in array: lowercase :Optional[int] = i - _min lowercase :Tuple = i holes_repeat[index] += 1 # Makes the array back by replacing the numbers. lowercase :int = 0 for i in range(lowerCamelCase ): while holes_repeat[i] > 0: lowercase :Dict = holes[i] index += 1 holes_repeat[i] -= 1 # Returns the sorted array. return array if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : Optional[int] = input("Enter numbers separated by comma:\n") _UpperCAmelCase : Optional[Any] = [int(x) for x in user_input.split(",")] print(pigeon_sort(unsorted))
236
from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig _UpperCAmelCase : Tuple = { "susnato/ernie-m-base_pytorch": "https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json", "susnato/ernie-m-large_pytorch": "https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json", } class __lowerCAmelCase ( lowerCAmelCase): _a = '''ernie_m''' _a = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self: List[Any] , _lowerCAmelCase: int = 25_00_02 , _lowerCAmelCase: int = 7_68 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 12 , _lowerCAmelCase: int = 30_72 , _lowerCAmelCase: str = "gelu" , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: float = 0.1 , _lowerCAmelCase: int = 5_14 , _lowerCAmelCase: float = 0.02 , _lowerCAmelCase: int = 1 , _lowerCAmelCase: float = 1e-0_5 , _lowerCAmelCase: Dict=None , _lowerCAmelCase: Optional[int]=False , _lowerCAmelCase: List[str]=0.0 , **_lowerCAmelCase: Tuple , ): super().__init__(pad_token_id=_lowerCAmelCase , **_lowerCAmelCase ) lowercase :Tuple = vocab_size lowercase :List[str] = hidden_size lowercase :Optional[int] = num_hidden_layers lowercase :Optional[Any] = num_attention_heads lowercase :Optional[Any] = intermediate_size lowercase :Optional[Any] = hidden_act lowercase :Any = hidden_dropout_prob lowercase :int = attention_probs_dropout_prob lowercase :Dict = max_position_embeddings lowercase :Optional[Any] = initializer_range lowercase :Any = layer_norm_eps lowercase :Union[str, Any] = classifier_dropout lowercase :int = is_decoder lowercase :List[str] = act_dropout
236
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase : str = { """configuration_maskformer""": ["""MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MaskFormerConfig"""], """configuration_maskformer_swin""": ["""MaskFormerSwinConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : List[Any] = ["""MaskFormerFeatureExtractor"""] UpperCAmelCase : Optional[int] = ["""MaskFormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Any = [ """MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """MaskFormerForInstanceSegmentation""", """MaskFormerModel""", """MaskFormerPreTrainedModel""", ] UpperCAmelCase : List[str] = [ """MaskFormerSwinBackbone""", """MaskFormerSwinModel""", """MaskFormerSwinPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
148
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" a__ : Tuple =set() a__ : Optional[Any] =[] def parse_line(SCREAMING_SNAKE_CASE : Optional[int] ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): a__ : str =line.decode("UTF-8" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(" " ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE ) > 0: a__ : Union[str, Any] ="\n".join(SCREAMING_SNAKE_CASE ) # Only keep the warnings specified in `targets` if any(f''': {x}: ''' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE ) buffer.clear() continue else: a__ : Optional[Any] =line.strip() buffer.append(SCREAMING_SNAKE_CASE ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE ): a__ : str =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE ) as fp: parse_line(SCREAMING_SNAKE_CASE ) except Exception: logger.warning( f'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): """simple docstring""" a__ : Optional[int] =set() a__ : Any =[os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for p in os.listdir(SCREAMING_SNAKE_CASE ) if (p.endswith(".zip" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) return selected_warnings if __name__ == "__main__": def _A ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" return values.split("," ) UpperCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) UpperCAmelCase : List[Any] = parser.parse_args() UpperCAmelCase : str = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase : Dict = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase : Tuple = extract_warnings(args.output_dir, args.targets) UpperCAmelCase : Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
148
1
'''simple docstring''' import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class __UpperCAmelCase ( ctypes.Structure ): # _fields is a specific attr expected by ctypes __lowercase = [("""size""", ctypes.c_int), ("""visible""", ctypes.c_byte)] def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: if os.name == "nt": _snake_case = CursorInfo() _snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) _snake_case = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: if os.name == "nt": _snake_case = CursorInfo() _snake_case = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__A , ctypes.byref(__A ) ) _snake_case = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__A , ctypes.byref(__A ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: try: hide_cursor() yield finally: show_cursor()
42
'''simple docstring''' from __future__ import annotations import string from itertools import cycle, product from pathlib import Path lowercase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) lowercase : list[int] = [ord(letter) for letter in string.ascii_lowercase] lowercase : set[int] = {ord(char) for char in VALID_CHARS} lowercase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> str | None: _snake_case = "" _snake_case = 42 _snake_case = 42 _snake_case = 42 for keychar, cipherchar in zip(cycle(__A ) , __A ): _snake_case = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(__A ) return decoded def SCREAMING_SNAKE_CASE__ ( __A ) -> list[str]: _snake_case = [] for key in product(__A , repeat=3 ): _snake_case = try_key(__A , __A ) if encoded is not None: possibles.append(__A ) return possibles def SCREAMING_SNAKE_CASE__ ( __A , __A ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def SCREAMING_SNAKE_CASE__ ( __A = "p059_cipher.txt" ) -> int: _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = 42 _snake_case = Path(__A ).parent.joinpath(__A ).read_text(encoding='utf-8' ) _snake_case = [int(__A ) for number in data.strip().split(',' )] _snake_case = filter_valid_chars(__A ) for common_word in COMMON_WORDS: _snake_case = filter_common_word(__A , __A ) if len(__A ) == 1: break _snake_case = possibles[0] return sum(ord(__A ) for char in decoded_text ) if __name__ == "__main__": print(F'''{solution() = }''')
42
1
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _A ( UpperCamelCase_ : list[list[float]]) -> list[list[float]]: '''simple docstring''' __lowercase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(UpperCamelCase_) == 2 and len(matrix[0]) == 2 and len(matrix[1]) == 2: # Calculate the determinant of the matrix __lowercase = float( d(matrix[0][0]) * d(matrix[1][1]) - d(matrix[1][0]) * d(matrix[0][1])) if determinant == 0: raise ValueError("This matrix has no inverse.") # Creates a copy of the matrix with swapped positions of the elements __lowercase = [[0.0, 0.0], [0.0, 0.0]] __lowercase ,__lowercase = matrix[1][1], matrix[0][0] __lowercase ,__lowercase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(UpperCamelCase_)) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(UpperCamelCase_) == 3 and len(matrix[0]) == 3 and len(matrix[1]) == 3 and len(matrix[2]) == 3 ): # Calculate the determinant of the matrix using Sarrus rule __lowercase = float( ( (d(matrix[0][0]) * d(matrix[1][1]) * d(matrix[2][2])) + (d(matrix[0][1]) * d(matrix[1][2]) * d(matrix[2][0])) + (d(matrix[0][2]) * d(matrix[1][0]) * d(matrix[2][1])) ) - ( (d(matrix[0][2]) * d(matrix[1][1]) * d(matrix[2][0])) + (d(matrix[0][1]) * d(matrix[1][0]) * d(matrix[2][2])) + (d(matrix[0][0]) * d(matrix[1][2]) * d(matrix[2][1])) )) if determinant == 0: raise ValueError("This matrix has no inverse.") # Creating cofactor matrix __lowercase = [ [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], [d(0.0), d(0.0), d(0.0)], ] __lowercase = (d(matrix[1][1]) * d(matrix[2][2])) - ( d(matrix[1][2]) * d(matrix[2][1]) ) __lowercase = -( (d(matrix[1][0]) * d(matrix[2][2])) - (d(matrix[1][2]) * d(matrix[2][0])) ) __lowercase = (d(matrix[1][0]) * d(matrix[2][1])) - ( d(matrix[1][1]) * d(matrix[2][0]) ) __lowercase = -( (d(matrix[0][1]) * d(matrix[2][2])) - (d(matrix[0][2]) * d(matrix[2][1])) ) __lowercase = (d(matrix[0][0]) * d(matrix[2][2])) - ( d(matrix[0][2]) * d(matrix[2][0]) ) __lowercase = -( (d(matrix[0][0]) * d(matrix[2][1])) - (d(matrix[0][1]) * d(matrix[2][0])) ) __lowercase = (d(matrix[0][1]) * d(matrix[1][2])) - ( d(matrix[0][2]) * d(matrix[1][1]) ) __lowercase = -( (d(matrix[0][0]) * d(matrix[1][2])) - (d(matrix[0][2]) * d(matrix[1][0])) ) __lowercase = (d(matrix[0][0]) * d(matrix[1][1])) - ( d(matrix[0][1]) * d(matrix[1][0]) ) # Transpose the cofactor matrix (Adjoint matrix) __lowercase = array(UpperCamelCase_) for i in range(3): for j in range(3): __lowercase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix __lowercase = array(UpperCamelCase_) for i in range(3): for j in range(3): inverse_matrix[i][j] /= d(UpperCamelCase_) # Calculate the inverse of the matrix return [[float(d(UpperCamelCase_)) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3.")
144
"""simple docstring""" import numpy as np import torch from torch.utils.data import Dataset, IterableDataset from ..utils.generic import ModelOutput class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[str], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : Dict ): __lowercase = dataset __lowercase = process __lowercase = params def __len__( self : str ): return len(self.dataset ) def __getitem__( self : List[Any], UpperCAmelCase__ : int ): __lowercase = self.dataset[i] __lowercase = self.process(UpperCAmelCase__, **self.params ) return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Optional[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[Any]=None ): __lowercase = loader __lowercase = infer __lowercase = params if loader_batch_size == 1: # Let's spare some time by deactivating altogether __lowercase = None __lowercase = loader_batch_size # Internal bookkeeping __lowercase = None __lowercase = None def __len__( self : str ): return len(self.loader ) def __iter__( self : List[str] ): __lowercase = iter(self.loader ) return self def _lowercase ( self : Union[str, Any] ): if isinstance(self._loader_batch_data, torch.Tensor ): # Batch data is simple tensor, just fetch the slice __lowercase = self._loader_batch_data[self._loader_batch_index] else: # Batch data is assumed to be BaseModelOutput (or dict) __lowercase = {} for k, element in self._loader_batch_data.items(): if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): # Convert ModelOutput to tuple first __lowercase = element.to_tuple() if isinstance(element[0], torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if k in {"hidden_states", "past_key_values", "attentions"} and isinstance(UpperCAmelCase__, UpperCAmelCase__ ): # Those are stored as lists of tensors so need specific unbatching. if isinstance(element[0], torch.Tensor ): __lowercase = tuple(el[self._loader_batch_index].unsqueeze(0 ) for el in element ) elif isinstance(element[0], np.ndarray ): __lowercase = tuple(np.expand_dims(el[self._loader_batch_index], 0 ) for el in element ) continue if element is None: # This can happen for optional data that get passed around __lowercase = None elif isinstance(element[self._loader_batch_index], torch.Tensor ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = element[self._loader_batch_index].unsqueeze(0 ) elif isinstance(element[self._loader_batch_index], np.ndarray ): # Take correct batch data, but make it looked like batch_size=1 # For compatibility with other methods within transformers __lowercase = np.expand_dims(element[self._loader_batch_index], 0 ) else: # This is typically a list, so no need to `unsqueeze`. __lowercase = element[self._loader_batch_index] # Recreate the element by reusing the original class to make it look # batch_size=1 __lowercase = self._loader_batch_data.__class__(UpperCAmelCase__ ) self._loader_batch_index += 1 return result def _lowercase ( self : Tuple ): if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: # We are currently unrolling a batch so we just need to return # the current item within a batch return self.loader_batch_item() # We're out of items within a batch __lowercase = next(self.iterator ) __lowercase = self.infer(UpperCAmelCase__, **self.params ) # We now have a batch of "inferred things". if self.loader_batch_size is not None: # Try to infer the size of the batch if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = len(UpperCAmelCase__ ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size # Setting internal index to unwrap the batch __lowercase = processed __lowercase = 0 return self.loader_batch_item() else: # We're not unrolling batches return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : int, UpperCAmelCase__ : str=None ): super().__init__(UpperCAmelCase__, UpperCAmelCase__, UpperCAmelCase__ ) def __iter__( self : str ): __lowercase = iter(self.loader ) __lowercase = None return self def _lowercase ( self : int ): if self.subiterator is None: __lowercase = self.infer(next(self.iterator ), **self.params ) try: # Try to return next item __lowercase = next(self.subiterator ) except StopIteration: # When a preprocess iterator ends, we can start lookig at the next item # ChunkIterator will keep feeding until ALL elements of iterator # all have created their subiterator and have been iterating against. # # Another way to look at it, is we're basically flattening lists of lists # into a single list, but with generators __lowercase = self.infer(next(self.iterator ), **self.params ) __lowercase = next(self.subiterator ) return processed class _lowerCAmelCase ( lowercase ): """simple docstring""" def __iter__( self : int ): __lowercase = iter(self.loader ) return self def _lowercase ( self : List[str] ): # Extremely similar to PipelineIterator in its unpacking mechanism # BUT, we have an extra required item which is the presence of `is_last` # That is because everything is flattened by `PipelineChunkIterator` we # need to keep track of how to regroup here in the original `process` # boundaries so that `process` and `postprocess` see the same data. # This iterator accumulates items (possibly while unbatching) until it # its a `is_last` and then just passes it on to the caller. __lowercase = False __lowercase = [] if self._loader_batch_index is not None and self._loader_batch_index < self.loader_batch_size: while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) if is_last: return accumulator while not is_last: __lowercase = self.infer(next(self.iterator ), **self.params ) if self.loader_batch_size is not None: if isinstance(UpperCAmelCase__, torch.Tensor ): __lowercase = processed else: __lowercase = list(processed.keys() )[0] __lowercase = processed[key] if isinstance(UpperCAmelCase__, UpperCAmelCase__ ): __lowercase = len(UpperCAmelCase__ ) else: __lowercase = first_tensor.shape[0] if 0 < observed_batch_size < self.loader_batch_size: # could be last batch so we can't unroll as many # elements. __lowercase = observed_batch_size __lowercase = processed __lowercase = 0 while self._loader_batch_index < self.loader_batch_size: __lowercase = self.loader_batch_item() __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) if is_last: return accumulator else: __lowercase = processed __lowercase = item.pop("is_last" ) accumulator.append(UpperCAmelCase__ ) return accumulator class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : List[Any], UpperCAmelCase__ : Dataset, UpperCAmelCase__ : str ): __lowercase = dataset __lowercase = key def __len__( self : Optional[Any] ): return len(self.dataset ) def __getitem__( self : Union[str, Any], UpperCAmelCase__ : Any ): return self.dataset[i][self.key] class _lowerCAmelCase ( lowercase ): """simple docstring""" def __init__( self : str, UpperCAmelCase__ : Dataset, UpperCAmelCase__ : str, UpperCAmelCase__ : str ): __lowercase = dataset __lowercase = keya __lowercase = keya def __len__( self : Optional[int] ): return len(self.dataset ) def __getitem__( self : Dict, UpperCAmelCase__ : Tuple ): return {"text": self.dataset[i][self.keya], "text_pair": self.dataset[i][self.keya]}
