code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
from argparse import ArgumentParser from .add_new_model import AddNewModelCommand from .add_new_model_like import AddNewModelLikeCommand from .convert import ConvertCommand from .download import DownloadCommand from .env import EnvironmentCommand from .lfs import LfsCommands from .pt_to_tf import PTtoTFCommand from .run import RunCommand from .serving import ServeCommand from .user import UserCommands def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ArgumentParser("Transformers CLI tool" , usage="transformers-cli <command> [<args>]" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = parser.add_subparsers(help="transformers-cli command helpers" ) # Register commands ConvertCommand.register_subcommand(lowerCAmelCase ) DownloadCommand.register_subcommand(lowerCAmelCase ) EnvironmentCommand.register_subcommand(lowerCAmelCase ) RunCommand.register_subcommand(lowerCAmelCase ) ServeCommand.register_subcommand(lowerCAmelCase ) UserCommands.register_subcommand(lowerCAmelCase ) AddNewModelCommand.register_subcommand(lowerCAmelCase ) AddNewModelLikeCommand.register_subcommand(lowerCAmelCase ) LfsCommands.register_subcommand(lowerCAmelCase ) PTtoTFCommand.register_subcommand(lowerCAmelCase ) # Let's go SCREAMING_SNAKE_CASE_ : Any = parser.parse_args() if not hasattr(lowerCAmelCase , "func" ): parser.print_help() exit(1 ) # Run SCREAMING_SNAKE_CASE_ : int = args.func(lowerCAmelCase ) service.run() if __name__ == "__main__": main()
18
"""simple docstring""" import numpy as np import pandas as pd from sklearn.preprocessing import Normalizer from sklearn.svm import SVR from statsmodels.tsa.statespace.sarimax import SARIMAX def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : int = np.array([[1, item, train_mtch[i]] for i, item in enumerate(lowerCAmelCase )] ) UpperCAmelCase__ : Any = np.array(lowerCAmelCase ) UpperCAmelCase__ : List[Any] = np.dot(np.dot(np.linalg.inv(np.dot(x.transpose() , lowerCAmelCase ) ) , x.transpose() ) , lowerCAmelCase ) return abs(beta[0] + test_dt[0] * beta[1] + test_mtch[0] + beta[2] ) def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = (1, 2, 1) UpperCAmelCase__ : Tuple = (1, 1, 0, 7) UpperCAmelCase__ : int = SARIMAX( lowerCAmelCase , exog=lowerCAmelCase , order=lowerCAmelCase , seasonal_order=lowerCAmelCase ) UpperCAmelCase__ : Any = model.fit(disp=lowerCAmelCase , maxiter=6_00 , method="""nm""" ) UpperCAmelCase__ : Optional[Any] = model_fit.predict(1 , len(lowerCAmelCase ) , exog=[test_match] ) return result[0] def a__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> float: UpperCAmelCase__ : Union[str, Any] = SVR(kernel="""rbf""" , C=1 , gamma=0.1 , epsilon=0.1 ) regressor.fit(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase__ : int = regressor.predict(lowerCAmelCase ) return y_pred[0] def a__ ( lowerCAmelCase ) -> float: train_user.sort() UpperCAmelCase__ : Optional[Any] = np.percentile(lowerCAmelCase , 25 ) UpperCAmelCase__ : str = np.percentile(lowerCAmelCase , 75 ) UpperCAmelCase__ : int = qa - qa UpperCAmelCase__ : Union[str, Any] = qa - (iqr * 0.1) return low_lim def a__ ( lowerCAmelCase , lowerCAmelCase ) -> bool: UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : str = 0 for i in list_vote: if i > actual_result: UpperCAmelCase__ : Tuple = not_safe + 1 else: if abs(abs(lowerCAmelCase ) - abs(lowerCAmelCase ) ) <= 0.1: safe += 1 else: not_safe += 1 return safe > not_safe if __name__ == "__main__": # data_input_df = pd.read_csv("ex_data.csv", header=None) _A = [[1_82_31, 0.0, 1], [2_26_21, 1.0, 2], [1_56_75, 0.0, 3], [2_35_83, 1.0, 4]] _A = pd.DataFrame( data_input, columns=["""total_user""", """total_even""", """days"""] ) _A = Normalizer().fit_transform(data_input_df.values) # split data _A = normalize_df[:, 2].tolist() _A = normalize_df[:, 0].tolist() _A = normalize_df[:, 1].tolist() # for svr (input variable = total date and total match) _A = normalize_df[:, [1, 2]].tolist() _A = x[: len(x) - 1] _A = x[len(x) - 1 :] # for linear regression & sarimax _A = total_date[: len(total_date) - 1] _A = total_user[: len(total_user) - 1] _A = total_match[: len(total_match) - 1] _A = total_date[len(total_date) - 1 :] _A = total_user[len(total_user) - 1 :] _A = total_match[len(total_match) - 1 :] # voting system with forecasting _A = [ linear_regression_prediction( trn_date, trn_user, trn_match, tst_date, tst_match ), sarimax_predictor(trn_user, trn_match, tst_match), support_vector_regressor(x_train, x_test, trn_user), ] # check the safety of today's data _A = """""" if data_safety_checker(res_vote, tst_user) else """not """ print("""Today's data is {not_str}safe.""")
171
0
'''simple docstring''' import collections import json import os import re from typing import TYPE_CHECKING, List, Optional, Tuple import numpy as np from ...tokenization_utils_fast import PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase__ : Optional[int] = logging.get_logger(__name__) UpperCamelCase__ : Any = {'vocab_file': 'vocab.txt', 'emoji_file': 'emoji.json'} UpperCamelCase__ : str = { 'vocab_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/vocab.txt', }, 'emoji_file': { 'abeja/gpt-neox-japanese-2.7b': 'https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/emoji.json', }, } UpperCamelCase__ : Optional[Any] = { 'abeja/gpt-neox-japanese-2.7b': 2_048, } def UpperCAmelCase ( a_ , a_ ) -> Dict: """simple docstring""" with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : int = json.loads(f.read() ) A_ : Optional[Any] = collections.OrderedDict() A_ : Optional[Any] = collections.OrderedDict() A_ : Any = collections.OrderedDict() with open(a_ , """r""" , encoding="""utf-8""" ) as f: A_ : Dict = f.readlines() A_ : Optional[int] = [[t.rstrip("""\n""" )] if (t == """,""" or """,""" not in t) else t.rstrip("""\n""" ).split(""",""" ) for t in token] for idx, b in enumerate(a_ ): A_ : List[Any] = b A_ : str = idx for wd in b: A_ : Union[str, Any] = idx return vocab, raw_vocab, ids_to_tokens, emoji class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = VOCAB_FILES_NAMES lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase = ['''input_ids''', '''attention_mask'''] def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase="<|startoftext|>" , _lowerCamelCase="<|endoftext|>" , _lowerCamelCase=False , **_lowerCamelCase , ) -> Any: super().__init__( unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , bos_token=_lowerCamelCase , eos_token=_lowerCamelCase , do_clean_text=_lowerCamelCase , **_lowerCamelCase , ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( F"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" """ model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) if not os.path.isfile(_lowerCamelCase ): raise ValueError( F"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google" """ pretrained model use `tokenizer = GPTNeoXJapaneseokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`""" ) A_ : Dict = do_clean_text A_ , A_ , A_ , A_ : List[str] = load_vocab_and_emoji(_lowerCamelCase , _lowerCamelCase ) A_ : str = SubWordJapaneseTokenizer( vocab=self.vocab , ids_to_tokens=self.ids_to_tokens , emoji=self.emoji ) @property def UpperCAmelCase_ ( self ) -> int: # self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab return len(self.raw_vocab ) def UpperCAmelCase_ ( self ) -> str: return dict(self.raw_vocab , **self.added_tokens_encoder ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[Any]: return self.subword_tokenizer.tokenize(_lowerCamelCase , clean=self.do_clean_text ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: return self.vocab.get(_lowerCamelCase , self.vocab.get(self.unk_token ) ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> Optional[Any]: return self.subword_tokenizer.convert_id_to_token(_lowerCamelCase ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[Any]: A_ : Union[str, Any] = """""".join(_lowerCamelCase ).strip() return out_string def UpperCAmelCase_ ( self , _lowerCamelCase ) -> List[int]: A_ : List[str] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_lowerCamelCase , add_special_tokens=_lowerCamelCase ) + [self.eos_token_id] ) if len(_lowerCamelCase ) > self.model_max_length: A_ : Optional[Any] = input_ids[-self.model_max_length :] return input_ids def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = None ) -> Tuple[str]: A_ : Tuple = 0 if os.path.isdir(_lowerCamelCase ): A_ : int = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : str = os.path.join( _lowerCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""emoji_file"""] ) else: A_ : Dict = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""vocab_file"""] ) A_ : Union[str, Any] = ( (filename_prefix + """-""" if filename_prefix else """""") + save_directory + VOCAB_FILES_NAMES["""emoji_file"""] ) with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: for token_index, token in self.ids_to_tokens.items(): if index != token_index: logger.warning( F"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." """ Please check that the vocabulary is not corrupted!""" ) A_ : str = token_index writer.write(""",""".join(_lowerCamelCase ) + """\n""" ) index += 1 with open(_lowerCamelCase , """w""" , encoding="""utf-8""" ) as writer: json.dump(self.emoji , _lowerCamelCase ) return vocab_file, emoji_file class _lowerCAmelCase ( __A ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Optional[Any]: A_ : Union[str, Any] = vocab # same as swe A_ : Optional[Any] = ids_to_tokens # same as bpe A_ : Optional[Any] = emoji A_ : List[str] = np.max([len(_lowerCamelCase ) for w in self.vocab.keys()] ) A_ : Dict = re.compile(R"""(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)""" ) A_ : Optional[Any] = re.compile(R"""[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*""" ) A_ : Union[str, Any] = re.compile(R"""[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}""" ) A_ : Tuple = re.compile( R"""([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) A_ : Optional[Any] = re.compile( R"""(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*""" ) A_ : List[str] = re.compile( R"""((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*""" ) A_ : Tuple = """─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿""" A_ : Tuple = """▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟""" A_ : List[Any] = str.maketrans({k: """<BLOCK>""" for k in keisen + blocks} ) def __len__( self ) -> Optional[int]: return len(self.ids_to_tokens ) def UpperCAmelCase_ ( self , _lowerCamelCase ) -> str: A_ : Dict = self.content_repattera.sub("""<URL>""" , _lowerCamelCase ) A_ : Any = self.content_repattera.sub("""<EMAIL>""" , _lowerCamelCase ) A_ : List[str] = self.content_repattera.sub("""<TEL>""" , _lowerCamelCase ) A_ : List[str] = self.content_repattera.sub("""<DATE>""" , _lowerCamelCase ) A_ : Optional[int] = self.content_repattera.sub("""<DATE>""" , _lowerCamelCase ) A_ : List[str] = self.content_repattera.sub("""<PRICE>""" , _lowerCamelCase ) A_ : str = content.translate(self.content_transa ) while "<BLOCK><BLOCK>" in content: A_ : str = content.replace("""<BLOCK><BLOCK>""" , """<BLOCK>""" ) return content def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase=False ) -> List[Any]: A_ : int = text.replace(""" """ , """<SP>""" ) A_ : str = text.replace(""" """ , """<SP>""" ) A_ : Union[str, Any] = text.replace("""\r\n""" , """<BR>""" ) A_ : str = text.replace("""\n""" , """<BR>""" ) A_ : Optional[int] = text.replace("""\r""" , """<BR>""" ) A_ : Dict = text.replace("""\t""" , """<TAB>""" ) A_ : str = text.replace("""—""" , """ー""" ) A_ : Tuple = text.replace("""−""" , """ー""" ) for k, v in self.emoji["emoji"].items(): if k in text: A_ : Any = text.replace(_lowerCamelCase , _lowerCamelCase ) if clean: A_ : Dict = self.clean_text(_lowerCamelCase ) def check_simbol(_lowerCamelCase ): A_ : List[str] = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 2: A_ : Dict = (int(e[0] ) << 8) + int(e[1] ) if ( (c >= 0xC2_A1 and c <= 0xC2_BF) or (c >= 0xC7_80 and c <= 0xC7_83) or (c >= 0xCA_B9 and c <= 0xCB_BF) or (c >= 0xCC_80 and c <= 0xCD_A2) ): return True return False def checkuae(_lowerCamelCase ): A_ : List[Any] = x.encode() if len(_lowerCamelCase ) == 1 and len(_lowerCamelCase ) == 3: A_ : Tuple = (int(e[0] ) << 16) + (int(e[1] ) << 8) + int(e[2] ) if c >= 0xE2_80_80 and c <= 0xE2_B0_7F: return True return False A_ : int = 0 A_ : Any = [] while pos < len(_lowerCamelCase ): A_ : Any = min(len(_lowerCamelCase ) , pos + self.maxlen + 1 ) if text[pos] == """<""" else pos + 3 A_ : Union[str, Any] = [] # (token_id, token, pos) for e in range(_lowerCamelCase , _lowerCamelCase , -1 ): A_ : Union[str, Any] = text[pos:e] if wd in self.vocab: if wd[0] == "<" and len(_lowerCamelCase ) > 2: A_ : Dict = [(self.vocab[wd], wd, e)] break else: candidates.append((self.vocab[wd], wd, e) ) if len(_lowerCamelCase ) > 0: # the smallest token_id is adopted A_ , A_ , A_ : List[str] = sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[0] )[0] result.append(_lowerCamelCase ) A_ : Optional[Any] = e else: A_ : Optional[int] = pos + 1 A_ : Optional[int] = text[pos:end] if check_simbol(_lowerCamelCase ): result.append("""<KIGOU>""" ) elif checkuae(_lowerCamelCase ): result.append("""<U2000U2BFF>""" ) else: for i in wd.encode("""utf-8""" ): result.append("""<|byte%d|>""" % i ) A_ : Optional[Any] = end return result def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase="\n" ) -> Tuple: A_ : List[Any] = [] A_ : List[Any] = [] A_ : Optional[Any] = self.ids_to_tokens[index][0] if word[:6] == "<|byte" and word[-2:] == "|>": byte_tokens.append(int(word[6:-2] ) ) else: if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode("""utf-8""" , errors="""replace""" ) ) A_ : Optional[int] = [] if word[:7] == "<|emoji" and word[-2:] == "|>": words.append(self.emoji["""emoji_inv"""][word] ) elif word == "<SP>": words.append(""" """ ) elif word == "<BR>": words.append(_lowerCamelCase ) elif word == "<TAB>": words.append("""\t""" ) elif word == "<BLOCK>": words.append("""▀""" ) elif word == "<KIGOU>": words.append("""ǀ""" ) elif word == "<U2000U2BFF>": words.append("""‖""" ) else: words.append(_lowerCamelCase ) if len(_lowerCamelCase ) > 0: words.append(bytearray(_lowerCamelCase ).decode("""utf-8""" , errors="""replace""" ) ) A_ : Optional[Any] = """""".join(_lowerCamelCase ) return text
164
'''simple docstring''' import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging UpperCamelCase__ : List[Any] = logging.get_logger(__name__) class _lowerCAmelCase ( __A ): """simple docstring""" lowerCamelCase = ['''input_values''', '''attention_mask'''] def __init__( self , _lowerCamelCase = 1 , _lowerCamelCase = 1_6000 , _lowerCamelCase = 0.0 , _lowerCamelCase = False , _lowerCamelCase = 80 , _lowerCamelCase = 16 , _lowerCamelCase = 64 , _lowerCamelCase = "hann_window" , _lowerCamelCase = 1.0 , _lowerCamelCase = 80 , _lowerCamelCase = 7600 , _lowerCamelCase = 1e-10 , _lowerCamelCase = 2 , _lowerCamelCase = True , **_lowerCamelCase , ) -> List[Any]: super().__init__(feature_size=_lowerCamelCase , sampling_rate=_lowerCamelCase , padding_value=_lowerCamelCase , **_lowerCamelCase ) A_ : List[Any] = do_normalize A_ : Union[str, Any] = return_attention_mask A_ : Tuple = num_mel_bins A_ : List[str] = hop_length A_ : int = win_length A_ : Optional[int] = win_function A_ : List[Any] = frame_signal_scale A_ : str = fmin A_ : Optional[Any] = fmax A_ : Any = mel_floor A_ : Any = reduction_factor A_ : Tuple = win_length * sampling_rate // 1000 A_ : Dict = hop_length * sampling_rate // 1000 A_ : Dict = optimal_fft_length(self.sample_size ) A_ : str = (self.n_fft // 2) + 1 A_ : int = window_function(window_length=self.sample_size , name=self.win_function , periodic=_lowerCamelCase ) A_ : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm="""slaney""" , mel_scale="""slaney""" , ) if frame_signal_scale != 1.0: warnings.warn( """The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers""" , _lowerCamelCase , ) if reduction_factor != 2.0: warnings.warn( """The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers""" , _lowerCamelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase_ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0.0 ) -> List[np.ndarray]: if attention_mask is not None: A_ : Dict = np.array(_lowerCamelCase , np.intaa ) A_ : Dict = [] for vector, length in zip(_lowerCamelCase , attention_mask.sum(-1 ) ): A_ : Optional[int] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: A_ : Any = padding_value normed_input_values.append(_lowerCamelCase ) else: A_ : List[str] = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCAmelCase_ ( self , _lowerCamelCase , ) -> np.ndarray: A_ : int = spectrogram( _lowerCamelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel="""log10""" , ) return log_mel_spec.T def __call__( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> BatchFeature: if audio is None and audio_target is None: raise ValueError("""You must provide either `audio` or `audio_target` values.""" ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"The model corresponding to this feature extractor: {self} was trained using a sampling rate of" F" {self.sampling_rate}. Please make sure that the provided audio input was sampled with" F" {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the ``sampling_rate`` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) if audio is not None: A_ : Dict = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) else: A_ : Optional[int] = None if audio_target is not None: A_ : Union[str, Any] = self._process_audio( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase , ) if inputs is None: return inputs_target else: A_ : Optional[int] = inputs_target["""input_values"""] A_ : Tuple = inputs_target.get("""attention_mask""" ) if decoder_attention_mask is not None: A_ : int = decoder_attention_mask return inputs def UpperCAmelCase_ ( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = False , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , **_lowerCamelCase , ) -> BatchFeature: A_ : Optional[int] = isinstance(_lowerCamelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F"Only mono-channel audio is supported for input to {self}" ) A_ : List[str] = is_batched_numpy or ( isinstance(_lowerCamelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A_ : Union[str, Any] = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_lowerCamelCase , np.ndarray ): A_ : List[str] = np.asarray(_lowerCamelCase , dtype=np.floataa ) elif isinstance(_lowerCamelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): A_ : Optional[Any] = speech.astype(np.floataa ) # always return batch if not is_batched: A_ : int = [speech] # needed to make pad() work on spectrogram inputs A_ : List[Any] = self.feature_size # convert into correct format for padding if is_target: A_ : Tuple = [self._extract_mel_features(_lowerCamelCase ) for waveform in speech] A_ : Tuple = BatchFeature({"""input_values""": features} ) A_ : Dict = self.num_mel_bins else: A_ : Union[str, Any] = BatchFeature({"""input_values""": speech} ) A_ : Tuple = self.pad( _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase , pad_to_multiple_of=_lowerCamelCase , return_attention_mask=_lowerCamelCase , **_lowerCamelCase , ) A_ : Union[str, Any] = feature_size_hack # convert input values to correct format A_ : str = padded_inputs["""input_values"""] if not isinstance(input_values[0] , np.ndarray ): A_ : str = [np.asarray(_lowerCamelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_lowerCamelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): A_ : Tuple = [array.astype(np.floataa ) for array in input_values] elif isinstance(_lowerCamelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): A_ : List[Any] = input_values.astype(np.floataa ) # convert attention_mask to correct format A_ : Any = padded_inputs.get("""attention_mask""" ) if attention_mask is not None: A_ : str = [np.asarray(_lowerCamelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: A_ : Any = ( attention_mask if self._get_padding_strategies(_lowerCamelCase , max_length=_lowerCamelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) A_ : Any = self.zero_mean_unit_var_norm( padded_inputs["""input_values"""] , attention_mask=_lowerCamelCase , padding_value=self.padding_value ) if return_tensors is not None: A_ : Dict = padded_inputs.convert_to_tensors(_lowerCamelCase ) return padded_inputs def UpperCAmelCase_ ( self ) -> Dict[str, Any]: A_ : List[Any] = super().to_dict() # Don't serialize these as they are derived from the other properties. A_ : Optional[int] = ["""window""", """mel_filters""", """sample_size""", """sample_stride""", """n_fft""", """n_freqs"""] for name in names: if name in output: del output[name] return output
164
1
import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class UpperCAmelCase__ ( datasets.BuilderConfig ): """simple docstring""" a = None class UpperCAmelCase__ ( datasets.ArrowBasedBuilder ): """simple docstring""" a = PandasConfig def lowercase_ ( self : Optional[int] ) -> str: return datasets.DatasetInfo(features=self.config.features ) def lowercase_ ( self : int , __lowerCamelCase : Optional[Any] ) -> List[Any]: if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) SCREAMING_SNAKE_CASE__ = dl_manager.download_and_extract(self.config.data_files ) if isinstance(__a , (str, list, tuple) ): SCREAMING_SNAKE_CASE__ = data_files if isinstance(__a , __a ): SCREAMING_SNAKE_CASE__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(__a ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] SCREAMING_SNAKE_CASE__ = [] for split_name, files in data_files.items(): if isinstance(__a , __a ): SCREAMING_SNAKE_CASE__ = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive SCREAMING_SNAKE_CASE__ = [dl_manager.iter_files(__a ) for file in files] splits.append(datasets.SplitGenerator(name=__a , gen_kwargs={'''files''': files} ) ) return splits def lowercase_ ( self : int , __lowerCamelCase : pa.Table ) -> Tuple: if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example SCREAMING_SNAKE_CASE__ = table_cast(__a , self.config.features.arrow_schema ) return pa_table def lowercase_ ( self : str , __lowerCamelCase : str ) -> str: for i, file in enumerate(itertools.chain.from_iterable(__a ) ): with open(__a , '''rb''' ) as f: SCREAMING_SNAKE_CASE__ = pa.Table.from_pandas(pd.read_pickle(__a ) ) yield i, self._cast_table(__a )
314
'''simple docstring''' def _lowerCamelCase ( lowercase : int ) -> bool: _a = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
63
0
'''simple docstring''' import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class __snake_case ( unittest.TestCase): """simple docstring""" def __init__( self : List[str] , lowerCamelCase : Optional[int] , lowerCamelCase : Tuple=7 , lowerCamelCase : Union[str, Any]=3 , lowerCamelCase : int=30 , lowerCamelCase : Optional[int]=4_00 , lowerCamelCase : Tuple=True , lowerCamelCase : str=None , lowerCamelCase : Tuple=True , lowerCamelCase : List[Any]=[0.5, 0.5, 0.5] , lowerCamelCase : Tuple=[0.5, 0.5, 0.5] , lowerCamelCase : int=True , lowerCamelCase : Optional[Any]=1 / 2_55 , lowerCamelCase : Optional[Any]=True , ) -> str: lowerCAmelCase_ : Optional[int] = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} lowerCAmelCase_ : Optional[Any] = parent lowerCAmelCase_ : Optional[int] = batch_size lowerCAmelCase_ : int = num_channels lowerCAmelCase_ : Optional[int] = min_resolution lowerCAmelCase_ : List[str] = max_resolution lowerCAmelCase_ : str = do_resize lowerCAmelCase_ : str = size lowerCAmelCase_ : str = do_normalize lowerCAmelCase_ : List[str] = image_mean lowerCAmelCase_ : str = image_std lowerCAmelCase_ : Union[str, Any] = do_rescale lowerCAmelCase_ : Optional[Any] = rescale_factor lowerCAmelCase_ : List[str] = do_pad def __lowercase ( self : List[Any] ) -> Union[str, Any]: return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def __lowercase ( self : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : int=False ) -> Any: if not batched: lowerCAmelCase_ : Optional[int] = image_inputs[0] if isinstance(lowerCamelCase , Image.Image ): lowerCAmelCase_ : Dict = image.size else: lowerCAmelCase_ : List[str] = image.shape[1], image.shape[2] if w < h: lowerCAmelCase_ : Dict = int(self.size["""shortest_edge"""] * h / w ) lowerCAmelCase_ : int = self.size["shortest_edge"] elif w > h: lowerCAmelCase_ : Tuple = self.size["shortest_edge"] lowerCAmelCase_ : Tuple = int(self.size["""shortest_edge"""] * w / h ) else: lowerCAmelCase_ : Tuple = self.size["shortest_edge"] lowerCAmelCase_ : List[Any] = self.size["shortest_edge"] else: lowerCAmelCase_ : Optional[Any] = [] for image in image_inputs: lowerCAmelCase_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase_ : int = max(lowerCamelCase , key=lambda lowerCamelCase : item[0] )[0] lowerCAmelCase_ : int = max(lowerCamelCase , key=lambda lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class __snake_case ( lowerCamelCase__ ,unittest.TestCase): """simple docstring""" lowercase = DeformableDetrImageProcessor if is_vision_available() else None def __lowercase ( self : Tuple ) -> Tuple: lowerCAmelCase_ : Tuple = DeformableDetrImageProcessingTester(self ) @property def __lowercase ( self : Optional[int] ) -> str: return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : Tuple ) -> List[Any]: lowerCAmelCase_ : int = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase , """image_mean""" ) ) self.assertTrue(hasattr(lowerCamelCase , """image_std""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_normalize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_rescale""" ) ) self.assertTrue(hasattr(lowerCamelCase , """do_pad""" ) ) self.assertTrue(hasattr(lowerCamelCase , """size""" ) ) def __lowercase ( self : str ) -> Dict: lowerCAmelCase_ : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 13_33} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) lowerCAmelCase_ : Any = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=lowerCamelCase ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42, """longest_edge""": 84} ) self.assertEqual(image_processor.do_pad , lowerCamelCase ) def __lowercase ( self : Dict ) -> List[str]: pass def __lowercase ( self : List[Any] ) -> Any: lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , Image.Image ) # Test not batched input lowerCAmelCase_ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) lowerCAmelCase_ : Tuple = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : str ) -> Any: lowerCAmelCase_ : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase_ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , numpify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , np.ndarray ) # Test not batched input lowerCAmelCase_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ : Dict = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : str = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ : Optional[Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def __lowercase ( self : Tuple ) -> List[str]: lowerCAmelCase_ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase , torchify=lowerCamelCase ) for image in image_inputs: self.assertIsInstance(lowerCamelCase , torch.Tensor ) # Test not batched input lowerCAmelCase_ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ : Tuple = self.image_processor_tester.get_expected_values(lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase_ : Union[str, Any] = image_processing(lowerCamelCase , return_tensors="""pt""" ).pixel_values lowerCAmelCase_ : Union[str, Any] = self.image_processor_tester.get_expected_values(lowerCamelCase , batched=lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def __lowercase ( self : int ) -> int: lowerCAmelCase_ : List[Any] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: lowerCAmelCase_ : Optional[int] = json.loads(f.read() ) lowerCAmelCase_ : Tuple = {"image_id": 3_97_69, "annotations": target} # encode them lowerCAmelCase_ : Dict = DeformableDetrImageProcessor() lowerCAmelCase_ : Optional[int] = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase_ : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase ) lowerCAmelCase_ : str = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase_ : List[str] = torch.tensor([5_887.9_600, 11_250.2_061, 489_353.8_438, 837_122.7_500, 147_967.5_156, 165_732.3_438] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase ) ) # verify boxes lowerCAmelCase_ : Optional[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = torch.tensor([0.5_503, 0.2_765, 0.0_604, 0.2_215] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ : Any = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase ) ) # verify is_crowd lowerCAmelCase_ : Optional[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase ) ) # verify class_labels lowerCAmelCase_ : int = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase ) ) # verify orig_size lowerCAmelCase_ : Optional[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase ) ) # verify size lowerCAmelCase_ : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase ) ) @slow def __lowercase ( self : List[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Any = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: lowerCAmelCase_ : str = json.loads(f.read() ) lowerCAmelCase_ : Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} lowerCAmelCase_ : Optional[int] = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them lowerCAmelCase_ : List[Any] = DeformableDetrImageProcessor(format="""coco_panoptic""" ) lowerCAmelCase_ : Dict = image_processing(images=lowerCamelCase , annotations=lowerCamelCase , masks_path=lowerCamelCase , return_tensors="""pt""" ) # verify pixel values lowerCAmelCase_ : List[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["""pixel_values"""].shape , lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = torch.tensor([0.2_796, 0.3_138, 0.3_481] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , lowerCamelCase , atol=1E-4 ) ) # verify area lowerCAmelCase_ : Tuple = torch.tensor([147_979.6_875, 165_527.0_469, 484_638.5_938, 11_292.9_375, 5_879.6_562, 7_634.1_147] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , lowerCamelCase ) ) # verify boxes lowerCAmelCase_ : Dict = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , lowerCamelCase ) lowerCAmelCase_ : List[Any] = torch.tensor([0.2_625, 0.5_437, 0.4_688, 0.8_625] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , lowerCamelCase , atol=1E-3 ) ) # verify image_id lowerCAmelCase_ : Union[str, Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , lowerCamelCase ) ) # verify is_crowd lowerCAmelCase_ : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , lowerCamelCase ) ) # verify class_labels lowerCAmelCase_ : str = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , lowerCamelCase ) ) # verify masks lowerCAmelCase_ : Dict = 82_28_73 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , lowerCamelCase ) # verify orig_size lowerCAmelCase_ : List[Any] = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , lowerCamelCase ) ) # verify size lowerCAmelCase_ : str = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , lowerCamelCase ) )
354
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __A : str = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = _ask_options( """In which compute environment are you running?""" , ["""This machine""", """AWS (Amazon SageMaker)"""] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowerCAmelCase_ : str = get_sagemaker_input() else: lowerCAmelCase_ : Optional[int] = get_cluster_input() return config def UpperCamelCase_ ( A__ : Optional[Any]=None ): '''simple docstring''' if subparsers is not None: lowerCAmelCase_ : List[str] = subparsers.add_parser("""config""" , description=A__ ) else: lowerCAmelCase_ : Optional[int] = argparse.ArgumentParser("""Accelerate config command""" , description=A__ ) parser.add_argument( """--config_file""" , default=A__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=A__ ) return parser def UpperCamelCase_ ( A__ : Any ): '''simple docstring''' lowerCAmelCase_ : Dict = get_user_input() if args.config_file is not None: lowerCAmelCase_ : List[str] = args.config_file else: if not os.path.isdir(A__ ): os.makedirs(A__ ) lowerCAmelCase_ : List[Any] = default_yaml_config_file if config_file.endswith(""".json""" ): config.to_json_file(A__ ) else: config.to_yaml_file(A__ ) print(f'accelerate configuration saved at {config_file}' ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : str = config_command_parser() lowerCAmelCase_ : Tuple = parser.parse_args() config_command(A__ ) if __name__ == "__main__": main()
89
0
"""simple docstring""" import argparse import os from . import ( ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BART_PRETRAINED_MODEL_ARCHIVE_LIST, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, AlbertConfig, BartConfig, BertConfig, CamembertConfig, CTRLConfig, DistilBertConfig, DPRConfig, ElectraConfig, FlaubertConfig, GPTaConfig, LayoutLMConfig, LxmertConfig, OpenAIGPTConfig, RobertaConfig, TaConfig, TFAlbertForPreTraining, TFBartForConditionalGeneration, TFBartForSequenceClassification, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFCamembertForMaskedLM, TFCTRLLMHeadModel, TFDistilBertForMaskedLM, TFDistilBertForQuestionAnswering, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, TFElectraForPreTraining, TFFlaubertWithLMHeadModel, TFGPTaLMHeadModel, TFLayoutLMForMaskedLM, TFLxmertForPreTraining, TFLxmertVisualFeatureEncoder, TFOpenAIGPTLMHeadModel, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForSequenceClassification, TFTaForConditionalGeneration, TFTransfoXLLMHeadModel, TFWavaVecaModel, TFXLMRobertaForMaskedLM, TFXLMWithLMHeadModel, TFXLNetLMHeadModel, TransfoXLConfig, WavaVecaConfig, WavaVecaModel, XLMConfig, XLMRobertaConfig, XLNetConfig, is_torch_available, load_pytorch_checkpoint_in_tfa_model, ) from .utils import CONFIG_NAME, WEIGHTS_NAME, cached_file, logging if is_torch_available(): import numpy as np import torch from . import ( AlbertForPreTraining, BartForConditionalGeneration, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, CamembertForMaskedLM, CTRLLMHeadModel, DistilBertForMaskedLM, DistilBertForQuestionAnswering, DPRContextEncoder, DPRQuestionEncoder, DPRReader, ElectraForPreTraining, FlaubertWithLMHeadModel, GPTaLMHeadModel, LayoutLMForMaskedLM, LxmertForPreTraining, LxmertVisualFeatureEncoder, OpenAIGPTLMHeadModel, RobertaForMaskedLM, RobertaForSequenceClassification, TaForConditionalGeneration, TransfoXLLMHeadModel, XLMRobertaForMaskedLM, XLMWithLMHeadModel, XLNetLMHeadModel, ) logging.set_verbosity_info() __A = { '''bart''': ( BartConfig, TFBartForConditionalGeneration, TFBartForSequenceClassification, BartForConditionalGeneration, BART_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''bert''': ( BertConfig, TFBertForPreTraining, BertForPreTraining, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-uncased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-large-cased-whole-word-masking-finetuned-squad''': ( BertConfig, TFBertForQuestionAnswering, BertForQuestionAnswering, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''bert-base-cased-finetuned-mrpc''': ( BertConfig, TFBertForSequenceClassification, BertForSequenceClassification, BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''dpr''': ( DPRConfig, TFDPRQuestionEncoder, TFDPRContextEncoder, TFDPRReader, DPRQuestionEncoder, DPRContextEncoder, DPRReader, DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''gpt2''': ( GPTaConfig, TFGPTaLMHeadModel, GPTaLMHeadModel, GPT2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlnet''': ( XLNetConfig, TFXLNetLMHeadModel, XLNetLMHeadModel, XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm''': ( XLMConfig, TFXLMWithLMHeadModel, XLMWithLMHeadModel, XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''xlm-roberta''': ( XLMRobertaConfig, TFXLMRobertaForMaskedLM, XLMRobertaForMaskedLM, XLM_ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''transfo-xl''': ( TransfoXLConfig, TFTransfoXLLMHeadModel, TransfoXLLMHeadModel, TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''openai-gpt''': ( OpenAIGPTConfig, TFOpenAIGPTLMHeadModel, OpenAIGPTLMHeadModel, OPENAI_GPT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''roberta''': ( RobertaConfig, TFRobertaForCausalLM, TFRobertaForMaskedLM, RobertaForMaskedLM, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''layoutlm''': ( LayoutLMConfig, TFLayoutLMForMaskedLM, LayoutLMForMaskedLM, LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, ), '''roberta-large-mnli''': ( RobertaConfig, TFRobertaForSequenceClassification, RobertaForSequenceClassification, ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''camembert''': ( CamembertConfig, TFCamembertForMaskedLM, CamembertForMaskedLM, CAMEMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''flaubert''': ( FlaubertConfig, TFFlaubertWithLMHeadModel, FlaubertWithLMHeadModel, FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert''': ( DistilBertConfig, TFDistilBertForMaskedLM, DistilBertForMaskedLM, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''distilbert-base-distilled-squad''': ( DistilBertConfig, TFDistilBertForQuestionAnswering, DistilBertForQuestionAnswering, DISTILBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert''': ( LxmertConfig, TFLxmertForPreTraining, LxmertForPreTraining, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''lxmert-visual-feature-encoder''': ( LxmertConfig, TFLxmertVisualFeatureEncoder, LxmertVisualFeatureEncoder, LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''ctrl''': ( CTRLConfig, TFCTRLLMHeadModel, CTRLLMHeadModel, CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''albert''': ( AlbertConfig, TFAlbertForPreTraining, AlbertForPreTraining, ALBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''t5''': ( TaConfig, TFTaForConditionalGeneration, TaForConditionalGeneration, T5_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''electra''': ( ElectraConfig, TFElectraForPreTraining, ElectraForPreTraining, ELECTRA_PRETRAINED_CONFIG_ARCHIVE_MAP, ), '''wav2vec2''': ( WavaVecaConfig, TFWavaVecaModel, WavaVecaModel, WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, ), } def lowercase_ ( _lowerCamelCase: Any , _lowerCamelCase: List[str] , _lowerCamelCase: List[Any] , _lowerCamelCase: Any , _lowerCamelCase: Optional[Any]=False , _lowerCamelCase: List[str]=True ) -> Any: '''simple docstring''' if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type, should be one of {list(MODEL_CLASSES.keys() )}.""" ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Any = MODEL_CLASSES[model_type] # Initialise TF model if config_file in aws_config_map: __lowerCamelCase : Optional[Any] = cached_file(_lowerCamelCase , _lowerCamelCase , force_download=not use_cached_models ) __lowerCamelCase : Union[str, Any] = config_class.from_json_file(_lowerCamelCase ) __lowerCamelCase : List[str] = True __lowerCamelCase : Dict = True print(F"""Building TensorFlow model from configuration: {config}""" ) __lowerCamelCase : Optional[Any] = model_class(_lowerCamelCase ) # Load weights from tf checkpoint if pytorch_checkpoint_path in aws_config_map.keys(): __lowerCamelCase : int = cached_file( _lowerCamelCase , _lowerCamelCase , force_download=not use_cached_models ) # Load PyTorch checkpoint in tf2 model: __lowerCamelCase : Any = load_pytorch_checkpoint_in_tfa_model(_lowerCamelCase , _lowerCamelCase ) if compare_with_pt_model: __lowerCamelCase : List[str] = tf_model(tf_model.dummy_inputs , training=_lowerCamelCase ) # build the network __lowerCamelCase : str = torch.load(_lowerCamelCase , map_location="cpu" ) __lowerCamelCase : Tuple = pt_model_class.from_pretrained( pretrained_model_name_or_path=_lowerCamelCase , config=_lowerCamelCase , state_dict=_lowerCamelCase ) with torch.no_grad(): __lowerCamelCase : Tuple = pt_model(**pt_model.dummy_inputs ) __lowerCamelCase : List[str] = pto[0].numpy() __lowerCamelCase : str = tfo[0].numpy() __lowerCamelCase : Optional[Any] = np.amax(np.abs(np_pt - np_tf ) ) print(F"""Max absolute difference between models outputs {diff}""" ) assert diff <= 2E-2, F"""Error, model absolute difference is >2e-2: {diff}""" # Save pytorch-model print(F"""Save TensorFlow model to {tf_dump_path}""" ) tf_model.save_weights(_lowerCamelCase , save_format="h5" ) def lowercase_ ( _lowerCamelCase: List[str] , _lowerCamelCase: Dict , _lowerCamelCase: Union[str, Any]=None , _lowerCamelCase: int=None , _lowerCamelCase: str=False , _lowerCamelCase: Tuple=False , _lowerCamelCase: List[Any]=False , _lowerCamelCase: Any=False , ) -> Optional[int]: '''simple docstring''' if args_model_type is None: __lowerCamelCase : List[Any] = list(MODEL_CLASSES.keys() ) else: __lowerCamelCase : List[str] = [args_model_type] for j, model_type in enumerate(_lowerCamelCase , start=1 ): print("=" * 100 ) print(F""" Converting model type {j}/{len(_lowerCamelCase )}: {model_type}""" ) print("=" * 100 ) if model_type not in MODEL_CLASSES: raise ValueError(F"""Unrecognized model type {model_type}, should be one of {list(MODEL_CLASSES.keys() )}.""" ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Union[str, Any] = MODEL_CLASSES[model_type] if model_shortcut_names_or_path is None: __lowerCamelCase : Tuple = list(aws_model_maps.keys() ) if config_shortcut_names_or_path is None: __lowerCamelCase : str = model_shortcut_names_or_path for i, (model_shortcut_name, config_shortcut_name) in enumerate( zip(_lowerCamelCase , _lowerCamelCase ) , start=1 ): print("-" * 100 ) if "-squad" in model_shortcut_name or "-mrpc" in model_shortcut_name or "-mnli" in model_shortcut_name: if not only_convert_finetuned_models: print(F""" Skipping finetuned checkpoint {model_shortcut_name}""" ) continue __lowerCamelCase : Optional[Any] = model_shortcut_name elif only_convert_finetuned_models: print(F""" Skipping not finetuned checkpoint {model_shortcut_name}""" ) continue print( F""" Converting checkpoint {i}/{len(_lowerCamelCase )}: {model_shortcut_name} - model_type {model_type}""" ) print("-" * 100 ) if config_shortcut_name in aws_config_map: __lowerCamelCase : Optional[Any] = cached_file(_lowerCamelCase , _lowerCamelCase , force_download=not use_cached_models ) else: __lowerCamelCase : Any = config_shortcut_name if model_shortcut_name in aws_model_maps: __lowerCamelCase : Optional[Any] = cached_file(_lowerCamelCase , _lowerCamelCase , force_download=not use_cached_models ) else: __lowerCamelCase : List[Any] = model_shortcut_name if os.path.isfile(_lowerCamelCase ): __lowerCamelCase : Any = "converted_model" convert_pt_checkpoint_to_tf( model_type=_lowerCamelCase , pytorch_checkpoint_path=_lowerCamelCase , config_file=_lowerCamelCase , tf_dump_path=os.path.join(_lowerCamelCase , model_shortcut_name + "-tf_model.h5" ) , compare_with_pt_model=_lowerCamelCase , ) if remove_cached_files: os.remove(_lowerCamelCase ) os.remove(_lowerCamelCase ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_dump_path''', default=None, type=str, required=True, help='''Path to the output Tensorflow dump file.''' ) parser.add_argument( '''--model_type''', default=None, type=str, help=( F"""Model type selected in the list of {list(MODEL_CLASSES.keys())}. If not given, will download and """ '''convert all the models from AWS.''' ), ) parser.add_argument( '''--pytorch_checkpoint_path''', default=None, type=str, help=( '''Path to the PyTorch checkpoint path or shortcut name to download from AWS. ''' '''If not given, will download and convert all the checkpoints from AWS.''' ), ) parser.add_argument( '''--config_file''', default=None, type=str, help=( '''The config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture. If not given and ''' '''--pytorch_checkpoint_path is not given or is a shortcut name ''' '''use the configuration associated to the shortcut name on the AWS''' ), ) parser.add_argument( '''--compare_with_pt_model''', action='''store_true''', help='''Compare Tensorflow and PyTorch model predictions.''' ) parser.add_argument( '''--use_cached_models''', action='''store_true''', help='''Use cached models if possible instead of updating to latest checkpoint versions.''', ) parser.add_argument( '''--remove_cached_files''', action='''store_true''', help='''Remove pytorch models after conversion (save memory when converting in batches).''', ) parser.add_argument('''--only_convert_finetuned_models''', action='''store_true''', help='''Only convert finetuned models.''') __A = parser.parse_args() # if args.pytorch_checkpoint_path is not None: # convert_pt_checkpoint_to_tf(args.model_type.lower(), # args.pytorch_checkpoint_path, # args.config_file if args.config_file is not None else args.pytorch_checkpoint_path, # args.tf_dump_path, # compare_with_pt_model=args.compare_with_pt_model, # use_cached_models=args.use_cached_models) # else: convert_all_pt_checkpoints_to_tf( args.model_type.lower() if args.model_type is not None else None, args.tf_dump_path, model_shortcut_names_or_path=[args.pytorch_checkpoint_path] if args.pytorch_checkpoint_path is not None else None, config_shortcut_names_or_path=[args.config_file] if args.config_file is not None else None, compare_with_pt_model=args.compare_with_pt_model, use_cached_models=args.use_cached_models, remove_cached_files=args.remove_cached_files, only_convert_finetuned_models=args.only_convert_finetuned_models, )
135
"""simple docstring""" import re def lowercase_ ( _lowerCamelCase: str ) -> bool: '''simple docstring''' __lowerCamelCase : Union[str, Any] = re.compile( r"^(?:0|94|\+94|0{2}94)" r"7(0|1|2|4|5|6|7|8)" r"(-| |)" r"\d{7}$" ) return bool(re.search(_lowerCamelCase , _lowerCamelCase ) ) if __name__ == "__main__": __A = '''0094702343221''' print(is_sri_lankan_phone_number(phone))
135
1
"""simple docstring""" import logging import os from dataclasses import dataclass, field from typing import Dict, Optional import datasets import numpy as np import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, EvalPrediction, HfArgumentParser, PreTrainedTokenizer, TFAutoModelForSequenceClassification, TFTrainer, TFTrainingArguments, ) from transformers.utils import logging as hf_logging hf_logging.set_verbosity_info() hf_logging.enable_default_handler() hf_logging.enable_explicit_format() def _snake_case ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Any , lowerCamelCase__ : str , lowerCamelCase__ : int , lowerCamelCase__ : List[Any] = None , ) -> Tuple: lowerCamelCase_ : List[str] ={} if train_file is not None: lowerCamelCase_ : Tuple =[train_file] if eval_file is not None: lowerCamelCase_ : List[str] =[eval_file] if test_file is not None: lowerCamelCase_ : List[Any] =[test_file] lowerCamelCase_ : List[Any] =datasets.load_dataset("csv" , data_files=__lowerCAmelCase ) lowerCamelCase_ : Optional[int] =list(ds[list(files.keys() )[0]].features.keys() ) lowerCamelCase_ : List[str] =features_name.pop(__lowerCAmelCase ) lowerCamelCase_ : Optional[Any] =list(set(ds[list(files.keys() )[0]][label_name] ) ) lowerCamelCase_ : Optional[Any] ={label: i for i, label in enumerate(__lowerCAmelCase )} lowerCamelCase_ : int =tokenizer.model_input_names lowerCamelCase_ : List[Any] ={} if len(__lowerCAmelCase ) == 1: for k in files.keys(): lowerCamelCase_ : Optional[int] =ds[k].map( lambda lowerCamelCase__ : tokenizer.batch_encode_plus( example[features_name[0]] , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" ) , batched=__lowerCAmelCase , ) elif len(__lowerCAmelCase ) == 2: for k in files.keys(): lowerCamelCase_ : Optional[Any] =ds[k].map( lambda lowerCamelCase__ : tokenizer.batch_encode_plus( (example[features_name[0]], example[features_name[1]]) , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , padding="max_length" , ) , batched=__lowerCAmelCase , ) def gen_train(): for ex in transformed_ds[datasets.Split.TRAIN]: lowerCamelCase_ : int ={k: v for k, v in ex.items() if k in input_names} lowerCamelCase_ : Union[str, Any] =labelaid[ex[label_name]] yield (d, label) def gen_val(): for ex in transformed_ds[datasets.Split.VALIDATION]: lowerCamelCase_ : Optional[Any] ={k: v for k, v in ex.items() if k in input_names} lowerCamelCase_ : List[str] =labelaid[ex[label_name]] yield (d, label) def gen_test(): for ex in transformed_ds[datasets.Split.TEST]: lowerCamelCase_ : List[Any] ={k: v for k, v in ex.items() if k in input_names} lowerCamelCase_ : Any =labelaid[ex[label_name]] yield (d, label) lowerCamelCase_ : List[Any] =( tf.data.Dataset.from_generator( __lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TRAIN in transformed_ds else None ) if train_ds is not None: lowerCamelCase_ : str =train_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TRAIN] ) ) ) lowerCamelCase_ : Tuple =( tf.data.Dataset.from_generator( __lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.VALIDATION in transformed_ds else None ) if val_ds is not None: lowerCamelCase_ : List[Any] =val_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.VALIDATION] ) ) ) lowerCamelCase_ : List[Any] =( tf.data.Dataset.from_generator( __lowerCAmelCase , ({k: tf.intaa for k in input_names}, tf.intaa) , ({k: tf.TensorShape([None] ) for k in input_names}, tf.TensorShape([] )) , ) if datasets.Split.TEST in transformed_ds else None ) if test_ds is not None: lowerCamelCase_ : Optional[int] =test_ds.apply(tf.data.experimental.assert_cardinality(len(ds[datasets.Split.TEST] ) ) ) return train_ds, val_ds, test_ds, labelaid A__ : List[Any] = logging.getLogger(__name__) @dataclass class lowercase__ : _UpperCAmelCase :int = field(metadata={"help": "Which column contains the label"} ) _UpperCAmelCase :str = field(default=UpperCamelCase_, metadata={"help": "The path of the training file"} ) _UpperCAmelCase :Optional[str] = field(default=UpperCamelCase_, metadata={"help": "The path of the development file"} ) _UpperCAmelCase :Optional[str] = field(default=UpperCamelCase_, metadata={"help": "The path of the test file"} ) _UpperCAmelCase :int = field( default=128, metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) }, ) _UpperCAmelCase :bool = field( default=UpperCamelCase_, metadata={"help": "Overwrite the cached training and evaluation sets"} ) @dataclass class lowercase__ : _UpperCAmelCase :str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _UpperCAmelCase :Optional[str] = field( default=UpperCamelCase_, metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _UpperCAmelCase :Optional[str] = field( default=UpperCamelCase_, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _UpperCAmelCase :bool = field(default=UpperCamelCase_, metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCAmelCase :Optional[str] = field( default=UpperCamelCase_, metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"}, ) def _snake_case ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCamelCase_ : Optional[Any] =HfArgumentParser((ModelArguments, DataTrainingArguments, TFTrainingArguments) ) lowerCamelCase_ : Optional[int] =parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" " --overwrite_output_dir to overcome." ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , level=logging.INFO , ) logger.info( F"""n_replicas: {training_args.n_replicas}, distributed training: {bool(training_args.n_replicas > 1 )}, """ F"""16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCamelCase_ : List[Any] =AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowerCamelCase_ : Union[str, Any] =get_tfds( train_file=data_args.train_file , eval_file=data_args.dev_file , test_file=data_args.test_file , tokenizer=__lowerCAmelCase , label_column_id=data_args.label_column_id , max_seq_length=data_args.max_seq_length , ) lowerCamelCase_ : List[str] =AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=len(__lowerCAmelCase ) , labelaid=__lowerCAmelCase , idalabel={id: label for label, id in labelaid.items()} , finetuning_task="text-classification" , cache_dir=model_args.cache_dir , ) with training_args.strategy.scope(): lowerCamelCase_ : Any =TFAutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_pt=bool(".bin" in model_args.model_name_or_path ) , config=__lowerCAmelCase , cache_dir=model_args.cache_dir , ) def compute_metrics(lowerCamelCase__ : Union[str, Any] ) -> Dict: lowerCamelCase_ : Optional[int] =np.argmax(p.predictions , axis=1 ) return {"acc": (preds == p.label_ids).mean()} # Initialize our Trainer lowerCamelCase_ : str =TFTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , compute_metrics=__lowerCAmelCase , ) # Training if training_args.do_train: trainer.train() trainer.save_model() tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowerCamelCase_ : Union[str, Any] ={} if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCamelCase_ : Union[str, Any] =trainer.evaluate() lowerCamelCase_ : Tuple =os.path.join(training_args.output_dir , "eval_results.txt" ) with open(__lowerCAmelCase , "w" ) as writer: logger.info("***** Eval results *****" ) for key, value in result.items(): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) results.update(__lowerCAmelCase ) return results if __name__ == "__main__": main()
362
"""simple docstring""" import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer A__ : Tuple = logging.get_logger(__name__) A__ : Tuple = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} A__ : List[Any] = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Optional[int] = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : int = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } A__ : Dict = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } A__ : Dict = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } A__ : Any = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } A__ : Union[str, Any] = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } A__ : Tuple = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } A__ : Any = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class lowercase__ ( snake_case__ ): _UpperCAmelCase :List[Any] = VOCAB_FILES_NAMES _UpperCAmelCase :Dict = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Any = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Tuple = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class lowercase__ ( snake_case__ ): _UpperCAmelCase :str = VOCAB_FILES_NAMES _UpperCAmelCase :Tuple = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Dict = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION A__ : Union[str, Any] = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) A__ : Union[str, Any] = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) A__ : List[Any] = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(snake_case__ ) class lowercase__ : def __call__( self : List[str] , snake_case__ : List[str] , snake_case__ : Optional[str] = None , snake_case__ : Optional[str] = None , snake_case__ : Union[bool, str] = False , snake_case__ : Union[bool, str] = False , snake_case__ : Optional[int] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : Optional[bool] = None , **snake_case__ : Tuple , ): if titles is None and texts is None: return super().__call__( snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) elif titles is None or texts is None: lowerCamelCase_ : Dict =titles if texts is None else texts return super().__call__( snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ , return_attention_mask=snake_case__ , **snake_case__ , ) lowerCamelCase_ : Tuple =titles if not isinstance(snake_case__ , snake_case__ ) else [titles] lowerCamelCase_ : List[str] =texts if not isinstance(snake_case__ , snake_case__ ) else [texts] lowerCamelCase_ : int =len(snake_case__ ) lowerCamelCase_ : Any =questions if not isinstance(snake_case__ , snake_case__ ) else [questions] * n_passages if len(snake_case__ ) != len(snake_case__ ): raise ValueError( F"""There should be as many titles than texts but got {len(snake_case__ )} titles and {len(snake_case__ )} texts.""" ) lowerCamelCase_ : Any =super().__call__(snake_case__ , snake_case__ , padding=snake_case__ , truncation=snake_case__ )["input_ids"] lowerCamelCase_ : Union[str, Any] =super().__call__(snake_case__ , add_special_tokens=snake_case__ , padding=snake_case__ , truncation=snake_case__ )["input_ids"] lowerCamelCase_ : str ={ "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(snake_case__ , snake_case__ ) ] } if return_attention_mask is not False: lowerCamelCase_ : List[Any] =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) lowerCamelCase_ : Optional[int] =attention_mask return self.pad(snake_case__ , padding=snake_case__ , max_length=snake_case__ , return_tensors=snake_case__ ) def UpperCAmelCase__ ( self : str , snake_case__ : BatchEncoding , snake_case__ : DPRReaderOutput , snake_case__ : int = 16 , snake_case__ : int = 64 , snake_case__ : int = 4 , ): lowerCamelCase_ : str =reader_input["input_ids"] lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : str =reader_output[:3] lowerCamelCase_ : List[Any] =len(snake_case__ ) lowerCamelCase_ : Any =sorted(range(snake_case__ ) , reverse=snake_case__ , key=relevance_logits.__getitem__ ) lowerCamelCase_ : List[DPRReaderOutput] =[] for doc_id in sorted_docs: lowerCamelCase_ : int =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence lowerCamelCase_ : List[Any] =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCamelCase_ : Optional[int] =sequence_ids.index(self.pad_token_id ) else: lowerCamelCase_ : int =len(snake_case__ ) lowerCamelCase_ : int =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=snake_case__ , top_spans=snake_case__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=snake_case__ , start_index=snake_case__ , end_index=snake_case__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(snake_case__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def UpperCAmelCase__ ( self : Any , snake_case__ : List[int] , snake_case__ : List[int] , snake_case__ : int , snake_case__ : int , ): lowerCamelCase_ : Any =[] for start_index, start_score in enumerate(snake_case__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) lowerCamelCase_ : List[str] =sorted(snake_case__ , key=lambda snake_case__ : x[1] , reverse=snake_case__ ) lowerCamelCase_ : List[Any] =[] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""" ) lowerCamelCase_ : Tuple =end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""" ) if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(snake_case__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(snake_case__ ) class lowercase__ ( snake_case__, snake_case__ ): _UpperCAmelCase :List[str] = VOCAB_FILES_NAMES _UpperCAmelCase :Union[str, Any] = READER_PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :int = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :int = READER_PRETRAINED_INIT_CONFIGURATION _UpperCAmelCase :Optional[Any] = ["input_ids", "attention_mask"]
209
0
from queue import PriorityQueue from typing import Any import numpy as np def a__ ( A_, A_, A_, A_, A_, A_, A_, A_, A_, ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue __magic_name__ = cst_fwd.get(A_, np.inf ) __magic_name__ = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) __magic_name__ = new_cost_f __magic_name__ = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: __magic_name__ = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def a__ ( A_, A_, A_, A_ ): '''simple docstring''' __magic_name__ = -1 __magic_name__ = set() __magic_name__ = set() __magic_name__ = {source: 0} __magic_name__ = {destination: 0} __magic_name__ = {source: None} __magic_name__ = {destination: None} __magic_name__ = PriorityQueue() __magic_name__ = PriorityQueue() __magic_name__ = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): __magic_name__ , __magic_name__ = queue_forward.get() visited_forward.add(A_ ) __magic_name__ , __magic_name__ = queue_backward.get() visited_backward.add(A_ ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) __magic_name__ = pass_and_relaxation( A_, A_, A_, A_, A_, A_, A_, A_, A_, ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: __magic_name__ = shortest_distance return shortest_path_distance __lowerCAmelCase : Optional[Any] = { 'B': [['C', 1]], 'C': [['D', 1]], 'D': [['F', 1]], 'E': [['B', 1], ['G', 2]], 'F': [], 'G': [['F', 1]], } __lowerCAmelCase : Optional[Any] = { 'B': [['E', 1]], 'C': [['B', 1]], 'D': [['C', 1]], 'F': [['D', 1], ['G', 1]], 'E': [[None, np.inf]], 'G': [['E', 2]], } if __name__ == "__main__": import doctest doctest.testmod()
88
import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def a__ ( A_ ): '''simple docstring''' __magic_name__ = [ """decoder.version""", """decoder.output_projection.weight""", """_float_tensor""", """decoder.embed_positions._float_tensor""", ] for k in ignore_keys: state_dict.pop(A_, A_ ) def a__ ( A_ ): '''simple docstring''' __magic_name__ , __magic_name__ = emb.weight.shape __magic_name__ = nn.Linear(A_, A_, bias=A_ ) __magic_name__ = emb.weight.data return lin_layer def a__ ( A_ ): '''simple docstring''' __magic_name__ = torch.load(A_, map_location="""cpu""" ) __magic_name__ = Namespace(**checkpoint["""cfg"""]["""model"""] ) __magic_name__ = checkpoint["""model"""] remove_ignore_keys_(A_ ) __magic_name__ = state_dict["""decoder.embed_tokens.weight"""].shape[0] __magic_name__ = {key.replace("""decoder""", """model""" ): val for key, val in state_dict.items()} __magic_name__ = XGLMConfig( vocab_size=A_, max_position_embeddings=args.max_target_positions, num_layers=args.decoder_layers, attention_heads=args.decoder_attention_heads, ffn_dim=args.decoder_ffn_embed_dim, d_model=args.decoder_embed_dim, layerdrop=args.decoder_layerdrop, dropout=args.dropout, attention_dropout=args.attention_dropout, activation_dropout=args.activation_dropout, activation_function="""gelu""", scale_embedding=not args.no_scale_embedding, tie_word_embeddings=args.share_decoder_input_output_embed, ) __magic_name__ = XGLMForCausalLM(A_ ) __magic_name__ = model.load_state_dict(A_, strict=A_ ) print(A_ ) __magic_name__ = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": __lowerCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __lowerCAmelCase : List[str] = parser.parse_args() __lowerCAmelCase : str = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
88
1
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class snake_case_ ( __lowercase ,unittest.TestCase ): A_ = ShapEImgaImgPipeline A_ = ['image'] A_ = ['image'] A_ = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] A_ = False @property def UpperCAmelCase__ ( self : Dict )->Optional[Any]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : Any )->Optional[Any]: '''simple docstring''' return 32 @property def UpperCAmelCase__ ( self : List[Any] )->Any: '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase__ ( self : int )->int: '''simple docstring''' return 8 @property def UpperCAmelCase__ ( self : Optional[Any] )->Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) __lowerCAmelCase : int = CLIPVisionModel(_snake_case ) return model @property def UpperCAmelCase__ ( self : Optional[Any] )->Dict: '''simple docstring''' __lowerCAmelCase : List[str] = CLIPImageProcessor( crop_size=224 , do_center_crop=_snake_case , do_normalize=_snake_case , do_resize=_snake_case , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor @property def UpperCAmelCase__ ( self : Dict )->Tuple: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : str = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } __lowerCAmelCase : List[str] = PriorTransformer(**_snake_case ) return model @property def UpperCAmelCase__ ( self : str )->Dict: '''simple docstring''' torch.manual_seed(0 ) __lowerCAmelCase : Any = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } __lowerCAmelCase : Any = ShapERenderer(**_snake_case ) return model def UpperCAmelCase__ ( self : Any )->List[Any]: '''simple docstring''' __lowerCAmelCase : Dict = self.dummy_prior __lowerCAmelCase : str = self.dummy_image_encoder __lowerCAmelCase : Tuple = self.dummy_image_processor __lowerCAmelCase : Union[str, Any] = self.dummy_renderer __lowerCAmelCase : str = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=_snake_case , clip_sample=_snake_case , clip_sample_range=1.0 , ) __lowerCAmelCase : str = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def UpperCAmelCase__ ( self : Optional[Any] , _snake_case : Tuple , _snake_case : Dict=0 )->str: '''simple docstring''' __lowerCAmelCase : Optional[Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_snake_case ) ).to(_snake_case ) if str(_snake_case ).startswith("""mps""" ): __lowerCAmelCase : Optional[Any] = torch.manual_seed(_snake_case ) else: __lowerCAmelCase : Dict = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) __lowerCAmelCase : Tuple = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def UpperCAmelCase__ ( self : Any )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Dict = """cpu""" __lowerCAmelCase : Dict = self.get_dummy_components() __lowerCAmelCase : Optional[int] = self.pipeline_class(**_snake_case ) __lowerCAmelCase : List[str] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCAmelCase : Dict = pipe(**self.get_dummy_inputs(_snake_case ) ) __lowerCAmelCase : List[Any] = output.images[0] __lowerCAmelCase : str = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCAmelCase : Union[str, Any] = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : str )->Optional[Any]: '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def UpperCAmelCase__ ( self : Dict )->List[Any]: '''simple docstring''' __lowerCAmelCase : int = torch_device == """cpu""" __lowerCAmelCase : List[Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_snake_case , relax_max_difference=_snake_case , ) def UpperCAmelCase__ ( self : str )->List[Any]: '''simple docstring''' __lowerCAmelCase : int = self.get_dummy_components() __lowerCAmelCase : Dict = self.pipeline_class(**_snake_case ) __lowerCAmelCase : int = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCAmelCase : List[Any] = 1 __lowerCAmelCase : Tuple = 2 __lowerCAmelCase : Any = self.get_dummy_inputs(_snake_case ) for key in inputs.keys(): if key in self.batch_params: __lowerCAmelCase : Dict = batch_size * [inputs[key]] __lowerCAmelCase : Optional[int] = pipe(**_snake_case , num_images_per_prompt=_snake_case )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class snake_case_ ( unittest.TestCase ): def UpperCAmelCase__ ( self : str )->Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase__ ( self : List[Any] )->Optional[Any]: '''simple docstring''' __lowerCAmelCase : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) __lowerCAmelCase : Any = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) __lowerCAmelCase : List[Any] = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) __lowerCAmelCase : List[Any] = pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) __lowerCAmelCase : Optional[Any] = torch.Generator(device=_snake_case ).manual_seed(0 ) __lowerCAmelCase : List[str] = pipe( _snake_case , generator=_snake_case , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_snake_case , _snake_case )
359
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :list[list[int | float]] ) -> int: __lowerCAmelCase : str = len(SCREAMING_SNAKE_CASE ) __lowerCAmelCase : Optional[int] = len(matrix[0] ) __lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for row in range(SCREAMING_SNAKE_CASE ): # Check if diagonal element is not zero if matrix[row][row] != 0: # Eliminate all the elements below the diagonal for col in range(row + 1 , SCREAMING_SNAKE_CASE ): __lowerCAmelCase : Union[str, Any] = matrix[col][row] / matrix[row][row] for i in range(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): matrix[col][i] -= multiplier * matrix[row][i] else: # Find a non-zero diagonal element to swap rows __lowerCAmelCase : Optional[int] = True for i in range(row + 1 , SCREAMING_SNAKE_CASE ): if matrix[i][row] != 0: __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = matrix[i], matrix[row] __lowerCAmelCase : Union[str, Any] = False break if reduce: rank -= 1 for i in range(SCREAMING_SNAKE_CASE ): __lowerCAmelCase : int = matrix[i][rank] # Reduce the row pointer by one to stay on the same row row -= 1 return rank if __name__ == "__main__": import doctest doctest.testmod()
232
0
'''simple docstring''' from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput __A = 8 def _A ( lowercase__ , lowercase__=BITS ): lowercase__ = x.device lowercase__ = (x * 255).int().clamp(0 , 255 ) lowercase__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase__ ) lowercase__ = rearrange(lowercase__ , """d -> d 1 1""" ) lowercase__ = rearrange(lowercase__ , """b c h w -> b c 1 h w""" ) lowercase__ = ((x & mask) != 0).float() lowercase__ = rearrange(lowercase__ , """b c d h w -> b (c d) h w""" ) lowercase__ = bits * 2 - 1 return bits def _A ( lowercase__ , lowercase__=BITS ): lowercase__ = x.device lowercase__ = (x > 0).int() lowercase__ = 2 ** torch.arange(bits - 1 , -1 , -1 , device=lowercase__ , dtype=torch.intaa ) lowercase__ = rearrange(lowercase__ , """d -> d 1 1""" ) lowercase__ = rearrange(lowercase__ , """b (c d) h w -> b c d h w""" , d=8 ) lowercase__ = reduce(x * mask , """b c d h w -> b c h w""" , """sum""" ) return (dec / 255).clamp(0.0 , 1.0 ) def _A ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = 0.0 , lowercase__ = True , lowercase__=None , lowercase__ = True , ): if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) lowercase__ = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas lowercase__ = self.alphas_cumprod[timestep] lowercase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod lowercase__ = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" lowercase__ = self.bit_scale if self.config.clip_sample: lowercase__ = torch.clamp(lowercase__ , -scale , lowercase__ ) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) lowercase__ = self._get_variance(lowercase__ , lowercase__ ) lowercase__ = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide lowercase__ = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf lowercase__ = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 lowercase__ = model_output.device if torch.is_tensor(lowercase__ ) else """cpu""" lowercase__ = torch.randn(model_output.shape , dtype=model_output.dtype , generator=lowercase__ ).to(lowercase__ ) lowercase__ = self._get_variance(lowercase__ , lowercase__ ) ** 0.5 * eta * noise lowercase__ = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=lowercase__ , pred_original_sample=lowercase__ ) def _A ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__="epsilon" , lowercase__=None , lowercase__ = True , ): lowercase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: lowercase__ , lowercase__ = torch.split(lowercase__ , sample.shape[1] , dim=1 ) else: lowercase__ = None # 1. compute alphas, betas lowercase__ = self.alphas_cumprod[t] lowercase__ = self.alphas_cumprod[t - 1] if t > 0 else self.one lowercase__ = 1 - alpha_prod_t lowercase__ = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": lowercase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": lowercase__ = model_output else: raise ValueError(f'''Unsupported prediction_type {prediction_type}.''' ) # 3. Clip "predicted x_0" lowercase__ = self.bit_scale if self.config.clip_sample: lowercase__ = torch.clamp(lowercase__ , -scale , lowercase__ ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t lowercase__ = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ = 0 if t > 0: lowercase__ = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=lowercase__ ).to(model_output.device ) lowercase__ = (self._get_variance(lowercase__ , predicted_variance=lowercase__ ) ** 0.5) * noise lowercase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=lowercase__ , pred_original_sample=lowercase__ ) class A ( __UpperCAmelCase ): def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = 1.0 , ) -> Union[str, Any]: '''simple docstring''' super().__init__() lowercase__ = bit_scale lowercase__ = ( ddim_bit_scheduler_step if isinstance(lowerCamelCase__ , lowerCamelCase__ ) else ddpm_bit_scheduler_step ) self.register_modules(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) @torch.no_grad() def __call__( self , lowerCamelCase__ = 256 , lowerCamelCase__ = 256 , lowerCamelCase__ = 50 , lowerCamelCase__ = None , lowerCamelCase__ = 1 , lowerCamelCase__ = "pil" , lowerCamelCase__ = True , **lowerCamelCase__ , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' lowercase__ = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=lowerCamelCase__ , ) lowercase__ = decimal_to_bits(lowerCamelCase__ ) * self.bit_scale lowercase__ = latents.to(self.device ) self.scheduler.set_timesteps(lowerCamelCase__ ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual lowercase__ = self.unet(lowerCamelCase__ , lowerCamelCase__ ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ = self.scheduler.step(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ).prev_sample lowercase__ = bits_to_decimal(lowerCamelCase__ ) if output_type == "pil": lowercase__ = self.numpy_to_pil(lowerCamelCase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase__ )
164
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json __A = "sshleifer/mar_enro_6_3_student" class A ( __UpperCAmelCase ): def A__ ( self ) -> List[Any]: '''simple docstring''' super().setUp() lowercase__ = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowerCamelCase__ , ) lowercase__ = F'''{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k''' @slow @require_torch_gpu def A__ ( self ) -> str: '''simple docstring''' MarianMTModel.from_pretrained(lowerCamelCase__ ) @slow @require_torch_gpu def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase__ = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script lowercase__ = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") lowercase__ = F''' --output_dir {output_dir} --tokenizer_name Helsinki-NLP/opus-mt-en-ro --sortish_sampler --do_predict --gpus 1 --freeze_encoder --n_train 40000 --n_val 500 --n_test 500 --fp16_opt_level O1 --num_sanity_val_steps 0 --eval_beams 2 '''.split() # XXX: args.gpus > 1 : handle multi_gpu in the future lowercase__ = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationModule.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() lowercase__ = main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class A ( __UpperCAmelCase ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def A__ ( self ) -> Dict: '''simple docstring''' lowercase__ = F'''{self.test_file_dir_str}/test_data/wmt_en_ro''' lowercase__ = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script lowercase__ = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) lowercase__ = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) lowercase__ = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): lowercase__ = bash_script.replace(lowerCamelCase__ , str(lowerCamelCase__ ) ) lowercase__ = self.get_auto_remove_tmp_dir() lowercase__ = bash_script.replace("""--fp16""" , """""" ) lowercase__ = 6 lowercase__ = ( ["""distillation.py"""] + bash_script.split() + [ F'''--output_dir={output_dir}''', """--gpus=1""", """--learning_rate=1e-3""", F'''--num_train_epochs={epochs}''', """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowerCamelCase__ , """argv""" , lowerCamelCase__ ): lowercase__ = argparse.ArgumentParser() lowercase__ = pl.Trainer.add_argparse_args(lowerCamelCase__ ) lowercase__ = SummarizationDistiller.add_model_specific_args(lowerCamelCase__ , os.getcwd() ) lowercase__ = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu lowercase__ = distill_main(lowerCamelCase__ ) # Check metrics lowercase__ = load_json(model.metrics_save_path ) lowercase__ = metrics["""val"""][0] lowercase__ = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F'''val_avg_{model.val_metric}'''] , lowerCamelCase__ ) # check lightning ckpt can be loaded and has a reasonable statedict lowercase__ = os.listdir(lowerCamelCase__ ) lowercase__ = [x for x in contents if x.endswith(""".ckpt""" )][0] lowercase__ = os.path.join(args.output_dir , lowerCamelCase__ ) lowercase__ = torch.load(lowerCamelCase__ , map_location="""cpu""" ) lowercase__ = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: lowercase__ = {os.path.basename(lowerCamelCase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
164
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {} class _lowerCamelCase ( A__ ): UpperCAmelCase_ = "llama" UpperCAmelCase_ = ["past_key_values"] def __init__(self , __a=3_20_00 , __a=40_96 , __a=1_10_08 , __a=32 , __a=32 , __a=None , __a="silu" , __a=20_48 , __a=0.02 , __a=1e-6 , __a=True , __a=0 , __a=1 , __a=2 , __a=1 , __a=False , __a=None , **__a , ) -> List[str]: UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = intermediate_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads # for backward compatibility if num_key_value_heads is None: UpperCamelCase = num_attention_heads UpperCamelCase = num_key_value_heads UpperCamelCase = hidden_act UpperCamelCase = initializer_range UpperCamelCase = rms_norm_eps UpperCamelCase = pretraining_tp UpperCamelCase = use_cache UpperCamelCase = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , tie_word_embeddings=__A , **__A , ) def snake_case_ (self ) -> List[Any]: if self.rope_scaling is None: return if not isinstance(self.rope_scaling , __A ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F"got {self.rope_scaling}" ) UpperCamelCase = self.rope_scaling.get("type" , __A ) UpperCamelCase = self.rope_scaling.get("factor" , __A ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" ) if rope_scaling_factor is None or not isinstance(__A , __A ) or rope_scaling_factor <= 1.0: raise ValueError(F"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
351
"""simple docstring""" import math import random from typing import Any from .hill_climbing import SearchProblem def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = math.inf , _SCREAMING_SNAKE_CASE = -math.inf , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = 100 , _SCREAMING_SNAKE_CASE = 0.01 , _SCREAMING_SNAKE_CASE = 1 , ): """simple docstring""" UpperCamelCase = False UpperCamelCase = search_prob UpperCamelCase = start_temperate UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = None while not search_end: UpperCamelCase = current_state.score() if best_state is None or current_score > best_state.score(): UpperCamelCase = current_state scores.append(_SCREAMING_SNAKE_CASE ) iterations += 1 UpperCamelCase = None UpperCamelCase = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to UpperCamelCase = random.randint(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) # picking a random neighbor UpperCamelCase = neighbors.pop(_SCREAMING_SNAKE_CASE ) UpperCamelCase = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: UpperCamelCase = change * -1 # in case we are finding minimum if change > 0: # improves the solution UpperCamelCase = picked_neighbor else: UpperCamelCase = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability UpperCamelCase = picked_neighbor UpperCamelCase = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor UpperCamelCase = True else: UpperCamelCase = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE ) plt.xlabel("Iterations" ) plt.ylabel("Function values" ) plt.show() return best_state if __name__ == "__main__": def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=False, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) lowerCAmelCase__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing( prob, find_max=True, max_x=100, min_x=5, max_y=50, min_y=-5, visualization=True ) print( '''The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 ''' f'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def a__ ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" return (3 * x**2) - (6 * y) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=False, visualization=True) print( '''The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' ) lowerCAmelCase__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) lowerCAmelCase__ = simulated_annealing(prob, find_max=True, visualization=True) print( '''The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: ''' f'''{local_min.score()}''' )
244
0
import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument("""--user""", type=str, default="""ubuntu""") parser.add_argument("""--host""", type=str, default="""localhost""") parser.add_argument("""--key_path""", type=str, default=None) parser.add_argument("""--instance""", type=str, default="""V100:1""") parser.add_argument("""--provider""", type=str, default="""cheapest""") parser.add_argument("""--use_spot""", type=bool, default=False) parser.add_argument("""--example""", type=str, default="""pytorch/text-generation/run_generation.py""") lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError("""Cannot specify both BYO and on-demand cluster args""") lowerCAmelCase__ = rh.cluster( name="""rh-cluster""", ips=[args.host], ssh_creds={"""ssh_user""": args.user, """ssh_private_key""": args.key_path} ) else: lowerCAmelCase__ = rh.cluster( name="""rh-cluster""", instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCAmelCase__ = args.example.rsplit("""/""", 1)[0] # Set up remote environment cluster.install_packages(["""pip:./"""]) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f"""pip install -r transformers/examples/{example_dir}/requirements.txt"""]) cluster.run(["""pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117"""]) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f"""python transformers/examples/{args.example} {' '.join(shlex.quote(arg) for arg in unknown)}"""]) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
68