144
1
def lowerCAmelCase__ ( lowerCamelCase_ : int): '''simple docstring''' lowerCAmelCase__ : Optional[int] = int(lowerCamelCase_) if decimal in (0, 1): # Exit cases for the recursion return str(lowerCamelCase_) lowerCAmelCase__ , lowerCAmelCase__ : Any = divmod(lowerCamelCase_ ,2) return binary_recursive(lowerCamelCase_) + str(lowerCamelCase_) def lowerCAmelCase__ ( lowerCamelCase_ : str): '''simple docstring''' lowerCAmelCase__ : List[Any] = str(lowerCamelCase_).strip() if not number: raise ValueError('''No input value was provided''') lowerCAmelCase__ : str = '''-''' if number.startswith('''-''') else '''''' lowerCAmelCase__ : Any = number.lstrip('''-''') if not number.isnumeric(): raise ValueError('''Input value is not an integer''') return f"""{negative}0b{binary_recursive(int(lowerCamelCase_))}""" if __name__ == "__main__": from doctest import testmod testmod()
129
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __snake_case : Dict =logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__) class lowerCamelCase__ ( lowerCamelCase__): '''simple docstring''' def __init__(self ,**__lowerCamelCase ) -> Optional[Any]: """simple docstring""" super().__init__(**__lowerCamelCase ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__(self ,__lowerCamelCase ,**__lowerCamelCase ) -> List[Any]: """simple docstring""" return super().__call__(__lowerCamelCase ,**__lowerCamelCase ) def lowerCAmelCase__ (self ,**__lowerCamelCase ) -> Any: """simple docstring""" lowerCAmelCase__ : str = {} if "candidate_labels" in kwargs: lowerCAmelCase__ : List[str] = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: lowerCAmelCase__ : int = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowerCAmelCase__ (self ,__lowerCamelCase ,__lowerCamelCase=None ,__lowerCamelCase="This is a sound of {}." ) -> str: """simple docstring""" if isinstance(__lowerCamelCase ,__lowerCamelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png lowerCAmelCase__ : List[str] = requests.get(__lowerCamelCase ).content else: with open(__lowerCamelCase ,'''rb''' ) as f: lowerCAmelCase__ : int = f.read() if isinstance(__lowerCamelCase ,__lowerCamelCase ): lowerCAmelCase__ : Tuple = ffmpeg_read(__lowerCamelCase ,self.feature_extractor.sampling_rate ) if not isinstance(__lowerCamelCase ,np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) lowerCAmelCase__ : Any = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors='''pt''' ) lowerCAmelCase__ : Union[str, Any] = candidate_labels lowerCAmelCase__ : str = [hypothesis_template.format(__lowerCamelCase ) for x in candidate_labels] lowerCAmelCase__ : Any = self.tokenizer(__lowerCamelCase ,return_tensors=self.framework ,padding=__lowerCamelCase ) lowerCAmelCase__ : List[Any] = [text_inputs] return inputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Dict: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = model_inputs.pop('''candidate_labels''' ) lowerCAmelCase__ : List[str] = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] ,__lowerCamelCase ): lowerCAmelCase__ : List[str] = text_inputs[0] else: # Batching case. lowerCAmelCase__ : List[str] = text_inputs[0][0] lowerCAmelCase__ : Union[str, Any] = self.model(**__lowerCamelCase ,**__lowerCamelCase ) lowerCAmelCase__ : Any = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowerCAmelCase__ (self ,__lowerCamelCase ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Optional[int] = model_outputs.pop('''candidate_labels''' ) lowerCAmelCase__ : Optional[Any] = model_outputs['''logits'''][0] if self.framework == "pt": lowerCAmelCase__ : str = logits.softmax(dim=0 ) lowerCAmelCase__ : Dict = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) lowerCAmelCase__ : Any = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__lowerCamelCase ,__lowerCamelCase ) ,key=lambda __lowerCamelCase : -x[0] ) ] return result
129
1
"""simple docstring""" import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class snake_case_( a__ , a__ ): __UpperCamelCase = 1 @register_to_config def __init__( self : List[str] , UpperCamelCase_ : List[str]=2_0_0_0 , UpperCamelCase_ : Optional[int]=0.1 , UpperCamelCase_ : Optional[int]=2_0 , UpperCamelCase_ : str=1E-3 ): lowerCAmelCase : Any = None lowerCAmelCase : Optional[int] = None lowerCAmelCase : Union[str, Any] = None def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Dict = None ): lowerCAmelCase : Tuple = torch.linspace(1 , self.config.sampling_eps , lowerCamelCase_ , device=lowerCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int=None ): if self.timesteps is None: raise ValueError( '''`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler''' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score lowerCAmelCase : Any = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) lowerCAmelCase : Tuple = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) lowerCAmelCase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): lowerCAmelCase : Union[str, Any] = std.unsqueeze(-1 ) lowerCAmelCase : int = -score / std # compute lowerCAmelCase : Optional[Any] = -1.0 / len(self.timesteps ) lowerCAmelCase : Optional[int] = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) lowerCAmelCase : Optional[int] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): lowerCAmelCase : Union[str, Any] = beta_t.unsqueeze(-1 ) lowerCAmelCase : List[Any] = -0.5 * beta_t * x lowerCAmelCase : int = torch.sqrt(lowerCamelCase_ ) lowerCAmelCase : Any = drift - diffusion**2 * score lowerCAmelCase : Dict = x + drift * dt # add noise lowerCAmelCase : Any = randn_tensor(x.shape , layout=x.layout , generator=lowerCamelCase_ , device=x.device , dtype=x.dtype ) lowerCAmelCase : Any = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Any ): return self.config.num_train_timesteps
361
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : Tuple = { '''configuration_maskformer''': ['''MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MaskFormerConfig'''], '''configuration_maskformer_swin''': ['''MaskFormerSwinConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : List[Any] = ['''MaskFormerFeatureExtractor'''] snake_case__ : List[Any] = ['''MaskFormerImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Dict = [ '''MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MaskFormerForInstanceSegmentation''', '''MaskFormerModel''', '''MaskFormerPreTrainedModel''', ] snake_case__ : Optional[Any] = [ '''MaskFormerSwinBackbone''', '''MaskFormerSwinModel''', '''MaskFormerSwinPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys snake_case__ : int = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
314
0
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase_ = '''\ @inproceedings{pillutla-etal:mauve:neurips2021, title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers}, author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid}, booktitle = {NeurIPS}, year = {2021} } ''' UpperCamelCase_ = '''\ MAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure. MAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences. For details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021). This metrics is a wrapper around the official implementation of MAUVE: https://github.com/krishnap25/mauve ''' UpperCamelCase_ = ''' Calculates MAUVE scores between two lists of generated text and reference text. Args: predictions: list of generated text to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Optional Args: num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1 kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9 kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5 kmeans_max_iter: maximum number of k-means iterations. Default 500 featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\']. device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU max_text_length: maximum number of tokens to consider. Default 1024 divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25 mauve_scaling_factor: "c" from the paper. Default 5. verbose: If True (default), print running time updates seed: random seed to initialize k-means cluster assignments. Returns: mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer, frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer, divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve, p_hist: a discrete distribution, which is a quantized version of the text distribution p_text, q_hist: same as above, but with q_text. Examples: >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest >>> import datasets >>> mauve = datasets.load_metric(\'mauve\') >>> predictions = ["hello there", "general kenobi"] >>> references = ["hello there", "general kenobi"] >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP >>> print(out.mauve) # doctest: +SKIP 1.0 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _snake_case ( datasets.Metric ): '''simple docstring''' def A__ ( self: int ) -> str: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,homepage="""https://github.com/krishnap25/mauve""" ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""string""" ,id="""sequence""" ), """references""": datasets.Value("""string""" ,id="""sequence""" ), } ) ,codebase_urls=["""https://github.com/krishnap25/mauve"""] ,reference_urls=[ """https://arxiv.org/abs/2102.01454""", """https://github.com/krishnap25/mauve""", ] ,) def A__ ( self: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ,lowerCamelCase_: Optional[Any]=None ,lowerCamelCase_: int=None ,lowerCamelCase_: str=None ,lowerCamelCase_: List[str]=None ,lowerCamelCase_: Any="auto" ,lowerCamelCase_: str=-1 ,lowerCamelCase_: Optional[int]=0.9 ,lowerCamelCase_: Any=5 ,lowerCamelCase_: Union[str, Any]=500 ,lowerCamelCase_: Union[str, Any]="gpt2-large" ,lowerCamelCase_: int=-1 ,lowerCamelCase_: Optional[Any]=1024 ,lowerCamelCase_: Any=25 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=25 ,) -> Tuple: UpperCAmelCase_ : Optional[Any] = compute_mauve( p_text=lowerCamelCase_ ,q_text=lowerCamelCase_ ,p_features=lowerCamelCase_ ,q_features=lowerCamelCase_ ,p_tokens=lowerCamelCase_ ,q_tokens=lowerCamelCase_ ,num_buckets=lowerCamelCase_ ,pca_max_data=lowerCamelCase_ ,kmeans_explained_var=lowerCamelCase_ ,kmeans_num_redo=lowerCamelCase_ ,kmeans_max_iter=lowerCamelCase_ ,featurize_model_name=lowerCamelCase_ ,device_id=lowerCamelCase_ ,max_text_length=lowerCamelCase_ ,divergence_curve_discretization_size=lowerCamelCase_ ,mauve_scaling_factor=lowerCamelCase_ ,verbose=lowerCamelCase_ ,seed=lowerCamelCase_ ,) return out
345
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _snake_case : '''simple docstring''' def __init__( self: Optional[int] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Tuple=13 ,lowerCamelCase_: int=7 ,lowerCamelCase_: Union[str, Any]=True ,lowerCamelCase_: Dict=True ,lowerCamelCase_: str=True ,lowerCamelCase_: Tuple=True ,lowerCamelCase_: int=99 ,lowerCamelCase_: List[str]=64 ,lowerCamelCase_: Tuple=32 ,lowerCamelCase_: List[str]=5 ,lowerCamelCase_: str=4 ,lowerCamelCase_: str=37 ,lowerCamelCase_: Union[str, Any]="gelu" ,lowerCamelCase_: Union[str, Any]=0.1 ,lowerCamelCase_: str=0.1 ,lowerCamelCase_: List[str]=512 ,lowerCamelCase_: Dict=16 ,lowerCamelCase_: List[str]=2 ,lowerCamelCase_: List[str]=0.0_2 ,lowerCamelCase_: Optional[Any]=3 ,lowerCamelCase_: Union[str, Any]=4 ,lowerCamelCase_: str=None ,) -> List[str]: UpperCAmelCase_ : Any = parent UpperCAmelCase_ : List[Any] = batch_size UpperCAmelCase_ : Union[str, Any] = seq_length UpperCAmelCase_ : Optional[int] = is_training UpperCAmelCase_ : Dict = use_input_mask UpperCAmelCase_ : Any = use_token_type_ids UpperCAmelCase_ : Tuple = use_labels UpperCAmelCase_ : List[Any] = vocab_size UpperCAmelCase_ : str = hidden_size UpperCAmelCase_ : List[str] = embedding_size UpperCAmelCase_ : List[Any] = num_hidden_layers UpperCAmelCase_ : List[Any] = num_attention_heads UpperCAmelCase_ : List[Any] = intermediate_size UpperCAmelCase_ : Tuple = hidden_act UpperCAmelCase_ : str = hidden_dropout_prob UpperCAmelCase_ : List[str] = attention_probs_dropout_prob UpperCAmelCase_ : Any = max_position_embeddings UpperCAmelCase_ : List[str] = type_vocab_size UpperCAmelCase_ : Any = type_sequence_label_size UpperCAmelCase_ : Optional[Any] = initializer_range UpperCAmelCase_ : Optional[int] = num_labels UpperCAmelCase_ : Optional[int] = num_choices UpperCAmelCase_ : List[str] = scope def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) UpperCAmelCase_ : List[str] = None if self.use_input_mask: UpperCAmelCase_ : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase_ : Dict = None if self.use_token_type_ids: UpperCAmelCase_ : str = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) UpperCAmelCase_ : int = None UpperCAmelCase_ : Union[str, Any] = None UpperCAmelCase_ : Union[str, Any] = None if self.use_labels: UpperCAmelCase_ : List[str] = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) UpperCAmelCase_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) UpperCAmelCase_ : int = ids_tensor([self.batch_size] ,self.num_choices ) UpperCAmelCase_ : Tuple = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self: Any ) -> Dict: return MobileBertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,embedding_size=self.embedding_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=lowerCamelCase_ ,initializer_range=self.initializer_range ,) def A__ ( self: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: List[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: str ) -> int: UpperCAmelCase_ : Any = MobileBertModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ) UpperCAmelCase_ : Tuple = model(lowerCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) ) def A__ ( self: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Dict ) -> int: UpperCAmelCase_ : Union[str, Any] = MobileBertForMaskedLM(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self: str ,lowerCamelCase_: Any ,lowerCamelCase_: Dict ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: str ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: int ) -> int: UpperCAmelCase_ : List[Any] = MobileBertForNextSentencePrediction(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Union[str, Any] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, 2) ) def A__ ( self: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: List[str] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ) -> Optional[Any]: UpperCAmelCase_ : Tuple = MobileBertForPreTraining(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,next_sentence_label=lowerCamelCase_ ,) self.parent.assertEqual(result.prediction_logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape ,(self.batch_size, 2) ) def A__ ( self: Any ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: Any ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: List[str] ,lowerCamelCase_: Any ,lowerCamelCase_: int ,lowerCamelCase_: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = MobileBertForQuestionAnswering(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : int = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,start_positions=lowerCamelCase_ ,end_positions=lowerCamelCase_ ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def A__ ( self: List[str] ,lowerCamelCase_: List[Any] ,lowerCamelCase_: Tuple ,lowerCamelCase_: Any ,lowerCamelCase_: Tuple ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Any ) -> str: UpperCAmelCase_ : Optional[Any] = self.num_labels UpperCAmelCase_ : Union[str, Any] = MobileBertForSequenceClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Optional[int] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def A__ ( self: Union[str, Any] ,lowerCamelCase_: Optional[Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: Union[str, Any] ,lowerCamelCase_: str ,lowerCamelCase_: Dict ,lowerCamelCase_: Any ,lowerCamelCase_: List[str] ) -> Any: UpperCAmelCase_ : str = self.num_labels UpperCAmelCase_ : Optional[int] = MobileBertForTokenClassification(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : List[Any] = model(lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self: Tuple ,lowerCamelCase_: str ,lowerCamelCase_: int ,lowerCamelCase_: Tuple ,lowerCamelCase_: List[Any] ,lowerCamelCase_: str ,lowerCamelCase_: Optional[int] ,lowerCamelCase_: List[Any] ) -> Union[str, Any]: UpperCAmelCase_ : Union[str, Any] = self.num_choices UpperCAmelCase_ : Tuple = MobileBertForMultipleChoice(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() UpperCAmelCase_ : Dict = input_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Union[str, Any] = token_type_ids.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : str = input_mask.unsqueeze(1 ).expand(-1 ,self.num_choices ,-1 ).contiguous() UpperCAmelCase_ : Optional[int] = model( lowerCamelCase_ ,attention_mask=lowerCamelCase_ ,token_type_ids=lowerCamelCase_ ,labels=lowerCamelCase_ ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_choices) ) def A__ ( self: List[str] ) -> str: UpperCAmelCase_ : str = self.prepare_config_and_inputs() ( ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ( UpperCAmelCase_ ) , ) : Union[str, Any] = config_and_inputs UpperCAmelCase_ : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _snake_case ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' A__ : Dict = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) A__ : List[str] = ( { "feature-extraction": MobileBertModel, "fill-mask": MobileBertForMaskedLM, "question-answering": MobileBertForQuestionAnswering, "text-classification": MobileBertForSequenceClassification, "token-classification": MobileBertForTokenClassification, "zero-shot": MobileBertForSequenceClassification, } if is_torch_available() else {} ) A__ : List[str] = True def A__ ( self: Dict ,lowerCamelCase_: Tuple ,lowerCamelCase_: Tuple ,lowerCamelCase_: int=False ) -> Union[str, Any]: UpperCAmelCase_ : List[Any] = super()._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ ) if return_labels: if model_class in get_values(lowerCamelCase_ ): UpperCAmelCase_ : Any = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) ,dtype=torch.long ,device=lowerCamelCase_ ) UpperCAmelCase_ : List[str] = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=lowerCamelCase_ ) return inputs_dict def A__ ( self: List[str] ) -> Any: UpperCAmelCase_ : List[str] = MobileBertModelTester(self ) UpperCAmelCase_ : Union[str, Any] = ConfigTester(self ,config_class=lowerCamelCase_ ,hidden_size=37 ) def A__ ( self: Optional[Any] ) -> List[Any]: self.config_tester.run_common_tests() def A__ ( self: List[str] ) -> Optional[Any]: UpperCAmelCase_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Tuple: UpperCAmelCase_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCamelCase_ ) def A__ ( self: List[Any] ) -> List[str]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCamelCase_ ) def A__ ( self: Optional[Any] ) -> Dict: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCamelCase_ ) def A__ ( self: Optional[int] ) -> Optional[int]: UpperCAmelCase_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCamelCase_ ) def A__ ( self: Union[str, Any] ) -> Optional[int]: UpperCAmelCase_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCamelCase_ ) def A__ ( self: Any ) -> Optional[int]: UpperCAmelCase_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCamelCase_ ) def lowerCamelCase_ ( _a : Union[str, Any] ): '''simple docstring''' return torch.tensor( _a , dtype=torch.long , device=_a , ) UpperCamelCase_ = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _snake_case ( unittest.TestCase ): '''simple docstring''' @slow def A__ ( self: List[Any] ) -> str: UpperCAmelCase_ : Any = MobileBertModel.from_pretrained("""google/mobilebert-uncased""" ).to(lowerCamelCase_ ) UpperCAmelCase_ : str = _long_tensor([[101, 7110, 1005, 1056, 2023, 11333, 17413, 1029, 102]] ) with torch.no_grad(): UpperCAmelCase_ : Union[str, Any] = model(lowerCamelCase_ )[0] UpperCAmelCase_ : Union[str, Any] = torch.Size((1, 9, 512) ) self.assertEqual(output.shape ,lowerCamelCase_ ) UpperCAmelCase_ : Tuple = torch.tensor( [ [ [-2.473_6526e07, 8.269_1656e04, 1.652_1838e05], [-5.754_1704e-01, 3.905_6022e00, 4.401_1507e00], [2.604_7359e00, 1.567_7652e00, -1.732_4188e-01], ] ] ,device=lowerCamelCase_ ,) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) UpperCAmelCase_ : Dict = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
345
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline A : Any = logging.get_logger(__name__) @add_end_docstrings(SCREAMING_SNAKE_CASE ) class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : Union[str, Any] , **__lowerCAmelCase : List[Any] ) -> Optional[Any]: """simple docstring""" super().__init__(**__lowerCAmelCase ) if self.framework != "pt": raise ValueError(f'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Optional[Any] , __lowerCAmelCase : Union[np.ndarray, bytes, str] , **__lowerCAmelCase : Dict ) -> Dict: """simple docstring""" return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def a_ ( self : List[str] , **__lowerCAmelCase : int ) -> Any: """simple docstring""" A__ = {} if "candidate_labels" in kwargs: A__ = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: A__ = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def a_ ( self : List[str] , __lowerCAmelCase : Any , __lowerCAmelCase : Any=None , __lowerCAmelCase : Dict="This is a sound of {}." ) -> Tuple: """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if audio.startswith("""http://""" ) or audio.startswith("""https://""" ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png A__ = requests.get(__lowerCAmelCase ).content else: with open(__lowerCAmelCase , """rb""" ) as f: A__ = f.read() if isinstance(__lowerCAmelCase , __lowerCAmelCase ): A__ = ffmpeg_read(__lowerCAmelCase , self.feature_extractor.sampling_rate ) if not isinstance(__lowerCAmelCase , np.ndarray ): raise ValueError("""We expect a numpy ndarray as input""" ) if len(audio.shape ) != 1: raise ValueError("""We expect a single channel audio input for ZeroShotAudioClassificationPipeline""" ) A__ = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors="""pt""" ) A__ = candidate_labels A__ = [hypothesis_template.format(__lowerCAmelCase ) for x in candidate_labels] A__ = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework , padding=__lowerCAmelCase ) A__ = [text_inputs] return inputs def a_ ( self : Tuple , __lowerCAmelCase : Any ) -> Tuple: """simple docstring""" A__ = model_inputs.pop("""candidate_labels""" ) A__ = model_inputs.pop("""text_inputs""" ) if isinstance(text_inputs[0] , __lowerCAmelCase ): A__ = text_inputs[0] else: # Batching case. A__ = text_inputs[0][0] A__ = self.model(**__lowerCAmelCase , **__lowerCAmelCase ) A__ = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_audio, } return model_outputs def a_ ( self : Tuple , __lowerCAmelCase : Any ) -> Optional[int]: """simple docstring""" A__ = model_outputs.pop("""candidate_labels""" ) A__ = model_outputs["""logits"""][0] if self.framework == "pt": A__ = logits.softmax(dim=0 ) A__ = probs.tolist() else: raise ValueError("""`tf` framework not supported.""" ) A__ = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(__lowerCAmelCase , __lowerCAmelCase ) , key=lambda __lowerCAmelCase : -x[0] ) ] return result
369
import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import EsmForMaskedLM, EsmForSequenceClassification, EsmForTokenClassification, EsmModel from transformers.models.esm.modeling_esm import ( ESM_PRETRAINED_MODEL_ARCHIVE_LIST, EsmEmbeddings, create_position_ids_from_input_ids, ) class A : '''simple docstring''' def __init__( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : Tuple=13 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=False , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=33 , __lowerCAmelCase : List[str]=32 , __lowerCAmelCase : Optional[Any]=5 , __lowerCAmelCase : Dict=4 , __lowerCAmelCase : List[Any]=37 , __lowerCAmelCase : str="gelu" , __lowerCAmelCase : Any=0.1 , __lowerCAmelCase : str=0.1 , __lowerCAmelCase : List[Any]=5_12 , __lowerCAmelCase : Dict=16 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[str]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Tuple=None , ) -> int: """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def a_ ( self : List[Any] ) -> Tuple: """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = ids_tensor([self.batch_size] , self.num_choices ) A__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : Optional[int] ) -> str: """simple docstring""" return EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , pad_token_id=1 , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def a_ ( self : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[int] ) -> str: """simple docstring""" A__ = EsmModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) A__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any ) -> str: """simple docstring""" A__ = EsmForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" A__ = self.num_labels A__ = EsmForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() A__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : Any ) -> Dict: """simple docstring""" A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : List[str] = False __lowerCamelCase : Union[str, Any] = ( ( EsmForMaskedLM, EsmModel, EsmForSequenceClassification, EsmForTokenClassification, ) if is_torch_available() else () ) __lowerCamelCase : List[Any] = () __lowerCamelCase : Optional[int] = ( { '''feature-extraction''': EsmModel, '''fill-mask''': EsmForMaskedLM, '''text-classification''': EsmForSequenceClassification, '''token-classification''': EsmForTokenClassification, '''zero-shot''': EsmForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : Any = True def a_ ( self : Tuple ) -> Optional[int]: """simple docstring""" A__ = EsmModelTester(self ) A__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def a_ ( self : Any ) -> str: """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[int] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: A__ = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def a_ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCAmelCase ) def a_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) @slow def a_ ( self : Optional[int] ) -> int: """simple docstring""" for model_name in ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = EsmModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) def a_ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.as_tensor([[12, 31, 13, model.padding_idx]] ) A__ = torch.as_tensor( [ [ 0 + model.padding_idx + 1, 1 + model.padding_idx + 1, 2 + model.padding_idx + 1, model.padding_idx, ] ] ) A__ = create_position_ids_from_input_ids(__lowerCAmelCase , model.padding_idx ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) def a_ ( self : List[Any] ) -> str: """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs()[0] A__ = EsmEmbeddings(config=__lowerCAmelCase ) A__ = torch.empty(2 , 4 , 30 ) A__ = [ 0 + embeddings.padding_idx + 1, 1 + embeddings.padding_idx + 1, 2 + embeddings.padding_idx + 1, 3 + embeddings.padding_idx + 1, ] A__ = torch.as_tensor([expected_single_positions, expected_single_positions] ) A__ = embeddings.create_position_ids_from_inputs_embeds(__lowerCAmelCase ) self.assertEqual(position_ids.shape , expected_positions.shape ) self.assertTrue(torch.all(torch.eq(__lowerCAmelCase , __lowerCAmelCase ) ) ) @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : Dict ) -> Tuple: """simple docstring""" pass @unittest.skip("""Esm does not support embedding resizing""" ) def a_ ( self : List[str] ) -> Optional[int]: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def a_ ( self : List[Any] ) -> Dict: """simple docstring""" pass @require_torch class A (SCREAMING_SNAKE_CASE ): '''simple docstring''' @slow def a_ ( self : int ) -> Optional[int]: """simple docstring""" with torch.no_grad(): A__ = EsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A__ = model(__lowerCAmelCase )[0] A__ = 33 A__ = torch.Size((1, 6, vocab_size) ) self.assertEqual(output.shape , __lowerCAmelCase ) A__ = torch.tensor( [[[8.9_2_1_5, -1_0.5_8_9_8, -6.4_6_7_1], [-6.3_9_6_7, -1_3.9_1_1_4, -1.1_2_1_2], [-7.7_8_1_2, -1_3.9_5_1_6, -3.7_4_0_6]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) ) @slow def a_ ( self : List[str] ) -> Tuple: """simple docstring""" with torch.no_grad(): A__ = EsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) model.eval() A__ = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) A__ = model(__lowerCAmelCase )[0] # compare the actual values for a slice. A__ = torch.tensor( [[[0.1_4_4_4, 0.5_4_1_3, 0.3_2_4_8], [0.3_0_3_4, 0.0_0_5_3, 0.3_1_0_8], [0.3_2_2_8, -0.2_4_9_9, 0.3_4_1_5]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __lowerCAmelCase , atol=1e-4 ) )
276
0
"""simple docstring""" from collections import Counter from timeit import timeit def UpperCamelCase__ ( lowercase__ : str = "" , ): return sum(c % 2 for c in Counter(input_str.replace(" " , "" ).lower() ).values() ) < 2 def UpperCamelCase__ ( lowercase__ : str = "" ): if len(lowercase__ ) == 0: return True snake_case : Any = input_str.replace(" " , "" ).lower() # character_freq_dict: Stores the frequency of every character in the input string snake_case : dict[str, int] = {} for character in lower_case_input_str: snake_case : Dict = character_freq_dict.get(lowercase__ , 0 ) + 1 snake_case : List[str] = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def UpperCamelCase__ ( lowercase__ : str = "" ): print("\nFor string = " , lowercase__ , ":" ) print( "> can_string_be_rearranged_as_palindrome_counter()" , "\tans =" , can_string_be_rearranged_as_palindrome_counter(lowercase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome_counter(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) print( "> can_string_be_rearranged_as_palindrome()" , "\tans =" , can_string_be_rearranged_as_palindrome(lowercase__ ) , "\ttime =" , timeit( "z.can_string_be_rearranged_as_palindrome(z.check_str)" , setup="import __main__ as z" , ) , "seconds" , ) if __name__ == "__main__": __A = input( "Enter string to determine if it can be rearranged as a palindrome or not: " ).strip() benchmark(check_str) __A = can_string_be_rearranged_as_palindrome_counter(check_str) print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
148