'''simple docstring''' import argparse import json import torch from diffusers import DDPMScheduler, LDMPipeline, UNetaDModel, VQModel def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=1 ) -> Dict: if n_shave_prefix_segments >= 0: return ".".join(path.split('.' )[n_shave_prefix_segments:] ) else: return ".".join(path.split('.' )[:n_shave_prefix_segments] ) def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Tuple: _a : Any = [] for old_item in old_list: _a : Union[str, Any] = old_item.replace('in_layers.0' , 'norm1' ) _a : Optional[int] = new_item.replace('in_layers.2' , 'conv1' ) _a : str = new_item.replace('out_layers.0' , 'norm2' ) _a : List[str] = new_item.replace('out_layers.3' , 'conv2' ) _a : str = new_item.replace('emb_layers.1' , 'time_emb_proj' ) _a : Tuple = new_item.replace('skip_connection' , 'conv_shortcut' ) _a : Any = shave_segments(lowerCAmelCase_ , n_shave_prefix_segments=lowerCAmelCase_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_=0 ) -> Any: _a : List[str] = [] for old_item in old_list: _a : List[Any] = old_item _a : Optional[int] = new_item.replace('norm.weight' , 'group_norm.weight' ) _a : Optional[Any] = new_item.replace('norm.bias' , 'group_norm.bias' ) _a : Any = new_item.replace('proj_out.weight' , 'proj_attn.weight' ) _a : Optional[Any] = new_item.replace('proj_out.bias' , 'proj_attn.bias' ) _a : Optional[int] = shave_segments(lowerCAmelCase_ , n_shave_prefix_segments=lowerCAmelCase_ ) mapping.append({'old': old_item, 'new': new_item} ) return mapping def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None ) -> Any: assert isinstance(lowerCAmelCase_ , lowerCAmelCase_ ), "Paths should be a list of dicts containing 'old' and 'new' keys." # Splits the attention layers into three variables. if attention_paths_to_split is not None: for path, path_map in attention_paths_to_split.items(): _a : Optional[Any] = old_checkpoint[path] _a : Optional[Any] = old_tensor.shape[0] // 3 _a : Any = (-1, channels) if len(old_tensor.shape ) == 3 else (-1) _a : int = old_tensor.shape[0] // config['num_head_channels'] // 3 _a : str = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:] ) _a , _a , _a : Tuple = old_tensor.split(channels // num_heads , dim=1 ) _a : Dict = query.reshape(lowerCAmelCase_ ) _a : str = key.reshape(lowerCAmelCase_ ) _a : Optional[int] = value.reshape(lowerCAmelCase_ ) for path in paths: _a : Dict = path['new'] # These have already been assigned if attention_paths_to_split is not None and new_path in attention_paths_to_split: continue # Global renaming happens here _a : Any = new_path.replace('middle_block.0' , 'mid_block.resnets.0' ) _a : str = new_path.replace('middle_block.1' , 'mid_block.attentions.0' ) _a : Union[str, Any] = new_path.replace('middle_block.2' , 'mid_block.resnets.1' ) if additional_replacements is not None: for replacement in additional_replacements: _a : int = new_path.replace(replacement['old'] , replacement['new'] ) # proj_attn.weight has to be converted from conv 1D to linear if "proj_attn.weight" in new_path: _a : List[str] = old_checkpoint[path['old']][:, :, 0] else: _a : Dict = old_checkpoint[path['old']] def __lowerCamelCase ( lowerCAmelCase_ , lowerCAmelCase_ ) -> List[Any]: _a : Optional[int] = {} _a : Dict = checkpoint['time_embed.0.weight'] _a : Tuple = checkpoint['time_embed.0.bias'] _a : Union[str, Any] = checkpoint['time_embed.2.weight'] _a : List[str] = checkpoint['time_embed.2.bias'] _a : List[str] = checkpoint['input_blocks.0.0.weight'] _a : Union[str, Any] = checkpoint['input_blocks.0.0.bias'] _a : Optional[int] = checkpoint['out.0.weight'] _a : int = checkpoint['out.0.bias'] _a : List[str] = checkpoint['out.2.weight'] _a : Optional[int] = checkpoint['out.2.bias'] # Retrieves the keys for the input blocks only _a : Optional[int] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'input_blocks' in layer} ) _a : Dict = { layer_id: [key for key in checkpoint if f"""input_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase_ ) } # Retrieves the keys for the middle blocks only _a : List[Any] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'middle_block' in layer} ) _a : Union[str, Any] = { layer_id: [key for key in checkpoint if f"""middle_block.{layer_id}""" in key] for layer_id in range(lowerCAmelCase_ ) } # Retrieves the keys for the output blocks only _a : Optional[int] = len({'.'.join(layer.split('.' )[:2] ) for layer in checkpoint if 'output_blocks' in layer} ) _a : str = { layer_id: [key for key in checkpoint if f"""output_blocks.{layer_id}""" in key] for layer_id in range(lowerCAmelCase_ ) } for i in range(1 , lowerCAmelCase_ ): _a : List[Any] = (i - 1) // (config['num_res_blocks'] + 1) _a : Optional[int] = (i - 1) % (config['num_res_blocks'] + 1) _a : Optional[int] = [key for key in input_blocks[i] if f"""input_blocks.{i}.0""" in key] _a : Optional[Any] = [key for key in input_blocks[i] if f"""input_blocks.{i}.1""" in key] if f"""input_blocks.{i}.0.op.weight""" in checkpoint: _a : List[Any] = checkpoint[ f"""input_blocks.{i}.0.op.weight""" ] _a : Union[str, Any] = checkpoint[ f"""input_blocks.{i}.0.op.bias""" ] continue _a : Any = renew_resnet_paths(lowerCAmelCase_ ) _a : List[str] = {'old': f"""input_blocks.{i}.0""", 'new': f"""down_blocks.{block_id}.resnets.{layer_in_block_id}"""} _a : Optional[Any] = {'old': 'resnets.2.op', 'new': 'downsamplers.0.op'} assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path, resnet_op] , config=lowerCAmelCase_ ) if len(lowerCAmelCase_ ): _a : List[str] = renew_attention_paths(lowerCAmelCase_ ) _a : List[Any] = { 'old': f"""input_blocks.{i}.1""", 'new': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : Optional[Any] = { f"""input_blocks.{i}.1.qkv.bias""": { 'key': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", 'query': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", 'value': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""input_blocks.{i}.1.qkv.weight""": { 'key': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", 'query': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", 'value': f"""down_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=lowerCAmelCase_ , config=lowerCAmelCase_ , ) _a : str = middle_blocks[0] _a : Tuple = middle_blocks[1] _a : Any = middle_blocks[2] _a : List[Any] = renew_resnet_paths(lowerCAmelCase_ ) assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , config=lowerCAmelCase_ ) _a : Any = renew_resnet_paths(lowerCAmelCase_ ) assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , config=lowerCAmelCase_ ) _a : int = renew_attention_paths(lowerCAmelCase_ ) _a : int = { 'middle_block.1.qkv.bias': { 'key': 'mid_block.attentions.0.key.bias', 'query': 'mid_block.attentions.0.query.bias', 'value': 'mid_block.attentions.0.value.bias', }, 'middle_block.1.qkv.weight': { 'key': 'mid_block.attentions.0.key.weight', 'query': 'mid_block.attentions.0.query.weight', 'value': 'mid_block.attentions.0.value.weight', }, } assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , attention_paths_to_split=lowerCAmelCase_ , config=lowerCAmelCase_ ) for i in range(lowerCAmelCase_ ): _a : List[str] = i // (config['num_res_blocks'] + 1) _a : Any = i % (config['num_res_blocks'] + 1) _a : Union[str, Any] = [shave_segments(lowerCAmelCase_ , 2 ) for name in output_blocks[i]] _a : Optional[Any] = {} for layer in output_block_layers: _a , _a : str = layer.split('.' )[0], shave_segments(lowerCAmelCase_ , 1 ) if layer_id in output_block_list: output_block_list[layer_id].append(lowerCAmelCase_ ) else: _a : str = [layer_name] if len(lowerCAmelCase_ ) > 1: _a : str = [key for key in output_blocks[i] if f"""output_blocks.{i}.0""" in key] _a : Optional[Any] = [key for key in output_blocks[i] if f"""output_blocks.{i}.1""" in key] _a : Dict = renew_resnet_paths(lowerCAmelCase_ ) _a : str = renew_resnet_paths(lowerCAmelCase_ ) _a : Optional[int] = {'old': f"""output_blocks.{i}.0""", 'new': f"""up_blocks.{block_id}.resnets.{layer_in_block_id}"""} assign_to_checkpoint(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , config=lowerCAmelCase_ ) if ["conv.weight", "conv.bias"] in output_block_list.values(): _a : List[Any] = list(output_block_list.values() ).index(['conv.weight', 'conv.bias'] ) _a : Tuple = checkpoint[ f"""output_blocks.{i}.{index}.conv.weight""" ] _a : List[str] = checkpoint[ f"""output_blocks.{i}.{index}.conv.bias""" ] # Clear attentions as they have been attributed above. if len(lowerCAmelCase_ ) == 2: _a : Union[str, Any] = [] if len(lowerCAmelCase_ ): _a : Tuple = renew_attention_paths(lowerCAmelCase_ ) _a : str = { 'old': f"""output_blocks.{i}.1""", 'new': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}""", } _a : List[Any] = { f"""output_blocks.{i}.1.qkv.bias""": { 'key': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.bias""", 'query': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.bias""", 'value': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.bias""", }, f"""output_blocks.{i}.1.qkv.weight""": { 'key': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.key.weight""", 'query': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.query.weight""", 'value': f"""up_blocks.{block_id}.attentions.{layer_in_block_id}.value.weight""", }, } assign_to_checkpoint( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , additional_replacements=[meta_path] , attention_paths_to_split=to_split if any('qkv' in key for key in attentions ) else None , config=lowerCAmelCase_ , ) else: _a : List[Any] = renew_resnet_paths(lowerCAmelCase_ , n_shave_prefix_segments=1 ) for path in resnet_0_paths: _a : int = '.'.join(['output_blocks', str(lowerCAmelCase_ ), path['old']] ) _a : Union[str, Any] = '.'.join(['up_blocks', str(lowerCAmelCase_ ), 'resnets', str(lowerCAmelCase_ ), path['new']] ) _a : Union[str, Any] = checkpoint[old_path] return new_checkpoint if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = torch.load(args.checkpoint_path) with open(args.config_file) as f: __lowerCAmelCase = json.loads(f.read()) __lowerCAmelCase = convert_ldm_checkpoint(checkpoint, config) if "ldm" in config: del config["ldm"] __lowerCAmelCase = UNetaDModel(**config) model.load_state_dict(converted_checkpoint) try: __lowerCAmelCase = DDPMScheduler.from_config('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __lowerCAmelCase = VQModel.from_pretrained('''/'''.join(args.checkpoint_path.split('''/''')[:-1])) __lowerCAmelCase = LDMPipeline(unet=model, scheduler=scheduler, vae=vqvae) pipe.save_pretrained(args.dump_path) except: # noqa: E722 model.save_pretrained(args.dump_path)
89
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase__ = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys UpperCAmelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
1
from math import ceil, sqrt def A (__A : int = 1000000 ) -> int: """simple docstring""" UpperCAmelCase_ = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCAmelCase_ = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCAmelCase_ = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
51
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class __A : '''simple docstring''' def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=6_4 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=3_7 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): '''simple docstring''' lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = embedding_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None if self.use_token_type_ids: lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self ): '''simple docstring''' return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) lowerCamelCase__ = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = MegatronBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_labels lowerCamelCase__ = MegatronBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): '''simple docstring''' lowerCamelCase__ = self.num_choices lowerCamelCase__ = MegatronBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) = config_and_inputs lowerCamelCase__ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) lowerCAmelCase_ = ( { """feature-extraction""": MegatronBertModel, """fill-mask""": MegatronBertForMaskedLM, """question-answering""": MegatronBertForQuestionAnswering, """text-classification""": MegatronBertForSequenceClassification, """text-generation""": MegatronBertForCausalLM, """token-classification""": MegatronBertForTokenClassification, """zero-shot""": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) lowerCAmelCase_ = True # test_resize_embeddings = False lowerCAmelCase_ = False def __lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): '''simple docstring''' lowerCamelCase__ = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): lowerCamelCase__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) lowerCamelCase__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = MegatronBertModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def __lowerCamelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*__lowerCAmelCase ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*__lowerCAmelCase ) def lowerCAmelCase__(__snake_case ) -> List[str]: '''simple docstring''' return torch.tensor( __snake_case ,dtype=torch.long ,device=__snake_case ,) _a = 1e-4 @require_torch @require_sentencepiece @require_tokenizers class __A ( unittest.TestCase ): '''simple docstring''' @slow @unittest.skip('''Model is not available.''' ) def __lowerCamelCase ( self ): '''simple docstring''' lowerCamelCase__ = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: lowerCamelCase__ = os.path.join(os.environ['''MYDIR'''] , __lowerCAmelCase ) lowerCamelCase__ = MegatronBertModel.from_pretrained(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.half() lowerCamelCase__ = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): lowerCamelCase__ = model(__lowerCAmelCase )[0] lowerCamelCase__ = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , __lowerCAmelCase ) lowerCamelCase__ = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): lowerCamelCase__ = output[0, ii, jj] lowerCamelCase__ = expected[3 * ii + jj] lowerCamelCase__ = '''ii={} jj={} a={} b={}'''.format(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) self.assertTrue(math.isclose(__lowerCAmelCase , __lowerCAmelCase , rel_tol=__lowerCAmelCase , abs_tol=__lowerCAmelCase ) , msg=__lowerCAmelCase )
209
0
import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE :List[str] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :List[Any] = '▁' SCREAMING_SNAKE_CASE :List[str] = {'vocab_file': 'vocab.txt', 'sentencepiece_model_ckpt': 'sentencepiece.bpe.model'} SCREAMING_SNAKE_CASE :int = { 'sentencepiece_model_file': 'sentencepiece.bpe.model', 'vocab_file': 'vocab.txt', } SCREAMING_SNAKE_CASE :str = { 'vocab_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt', }, 'sentencepiece_model_file': { 'ernie-m-base': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', 'ernie-m-large': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model', }, } SCREAMING_SNAKE_CASE :Union[str, Any] = { 'ernie-m-base': 514, 'ernie-m-large': 514, } SCREAMING_SNAKE_CASE :Union[str, Any] = { 'ernie-m-base': {'do_lower_case': False}, 'ernie-m-large': {'do_lower_case': False}, } class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = ["input_ids"] snake_case_ = VOCAB_FILES_NAMES snake_case_ = PRETRAINED_INIT_CONFIGURATION snake_case_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ = PRETRAINED_VOCAB_FILES_MAP snake_case_ = RESOURCE_FILES_NAMES def __init__( self : List[Any] ,A : Tuple ,A : Union[str, Any]=None ,A : int=False ,A : List[Any]="utf8" ,A : Dict="[UNK]" ,A : List[Any]="[SEP]" ,A : Optional[int]="[PAD]" ,A : int="[CLS]" ,A : List[str]="[MASK]" ,A : Optional[Dict[str, Any]] = None ,**A : Dict ,): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. __A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A ,unk_token=A ,sep_token=A ,pad_token=A ,cls_token=A ,mask_token=A ,vocab_file=A ,encoding=A ,sp_model_kwargs=self.sp_model_kwargs ,**A ,) __A = do_lower_case __A = sentencepiece_model_ckpt __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: __A = self.load_vocab(filepath=A ) else: __A = {self.sp_model.id_to_piece(A ): id for id in range(self.sp_model.get_piece_size() )} __A = {v: k for k, v in self.vocab.items()} def UpperCamelCase_ ( self : List[Any] ,A : Tuple ): if text is None: return None __A = self.tokenize(A ) __A , __A = "", [] for i, ch in enumerate(A ): if ch in self.SP_CHAR_MAPPING: __A = self.SP_CHAR_MAPPING.get(A ) else: __A = unicodedata.normalize("NFKC" ,A ) if self.is_whitespace(A ): continue normalized_text += ch char_mapping.extend([i] * len(A ) ) __A , __A , __A = normalized_text, [], 0 if self.do_lower_case: __A = text.lower() for token in split_tokens: if token[:1] == "▁": __A = token[1:] __A = text[offset:].index(A ) + offset __A = start + len(A ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) __A = end return token_mapping @property def UpperCamelCase_ ( self : List[str] ): return len(self.vocab ) def UpperCamelCase_ ( self : Union[str, Any] ): return dict(self.vocab ,**self.added_tokens_encoder ) def __getstate__( self : Dict ): __A = self.__dict__.copy() __A = None return state def __setstate__( self : Union[str, Any] ,A : List[Any] ): __A = d # for backward compatibility if not hasattr(self ,"sp_model_kwargs" ): __A = {} __A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def UpperCamelCase_ ( self : List[Any] ,A : List[str] ): return "".join((self.SP_CHAR_MAPPING.get(A ,A ) for c in text) ) def UpperCamelCase_ ( self : str ,A : Dict ,A : Optional[Any]=False ,A : Optional[Any]=64 ,A : Tuple=0.1 ): if self.sp_model_kwargs.get("enable_sampling" ) is True: __A = True if self.sp_model_kwargs.get("alpha" ) is not None: __A = self.sp_model_kwargs.get("alpha" ) if self.sp_model_kwargs.get("nbest_size" ) is not None: __A = self.sp_model_kwargs.get("nbest_size" ) if not enable_sampling: __A = self.sp_model.EncodeAsPieces(A ) else: __A = self.sp_model.SampleEncodeAsPieces(A ,A ,A ) __A = [] for pi, piece in enumerate(A ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(A ) and pi != 0: new_pieces.append(A ) continue else: continue __A = 0 for i, chunk in enumerate(A ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(A ) or self.is_punct(A ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(A ) __A = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __A = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) __A = i if len(A ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def UpperCamelCase_ ( self : List[str] ,A : Tuple ): __A = "".join(A ).replace(A ," " ).strip() return out_string def UpperCamelCase_ ( self : int ,A : str ): __A = self.convert_ids_to_tokens(A ) __A = "".join(A ).replace(A ," " ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] ,A : List[str] ): return self.vocab.get(A ,self.vocab.get(self.unk_token ) ) def UpperCamelCase_ ( self : str ,A : Tuple ): return self.reverse_vocab.get(A ,self.unk_token ) def UpperCamelCase_ ( self : List[str] ,A : Optional[int] ,A : Union[str, Any]=None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __A = [self.cls_token_id] __A = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def UpperCamelCase_ ( self : List[Any] ,A : Any ,A : Union[str, Any]=None ): if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def UpperCamelCase_ ( self : Optional[int] ,A : Union[str, Any] ,A : Dict=None ,A : Union[str, Any]=False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1, 1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCamelCase_ ( self : Optional[int] ,A : List[int] ,A : Optional[List[int]] = None ): # called when `add_special_tokens` is True, so align with `build_inputs_with_special_tokens` method if token_ids_a is None: # [CLS] X [SEP] return (len(A ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(A ) + 1) + [1] * (len(A ) + 3) def UpperCamelCase_ ( self : Tuple ,A : int ): if "\u4e00" <= char <= "\u9fff": return True return False def UpperCamelCase_ ( self : Dict ,A : List[str] ): if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def UpperCamelCase_ ( self : int ,A : str ): if char in ",;:.?!~,;:。?!《》【】": return True return False def UpperCamelCase_ ( self : Optional[int] ,A : List[Any] ): if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(A ) == 1: __A = unicodedata.category(A ) if cat == "Zs": return True return False def UpperCamelCase_ ( self : Dict ,A : Optional[int] ): __A = {} with io.open(A ,"r" ,encoding="utf-8" ) as f: for index, line in enumerate(A ): __A = line.rstrip("\n" ) __A = int(A ) return token_to_idx def UpperCamelCase_ ( self : List[Any] ,A : str ,A : Optional[str] = None ): __A = 0 if os.path.isdir(A ): __A = os.path.join( A ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: __A = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(A ,"w" ,encoding="utf-8" ) as writer: for token, token_index in sorted(self.vocab.items() ,key=lambda A : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' " Please check that the vocabulary is not corrupted!" ) __A = token_index writer.write(token + "\n" ) index += 1 __A = os.path.join(A ,"sentencepiece.bpe.model" ) with open(A ,"wb" ) as fi: __A = self.sp_model.serialized_model_proto() fi.write(A ) return (vocab_file,)
124
from math import log from scipy.constants import Boltzmann, physical_constants SCREAMING_SNAKE_CASE :Dict = 300 # TEMPERATURE (unit = K) def UpperCAmelCase ( a_ , a_ , a_ , ) -> float: """simple docstring""" if donor_conc <= 0: raise ValueError("Donor concentration should be positive" ) elif acceptor_conc <= 0: raise ValueError("Acceptor concentration should be positive" ) elif intrinsic_conc <= 0: raise ValueError("Intrinsic concentration should be positive" ) elif donor_conc <= intrinsic_conc: raise ValueError( "Donor concentration should be greater than intrinsic concentration" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( "Acceptor concentration should be greater than intrinsic concentration" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
124
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase : str = logging.get_logger(__name__) lowerCAmelCase : Union[str, Any] = { 'google/realm-cc-news-pretrained-embedder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-encoder': ( 'https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-scorer': ( 'https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/config.json' ), 'google/realm-cc-news-pretrained-openqa': ( 'https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/config.json' ), 'google/realm-orqa-nq-openqa': 'https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/config.json', 'google/realm-orqa-nq-reader': 'https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/config.json', 'google/realm-orqa-wq-openqa': 'https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/config.json', 'google/realm-orqa-wq-reader': 'https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/config.json', # See all REALM models at https://huggingface.co/models?filter=realm } class __magic_name__ ( __lowercase ): '''simple docstring''' __UpperCamelCase = "realm" def __init__( self , _a=30_522 , _a=768 , _a=128 , _a=12 , _a=12 , _a=8 , _a=3_072 , _a="gelu_new" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1e-1_2 , _a=256 , _a=10 , _a=1e-3 , _a=5 , _a=320 , _a=13_353_718 , _a=5_000 , _a=1 , _a=0 , _a=2 , **_a , ): """simple docstring""" super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a ) # Common config lowerCamelCase = vocab_size lowerCamelCase = max_position_embeddings lowerCamelCase = hidden_size lowerCamelCase = retriever_proj_size lowerCamelCase = num_hidden_layers lowerCamelCase = num_attention_heads lowerCamelCase = num_candidates lowerCamelCase = intermediate_size lowerCamelCase = hidden_act lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = initializer_range lowerCamelCase = type_vocab_size lowerCamelCase = layer_norm_eps # Reader config lowerCamelCase = span_hidden_size lowerCamelCase = max_span_width lowerCamelCase = reader_layer_norm_eps lowerCamelCase = reader_beam_size lowerCamelCase = reader_seq_len # Retrieval config lowerCamelCase = num_block_records lowerCamelCase = searcher_beam_size
291
# Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : Any) -> Dict: '''simple docstring''' __UpperCamelCase : Optional[Any] = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] __UpperCamelCase : Any = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } __UpperCamelCase : str = F'{src_lang}-{tgt_lang}' __UpperCamelCase : Tuple = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase) __UpperCamelCase : Dict = os.path.join(_lowerCamelCase , "README.md") print(F'Generating {path}') with open(_lowerCamelCase , "w" , encoding="utf-8") as f: f.write(_lowerCamelCase) # make sure we are under the root of the project lowercase : List[str] = Path(__file__).resolve().parent.parent.parent lowercase : Union[str, Any] = repo_dir / 'model_cards' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowercase , lowercase , lowercase : int = model_name.split('-') lowercase : Dict = model_cards_dir / 'facebook' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
232
0
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration snake_case : List[str] = { "tiny.en": "https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt", "tiny": "https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt", "base.en": "https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt", "base": "https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt", "small.en": "https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt", "small": "https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt", "medium.en": "https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt", "medium": "https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt", "large": "https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt", "large-v2": "https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt", } def __lowerCamelCase ( UpperCAmelCase_ : str ): """simple docstring""" a :Optional[Any] = ['''layers''', '''blocks'''] for k in ignore_keys: state_dict.pop(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case : Optional[Any] = { "blocks": "layers", "mlp.0": "fc1", "mlp.2": "fc2", "mlp_ln": "final_layer_norm", ".attn.query": ".self_attn.q_proj", ".attn.key": ".self_attn.k_proj", ".attn.value": ".self_attn.v_proj", ".attn_ln": ".self_attn_layer_norm", ".attn.out": ".self_attn.out_proj", ".cross_attn.query": ".encoder_attn.q_proj", ".cross_attn.key": ".encoder_attn.k_proj", ".cross_attn.value": ".encoder_attn.v_proj", ".cross_attn_ln": ".encoder_attn_layer_norm", ".cross_attn.out": ".encoder_attn.out_proj", "decoder.ln.": "decoder.layer_norm.", "encoder.ln.": "encoder.layer_norm.", "token_embedding": "embed_tokens", "encoder.positional_embedding": "encoder.embed_positions.weight", "decoder.positional_embedding": "decoder.embed_positions.weight", "ln_post": "layer_norm", } def __lowerCamelCase ( UpperCAmelCase_ : Any ): """simple docstring""" a :List[Any] = list(s_dict.keys() ) for key in keys: a :Tuple = key for k, v in WHISPER_MAPPING.items(): if k in key: a :List[Any] = new_key.replace(UpperCAmelCase_ , UpperCAmelCase_ ) print(F'''{key} -> {new_key}''' ) a :Dict = s_dict.pop(UpperCAmelCase_ ) return s_dict def __lowerCamelCase ( UpperCAmelCase_ : Any ): """simple docstring""" a :Dict = emb.weight.shape a :List[Any] = nn.Linear(UpperCAmelCase_ , UpperCAmelCase_ , bias=UpperCAmelCase_ ) a :Dict = emb.weight.data return lin_layer def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : str ): """simple docstring""" os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) a :List[Any] = os.path.basename(UpperCAmelCase_ ) a :Union[str, Any] = url.split('''/''' )[-2] a :Union[str, Any] = os.path.join(UpperCAmelCase_ , UpperCAmelCase_ ) if os.path.exists(UpperCAmelCase_ ) and not os.path.isfile(UpperCAmelCase_ ): raise RuntimeError(F'''{download_target} exists and is not a regular file''' ) if os.path.isfile(UpperCAmelCase_ ): a :Dict = open(UpperCAmelCase_ , '''rb''' ).read() if hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(F'''{download_target} exists, but the SHA256 checksum does not match; re-downloading the file''' ) with urllib.request.urlopen(UpperCAmelCase_ ) as source, open(UpperCAmelCase_ , '''wb''' ) as output: with tqdm( total=int(source.info().get('''Content-Length''' ) ) , ncols=80 , unit='''iB''' , unit_scale=UpperCAmelCase_ , unit_divisor=1024 ) as loop: while True: a :Optional[int] = source.read(8192 ) if not buffer: break output.write(UpperCAmelCase_ ) loop.update(len(UpperCAmelCase_ ) ) a :List[Any] = open(UpperCAmelCase_ , '''rb''' ).read() if hashlib.shaaaa(UpperCAmelCase_ ).hexdigest() != expected_shaaaa: raise RuntimeError( '''Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.''' ) return model_bytes def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] ): """simple docstring""" if ".pt" not in checkpoint_path: a :Tuple = _download(_MODELS[checkpoint_path] ) else: a :List[str] = torch.load(UpperCAmelCase_ , map_location='''cpu''' ) a :Optional[int] = original_checkpoint['''dims'''] a :Union[str, Any] = original_checkpoint['''model_state_dict'''] a :str = state_dict['''decoder.token_embedding.weight'''] remove_ignore_keys_(UpperCAmelCase_ ) rename_keys(UpperCAmelCase_ ) a :Any = True a :Any = state_dict['''decoder.layers.0.fc1.weight'''].shape[0] a :List[str] = WhisperConfig( vocab_size=dimensions['''n_vocab'''] , encoder_ffn_dim=UpperCAmelCase_ , decoder_ffn_dim=UpperCAmelCase_ , num_mel_bins=dimensions['''n_mels'''] , d_model=dimensions['''n_audio_state'''] , max_target_positions=dimensions['''n_text_ctx'''] , encoder_layers=dimensions['''n_audio_layer'''] , encoder_attention_heads=dimensions['''n_audio_head'''] , decoder_layers=dimensions['''n_text_layer'''] , decoder_attention_heads=dimensions['''n_text_state'''] , max_source_positions=dimensions['''n_audio_ctx'''] , ) a :List[Any] = WhisperForConditionalGeneration(UpperCAmelCase_ ) a :Optional[int] = model.model.load_state_dict(UpperCAmelCase_ , strict=UpperCAmelCase_ ) if len(UpperCAmelCase_ ) > 0 and not set(UpperCAmelCase_ ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' F''' but all the following weights are missing {missing}''' ) if tie_embeds: a :List[str] = make_linear_from_emb(model.model.decoder.embed_tokens ) else: a :List[str] = proj_out_weights model.save_pretrained(UpperCAmelCase_ ) if __name__ == "__main__": snake_case : List[Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Patht to the downloaded checkpoints''') parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') snake_case : str = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
361
# limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( '''pipelines_utils''', '''0.22.0''', '''Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.''', standard_warn=False, stacklevel=3, )
281
0
import inspect from typing import Optional, Union import numpy as np import PIL import torch from torch.nn import functional as F from torchvision import transforms from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, DPMSolverMultistepScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion import StableDiffusionPipelineOutput from diffusers.utils import ( PIL_INTERPOLATION, randn_tensor, ) def __magic_name__ ( __a : Optional[Any] , __a : Optional[int] , __a : List[Any] ): '''simple docstring''' if isinstance(__a , torch.Tensor ): return image elif isinstance(__a , PIL.Image.Image ): UpperCamelCase__ = [image] if isinstance(image[0] , PIL.Image.Image ): UpperCamelCase__ = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] UpperCamelCase__ = np.concatenate(__a , axis=0 ) UpperCamelCase__ = np.array(__a ).astype(np.floataa ) / 255.0 UpperCamelCase__ = image.transpose(0 , 3 , 1 , 2 ) UpperCamelCase__ = 2.0 * image - 1.0 UpperCamelCase__ = torch.from_numpy(__a ) elif isinstance(image[0] , torch.Tensor ): UpperCamelCase__ = torch.cat(__a , dim=0 ) return image def __magic_name__ ( __a : Dict , __a : int , __a : List[Any] , __a : Tuple=0.9_995 ): '''simple docstring''' if not isinstance(__a , np.ndarray ): UpperCamelCase__ = True UpperCamelCase__ = va.device UpperCamelCase__ = va.cpu().numpy() UpperCamelCase__ = va.cpu().numpy() UpperCamelCase__ = np.sum(va * va / (np.linalg.norm(__a ) * np.linalg.norm(__a )) ) if np.abs(__a ) > DOT_THRESHOLD: UpperCamelCase__ = (1 - t) * va + t * va else: UpperCamelCase__ = np.arccos(__a ) UpperCamelCase__ = np.sin(__a ) UpperCamelCase__ = theta_a * t UpperCamelCase__ = np.sin(__a ) UpperCamelCase__ = np.sin(theta_a - theta_t ) / sin_theta_a UpperCamelCase__ = sin_theta_t / sin_theta_a UpperCamelCase__ = sa * va + sa * va if inputs_are_torch: UpperCamelCase__ = torch.from_numpy(__a ).to(__a ) return va def __magic_name__ ( __a : List[Any] , __a : Any ): '''simple docstring''' UpperCamelCase__ = F.normalize(__a , dim=-1 ) UpperCamelCase__ = F.normalize(__a , dim=-1 ) return (x - y).norm(dim=-1 ).div(2 ).arcsin().pow(2 ).mul(2 ) def __magic_name__ ( __a : Optional[int] , __a : Optional[int] ): '''simple docstring''' for param in model.parameters(): UpperCamelCase__ = value class __A( __lowerCamelCase ): """simple docstring""" def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , ): super().__init__() self.register_modules( vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , clip_model=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , coca_model=SCREAMING_SNAKE_CASE_ , coca_tokenizer=SCREAMING_SNAKE_CASE_ , coca_transform=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase__ = ( feature_extractor.size if isinstance(feature_extractor.size , SCREAMING_SNAKE_CASE_ ) else feature_extractor.size["""shortest_edge"""] ) UpperCamelCase__ = transforms.Normalize(mean=feature_extractor.image_mean , std=feature_extractor.image_std ) set_requires_grad(self.text_encoder , SCREAMING_SNAKE_CASE_ ) set_requires_grad(self.clip_model , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): set_requires_grad(self.vae , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): set_requires_grad(self.vae , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): set_requires_grad(self.unet , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): set_requires_grad(self.unet , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # get the original timestep using init_timestep UpperCamelCase__ = min(int(num_inference_steps * strength ) , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = max(num_inference_steps - init_timestep , 0 ) UpperCamelCase__ = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None ): if not isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ): raise ValueError(F"`image` has to be of type `torch.Tensor` but is {type(SCREAMING_SNAKE_CASE_ )}" ) UpperCamelCase__ = image.to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = [ self.vae.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(SCREAMING_SNAKE_CASE_ ) ] UpperCamelCase__ = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0 ) else: UpperCamelCase__ = self.vae.encode(SCREAMING_SNAKE_CASE_ ).latent_dist.sample(SCREAMING_SNAKE_CASE_ ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase__ = 0.1_8215 * init_latents UpperCamelCase__ = init_latents.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) UpperCamelCase__ = randn_tensor(init_latents.shape , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) # get latents UpperCamelCase__ = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = init_latents return latents def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.coca_transform(SCREAMING_SNAKE_CASE_ ).unsqueeze(0 ) with torch.no_grad(), torch.cuda.amp.autocast(): UpperCamelCase__ = self.coca_model.generate(transformed_image.to(device=self.device , dtype=self.coca_model.dtype ) ) UpperCamelCase__ = self.coca_tokenizer.decode(generated[0].cpu().numpy() ) return generated.split("""<end_of_text>""" )[0].replace("""<start_of_text>""" , """""" ).rstrip(""" .,""" ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.feature_extractor.preprocess(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = torch.from_numpy(clip_image_input["""pixel_values"""][0] ).unsqueeze(0 ).to(self.device ).half() UpperCamelCase__ = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_embeddings_clip.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) return image_embeddings_clip @torch.enable_grad() def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ): UpperCamelCase__ = latents.detach().requires_grad_() UpperCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase__ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample if isinstance(self.scheduler , (PNDMScheduler, DDIMScheduler, DPMSolverMultistepScheduler) ): UpperCamelCase__ = self.scheduler.alphas_cumprod[timestep] UpperCamelCase__ = 1 - alpha_prod_t # compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf UpperCamelCase__ = (latents - beta_prod_t ** 0.5 * noise_pred) / alpha_prod_t ** 0.5 UpperCamelCase__ = torch.sqrt(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = pred_original_sample * (fac) + latents * (1 - fac) elif isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = self.scheduler.sigmas[index] UpperCamelCase__ = latents - sigma * noise_pred else: raise ValueError(F"scheduler type {type(self.scheduler )} not supported" ) # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase__ = 1 / 0.1_8215 * sample UpperCamelCase__ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = transforms.Resize(self.feature_extractor_size )(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.normalize(SCREAMING_SNAKE_CASE_ ).to(latents.dtype ) UpperCamelCase__ = self.clip_model.get_image_features(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = image_embeddings_clip / image_embeddings_clip.norm(p=2 , dim=-1 , keepdim=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = spherical_dist_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).mean() * clip_guidance_scale UpperCamelCase__ = -torch.autograd.grad(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[0] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = latents.detach() + grads * (sigma**2) UpperCamelCase__ = noise_pred_original else: UpperCamelCase__ = noise_pred_original - torch.sqrt(SCREAMING_SNAKE_CASE_ ) * grads return noise_pred, latents @torch.no_grad() def __call__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 5_12 , SCREAMING_SNAKE_CASE_ = 0.6 , SCREAMING_SNAKE_CASE_ = 50 , SCREAMING_SNAKE_CASE_ = 7.5 , SCREAMING_SNAKE_CASE_ = 1 , SCREAMING_SNAKE_CASE_ = 0.0 , SCREAMING_SNAKE_CASE_ = 1_00 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = "pil" , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = 0.8 , SCREAMING_SNAKE_CASE_ = 0.1 , SCREAMING_SNAKE_CASE_ = 0.1 , ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) != batch_size: raise ValueError(F"You have passed {batch_size} batch_size, but only {len(SCREAMING_SNAKE_CASE_ )} generators." ) if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if isinstance(SCREAMING_SNAKE_CASE_ , torch.Generator ) and batch_size > 1: UpperCamelCase__ = [generator] + [None] * (batch_size - 1) UpperCamelCase__ = [ ("""model""", self.coca_model is None), ("""tokenizer""", self.coca_tokenizer is None), ("""transform""", self.coca_transform is None), ] UpperCamelCase__ = [x[0] for x in coca_is_none if x[1]] UpperCamelCase__ = """, """.join(SCREAMING_SNAKE_CASE_ ) # generate prompts with coca model if prompt is None if content_prompt is None: if len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F"Content prompt is None and CoCa [{coca_is_none_str}] is None." F"Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase__ = self.get_image_description(SCREAMING_SNAKE_CASE_ ) if style_prompt is None: if len(SCREAMING_SNAKE_CASE_ ): raise ValueError( F"Style prompt is None and CoCa [{coca_is_none_str}] is None." F" Set prompt or pass Coca [{coca_is_none_str}] to DiffusionPipeline." ) UpperCamelCase__ = self.get_image_description(SCREAMING_SNAKE_CASE_ ) # get prompt text embeddings for content and style UpperCamelCase__ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase__ = self.text_encoder(content_text_input.input_ids.to(self.device ) )[0] UpperCamelCase__ = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="""max_length""" , max_length=self.tokenizer.model_max_length , truncation=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" , ) UpperCamelCase__ = self.text_encoder(style_text_input.input_ids.to(self.device ) )[0] UpperCamelCase__ = slerp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # duplicate text embeddings for each generation per prompt UpperCamelCase__ = text_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) # set timesteps UpperCamelCase__ = """offset""" in set(inspect.signature(self.scheduler.set_timesteps ).parameters.keys() ) UpperCamelCase__ = {} if accepts_offset: UpperCamelCase__ = 1 self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand self.scheduler.timesteps.to(self.device ) UpperCamelCase__ , UpperCamelCase__ = self.get_timesteps(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.device ) UpperCamelCase__ = timesteps[:1].repeat(SCREAMING_SNAKE_CASE_ ) # Preprocess image UpperCamelCase__ = preprocess(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = preprocess(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.prepare_latents( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , text_embeddings.dtype , self.device , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = slerp(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if clip_guidance_scale > 0: UpperCamelCase__ = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.get_clip_image_embeddings(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = slerp( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. UpperCamelCase__ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ = content_text_input.input_ids.shape[-1] UpperCamelCase__ = self.tokenizer([""""""] , padding="""max_length""" , max_length=SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) UpperCamelCase__ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt UpperCamelCase__ = uncond_embeddings.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes UpperCamelCase__ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. UpperCamelCase__ = (batch_size, self.unet.config.in_channels, height // 8, width // 8) UpperCamelCase__ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not work reproducibly on mps UpperCamelCase__ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device="""cpu""" , dtype=SCREAMING_SNAKE_CASE_ ).to( self.device ) else: UpperCamelCase__ = torch.randn(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=self.device , dtype=SCREAMING_SNAKE_CASE_ ) else: if latents.shape != latents_shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) UpperCamelCase__ = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase__ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] UpperCamelCase__ = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase__ = {} if accepts_eta: UpperCamelCase__ = eta # check if the scheduler accepts generator UpperCamelCase__ = """generator""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) if accepts_generator: UpperCamelCase__ = generator with self.progress_bar(total=SCREAMING_SNAKE_CASE_ ): for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # expand the latents if we are doing classifier free guidance UpperCamelCase__ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents UpperCamelCase__ = self.scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # predict the noise residual UpperCamelCase__ = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ ).sample # perform classifier free guidance if do_classifier_free_guidance: UpperCamelCase__ , UpperCamelCase__ = noise_pred.chunk(2 ) UpperCamelCase__ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # perform clip guidance if clip_guidance_scale > 0: UpperCamelCase__ = ( text_embeddings.chunk(2 )[1] if do_classifier_free_guidance else text_embeddings ) UpperCamelCase__ , UpperCamelCase__ = self.cond_fn( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase__ = self.scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ).prev_sample # Hardcode 0.18215 because stable-diffusion-2-base has not self.vae.config.scaling_factor UpperCamelCase__ = 1 / 0.1_8215 * latents UpperCamelCase__ = self.vae.decode(SCREAMING_SNAKE_CASE_ ).sample UpperCamelCase__ = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase__ = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase__ = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ ) if not return_dict: return (image, None) return StableDiffusionPipelineOutput(images=SCREAMING_SNAKE_CASE_ , nsfw_content_detected=SCREAMING_SNAKE_CASE_ )
244
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class __A( __lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = (CMStochasticIterativeScheduler,) SCREAMING_SNAKE_CASE__ = 10 def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = { """num_train_timesteps""": 2_01, """sigma_min""": 0.002, """sigma_max""": 80.0, } config.update(**SCREAMING_SNAKE_CASE_ ) return config def UpperCAmelCase_ (self ): UpperCamelCase__ = 10 UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = self.scheduler_classes[0](**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps[0] UpperCamelCase__ = scheduler.timesteps[1] UpperCamelCase__ = self.dummy_sample UpperCamelCase__ = 0.1 * sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCAmelCase_ (self ): for timesteps in [10, 50, 1_00, 10_00]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 1 scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(SCREAMING_SNAKE_CASE_ ): # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 192.7614 ) < 1E-2 assert abs(result_mean.item() - 0.2510 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [1_06, 0] scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = scheduler.timesteps UpperCamelCase__ = torch.manual_seed(0 ) UpperCamelCase__ = self.dummy_model() UpperCamelCase__ = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input UpperCamelCase__ = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 2. predict noise residual UpperCamelCase__ = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # 3. predict previous sample x_t-1 UpperCamelCase__ = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ ).prev_sample UpperCamelCase__ = pred_prev_sample UpperCamelCase__ = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase__ = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) assert abs(result_sum.item() - 347.6357 ) < 1E-2 assert abs(result_mean.item() - 0.4527 ) < 1E-3 def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 15, 0] with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must be in descending order.""" ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [39, 30, 12, 1, 0] UpperCamelCase__ = len(SCREAMING_SNAKE_CASE_ ) with self.assertRaises(SCREAMING_SNAKE_CASE_ , msg="""Can only pass one of `num_inference_steps` or `timesteps`.""" ): scheduler.set_timesteps(num_inference_steps=SCREAMING_SNAKE_CASE_ , timesteps=SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.scheduler_classes[0] UpperCamelCase__ = self.get_scheduler_config() UpperCamelCase__ = scheduler_class(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = [scheduler.config.num_train_timesteps] with self.assertRaises( SCREAMING_SNAKE_CASE_ , msg="""`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}""" , ): scheduler.set_timesteps(timesteps=SCREAMING_SNAKE_CASE_ )
244
1