"""simple docstring""" import sys from collections import defaultdict class lowerCamelCase__ : def __init__( self ): """simple docstring""" snake_case : Dict = [] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE ): """simple docstring""" return self.node_position[vertex] def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Dict = pos def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: snake_case : Any = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: snake_case : Any = 2 * start + 1 else: snake_case : Union[str, Any] = 2 * start + 2 if heap[smallest_child] < heap[start]: snake_case , snake_case : Dict = heap[smallest_child], positions[smallest_child] snake_case , snake_case : Any = ( heap[start], positions[start], ) snake_case , snake_case : str = temp, tempa snake_case : Dict = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , SCREAMING_SNAKE_CASE ) self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Optional[Any] = position[index] while index != 0: snake_case : Dict = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: snake_case : Tuple = heap[parent] snake_case : str = position[parent] self.set_position(position[parent] , SCREAMING_SNAKE_CASE ) else: snake_case : Union[str, Any] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) break snake_case : Optional[Any] = parent else: snake_case : Optional[int] = val snake_case : List[Any] = temp self.set_position(SCREAMING_SNAKE_CASE , 0 ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : List[str] = len(SCREAMING_SNAKE_CASE ) // 2 - 1 for i in range(SCREAMING_SNAKE_CASE , -1 , -1 ): self.top_to_bottom(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): """simple docstring""" snake_case : Union[str, Any] = positions[0] snake_case : List[str] = sys.maxsize self.top_to_bottom(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) return temp def UpperCamelCase__ ( lowercase__ : Union[str, Any] ): snake_case : Tuple = Heap() snake_case : List[str] = [0] * len(lowercase__ ) snake_case : Optional[int] = [-1] * len(lowercase__ ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph snake_case : Optional[int] = [] # Heap of Distance of vertices from their neighboring vertex snake_case : List[Any] = [] for vertex in range(len(lowercase__ ) ): distance_tv.append(sys.maxsize ) positions.append(lowercase__ ) heap.node_position.append(lowercase__ ) snake_case : Optional[int] = [] snake_case : Union[str, Any] = 1 snake_case : Union[str, Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: snake_case : List[Any] = 0 snake_case : Tuple = distance heap.heapify(lowercase__ , lowercase__ ) for _ in range(1 , len(lowercase__ ) ): snake_case : Optional[Any] = heap.delete_minimum(lowercase__ , lowercase__ ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) snake_case : Optional[int] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(lowercase__ )] ): snake_case : str = distance heap.bottom_to_top( lowercase__ , heap.get_position(lowercase__ ) , lowercase__ , lowercase__ ) snake_case : Optional[int] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __A = int(input("Enter number of edges: ").strip()) __A = defaultdict(list) for _ in range(edges_number): __A = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
148
1
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir('''fixtures/test_sentencepiece_bpe_char.model''') @require_sentencepiece @require_tokenizers class snake_case__(_UpperCamelCase , unittest.TestCase ): """simple docstring""" lowercase_ = SpeechTaTokenizer lowercase_ = False lowercase_ = True def snake_case ( self : Union[str, Any] ): super().setUp() # We have a SentencePiece fixture for testing lowercase__ : str = SpeechTaTokenizer(SCREAMING_SNAKE_CASE ) lowercase__ : Any = AddedToken("<mask>" , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) lowercase__ : str = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : Optional[Any] = "this is a test" lowercase__ : Optional[int] = "this is a test" return input_text, output_text def snake_case ( self : str , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Optional[Any]=20 , SCREAMING_SNAKE_CASE : Tuple=5 ): lowercase__ : Dict = self.get_input_output_texts(SCREAMING_SNAKE_CASE ) lowercase__ : List[Any] = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) lowercase__ : Union[str, Any] = tokenizer.decode(SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) return text, ids def snake_case ( self : str ): lowercase__ : Any = "<pad>" lowercase__ : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def snake_case ( self : Optional[Any] ): lowercase__ : Optional[int] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 81 ) def snake_case ( self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 79 ) def snake_case ( self : int ): lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): lowercase__ : Union[str, Any] = tokenizer.vocab_size lowercase__ : str = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) lowercase__ : List[Any] = ["aaaaa bbbbbb", "cccccccccdddddddd"] lowercase__ : int = tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) lowercase__ : Any = tokenizer.vocab_size lowercase__ : Optional[Any] = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , all_size + len(SCREAMING_SNAKE_CASE ) ) lowercase__ : Any = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) lowercase__ : List[str] = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} lowercase__ : Optional[Any] = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE ) lowercase__ : List[str] = tokenizer.vocab_size lowercase__ : str = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , all_size_a + len(SCREAMING_SNAKE_CASE ) ) lowercase__ : Any = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def snake_case ( self : Optional[Any] ): pass def snake_case ( self : Union[str, Any] ): pass def snake_case ( self : Union[str, Any] ): lowercase__ : Optional[Any] = self.get_tokenizer() lowercase__ : Tuple = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [4, 32, 11, 10, 12, 4, 10, 12, 4, 7, 4, 6, 5, 12, 6] , ) lowercase__ : Optional[Any] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) lowercase__ : str = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual(SCREAMING_SNAKE_CASE , [4, 30, 4, 20, 7, 12, 4, 25, 8, 13, 9, 4, 10, 9, 4, 3, 23, 4, 7, 9, 14, 4, 6, 11, 10, 12, 4, 10, 12, 4, 19, 7, 15, 12, 73, 26] ) # fmt: on lowercase__ : Tuple = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def snake_case ( self : Any ): # Use custom sequence because this tokenizer does not handle numbers. lowercase__ : Dict = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off lowercase__ : Dict = { "input_ids": [ [4, 32, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 64, 19, 8, 13, 18, 5, 13, 15, 22, 4, 28, 9, 8, 20, 9, 4, 7, 12, 4, 24, 22, 6, 8, 13, 17, 11, 39, 6, 13, 7, 9, 12, 19, 8, 13, 18, 5, 13, 12, 4, 7, 9, 14, 4, 24, 22, 6, 8, 13, 17, 11, 39, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 39, 25, 5, 13, 6, 63, 4, 24, 13, 8, 27, 10, 14, 5, 12, 4, 21, 5, 9, 5, 13, 7, 15, 39, 24, 16, 13, 24, 8, 12, 5, 4, 7, 13, 17, 11, 10, 6, 5, 17, 6, 16, 13, 5, 12, 4, 64, 40, 47, 54, 32, 23, 4, 53, 49, 32, 23, 4, 54, 8, 40, 47, 54, 32, 7, 23, 4, 69, 52, 43, 23, 4, 51, 10, 12, 6, 10, 15, 40, 5, 13, 6, 23, 4, 69, 52, 48, 5, 6, 26, 26, 26, 63, 4, 19, 8, 13, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 61, 9, 14, 5, 13, 12, 6, 7, 9, 14, 10, 9, 21, 4, 64, 48, 52, 61, 63, 4, 7, 9, 14, 4, 48, 7, 6, 16, 13, 7, 15, 4, 52, 7, 9, 21, 16, 7, 21, 5, 4, 53, 5, 9, 5, 13, 7, 6, 10, 8, 9, 4, 64, 48, 52, 53, 63, 4, 20, 10, 6, 11, 4, 8, 27, 5, 13, 4, 6, 11, 10, 13, 6, 22, 39, 6, 20, 8, 4, 24, 13, 5, 6, 13, 7, 10, 9, 5, 14, 4, 18, 8, 14, 5, 15, 12, 4, 10, 9, 4, 8, 9, 5, 4, 11, 16, 9, 14, 13, 5, 14, 4, 24, 15, 16, 12, 4, 15, 7, 9, 21, 16, 7, 21, 5, 12, 4, 7, 9, 14, 4, 14, 5, 5, 24, 4, 10, 9, 6, 5, 13, 8, 24, 5, 13, 7, 25, 10, 15, 10, 6, 22, 4, 25, 5, 6, 20, 5, 5, 9, 4, 58, 7, 37, 23, 4, 49, 22, 32, 8, 13, 17, 11, 4, 7, 9, 14, 4, 32, 5, 9, 12, 8, 13, 55, 15, 8, 20, 26, 2], [4, 40, 47, 54, 32, 4, 10, 12, 4, 14, 5, 12, 10, 21, 9, 5, 14, 4, 6, 8, 4, 24, 13, 5, 39, 6, 13, 7, 10, 9, 4, 14, 5, 5, 24, 4, 25, 10, 14, 10, 13, 5, 17, 6, 10, 8, 9, 7, 15, 4, 13, 5, 24, 13, 5, 12, 5, 9, 6, 7, 6, 10, 8, 9, 12, 4, 19, 13, 8, 18, 4, 16, 9, 15, 7, 25, 5, 15, 5, 14, 4, 6, 5, 37, 6, 4, 25, 22, 4, 46, 8, 10, 9, 6, 15, 22, 4, 17, 8, 9, 14, 10, 6, 10, 8, 9, 10, 9, 21, 4, 8, 9, 4, 25, 8, 6, 11, 4, 15, 5, 19, 6, 4, 7, 9, 14, 4, 13, 10, 21, 11, 6, 4, 17, 8, 9, 6, 5, 37, 6, 4, 10, 9, 4, 7, 15, 15, 4, 15, 7, 22, 5, 13, 12, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 32, 11, 5, 4, 45, 16, 10, 17, 28, 4, 25, 13, 8, 20, 9, 4, 19, 8, 37, 4, 46, 16, 18, 24, 12, 4, 8, 27, 5, 13, 4, 6, 11, 5, 4, 15, 7, 57, 22, 4, 14, 8, 21, 26, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=SCREAMING_SNAKE_CASE , )
353
import os from argparse import ArgumentParser, Namespace from ..data import SingleSentenceClassificationProcessor as Processor from ..pipelines import TextClassificationPipeline from ..utils import is_tf_available, is_torch_available, logging from . import BaseTransformersCLICommand if not is_tf_available() and not is_torch_available(): raise RuntimeError('''At least one of PyTorch or TensorFlow 2.0+ should be installed to use CLI training''') # TF training parameters lowerCAmelCase__ = False lowerCAmelCase__ = False def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return TrainCommand(lowerCamelCase__ ) class snake_case__(_UpperCamelCase ): """simple docstring""" @staticmethod def snake_case ( SCREAMING_SNAKE_CASE : ArgumentParser ): lowercase__ : Optional[int] = parser.add_parser("train" , help="CLI tool to train a model on a task." ) train_parser.add_argument( "--train_data" , type=SCREAMING_SNAKE_CASE , required=SCREAMING_SNAKE_CASE , help="path to train (and optionally evaluation) dataset as a csv with tab separated labels and sentences." , ) train_parser.add_argument( "--column_label" , type=SCREAMING_SNAKE_CASE , default=0 , help="Column of the dataset csv file with example labels." ) train_parser.add_argument( "--column_text" , type=SCREAMING_SNAKE_CASE , default=1 , help="Column of the dataset csv file with example texts." ) train_parser.add_argument( "--column_id" , type=SCREAMING_SNAKE_CASE , default=2 , help="Column of the dataset csv file with example ids." ) train_parser.add_argument( "--skip_first_row" , action="store_true" , help="Skip the first row of the csv file (headers)." ) train_parser.add_argument("--validation_data" , type=SCREAMING_SNAKE_CASE , default="" , help="path to validation dataset." ) train_parser.add_argument( "--validation_split" , type=SCREAMING_SNAKE_CASE , default=0.1 , help="if validation dataset is not provided, fraction of train dataset to use as validation dataset." , ) train_parser.add_argument("--output" , type=SCREAMING_SNAKE_CASE , default="./" , help="path to saved the trained model." ) train_parser.add_argument( "--task" , type=SCREAMING_SNAKE_CASE , default="text_classification" , help="Task to train the model on." ) train_parser.add_argument( "--model" , type=SCREAMING_SNAKE_CASE , default="bert-base-uncased" , help="Model's name or path to stored model." ) train_parser.add_argument("--train_batch_size" , type=SCREAMING_SNAKE_CASE , default=32 , help="Batch size for training." ) train_parser.add_argument("--valid_batch_size" , type=SCREAMING_SNAKE_CASE , default=64 , help="Batch size for validation." ) train_parser.add_argument("--learning_rate" , type=SCREAMING_SNAKE_CASE , default=3E-5 , help="Learning rate." ) train_parser.add_argument("--adam_epsilon" , type=SCREAMING_SNAKE_CASE , default=1E-0_8 , help="Epsilon for Adam optimizer." ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE ) def __init__( self : int , SCREAMING_SNAKE_CASE : Namespace ): lowercase__ : int = logging.get_logger("transformers-cli/training" ) lowercase__ : List[Any] = "tf" if is_tf_available() else "torch" os.makedirs(args.output , exist_ok=SCREAMING_SNAKE_CASE ) lowercase__ : Optional[Any] = args.output lowercase__ : Union[str, Any] = args.column_label lowercase__ : Optional[int] = args.column_text lowercase__ : Optional[int] = args.column_id self.logger.info(f"""Loading {args.task} pipeline for {args.model}""" ) if args.task == "text_classification": lowercase__ : int = TextClassificationPipeline.from_pretrained(args.model ) elif args.task == "token_classification": raise NotImplementedError elif args.task == "question_answering": raise NotImplementedError self.logger.info(f"""Loading dataset from {args.train_data}""" ) lowercase__ : List[str] = Processor.create_from_csv( args.train_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase__ : Union[str, Any] = None if args.validation_data: self.logger.info(f"""Loading validation dataset from {args.validation_data}""" ) lowercase__ : Optional[int] = Processor.create_from_csv( args.validation_data , column_label=args.column_label , column_text=args.column_text , column_id=args.column_id , skip_first_row=args.skip_first_row , ) lowercase__ : Dict = args.validation_split lowercase__ : List[str] = args.train_batch_size lowercase__ : Any = args.valid_batch_size lowercase__ : Optional[int] = args.learning_rate lowercase__ : int = args.adam_epsilon def snake_case ( self : Dict ): if self.framework == "tf": return self.run_tf() return self.run_torch() def snake_case ( self : Union[str, Any] ): raise NotImplementedError def snake_case ( self : Union[str, Any] ): self.pipeline.fit( self.train_dataset , validation_data=self.valid_dataset , validation_split=self.validation_split , learning_rate=self.learning_rate , adam_epsilon=self.adam_epsilon , train_batch_size=self.train_batch_size , valid_batch_size=self.valid_batch_size , ) # Save trained pipeline self.pipeline.save_pretrained(self.output )
121
0
"""simple docstring""" from argparse import ArgumentParser from .env import EnvironmentCommand def _snake_case ( ) -> Optional[Any]: lowerCamelCase_ : Tuple =ArgumentParser("Diffusers CLI tool" , usage="diffusers-cli <command> [<args>]" ) lowerCamelCase_ : Tuple =parser.add_subparsers(help="diffusers-cli command helpers" ) # Register commands EnvironmentCommand.register_subcommand(lowerCamelCase__ ) # Let's go lowerCamelCase_ : Tuple =parser.parse_args() if not hasattr(lowerCamelCase__ , "func" ): parser.print_help() exit(1 ) # Run lowerCamelCase_ : List[Any] =args.func(lowerCamelCase__ ) service.run() if __name__ == "__main__": main()
144