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Tuple = '▁' _lowerCamelCase : int = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class __UpperCAmelCase ( A__ , unittest.TestCase ): '''simple docstring''' __lowerCAmelCase = BertGenerationTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def A (self : Union[str, Any] ): super().setUp() A = BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) def A (self : Union[str, Any] ): A = """<s>""" A = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCAmelCase ) , _lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCAmelCase ) , _lowerCAmelCase ) def A (self : int ): A = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(_lowerCAmelCase ) , 1002 ) def A (self : str ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A (self : Union[str, Any] ): A = BertGenerationTokenizer(_lowerCAmelCase , keep_accents=_lowerCAmelCase ) A = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(_lowerCAmelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) , [285, 46, 10, 170, 382] , ) A = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A = tokenizer.convert_tokens_to_ids(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) A = tokenizer.convert_ids_to_tokens(_lowerCAmelCase ) self.assertListEqual( _lowerCAmelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def A (self : str ): return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def A (self : int ): A = """Hello World!""" A = [1_8536, 2260, 101] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @slow def A (self : Dict ): A = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) A = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(_lowerCAmelCase , self.big_tokenizer.encode(_lowerCAmelCase ) ) @require_torch @slow def A (self : Tuple ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence A = list(self.big_tokenizer.get_vocab().keys() )[:10] A = """ """.join(_lowerCAmelCase ) A = self.big_tokenizer.encode_plus(_lowerCAmelCase , return_tensors="""pt""" , return_token_type_ids=_lowerCAmelCase ) A = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=_lowerCAmelCase ) A = BertGenerationConfig() A = BertGenerationEncoder(_lowerCAmelCase ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**_lowerCAmelCase ) model(**_lowerCAmelCase ) @slow def A (self : List[str] ): # fmt: off A = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCAmelCase , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
337
'''simple docstring''' import math class __UpperCAmelCase : '''simple docstring''' def __init__(self : int , _lowerCAmelCase : List[Any]=0 ): # a graph with Node 0,1,...,N-1 A = n A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # adjacency matrix for weight A = [ [math.inf for j in range(0 , _lowerCAmelCase )] for i in range(0 , _lowerCAmelCase ) ] # dp[i][j] stores minimum distance from i to j def A (self : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Any , _lowerCAmelCase : Optional[Any] ): A = w def A (self : Union[str, Any] ): for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): A = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def A (self : List[Any] , _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[int] ): return self.dp[u][v] if __name__ == "__main__": _lowerCamelCase : str = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
337
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar _snake_case = TypeVar("T") class lowercase ( Generic[T] ): def __init__( self , _a ) -> str: _A : Union[str, Any] = data _A : Node[T] | None = None def __str__( self ) -> str: return F'''{self.data}''' class lowercase ( Generic[T] ): def __init__( self ) -> None: _A : Node[T] | None = None def __iter__( self ) -> Iterator[T]: _A : Union[str, Any] = self.top while node: yield node.data _A : Any = node.next def __str__( self ) -> str: return "->".join([str(_a ) for item in self] ) def __len__( self ) -> int: return len(tuple(iter(self ) ) ) def a__ ( self ) -> bool: return self.top is None def a__ ( self , _a ) -> None: _A : Any = Node(_a ) if not self.is_empty(): _A : int = self.top _A : List[str] = node def a__ ( self ) -> T: if self.is_empty(): raise IndexError("""pop from empty stack""" ) assert isinstance(self.top , _a ) _A : int = self.top _A : Any = self.top.next return pop_node.data def a__ ( self ) -> T: if self.is_empty(): raise IndexError("""peek from empty stack""" ) assert self.top is not None return self.top.data def a__ ( self ) -> None: _A : Dict = None if __name__ == "__main__": from doctest import testmod testmod()
26
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> Any: _A : Tuple = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""" ) _A : List[Any] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _A : List[str] = model(_a )["""last_hidden_state"""] _A : Union[str, Any] = tf.TensorShape((1, 10, 768) ) self.assertEqual(output.shape , _a ) # compare the actual values for a slice. _A : List[Any] = tf.convert_to_tensor( [[[-0.0254, 0.0235, 0.1027], [0.0606, -0.1811, -0.0418], [-0.1561, -0.1127, 0.2687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
1
import math def lowerCamelCase_ ( _a , _a ): """simple docstring""" if initial_intensity < 0: raise ValueError('''The value of intensity cannot be negative''' ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError('''In Malus Law, the angle is in the range 0-360 degrees''' ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_a ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='''malus_law''')
353
def lowerCamelCase_ ( _a = 4_000_000 ): """simple docstring""" lowerCAmelCase__ : str = [] lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(_a ) lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = b, a + b return sum(_a ) if __name__ == "__main__": print(f'''{solution() = }''')
211
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class __lowercase (UpperCamelCase__ ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase ( A ) -> Optional[int]: raise NotImplementedError() @abstractmethod def UpperCAmelCase ( self ) -> str: raise NotImplementedError()
124
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase : Tuple = logging.get_logger(__name__) lowerCamelCase : int = { 'nvidia/segformer-b0-finetuned-ade-512-512': ( 'https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json' ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = """segformer""" def __init__( self , A=3 , A=4 , A=[2, 2, 2, 2] , A=[8, 4, 2, 1] , A=[3_2, 6_4, 1_6_0, 2_5_6] , A=[7, 3, 3, 3] , A=[4, 2, 2, 2] , A=[1, 2, 5, 8] , A=[4, 4, 4, 4] , A="gelu" , A=0.0 , A=0.0 , A=0.1 , A=0.02 , A=0.1 , A=1e-6 , A=2_5_6 , A=2_5_5 , **A , ) -> Dict: super().__init__(**A ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , A , ) snake_case : List[str] = num_channels snake_case : Optional[int] = num_encoder_blocks snake_case : Optional[int] = depths snake_case : str = sr_ratios snake_case : str = hidden_sizes snake_case : Any = patch_sizes snake_case : Tuple = strides snake_case : List[str] = mlp_ratios snake_case : Optional[Any] = num_attention_heads snake_case : int = hidden_act snake_case : Tuple = hidden_dropout_prob snake_case : Any = attention_probs_dropout_prob snake_case : List[Any] = classifier_dropout_prob snake_case : Optional[Any] = initializer_range snake_case : Optional[Any] = drop_path_rate snake_case : int = layer_norm_eps snake_case : Optional[Any] = decoder_hidden_size snake_case : Tuple = kwargs.get("""reshape_last_stage""" , A ) snake_case : List[str] = semantic_loss_ignore_index class __lowercase (UpperCamelCase__ ): """simple docstring""" _snake_case = version.parse("""1.11""" ) @property def UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def UpperCAmelCase ( self ) -> float: return 1e-4 @property def UpperCAmelCase ( self ) -> int: return 1_2
124
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A : List[Any] = logging.get_logger(__name__) A : Optional[int] = '▁' A : List[str] = {'vocab_file': 'sentencepiece.bpe.model'} A : Any = { 'vocab_file': { 'facebook/nllb-200-distilled-600M': ( 'https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model' ), } } A : Any = { 'facebook/nllb-200-distilled-600M': 1_0_2_4, } # fmt: off A : int = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] class A ( UpperCAmelCase__ ): '''simple docstring''' A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = ['''input_ids''', '''attention_mask'''] A__ = [] A__ = [] def __init__(self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any]="<s>" , _UpperCAmelCase : int="</s>" , _UpperCAmelCase : Optional[Any]="</s>" , _UpperCAmelCase : List[str]="<s>" , _UpperCAmelCase : Union[str, Any]="<unk>" , _UpperCAmelCase : Any="<pad>" , _UpperCAmelCase : Dict="<mask>" , _UpperCAmelCase : str=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : Optional[Dict[str, Any]] = None , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Any=False , **_UpperCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" lowercase__ = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token lowercase__ = {} if sp_model_kwargs is None else sp_model_kwargs lowercase__ = legacy_behaviour super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , tokenizer_file=_UpperCAmelCase , src_lang=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , additional_special_tokens=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_UpperCAmelCase , **_UpperCAmelCase , ) lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_UpperCAmelCase ) ) lowercase__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ = 1 lowercase__ = len(self.sp_model ) lowercase__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_UpperCAmelCase ) } lowercase__ = {v: k for k, v in self.lang_code_to_id.items()} lowercase__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) lowercase__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} lowercase__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) lowercase__ = src_lang if src_lang is not None else """eng_Latn""" lowercase__ = self.lang_code_to_id[self._src_lang] lowercase__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__(self : Any ) -> Optional[Any]: """simple docstring""" lowercase__ = self.__dict__.copy() lowercase__ = None lowercase__ = self.sp_model.serialized_model_proto() return state def __setstate__(self : int , _UpperCAmelCase : Union[str, Any] ) -> Tuple: """simple docstring""" lowercase__ = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): lowercase__ = {} lowercase__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def lowerCamelCase__ (self : Optional[Any] ) -> str: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def lowerCamelCase__ (self : List[str] ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def lowerCamelCase__ (self : Union[str, Any] , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) lowercase__ = [1] * len(self.prefix_tokens ) lowercase__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def lowerCamelCase__ (self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ = [self.sep_token_id] lowercase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCamelCase__ (self : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] , _UpperCAmelCase : Optional[str] , **_UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) lowercase__ = src_lang lowercase__ = self(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) lowercase__ = self.convert_tokens_to_ids(_UpperCAmelCase ) lowercase__ = tgt_lang_id return inputs def lowerCamelCase__ (self : Optional[Any] ) -> Tuple: """simple docstring""" lowercase__ = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ (self : List[Any] , _UpperCAmelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : Dict ) -> str: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ = self.sp_model.PieceToId(_UpperCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : Optional[int] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ (self : Optional[int] , _UpperCAmelCase : List[str] ) -> int: """simple docstring""" lowercase__ = """""".join(_UpperCAmelCase ).replace(_UpperCAmelCase , """ """ ).strip() return out_string def lowerCamelCase__ (self : List[str] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_UpperCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase__ = os.path.join( _UpperCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , """wb""" ) as fi: lowercase__ = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,) def lowerCamelCase__ (self : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str = "eng_Latn" , _UpperCAmelCase : Optional[List[str]] = None , _UpperCAmelCase : str = "fra_Latn" , **_UpperCAmelCase : Optional[int] , ) -> BatchEncoding: """simple docstring""" lowercase__ = src_lang lowercase__ = tgt_lang return super().prepare_seqaseq_batch(_UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) def lowerCamelCase__ (self : Union[str, Any] ) -> Any: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def lowerCamelCase__ (self : List[Any] ) -> Union[str, Any]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def lowerCamelCase__ (self : str , _UpperCAmelCase : List[Any] ) -> None: """simple docstring""" lowercase__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id] def lowerCamelCase__ (self : str , _UpperCAmelCase : str ) -> None: """simple docstring""" lowercase__ = self.lang_code_to_id[lang] if self.legacy_behaviour: lowercase__ = [] lowercase__ = [self.eos_token_id, self.cur_lang_code] else: lowercase__ = [self.cur_lang_code] lowercase__ = [self.eos_token_id]
146
import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate A : int = trt.Logger(trt.Logger.WARNING) A : Dict = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) A : Union[str, Any] = logging.getLogger(__name__) A : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_8_4, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_2_8, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=2_0, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=3_0, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=4_2, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) A : List[Any] = parser.parse_args() if args.tokenizer_name: A : Dict = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) A : Optional[Any] = args.per_device_eval_batch_size A : Tuple = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties A : Any = True A : Optional[int] = 'temp_engine/bert-fp32.engine' if args.fpaa: A : Union[str, Any] = 'temp_engine/bert-fp16.engine' if args.inta: A : Optional[int] = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') A : List[str] = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network A : List[str] = [network.get_input(i) for i in range(network.num_inputs)] A : Any = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: A : Union[str, Any] = 1 << 5_0 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) A : Dict = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) A : int = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def UpperCamelCase ( __magic_name__ : Optional[Any] , __magic_name__ : Tuple , __magic_name__ : int , __magic_name__ : Any , __magic_name__ : List[str] , __magic_name__ : Any , __magic_name__ : Union[str, Any] , __magic_name__ : Optional[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = np.asarray(inputs["""input_ids"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa ) lowercase__ = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __magic_name__ ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __magic_name__ ) # start time lowercase__ = time.time() # Run inference context.execute_async( bindings=[int(__magic_name__ ) for d_inp in d_inputs] + [int(__magic_name__ ), int(__magic_name__ )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) cuda.memcpy_dtoh_async(__magic_name__ , __magic_name__ , __magic_name__ ) # Synchronize the stream and take time stream.synchronize() # end time lowercase__ = time.time() lowercase__ = end_time - start_time lowercase__ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. A : Dict = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. A : str = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. A : str = raw_datasets['validation'].column_names A : Any = 'question' if 'question' in column_names else column_names[0] A : int = 'context' if 'context' in column_names else column_names[1] A : Tuple = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). A : Dict = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( F'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the' F'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.' ) A : str = min(args.max_seq_length, tokenizer.model_max_length) def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. lowercase__ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=__magic_name__ , stride=args.doc_stride , return_overflowing_tokens=__magic_name__ , return_offsets_mapping=__magic_name__ , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. lowercase__ = tokenized_examples.pop("""overflow_to_sample_mapping""" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. lowercase__ = [] for i in range(len(tokenized_examples["""input_ids"""] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). lowercase__ = tokenized_examples.sequence_ids(__magic_name__ ) lowercase__ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. lowercase__ = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. lowercase__ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i] ) ] return tokenized_examples A : Optional[Any] = raw_datasets['validation'] # Validation Feature Creation A : int = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) A : Dict = default_data_collator A : Union[str, Any] = eval_dataset.remove_columns(['example_id', 'offset_mapping']) A : Optional[Any] = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def UpperCamelCase ( __magic_name__ : str , __magic_name__ : str , __magic_name__ : Any , __magic_name__ : List[Any]="eval" ) -> List[Any]: """simple docstring""" lowercase__ = postprocess_qa_predictions( examples=__magic_name__ , features=__magic_name__ , predictions=__magic_name__ , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__magic_name__ , ) # Format the result to the format the metric expects. if args.version_2_with_negative: lowercase__ = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: lowercase__ = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] lowercase__ = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__magic_name__ , label_ids=__magic_name__ ) A : Union[str, Any] = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def UpperCamelCase ( __magic_name__ : Any ) -> Union[str, Any]: """simple docstring""" return trt.volume(engine.get_binding_shape(__magic_name__ ) ) * engine.get_binding_dtype(__magic_name__ ).itemsize # Allocate device memory for inputs and outputs. A : Union[str, Any] = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer A : Optional[int] = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) A : Dict = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) A : List[str] = cuda.mem_alloc(h_outputa.nbytes) A : Optional[Any] = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. A : Union[str, Any] = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(F' Num examples = {len(eval_dataset)}') logger.info(F' Batch size = {args.per_device_eval_batch_size}') A : List[Any] = 0.0 A : Any = 0 A : str = timeit.default_timer() A : Tuple = None for step, batch in enumerate(eval_dataloader): A , A : Optional[int] = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 A , A : int = outputs A : str = torch.tensor(start_logits) A : int = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered A : List[Any] = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_0_0) A : Tuple = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_0_0) A : Any = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) A : str = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_0_0) if all_preds is not None: A : List[str] = nested_truncate(all_preds, len(eval_dataset)) A : List[Any] = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_0_0_0)) logger.info('Total Number of Inference = %d', niter) A : Dict = post_processing_function(eval_examples, eval_dataset, all_preds) A : Any = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(F'Evaluation metrics: {eval_metric}')
146
1
from typing import TYPE_CHECKING from ...utils import _LazyModule UpperCamelCase__ = {"""tokenization_wav2vec2_phoneme""": ["""Wav2Vec2PhonemeCTCTokenizer"""]} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
92
# This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration snake_case : List[str] = "facebook/wmt19-en-de" snake_case : Dict = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model snake_case : List[str] = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) snake_case : int = FSMTForConditionalGeneration(config) print(F"num of params {tiny_model.num_parameters()}") # Test snake_case : Optional[Any] = tokenizer(["Making tiny model"], return_tensors="pt") snake_case : List[str] = tiny_model(**batch) print("test output:", len(outputs.logits[0])) # Save snake_case : Dict = "tiny-wmt19-en-de" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F"Generated {mname_tiny}") # Upload # transformers-cli upload tiny-wmt19-en-de
281
0
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def __UpperCamelCase ( lowercase__ : int = 8 ) -> str: '''simple docstring''' lowerCAmelCase_ : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(lowercase__ ) for _ in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : int ) -> str: '''simple docstring''' i -= len(lowercase__ ) lowerCAmelCase_ : Optional[int] = i // 3 lowerCAmelCase_ : Tuple = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCAmelCase_ : str = ( chars_incl + random(lowercase__ , quotient + remainder ) + random(lowercase__ , lowercase__ ) + random(lowercase__ , lowercase__ ) ) lowerCAmelCase_ : Any = list(lowercase__ ) shuffle(lowercase__ ) return "".join(lowercase__ ) # random is a generalised function for letters, characters and numbers def __UpperCamelCase ( lowercase__ : str , lowercase__ : int ) -> str: '''simple docstring''' return "".join(secrets.choice(lowercase__ ) for _ in range(lowercase__ ) ) def __UpperCamelCase ( lowercase__ : str , lowercase__ : int ) -> Union[str, Any]: '''simple docstring''' pass # Put your code here... def __UpperCamelCase ( lowercase__ : Union[str, Any] , lowercase__ : List[str] ) -> Tuple: '''simple docstring''' pass # Put your code here... def __UpperCamelCase ( lowercase__ : List[str] , lowercase__ : int ) -> Optional[Any]: '''simple docstring''' pass # Put your code here... def __UpperCamelCase ( lowercase__ : str , lowercase__ : int = 8 ) -> bool: '''simple docstring''' if len(lowercase__ ) < min_length: # Your Password must be at least 8 characters long return False lowerCAmelCase_ : Tuple = any(char in ascii_uppercase for char in password ) lowerCAmelCase_ : Optional[Any] = any(char in ascii_lowercase for char in password ) lowerCAmelCase_ : Tuple = any(char in digits for char in password ) lowerCAmelCase_ : Optional[Any] = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def __UpperCamelCase ( ) -> str: '''simple docstring''' lowerCAmelCase_ : int = int(input("""Please indicate the max length of your password: """ ).strip() ) lowerCAmelCase_ : int = input( """Please indicate the characters that must be in your password: """ ).strip() print("""Password generated:""" , password_generator(lowercase__ ) ) print( """Alternative Password generated:""" , alternative_password_generator(lowercase__ , lowercase__ ) , ) print("""[If you are thinking of using this passsword, You better save it.]""" ) if __name__ == "__main__": main()
28
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( lowercase__ : Optional[Any] , lowercase__ : Optional[Any] , lowercase__ : str ) -> List[str]: '''simple docstring''' hf_model.apply_weight_norm() lowerCAmelCase_ : Dict = checkpoint["""input_conv.weight_g"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.weight_v"""] lowerCAmelCase_ : Any = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): lowerCAmelCase_ : Tuple = checkpoint[f'upsamples.{i}.1.weight_g'] lowerCAmelCase_ : Any = checkpoint[f'upsamples.{i}.1.weight_v'] lowerCAmelCase_ : int = checkpoint[f'upsamples.{i}.1.bias'] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_g'] lowerCAmelCase_ : Dict = checkpoint[f'blocks.{i}.convs1.{j}.1.weight_v'] lowerCAmelCase_ : Tuple = checkpoint[f'blocks.{i}.convs1.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_g'] lowerCAmelCase_ : Optional[Any] = checkpoint[f'blocks.{i}.convs2.{j}.1.weight_v'] lowerCAmelCase_ : str = checkpoint[f'blocks.{i}.convs2.{j}.1.bias'] lowerCAmelCase_ : str = checkpoint["""output_conv.1.weight_g"""] lowerCAmelCase_ : Dict = checkpoint["""output_conv.1.weight_v"""] lowerCAmelCase_ : Optional[int] = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( lowercase__ : str , lowercase__ : Tuple , lowercase__ : Dict , lowercase__ : List[Any]=None , lowercase__ : Union[str, Any]=None , ) -> List[Any]: '''simple docstring''' if config_path is not None: lowerCAmelCase_ : Optional[Any] = SpeechTaHifiGanConfig.from_pretrained(lowercase__ ) else: lowerCAmelCase_ : Any = SpeechTaHifiGanConfig() lowerCAmelCase_ : str = SpeechTaHifiGan(lowercase__ ) lowerCAmelCase_ : Tuple = torch.load(lowercase__ ) load_weights(orig_checkpoint["""model"""]["""generator"""] , lowercase__ , lowercase__ ) lowerCAmelCase_ : Optional[int] = np.load(lowercase__ ) lowerCAmelCase_ : Any = stats[0].reshape(-1 ) lowerCAmelCase_ : List[str] = stats[1].reshape(-1 ) lowerCAmelCase_ : Optional[int] = torch.from_numpy(lowercase__ ).float() lowerCAmelCase_ : Any = torch.from_numpy(lowercase__ ).float() model.save_pretrained(lowercase__ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(lowercase__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __UpperCAmelCase = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
28
1
import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a = '''▁''' __a = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece class __SCREAMING_SNAKE_CASE ( A__ , unittest.TestCase ): A : List[Any] = BertGenerationTokenizer A : Tuple = False A : List[str] = True def __lowerCamelCase ( self ): super().setUp() lowercase : str = BertGenerationTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self ): lowercase : int = '''<s>''' lowercase : Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self ): lowercase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<pad>''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , 1002 ) def __lowerCamelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def __lowerCamelCase ( self ): lowercase : List[Any] = BertGenerationTokenizer(SCREAMING_SNAKE_CASE__ , keep_accents=SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , [285, 46, 10, 170, 382] , ) lowercase : Optional[Any] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowercase : Optional[Any] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ) self.assertListEqual( SCREAMING_SNAKE_CASE__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def __lowerCamelCase ( self ): return BertGenerationTokenizer.from_pretrained('''google/bert_for_seq_generation_L-24_bbc_encoder''' ) @slow def __lowerCamelCase ( self ): lowercase : int = '''Hello World!''' lowercase : Optional[Any] = [18536, 2260, 101] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @slow def __lowerCamelCase ( self ): lowercase : Dict = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowercase : Any = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(SCREAMING_SNAKE_CASE__ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE__ ) ) @require_torch @slow def __lowerCamelCase ( self ): import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowercase : List[Any] = list(self.big_tokenizer.get_vocab().keys() )[:10] lowercase : List[str] = ''' '''.join(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self.big_tokenizer.encode_plus(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=SCREAMING_SNAKE_CASE__ ) lowercase : Dict = BertGenerationConfig() lowercase : Union[str, Any] = BertGenerationEncoder(SCREAMING_SNAKE_CASE__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**SCREAMING_SNAKE_CASE__ ) model(**SCREAMING_SNAKE_CASE__ ) @slow def __lowerCamelCase ( self ): # fmt: off lowercase : Optional[int] = {'''input_ids''': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE__ , model_name='''google/bert_for_seq_generation_L-24_bbc_encoder''' , revision='''c817d1fd1be2ffa69431227a1fe320544943d4db''' , )
337
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __a = logging.get_logger(__name__) __a = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __a = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __a = {'''facebook/blenderbot-3B''': 1_28} class __SCREAMING_SNAKE_CASE ( A__ ): A : Dict = VOCAB_FILES_NAMES A : Optional[int] = PRETRAINED_VOCAB_FILES_MAP A : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Optional[int] = ['input_ids', 'attention_mask'] A : str = BlenderbotTokenizer def __init__( self , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__="replace" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="</s>" , SCREAMING_SNAKE_CASE__="<s>" , SCREAMING_SNAKE_CASE__="<unk>" , SCREAMING_SNAKE_CASE__="<pad>" , SCREAMING_SNAKE_CASE__="<mask>" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=True , **SCREAMING_SNAKE_CASE__ , ): super().__init__( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , tokenizer_file=SCREAMING_SNAKE_CASE__ , errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , trim_offsets=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) lowercase : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , pre_tok_state.pop('''type''' ) ) lowercase : str = add_prefix_space lowercase : List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE__ ) lowercase : List[Any] = add_prefix_space lowercase : str = '''post_processor''' lowercase : str = getattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if tokenizer_component_instance: lowercase : Optional[int] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase : Tuple = tuple(state['''sep'''] ) if "cls" in state: lowercase : Union[str, Any] = tuple(state['''cls'''] ) lowercase : Optional[int] = False if state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE__ ) != add_prefix_space: lowercase : Any = add_prefix_space lowercase : Tuple = True if state.get('''trim_offsets''' , SCREAMING_SNAKE_CASE__ ) != trim_offsets: lowercase : List[str] = trim_offsets lowercase : Optional[int] = True if changes_to_apply: lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE__ , state.pop('''type''' ) ) lowercase : Union[str, Any] = component_class(**SCREAMING_SNAKE_CASE__ ) setattr(self.backend_tokenizer , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def __lowerCamelCase ( self ): if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''' ) return None return str(self._mask_token ) @mask_token.setter def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else value lowercase : Any = value def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): lowercase : Dict = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): lowercase : Any = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE__ ) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : int = self._tokenizer.model.save(SCREAMING_SNAKE_CASE__ , name=SCREAMING_SNAKE_CASE__ ) return tuple(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): lowercase : Tuple = [self.sep_token_id] lowercase : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = None ): return token_ids_a + [self.eos_token_id] def __lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ): lowercase : Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text ) else: # Generated responses should contain them already. inputs.append(SCREAMING_SNAKE_CASE__ ) lowercase : List[str] = ''' '''.join(SCREAMING_SNAKE_CASE__ ) lowercase : Any = self.encode(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) > self.model_max_length: lowercase : Tuple = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""" ) return input_ids
337
1
import json import os from typing import Dict, List, Optional, Tuple import regex as re from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : int = { 'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_config_file': 'tokenizer_config.json', } UpperCAmelCase_ : Union[str, Any] = { 'vocab_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/vocab.json' }, 'merges_file': { 'facebook/blenderbot_small-90M': 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/merges.txt' }, 'tokenizer_config_file': { 'facebook/blenderbot_small-90M': ( 'https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/tokenizer_config.json' ) }, } UpperCAmelCase_ : str = {'facebook/blenderbot_small-90M': 512} def SCREAMING_SNAKE_CASE_ ( __A : str ) -> Optional[Any]: """simple docstring""" a_ : Tuple = set() a_ : Any = word[0] for char in word[1:]: pairs.add((prev_char, char) ) a_ : Optional[Any] = char a_ : Optional[Any] = set(__A ) return pairs class SCREAMING_SNAKE_CASE__ ( lowercase__ ): snake_case__ : str = VOCAB_FILES_NAMES snake_case__ : Dict = PRETRAINED_VOCAB_FILES_MAP snake_case__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Any = ['''input_ids''', '''attention_mask'''] def __init__( self : Any , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple="__start__" , SCREAMING_SNAKE_CASE__ : List[Any]="__end__" , SCREAMING_SNAKE_CASE__ : str="__unk__" , SCREAMING_SNAKE_CASE__ : Dict="__null__" , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: super().__init__(unk_token=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as vocab_handle: a_ : Dict = json.load(SCREAMING_SNAKE_CASE__ ) a_ : int = {v: k for k, v in self.encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding='utf-8' ) as merges_handle: a_ : str = merges_handle.read().split('\n' )[1:-1] a_ : Union[str, Any] = [tuple(merge.split() ) for merge in merges] a_ : Tuple = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) a_ : Tuple = {} @property def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> int: return len(self.encoder ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : str ) -> str: if token in self.cache: return self.cache[token] a_ : Any = re.sub('([.,!?()])' , r' \1' , SCREAMING_SNAKE_CASE__ ) a_ : List[str] = re.sub('(\')' , r' \1 ' , SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = re.sub(r'\s{2,}' , ' ' , SCREAMING_SNAKE_CASE__ ) if "\n" in token: a_ : str = token.replace('\n' , ' __newln__' ) a_ : Tuple = token.split(' ' ) a_ : Any = [] for token in tokens: if not len(SCREAMING_SNAKE_CASE__ ): continue a_ : Union[str, Any] = token.lower() a_ : Dict = tuple(SCREAMING_SNAKE_CASE__ ) a_ : Any = tuple(list(word[:-1] ) + [word[-1] + '</w>'] ) a_ : List[Any] = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: words.append(SCREAMING_SNAKE_CASE__ ) continue while True: a_ : Any = min(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float('inf' ) ) ) if bigram not in self.bpe_ranks: break a_ , a_ : Union[str, Any] = bigram a_ : Dict = [] a_ : Dict = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: a_ : Optional[Any] = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) new_word.extend(word[i:j] ) a_ : Any = j except ValueError: new_word.extend(word[i:] ) break if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 a_ : Any = tuple(SCREAMING_SNAKE_CASE__ ) a_ : List[str] = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: a_ : int = get_pairs(SCREAMING_SNAKE_CASE__ ) a_ : str = '@@ '.join(SCREAMING_SNAKE_CASE__ ) a_ : Tuple = word[:-4] a_ : List[Any] = word words.append(SCREAMING_SNAKE_CASE__ ) return " ".join(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: a_ : List[Any] = [] a_ : int = re.findall(r'\S+\n?' , SCREAMING_SNAKE_CASE__ ) for token in words: split_tokens.extend(list(self.bpe(SCREAMING_SNAKE_CASE__ ).split(' ' ) ) ) return split_tokens def SCREAMING_SNAKE_CASE ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> int: a_ : Optional[int] = token.lower() return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def SCREAMING_SNAKE_CASE ( self : Tuple , SCREAMING_SNAKE_CASE__ : int ) -> str: return self.decoder.get(SCREAMING_SNAKE_CASE__ , self.unk_token ) def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : List[str] ) -> str: a_ : int = ' '.join(SCREAMING_SNAKE_CASE__ ).replace('@@ ' , '' ).strip() return out_string def SCREAMING_SNAKE_CASE ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return a_ : str = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) a_ : Dict = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + '\n' ) a_ : Tuple = 0 with open(SCREAMING_SNAKE_CASE__ , 'w' , encoding='utf-8' ) as writer: writer.write('#version: 0.2\n' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE__ : kv[1] ): if index != token_index: logger.warning( F"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ' Please check that the tokenizer is not corrupted!' ) a_ : Optional[int] = token_index writer.write(' '.join(SCREAMING_SNAKE_CASE__ ) + '\n' ) index += 1 return vocab_file, merge_file
120
from __future__ import annotations from math import pi # Define the Reduced Planck Constant ℏ (H bar), speed of light C, value of # Pi and the function UpperCAmelCase_ : str = 1.054571817e-34 # unit of ℏ : J * s UpperCAmelCase_ : Dict = 3e8 # unit of c : m * s^-1 def SCREAMING_SNAKE_CASE_ ( __A : float , __A : float , __A : float ) -> dict[str, float]: """simple docstring""" if (force, area, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if force < 0: raise ValueError('Magnitude of force can not be negative' ) if distance < 0: raise ValueError('Distance can not be negative' ) if area < 0: raise ValueError('Area can not be negative' ) if force == 0: a_ : Optional[Any] = (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / ( 2_40 * (distance) ** 4 ) return {"force": force} elif area == 0: a_ : List[str] = (2_40 * force * (distance) ** 4) / ( REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 ) return {"area": area} elif distance == 0: a_ : Tuple = ( (REDUCED_PLANCK_CONSTANT * SPEED_OF_LIGHT * pi**2 * area) / (2_40 * force) ) ** (1 / 4) return {"distance": distance} raise ValueError('One and only one argument must be 0' ) # Run doctest if __name__ == "__main__": import doctest doctest.testmod()
120
1
"""simple docstring""" import collections import importlib.util import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile('''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile('''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(r'''^\s*else:''') def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' if _re_test_backend.search(SCREAMING_SNAKE_CASE ) is None: return None lowerCAmelCase : Dict = [b[0] for b in _re_backend.findall(SCREAMING_SNAKE_CASE )] backends.sort() return "_and_".join(SCREAMING_SNAKE_CASE ) def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' with open(SCREAMING_SNAKE_CASE , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : Tuple = f.readlines() lowerCAmelCase : Any = 0 while line_index < len(SCREAMING_SNAKE_CASE ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(SCREAMING_SNAKE_CASE ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : List[Any] = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : Any = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ): lowerCAmelCase : int = _re_one_line_import_struct.search(SCREAMING_SNAKE_CASE ).groups()[0] lowerCAmelCase : Optional[int] = re.findall("\[([^\]]+)\]" , SCREAMING_SNAKE_CASE ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase : Optional[Any] = _re_import_struct_key_value.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: lowerCAmelCase : List[str] = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Union[str, Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : Union[str, Any] = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase : Optional[Any] = lines[line_index] if _re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_import_struct_add_one.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : Optional[int] = _re_import_struct_add_many.search(SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) lowerCAmelCase : str = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_between_brackets.search(SCREAMING_SNAKE_CASE ) is not None: lowerCAmelCase : Tuple = _re_between_brackets.search(SCREAMING_SNAKE_CASE ).groups()[0].split(", " ) lowerCAmelCase : List[Any] = [obj[1:-1] for obj in imports if len(SCREAMING_SNAKE_CASE ) > 0] objects.extend(SCREAMING_SNAKE_CASE ) elif _re_quote_object.search(SCREAMING_SNAKE_CASE ) is not None: objects.append(_re_quote_object.search(SCREAMING_SNAKE_CASE ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 lowerCAmelCase : Optional[int] = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[Any] = [] while ( line_index < len(SCREAMING_SNAKE_CASE ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase : Tuple = lines[line_index] lowerCAmelCase : Dict = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : Optional[int] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(SCREAMING_SNAKE_CASE ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Dict = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase : Union[str, Any] = lines[line_index] lowerCAmelCase : Dict = _re_import.search(SCREAMING_SNAKE_CASE ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCAmelCase : int = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE : List[Any] ): return [k for k, v in collections.Counter(SCREAMING_SNAKE_CASE ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : Dict = [] for key in import_dict_objects.keys(): lowerCAmelCase : Optional[Any] = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase : Dict = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : List[Any] = "base imports" if key == "none" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def a__ ( ): '''simple docstring''' lowerCAmelCase : Tuple = [] for root, _, files in os.walk(SCREAMING_SNAKE_CASE ): if "__init__.py" in files: lowerCAmelCase : Any = os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) lowerCAmelCase : List[Any] = parse_init(SCREAMING_SNAKE_CASE ) if objects is not None: lowerCAmelCase : Any = analyze_results(*SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Tuple = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(SCREAMING_SNAKE_CASE ) ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError("\n\n".join(SCREAMING_SNAKE_CASE ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : Any = [] for path, directories, files in os.walk(SCREAMING_SNAKE_CASE ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(SCREAMING_SNAKE_CASE ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(SCREAMING_SNAKE_CASE ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase : int = str((Path(SCREAMING_SNAKE_CASE ) / folder).relative_to(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : Tuple = short_path.replace(os.path.sep , "." ) submodules.append(SCREAMING_SNAKE_CASE ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Dict = str((Path(SCREAMING_SNAKE_CASE ) / fname).relative_to(SCREAMING_SNAKE_CASE ) ) lowerCAmelCase : str = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(SCREAMING_SNAKE_CASE ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', ] def a__ ( ): '''simple docstring''' lowerCAmelCase : int = importlib.util.spec_from_file_location( "transformers" , os.path.join(SCREAMING_SNAKE_CASE , "__init__.py" ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase : Optional[int] = spec.loader.load_module() lowerCAmelCase : Any = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(SCREAMING_SNAKE_CASE ) > 0: lowerCAmelCase : Tuple = "\n".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registered in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