"""simple docstring""" import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def _snake_case ( lowerCamelCase__ : Tuple ) -> List[Any]: lowerCamelCase_ : Union[str, Any] =384 if "tiny" in model_name: lowerCamelCase_ : str =[3, 3, 9, 3] lowerCamelCase_ : Union[str, Any] =[96, 192, 384, 768] if "small" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : List[str] =[96, 192, 384, 768] if "base" in model_name: lowerCamelCase_ : Tuple =[3, 3, 27, 3] lowerCamelCase_ : Tuple =[128, 256, 512, 1_024] lowerCamelCase_ : str =512 if "large" in model_name: lowerCamelCase_ : Optional[int] =[3, 3, 27, 3] lowerCamelCase_ : Optional[int] =[192, 384, 768, 1_536] lowerCamelCase_ : Optional[Any] =768 if "xlarge" in model_name: lowerCamelCase_ : str =[3, 3, 27, 3] lowerCamelCase_ : Optional[Any] =[256, 512, 1_024, 2_048] lowerCamelCase_ : Any =1_024 # set label information lowerCamelCase_ : Dict =150 lowerCamelCase_ : Union[str, Any] ="huggingface/label-files" lowerCamelCase_ : Optional[int] ="ade20k-id2label.json" lowerCamelCase_ : str =json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowerCamelCase_ : Dict ={int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase_ : Optional[Any] ={v: k for k, v in idalabel.items()} lowerCamelCase_ : Optional[int] =ConvNextConfig( depths=lowerCamelCase__ , hidden_sizes=lowerCamelCase__ , out_features=["stage1", "stage2", "stage3", "stage4"] ) lowerCamelCase_ : Any =UperNetConfig( backbone_config=lowerCamelCase__ , auxiliary_in_channels=lowerCamelCase__ , num_labels=lowerCamelCase__ , idalabel=lowerCamelCase__ , labelaid=lowerCamelCase__ , ) return config def _snake_case ( lowerCamelCase__ : str ) -> str: lowerCamelCase_ : List[str] =[] # fmt: off # stem rename_keys.append(("backbone.downsample_layers.0.0.weight", "backbone.embeddings.patch_embeddings.weight") ) rename_keys.append(("backbone.downsample_layers.0.0.bias", "backbone.embeddings.patch_embeddings.bias") ) rename_keys.append(("backbone.downsample_layers.0.1.weight", "backbone.embeddings.layernorm.weight") ) rename_keys.append(("backbone.downsample_layers.0.1.bias", "backbone.embeddings.layernorm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ("decode_head.conv_seg.weight", "decode_head.classifier.weight"), ("decode_head.conv_seg.bias", "decode_head.classifier.bias"), ("auxiliary_head.conv_seg.weight", "auxiliary_head.classifier.weight"), ("auxiliary_head.conv_seg.bias", "auxiliary_head.classifier.bias"), ] ) # fmt: on return rename_keys def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Any ) -> Dict: lowerCamelCase_ : List[str] =dct.pop(lowerCamelCase__ ) lowerCamelCase_ : Union[str, Any] =val def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Union[str, Any] ={ "upernet-convnext-tiny": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth", "upernet-convnext-small": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth", "upernet-convnext-base": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth", "upernet-convnext-large": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth", "upernet-convnext-xlarge": "https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth", } lowerCamelCase_ : Optional[int] =model_name_to_url[model_name] lowerCamelCase_ : Optional[Any] =torch.hub.load_state_dict_from_url(lowerCamelCase__ , map_location="cpu" )["state_dict"] lowerCamelCase_ : List[Any] =get_upernet_config(lowerCamelCase__ ) lowerCamelCase_ : Tuple =UperNetForSemanticSegmentation(lowerCamelCase__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowerCamelCase_ : Optional[Any] =state_dict.pop(lowerCamelCase__ ) if "bn" in key: lowerCamelCase_ : str =key.replace("bn" , "batch_norm" ) lowerCamelCase_ : Union[str, Any] =val # rename keys lowerCamelCase_ : Tuple =create_rename_keys(lowerCamelCase__ ) for src, dest in rename_keys: rename_key(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) # verify on image lowerCamelCase_ : List[str] ="https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg" lowerCamelCase_ : Union[str, Any] =Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ).convert("RGB" ) lowerCamelCase_ : List[str] =SegformerImageProcessor() lowerCamelCase_ : int =processor(lowerCamelCase__ , return_tensors="pt" ).pixel_values with torch.no_grad(): lowerCamelCase_ : Tuple =model(lowerCamelCase__ ) if model_name == "upernet-convnext-tiny": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": lowerCamelCase_ : Dict =torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": lowerCamelCase_ : Tuple =torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": lowerCamelCase_ : Dict =torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": lowerCamelCase_ : List[Any] =torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print("Logits:" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , lowerCamelCase__ , atol=1e-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowerCamelCase__ ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(lowerCamelCase__ ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": A__ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[f'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A__ : str = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
144
1
'''simple docstring''' import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging _a : Any = logging.get_logger(__name__) _a : Dict = {"""vocab_file""": """vocab.txt"""} _a : int = { """vocab_file""": { """facebook/esm2_t6_8M_UR50D""": """https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt""", """facebook/esm2_t12_35M_UR50D""": """https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt""", }, } _a : Optional[Any] = { """facebook/esm2_t6_8M_UR50D""": 1_0_2_4, """facebook/esm2_t12_35M_UR50D""": 1_0_2_4, } def _lowerCAmelCase ( lowercase ) -> int: with open(lowercase , """r""" ) as f: __lowerCAmelCase = f.read().splitlines() return [l.strip() for l in lines] class _UpperCAmelCase ( lowerCAmelCase__ ): a : Optional[Any] =VOCAB_FILES_NAMES a : Union[str, Any] =PRETRAINED_VOCAB_FILES_MAP a : List[str] =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a : Tuple =["input_ids", "attention_mask"] def __init__( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE="<unk>",__SCREAMING_SNAKE_CASE="<cls>",__SCREAMING_SNAKE_CASE="<pad>",__SCREAMING_SNAKE_CASE="<mask>",__SCREAMING_SNAKE_CASE="<eos>",**__SCREAMING_SNAKE_CASE,): '''simple docstring''' super().__init__(**a__ ) __lowerCAmelCase = load_vocab_file(a__ ) __lowerCAmelCase = dict(enumerate(self.all_tokens ) ) __lowerCAmelCase = {tok: ind for ind, tok in enumerate(self.all_tokens )} __lowerCAmelCase = unk_token __lowerCAmelCase = cls_token __lowerCAmelCase = pad_token __lowerCAmelCase = mask_token __lowerCAmelCase = eos_token __lowerCAmelCase = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self._id_to_token.get(a__,self.unk_token ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self._token_to_id.get(a__,self._token_to_id.get(self.unk_token ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,**__SCREAMING_SNAKE_CASE ): '''simple docstring''' return text.split() def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE=False ): '''simple docstring''' return len(self._id_to_token ) def lowerCamelCase__ ( self ): '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self._token_to_id.get(a__,self._token_to_id.get(self.unk_token ) ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE ): '''simple docstring''' return self._id_to_token.get(a__,self.unk_token ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None ): '''simple docstring''' __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError("""Cannot tokenize multiple sequences when EOS token is not set!""" ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = None,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( """You should not supply a second sequence if the provided sequence of """ """ids is already formatted with special tokens for the model.""" ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] __lowerCAmelCase = [1] + ([0] * len(a__ )) + [1] if token_ids_a is not None: mask += [0] * len(a__ ) + [1] return mask def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE ): '''simple docstring''' __lowerCAmelCase = os.path.join(a__,(filename_prefix + """-""" if filename_prefix else """""") + """vocab.txt""" ) with open(a__,"""w""" ) as f: f.write("""\n""".join(self.all_tokens ) ) return (vocab_file,) @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.get_vocab_size(with_added_tokens=a__ ) def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE = False ): '''simple docstring''' return super()._add_tokens(a__,special_tokens=a__ )
363
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( lowerCAmelCase_ , unittest.TestCase ): a : str =KandinskyVaaInpaintPipeline a : int =["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] a : str =[ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] a : Optional[int] =[ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] a : Dict =False @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase__ ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self ): '''simple docstring''' return 1_00 @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = { """in_channels""": 9, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __lowerCAmelCase = UNetaDConditionModel(**__SCREAMING_SNAKE_CASE ) return model @property def lowerCamelCase__ ( self ): '''simple docstring''' return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def lowerCamelCase__ ( self ): '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = self.dummy_unet __lowerCAmelCase = self.dummy_movq __lowerCAmelCase = DDIMScheduler( num_train_timesteps=10_00,beta_schedule="""linear""",beta_start=0.0_0085,beta_end=0.012,clip_sample=__SCREAMING_SNAKE_CASE,set_alpha_to_one=__SCREAMING_SNAKE_CASE,steps_offset=1,prediction_type="""epsilon""",thresholding=__SCREAMING_SNAKE_CASE,) __lowerCAmelCase = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def lowerCamelCase__ ( self,__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size),rng=random.Random(seed + 1 ) ).to( __SCREAMING_SNAKE_CASE ) # create init_image __lowerCAmelCase = floats_tensor((1, 3, 64, 64),rng=random.Random(__SCREAMING_SNAKE_CASE ) ).to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = image.cpu().permute(0,2,3,1 )[0] __lowerCAmelCase = Image.fromarray(np.uinta(__SCREAMING_SNAKE_CASE ) ).convert("""RGB""" ).resize((2_56, 2_56) ) # create mask __lowerCAmelCase = np.ones((64, 64),dtype=np.floataa ) __lowerCAmelCase = 0 if str(__SCREAMING_SNAKE_CASE ).startswith("""mps""" ): __lowerCAmelCase = torch.manual_seed(__SCREAMING_SNAKE_CASE ) else: __lowerCAmelCase = torch.Generator(device=__SCREAMING_SNAKE_CASE ).manual_seed(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = { """image""": init_image, """mask_image""": mask, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 2, """guidance_scale""": 4.0, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = """cpu""" __lowerCAmelCase = self.get_dummy_components() __lowerCAmelCase = self.pipeline_class(**__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe.to(__SCREAMING_SNAKE_CASE ) pipe.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = pipe(**self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ) ) __lowerCAmelCase = output.images __lowerCAmelCase = pipe( **self.get_dummy_inputs(__SCREAMING_SNAKE_CASE ),return_dict=__SCREAMING_SNAKE_CASE,)[0] __lowerCAmelCase = image[0, -3:, -3:, -1] __lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] print(f'image.shape {image.shape}' ) assert image.shape == (1, 64, 64, 3) __lowerCAmelCase = np.array( [0.5077_5903, 0.4952_7195, 0.4882_4543, 0.5019_2237, 0.4864_4906, 0.4937_3814, 0.478_0598, 0.4723_4827, 0.4832_7848] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' def lowerCamelCase__ ( self ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self ): '''simple docstring''' __lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy""" ) __lowerCAmelCase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __lowerCAmelCase = np.ones((7_68, 7_68),dtype=np.floataa ) __lowerCAmelCase = 0 __lowerCAmelCase = """a hat""" __lowerCAmelCase = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""",torch_dtype=torch.floataa ) pipe_prior.to(__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = KandinskyVaaInpaintPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder-inpaint""",torch_dtype=torch.floataa ) __lowerCAmelCase = pipeline.to(__SCREAMING_SNAKE_CASE ) pipeline.set_progress_bar_config(disable=__SCREAMING_SNAKE_CASE ) __lowerCAmelCase = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowerCAmelCase , __lowerCAmelCase = pipe_prior( __SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=5,negative_prompt="""""",).to_tuple() __lowerCAmelCase = pipeline( image=__SCREAMING_SNAKE_CASE,mask_image=__SCREAMING_SNAKE_CASE,image_embeds=__SCREAMING_SNAKE_CASE,negative_image_embeds=__SCREAMING_SNAKE_CASE,generator=__SCREAMING_SNAKE_CASE,num_inference_steps=1_00,height=7_68,width=7_68,output_type="""np""",) __lowerCAmelCase = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(__SCREAMING_SNAKE_CASE,__SCREAMING_SNAKE_CASE )
46
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: # Initialise PyTorch model snake_case_ = LxmertConfig.from_json_file(UpperCAmelCase ) print(f'Building PyTorch model from configuration: {config}' ) snake_case_ = LxmertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(f'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) __UpperCamelCase = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
69
import os import shutil import sys import tempfile import unittest from pathlib import Path import pytest import transformers from transformers import ( BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, AutoTokenizer, BertConfig, BertTokenizer, BertTokenizerFast, CTRLTokenizer, GPTaTokenizer, GPTaTokenizerFast, PreTrainedTokenizerFast, RobertaTokenizer, RobertaTokenizerFast, is_tokenizers_available, ) from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.auto.tokenization_auto import ( TOKENIZER_MAPPING, get_tokenizer_config, tokenizer_class_from_name, ) from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import ( DUMMY_DIFF_TOKENIZER_IDENTIFIER, DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tokenizers, slow, ) sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self : Optional[int] ) -> Tuple: SCREAMING_SNAKE_CASE__ = 0 @slow def lowercase_ ( self : List[str] ) -> Any: for model_name in (x for x in BERT_PRETRAINED_CONFIG_ARCHIVE_MAP.keys() if "japanese" not in x): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) for model_name in GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP.keys(): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (GPTaTokenizer, GPTaTokenizerFast) ) self.assertGreater(len(__lowerCamelCase ) , 0 ) def lowercase_ ( self : List[str] ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : List[str] ) -> Dict: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (RobertaTokenizer, RobertaTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 20 ) def lowercase_ ( self : Dict ) -> Any: SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) # Check that tokenizer_type ≠ model_type SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , config=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(tokenizer.vocab_size , 12 ) def lowercase_ ( self : Tuple ) -> Dict: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Optional[int]: with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.txt''' , os.path.join(__lowerCamelCase , '''vocab.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''bert''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: shutil.copy('''./tests/fixtures/vocab.json''' , os.path.join(__lowerCamelCase , '''vocab.json''' ) ) shutil.copy('''./tests/fixtures/merges.txt''' , os.path.join(__lowerCamelCase , '''merges.txt''' ) ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , tokenizer_type='''gpt2''' ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : Union[str, Any] ) -> int: with pytest.raises(__lowerCamelCase ): AutoTokenizer.from_pretrained('''./''' , tokenizer_type='''xxx''' ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Tuple: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''wietsedv/bert-base-dutch-cased''' ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) if isinstance(__lowerCamelCase , __lowerCamelCase ): self.assertEqual(tokenizer.basic_tokenizer.do_lower_case , __lowerCamelCase ) else: self.assertEqual(tokenizer.do_lower_case , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) @require_tokenizers def lowercase_ ( self : Any ) -> str: for tokenizer_class in [BertTokenizer, BertTokenizerFast, AutoTokenizer]: with self.assertRaisesRegex( __lowerCamelCase , '''julien-c/herlolip-not-exists is not a local folder and is not a valid model identifier''' , ): SCREAMING_SNAKE_CASE__ = tokenizer_class.from_pretrained('''julien-c/herlolip-not-exists''' ) def lowercase_ ( self : List[str] ) -> Tuple: # tests: https://github.com/huggingface/transformers/pull/13251 # 1. models with `-`, e.g. xlm-roberta -> xlm_roberta # 2. models that don't remap 1-1 from model-name to model file, e.g., openai-gpt -> openai SCREAMING_SNAKE_CASE__ = TOKENIZER_MAPPING.values() SCREAMING_SNAKE_CASE__ = [] for slow_tok, fast_tok in tokenizers: if slow_tok is not None: tokenizer_names.append(slow_tok.