108
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class __A ( enum.Enum ): '''simple docstring''' __lowerCamelCase : Optional[int] = 0 __lowerCamelCase : Any = 1 __lowerCamelCase : List[Any] = 2 @add_end_docstrings(A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__(self , *A , **A ) -> Tuple: """simple docstring""" super().__init__(*A , **A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _a = None if self.model.config.prefix is not None: _a = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _a = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _a , _a , _a = self._sanitize_parameters(prefix=A , **self._forward_params ) _a = {**self._preprocess_params, **preprocess_params} _a = {**self._forward_params, **forward_params} def a__ (self , A=None , A=None , A=None , A=None , A=None , A=None , A=None , A=None , **A , ) -> str: """simple docstring""" _a = {} if prefix is not None: _a = prefix if prefix: _a = self.tokenizer( A , padding=A , add_special_tokens=A , return_tensors=self.framework ) _a = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ''' [None, \'hole\']''' ) _a = handle_long_generation preprocess_params.update(A ) _a = generate_kwargs _a = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) _a = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) _a = ReturnType.TENSORS if return_type is not None: _a = return_type if clean_up_tokenization_spaces is not None: _a = clean_up_tokenization_spaces if stop_sequence is not None: _a = self.tokenizer.encode(A , add_special_tokens=A ) if len(A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) _a = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def a__ (self , *A , **A ) -> List[Any]: """simple docstring""" if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*A , **A ) def __call__(self , A , **A ) -> int: """simple docstring""" return super().__call__(A , **A ) def a__ (self , A , A="" , A=None , **A ) -> Any: """simple docstring""" _a = self.tokenizer( prefix + prompt_text , padding=A , add_special_tokens=A , return_tensors=self.framework ) _a = prompt_text if handle_long_generation == "hole": _a = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: _a = generate_kwargs['''max_new_tokens'''] else: _a = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _a = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) _a = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: _a = inputs['''attention_mask'''][:, -keep_length:] return inputs def a__ (self , A , **A ) -> Any: """simple docstring""" _a = model_inputs['''input_ids'''] _a = model_inputs.get('''attention_mask''' , A ) # Allow empty prompts if input_ids.shape[1] == 0: _a = None _a = None _a = 1 else: _a = input_ids.shape[0] _a = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _a = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: _a = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: _a = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _a = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _a = self.model.generate(input_ids=A , attention_mask=A , **A ) _a = generated_sequence.shape[0] if self.framework == "pt": _a = generated_sequence.reshape(A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _a = tf.reshape(A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def a__ (self , A , A=ReturnType.FULL_TEXT , A=True ) -> str: """simple docstring""" _a = model_outputs['''generated_sequence'''][0] _a = model_outputs['''input_ids'''] _a = model_outputs['''prompt_text'''] _a = generated_sequence.numpy().tolist() _a = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _a = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _a = self.tokenizer.decode( A , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _a = 0 else: _a = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=A , clean_up_tokenization_spaces=A , ) ) if return_type == ReturnType.FULL_TEXT: _a = prompt_text + text[prompt_length:] else: _a = text[prompt_length:] _a = {'''generated_text''': all_text} records.append(A ) return records
211
0
from __future__ import annotations def __A ( _lowercase , _lowercase , _lowercase , ): '''simple docstring''' if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('''You cannot supply more or less than 2 values''' ) elif stress < 0: raise ValueError('''Stress cannot be negative''' ) elif tangential_force < 0: raise ValueError('''Tangential Force cannot be negative''' ) elif area < 0: raise ValueError('''Area cannot be negative''' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
359
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers __A = '3' print('Python version:', sys.version) print('transformers version:', transformers.__version__) try: import torch print('Torch version:', torch.__version__) print('Cuda available:', torch.cuda.is_available()) print('Cuda version:', torch.version.cuda) print('CuDNN version:', torch.backends.cudnn.version()) print('Number of GPUs available:', torch.cuda.device_count()) print('NCCL version:', torch.cuda.nccl.version()) except ImportError: print('Torch version:', None) try: import deepspeed print('DeepSpeed version:', deepspeed.__version__) except ImportError: print('DeepSpeed version:', None) try: import tensorflow as tf print('TensorFlow version:', tf.__version__) print('TF GPUs available:', bool(tf.config.list_physical_devices('GPU'))) print('Number of TF GPUs available:', len(tf.config.list_physical_devices('GPU'))) except ImportError: print('TensorFlow version:', None)
75
0
import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class __magic_name__ ( __lowerCAmelCase): A: List[str] = "char" A: List[str] = "bpe" A: Tuple = "wp" __UpperCamelCase : List[Any] = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class __magic_name__ ( __lowerCAmelCase): A: List[str] = ["image_processor", "char_tokenizer"] A: str = "ViTImageProcessor" A: Any = "MgpstrTokenizer" def __init__( self : Optional[Any] , lowerCamelCase__ : List[Any]=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Dict ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : str = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , lowerCamelCase__ , ) UpperCamelCase__ : Optional[Any] = kwargs.pop('''feature_extractor''' ) UpperCamelCase__ : Optional[int] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) UpperCamelCase__ : Optional[int] = tokenizer UpperCamelCase__ : List[str] = AutoTokenizer.from_pretrained('''gpt2''' ) UpperCamelCase__ : Dict = AutoTokenizer.from_pretrained('''bert-base-uncased''' ) super().__init__(lowerCamelCase__ , lowerCamelCase__ ) def __call__( self : int , lowerCamelCase__ : Any=None , lowerCamelCase__ : Any=None , lowerCamelCase__ : int=None , **lowerCamelCase__ : Dict ) -> Dict: '''simple docstring''' if images is None and text is None: raise ValueError('''You need to specify either an `images` or `text` input to process.''' ) if images is not None: UpperCamelCase__ : Optional[Any] = self.image_processor(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is not None: UpperCamelCase__ : Optional[int] = self.char_tokenizer(lowerCamelCase__ , return_tensors=lowerCamelCase__ , **lowerCamelCase__ ) if text is None: return inputs elif images is None: return encodings else: UpperCamelCase__ : str = encodings['''input_ids'''] return inputs def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : int ) -> str: '''simple docstring''' UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : Optional[int] = sequences UpperCamelCase__ : Any = char_preds.size(0 ) UpperCamelCase__ , UpperCamelCase__ : int = self._decode_helper(lowerCamelCase__ , '''char''' ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = self._decode_helper(lowerCamelCase__ , '''bpe''' ) UpperCamelCase__ , UpperCamelCase__ : Optional[int] = self._decode_helper(lowerCamelCase__ , '''wp''' ) UpperCamelCase__ : Tuple = [] UpperCamelCase__ : str = [] for i in range(lowerCamelCase__ ): UpperCamelCase__ : Optional[int] = [char_scores[i], bpe_scores[i], wp_scores[i]] UpperCamelCase__ : Tuple = [char_strs[i], bpe_strs[i], wp_strs[i]] UpperCamelCase__ : Optional[Any] = scores.index(max(lowerCamelCase__ ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) UpperCamelCase__ : Tuple = {} UpperCamelCase__ : int = final_strs UpperCamelCase__ : int = final_scores UpperCamelCase__ : Tuple = char_strs UpperCamelCase__ : Optional[Any] = bpe_strs UpperCamelCase__ : Dict = wp_strs return out def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : int , lowerCamelCase__ : Optional[Any] ) -> Any: '''simple docstring''' if format == DecodeType.CHARACTER: UpperCamelCase__ : Union[str, Any] = self.char_decode UpperCamelCase__ : List[Any] = 1 UpperCamelCase__ : Optional[int] = '''[s]''' elif format == DecodeType.BPE: UpperCamelCase__ : int = self.bpe_decode UpperCamelCase__ : Optional[int] = 2 UpperCamelCase__ : List[Any] = '''#''' elif format == DecodeType.WORDPIECE: UpperCamelCase__ : Tuple = self.wp_decode UpperCamelCase__ : Any = 102 UpperCamelCase__ : Any = '''[SEP]''' else: raise ValueError(F"Format {format} is not supported." ) UpperCamelCase__ , UpperCamelCase__ : Any = [], [] UpperCamelCase__ : List[Any] = pred_logits.size(0 ) UpperCamelCase__ : List[Any] = pred_logits.size(1 ) UpperCamelCase__ , UpperCamelCase__ : List[Any] = pred_logits.topk(1 , dim=-1 , largest=lowerCamelCase__ , sorted=lowerCamelCase__ ) UpperCamelCase__ : Dict = preds_index.view(-1 , lowerCamelCase__ )[:, 1:] UpperCamelCase__ : Union[str, Any] = decoder(lowerCamelCase__ ) UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = torch.nn.functional.softmax(lowerCamelCase__ , dim=2 ).max(dim=2 ) UpperCamelCase__ : Dict = preds_max_prob[:, 1:] for index in range(lowerCamelCase__ ): UpperCamelCase__ : int = preds_str[index].find(lowerCamelCase__ ) UpperCamelCase__ : Dict = preds_str[index][:pred_eos] UpperCamelCase__ : Optional[Any] = preds_index[index].cpu().tolist() UpperCamelCase__ : Dict = pred_index.index(lowerCamelCase__ ) if eos_token in pred_index else -1 UpperCamelCase__ : str = preds_max_prob[index][: pred_eos_index + 1] UpperCamelCase__ : Union[str, Any] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(lowerCamelCase__ ) conf_scores.append(lowerCamelCase__ ) return dec_strs, conf_scores def UpperCAmelCase__ ( self : Any , lowerCamelCase__ : Tuple ) -> Dict: '''simple docstring''' UpperCamelCase__ : str = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(lowerCamelCase__ )] return decode_strs def UpperCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' return self.bpe_tokenizer.batch_decode(lowerCamelCase__ ) def UpperCAmelCase__ ( self : List[Any] , lowerCamelCase__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : str = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(lowerCamelCase__ )] return decode_strs
146
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy __UpperCamelCase : str = logging.getLogger(__name__) def _a ( SCREAMING_SNAKE_CASE : torch.nn.Module , SCREAMING_SNAKE_CASE : BnbQuantizationConfig , SCREAMING_SNAKE_CASE : Union[str, os.PathLike] = None , SCREAMING_SNAKE_CASE : Optional[Dict[str, Union[int, str, torch.device]]] = None , SCREAMING_SNAKE_CASE : Optional[List[str]] = None , SCREAMING_SNAKE_CASE : Optional[Dict[Union[int, str], Union[int, str]]] = None , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.load_in_abit UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( '''You have a version of `bitsandbytes` that is not compatible with 8bit quantization,''' ''' make sure you have the latest version of `bitsandbytes` installed.''' ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( '''You have a version of `bitsandbytes` that is not compatible with 4bit quantization,''' '''make sure you have the latest version of `bitsandbytes` installed.''' ) UpperCamelCase__ : int = [] # custom device map if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and len(device_map.keys() ) > 1: UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ['''disk''', '''cpu''']] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ : List[Any] = get_keys_to_not_convert(SCREAMING_SNAKE_CASE ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[str] = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ : Union[str, Any] = [] UpperCamelCase__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(SCREAMING_SNAKE_CASE ) # compatibility with peft UpperCamelCase__ : Optional[Any] = load_in_abit UpperCamelCase__ : List[str] = load_in_abit UpperCamelCase__ : str = get_parameter_device(SCREAMING_SNAKE_CASE ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( '''It is not recommended to quantize a loaded model. ''' '''The model should be instantiated under the `init_empty_weights` context manager.''' ) UpperCamelCase__ : Union[str, Any] = replace_with_bnb_layers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) # convert param to the right dtype UpperCamelCase__ : str = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ : Union[str, Any] = name.replace('''.weight''' , '''''' ).replace('''.bias''' , '''''' ) UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(SCREAMING_SNAKE_CASE ): param.to(SCREAMING_SNAKE_CASE ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info( F"The model device type is {model_device.type}. However, cuda is needed for quantization." '''We move the model to cuda.''' ) return model elif weights_location is None: raise RuntimeError( F"`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} " ) else: with init_empty_weights(): UpperCamelCase__ : str = replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , modules_to_not_convert=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = get_quantized_model_device_map( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , max_memory=SCREAMING_SNAKE_CASE , no_split_module_classes=SCREAMING_SNAKE_CASE , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ : Dict = True UpperCamelCase__ : str = any(x in list(device_map.values() ) for x in ['''cpu''', '''disk'''] ) load_checkpoint_in_model( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , dtype=bnb_quantization_config.torch_dtype , offload_folder=SCREAMING_SNAKE_CASE , offload_state_dict=SCREAMING_SNAKE_CASE , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(SCREAMING_SNAKE_CASE , device_map=SCREAMING_SNAKE_CASE , offload_dir=SCREAMING_SNAKE_CASE ) def _a ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : int=None , SCREAMING_SNAKE_CASE : str=None ): """simple docstring""" if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ : int = {'''''': torch.cuda.current_device()} else: raise RuntimeError('''No GPU found. A GPU is needed for quantization.''' ) logger.info('''The device_map was not initialized.''' '''Setting device_map to `{\'\':torch.cuda.current_device()}`.''' ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( '''If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or ''' '''\'sequential\'.''' ) UpperCamelCase__ : str = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ : Optional[Any] = {} UpperCamelCase__ : Union[str, Any] = special_dtypes UpperCamelCase__ : Optional[int] = no_split_module_classes UpperCamelCase__ : int = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ : Dict = get_balanced_memory( SCREAMING_SNAKE_CASE , low_zero=(device_map == '''balanced_low_0''') , max_memory=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , ) UpperCamelCase__ : Tuple = max_memory UpperCamelCase__ : Dict = infer_auto_device_map(SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # check if don't have any quantized module on the cpu UpperCamelCase__ : List[Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ : Dict = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( ''' Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit the quantized model. If you want to dispatch the model on the CPU or the disk while keeping these modules in `torch_dtype`, you need to pass a custom `device_map` to `load_and_quantize_model`. Check https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk for more details. ''' ) else: logger.info( '''Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit''' ) del device_map_without_some_modules return device_map def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple=None , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if modules_to_not_convert is None: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ , UpperCamelCase__ : Dict = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if not has_been_replaced: logger.warning( '''You are loading your model in 8bit or 4bit but no linear modules were found in your model.''' ''' this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.''' ''' Please double check your model architecture, or submit an issue on github if you think this is''' ''' a bug.''' ) return model def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : List[str]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ): """simple docstring""" UpperCamelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ : Tuple = [] current_key_name.append(SCREAMING_SNAKE_CASE ) if isinstance(SCREAMING_SNAKE_CASE , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ : int = '''.'''.join(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ : List[str] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ : int = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=SCREAMING_SNAKE_CASE , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ : Optional[int] = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError('''load_in_8bit and load_in_4bit can\'t be both False''' ) UpperCamelCase__ : List[Any] = module.weight.data if module.bias is not None: UpperCamelCase__ : List[str] = module.bias.data bnb_module.requires_grad_(SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Dict = True if len(list(module.children() ) ) > 0: UpperCamelCase__ , UpperCamelCase__ : Tuple = _replace_with_bnb_layers( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Tuple = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def _a ( SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" with init_empty_weights(): UpperCamelCase__ : Dict = deepcopy(SCREAMING_SNAKE_CASE ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ : str = find_tied_parameters(SCREAMING_SNAKE_CASE ) # For compatibility with Accelerate < 0.18 if isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ : List[str] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ : int = sum(SCREAMING_SNAKE_CASE , [] ) UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) > 0 # Check if it is a base model UpperCamelCase__ : str = False if hasattr(SCREAMING_SNAKE_CASE , '''base_model_prefix''' ): UpperCamelCase__ : int = not hasattr(SCREAMING_SNAKE_CASE , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ : Tuple = list(model.named_children() ) UpperCamelCase__ : str = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ : Dict = set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE ) UpperCamelCase__ : List[Any] = list(set(SCREAMING_SNAKE_CASE ) ) + list(SCREAMING_SNAKE_CASE ) # remove ".weight" from the keys UpperCamelCase__ : int = ['''.weight''', '''.bias'''] UpperCamelCase__ : Optional[int] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ : int = name.replace(SCREAMING_SNAKE_CASE , '''''' ) filtered_module_names.append(SCREAMING_SNAKE_CASE ) return filtered_module_names def _a ( SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" for m in model.modules(): if isinstance(SCREAMING_SNAKE_CASE , bnb.nn.Linearabit ): return True return False def _a ( SCREAMING_SNAKE_CASE : nn.Module ): """simple docstring""" return next(parameter.parameters() ).device def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , 0 , dtype=SCREAMING_SNAKE_CASE , value=SCREAMING_SNAKE_CASE ) UpperCamelCase__ : Optional[int] = param_name UpperCamelCase__ : str = model if "." in tensor_name: UpperCamelCase__ : List[Any] = tensor_name.split('''.''' ) for split in splits[:-1]: UpperCamelCase__ : Dict = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if new_module is None: raise ValueError(F"{module} has no attribute {split}." ) UpperCamelCase__ : Optional[int] = new_module UpperCamelCase__ : List[str] = splits[-1] # offload weights UpperCamelCase__ : Any = False offload_weight(module._parameters[tensor_name] , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) if hasattr(module._parameters[tensor_name] , '''SCB''' ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE , ) else: offload_weight(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) offload_weight(SCREAMING_SNAKE_CASE , param_name.replace('''weight''' , '''SCB''' ) , SCREAMING_SNAKE_CASE , index=SCREAMING_SNAKE_CASE ) set_module_tensor_to_device(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''meta''' , dtype=SCREAMING_SNAKE_CASE , value=torch.empty(*param.size() ) )
146
1
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) __SCREAMING_SNAKE_CASE =_symbol_database.Default() __SCREAMING_SNAKE_CASE =_descriptor_pool.Default().AddSerializedFile( B"\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03" ) __SCREAMING_SNAKE_CASE =globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, "sentencepiece_model_pb2", _globals) if _descriptor._USE_C_DESCRIPTORS is False: __SCREAMING_SNAKE_CASE =None __SCREAMING_SNAKE_CASE =B"H\003" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" __SCREAMING_SNAKE_CASE =45 __SCREAMING_SNAKE_CASE =1581 __SCREAMING_SNAKE_CASE =1517 __SCREAMING_SNAKE_CASE =1570 __SCREAMING_SNAKE_CASE =1584 __SCREAMING_SNAKE_CASE =1793 __SCREAMING_SNAKE_CASE =1795 __SCREAMING_SNAKE_CASE =1916 __SCREAMING_SNAKE_CASE =1864 __SCREAMING_SNAKE_CASE =1905 __SCREAMING_SNAKE_CASE =1919 __SCREAMING_SNAKE_CASE =2429 __SCREAMING_SNAKE_CASE =2208 __SCREAMING_SNAKE_CASE =2418 __SCREAMING_SNAKE_CASE =2323 __SCREAMING_SNAKE_CASE =2407 # @@protoc_insertion_point(module_scope)
370
"""simple docstring""" from .glue import glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels from .squad import SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features from .utils import DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor from .xnli import xnli_output_modes, xnli_processors, xnli_tasks_num_labels
321
0
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __lowerCamelCase ( ) -> List[Any]: """simple docstring""" UpperCamelCase = torch.nn.Linear(2 , 4 ) UpperCamelCase = torch.optim.AdamW(model.parameters() , lr=1.0 ) UpperCamelCase = torch.optim.lr_scheduler.OneCycleLR(A__ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) UpperCamelCase = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) UpperCamelCase = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __lowerCamelCase ( A__ ) -> str: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" UpperCamelCase = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(A__ ) class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" @require_cuda def A ( self : Any ): """simple docstring""" UpperCamelCase = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = Accelerator(cpu=UpperCamelCase__ ) def A ( self : Any ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase = GradientState() assert state.num_steps == 1 UpperCamelCase = 4 assert state.num_steps == 4 assert state.sync_gradients is True UpperCamelCase = False assert state.sync_gradients is False GradientState._reset_state() def A ( self : List[str] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = create_components() ( ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ( UpperCamelCase ) , ) = accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def A ( self : List[str] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def A ( self : Optional[Any] ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*UpperCamelCase__ : Dict , **UpperCamelCase__ : int ): pass with patch('torch.cuda.set_device' , UpperCamelCase__ ), patch_environment(ACCELERATE_TORCH_DEVICE='cuda:64' ): UpperCamelCase = Accelerator() self.assertEqual(str(accelerator.state.device ) , 'cuda:64' ) def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = get_signature(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1E-3 ) # make sure loaded weights match accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1E-3 ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = create_components() accelerator.prepare(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase = get_signature(UpperCamelCase__ ) # saving hook def save_config(UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : str ): UpperCamelCase = {'class_name': models[0].__class__.__name__} with open(os.path.join(UpperCamelCase__ , 'data.json' ) , 'w' ) as f: json.dump(UpperCamelCase__ , UpperCamelCase__ ) # loading hook def load_config(UpperCamelCase__ : Tuple , UpperCamelCase__ : Union[str, Any] ): with open(os.path.join(UpperCamelCase__ , 'data.json' ) , 'r' ) as f: UpperCamelCase = json.load(UpperCamelCase__ ) UpperCamelCase = config['class_name'] UpperCamelCase = accelerator.register_save_state_pre_hook(UpperCamelCase__ ) UpperCamelCase = accelerator.register_load_state_pre_hook(UpperCamelCase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCamelCase = 'random' # make sure loaded weights match with hooks accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1E-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(UpperCamelCase__ ) # make sure random weights don't match with hooks removed load_random_weights(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) > 1E-3 ) # random class name to verify correct one is loaded UpperCamelCase = 'random' # make sure loaded weights match with hooks removed accelerator.load_state(UpperCamelCase__ ) self.assertTrue(abs(model_signature - get_signature(UpperCamelCase__ ) ) < 1E-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def A ( self : str ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = create_components() UpperCamelCase = None # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertTrue(dummy_obj is None ) def A ( self : Any ): """simple docstring""" UpperCamelCase = Accelerator() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = create_components() UpperCamelCase = [1, 2, 3] # This should work UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = accelerator.prepare( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual( getattr(UpperCamelCase__ , '_is_accelerate_prepared' , UpperCamelCase__ ) , UpperCamelCase__ , 'Dummy object should have `_is_accelerate_prepared` set to `True`' , ) self.assertEqual( getattr(UpperCamelCase__ , '_is_accelerate_prepared' , UpperCamelCase__ ) , UpperCamelCase__ , 'Model is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCamelCase__ , '_is_accelerate_prepared' , UpperCamelCase__ ) , UpperCamelCase__ , 'Optimizer is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCamelCase__ , '_is_accelerate_prepared' , UpperCamelCase__ ) , UpperCamelCase__ , 'Scheduler is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCamelCase__ , '_is_accelerate_prepared' , UpperCamelCase__ ) , UpperCamelCase__ , 'Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) self.assertEqual( getattr(UpperCamelCase__ , '_is_accelerate_prepared' , UpperCamelCase__ ) , UpperCamelCase__ , 'Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`' , ) @slow @require_bnb def A ( self : List[str] ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCamelCase__ , device_map={'': 0} , ) UpperCamelCase = Accelerator() # This should work UpperCamelCase = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb def A ( self : Tuple ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCamelCase = Accelerator() with init_empty_weights(): UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() UpperCamelCase = infer_auto_device_map(UpperCamelCase__ ) UpperCamelCase = 'cpu' UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , device_map=UpperCamelCase__ , load_in_abit=UpperCamelCase__ , llm_inta_enable_fpaa_cpu_offload=UpperCamelCase__ ) # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = accelerator.prepare(UpperCamelCase__ ) @slow @require_bnb @require_multi_gpu def A ( self : Optional[Any] ): """simple docstring""" from transformers import AutoModelForCausalLM UpperCamelCase = {'distributed_type': DistributedType.MULTI_GPU} with init_empty_weights(): UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) model.tie_weights() UpperCamelCase = infer_auto_device_map(UpperCamelCase__ ) UpperCamelCase = 1 UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) UpperCamelCase = Accelerator() # This should not work and get value error with self.assertRaises(UpperCamelCase__ ): UpperCamelCase = accelerator.prepare(UpperCamelCase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def A ( self : Optional[Any] ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , ) UpperCamelCase = infer_auto_device_map(UpperCamelCase__ ) UpperCamelCase = 1 UpperCamelCase = AutoModelForCausalLM.from_pretrained( 'EleutherAI/gpt-neo-125m' , load_in_abit=UpperCamelCase__ , device_map=UpperCamelCase__ , ) UpperCamelCase = Accelerator() # This should work UpperCamelCase = accelerator.prepare(UpperCamelCase__ ) @require_cuda def A ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = torch.nn.Linear(1_0 , 1_0 ) UpperCamelCase = torch.optim.SGD(model.parameters() , lr=0.0_1 ) UpperCamelCase = Accelerator(cpu=UpperCamelCase__ ) UpperCamelCase = accelerator.prepare(UpperCamelCase__ )
28
'''simple docstring''' from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def __lowerCamelCase ( A__ , A__ , A__=1e-1_2 ) -> Dict: """simple docstring""" UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T UpperCamelCase = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(A__ , axis=1 ) , a_min=A__ ) ).T return jnp.matmul(A__ , norm_emb_a.T ) class SCREAMING_SNAKE_CASE ( nn.Module ): """simple docstring""" _SCREAMING_SNAKE_CASE = 42 _SCREAMING_SNAKE_CASE = jnp.floataa def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = FlaxCLIPVisionModule(self.config.vision_config ) UpperCamelCase = nn.Dense(self.config.projection_dim , use_bias=UpperCamelCase__ , dtype=self.dtype ) UpperCamelCase = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) UpperCamelCase = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) UpperCamelCase = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) UpperCamelCase = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self : str , UpperCamelCase__ : List[str] ): """simple docstring""" UpperCamelCase = self.vision_model(UpperCamelCase__ )[1] UpperCamelCase = self.visual_projection(UpperCamelCase__ ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.special_care_embeds ) UpperCamelCase = jax_cosine_distance(UpperCamelCase__ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs UpperCamelCase = 0.0 UpperCamelCase = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(special_scores > 0 , axis=1 , keepdims=UpperCamelCase__ ) # Use a lower threshold if an image has any special care concept UpperCamelCase = is_special_care * 0.0_1 UpperCamelCase = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment UpperCamelCase = jnp.round(UpperCamelCase__ , 3 ) UpperCamelCase = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class SCREAMING_SNAKE_CASE ( _a ): """simple docstring""" _SCREAMING_SNAKE_CASE = CLIPConfig _SCREAMING_SNAKE_CASE = """clip_input""" _SCREAMING_SNAKE_CASE = FlaxStableDiffusionSafetyCheckerModule def __init__( self : Union[str, Any] , UpperCamelCase__ : CLIPConfig , UpperCamelCase__ : Optional[Tuple] = None , UpperCamelCase__ : int = 0 , UpperCamelCase__ : jnp.dtype = jnp.floataa , UpperCamelCase__ : bool = True , **UpperCamelCase__ : List[str] , ): """simple docstring""" if input_shape is None: UpperCamelCase = (1, 2_2_4, 2_2_4, 3) UpperCamelCase = self.module_class(config=UpperCamelCase__ , dtype=UpperCamelCase__ , **UpperCamelCase__ ) super().__init__(UpperCamelCase__ , UpperCamelCase__ , input_shape=UpperCamelCase__ , seed=UpperCamelCase__ , dtype=UpperCamelCase__ , _do_init=_do_init ) def A ( self : int , UpperCamelCase__ : jax.random.KeyArray , UpperCamelCase__ : Tuple , UpperCamelCase__ : FrozenDict = None ): """simple docstring""" UpperCamelCase = jax.random.normal(UpperCamelCase__ , UpperCamelCase__ ) UpperCamelCase , UpperCamelCase = jax.random.split(UpperCamelCase__ ) UpperCamelCase = {'params': params_rng, 'dropout': dropout_rng} UpperCamelCase = self.module.init(UpperCamelCase__ , UpperCamelCase__ )['params'] return random_params def __call__( self : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : dict = None , ): """simple docstring""" UpperCamelCase = jnp.transpose(UpperCamelCase__ , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(UpperCamelCase__ , dtype=jnp.floataa ) , rngs={} , )
28
1
SCREAMING_SNAKE_CASE__ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
355
from typing import Callable, Dict, Optional, Tuple import torch from torch import nn from torch.distributions import ( AffineTransform, Distribution, Independent, NegativeBinomial, Normal, StudentT, TransformedDistribution, ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=0 ) -> Optional[int]: '''simple docstring''' lowercase_ = 1.0 if scale is None else scale lowercase_ = 0.0 if loc is None else loc super().__init__(UpperCAmelCase , [AffineTransform(loc=self.loc , scale=self.scale , event_dim=UpperCAmelCase )] ) @property def A__ ( self ) -> int: '''simple docstring''' return self.base_dist.mean * self.scale + self.loc @property def A__ ( self ) -> str: '''simple docstring''' return self.base_dist.variance * self.scale**2 @property def A__ ( self ) -> List[str]: '''simple docstring''' return self.variance.sqrt() class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) lowercase_ = args_dim lowercase_ = nn.ModuleList([nn.Linear(UpperCAmelCase , UpperCAmelCase ) for dim in args_dim.values()] ) lowercase_ = domain_map def A__ ( self , UpperCAmelCase ) -> Tuple[torch.Tensor]: '''simple docstring''' lowercase_ = [proj(UpperCAmelCase ) for proj in self.proj] return self.domain_map(*UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self , UpperCAmelCase ) -> Dict: '''simple docstring''' super().__init__() lowercase_ = function def A__ ( self , UpperCAmelCase , *UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' return self.function(UpperCAmelCase , *UpperCAmelCase ) class __lowerCamelCase : """simple docstring""" lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 def __init__( self , UpperCAmelCase = 1 ) -> None: '''simple docstring''' lowercase_ = dim lowercase_ = {k: dim * self.args_dim[k] for k in self.args_dim} def A__ ( self , UpperCAmelCase ) -> Optional[Any]: '''simple docstring''' if self.dim == 1: return self.distribution_class(*UpperCAmelCase ) else: return Independent(self.distribution_class(*UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Distribution: '''simple docstring''' lowercase_ = self._base_distribution(UpperCAmelCase ) if loc is None and scale is None: return distr else: return AffineTransformed(UpperCAmelCase , loc=UpperCAmelCase , scale=UpperCAmelCase , event_dim=self.event_dim ) @property def A__ ( self ) -> Tuple: '''simple docstring''' return () if self.dim == 1 else (self.dim,) @property def A__ ( self ) -> int: '''simple docstring''' return len(self.event_shape ) @property def A__ ( self ) -> float: '''simple docstring''' return 0.0 def A__ ( self , UpperCAmelCase ) -> nn.Module: '''simple docstring''' return ParameterProjection( in_features=UpperCAmelCase , args_dim=self.args_dim , domain_map=LambdaLayer(self.domain_map ) , ) def A__ ( self , *UpperCAmelCase ) -> Any: '''simple docstring''' raise NotImplementedError() @staticmethod def A__ ( UpperCAmelCase ) -> torch.Tensor: '''simple docstring''' return (x + torch.sqrt(torch.square(UpperCAmelCase ) + 4.0 )) / 2.0 class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"df": 1, "loc": 1, "scale": 1} lowerCAmelCase__ = StudentT @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) lowercase_ = 2.0 + cls.squareplus(UpperCAmelCase ) return df.squeeze(-1 ), loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"loc": 1, "scale": 1} lowerCAmelCase__ = Normal @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ).clamp_min(torch.finfo(scale.dtype ).eps ) return loc.squeeze(-1 ), scale.squeeze(-1 ) class __lowerCamelCase ( snake_case_ ): """simple docstring""" lowerCAmelCase__ = {"total_count": 1, "logits": 1} lowerCAmelCase__ = NegativeBinomial @classmethod def A__ ( cls , UpperCAmelCase , UpperCAmelCase ) -> Optional[int]: '''simple docstring''' lowercase_ = cls.squareplus(UpperCAmelCase ) return total_count.squeeze(-1 ), logits.squeeze(-1 ) def A__ ( self , UpperCAmelCase ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if self.dim == 1: return self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) else: return Independent(self.distribution_class(total_count=UpperCAmelCase , logits=UpperCAmelCase ) , 1 ) def A__ ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None ) -> Distribution: '''simple docstring''' lowercase_ , lowercase_ = distr_args if scale is not None: # See scaling property of Gamma. logits += scale.log() return self._base_distribution((total_count, logits) )
297
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __A : Dict = { "configuration_pix2struct": [ "PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pix2StructConfig", "Pix2StructTextConfig", "Pix2StructVisionConfig", ], "processing_pix2struct": ["Pix2StructProcessor"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Union[str, Any] = ["Pix2StructImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A : Dict = [ "PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST", "Pix2StructPreTrainedModel", "Pix2StructForConditionalGeneration", "Pix2StructVisionModel", "Pix2StructTextModel", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __A : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
120
'''simple docstring''' import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = (IPNDMScheduler,) lowercase = (('num_inference_steps', 50),) def __lowercase ( self : Optional[Any] , **lowerCamelCase : int ) -> Tuple: lowerCAmelCase_ : Dict = {"""num_train_timesteps""": 10_00} config.update(**lowerCamelCase ) return config def __lowercase ( self : Dict , lowerCamelCase : Tuple=0 , **lowerCamelCase : Union[str, Any] ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : Dict = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) lowerCAmelCase_ : List[str] = self.dummy_sample lowerCAmelCase_ : Optional[int] = 0.1 * sample lowerCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : List[str] = self.get_scheduler_config(**lowerCamelCase ) lowerCAmelCase_ : int = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : Optional[int] = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowerCAmelCase_ : List[Any] = scheduler_class.from_pretrained(lowerCamelCase ) new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals lowerCAmelCase_ : str = dummy_past_residuals[:] lowerCAmelCase_ : int = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Dict = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Any = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : str ) -> Tuple: pass def __lowercase ( self : Tuple , lowerCamelCase : int=0 , **lowerCamelCase : Any ) -> int: lowerCAmelCase_ : Optional[int] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : List[str] = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) lowerCAmelCase_ : Tuple = self.dummy_sample lowerCAmelCase_ : Optional[int] = 0.1 * sample lowerCAmelCase_ : List[Any] = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Optional[int] = self.get_scheduler_config() lowerCAmelCase_ : Optional[int] = scheduler_class(**lowerCamelCase ) scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residuals (must be after setting timesteps) lowerCAmelCase_ : int = dummy_past_residuals[:] if time_step is None: lowerCAmelCase_ : Optional[Any] = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase ) lowerCAmelCase_ : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase ) # copy over dummy past residual (must be after setting timesteps) lowerCAmelCase_ : Union[str, Any] = dummy_past_residuals[:] lowerCAmelCase_ : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Optional[Any] = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : str = new_scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def __lowercase ( self : Optional[int] , **lowerCamelCase : Optional[Any] ) -> str: lowerCAmelCase_ : Optional[int] = self.scheduler_classes[0] lowerCAmelCase_ : List[Any] = self.get_scheduler_config(**lowerCamelCase ) lowerCAmelCase_ : str = scheduler_class(**lowerCamelCase ) lowerCAmelCase_ : Dict = 10 lowerCAmelCase_ : Optional[int] = self.dummy_model() lowerCAmelCase_ : Tuple = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase ) for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Optional[Any] = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : str = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): lowerCAmelCase_ : Dict = model(lowerCamelCase , lowerCamelCase ) lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase ).prev_sample return sample def __lowercase ( self : Tuple ) -> Dict: lowerCAmelCase_ : List[Any] = dict(self.forward_default_kwargs ) lowerCAmelCase_ : int = kwargs.pop("""num_inference_steps""" , lowerCamelCase ) for scheduler_class in self.scheduler_classes: lowerCAmelCase_ : Tuple = self.get_scheduler_config() lowerCAmelCase_ : List[str] = scheduler_class(**lowerCamelCase ) lowerCAmelCase_ : int = self.dummy_sample lowerCAmelCase_ : Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase , """set_timesteps""" ): scheduler.set_timesteps(lowerCamelCase ) elif num_inference_steps is not None and not hasattr(lowerCamelCase , """set_timesteps""" ): lowerCAmelCase_ : Dict = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowerCAmelCase_ : int = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] lowerCAmelCase_ : List[str] = dummy_past_residuals[:] lowerCAmelCase_ : List[str] = scheduler.timesteps[5] lowerCAmelCase_ : str = scheduler.timesteps[6] lowerCAmelCase_ : Dict = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : List[str] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) lowerCAmelCase_ : Any = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample lowerCAmelCase_ : Optional[int] = scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __lowercase ( self : Any ) -> int: for timesteps in [1_00, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase , time_step=lowerCamelCase ) def __lowercase ( self : Optional[int] ) -> Optional[int]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 1_00] ): self.check_over_forward(num_inference_steps=lowerCamelCase , time_step=lowerCamelCase ) def __lowercase ( self : int ) -> List[Any]: lowerCAmelCase_ : List[Any] = self.full_loop() lowerCAmelCase_ : Any = torch.mean(torch.abs(lowerCamelCase ) ) assert abs(result_mean.item() - 2_54_05_29 ) < 10
120
1
'''simple docstring''' import enum import shutil import sys a_ , a_ : List[str] = shutil.get_terminal_size() a_ : Dict = {"""UP""": """A""", """DOWN""": """B""", """RIGHT""": """C""", """LEFT""": """D"""} class __UpperCamelCase ( enum.Enum ): lowercase : Optional[int] =0 lowercase : Any =1 def a_ ( __snake_case : Dict , __snake_case : Tuple="" ) -> Dict: """simple docstring""" sys.stdout.write(str(__snake_case ) + end ) sys.stdout.flush() def a_ ( __snake_case : List[Any] , __snake_case : Dict , __snake_case : Dict="" ) -> Optional[Any]: """simple docstring""" forceWrite(F'''\u001b[{color}m{content}\u001b[0m''' , __snake_case ) def a_ ( ) -> int: """simple docstring""" forceWrite('''\r''' ) def a_ ( __snake_case : int , __snake_case : str ) -> Tuple: """simple docstring""" forceWrite(F'''\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}''' ) def a_ ( ) -> Any: """simple docstring""" forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def a_ ( ) -> int: """simple docstring""" reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
6
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) a_ : Any = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys a_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
6
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json', 'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json', } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : int = '''luke''' def __init__( self , _UpperCamelCase=5_0_2_6_7 , _UpperCamelCase=5_0_0_0_0_0 , _UpperCamelCase=7_6_8 , _UpperCamelCase=2_5_6 , _UpperCamelCase=1_2 , _UpperCamelCase=1_2 , _UpperCamelCase=3_0_7_2 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=True , _UpperCamelCase=None , _UpperCamelCase=1 , _UpperCamelCase=0 , _UpperCamelCase=2 , **_UpperCamelCase , ) -> str: super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) UpperCAmelCase_ : Any = vocab_size UpperCAmelCase_ : Optional[int] = entity_vocab_size UpperCAmelCase_ : Optional[int] = hidden_size UpperCAmelCase_ : Optional[int] = entity_emb_size UpperCAmelCase_ : Optional[int] = num_hidden_layers UpperCAmelCase_ : int = num_attention_heads UpperCAmelCase_ : str = hidden_act UpperCAmelCase_ : Any = intermediate_size UpperCAmelCase_ : Any = hidden_dropout_prob UpperCAmelCase_ : Optional[Any] = attention_probs_dropout_prob UpperCAmelCase_ : List[str] = max_position_embeddings UpperCAmelCase_ : str = type_vocab_size UpperCAmelCase_ : Dict = initializer_range UpperCAmelCase_ : Optional[Any] = layer_norm_eps UpperCAmelCase_ : Optional[int] = use_entity_aware_attention UpperCAmelCase_ : Optional[int] = classifier_dropout
29
'''simple docstring''' from __future__ import annotations def a_ ( __snake_case : str , __snake_case : list[str] | None = None , __snake_case : dict[str, float] | None = None , __snake_case : bool = False , ) -> tuple[int, float, str]: """simple docstring""" lowerCamelCase_ =cipher_alphabet or [chr(__snake_case ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase_ ={ '''a''': 0.0_8_4_9_7, '''b''': 0.0_1_4_9_2, '''c''': 0.0_2_2_0_2, '''d''': 0.0_4_2_5_3, '''e''': 0.1_1_1_6_2, '''f''': 0.0_2_2_2_8, '''g''': 0.0_2_0_1_5, '''h''': 0.0_6_0_9_4, '''i''': 0.0_7_5_4_6, '''j''': 0.0_0_1_5_3, '''k''': 0.0_1_2_9_2, '''l''': 0.0_4_0_2_5, '''m''': 0.0_2_4_0_6, '''n''': 0.0_6_7_4_9, '''o''': 0.0_7_5_0_7, '''p''': 0.0_1_9_2_9, '''q''': 0.0_0_0_9_5, '''r''': 0.0_7_5_8_7, '''s''': 0.0_6_3_2_7, '''t''': 0.0_9_3_5_6, '''u''': 0.0_2_7_5_8, '''v''': 0.0_0_9_7_8, '''w''': 0.0_2_5_6_0, '''x''': 0.0_0_1_5_0, '''y''': 0.0_1_9_9_4, '''z''': 0.0_0_0_7_7, } else: # Custom frequencies dictionary lowerCamelCase_ =frequencies_dict if not case_sensitive: lowerCamelCase_ =ciphertext.lower() # Chi squared statistic values lowerCamelCase_ ={} # cycle through all of the shifts for shift in range(len(__snake_case ) ): lowerCamelCase_ ='''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase_ =(alphabet_letters.index(letter.lower() ) - shift) % len( __snake_case ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase_ =0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase_ =letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.lower().count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ =decrypted_with_shift.count(__snake_case ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ =frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ =((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase_ =( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(__snake_case : int ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase_ =min( __snake_case , key=__snake_case , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
75
0
import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__(self , lowerCAmelCase , lowerCAmelCase=1_3 , lowerCAmelCase=7 , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=True , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=2 , lowerCAmelCase=9_9 , lowerCAmelCase=0 , lowerCAmelCase=3_2 , lowerCAmelCase=5 , lowerCAmelCase=4 , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=5_1_2 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=2 , lowerCAmelCase=4 , lowerCAmelCase="last" , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=0 , ): __lowercase= parent __lowercase= batch_size __lowercase= seq_length __lowercase= is_training __lowercase= use_input_lengths __lowercase= use_token_type_ids __lowercase= use_labels __lowercase= gelu_activation __lowercase= sinusoidal_embeddings __lowercase= causal __lowercase= asm __lowercase= n_langs __lowercase= vocab_size __lowercase= n_special __lowercase= hidden_size __lowercase= num_hidden_layers __lowercase= num_attention_heads __lowercase= hidden_dropout_prob __lowercase= attention_probs_dropout_prob __lowercase= max_position_embeddings __lowercase= type_sequence_label_size __lowercase= initializer_range __lowercase= num_labels __lowercase= num_choices __lowercase= summary_type __lowercase= use_proj __lowercase= scope __lowercase= bos_token_id def _A (self ): __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase= random_attention_mask([self.batch_size, self.seq_length] ) __lowercase= None if self.use_input_lengths: __lowercase= ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __lowercase= None if self.use_token_type_ids: __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __lowercase= None __lowercase= None __lowercase= None if self.use_labels: __lowercase= ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase= ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase= ids_tensor([self.batch_size] , 2 ).float() __lowercase= ids_tensor([self.batch_size] , self.num_choices ) __lowercase= self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def _A (self ): return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMModel(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , lengths=lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase , langs=lowerCAmelCase ) __lowercase= model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMWithLMHeadModel(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnsweringSimple(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) __lowercase= outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForQuestionAnswering(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , p_mask=lowerCAmelCase , ) __lowercase= model( lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase , cls_index=lowerCAmelCase , is_impossible=lowerCAmelCase , ) ((__lowercase), )= result_with_labels.to_tuple() __lowercase= model(lowerCAmelCase , start_positions=lowerCAmelCase , end_positions=lowerCAmelCase ) ((__lowercase), )= result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= XLMForSequenceClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase ) __lowercase= model(lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_labels __lowercase= XLMForTokenClassification(lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= model(lowerCAmelCase , attention_mask=lowerCAmelCase , labels=lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , ): __lowercase= self.num_choices __lowercase= XLMForMultipleChoice(config=lowerCAmelCase ) model.to(lowerCAmelCase ) model.eval() __lowercase= input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __lowercase= model( lowerCAmelCase , attention_mask=lowerCAmelCase , token_type_ids=lowerCAmelCase , labels=lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _A (self ): __lowercase= self.prepare_config_and_inputs() ( ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), ( __lowercase ), )= config_and_inputs __lowercase= {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths} return config, inputs_dict @require_torch class A ( A_ , A_ , A_ , unittest.TestCase ): UpperCamelCase_ : int =( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) UpperCamelCase_ : Dict =( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable UpperCamelCase_ : str =( { '''feature-extraction''': XLMModel, '''fill-mask''': XLMWithLMHeadModel, '''question-answering''': XLMForQuestionAnsweringSimple, '''text-classification''': XLMForSequenceClassification, '''text-generation''': XLMWithLMHeadModel, '''token-classification''': XLMForTokenClassification, '''zero-shot''': XLMForSequenceClassification, } if is_torch_available() else {} ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False ): __lowercase= super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) __lowercase= torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase ) return inputs_dict def _A (self ): __lowercase= XLMModelTester(self ) __lowercase= ConfigTester(self , config_class=lowerCAmelCase , emb_dim=3_7 ) def _A (self ): self.config_tester.run_common_tests() def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase ) def _A (self ): __lowercase= self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase ) ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= min_length + idx + 1 __lowercase= ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase ) ) def _A (self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=False , lowerCAmelCase=1 ): self.assertIsInstance(lowerCAmelCase , lowerCAmelCase ) self.assertListEqual( [isinstance(lowerCAmelCase , lowerCAmelCase ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase ) , ) self.assertEqual(len(lowerCAmelCase ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase ): # adds PAD dummy token __lowercase= min_length + idx + 1 __lowercase= (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase ) , ) pass @slow def _A (self ): for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase= XLMModel.from_pretrained(lowerCAmelCase ) self.assertIsNotNone(lowerCAmelCase ) @require_torch class A ( unittest.TestCase ): @slow def _A (self ): __lowercase= XLMWithLMHeadModel.from_pretrained('xlm-mlm-en-2048' ) model.to(lowerCAmelCase ) __lowercase= torch.tensor([[1_4, 4_4_7]] , dtype=torch.long , device=lowerCAmelCase ) # the president __lowercase= [ 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, 1_4, 4_4_7, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference __lowercase= model.generate(lowerCAmelCase , do_sample=lowerCAmelCase ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase )
304
# Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase = { '''configuration_xmod''': [ '''XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XmodConfig''', '''XmodOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase = [ '''XMOD_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XmodForCausalLM''', '''XmodForMaskedLM''', '''XmodForMultipleChoice''', '''XmodForQuestionAnswering''', '''XmodForSequenceClassification''', '''XmodForTokenClassification''', '''XmodModel''', '''XmodPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
304
1
"""simple docstring""" def __a ( __lowerCamelCase ): UpperCAmelCase_ : List[Any] = 1 for i in range(1, num + 1 ): fact *= i return fact def __a ( __lowerCamelCase ): UpperCAmelCase_ : int = 0 while number > 0: UpperCAmelCase_ : Optional[Any] = number % 10 sum_of_digits += last_digit UpperCAmelCase_ : Any = number // 10 # Removing the last_digit from the given number return sum_of_digits def __a ( __lowerCamelCase = 100 ): UpperCAmelCase_ : List[str] = factorial(__UpperCamelCase ) UpperCAmelCase_ : Union[str, Any] = split_and_add(__UpperCamelCase ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
61
'''simple docstring''' from __future__ import annotations import math class a_ : def __init__( self , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = size # approximate the overall size of segment tree with given value UpperCamelCase = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCamelCase = [0 for i in range(0 , 4 * size )] UpperCamelCase = [0 for i in range(0 , 4 * size )] # flag for lazy update def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return idx * 2 def A__ ( self , _SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" return idx * 2 + 1 def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" if left_element == right_element: UpperCamelCase = a[left_element - 1] else: UpperCamelCase = (left_element + right_element) // 2 self.build(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.build(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE )] ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCamelCase = val if left_element != right_element: UpperCamelCase = val UpperCamelCase = val UpperCamelCase = True UpperCamelCase = True return True UpperCamelCase = (left_element + right_element) // 2 self.update(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.update(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = max( self.segment_tree[self.left(_SCREAMING_SNAKE_CASE )] , self.segment_tree[self.right(_SCREAMING_SNAKE_CASE )] ) return True def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int | float: """simple docstring""" if self.flag[idx] is True: UpperCamelCase = self.lazy[idx] UpperCamelCase = False if left_element != right_element: UpperCamelCase = self.lazy[idx] UpperCamelCase = self.lazy[idx] UpperCamelCase = True UpperCamelCase = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCamelCase = (left_element + right_element) // 2 UpperCamelCase = self.query(self.left(_SCREAMING_SNAKE_CASE ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.query(self.right(_SCREAMING_SNAKE_CASE ) , mid + 1 , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __str__( self ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] SCREAMING_SNAKE_CASE__ = 1_5 SCREAMING_SNAKE_CASE__ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
321
0
def a( A : int ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def a( A : int ) -> bool: """simple docstring""" a = 0 a = number while duplicate > 0: a , a = divmod(A , 10 ) fact_sum += factorial(A ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") _lowercase: Union[str, Any] = int(input("Enter number: ").strip()) print( F"""{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.""" )
71
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowercase: str = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = XLMProphetNetTokenizer __A = False __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ (self ): """simple docstring""" a = "[PAD]" a = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def UpperCamelCase_ (self ): """simple docstring""" a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "[PAD]" ) self.assertEqual(vocab_keys[1] , "[CLS]" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase_ ) , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def UpperCamelCase_ (self ): """simple docstring""" a = XLMProphetNetTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) a = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase_ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) a = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) a = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) a = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "[UNK]", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "[UNK]", ".", ] , ) @cached_property def UpperCamelCase_ (self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("microsoft/xprophetnet-large-wiki100-cased" ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = "Hello World!" a = [35389, 6672, 49, 2] self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def UpperCamelCase_ (self ): """simple docstring""" a = {"input_ids": [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name="microsoft/xprophetnet-large-wiki100-cased" , revision="1acad1643ddd54a44df6a1b797ada8373685d90e" , )
71
1
"""simple docstring""" def a__ ( SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) lowerCAmelCase : str = sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
108
'''simple docstring''' import json import multiprocessing import os import re from collections import defaultdict import torch from accelerate import Accelerator from accelerate.utils import set_seed from arguments import HumanEvalArguments from datasets import load_dataset, load_metric from torch.utils.data import IterableDataset from torch.utils.data.dataloader import DataLoader from tqdm import tqdm import transformers from transformers import AutoModelForCausalLM, AutoTokenizer, HfArgumentParser, StoppingCriteria, StoppingCriteriaList lowerCAmelCase: List[str] = ['\nclass', '\ndef', '\n#', '\n@', '\nprint', '\nif'] class a__( lowerCamelCase__ ): def __init__( self : Any , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : Optional[Any]=1 ): a : Union[str, Any] = tokenizer a : Union[str, Any] = dataset a : Any = len(__snake_case ) if n_tasks is None else n_tasks a : List[str] = n_copies def __iter__( self : str ): a : List[Any] = [] for task in range(self.n_tasks ): # without strip, the model generate commented codes ... prompts.append(self.tokenizer.eos_token + self.dataset[task]['prompt'].strip() ) a : Dict = self.tokenizer(__snake_case , padding=__snake_case , return_tensors='pt' ) for task in range(self.n_tasks ): for _ in range(self.n_copies ): yield { "ids": outputs.input_ids[task], "task_id": task, "input_len": outputs.attention_mask[task].sum(), } class a__( lowerCamelCase__ ): def __init__( self : Union[str, Any] , __snake_case : int , __snake_case : Optional[Any] , __snake_case : str ): a : Dict = start_length a : Dict = eof_strings a : str = tokenizer def __call__( self : Optional[Any] , __snake_case : Optional[Any] , __snake_case : Any , **__snake_case : Union[str, Any] ): a : int = self.tokenizer.batch_decode(input_ids[:, self.start_length :] ) a : Optional[int] = [] for decoded_generation in decoded_generations: done.append(any(stop_string in decoded_generation for stop_string in self.eof_strings ) ) return all(__snake_case ) def lowerCamelCase__ ( _A ): a : Optional[Any] = re.split('(%s)' % '|'.join(_A ) , _A ) # last string should be "" return "".join(string_list[:-2] ) def lowerCamelCase__ ( _A , _A , _A , _A , _A , _A=20 , **_A ): a : Optional[Any] = defaultdict(_A ) # dict of list of generated tokens for step, batch in tqdm(enumerate(_A ) ): with torch.no_grad(): a : Optional[Any] = batch['ids'].shape[-1] a : Optional[Any] = accelerator.unwrap_model(_A ).generate( input_ids=batch['ids'][:, : batch['input_len']] , num_return_sequences=_A , **_A ) # each task is generated batch_size times a : Tuple = batch['task_id'].repeat(_A ) a : List[Any] = accelerator.pad_across_processes( _A , dim=1 , pad_index=tokenizer.pad_token_id ) a , a : Union[str, Any] = accelerator.gather((generated_tokens, generated_tasks) ) a : List[str] = generated_tokens.cpu().numpy() a : int = generated_tasks.cpu().numpy() for task, generated_tokens in zip(_A , _A ): gen_token_dict[task].append(_A ) a : Any = [[] for _ in range(_A )] for task, generated_tokens in gen_token_dict.items(): for s in generated_tokens: a : Optional[int] = tokenizer.decode(_A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A ) code_gens[task].append(remove_last_block(_A ) ) return code_gens def lowerCamelCase__ ( ): # Setup configuration a : Dict = HfArgumentParser(_A ) a : Any = parser.parse_args() transformers.logging.set_verbosity_error() # enables code execution in code_eval metric a : List[Any] = args.HF_ALLOW_CODE_EVAL # make sure tokenizer plays nice with multiprocessing a : int = 'false' if args.num_workers is None: a : Dict = multiprocessing.cpu_count() # Use dataset load to feed to accelerate a : List[Any] = Accelerator() set_seed(args.seed , device_specific=_A ) # Load model and tokenizer a : Dict = AutoTokenizer.from_pretrained(args.model_ckpt ) a : str = tokenizer.eos_token a : List[Any] = AutoModelForCausalLM.from_pretrained(args.model_ckpt ) # Generation settings a : Optional[Any] = { 'do_sample': args.do_sample, 'temperature': args.temperature, 'max_new_tokens': args.max_new_tokens, 'top_p': args.top_p, 'top_k': args.top_k, 'stopping_criteria': StoppingCriteriaList([EndOfFunctionCriteria(0 , _A , _A )] ), } # Load evaluation dataset and metric a : Optional[int] = load_dataset('openai_humaneval' ) a : Optional[Any] = load_metric('code_eval' ) a : Optional[int] = args.num_tasks if args.num_tasks is not None else len(human_eval['test'] ) a : Optional[Any] = args.n_samples // args.batch_size a : Any = TokenizedDataset(_A , human_eval['test'] , n_copies=_A , n_tasks=_A ) # do not confuse args.batch_size, which is actually the num_return_sequences a : int = DataLoader(_A , batch_size=1 ) # Run a quick test to see if code evaluation is enabled try: a : int = code_eval_metric.compute(references=[''] , predictions=[['']] ) except ValueError as exception: print( 'Code evaluation not enabled. Read the warning below carefully and then use `--HF_ALLOW_CODE_EVAL="1"`' ' flag to enable code evaluation.' ) raise exception a , a : int = accelerator.prepare(_A , _A ) a : int = complete_code( _A , _A , _A , _A , n_tasks=_A , batch_size=args.batch_size , **_A , ) if accelerator.is_main_process: a : List[str] = [] for task in tqdm(range(_A ) ): a : int = human_eval['test'][task]['test'] a : int = f"""check({human_eval["test"][task]["entry_point"]})""" references.append('\n' + test_func + '\n' + entry_point ) # Evaluate completions with "code_eval" metric a , a : Tuple = code_eval_metric.compute( references=_A , predictions=_A , num_workers=args.num_workers ) print(f"""Results: {pass_at_k}""" ) # Save results to json file with open(args.output_file , 'w' ) as fp: json.dump(_A , _A ) # For some reason the folliwng seems to be necessary sometimes for code_eval to work nice with multiprocessing # https://stackoverflow.com/questions/60804599/python-multiprocessing-keeps-spawning-the-whole-script if __name__ == "__main__": main()
297
0
import random def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple: lowerCAmelCase__ : Union[str, Any] = [], [], [] for element in data: if element < pivot: less.append(SCREAMING_SNAKE_CASE_ ) elif element > pivot: greater.append(SCREAMING_SNAKE_CASE_ ) else: equal.append(SCREAMING_SNAKE_CASE_ ) return less, equal, greater def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(SCREAMING_SNAKE_CASE_ ) or index < 0: return None lowerCAmelCase__ : Optional[int] = items[random.randint(0 , len(SCREAMING_SNAKE_CASE_ ) - 1 )] lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Tuple = _partition(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Optional[int] = len(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Any = len(SCREAMING_SNAKE_CASE_ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # must be in larger else: return quick_select(SCREAMING_SNAKE_CASE_ , index - (m + count) )
361
from __future__ import annotations def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int]]: lowerCAmelCase__ : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , [] , SCREAMING_SNAKE_CASE_ ) return result def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE_ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE_ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE_ , level - 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) current_list.pop() def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": lowerCamelCase__ = 4 lowerCamelCase__ = 2 lowerCamelCase__ = generate_all_combinations(n, k) print_all_state(total_list)
307
0
import enum import shutil import sys A , A : Dict = shutil.get_terminal_size() A : str = {'UP': 'A', 'DOWN': 'B', 'RIGHT': 'C', 'LEFT': 'D'} class __A( enum.Enum ): snake_case_ = 0 snake_case_ = 1 def __lowerCAmelCase ( a__ , a__="" ) -> Optional[int]: sys.stdout.write(str(a__ ) + end ) sys.stdout.flush() def __lowerCAmelCase ( a__ , a__ , a__="" ) -> Dict: forceWrite(F"""\u001b[{color}m{content}\u001b[0m""" , a__ ) def __lowerCAmelCase ( ) -> Any: forceWrite('''\r''' ) def __lowerCAmelCase ( a__ , a__ ) -> Any: forceWrite(F"""\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}""" ) def __lowerCAmelCase ( ) -> int: forceWrite(''' ''' * TERMINAL_WIDTH ) reset_cursor() def __lowerCAmelCase ( ) -> Dict: reset_cursor() forceWrite('''-''' * TERMINAL_WIDTH )
6
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = { 'configuration_whisper': ['WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'WhisperConfig', 'WhisperOnnxConfig'], 'feature_extraction_whisper': ['WhisperFeatureExtractor'], 'processing_whisper': ['WhisperProcessor'], 'tokenization_whisper': ['WhisperTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ['WhisperTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'WhisperForConditionalGeneration', 'WhisperModel', 'WhisperPreTrainedModel', 'WhisperForAudioClassification', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWhisperForConditionalGeneration', 'TFWhisperModel', 'TFWhisperPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = [ 'FlaxWhisperForConditionalGeneration', 'FlaxWhisperModel', 'FlaxWhisperPreTrainedModel', 'FlaxWhisperForAudioClassification', ] if TYPE_CHECKING: from .configuration_whisper import WHISPER_PRETRAINED_CONFIG_ARCHIVE_MAP, WhisperConfig, WhisperOnnxConfig from .feature_extraction_whisper import WhisperFeatureExtractor from .processing_whisper import WhisperProcessor from .tokenization_whisper import WhisperTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_whisper_fast import WhisperTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_whisper import ( WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, WhisperForAudioClassification, WhisperForConditionalGeneration, WhisperModel, WhisperPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_whisper import ( TF_WHISPER_PRETRAINED_MODEL_ARCHIVE_LIST, TFWhisperForConditionalGeneration, TFWhisperModel, TFWhisperPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_whisper import ( FlaxWhisperForAudioClassification, FlaxWhisperForConditionalGeneration, FlaxWhisperModel, FlaxWhisperPreTrainedModel, ) else: import sys A : Tuple = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
6
1
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow _UpperCamelCase = False class lowercase ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ (self , __a=32 ) -> int: """simple docstring""" set_seed(0 ) UpperCAmelCase__ = UNetaDModel(sample_size=__a , in_channels=3 , out_channels=3 ) UpperCAmelCase__ = torch.optim.SGD(model.parameters() , lr=0.00_01 ) return model, optimizer @slow def UpperCamelCase__ (self ) -> Dict: """simple docstring""" UpperCAmelCase__ = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable UpperCAmelCase__ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__a , ) UpperCAmelCase__ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.00_01 , beta_end=0.02 , beta_schedule='linear' , clip_sample=__a , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) UpperCAmelCase__ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(__a ) for _ in range(4 )] UpperCAmelCase__ = [torch.randn((4, 3, 32, 32) ).to(__a ) for _ in range(4 )] UpperCAmelCase__ = [torch.randint(0 , 1000 , (4,) ).long().to(__a ) for _ in range(4 )] # train with a DDPM scheduler UpperCAmelCase__ , UpperCAmelCase__ = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase__ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase__ = model(__a , timesteps[i] ).sample UpperCAmelCase__ = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM UpperCAmelCase__ , UpperCAmelCase__ = self.get_model_optimizer(resolution=32 ) model.train().to(__a ) for i in range(4 ): optimizer.zero_grad() UpperCAmelCase__ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) UpperCAmelCase__ = model(__a , timesteps[i] ).sample UpperCAmelCase__ = torch.nn.functional.mse_loss(__a , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) ) self.assertTrue(torch.allclose(__a , __a , atol=1E-5 ) )
366
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor _UpperCamelCase = logging.get_logger(__name__) class lowercase ( _UpperCamelCase ): '''simple docstring''' def __init__(self , *__a , **__a ) -> None: """simple docstring""" warnings.warn( 'The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use MobileViTImageProcessor instead.' , __a , ) super().__init__(*__a , **__a )
335
0
'''simple docstring''' from math import factorial class snake_case__ : def __init__( self : Optional[int] , _A : List[str] , _A : List[str] ) -> Any: UpperCAmelCase_ : str = real if isinstance(_A , _A ): UpperCAmelCase_ : Dict = [1] * rank else: UpperCAmelCase_ : Optional[Any] = rank def __repr__( self : Dict ) -> str: return ( F"{self.real}+" F"{'+'.join(str(_A )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}" ) def A ( self : int ) -> str: UpperCAmelCase_ : str = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _A ) def __add__( self : Union[str, Any] , _A : Dict ) -> Dict: if not isinstance(_A , _A ): return Dual(self.real + other , self.duals ) UpperCAmelCase_ : Optional[Any] = self.duals.copy() UpperCAmelCase_ : Union[str, Any] = other.duals.copy() if len(_A ) > len(_A ): o_dual.extend([1] * (len(_A ) - len(_A )) ) elif len(_A ) < len(_A ): s_dual.extend([1] * (len(_A ) - len(_A )) ) UpperCAmelCase_ : str = [] for i in range(len(_A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _A ) a_ = __add__ def __sub__( self : int , _A : str ) -> Union[str, Any]: return self + other * -1 def __mul__( self : Optional[int] , _A : Tuple ) -> List[str]: if not isinstance(_A , _A ): UpperCAmelCase_ : Optional[Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _A ) UpperCAmelCase_ : Dict = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _A ) a_ = __mul__ def __truediv__( self : Union[str, Any] , _A : Tuple ) -> Union[str, Any]: if not isinstance(_A , _A ): UpperCAmelCase_ : Union[str, Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _A ) raise ValueError def __floordiv__( self : Dict , _A : Optional[Any] ) -> Dict: if not isinstance(_A , _A ): UpperCAmelCase_ : Union[str, Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _A ) raise ValueError def __pow__( self : Tuple , _A : Tuple ) -> Tuple: if n < 0 or isinstance(_A , _A ): raise ValueError('''power must be a positive integer''' ) if n == 0: return 1 if n == 1: return self UpperCAmelCase_ : Union[str, Any] = self for _ in range(n - 1 ): x *= self return x def __UpperCAmelCase ( A : Tuple , A : Any , A : Union[str, Any] ) -> Tuple: if not callable(A ): raise ValueError('''differentiate() requires a function as input for func''' ) if not isinstance(A , (float, int) ): raise ValueError('''differentiate() requires a float as input for position''' ) if not isinstance(A , A ): raise ValueError('''differentiate() requires an int as input for order''' ) UpperCAmelCase_ : Any = Dual(A , 1 ) UpperCAmelCase_ : Any = func(A ) if order == 0: return result.real return result.duals[order - 1] * factorial(A ) if __name__ == "__main__": import doctest doctest.testmod() def __UpperCAmelCase ( A : Union[str, Any] ) -> List[Any]: return y**2 * y**4 print(differentiate(f, 9, 2))
304
'''simple docstring''' from dataclasses import dataclass from typing import Tuple import numpy as np import torch @dataclass class snake_case__ : a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 # [batch_size x 3] a_ = 42 a_ = 42 a_ = 42 a_ = 42 a_ = 42 def A ( self : Tuple ) -> Optional[int]: assert self.x.shape[0] == self.y.shape[0] == self.z.shape[0] == self.origin.shape[0] assert self.x.shape[1] == self.y.shape[1] == self.z.shape[1] == self.origin.shape[1] == 3 assert len(self.x.shape ) == len(self.y.shape ) == len(self.z.shape ) == len(self.origin.shape ) == 2 def A ( self : List[Any] ) -> Union[str, Any]: return torch.from_numpy(np.array([self.width, self.height] , dtype=np.floataa ) ) def A ( self : Any ) -> Optional[Any]: return torch.from_numpy(np.array([self.x_fov, self.y_fov] , dtype=np.floataa ) ) def A ( self : Optional[int] ) -> torch.Tensor: UpperCAmelCase_ : Dict = torch.arange(self.height * self.width ) UpperCAmelCase_ : int = torch.stack( [ pixel_indices % self.width, torch.div(_A , self.width , rounding_mode='''trunc''' ), ] , axis=1 , ) return coords @property def A ( self : Optional[Any] ) -> Optional[Any]: UpperCAmelCase_ , *UpperCAmelCase_ : Union[str, Any] = self.shape UpperCAmelCase_ : Optional[Any] = int(np.prod(_A ) ) UpperCAmelCase_ : Any = self.get_image_coords() UpperCAmelCase_ : Any = torch.broadcast_to(coords.unsqueeze(0 ) , [batch_size * inner_batch_size, *coords.shape] ) UpperCAmelCase_ : Union[str, Any] = self.get_camera_rays(_A ) UpperCAmelCase_ : str = rays.view(_A , inner_batch_size * self.height * self.width , 2 , 3 ) return rays def A ( self : Optional[int] , _A : torch.Tensor ) -> torch.Tensor: UpperCAmelCase_ , *UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = coords.shape assert n_coords == 2 assert batch_size == self.origin.shape[0] UpperCAmelCase_ : Dict = coords.view(_A , -1 , 2 ) UpperCAmelCase_ : Union[str, Any] = self.resolution() UpperCAmelCase_ : int = self.fov() UpperCAmelCase_ : Dict = (flat.float() / (res - 1)) * 2 - 1 UpperCAmelCase_ : Optional[int] = fracs * torch.tan(fov / 2 ) UpperCAmelCase_ : Any = fracs.view(_A , -1 , 2 ) UpperCAmelCase_ : List[Any] = ( self.z.view(_A , 1 , 3 ) + self.x.view(_A , 1 , 3 ) * fracs[:, :, :1] + self.y.view(_A , 1 , 3 ) * fracs[:, :, 1:] ) UpperCAmelCase_ : Optional[Any] = directions / directions.norm(dim=-1 , keepdim=_A ) UpperCAmelCase_ : Union[str, Any] = torch.stack( [ torch.broadcast_to(self.origin.view(_A , 1 , 3 ) , [batch_size, directions.shape[1], 3] ), directions, ] , dim=2 , ) return rays.view(_A , *_A , 2 , 3 ) def A ( self : Tuple , _A : int , _A : int ) -> "DifferentiableProjectiveCamera": assert width * self.height == height * self.width, "The aspect ratio should not change." return DifferentiableProjectiveCamera( origin=self.origin , x=self.x , y=self.y , z=self.z , width=_A , height=_A , x_fov=self.x_fov , y_fov=self.y_fov , ) def __UpperCAmelCase ( A : int ) -> DifferentiableProjectiveCamera: UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : Optional[int] = [] UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : str = [] for theta in np.linspace(0 , 2 * np.pi , num=2_0 ): UpperCAmelCase_ : str = np.array([np.sin(A ), np.cos(A ), -0.5] ) z /= np.sqrt(np.sum(z**2 ) ) UpperCAmelCase_ : Optional[int] = -z * 4 UpperCAmelCase_ : Optional[int] = np.array([np.cos(A ), -np.sin(A ), 0.0] ) UpperCAmelCase_ : List[Any] = np.cross(A , A ) origins.append(A ) xs.append(A ) ys.append(A ) zs.append(A ) return DifferentiableProjectiveCamera( origin=torch.from_numpy(np.stack(A , axis=0 ) ).float() , x=torch.from_numpy(np.stack(A , axis=0 ) ).float() , y=torch.from_numpy(np.stack(A , axis=0 ) ).float() , z=torch.from_numpy(np.stack(A , axis=0 ) ).float() , width=A , height=A , x_fov=0.7 , y_fov=0.7 , shape=(1, len(A )) , )
304
1
import os import re import shutil import sys import tempfile import unittest import black a : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. a : int = ' def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n' class _a ( unittest.TestCase ): def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: List[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, """models/bert/""" ) ) UpperCAmelCase_: Dict = self.transformer_dir shutil.copy( os.path.join(SCREAMING_SNAKE_CASE_, """src/transformers/models/bert/modeling_bert.py""" ), os.path.join(self.transformer_dir, """models/bert/modeling_bert.py""" ), ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Any = """src/transformers""" shutil.rmtree(self.transformer_dir ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> List[Any]: UpperCAmelCase_: List[str] = comment + f'\nclass {class_name}(nn.Module):\n' + class_code if overwrite_result is not None: UpperCAmelCase_: Optional[Any] = comment + f'\nclass {class_name}(nn.Module):\n' + overwrite_result UpperCAmelCase_: Dict = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=119 ) UpperCAmelCase_: Dict = black.format_str(SCREAMING_SNAKE_CASE_, mode=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = os.path.join(self.transformer_dir, """new_code.py""" ) with open(SCREAMING_SNAKE_CASE_, """w""", newline="""\n""" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE_ ) ) == 0 ) else: check_copies.is_copy_consistent(f.name, overwrite=SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_, """r""" ) as f: self.assertTrue(f.read(), SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Optional[int]: UpperCAmelCase_: str = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""" ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[str]: # Base copy consistency self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""", """BertLMPredictionHead""", REFERENCE_CODE + """\n""", ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""", """BertLMPredictionHead""", SCREAMING_SNAKE_CASE_, ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""", """TestModelLMPredictionHead""", re.sub("""Bert""", """TestModel""", SCREAMING_SNAKE_CASE_ ), ) # Copy consistency with a really long name UpperCAmelCase_: Any = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( f'# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}', f'{long_class_name}LMPredictionHead', re.sub("""Bert""", SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ), ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""", """TestModelLMPredictionHead""", SCREAMING_SNAKE_CASE_, overwrite_result=re.sub("""Bert""", """TestModel""", SCREAMING_SNAKE_CASE_ ), ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: Union[str, Any] = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] UpperCAmelCase_: Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) UpperCAmelCase_: Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase_: Tuple = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) UpperCAmelCase_: int = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, localized_readme["""format_model_list"""] ) self.assertFalse(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, localized_readme["""format_model_list"""] ) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) UpperCAmelCase_: Optional[int] = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase_: int = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) UpperCAmelCase_: List[str] = check_copies.convert_to_localized_md( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, localized_readme["""format_model_list"""] ) # Check if the model link is synchronized. self.assertEqual(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ )
364
from typing import TYPE_CHECKING from ....utils import _LazyModule a : Tuple = {'tokenization_tapex': ['TapexTokenizer']} if TYPE_CHECKING: from .tokenization_tapex import TapexTokenizer else: import sys a : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
82
0
import argparse import torch from transformers import OpenAIGPTConfig, OpenAIGPTModel, load_tf_weights_in_openai_gpt from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( a_ ,a_ ,a_ ) -> Tuple: # Construct model if openai_config_file == "": __UpperCamelCase : int =OpenAIGPTConfig() else: __UpperCamelCase : Any =OpenAIGPTConfig.from_json_file(a_ ) __UpperCamelCase : Any =OpenAIGPTModel(a_ ) # Load weights from numpy load_tf_weights_in_openai_gpt(a_ ,a_ ,a_ ) # Save pytorch-model __UpperCamelCase : Optional[Any] =pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase : Optional[Any] =pytorch_dump_folder_path + '/' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() ,a_ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(a_ ,'w' ,encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": A_ :int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--openai_checkpoint_folder_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--openai_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained OpenAI model. \n''' '''This specifies the model architecture.''' ), ) A_ :Optional[int] = parser.parse_args() convert_openai_checkpoint_to_pytorch( args.openai_checkpoint_folder_path, args.openai_config_file, args.pytorch_dump_folder_path )
71
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __A ( a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : str =DDIMPipeline UpperCamelCase__ : List[Any] =UNCONDITIONAL_IMAGE_GENERATION_PARAMS UpperCamelCase__ : Tuple =PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } UpperCamelCase__ : Tuple =UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS UpperCamelCase__ : Any =False def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) __UpperCamelCase : int =DDIMScheduler() __UpperCamelCase : Optional[int] ={'unet': unet, 'scheduler': scheduler} return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : str =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : Optional[int] =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : Tuple ={ 'batch_size': 1, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ='cpu' __UpperCamelCase : Optional[Any] =self.get_dummy_components() __UpperCamelCase : Tuple =self.pipeline_class(**lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : int =pipe(**lowerCamelCase__ ).images __UpperCamelCase : Dict =image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) __UpperCamelCase : Tuple =np.array( [1.000E00, 5.717E-01, 4.717E-01, 1.000E00, 0.000E00, 1.000E00, 3.000E-04, 0.000E00, 9.000E-04] ) __UpperCamelCase : Tuple =np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowerCamelCase__ , 1E-3 ) def __lowercase ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def __lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str ='google/ddpm-cifar10-32' __UpperCamelCase : str =UNetaDModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =DDIMScheduler() __UpperCamelCase : List[Any] =DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddim.to(lowerCamelCase__ ) ddim.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =torch.manual_seed(0 ) __UpperCamelCase : List[str] =ddim(generator=lowerCamelCase__ , eta=0.0 , output_type='numpy' ).images __UpperCamelCase : Union[str, Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase : str =np.array([0.1_723, 0.1_617, 0.1_600, 0.1_626, 0.1_497, 0.1_513, 0.1_505, 0.1_442, 0.1_453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] ='google/ddpm-ema-bedroom-256' __UpperCamelCase : Any =UNetaDModel.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : int =DDIMScheduler.from_pretrained(lowerCamelCase__ ) __UpperCamelCase : Dict =DDIMPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) ddpm.to(lowerCamelCase__ ) ddpm.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Tuple =torch.manual_seed(0 ) __UpperCamelCase : Union[str, Any] =ddpm(generator=lowerCamelCase__ , output_type='numpy' ).images __UpperCamelCase : Tuple =image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase : Optional[Any] =np.array([0.0_060, 0.0_201, 0.0_344, 0.0_024, 0.0_018, 0.0_002, 0.0_022, 0.0_000, 0.0_069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