__name__ ) if fast_tok is not None: tokenizer_names.append(fast_tok.__name__ ) for tokenizer_name in tokenizer_names: # must find the right class tokenizer_class_from_name(__lowerCamelCase ) @require_tokenizers def lowercase_ ( self : Optional[int] ) -> Any: self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' , use_fast=__lowerCamelCase ) , __lowerCamelCase ) self.assertIsInstance(AutoTokenizer.from_pretrained('''bert-base-cased''' ) , __lowerCamelCase ) @require_tokenizers def lowercase_ ( self : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''distilbert-base-uncased''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = '''Hello, world. How are you?''' SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''microsoft/mpnet-base''' , do_lower_case=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(__lowerCamelCase ) self.assertEqual('''[UNK]''' , tokens[0] ) @require_tokenizers def lowercase_ ( self : Dict ) -> int: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''robot-test/dummy-tokenizer-fast-with-model-config''' ) self.assertEqual(type(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(tokenizer.model_max_length , 512 ) self.assertEqual(tokenizer.vocab_size , 3_0000 ) self.assertEqual(tokenizer.unk_token , '''[UNK]''' ) self.assertEqual(tokenizer.padding_side , '''right''' ) self.assertEqual(tokenizer.truncation_side , '''right''' ) def lowercase_ ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , (BertTokenizer, BertTokenizerFast) ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , tokenizer.__class__ ) self.assertEqual(tokenizera.vocab_size , 12 ) def lowercase_ ( self : Optional[int] ) -> Any: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''ctrl''' ) # There is no fast CTRL so this always gives us a slow tokenizer. self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) def lowercase_ ( self : List[Any] ) -> Optional[int]: # Check we can load the tokenizer config of an online model. SCREAMING_SNAKE_CASE__ = get_tokenizer_config('''bert-base-cased''' ) SCREAMING_SNAKE_CASE__ = config.pop('''_commit_hash''' , __lowerCamelCase ) # If we ever update bert-base-cased tokenizer config, this dict here will need to be updated. self.assertEqual(__lowerCamelCase , {'''do_lower_case''': False} ) # This model does not have a tokenizer_config so we get back an empty dict. SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) self.assertDictEqual(__lowerCamelCase , {} ) # A tokenizer saved with `save_pretrained` always creates a tokenizer config. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = get_tokenizer_config(__lowerCamelCase ) # Check the class of the tokenizer was properly saved (note that it always saves the slow class). self.assertEqual(config['''tokenizer_class'''] , '''BertTokenizer''' ) def lowercase_ ( self : int ) -> str: try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizer.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] @require_tokenizers def lowercase_ ( self : List[Any] ) -> List[Any]: try: AutoConfig.register('''custom''' , __lowerCamelCase ) # Can register in two steps AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, None) ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) del TOKENIZER_MAPPING._extra_content[CustomConfig] # Can register in one step AutoTokenizer.register( __lowerCamelCase , slow_tokenizer_class=__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) self.assertEqual(TOKENIZER_MAPPING[CustomConfig] , (CustomTokenizer, CustomTokenizerFast) ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowerCamelCase ): AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # We pass through a bert tokenizer fast cause there is no converter slow to fast for our new toknizer # and that model does not have a tokenizer.json with tempfile.TemporaryDirectory() as tmp_dir: SCREAMING_SNAKE_CASE__ = BertTokenizerFast.from_pretrained(__lowerCamelCase ) bert_tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = CustomTokenizerFast.from_pretrained(__lowerCamelCase ) with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> Tuple: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowerCamelCase ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) # Test tokenizer can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(reloaded_tokenizer.special_attribute_present ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertEqual(reloaded_tokenizer.__class__.__name__ , '''NewTokenizer''' ) @require_tokenizers def lowercase_ ( self : List[str] ) -> str: class UpperCAmelCase__ ( A__ ): """simple docstring""" a = False class UpperCAmelCase__ ( A__ ): """simple docstring""" a = NewTokenizer a = False try: AutoConfig.register('''custom''' , __lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , slow_tokenizer_class=__lowerCamelCase ) AutoTokenizer.register(__lowerCamelCase , fast_tokenizer_class=__lowerCamelCase ) # If remote code is not set, the default is to use local SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/test_dynamic_tokenizer''' , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote code is disabled, we load the local one. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertFalse(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertFalse(tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) self.assertTrue(tokenizer.special_attribute_present ) SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) self.assertTrue(tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] def lowercase_ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' ) # Test we can also load the slow version SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained( '''hf-internal-testing/test_dynamic_tokenizer_legacy''' , trust_remote_code=__lowerCamelCase , use_fast=__lowerCamelCase ) self.assertTrue(tokenizer.special_attribute_present ) self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) else: self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' ) def lowercase_ ( self : Union[str, Any] ) -> Dict: with self.assertRaisesRegex( __lowerCamelCase , '''bert-base is not a local folder and is not a valid model identifier''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''bert-base''' ) def lowercase_ ( self : Dict ) -> Optional[int]: with self.assertRaisesRegex( __lowerCamelCase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)''' ): SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(__lowerCamelCase , revision='''aaaaaa''' ) def lowercase_ ( self : Any ) -> Optional[Any]: # Make sure we have cached the tokenizer. SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) with RequestCounter() as counter: SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) self.assertEqual(counter.get_request_count , 0 ) self.assertEqual(counter.head_request_count , 1 ) self.assertEqual(counter.other_request_count , 0 )
314
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase_ (_lowerCAmelCase : list[float] ): if len(UpperCAmelCase__ ) < 2: raise ValueError("Monogons and Digons are not polygons in the Euclidean space" ) if any(i <= 0 for i in nums ): raise ValueError("All values must be greater than 0" ) __UpperCamelCase : List[Any] = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
371
import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging lowercase : Optional[int] = { "cola": 2, "mnli": 3, "mrpc": 2, "sst-2": 2, "sts-b": 1, "qqp": 2, "qnli": 2, "rte": 2, "wnli": 2, } logging.set_verbosity_info() def UpperCAmelCase_ (_lowerCAmelCase : Tuple , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : int=None ): # Initialise PyTorch model __UpperCamelCase : str = XLNetConfig.from_json_file(_lowerCAmelCase ) __UpperCamelCase : int = finetuning_task.lower() if finetuning_task is not None else "" if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : List[str] = GLUE_TASKS_NUM_LABELS[finetuning_task] __UpperCamelCase : Dict = XLNetForSequenceClassification(_lowerCAmelCase ) elif "squad" in finetuning_task: __UpperCamelCase : List[str] = finetuning_task __UpperCamelCase : Optional[int] = XLNetForQuestionAnswering(_lowerCAmelCase ) else: __UpperCamelCase : Optional[int] = XLNetLMHeadModel(_lowerCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # Save pytorch-model __UpperCamelCase : Optional[Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) __UpperCamelCase : Union[str, Any] = os.path.join(_lowerCAmelCase , _lowerCAmelCase ) print(F'''Save PyTorch model to {os.path.abspath(_lowerCAmelCase )}''' ) torch.save(model.state_dict() , _lowerCAmelCase ) print(F'''Save configuration file to {os.path.abspath(_lowerCAmelCase )}''' ) with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--xlnet_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained XLNet model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the folder to store the PyTorch model or dataset/vocab.", ) parser.add_argument( "--finetuning_task", default=None, type=str, help="Name of a task on which the XLNet TensorFlow model was fine-tuned", ) lowercase : Dict = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
171
0
def _a ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): return base * power(_UpperCAmelCase , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") UpperCamelCase__ = int(input("""Enter the base: """).strip()) UpperCamelCase__ = int(input("""Enter the exponent: """).strip()) UpperCamelCase__ = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents UpperCamelCase__ = 1 / result print(f'''{base} to the power of {exponent} is {result}''')
92
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available A__: str = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__: Tuple = ['''GPTSw3Tokenizer'''] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys A__: str = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
276
0
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _UpperCAmelCase : '''simple docstring''' @staticmethod def __UpperCAmelCase ( *lowercase_ : Optional[Any] , **lowercase_ : Dict) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' __A = MODEL_FOR_OBJECT_DETECTION_MAPPING def __UpperCAmelCase ( self : Any , lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : List[str]) -> Any: """simple docstring""" _UpperCamelCase = ObjectDetectionPipeline(model=lowercase_ , image_processor=lowercase_) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any]) -> Tuple: """simple docstring""" _UpperCamelCase = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0) self.assertGreater(len(lowercase_) , 0) for detected_object in outputs: self.assertEqual( lowercase_ , { "score": ANY(lowercase_), "label": ANY(lowercase_), "box": {"xmin": ANY(lowercase_), "ymin": ANY(lowercase_), "xmax": ANY(lowercase_), "ymax": ANY(lowercase_)}, } , ) import datasets _UpperCamelCase = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test") _UpperCamelCase = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png"), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] _UpperCamelCase = object_detector(lowercase_ , threshold=0.0) self.assertEqual(len(lowercase_) , len(lowercase_)) for outputs in batch_outputs: self.assertGreater(len(lowercase_) , 0) for detected_object in outputs: self.assertEqual( lowercase_ , { "score": ANY(lowercase_), "label": ANY(lowercase_), "box": {"xmin": ANY(lowercase_), "ymin": ANY(lowercase_), "xmax": ANY(lowercase_), "ymax": ANY(lowercase_)}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF") def __UpperCAmelCase ( self : Tuple) -> Optional[Any]: """simple docstring""" pass @require_torch def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCamelCase = "hf-internal-testing/tiny-detr-mobilenetsv3" _UpperCamelCase = AutoModelForObjectDetection.from_pretrained(lowercase_) _UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowercase_) _UpperCamelCase = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_) _UpperCamelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0) self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) _UpperCamelCase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _UpperCamelCase = "facebook/detr-resnet-50" _UpperCamelCase = AutoModelForObjectDetection.from_pretrained(lowercase_) _UpperCamelCase = AutoFeatureExtractor.from_pretrained(lowercase_) _UpperCamelCase = ObjectDetectionPipeline(model=lowercase_ , feature_extractor=lowercase_) _UpperCamelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ]) self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Dict) -> Dict: """simple docstring""" _UpperCamelCase = "facebook/detr-resnet-50" _UpperCamelCase = pipeline("object-detection" , model=lowercase_) _UpperCamelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg") self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) _UpperCamelCase = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ]) self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: """simple docstring""" _UpperCamelCase = 0.99_85 _UpperCamelCase = "facebook/detr-resnet-50" _UpperCamelCase = pipeline("object-detection" , model=lowercase_) _UpperCamelCase = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowercase_) self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __UpperCAmelCase ( self : List[Any]) -> Tuple: """simple docstring""" _UpperCamelCase = "Narsil/layoutlmv3-finetuned-funsd" _UpperCamelCase = 0.99_93 _UpperCamelCase = pipeline("object-detection" , model=lowercase_ , threshold=lowercase_) _UpperCamelCase = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png") self.assertEqual( nested_simplify(lowercase_ , decimals=4) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
360