71
1
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class lowerCAmelCase_ ( _lowercase , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : Dict = "ssube/stable-diffusion-x4-upscaler-onnx" def snake_case_ ( self, SCREAMING_SNAKE_CASE_=0 ) -> str: UpperCamelCase : str = floats_tensor((1, 3, 128, 128), rng=random.Random(__UpperCamelCase ) ) UpperCamelCase : List[Any] = torch.manual_seed(__UpperCamelCase ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase : Dict = self.get_dummy_inputs() UpperCamelCase : Optional[int] = pipe(**__UpperCamelCase ).images UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) UpperCamelCase : str = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def snake_case_ ( self ) -> Any: UpperCamelCase : Tuple = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) UpperCamelCase : Union[str, Any] = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase : Dict = self.get_dummy_inputs() UpperCamelCase : Optional[int] = pipe(**__UpperCamelCase ).images UpperCamelCase : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Tuple = np.array( [0.6_89_88_92, 0.59_24_05_56, 0.52_49_95_27, 0.58_86_62_15, 0.52_25_82_35, 0.52_57_27_15, 0.62_41_44_73, 0.6_17_43_87, 0.6_21_49_64] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case_ ( self ) -> Tuple: UpperCamelCase : str = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) UpperCamelCase : int = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase : Dict = self.get_dummy_inputs() UpperCamelCase : List[str] = pipe(**__UpperCamelCase ).images UpperCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Optional[int] = np.array( [0.7_65_92_78, 0.76_43_76_64, 0.75_57_91_07, 0.7_69_11_16, 0.77_66_69_86, 0.7_72_76_72, 0.7_75_86_64, 0.7_81_22_26, 0.76_94_25_15] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case_ ( self ) -> List[str]: UpperCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) UpperCamelCase : List[Any] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase : Tuple = self.get_dummy_inputs() UpperCamelCase : Tuple = pipe(**__UpperCamelCase ).images UpperCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : List[str] = np.array( [0.6_97_47_82, 0.68_90_20_93, 0.70_13_58_85, 0.7_58_36_18, 0.7_80_45_45, 0.7_85_49_12, 0.78_66_74_26, 0.78_74_38_63, 0.78_07_02_23] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def snake_case_ ( self ) -> Union[str, Any]: UpperCamelCase : Union[str, Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider='CPUExecutionProvider' ) UpperCamelCase : Union[str, Any] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase : List[Any] = self.get_dummy_inputs() UpperCamelCase : Dict = pipe(**__UpperCamelCase ).images UpperCamelCase : int = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) UpperCamelCase : Union[str, Any] = np.array( [0.77_42_44_96, 0.77_36_01, 0.7_64_52_88, 0.7_76_95_98, 0.7_77_27_39, 0.7_73_86_88, 0.78_18_72_33, 0.77_87_95_84, 0.76_70_43] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def snake_case_ ( self ) -> Any: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def snake_case_ ( self ) -> Dict: UpperCamelCase : int = ort.SessionOptions() UpperCamelCase : List[Any] = False return options def snake_case_ ( self ) -> Any: UpperCamelCase : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase : List[str] = init_image.resize((128, 128) ) # using the PNDM scheduler by default UpperCamelCase : List[str] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase : List[str] = 'A fantasy landscape, trending on artstation' UpperCamelCase : Optional[Any] = torch.manual_seed(0 ) UpperCamelCase : int = pipe( prompt=__UpperCamelCase, image=__UpperCamelCase, guidance_scale=7.5, num_inference_steps=10, generator=__UpperCamelCase, output_type='np', ) UpperCamelCase : List[Any] = output.images UpperCamelCase : str = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Any = np.array([0.48_83, 0.49_47, 0.49_80, 0.49_75, 0.49_82, 0.49_80, 0.50_00, 0.50_06, 0.49_72] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def snake_case_ ( self ) -> str: UpperCamelCase : List[str] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg' ) UpperCamelCase : Optional[int] = init_image.resize((128, 128) ) UpperCamelCase : Any = LMSDiscreteScheduler.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', subfolder='scheduler' ) UpperCamelCase : Optional[Any] = OnnxStableDiffusionUpscalePipeline.from_pretrained( 'ssube/stable-diffusion-x4-upscaler-onnx', scheduler=__UpperCamelCase, provider=self.gpu_provider, sess_options=self.gpu_options, ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) UpperCamelCase : int = 'A fantasy landscape, trending on artstation' UpperCamelCase : Any = torch.manual_seed(0 ) UpperCamelCase : Optional[int] = pipe( prompt=__UpperCamelCase, image=__UpperCamelCase, guidance_scale=7.5, num_inference_steps=20, generator=__UpperCamelCase, output_type='np', ) UpperCamelCase : Dict = output.images UpperCamelCase : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) UpperCamelCase : Dict = np.array( [0.50_17_37_53, 0.50_22_33_56, 0.50_20_39, 0.50_23_30_36, 0.5_02_37_25, 0.5_02_26_01, 0.5_01_87_58, 0.50_23_40_85, 0.50_24_15_66] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
360
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCAmelCase_ ( unittest.TestCase ): def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=13, SCREAMING_SNAKE_CASE_=7, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=99, SCREAMING_SNAKE_CASE_=32, SCREAMING_SNAKE_CASE_=5, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=37, SCREAMING_SNAKE_CASE_="gelu", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=512, SCREAMING_SNAKE_CASE_=16, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=4, ) -> Dict: UpperCamelCase : Optional[int] = parent UpperCamelCase : Optional[int] = batch_size UpperCamelCase : Optional[int] = seq_length UpperCamelCase : Any = is_training UpperCamelCase : Tuple = use_attention_mask UpperCamelCase : Dict = use_token_type_ids UpperCamelCase : Union[str, Any] = use_labels UpperCamelCase : Any = vocab_size UpperCamelCase : Any = hidden_size UpperCamelCase : str = num_hidden_layers UpperCamelCase : Optional[int] = num_attention_heads UpperCamelCase : Union[str, Any] = intermediate_size UpperCamelCase : List[Any] = hidden_act UpperCamelCase : Any = hidden_dropout_prob UpperCamelCase : Dict = attention_probs_dropout_prob UpperCamelCase : int = max_position_embeddings UpperCamelCase : int = type_vocab_size UpperCamelCase : Optional[int] = type_sequence_label_size UpperCamelCase : str = initializer_range UpperCamelCase : Tuple = num_choices def snake_case_ ( self ) -> Tuple: UpperCamelCase : Tuple = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) UpperCamelCase : Dict = None if self.use_attention_mask: UpperCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase : int = None if self.use_token_type_ids: UpperCamelCase : str = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) UpperCamelCase : Optional[int] = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=SCREAMING_SNAKE_CASE_, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Any = config_and_inputs UpperCamelCase : Union[str, Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def snake_case_ ( self ) -> List[str]: UpperCamelCase : int = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase : Optional[int] = config_and_inputs UpperCamelCase : Dict = True UpperCamelCase : List[Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCAmelCase_ ( a__ , unittest.TestCase ): UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : Optional[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def snake_case_ ( self ) -> Optional[int]: UpperCamelCase : int = FlaxRobertaPreLayerNormModelTester(self ) @slow def snake_case_ ( self ) -> List[str]: for model_class_name in self.all_model_classes: UpperCamelCase : List[str] = model_class_name.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) @require_flax class lowerCAmelCase_ ( unittest.TestCase ): @slow def snake_case_ ( self ) -> Dict: UpperCamelCase : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[Any] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) UpperCamelCase : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ )[0] UpperCamelCase : List[Any] = [1, 11, 5_0265] self.assertEqual(list(output.shape ), SCREAMING_SNAKE_CASE_ ) # compare the actual values for a slice. UpperCamelCase : Optional[int] = np.array( [[[40.48_80, 18.01_99, -5.23_67], [-1.88_77, -4.08_85, 10.70_85], [-2.26_13, -5.61_10, 7.26_65]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) ) @slow def snake_case_ ( self ) -> List[Any]: UpperCamelCase : Optional[int] = FlaxRobertaPreLayerNormModel.from_pretrained('andreasmadsen/efficient_mlm_m0.40', from_pt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) UpperCamelCase : Dict = model(SCREAMING_SNAKE_CASE_ )[0] # compare the actual values for a slice. UpperCamelCase : Any = np.array( [[[0.02_08, -0.03_56, 0.02_37], [-0.15_69, -0.04_11, -0.26_26], [0.18_79, 0.01_25, -0.00_89]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], SCREAMING_SNAKE_CASE_, atol=1e-4 ) )
103
0
"""simple docstring""" import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) __UpperCAmelCase = None __UpperCAmelCase = { """7B""": 1_10_08, """13B""": 1_38_24, """30B""": 1_79_20, """65B""": 2_20_16, """70B""": 2_86_72, } __UpperCAmelCase = { """7B""": 1, """7Bf""": 1, """13B""": 2, """13Bf""": 2, """30B""": 4, """65B""": 8, """70B""": 8, """70Bf""": 8, } def _snake_case ( lowercase__ : str , lowercase__ : Dict=1 , lowercase__ : Union[str, Any]=2_5_6 ) -> str: '''simple docstring''' return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def _snake_case ( lowercase__ : Optional[Any] ) -> int: '''simple docstring''' with open(_A , """r""" ) as f: return json.load(_A ) def _snake_case ( lowercase__ : Tuple , lowercase__ : Union[str, Any] ) -> int: '''simple docstring''' with open(_A , """w""" ) as f: json.dump(_A , _A ) def _snake_case ( lowercase__ : List[Any] , lowercase__ : List[Any] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any]=True ) -> List[str]: '''simple docstring''' os.makedirs(_A , exist_ok=_A ) lowerCAmelCase_ :int = os.path.join(_A , """tmp""" ) os.makedirs(_A , exist_ok=_A ) lowerCAmelCase_ :List[str] = read_json(os.path.join(_A , """params.json""" ) ) lowerCAmelCase_ :str = NUM_SHARDS[model_size] lowerCAmelCase_ :Union[str, Any] = params["""n_layers"""] lowerCAmelCase_ :Dict = params["""n_heads"""] lowerCAmelCase_ :Dict = n_heads // num_shards lowerCAmelCase_ :Tuple = params["""dim"""] lowerCAmelCase_ :List[str] = dim // n_heads lowerCAmelCase_ :List[str] = 10000.0 lowerCAmelCase_ :Tuple = 1.0 / (base ** (torch.arange(0 , _A , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCAmelCase_ :str = params["""n_kv_heads"""] # for GQA / MQA lowerCAmelCase_ :Tuple = n_heads_per_shard // num_key_value_heads lowerCAmelCase_ :str = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCAmelCase_ :List[str] = n_heads lowerCAmelCase_ :Any = n_heads_per_shard lowerCAmelCase_ :Optional[int] = dim # permute for sliced rotary def permute(lowercase__ : Any , lowercase__ : List[Any]=n_heads , lowercase__ : Union[str, Any]=dim , lowercase__ : str=dim ): return w.view(_A , dima // n_heads // 2 , 2 , _A ).transpose(1 , 2 ).reshape(_A , _A ) print(f"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCAmelCase_ :Union[str, Any] = torch.load(os.path.join(_A , """consolidated.00.pth""" ) , map_location="""cpu""" ) else: # Sharded lowerCAmelCase_ :Any = [ torch.load(os.path.join(_A , f"""consolidated.{i:02d}.pth""" ) , map_location="""cpu""" ) for i in range(_A ) ] lowerCAmelCase_ :List[str] = 0 lowerCAmelCase_ :Dict = {"""weight_map""": {}} for layer_i in range(_A ): lowerCAmelCase_ :Tuple = f"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowerCAmelCase_ :Optional[Any] = { f"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wq.weight"""] ), f"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[f"""layers.{layer_i}.attention.wk.weight"""] ), f"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[f"""layers.{layer_i}.attention.wv.weight"""], f"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[f"""layers.{layer_i}.attention.wo.weight"""], f"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w1.weight"""], f"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w2.weight"""], f"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[f"""layers.{layer_i}.feed_forward.w3.weight"""], f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[f"""layers.{layer_i}.attention_norm.weight"""], f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[f"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCAmelCase_ :Union[str, Any] = { f"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.attention_norm.weight""" ].clone(), f"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ f"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } lowerCAmelCase_ :str = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wq.weight"""].view(_A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) ) lowerCAmelCase_ :List[str] = permute( torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wk.weight"""].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) , _A , _A , _A , ) lowerCAmelCase_ :str = torch.cat( [ loaded[i][f"""layers.{layer_i}.attention.wv.weight"""].view( _A , _A , _A ) for i in range(_A ) ] , dim=0 , ).reshape(_A , _A ) lowerCAmelCase_ :Dict = torch.cat( [loaded[i][f"""layers.{layer_i}.attention.wo.weight"""] for i in range(_A )] , dim=1 ) lowerCAmelCase_ :List[Any] = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(_A )] , dim=0 ) lowerCAmelCase_ :Union[str, Any] = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(_A )] , dim=1 ) lowerCAmelCase_ :str = torch.cat( [loaded[i][f"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(_A )] , dim=0 ) lowerCAmelCase_ :Any = inv_freq for k, v in state_dict.items(): lowerCAmelCase_ :Any = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) lowerCAmelCase_ :int = f"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded lowerCAmelCase_ :List[str] = { """model.embed_tokens.weight""": loaded["""tok_embeddings.weight"""], """model.norm.weight""": loaded["""norm.weight"""], """lm_head.weight""": loaded["""output.weight"""], } else: lowerCAmelCase_ :List[Any] = { """model.norm.weight""": loaded[0]["""norm.weight"""], """model.embed_tokens.weight""": torch.cat( [loaded[i]["""tok_embeddings.weight"""] for i in range(_A )] , dim=1 ), """lm_head.weight""": torch.cat([loaded[i]["""output.weight"""] for i in range(_A )] , dim=0 ), } for k, v in state_dict.items(): lowerCAmelCase_ :Any = filename param_count += v.numel() torch.save(_A , os.path.join(_A , _A ) ) # Write configs lowerCAmelCase_ :Union[str, Any] = {"""total_size""": param_count * 2} write_json(_A , os.path.join(_A , """pytorch_model.bin.index.json""" ) ) lowerCAmelCase_ :Optional[int] = params["""ffn_dim_multiplier"""] if """ffn_dim_multiplier""" in params else 1 lowerCAmelCase_ :Tuple = params["""multiple_of"""] if """multiple_of""" in params else 2_5_6 lowerCAmelCase_ :List[str] = LlamaConfig( hidden_size=_A , intermediate_size=compute_intermediate_size(_A , _A , _A ) , num_attention_heads=params["""n_heads"""] , num_hidden_layers=params["""n_layers"""] , rms_norm_eps=params["""norm_eps"""] , num_key_value_heads=_A , ) config.save_pretrained(_A ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("""Loading the checkpoint in a Llama model.""" ) lowerCAmelCase_ :str = LlamaForCausalLM.from_pretrained(_A , torch_dtype=torch.floataa , low_cpu_mem_usage=_A ) # Avoid saving this as part of the config. del model.config._name_or_path print("""Saving in the Transformers format.""" ) model.save_pretrained(_A , safe_serialization=_A ) shutil.rmtree(_A ) def _snake_case ( lowercase__ : Dict , lowercase__ : str ) -> Tuple: '''simple docstring''' lowerCAmelCase_ :Tuple = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) lowerCAmelCase_ :Dict = tokenizer_class(_A ) tokenizer.save_pretrained(_A ) def _snake_case ( ) -> str: '''simple docstring''' lowerCAmelCase_ :int = argparse.ArgumentParser() parser.add_argument( """--input_dir""" , help="""Location of LLaMA weights, which contains tokenizer.model and model folders""" , ) parser.add_argument( """--model_size""" , choices=["""7B""", """7Bf""", """13B""", """13Bf""", """30B""", """65B""", """70B""", """70Bf""", """tokenizer_only"""] , ) parser.add_argument( """--output_dir""" , help="""Location to write HF model and tokenizer""" , ) parser.add_argument("""--safe_serialization""" , type=_A , help="""Whether or not to save using `safetensors`.""" ) lowerCAmelCase_ :str = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowerCAmelCase_ :Optional[int] = os.path.join(args.input_dir , """tokenizer.model""" ) write_tokenizer(args.output_dir , _A ) if __name__ == "__main__": main()
84
class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE( a_ ): pass class __SCREAMING_SNAKE_CASE: def __init__( self: List[str] ) -> Union[str, Any]: snake_case__ = [ [], [], [], ] def lowerCAmelCase_ ( self: Union[str, Any] , UpperCamelCase: int , UpperCamelCase: int ) -> None: try: if len(self.queues[priority] ) >= 1_00: raise OverflowError('Maximum queue size is 100' ) self.queues[priority].append(UpperCamelCase ) except IndexError: raise ValueError('Valid priorities are 0, 1, and 2' ) def lowerCAmelCase_ ( self: List[Any] ) -> int: for queue in self.queues: if queue: return queue.pop(0 ) raise UnderFlowError('All queues are empty' ) def __str__( self: Union[str, Any] ) -> str: return "\n".join(F'''Priority {i}: {q}''' for i, q in enumerate(self.queues ) ) class __SCREAMING_SNAKE_CASE: def __init__( self: Union[str, Any] ) -> Any: snake_case__ = [] def lowerCAmelCase_ ( self: str , UpperCamelCase: int ) -> None: if len(self.queue ) == 1_00: raise OverFlowError('Maximum queue size is 100' ) self.queue.append(UpperCamelCase ) def lowerCAmelCase_ ( self: int ) -> int: if not self.queue: raise UnderFlowError('The queue is empty' ) else: snake_case__ = min(self.queue ) self.queue.remove(UpperCamelCase ) return data def __str__( self: Optional[Any] ) -> str: return str(self.queue ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = FixedPriorityQueue() fpq.enqueue(0 , 10 ) fpq.enqueue(1 , 70 ) fpq.enqueue(0 , 100 ) fpq.enqueue(2 , 1 ) fpq.enqueue(2 , 5 ) fpq.enqueue(1 , 7 ) fpq.enqueue(2 , 4 ) fpq.enqueue(1 , 64 ) fpq.enqueue(0 , 128 ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(_A ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def a_ ( ) -> List[Any]: """simple docstring""" snake_case__ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(_A ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
307
0
import warnings from functools import wraps from typing import Callable def __lowerCamelCase (UpperCAmelCase__ : str ): @wraps(__snake_case ) def _inner_fn(*UpperCAmelCase__ : List[Any] , **UpperCAmelCase__ : Tuple ): warnings.warn( (F"'{fn.__name__}' is experimental and might be subject to breaking changes in the future.") , __snake_case , ) return fn(*__snake_case , **__snake_case ) return _inner_fn
364
import contextlib from multiprocessing import Pool, RLock from tqdm.auto import tqdm from ..utils import experimental, logging _lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) class lowercase : lowercase__ : str = None @experimental def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any ): if ParallelBackendConfig.backend_name is None: return _map_with_multiprocessing_pool( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return _map_with_joblib(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Optional[Any] ): SCREAMING_SNAKE_CASE = num_proc if num_proc <= len(UpperCAmelCase__ ) else len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = [] # We organize the splits ourselve (contiguous splits) for index in range(UpperCAmelCase__ ): SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) // num_proc SCREAMING_SNAKE_CASE = len(UpperCAmelCase__ ) % num_proc SCREAMING_SNAKE_CASE = div * index + min(UpperCAmelCase__ , UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = start + div + (1 if index < mod else 0) split_kwds.append((function, iterable[start:end], types, index, disable_tqdm, desc) ) if len(UpperCAmelCase__ ) != sum(len(i[1] ) for i in split_kwds ): raise ValueError( F"Error dividing inputs iterable among processes. " F"Total number of objects {len(UpperCAmelCase__ )}, " F"length: {sum(len(i[1] ) for i in split_kwds )}" ) logger.info( F"Spawning {num_proc} processes for {len(UpperCAmelCase__ )} objects in slices of {[len(i[1] ) for i in split_kwds]}" ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None, None if not disable_tqdm: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = (RLock(),), tqdm.set_lock with Pool(UpperCAmelCase__ , initargs=UpperCAmelCase__ , initializer=UpperCAmelCase__ ) as pool: SCREAMING_SNAKE_CASE = pool.map(UpperCAmelCase__ , UpperCAmelCase__ ) logger.info(F"Finished {num_proc} processes" ) SCREAMING_SNAKE_CASE = [obj for proc_res in mapped for obj in proc_res] logger.info(F"Unpacked {len(UpperCAmelCase__ )} objects" ) return mapped def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Any , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Any ): # progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib, # and it requires monkey-patching joblib internal classes which is subject to change import joblib with joblib.parallel_backend(ParallelBackendConfig.backend_name , n_jobs=UpperCAmelCase__ ): return joblib.Parallel()( joblib.delayed(UpperCAmelCase__ )((function, obj, types, None, True, None) ) for obj in iterable ) @experimental @contextlib.contextmanager def __lowerCamelCase (UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = backend_name if backend_name == "spark": from joblibspark import register_spark register_spark() # TODO: call create_cache_and_write_probe if "download" in steps # TODO: raise NotImplementedError when Dataset.map etc is called try: yield finally: SCREAMING_SNAKE_CASE = None
206
0
"""simple docstring""" import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model lowercase__ = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def _snake_case ( lowercase__ , lowercase__ , lowercase__=None ): if rng is None: _lowerCamelCase : Tuple = random.Random() _lowerCamelCase : Optional[int] = 1 for dim in shape: total_dims *= dim _lowerCamelCase : List[str] = [] for _ in range(UpperCAmelCase_ ): values.append(rng.randint(0 , vocab_size - 1 ) ) _lowerCamelCase : int = np.array(UpperCAmelCase_ , dtype=jnp.intaa ).reshape(UpperCAmelCase_ ) return output def _snake_case ( lowercase__ , lowercase__=None ): _lowerCamelCase : Optional[Any] = ids_tensor(UpperCAmelCase_ , vocab_size=2 , rng=UpperCAmelCase_ ) # make sure that at least one token is attended to for each batch _lowerCamelCase : Optional[Any] = 1 return attn_mask @require_flax class lowerCAmelCase__ : '''simple docstring''' lowerCamelCase__ = None lowerCamelCase__ = () def A_ ( self ): _lowerCamelCase, _lowerCamelCase : int = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 _lowerCamelCase : Tuple = 2 _lowerCamelCase : Union[str, Any] = inputs['input_ids'].shape[-1] // 2 _lowerCamelCase : int = inputs['input_ids'][:max_batch_size, :sequence_length] _lowerCamelCase : List[Any] = jnp.ones_like(lowercase ) _lowerCamelCase : int = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens _lowerCamelCase : Dict = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` _lowerCamelCase : Optional[int] = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Any = self._get_input_ids_and_config() _lowerCamelCase : List[Any] = False _lowerCamelCase : int = max_length _lowerCamelCase : List[str] = 0 for model_class in self.all_generative_model_classes: _lowerCamelCase : Any = model_class(lowercase ) _lowerCamelCase : Tuple = model_class.__name__[4:] # Skip the "Flax" at the beginning _lowerCamelCase : Dict = getattr(lowercase , lowercase ) _lowerCamelCase : Dict = pt_model_class(lowercase ).eval() _lowerCamelCase : Tuple = load_flax_weights_in_pytorch_model(lowercase , flax_model.params ) _lowerCamelCase : List[str] = flax_model.generate(lowercase ).sequences _lowerCamelCase : Tuple = pt_model.generate(torch.tensor(lowercase , dtype=torch.long ) ) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: _lowerCamelCase : int = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() _lowerCamelCase : List[str] = False _lowerCamelCase : Optional[int] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Dict = model_class(lowercase ) _lowerCamelCase : Dict = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : Union[str, Any] = jit(model.generate ) _lowerCamelCase : List[str] = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : str = self._get_input_ids_and_config() _lowerCamelCase : Dict = True _lowerCamelCase : Tuple = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Tuple = model_class(lowercase ) _lowerCamelCase : Tuple = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Union[str, Any] = False _lowerCamelCase : int = max_length _lowerCamelCase : Tuple = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : Dict = model_class(lowercase ) _lowerCamelCase : str = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : str = jit(model.generate ) _lowerCamelCase : List[Any] = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : List[str] = self._get_input_ids_and_config() _lowerCamelCase : Dict = False _lowerCamelCase : Optional[int] = max_length _lowerCamelCase : Any = 2 _lowerCamelCase : Tuple = 2 for model_class in self.all_generative_model_classes: _lowerCamelCase : Tuple = model_class(lowercase ) _lowerCamelCase : int = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[Any] = self._get_input_ids_and_config() _lowerCamelCase : Optional[Any] = True _lowerCamelCase : Union[str, Any] = max_length _lowerCamelCase : Dict = 0.8 _lowerCamelCase : Optional[Any] = 10 _lowerCamelCase : Tuple = 0.3 _lowerCamelCase : Tuple = 1 _lowerCamelCase : Optional[int] = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : List[Any] = model_class(lowercase ) _lowerCamelCase : Any = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : int = jit(model.generate ) _lowerCamelCase : int = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._get_input_ids_and_config() _lowerCamelCase : Optional[int] = max_length _lowerCamelCase : Dict = 1 _lowerCamelCase : int = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : Optional[Any] = model_class(lowercase ) _lowerCamelCase : Optional[Any] = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : Tuple = jit(model.generate ) _lowerCamelCase : Optional[Any] = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Dict = self._get_input_ids_and_config() _lowerCamelCase : Tuple = max_length _lowerCamelCase : Tuple = 2 _lowerCamelCase : int = 1 _lowerCamelCase : Any = 8 _lowerCamelCase : Dict = 9 for model_class in self.all_generative_model_classes: _lowerCamelCase : str = model_class(lowercase ) _lowerCamelCase : List[Any] = model.generate(lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : Optional[Any] = jit(model.generate ) _lowerCamelCase : Dict = jit_generate(lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : int = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : Optional[Any] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[Any] = False _lowerCamelCase : Optional[Any] = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Dict = model_class(lowercase ) _lowerCamelCase : str = model.generate(lowercase , attention_mask=lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : List[str] = jit(model.generate ) _lowerCamelCase : Any = jit_generate(lowercase , attention_mask=lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Union[str, Any] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : List[str] = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : int = True _lowerCamelCase : Tuple = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Tuple = model_class(lowercase ) _lowerCamelCase : Union[str, Any] = model.generate(lowercase , attention_mask=lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : Any = jit(model.generate ) _lowerCamelCase : Union[str, Any] = jit_generate(lowercase , attention_mask=lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) def A_ ( self ): _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase : Optional[int] = self._get_input_ids_and_config() # pad attention mask on the left _lowerCamelCase : int = attention_mask.at[(0, 0)].set(0 ) _lowerCamelCase : List[str] = 2 _lowerCamelCase : Tuple = max_length for model_class in self.all_generative_model_classes: _lowerCamelCase : Tuple = model_class(lowercase ) _lowerCamelCase : str = model.generate(lowercase , attention_mask=lowercase ).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase ) _lowerCamelCase : str = jit(model.generate ) _lowerCamelCase : Union[str, Any] = jit_generate(lowercase , attention_mask=lowercase ).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist() ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def A_ ( self ): _lowerCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert' ) _lowerCamelCase : str = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only' ) _lowerCamelCase : Tuple = 'Hello world' _lowerCamelCase : Optional[int] = tokenizer(lowercase , return_tensors='np' ).input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase , 'do_samples' ): model.generate(lowercase , do_samples=lowercase ) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase , 'foo' ): _lowerCamelCase : str = {'foo': 'bar'} model.generate(lowercase , **lowercase )
96
"""simple docstring""" import math def _snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 360: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(UpperCAmelCase_ ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name='malus_law')
335
0
"""simple docstring""" import math import random def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ = False ): '''simple docstring''' if deriv: return value * (1 - value) return 1 / (1 + math.exp(-value )) # Initial Value a__ : Optional[Any] = 0.02 def UpperCAmelCase__ (lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = float(2 * (random.randint(1 , 100 )) - 1 ) for _ in range(lowerCAmelCase_ ): # Forward propagation __SCREAMING_SNAKE_CASE = sigmoid_function(INITIAL_VALUE * weight ) # How much did we miss? __SCREAMING_SNAKE_CASE = (expected / 100) - layer_a # Error delta __SCREAMING_SNAKE_CASE = layer_1_error * sigmoid_function(lowerCAmelCase_ , lowerCAmelCase_ ) # Update weight weight += INITIAL_VALUE * layer_1_delta return layer_a * 100 if __name__ == "__main__": import doctest doctest.testmod() a__ : Optional[Any] = int(input('''Expected value: ''')) a__ : str = int(input('''Number of propagations: ''')) print(forward_propagation(expected, number_propagations))
195
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class UpperCamelCase_ ( UpperCamelCase , UpperCamelCase , unittest.TestCase): """simple docstring""" snake_case__ : str = IFInpaintingSuperResolutionPipeline snake_case__ : Optional[Any] = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} snake_case__ : Union[str, Any] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"}) snake_case__ : Dict = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase_ ( self : List[Any] ) -> Optional[int]: return self._get_superresolution_dummy_components() def UpperCAmelCase_ ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str]=0 ) -> List[str]: if str(UpperCAmelCase__ ).startswith("mps" ): __SCREAMING_SNAKE_CASE = torch.manual_seed(UpperCAmelCase__ ) else: __SCREAMING_SNAKE_CASE = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 1_6, 1_6) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = { "prompt": "A painting of a squirrel eating a burger", "image": image, "original_image": original_image, "mask_image": mask_image, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def UpperCAmelCase_ ( self : str ) -> Dict: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase_ ( self : str ) -> Tuple: self._test_save_load_optional_components() @unittest.skipIf(torch_device != "cuda" , reason="float16 requires CUDA" ) def UpperCAmelCase_ ( self : Tuple ) -> Tuple: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase_ ( self : Optional[Any] ) -> List[Any]: self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: self._test_save_load_local() def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
195
1
import unittest from transformers import ( MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, Pipeline, ZeroShotClassificationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, nested_simplify, require_tf, require_torch, slow from .test_pipelines_common import ANY # These 2 model types require different inputs than those of the usual text models. _lowercase: Any = {"LayoutLMv2Config", "LayoutLMv3Config"} @is_pipeline_test class _lowercase ( unittest.TestCase ): """simple docstring""" __A = MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING __A = TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING if model_mapping is not None: __A = {config: model for config, model in model_mapping.items() if config.__name__ not in _TO_SKIP} if tf_model_mapping is not None: __A = { config: model for config, model in tf_model_mapping.items() if config.__name__ not in _TO_SKIP } def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = ZeroShotClassificationPipeline( model=_snake_case , tokenizer=_snake_case , candidate_labels=["polics", "health"] ) return classifier, ["Who are you voting for in 2020?", "My stomach hurts."] def UpperCamelCase_ (self , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" a = classifier("Who are you voting for in 2020?" , candidate_labels="politics" ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) # No kwarg a = classifier("Who are you voting for in 2020?" , ["politics"] ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) a = classifier("Who are you voting for in 2020?" , candidate_labels=["politics"] ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) a = classifier("Who are you voting for in 2020?" , candidate_labels="politics, public health" ) self.assertEqual( _snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) a = classifier("Who are you voting for in 2020?" , candidate_labels=["politics", "public health"] ) self.assertEqual( _snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} ) self.assertAlmostEqual(sum(nested_simplify(outputs["scores"] ) ) , 1.0 ) a = classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="This text is about {}" ) self.assertEqual(_snake_case , {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case )], "scores": [ANY(_snake_case )]} ) # https://github.com/huggingface/transformers/issues/13846 a = classifier(["I am happy"] , ["positive", "negative"] ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} for i in range(1 ) ] , ) a = classifier(["I am happy", "I am sad"] , ["positive", "negative"] ) self.assertEqual( _snake_case , [ {"sequence": ANY(_snake_case ), "labels": [ANY(_snake_case ), ANY(_snake_case )], "scores": [ANY(_snake_case ), ANY(_snake_case )]} for i in range(2 ) ] , ) with self.assertRaises(_snake_case ): classifier("" , candidate_labels="politics" ) with self.assertRaises(_snake_case ): classifier(_snake_case , candidate_labels="politics" ) with self.assertRaises(_snake_case ): classifier("Who are you voting for in 2020?" , candidate_labels="" ) with self.assertRaises(_snake_case ): classifier("Who are you voting for in 2020?" , candidate_labels=_snake_case ) with self.assertRaises(_snake_case ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template="Not formatting template" , ) with self.assertRaises(_snake_case ): classifier( "Who are you voting for in 2020?" , candidate_labels="politics" , hypothesis_template=_snake_case , ) self.run_entailment_id(_snake_case ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = zero_shot_classifier.model.config a = config.labelaid a = zero_shot_classifier.entailment_id a = {"LABEL_0": 0, "LABEL_1": 1, "LABEL_2": 2} self.assertEqual(zero_shot_classifier.entailment_id , -1 ) a = {"entailment": 0, "neutral": 1, "contradiction": 2} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a = {"ENTAIL": 0, "NON-ENTAIL": 1} self.assertEqual(zero_shot_classifier.entailment_id , 0 ) a = {"ENTAIL": 2, "NEUTRAL": 1, "CONTR": 0} self.assertEqual(zero_shot_classifier.entailment_id , 2 ) a = original_labelaid self.assertEqual(_snake_case , zero_shot_classifier.entailment_id ) @require_torch def UpperCamelCase_ (self ): """simple docstring""" a = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) # There was a regression in 4.10 for this # Adding a test so we don't make the mistake again. # https://github.com/huggingface/transformers/issues/13381#issuecomment-912343499 zero_shot_classifier( "Who are you voting for in 2020?" * 100 , candidate_labels=["politics", "public health", "science"] ) @require_torch def UpperCamelCase_ (self ): """simple docstring""" a = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="pt" , ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @require_tf def UpperCamelCase_ (self ): """simple docstring""" a = pipeline( "zero-shot-classification" , model="sshleifer/tiny-distilbert-base-cased-distilled-squad" , framework="tf" , ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["science", "public health", "politics"], "scores": [0.333, 0.333, 0.333], } , ) @slow @require_torch def UpperCamelCase_ (self ): """simple docstring""" a = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="pt" ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) a = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , ) @slow @require_tf def UpperCamelCase_ (self ): """simple docstring""" a = pipeline("zero-shot-classification" , model="roberta-large-mnli" , framework="tf" ) a = zero_shot_classifier( "Who are you voting for in 2020?" , candidate_labels=["politics", "public health", "science"] ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": "Who are you voting for in 2020?", "labels": ["politics", "public health", "science"], "scores": [0.976, 0.015, 0.009], } , ) a = zero_shot_classifier( "The dominant sequence transduction models are based on complex recurrent or convolutional neural networks" " in an encoder-decoder configuration. The best performing models also connect the encoder and decoder" " through an attention mechanism. We propose a new simple network architecture, the Transformer, based" " solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two" " machine translation tasks show these models to be superior in quality while being more parallelizable" " and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014" " English-to-German translation task, improving over the existing best results, including ensembles by" " over 2 BLEU. On the WMT 2014 English-to-French translation task, our model establishes a new" " single-model state-of-the-art BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small" " fraction of the training costs of the best models from the literature. We show that the Transformer" " generalizes well to other tasks by applying it successfully to English constituency parsing both with" " large and limited training data." , candidate_labels=["machine learning", "statistics", "translation", "vision"] , multi_label=_snake_case , ) self.assertEqual( nested_simplify(_snake_case ) , { "sequence": ( "The dominant sequence transduction models are based on complex recurrent or convolutional neural" " networks in an encoder-decoder configuration. The best performing models also connect the" " encoder and decoder through an attention mechanism. We propose a new simple network" " architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence" " and convolutions entirely. Experiments on two machine translation tasks show these models to be" " superior in quality while being more parallelizable and requiring significantly less time to" " train. Our model achieves 28.4 BLEU on the WMT 2014 English-to-German translation task," " improving over the existing best results, including ensembles by over 2 BLEU. On the WMT 2014" " English-to-French translation task, our model establishes a new single-model state-of-the-art" " BLEU score of 41.8 after training for 3.5 days on eight GPUs, a small fraction of the training" " costs of the best models from the literature. We show that the Transformer generalizes well to" " other tasks by applying it successfully to English constituency parsing both with large and" " limited training data." ), "labels": ["translation", "machine learning", "vision", "statistics"], "scores": [0.817, 0.713, 0.018, 0.018], } , )
227
def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 1 for i in range(1 , num + 1 ): fact *= i return fact def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = 0 while number > 0: _lowerCAmelCase = number % 10 sum_of_digits += last_digit _lowerCAmelCase = number // 10 # Removing the last_digit from the given number return sum_of_digits def _UpperCAmelCase ( snake_case = 1_00 ): """simple docstring""" _lowerCAmelCase = factorial(snake_case ) _lowerCAmelCase = split_and_add(snake_case ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
82
0
"""simple docstring""" def __a ( __lowerCamelCase ): return sum(i for i in range(1, number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('Program to check whether a number is a Perfect number or not...') _a = int(input('Enter number: ').strip()) print(f"""{number} is {'' if perfect(number) else 'not '}a Perfect Number.""")