import inspect import unittest from transformers import DecisionTransformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import DecisionTransformerModel from transformers.models.decision_transformer.modeling_decision_transformer import ( DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) class _UpperCAmelCase : '''simple docstring''' def __init__( self : int , lowercase_ : Union[str, Any] , lowercase_ : Optional[Any]=13 , lowercase_ : Union[str, Any]=7 , lowercase_ : Optional[Any]=6 , lowercase_ : int=17 , lowercase_ : List[Any]=23 , lowercase_ : List[Any]=11 , lowercase_ : Dict=True , ) -> List[str]: """simple docstring""" _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = act_dim _UpperCamelCase = state_dim _UpperCamelCase = hidden_size _UpperCamelCase = max_length _UpperCamelCase = is_training def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.state_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, self.act_dim)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = floats_tensor((self.batch_size, self.seq_length, 1)) _UpperCamelCase = ids_tensor((self.batch_size, self.seq_length) , vocab_size=1000) _UpperCamelCase = random_attention_mask((self.batch_size, self.seq_length)) _UpperCamelCase = self.get_config() return ( config, states, actions, rewards, returns_to_go, timesteps, attention_mask, ) def __UpperCAmelCase ( self : str) -> Any: """simple docstring""" return DecisionTransformerConfig( batch_size=self.batch_size , seq_length=self.seq_length , act_dim=self.act_dim , state_dim=self.state_dim , hidden_size=self.hidden_size , max_length=self.max_length , ) def __UpperCAmelCase ( self : str , lowercase_ : Optional[Any] , lowercase_ : str , lowercase_ : Optional[Any] , lowercase_ : Optional[Any] , lowercase_ : Optional[int] , lowercase_ : str , lowercase_ : Dict , ) -> int: """simple docstring""" _UpperCamelCase = DecisionTransformerModel(config=lowercase_) model.to(lowercase_) model.eval() _UpperCamelCase = model(lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_) self.parent.assertEqual(result.state_preds.shape , states.shape) self.parent.assertEqual(result.action_preds.shape , actions.shape) self.parent.assertEqual(result.return_preds.shape , returns_to_go.shape) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length * 3, self.hidden_size)) # seq length *3 as there are 3 modelities: states, returns and actions def __UpperCAmelCase ( self : Dict) -> Tuple: """simple docstring""" _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = { "states": states, "actions": actions, "rewards": rewards, "returns_to_go": returns_to_go, "timesteps": timesteps, "attention_mask": attention_mask, } return config, inputs_dict @require_torch class _UpperCAmelCase ( lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, unittest.TestCase ): '''simple docstring''' __A = (DecisionTransformerModel,) if is_torch_available() else () __A = () __A = {'''feature-extraction''': DecisionTransformerModel} if is_torch_available() else {} # Ignoring of a failing test from GenerationTesterMixin, as the model does not use inputs_ids __A = False # Ignoring of a failing tests from ModelTesterMixin, as the model does not implement these features __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False __A = False def __UpperCAmelCase ( self : List[str]) -> Any: """simple docstring""" _UpperCamelCase = DecisionTransformerModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=lowercase_ , hidden_size=37) def __UpperCAmelCase ( self : Tuple) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def __UpperCAmelCase ( self : List[str]) -> Union[str, Any]: """simple docstring""" _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) @slow def __UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" for model_name in DECISION_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = DecisionTransformerModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def __UpperCAmelCase ( self : Tuple) -> Optional[int]: """simple docstring""" _UpperCamelCase , _UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase = model_class(lowercase_) _UpperCamelCase = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase = [*signature.parameters.keys()] _UpperCamelCase = [ "states", "actions", "rewards", "returns_to_go", "timesteps", "attention_mask", ] self.assertListEqual(arg_names[: len(lowercase_)] , lowercase_) @require_torch class _UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def __UpperCAmelCase ( self : int) -> Optional[Any]: """simple docstring""" _UpperCamelCase = 2 # number of steps of autoregressive prediction we will perform _UpperCamelCase = 10 # defined by the RL environment, may be normalized _UpperCamelCase = DecisionTransformerModel.from_pretrained("edbeeching/decision-transformer-gym-hopper-expert") _UpperCamelCase = model.to(lowercase_) _UpperCamelCase = model.config torch.manual_seed(0) _UpperCamelCase = torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa) # env.reset() _UpperCamelCase = torch.tensor( [[0.24_27_93, -0.28_69_30_74, 0.8_74_26_13], [0.67_81_52_74, -0.08_10_10_85, -0.12_95_21_47]] , device=lowercase_) _UpperCamelCase = torch.tensor(lowercase_ , device=lowercase_ , dtype=torch.floataa).reshape(1 , 1 , 1) _UpperCamelCase = state _UpperCamelCase = torch.zeros(1 , 0 , config.act_dim , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.zeros(1 , 0 , device=lowercase_ , dtype=torch.floataa) _UpperCamelCase = torch.tensor(0 , device=lowercase_ , dtype=torch.long).reshape(1 , 1) for step in range(lowercase_): _UpperCamelCase = torch.cat([actions, torch.zeros(1 , 1 , config.act_dim , device=lowercase_)] , dim=1) _UpperCamelCase = torch.cat([rewards, torch.zeros(1 , 1 , device=lowercase_)] , dim=1) _UpperCamelCase = torch.ones(1 , states.shape[1]).to(dtype=torch.long , device=states.device) with torch.no_grad(): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = model( states=lowercase_ , actions=lowercase_ , rewards=lowercase_ , returns_to_go=lowercase_ , timesteps=lowercase_ , attention_mask=lowercase_ , return_dict=lowercase_ , ) self.assertEqual(action_pred.shape , actions.shape) self.assertTrue(torch.allclose(action_pred[0, -1] , expected_outputs[step] , atol=1e-4)) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = ( # env.step(action) torch.randn(1 , 1 , config.state_dim).to(device=lowercase_ , dtype=torch.floataa), 1.0, False, {}, ) _UpperCamelCase = action_pred[0, -1] _UpperCamelCase = torch.cat([states, state] , dim=1) _UpperCamelCase = returns_to_go[0, -1] - reward _UpperCamelCase = torch.cat([returns_to_go, pred_return.reshape(1 , 1 , 1)] , dim=1) _UpperCamelCase = torch.cat( [timesteps, torch.ones((1, 1) , device=lowercase_ , dtype=torch.long) * (step + 1)] , dim=1)
63
0
def a__ ( UpperCAmelCase : Optional[Any] = 1_000_000 ) -> int: UpperCAmelCase : Dict = limit + 1 UpperCAmelCase : List[Any] = [0] * limit for first_term in range(1 , UpperCAmelCase ): for n in range(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): UpperCAmelCase : Dict = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a UpperCAmelCase : Optional[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(f"""{solution() = }""")
336
UpperCAmelCase__ : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def lowerCamelCase__ ( a , a , a ) -> list[str]: _A: Union[str, Any] = set() # keep track of all the paths to be checked _A: Union[str, Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue _A: Any = queue.pop(0 ) # get the last node from the path _A: Union[str, Any] = path[-1] if node not in explored: _A: str = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: _A: Optional[int] = list(a ) new_path.append(a ) queue.append(a ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(a ) # in case there's no path between the 2 nodes return [] def lowerCamelCase__ ( a , a , a ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 _A: Any = [start] _A: List[str] = set(a ) # Keep tab on distances from `start` node. _A: Optional[int] = {start: 0, target: -1} while queue: _A: Union[str, Any] = queue.pop(0 ) if node == target: _A: Dict = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(a ) queue.append(a ) _A: List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
121
0
'''simple docstring''' from collections import deque from math import floor from random import random from time import time class _lowerCAmelCase : def __init__(self ): A_ : Dict = {} def _a (self , lowercase , lowercase , lowercase=1 ): if self.graph.get(lowercase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: A_ : Dict = [[w, v]] if not self.graph.get(lowercase ): A_ : Optional[int] = [] def _a (self ): return list(self.graph ) def _a (self , lowercase , lowercase ): if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) def _a (self , lowercase=-2 , lowercase=-1 ): if s == d: return [] A_ : Union[str, Any] = [] A_ : Dict = [] if s == -2: A_ : Optional[int] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : str = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : str = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A_ : str = stack[len(lowercase ) - 1] else: A_ : Union[str, Any] = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def _a (self , lowercase=-1 ): if c == -1: A_ : Tuple = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : Optional[int] = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def _a (self , lowercase=-2 ): A_ : str = deque() A_ : Any = [] if s == -2: A_ : List[str] = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A_ : int = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _a (self , lowercase ): A_ : Any = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def _a (self , lowercase ): return len(self.graph[u] ) def _a (self , lowercase=-2 ): A_ : Optional[int] = [] A_ : Dict = [] if s == -2: A_ : Optional[Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Union[str, Any] = s A_ : Any = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Tuple = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(lowercase ) != 0: A_ : List[str] = stack[len(lowercase ) - 1] else: A_ : List[str] = ss # check if se have reached the starting point if len(lowercase ) == 0: return sorted_nodes def _a (self ): A_ : Any = [] A_ : List[Any] = [] A_ : str = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Optional[Any] = -2 A_ : int = [] A_ : Optional[Any] = s A_ : Any = False A_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : List[str] = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : List[str] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Union[str, Any] = True if len(lowercase ) != 0: A_ : Dict = stack[len(lowercase ) - 1] else: A_ : List[str] = False indirect_parents.append(lowercase ) A_ : Optional[int] = s A_ : str = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def _a (self ): A_ : str = [] A_ : int = [] A_ : int = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Optional[Any] = -2 A_ : int = [] A_ : Any = s A_ : List[Any] = False A_ : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : int = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : int = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : str = True if len(lowercase ) != 0: A_ : Optional[int] = stack[len(lowercase ) - 1] else: A_ : int = False indirect_parents.append(lowercase ) A_ : List[Any] = s A_ : Dict = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def _a (self , lowercase=-2 , lowercase=-1 ): A_ : List[Any] = time() self.dfs(lowercase , lowercase ) A_ : Optional[int] = time() return end - begin def _a (self , lowercase=-2 ): A_ : Union[str, Any] = time() self.bfs(lowercase ) A_ : Optional[int] = time() return end - begin class _lowerCAmelCase : def __init__(self ): A_ : List[str] = {} def _a (self , lowercase , lowercase , lowercase=1 ): # check if the u exists if self.graph.get(lowercase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist A_ : Union[str, Any] = [[w, v]] # add the other way if self.graph.get(lowercase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist A_ : Tuple = [[w, u]] def _a (self , lowercase , lowercase ): if self.graph.get(lowercase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(lowercase ) # the other way round if self.graph.get(lowercase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(lowercase ) def _a (self , lowercase=-2 , lowercase=-1 ): if s == d: return [] A_ : Optional[Any] = [] A_ : Union[str, Any] = [] if s == -2: A_ : Optional[int] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Tuple = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(lowercase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) A_ : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(lowercase ) != 0: A_ : int = stack[len(lowercase ) - 1] else: A_ : int = ss # check if se have reached the starting point if len(lowercase ) == 0: return visited def _a (self , lowercase=-1 ): if c == -1: A_ : str = floor(random() * 10000 ) + 10 for i in range(lowercase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): A_ : int = floor(random() * c ) + 1 if n != i: self.add_pair(lowercase , lowercase , 1 ) def _a (self , lowercase=-2 ): A_ : Dict = deque() A_ : str = [] if s == -2: A_ : List[Any] = list(self.graph )[0] d.append(lowercase ) visited.append(lowercase ) while d: A_ : Optional[int] = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def _a (self , lowercase ): return len(self.graph[u] ) def _a (self ): A_ : List[Any] = [] A_ : List[str] = [] A_ : Tuple = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Optional[int] = -2 A_ : Tuple = [] A_ : Union[str, Any] = s A_ : Any = False A_ : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : Tuple = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Optional[Any] = len(lowercase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Tuple = True if len(lowercase ) != 0: A_ : List[str] = stack[len(lowercase ) - 1] else: A_ : Optional[Any] = False indirect_parents.append(lowercase ) A_ : Any = s A_ : Any = ss # check if se have reached the starting point if len(lowercase ) == 0: return list(lowercase ) def _a (self ): A_ : str = [] A_ : str = [] A_ : Union[str, Any] = list(self.graph )[0] stack.append(lowercase ) visited.append(lowercase ) A_ : Tuple = -2 A_ : Optional[int] = [] A_ : Union[str, Any] = s A_ : int = False A_ : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: A_ : str = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): A_ : Dict = len(lowercase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) A_ : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() A_ : Any = True if len(lowercase ) != 0: A_ : Any = stack[len(lowercase ) - 1] else: A_ : Optional[int] = False indirect_parents.append(lowercase ) A_ : List[str] = s A_ : Optional[Any] = ss # check if se have reached the starting point if len(lowercase ) == 0: return False def _a (self ): return list(self.graph ) def _a (self , lowercase=-2 , lowercase=-1 ): A_ : Optional[Any] = time() self.dfs(lowercase , lowercase ) A_ : Dict = time() return end - begin def _a (self , lowercase=-2 ): A_ : List[str] = time() self.bfs(lowercase ) A_ : List[Any] = time() return end - begin
135
'''simple docstring''' import os import tempfile import unittest from transformers import NezhaConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, ) from transformers.models.nezha.modeling_nezha import NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase : def __init__(self , lowercase , lowercase=13 , lowercase=7 , lowercase=True , lowercase=True , lowercase=True , lowercase=True , lowercase=99 , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase="gelu" , lowercase=0.1 , lowercase=0.1 , lowercase=128 , lowercase=32 , lowercase=16 , lowercase=2 , lowercase=0.02 , lowercase=3 , lowercase=4 , lowercase=None , ): A_ : Union[str, Any] = parent A_ : Optional[int] = batch_size A_ : Any = seq_length A_ : int = is_training A_ : List[str] = use_input_mask A_ : Any = use_token_type_ids A_ : List[Any] = use_labels A_ : Dict = vocab_size A_ : Optional[int] = hidden_size A_ : int = num_hidden_layers A_ : List[str] = num_attention_heads A_ : Dict = intermediate_size A_ : List[str] = hidden_act A_ : List[str] = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Optional[Any] = type_vocab_size A_ : List[Any] = type_sequence_label_size A_ : Tuple = initializer_range A_ : List[Any] = num_labels A_ : str = num_choices A_ : Tuple = scope def _a (self ): A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = None if self.use_input_mask: A_ : str = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Any = None if self.use_token_type_ids: A_ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : Any = None A_ : List[Any] = None if self.use_labels: A_ : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : int = ids_tensor([self.batch_size] , self.num_choices ) A_ : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _a (self ): return NezhaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) def _a (self ): ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : Union[str, Any] = self.prepare_config_and_inputs() A_ : Union[str, Any] = True A_ : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Union[str, Any] = NezhaModel(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) A_ : Optional[Any] = model(lowercase , token_type_ids=lowercase ) A_ : str = model(lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ): A_ : Optional[int] = True A_ : Optional[Any] = NezhaModel(lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , encoder_attention_mask=lowercase , ) A_ : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , encoder_hidden_states=lowercase , ) A_ : Tuple = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Optional[Any] = NezhaForMaskedLM(config=lowercase ) model.to(lowercase ) model.eval() A_ : List[str] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Tuple = NezhaForNextSentencePrediction(config=lowercase ) model.to(lowercase ) model.eval() A_ : Union[str, Any] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : int = NezhaForPreTraining(config=lowercase ) model.to(lowercase ) model.eval() A_ : str = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , next_sentence_label=lowercase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Any = NezhaForQuestionAnswering(config=lowercase ) model.to(lowercase ) model.eval() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , start_positions=lowercase , end_positions=lowercase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : Optional[Any] = self.num_labels A_ : int = NezhaForSequenceClassification(lowercase ) model.to(lowercase ) model.eval() A_ : List[Any] = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : List[str] = self.num_labels A_ : Optional[int] = NezhaForTokenClassification(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a (self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase ): A_ : int = self.num_choices A_ : int = NezhaForMultipleChoice(config=lowercase ) model.to(lowercase ) model.eval() A_ : int = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : str = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : List[str] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() A_ : Optional[int] = model( lowercase , attention_mask=lowercase , token_type_ids=lowercase , labels=lowercase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a (self ): A_ : Tuple = self.prepare_config_and_inputs() ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : int = config_and_inputs A_ : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = ( ( NezhaModel, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE : str = ( { 'feature-extraction': NezhaModel, 'fill-mask': NezhaForMaskedLM, 'question-answering': NezhaForQuestionAnswering, 'text-classification': NezhaForSequenceClassification, 'token-classification': NezhaForTokenClassification, 'zero-shot': NezhaForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE : List[Any] = True def _a (self , lowercase , lowercase , lowercase=False ): A_ : Optional[Any] = super()._prepare_for_class(lowercase , lowercase , return_labels=lowercase ) if return_labels: if model_class in get_values(lowercase ): A_ : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=lowercase ) A_ : Tuple = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowercase ) return inputs_dict def _a (self ): A_ : Optional[int] = NezhaModelTester(self ) A_ : Any = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def _a (self ): self.config_tester.run_common_tests() def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*lowercase ) def _a (self ): # This regression test was failing with PyTorch < 1.3 ( ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ( A_ ), ) : List[Any] = self.model_tester.prepare_config_and_inputs_for_decoder() A_ : str = None self.model_tester.create_and_check_model_as_decoder( lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) def _a (self ): A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowercase ) def _a (self ): A_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_next_sequence_prediction(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*lowercase ) def _a (self ): A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowercase ) def _a (self ): A_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowercase ) def _a (self ): A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowercase ) @slow def _a (self ): for model_name in NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Any = NezhaModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @slow @require_torch_gpu def _a (self ): A_, A_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # NezhaForMultipleChoice behaves incorrectly in JIT environments. if model_class == NezhaForMultipleChoice: return A_ : Optional[int] = True A_ : str = model_class(config=lowercase ) A_ : str = self._prepare_for_class(lowercase , lowercase ) A_ : Tuple = torch.jit.trace( lowercase , (inputs_dict["""input_ids"""].to("""cpu""" ), inputs_dict["""attention_mask"""].to("""cpu""" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(lowercase , os.path.join(lowercase , """bert.pt""" ) ) A_ : List[str] = torch.jit.load(os.path.join(lowercase , """bert.pt""" ) , map_location=lowercase ) loaded(inputs_dict["""input_ids"""].to(lowercase ) , inputs_dict["""attention_mask"""].to(lowercase ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def _a (self ): A_ : Dict = NezhaModel.from_pretrained("""sijunhe/nezha-cn-base""" ) A_ : List[Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ : List[str] = torch.tensor([[0, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Optional[int] = model(lowercase , attention_mask=lowercase )[0] A_ : Optional[int] = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) A_ : List[Any] = torch.tensor([[[0.06_85, 0.24_41, 0.11_02], [0.06_00, 0.19_06, 0.13_49], [0.02_21, 0.08_19, 0.05_86]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) ) @slow def _a (self ): A_ : str = NezhaForMaskedLM.from_pretrained("""sijunhe/nezha-cn-base""" ) A_ : Union[str, Any] = torch.tensor([[0, 1, 2, 3, 4, 5]] ) A_ : str = torch.tensor([[1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): A_ : Tuple = model(lowercase , attention_mask=lowercase )[0] A_ : str = torch.Size((1, 6, 21128) ) self.assertEqual(output.shape , lowercase ) A_ : List[Any] = torch.tensor( [[-2.79_39, -1.79_02, -2.21_89], [-2.85_85, -1.89_08, -2.37_23], [-2.64_99, -1.77_50, -2.25_58]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , lowercase , atol=1E-4 ) )
135
1
'''simple docstring''' import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowerCamelCase_ = logging.getLogger(__name__) lowerCamelCase_ = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) lowerCamelCase_ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(snake_case_ )} , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _UpperCAmelCase : """simple docstring""" snake_case = field( default=snake_case_ , metadata={'''help''': '''The input training data file (a text file).'''} ) snake_case = field( default=snake_case_ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) snake_case = field(default=snake_case_ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) snake_case = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) snake_case = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) snake_case = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) snake_case = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) snake_case = field( default=snake_case_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def __lowercase ( __lowercase , __lowercase , __lowercase = False , __lowercase = None , ) -> Optional[Any]: '''simple docstring''' def _dataset(__lowercase , __lowercase=None ): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError("You need to set world whole masking and mlm to True for Chinese Whole Word Mask" ) return LineByLineWithRefDataset( tokenizer=__lowercase , file_path=__lowercase , block_size=args.block_size , ref_path=__lowercase , ) return LineByLineTextDataset(tokenizer=__lowercase , file_path=__lowercase , block_size=args.block_size ) else: return TextDataset( tokenizer=__lowercase , file_path=__lowercase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=__lowercase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file ) elif args.train_data_files: return ConcatDataset([_dataset(__lowercase ) for f in glob(args.train_data_files )] ) else: return _dataset(args.train_data_file , args.train_ref_file ) def __lowercase ( ) -> Dict: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) _A , _A , _A = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( "Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file " "or remove the --do_eval argument." ) if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("Training/evaluation parameters %s" , __lowercase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: _A = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _A = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: _A = CONFIG_MAPPING[model_args.model_type]() logger.warning("You are instantiating a new config instance from scratch." ) if model_args.tokenizer_name: _A = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir ) elif model_args.model_name_or_path: _A = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir ) else: raise ValueError( "You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another" " script, save it,and load it from here, using --tokenizer_name" ) if model_args.model_name_or_path: _A = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , ) else: logger.info("Training new model from scratch" ) _A = AutoModelWithLMHead.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( "BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the" "--mlm flag (masked language modeling)." ) if data_args.block_size <= 0: _A = tokenizer.max_len # Our input block size will be the max possible for the model else: _A = min(data_args.block_size , tokenizer.max_len ) # Get datasets _A = ( get_dataset(__lowercase , tokenizer=__lowercase , cache_dir=model_args.cache_dir ) if training_args.do_train else None ) _A = ( get_dataset(__lowercase , tokenizer=__lowercase , evaluate=__lowercase , cache_dir=model_args.cache_dir ) if training_args.do_eval else None ) if config.model_type == "xlnet": _A = DataCollatorForPermutationLanguageModeling( tokenizer=__lowercase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: _A = DataCollatorForWholeWordMask( tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) else: _A = DataCollatorForLanguageModeling( tokenizer=__lowercase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _A = Trainer( model=__lowercase , args=__lowercase , data_collator=__lowercase , train_dataset=__lowercase , eval_dataset=__lowercase , prediction_loss_only=__lowercase , ) # Training if training_args.do_train: _A = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ) else None ) trainer.train(model_path=__lowercase ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation _A = {} if training_args.do_eval: logger.info("*** Evaluate ***" ) _A = trainer.evaluate() _A = math.exp(eval_output["eval_loss"] ) _A = {"perplexity": perplexity} _A = os.path.join(training_args.output_dir , "eval_results_lm.txt" ) if trainer.is_world_master(): with open(__lowercase , "w" ) as writer: logger.info("***** Eval results *****" ) for key in sorted(result.keys() ): logger.info(" %s = %s" , __lowercase , str(result[key] ) ) writer.write("%s = %s\n" % (key, str(result[key] )) ) results.update(__lowercase ) return results def __lowercase ( __lowercase ) -> str: '''simple docstring''' main() if __name__ == "__main__": main()
79
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_UpperCAmelCase ) class lowercase ( _UpperCAmelCase ): _SCREAMING_SNAKE_CASE = field(default='language-modeling' , metadata={'include_in_asdict_even_if_is_default': True} ) _SCREAMING_SNAKE_CASE = Features({'text': Value('string' )} ) _SCREAMING_SNAKE_CASE = Features({} ) _SCREAMING_SNAKE_CASE = "text" @property def _snake_case ( self ) -> Dict[str, str]: return {self.text_column: "text"}
46
0
import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib _SCREAMING_SNAKE_CASE = { """debug""": logging.DEBUG, """info""": logging.INFO, """warning""": logging.WARNING, """error""": logging.ERROR, """critical""": logging.CRITICAL, } _SCREAMING_SNAKE_CASE = logging.WARNING def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Any = os.getenv('DATASETS_VERBOSITY' , __a ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( f"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ f"""has to be one of: { ', '.join(log_levels.keys() ) }""" ) return _default_log_level def SCREAMING_SNAKE_CASE__ ( ): return __name__.split('.' )[0] def SCREAMING_SNAKE_CASE__ ( ): return logging.getLogger(_get_library_name() ) def SCREAMING_SNAKE_CASE__ ( ): # Apply our default configuration to the library root logger. snake_case_ : str = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[Any] = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def SCREAMING_SNAKE_CASE__ ( __a = None ): if name is None: snake_case_ : List[Any] = _get_library_name() return logging.getLogger(__a ) def SCREAMING_SNAKE_CASE__ ( ): return _get_library_root_logger().getEffectiveLevel() def SCREAMING_SNAKE_CASE__ ( __a ): _get_library_root_logger().setLevel(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): return set_verbosity(__a ) def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Optional[int] = False def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class SCREAMING_SNAKE_CASE_ : def __init__( self : int , *_A : str , **_A : Dict ) -> Optional[int]: # pylint: disable=unused-argument """simple docstring""" snake_case_ : Optional[int] = args[0] if args else None def __iter__( self : List[str] ) -> Any: """simple docstring""" return iter(self._iterator ) def __getattr__( self : int , _A : int ) -> Tuple: """simple docstring""" def empty_fn(*_A : int , **_A : Union[str, Any] ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Optional[int] ) -> Optional[int]: """simple docstring""" return self def __exit__( self : Optional[int] , _A : int , _A : Any , _A : int ) -> Dict: """simple docstring""" return _SCREAMING_SNAKE_CASE = True class SCREAMING_SNAKE_CASE_ : def __call__( self : Optional[Any] , *_A : Optional[Any] , _A : Tuple=False , **_A : Optional[Any] ) -> Dict: """simple docstring""" if _tqdm_active and not disable: return tqdm_lib.tqdm(*_A , **_A ) else: return EmptyTqdm(*_A , **_A ) def UpperCAmelCase_ ( self : Any , *_A : Optional[int] , **_A : str ) -> int: """simple docstring""" snake_case_ : str = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*_A , **_A ) def UpperCAmelCase_ ( self : List[Any] ) -> Dict: """simple docstring""" if _tqdm_active: return tqdm_lib.tqdm.get_lock() _SCREAMING_SNAKE_CASE = _tqdm_cls() def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active return bool(_tqdm_active ) def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active snake_case_ : str = True def SCREAMING_SNAKE_CASE__ ( ): global _tqdm_active snake_case_ : str = False
88
from __future__ import annotations import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): snake_case_ : Optional[int] = u for i in range(1 , __a ): snake_case_ : Optional[Any] = temp * (u - i) return temp def SCREAMING_SNAKE_CASE__ ( ): snake_case_ : Dict = int(input('enter the numbers of values: ' ) ) snake_case_ : list[list[float]] = [] for _ in range(__a ): y.append([] ) for i in range(__a ): for j in range(__a ): y[i].append(__a ) snake_case_ : str = 0 print('enter the values of parameters in a list: ' ) snake_case_ : int = list(map(__a , input().split() ) ) print('enter the values of corresponding parameters: ' ) for i in range(__a ): snake_case_ : Union[str, Any] = float(input() ) snake_case_ : int = int(input('enter the value to interpolate: ' ) ) snake_case_ : List[Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , __a ): for j in range(n - i ): snake_case_ : int = y[j + 1][i - 1] - y[j][i - 1] snake_case_ : str = y[0][0] for i in range(1 , __a ): summ += (ucal(__a , __a ) * y[0][i]) / math.factorial(__a ) print(f"""the value at {value} is {summ}""" ) if __name__ == "__main__": main()
88
1