363
"""simple docstring""" import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class A_ (unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = "ylacombe/bark-small" UpperCAmelCase_ : Union[str, Any] = tempfile.mkdtemp() UpperCAmelCase_ : List[str] = "en_speaker_1" UpperCAmelCase_ : Tuple = "This is a test string" UpperCAmelCase_ : List[Any] = "speaker_embeddings_path.json" UpperCAmelCase_ : Any = "speaker_embeddings" def UpperCamelCase__ ( self , **lowercase_ ): """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **lowercase_ ) def UpperCamelCase__ ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Tuple = self.get_tokenizer() UpperCAmelCase_ : Union[str, Any] = BarkProcessor(tokenizer=lowercase_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase_ : Optional[int] = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase_ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) UpperCAmelCase_ : Union[str, Any] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token="(BOS)" , eos_token="(EOS)" , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Dict = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase_ : int = 35 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 8 UpperCAmelCase_ : Optional[Any] = { "semantic_prompt": np.ones(lowercase_ ), "coarse_prompt": np.ones((nb_codebooks_coarse, seq_len) ), "fine_prompt": np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase_ : Dict = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase_ : Tuple = os.path.join(self.tmpdirname , "file.npz" ) np.savez(lowercase_ , **lowercase_ ) UpperCAmelCase_ : Optional[int] = processor(text=self.input_string , voice_preset=lowercase_ ) UpperCAmelCase_ : List[str] = inputs["history_prompt"] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(lowercase_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase_ : Tuple = processor(text=self.input_string , voice_preset=self.voice_preset ) def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Optional[int] = self.get_tokenizer() UpperCAmelCase_ : Optional[Any] = BarkProcessor(tokenizer=lowercase_ ) UpperCAmelCase_ : Tuple = processor(text=self.input_string ) UpperCAmelCase_ : Union[str, Any] = tokenizer( self.input_string , padding="max_length" , max_length=256 , add_special_tokens=lowercase_ , return_attention_mask=lowercase_ , return_token_type_ids=lowercase_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
23
0
from typing import List, Optional, Union import torch from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) snake_case_ : str = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ : Tuple = "\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Pipeline, KandinskyV22PriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-prior\")\n >>> pipe_prior.to(\"cuda\")\n >>> prompt = \"red cat, 4k photo\"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> zero_image_emb = out.negative_image_embeds\n >>> pipe = KandinskyV22Pipeline.from_pretrained(\"kandinsky-community/kandinsky-2-2-decoder\")\n >>> pipe.to(\"cuda\")\n >>> image = pipe(\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=50,\n ... ).images\n >>> image[0].save(\"cat.png\")\n ```\n" def A (__A : Any , __A : List[str] , __A : Optional[int]=8 ) -> str: """simple docstring""" UpperCAmelCase_ = height // scale_factor**2 if height % scale_factor**2 != 0: new_height += 1 UpperCAmelCase_ = width // scale_factor**2 if width % scale_factor**2 != 0: new_width += 1 return new_height * scale_factor, new_width * scale_factor class __snake_case ( a ): def __init__( self : List[str] , _snake_case : UNetaDConditionModel , _snake_case : DDPMScheduler , _snake_case : VQModel , ): """simple docstring""" super().__init__() self.register_modules( unet=_snake_case , scheduler=_snake_case , movq=_snake_case , ) UpperCAmelCase_ = 2 ** (len(self.movq.config.block_out_channels) - 1) def lowerCamelCase ( self : int , _snake_case : List[str] , _snake_case : Any , _snake_case : int , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Optional[Any]): """simple docstring""" if latents is None: UpperCAmelCase_ = randn_tensor(_snake_case , generator=_snake_case , device=_snake_case , dtype=_snake_case) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""") UpperCAmelCase_ = latents.to(_snake_case) UpperCAmelCase_ = latents * scheduler.init_noise_sigma return latents def lowerCamelCase ( self : Any , _snake_case : Union[str, Any]=0): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('''Please install accelerate via `pip install accelerate`''') UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""") UpperCAmelCase_ = [ self.unet, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(_snake_case , _snake_case) def lowerCamelCase ( self : List[str] , _snake_case : Optional[int]=0): """simple docstring""" if is_accelerate_available() and is_accelerate_version('''>=''' , '''0.17.0.dev0'''): from accelerate import cpu_offload_with_hook else: raise ImportError('''`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.''') UpperCAmelCase_ = torch.device(F"""cuda:{gpu_id}""") if self.device.type != "cpu": self.to('''cpu''' , silence_dtype_warnings=_snake_case) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) UpperCAmelCase_ = None for cpu_offloaded_model in [self.unet, self.movq]: UpperCAmelCase_ , UpperCAmelCase_ = cpu_offload_with_hook(_snake_case , _snake_case , prev_module_hook=_snake_case) # We'll offload the last model manually. UpperCAmelCase_ = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCamelCase ( self : List[Any]): """simple docstring""" if not hasattr(self.unet , '''_hf_hook'''): return self.device for module in self.unet.modules(): if ( hasattr(_snake_case , '''_hf_hook''') and hasattr(module._hf_hook , '''execution_device''') and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(_snake_case) def __call__( self : List[Any] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : Union[torch.FloatTensor, List[torch.FloatTensor]] , _snake_case : int = 512 , _snake_case : int = 512 , _snake_case : int = 100 , _snake_case : float = 4.0 , _snake_case : int = 1 , _snake_case : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _snake_case : Optional[torch.FloatTensor] = None , _snake_case : Optional[str] = "pil" , _snake_case : bool = True , ): """simple docstring""" UpperCAmelCase_ = self._execution_device UpperCAmelCase_ = guidance_scale > 1.0 if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = torch.cat(_snake_case , dim=0) UpperCAmelCase_ = image_embeds.shape[0] * num_images_per_prompt if isinstance(_snake_case , _snake_case): UpperCAmelCase_ = torch.cat(_snake_case , dim=0) if do_classifier_free_guidance: UpperCAmelCase_ = image_embeds.repeat_interleave(_snake_case , dim=0) UpperCAmelCase_ = negative_image_embeds.repeat_interleave(_snake_case , dim=0) UpperCAmelCase_ = torch.cat([negative_image_embeds, image_embeds] , dim=0).to(dtype=self.unet.dtype , device=_snake_case) self.scheduler.set_timesteps(_snake_case , device=_snake_case) UpperCAmelCase_ = self.scheduler.timesteps UpperCAmelCase_ = self.unet.config.in_channels UpperCAmelCase_ , UpperCAmelCase_ = downscale_height_and_width(_snake_case , _snake_case , self.movq_scale_factor) # create initial latent UpperCAmelCase_ = self.prepare_latents( (batch_size, num_channels_latents, height, width) , image_embeds.dtype , _snake_case , _snake_case , _snake_case , self.scheduler , ) for i, t in enumerate(self.progress_bar(_snake_case)): # expand the latents if we are doing classifier free guidance UpperCAmelCase_ = torch.cat([latents] * 2) if do_classifier_free_guidance else latents UpperCAmelCase_ = {'''image_embeds''': image_embeds} UpperCAmelCase_ = self.unet( sample=_snake_case , timestep=_snake_case , encoder_hidden_states=_snake_case , added_cond_kwargs=_snake_case , return_dict=_snake_case , )[0] if do_classifier_free_guidance: UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1) UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.chunk(2) UpperCAmelCase_ , UpperCAmelCase_ = variance_pred.chunk(2) UpperCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) UpperCAmelCase_ = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , '''variance_type''') and self.scheduler.config.variance_type in ["learned", "learned_range"] ): UpperCAmelCase_ , UpperCAmelCase_ = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 UpperCAmelCase_ = self.scheduler.step( _snake_case , _snake_case , _snake_case , generator=_snake_case , )[0] # post-processing UpperCAmelCase_ = self.movq.decode(_snake_case , force_not_quantize=_snake_case)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""") if output_type in ["np", "pil"]: UpperCAmelCase_ = image * 0.5 + 0.5 UpperCAmelCase_ = image.clamp(0 , 1) UpperCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": UpperCAmelCase_ = self.numpy_to_pil(_snake_case) if not return_dict: return (image,) return ImagePipelineOutput(images=_snake_case)
51
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline A__ : Union[str, Any] = { '''n_samples''': 64, '''horizon''': 32, '''num_inference_steps''': 20, '''n_guide_steps''': 2, # can set to 0 for faster sampling, does not use value network '''scale_grad_by_std''': True, '''scale''': 0.1, '''eta''': 0.0, '''t_grad_cutoff''': 2, '''device''': '''cpu''', } if __name__ == "__main__": A__ : Optional[int] = '''hopper-medium-v2''' A__ : int = gym.make(env_name) A__ : Optional[int] = ValueGuidedRLPipeline.from_pretrained( '''bglick13/hopper-medium-v2-value-function-hor32''', env=env, ) env.seed(0) A__ : int = env.reset() A__ : Optional[int] = 0 A__ : Union[str, Any] = 0 A__ : Union[str, Any] = 1000 A__ : Optional[Any] = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy A__ : Union[str, Any] = pipeline(obs, planning_horizon=32) # execute action in environment A__ , A__ , A__ , A__ : str = env.step(denorm_actions) A__ : Dict = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) A__ : List[str] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
103
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging A = logging.get_logger(__name__) A = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class __lowercase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = '''wav2vec2''' def __init__( self , _UpperCAmelCase=32 , _UpperCAmelCase=768 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3072 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.0_2 , _UpperCAmelCase=1e-5 , _UpperCAmelCase="group" , _UpperCAmelCase="gelu" , _UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , _UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , _UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , _UpperCAmelCase=False , _UpperCAmelCase=128 , _UpperCAmelCase=16 , _UpperCAmelCase=False , _UpperCAmelCase=True , _UpperCAmelCase=0.0_5 , _UpperCAmelCase=10 , _UpperCAmelCase=2 , _UpperCAmelCase=0.0 , _UpperCAmelCase=10 , _UpperCAmelCase=0 , _UpperCAmelCase=320 , _UpperCAmelCase=2 , _UpperCAmelCase=0.1 , _UpperCAmelCase=100 , _UpperCAmelCase=256 , _UpperCAmelCase=256 , _UpperCAmelCase=0.1 , _UpperCAmelCase="sum" , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=256 , _UpperCAmelCase=(512, 512, 512, 512, 1500) , _UpperCAmelCase=(5, 3, 3, 1, 1) , _UpperCAmelCase=(1, 2, 3, 1, 1) , _UpperCAmelCase=512 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , _UpperCAmelCase=2 , _UpperCAmelCase=False , _UpperCAmelCase=3 , _UpperCAmelCase=2 , _UpperCAmelCase=3 , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): super().__init__(**_UpperCAmelCase , pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase ) __a : Tuple = hidden_size __a : Dict = feat_extract_norm __a : Optional[Any] = feat_extract_activation __a : Optional[int] = list(_UpperCAmelCase ) __a : Union[str, Any] = list(_UpperCAmelCase ) __a : List[str] = list(_UpperCAmelCase ) __a : str = conv_bias __a : str = num_conv_pos_embeddings __a : Union[str, Any] = num_conv_pos_embedding_groups __a : Tuple = len(self.conv_dim ) __a : List[str] = num_hidden_layers __a : str = intermediate_size __a : Tuple = hidden_act __a : Optional[Any] = num_attention_heads __a : Optional[Any] = hidden_dropout __a : Dict = attention_dropout __a : int = activation_dropout __a : List[str] = feat_proj_dropout __a : List[str] = final_dropout __a : Optional[Any] = layerdrop __a : Dict = layer_norm_eps __a : Union[str, Any] = initializer_range __a : int = vocab_size __a : List[str] = do_stable_layer_norm __a : int = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel )}`.""" ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __a : Optional[Any] = apply_spec_augment __a : Any = mask_time_prob __a : Union[str, Any] = mask_time_length __a : Optional[Any] = mask_time_min_masks __a : Tuple = mask_feature_prob __a : List[Any] = mask_feature_length __a : Dict = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __a : Any = num_codevectors_per_group __a : Optional[Any] = num_codevector_groups __a : Optional[int] = contrastive_logits_temperature __a : Optional[int] = feat_quantizer_dropout __a : Optional[Any] = num_negatives __a : Union[str, Any] = codevector_dim __a : Any = proj_codevector_dim __a : Optional[Any] = diversity_loss_weight # ctc loss __a : Dict = ctc_loss_reduction __a : List[Any] = ctc_zero_infinity # adapter __a : Any = add_adapter __a : Optional[int] = adapter_kernel_size __a : Union[str, Any] = adapter_stride __a : str = num_adapter_layers __a : str = output_hidden_size or hidden_size __a : Optional[int] = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. __a : int = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. __a : Union[str, Any] = list(_UpperCAmelCase ) __a : Optional[int] = list(_UpperCAmelCase ) __a : Any = list(_UpperCAmelCase ) __a : int = xvector_output_dim @property def _lowerCamelCase ( self ): return functools.reduce(operator.mul , self.conv_stride , 1 )
188
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar A = TypeVar('''T''') class __lowercase ( Generic[T] ): '''simple docstring''' __lowerCAmelCase = 42 # Cache store of keys __lowerCAmelCase = 42 # References of the keys in cache __lowerCAmelCase = 10 # Maximum capacity of cache def __init__( self , _UpperCAmelCase ): __a : Optional[int] = deque() __a : Dict = set() if not n: __a : List[Any] = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: __a : str = n def _lowerCamelCase ( self , _UpperCAmelCase ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: __a : int = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def _lowerCamelCase ( self ): for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ): return f"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() A = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
188
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ : Optional[Any] ={ '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Any =['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : Dict =[ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ : List[Any] =[ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys a__ : Tuple =_LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
53
'''simple docstring''' import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : Optional[int] = VideoMAEConfig() set_architecture_configs(lowerCamelCase__ , lowerCamelCase__ ) if "finetuned" not in model_name: A_ : Dict = False if "finetuned" in model_name: A_ : List[Any] = """huggingface/label-files""" if "kinetics" in model_name: A_ : Dict = 4_00 A_ : List[str] = """kinetics400-id2label.json""" elif "ssv2" in model_name: A_ : Tuple = 1_74 A_ : str = """something-something-v2-id2label.json""" else: raise ValueError("""Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned.""" ) A_ : Dict = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) A_ : List[str] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} A_ : Optional[Any] = idalabel A_ : Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' if "small" in model_name: A_ : int = 3_84 A_ : Union[str, Any] = 15_36 A_ : List[str] = 12 A_ : Optional[int] = 16 A_ : Any = 12 A_ : int = 3 A_ : Optional[Any] = 1_92 A_ : Union[str, Any] = 7_68 elif "large" in model_name: A_ : List[Any] = 10_24 A_ : Optional[Any] = 40_96 A_ : Optional[Any] = 24 A_ : List[str] = 16 A_ : Any = 12 A_ : str = 8 A_ : str = 5_12 A_ : int = 20_48 elif "huge" in model_name: A_ : Optional[Any] = 12_80 A_ : str = 51_20 A_ : str = 32 A_ : int = 16 A_ : Any = 12 A_ : Union[str, Any] = 8 A_ : Dict = 6_40 A_ : Optional[Any] = 25_60 elif "base" not in model_name: raise ValueError("""Model name should include either \"small\", \"base\", \"large\", or \"huge\"""" ) def a ( lowerCamelCase__ ): '''simple docstring''' if "encoder." in name: A_ : List[Any] = name.replace("""encoder.""" , """""" ) if "cls_token" in name: A_ : List[str] = name.replace("""cls_token""" , """videomae.embeddings.cls_token""" ) if "decoder_pos_embed" in name: A_ : Tuple = name.replace("""decoder_pos_embed""" , """decoder.decoder_pos_embed""" ) if "pos_embed" in name and "decoder" not in name: A_ : int = name.replace("""pos_embed""" , """videomae.embeddings.position_embeddings""" ) if "patch_embed.proj" in name: A_ : Optional[Any] = name.replace("""patch_embed.proj""" , """videomae.embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: A_ : Dict = name.replace("""patch_embed.norm""" , """videomae.embeddings.norm""" ) if "decoder.blocks" in name: A_ : List[str] = name.replace("""decoder.blocks""" , """decoder.decoder_layers""" ) if "blocks" in name: A_ : List[str] = name.replace("""blocks""" , """videomae.encoder.layer""" ) if "attn.proj" in name: A_ : str = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name and "bias" not in name: A_ : str = name.replace("""attn""" , """attention.self""" ) if "attn" in name: A_ : Union[str, Any] = name.replace("""attn""" , """attention.attention""" ) if "norm1" in name: A_ : Any = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: A_ : List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: A_ : Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "decoder_embed" in name: A_ : Optional[Any] = name.replace("""decoder_embed""" , """decoder.decoder_embed""" ) if "decoder_norm" in name: A_ : Tuple = name.replace("""decoder_norm""" , """decoder.decoder_norm""" ) if "decoder_pred" in name: A_ : Tuple = name.replace("""decoder_pred""" , """decoder.decoder_pred""" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: A_ : Dict = name.replace("""norm.weight""" , """videomae.layernorm.weight""" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: A_ : List[str] = name.replace("""norm.bias""" , """videomae.layernorm.bias""" ) if "head" in name and "decoder" not in name: A_ : Optional[Any] = name.replace("""head""" , """classifier""" ) return name def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' for key in orig_state_dict.copy().keys(): A_ : str = orig_state_dict.pop(lowerCamelCase__ ) if key.startswith("""encoder.""" ): A_ : Tuple = key.replace("""encoder.""" , """""" ) if "qkv" in key: A_ : Optional[int] = key.split(""".""" ) if key.startswith("""decoder.blocks""" ): A_ : Union[str, Any] = config.decoder_hidden_size A_ : Any = int(key_split[2] ) A_ : int = """decoder.decoder_layers.""" if "weight" in key: A_ : Optional[Any] = val[:dim, :] A_ : Any = val[dim : dim * 2, :] A_ : Dict = val[-dim:, :] else: A_ : List[Any] = config.hidden_size A_ : List[Any] = int(key_split[1] ) A_ : int = """videomae.encoder.layer.""" if "weight" in key: A_ : Any = val[:dim, :] A_ : Union[str, Any] = val[dim : dim * 2, :] A_ : List[str] = val[-dim:, :] else: A_ : Union[str, Any] = val return orig_state_dict def a ( ): '''simple docstring''' A_ : List[Any] = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" , filename="""eating_spaghetti.npy""" , repo_type="""dataset""" ) A_ : Optional[Any] = np.load(lowerCamelCase__ ) return list(lowerCamelCase__ ) def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = get_videomae_config(lowerCamelCase__ ) if "finetuned" in model_name: A_ : List[str] = VideoMAEForVideoClassification(lowerCamelCase__ ) else: A_ : Optional[Any] = VideoMAEForPreTraining(lowerCamelCase__ ) # download original checkpoint, hosted on Google Drive A_ : Optional[Any] = """pytorch_model.bin""" gdown.cached_download(lowerCamelCase__ , lowerCamelCase__ , quiet=lowerCamelCase__ ) A_ : Any = torch.load(lowerCamelCase__ , map_location="""cpu""" ) if "model" in files: A_ : Any = files["""model"""] else: A_ : Dict = files["""module"""] A_ : Any = convert_state_dict(lowerCamelCase__ , lowerCamelCase__ ) model.load_state_dict(lowerCamelCase__ ) model.eval() # verify model on basic input A_ : int = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) A_ : Union[str, Any] = prepare_video() A_ : str = image_processor(lowerCamelCase__ , return_tensors="""pt""" ) if "finetuned" not in model_name: A_ : List[str] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Optional[Any] = torch.load(lowerCamelCase__ ) A_ : Dict = model(**lowerCamelCase__ ) A_ : List[Any] = outputs.logits A_ : Any = [ """videomae-small-finetuned-kinetics""", """videomae-small-finetuned-ssv2""", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) """videomae-base-short""", """videomae-base-short-finetuned-kinetics""", """videomae-base""", """videomae-base-finetuned-kinetics""", """videomae-large""", """videomae-large-finetuned-kinetics""", """videomae-huge-finetuned-kinetics""", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) """videomae-base-short-ssv2""", """videomae-base-short-finetuned-ssv2""", """videomae-base-ssv2""", """videomae-base-finetuned-ssv2""", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": A_ : str = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([-0.9_291, -0.4_061, -0.9_307] ) elif model_name == "videomae-small-finetuned-ssv2": A_ : str = torch.Size([1, 1_74] ) A_ : Union[str, Any] = torch.tensor([0.2_671, -0.4_689, -0.8_235] ) elif model_name == "videomae-base": A_ : Tuple = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_739, 0.7_968, 0.7_089], [0.6_701, 0.7_487, 0.6_209], [0.4_287, 0.5_158, 0.4_773]] ) elif model_name == "videomae-base-short": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : List[str] = torch.tensor([[0.7_994, 0.9_612, 0.8_508], [0.7_401, 0.8_958, 0.8_302], [0.5_862, 0.7_468, 0.7_325]] ) # we verified the loss both for normalized and unnormalized targets for this one A_ : List[Any] = torch.tensor([0.5_142] ) if config.norm_pix_loss else torch.tensor([0.6_469] ) elif model_name == "videomae-large": A_ : str = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.7_149, 0.7_997, 0.6_966], [0.6_768, 0.7_869, 0.6_948], [0.5_139, 0.6_221, 0.5_605]] ) elif model_name == "videomae-large-finetuned-kinetics": A_ : int = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.0_771, 0.0_011, -0.3_625] ) elif model_name == "videomae-huge-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Optional[int] = torch.tensor([0.2_433, 0.1_632, -0.4_894] ) elif model_name == "videomae-base-short-finetuned-kinetics": A_ : List[Any] = torch.Size([1, 4_00] ) A_ : Optional[Any] = torch.tensor([0.6_588, 0.0_990, -0.2_493] ) elif model_name == "videomae-base-finetuned-kinetics": A_ : Union[str, Any] = torch.Size([1, 4_00] ) A_ : Tuple = torch.tensor([0.3_669, -0.0_688, -0.2_421] ) elif model_name == "videomae-base-short-ssv2": A_ : Optional[Any] = torch.Size([1, 14_08, 15_36] ) A_ : List[Any] = torch.tensor([[0.4_712, 0.5_296, 0.5_786], [0.2_278, 0.2_729, 0.4_026], [0.0_352, 0.0_730, 0.2_506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : Any = torch.tensor([-0.0_537, -0.1_539, -0.3_266] ) elif model_name == "videomae-base-ssv2": A_ : Dict = torch.Size([1, 14_08, 15_36] ) A_ : Dict = torch.tensor([[0.8_131, 0.8_727, 0.8_546], [0.7_366, 0.9_377, 0.8_870], [0.5_935, 0.8_874, 0.8_564]] ) elif model_name == "videomae-base-finetuned-ssv2": A_ : Any = torch.Size([1, 1_74] ) A_ : str = torch.tensor([0.1_961, -0.8_337, -0.6_389] ) else: raise ValueError(f'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) else: print("""Logits:""" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCamelCase__ , atol=1E-4 ) print("""Logits ok!""" ) # verify loss, if applicable if model_name == "videomae-base-short": A_ : Optional[int] = outputs.loss assert torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-4 ) print("""Loss ok!""" ) if pytorch_dump_folder_path is not None: print(f'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) if push_to_hub: print("""Pushing to the hub...""" ) model.push_to_hub(lowerCamelCase__ , organization="""nielsr""" ) if __name__ == "__main__": lowerCamelCase :Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4''', type=str, help=( '''URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct''' ''' download link.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''/Users/nielsrogge/Documents/VideoMAE/Test''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--model_name''', default='''videomae-base''', type=str, help='''Name of the model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase :Union[str, Any] = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
206
0
import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union lowercase_ = re.compile(R"""^(?P<major>\d+)""" R"""\.(?P<minor>\d+)""" R"""\.(?P<patch>\d+)$""") @total_ordering @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str _UpperCamelCase : Optional[str] = None _UpperCamelCase : Optional[Union[str, int]] = None _UpperCamelCase : Optional[Union[str, int]] = None _UpperCamelCase : Optional[Union[str, int]] = None def SCREAMING_SNAKE_CASE_ ( self : Optional[int] )-> List[str]: """simple docstring""" lowercase__ = _str_to_version_tuple(self.version_str ) def __repr__( self : Union[str, Any] )-> List[str]: """simple docstring""" return f"""{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}""" @property def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] )-> Dict: """simple docstring""" return self.major, self.minor, self.patch def SCREAMING_SNAKE_CASE_ ( self : Dict , a : Tuple )-> str: """simple docstring""" if isinstance(_UpperCAmelCase , _UpperCAmelCase ): return Version(_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): return other raise TypeError(f"""{other} (type {type(_UpperCAmelCase )}) cannot be compared to version.""" ) def __eq__( self : List[str] , a : int )-> Dict: """simple docstring""" try: lowercase__ = self._validate_operand(_UpperCAmelCase ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self : str , a : Optional[int] )-> List[Any]: """simple docstring""" lowercase__ = self._validate_operand(_UpperCAmelCase ) return self.tuple < other.tuple def __hash__( self : List[str] )-> Optional[int]: """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Any , a : int )-> List[Any]: """simple docstring""" lowercase__ = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def SCREAMING_SNAKE_CASE_ ( self : List[str] )-> int: """simple docstring""" return self.version_str def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ = _VERSION_REG.match(lowerCAmelCase_ ) if not res: raise ValueError(F"""Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits.""" ) return tuple(int(lowerCAmelCase_ ) for v in [res.group('major' ), res.group('minor' ), res.group('patch' )] ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Tuple: return ".".join(str(lowerCAmelCase_ ) for v in version_tuple )
369
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str = field( metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained config name or path if not the same as model_name'} ) _UpperCamelCase : Optional[str] = field( default='NER' , metadata={'help': 'Task type to fine tune in training (e.g. NER, POS, etc)'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'} ) _UpperCamelCase : bool = field(default=UpperCAmelCase , metadata={'help': 'Set this flag to use fast tokenization.'} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) @dataclass class SCREAMING_SNAKE_CASE : _UpperCamelCase : str = field( metadata={'help': 'The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task.'} ) _UpperCamelCase : Optional[str] = field( default=UpperCAmelCase , metadata={'help': 'Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.'} , ) _UpperCamelCase : int = field( default=1_28 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) _UpperCamelCase : bool = field( default=UpperCAmelCase , metadata={'help': 'Overwrite the cached training and evaluation sets'} ) def __UpperCamelCase () -> str: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase__ = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase__ , lowercase__ , lowercase__ = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase__ , lowercase__ , lowercase__ = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. Use""" ' --overwrite_output_dir to overcome.' ) lowercase__ = import_module('tasks' ) try: lowercase__ = getattr(_SCREAMING_SNAKE_CASE , model_args.task_type ) lowercase__ = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _SCREAMING_SNAKE_CASE ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase__ = token_classification_task.get_labels(data_args.labels ) lowercase__ = dict(enumerate(_SCREAMING_SNAKE_CASE ) ) lowercase__ = len(_SCREAMING_SNAKE_CASE ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase__ = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_SCREAMING_SNAKE_CASE , idalabel=_SCREAMING_SNAKE_CASE , labelaid={label: i for i, label in enumerate(_SCREAMING_SNAKE_CASE )} , cache_dir=model_args.cache_dir , ) lowercase__ = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase__ = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_SCREAMING_SNAKE_CASE , cache_dir=model_args.cache_dir , ) # Get datasets lowercase__ = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase__ = ( TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple[List[int], List[int]]: lowercase__ = np.argmax(_SCREAMING_SNAKE_CASE , axis=2 ) lowercase__ , lowercase__ = preds.shape lowercase__ = [[] for _ in range(_SCREAMING_SNAKE_CASE )] lowercase__ = [[] for _ in range(_SCREAMING_SNAKE_CASE )] for i in range(_SCREAMING_SNAKE_CASE ): for j in range(_SCREAMING_SNAKE_CASE ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(_SCREAMING_SNAKE_CASE ) -> Dict: lowercase__ , lowercase__ = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "precision": precision_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "recall": recall_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "f1": fa_score(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), } # Data collator lowercase__ = DataCollatorWithPadding(_SCREAMING_SNAKE_CASE , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase__ = Trainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , compute_metrics=_SCREAMING_SNAKE_CASE , data_collator=_SCREAMING_SNAKE_CASE , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase__ = {} if training_args.do_eval: logger.info('*** Evaluate ***' ) lowercase__ = trainer.evaluate() lowercase__ = os.path.join(training_args.output_dir , 'eval_results.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: logger.info('***** Eval results *****' ) for key, value in result.items(): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) results.update(_SCREAMING_SNAKE_CASE ) # Predict if training_args.do_predict: lowercase__ = TokenClassificationDataset( token_classification_task=_SCREAMING_SNAKE_CASE , data_dir=data_args.data_dir , tokenizer=_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase__ , lowercase__ , lowercase__ = trainer.predict(_SCREAMING_SNAKE_CASE ) lowercase__ , lowercase__ = align_predictions(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) lowercase__ = os.path.join(training_args.output_dir , 'test_results.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: for key, value in metrics.items(): logger.info(' %s = %s' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) writer.write('%s = %s\n' % (key, value) ) # Save predictions lowercase__ = os.path.join(training_args.output_dir , 'test_predictions.txt' ) if trainer.is_world_process_zero(): with open(_SCREAMING_SNAKE_CASE , 'w' ) as writer: with open(os.path.join(data_args.data_dir , 'test.txt' ) , 'r' ) as f: token_classification_task.write_predictions_to_file(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return results def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
269
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: UpperCAmelCase = None UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } UpperCAmelCase = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } UpperCAmelCase = '''▁''' class A_ ( __lowerCamelCase ): '''simple docstring''' _UpperCamelCase : List[str] = VOCAB_FILES_NAMES _UpperCamelCase : Dict = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ["""input_ids""", """token_type_ids"""] _UpperCamelCase : List[str] = FNetTokenizer def __init__( self , snake_case=None , snake_case=None , snake_case=False , snake_case=True , snake_case=True , snake_case="<unk>" , snake_case="[SEP]" , snake_case="<pad>" , snake_case="[CLS]" , snake_case="[MASK]" , **snake_case , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowercase = ( AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case , normalized=snake_case ) if isinstance(snake_case , snake_case ) else mask_token ) super().__init__( snake_case , tokenizer_file=snake_case , do_lower_case=snake_case , remove_space=snake_case , keep_accents=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , **snake_case , ) lowercase = do_lower_case lowercase = remove_space lowercase = keep_accents lowercase = vocab_file lowercase = False if not self.vocab_file else True def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def SCREAMING_SNAKE_CASE__ ( self , snake_case , snake_case = None ): if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase = os.path.join( snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
195
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class A_ ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE__ ( self ): lowercase = tempfile.mkdtemp() lowercase = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', '的', '价', '格', '是', '15', '便', 'alex', '##andra', ',', '。', '-', 't', 'shirt', ] lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) lowercase = { 'do_resize': True, 'size': {'height': 224, 'width': 224}, 'do_center_crop': True, 'crop_size': {'height': 18, 'width': 18}, 'do_normalize': True, 'image_mean': [0.48_145_466, 0.4_578_275, 0.40_821_073], 'image_std': [0.26_862_954, 0.26_130_258, 0.27_577_711], 'do_convert_rgb': True, } lowercase = os.path.join(self.tmpdirname , snake_case ) with open(self.image_processor_file , 'w' , encoding='utf-8' ) as fp: json.dump(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizer.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self , **snake_case ): return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): shutil.rmtree(self.tmpdirname ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] lowercase = [Image.fromarray(np.moveaxis(snake_case , 0 , -1 ) ) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_tokenizer() lowercase = self.get_rust_tokenizer() lowercase = self.get_image_processor() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_slow.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=snake_case ) lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) processor_fast.save_pretrained(self.tmpdirname ) lowercase = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , snake_case ) self.assertIsInstance(processor_fast.tokenizer , snake_case ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , snake_case ) self.assertIsInstance(processor_fast.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowercase = self.get_tokenizer(cls_token='(CLS)' , sep_token='(SEP)' ) lowercase = self.get_image_processor(do_normalize=snake_case ) lowercase = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token='(CLS)' , sep_token='(SEP)' , do_normalize=snake_case ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , snake_case ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = self.prepare_image_inputs() lowercase = image_processor(snake_case , return_tensors='np' ) lowercase = processor(images=snake_case , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = processor(text=snake_case ) lowercase = tokenizer(snake_case ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , ['input_ids', 'token_type_ids', 'attention_mask', 'pixel_values'] ) # test if it raises when no input is passed with pytest.raises(snake_case ): processor() def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowercase = processor.batch_decode(snake_case ) lowercase = tokenizer.batch_decode(snake_case ) self.assertListEqual(snake_case , snake_case ) def SCREAMING_SNAKE_CASE__ ( self ): lowercase = self.get_image_processor() lowercase = self.get_tokenizer() lowercase = ChineseCLIPProcessor(tokenizer=snake_case , image_processor=snake_case ) lowercase = 'Alexandra,T-shirt的价格是15便士。' lowercase = self.prepare_image_inputs() lowercase = processor(text=snake_case , images=snake_case ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
195
1
"""simple docstring""" import numpy as np def lowerCAmelCase_ (lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: Optional[Any] , lowerCAmelCase__: Tuple , lowerCAmelCase__: Union[str, Any] , lowerCAmelCase__: str ): """simple docstring""" UpperCAmelCase_: List[Any] = int(np.ceil((x_end - xa) / h ) ) UpperCAmelCase_: str = np.zeros((n + 1,) ) UpperCAmelCase_: Union[str, Any] = ya UpperCAmelCase_: Dict = xa for k in range(snake_case_ ): UpperCAmelCase_: int = f(snake_case_ , y[k] ) UpperCAmelCase_: int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_: Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) UpperCAmelCase_: str = f(x + h , y[k] + h * ka ) UpperCAmelCase_: List[Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
369
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class _a : def __init__(self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=2, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=False, SCREAMING_SNAKE_CASE_=10, SCREAMING_SNAKE_CASE_=3, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=32 * 8, SCREAMING_SNAKE_CASE_=4, SCREAMING_SNAKE_CASE_=64, ) -> Union[str, Any]: UpperCAmelCase_: int = parent UpperCAmelCase_: Tuple = batch_size UpperCAmelCase_: int = is_training UpperCAmelCase_: Any = use_auxiliary_loss UpperCAmelCase_: str = num_queries UpperCAmelCase_: List[Any] = num_channels UpperCAmelCase_: Union[str, Any] = min_size UpperCAmelCase_: Optional[Any] = max_size UpperCAmelCase_: Tuple = num_labels UpperCAmelCase_: Union[str, Any] = hidden_dim UpperCAmelCase_: int = hidden_dim def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[Any] = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[str] = torch.ones([self.batch_size, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=SCREAMING_SNAKE_CASE_ ) > 0.5 ).float() UpperCAmelCase_: Optional[int] = (torch.rand((self.batch_size, self.num_labels), device=SCREAMING_SNAKE_CASE_ ) > 0.5).long() UpperCAmelCase_: Union[str, Any] = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case (self ) -> Any: UpperCAmelCase_: Any = MaskaFormerConfig( hidden_size=self.hidden_dim, ) UpperCAmelCase_: Any = self.num_queries UpperCAmelCase_: Dict = self.num_labels UpperCAmelCase_: Dict = [1, 1, 1, 1] UpperCAmelCase_: int = self.num_channels UpperCAmelCase_: Union[str, Any] = 64 UpperCAmelCase_: List[Any] = 128 UpperCAmelCase_: Optional[Any] = self.hidden_dim UpperCAmelCase_: str = self.hidden_dim UpperCAmelCase_: List[str] = self.hidden_dim return config def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Dict = self.prepare_config_and_inputs() UpperCAmelCase_: Any = {"""pixel_values""": pixel_values, """pixel_mask""": pixel_mask} return config, inputs_dict def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[int]: UpperCAmelCase_: Union[str, Any] = output.encoder_hidden_states UpperCAmelCase_: int = output.pixel_decoder_hidden_states UpperCAmelCase_: Any = output.transformer_decoder_hidden_states self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE_ ), config.decoder_layers ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=False ) -> Optional[Any]: with torch.no_grad(): UpperCAmelCase_: Dict = MaskaFormerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() UpperCAmelCase_: List[Any] = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: str = model(SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.hidden_dim), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def __snake_case (self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCAmelCase_: Tuple = MaskaFormerForUniversalSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() def comm_check_on_output(SCREAMING_SNAKE_CASE_ ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): UpperCAmelCase_: Dict = model(pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: int = model(SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Dict = model( pixel_values=SCREAMING_SNAKE_CASE_, pixel_mask=SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) comm_check_on_output(SCREAMING_SNAKE_CASE_ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class _a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): A = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () A = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} A = False A = False A = False A = False def __snake_case (self ) -> Any: UpperCAmelCase_: List[str] = MaskaFormerModelTester(self ) UpperCAmelCase_: Any = ConfigTester(self, config_class=SCREAMING_SNAKE_CASE_, has_text_modality=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: self.config_tester.run_common_tests() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*SCREAMING_SNAKE_CASE_ ) @unittest.skip(reason="""Mask2Former does not use inputs_embeds""" ) def __snake_case (self ) -> Dict: pass @unittest.skip(reason="""Mask2Former does not have a get_input_embeddings method""" ) def __snake_case (self ) -> Optional[int]: pass @unittest.skip(reason="""Mask2Former is not a generative model""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip(reason="""Mask2Former does not use token embeddings""" ) def __snake_case (self ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason="""Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`""" ) def __snake_case (self ) -> List[str]: pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def __snake_case (self ) -> Dict: pass def __snake_case (self ) -> Any: UpperCAmelCase_ , UpperCAmelCase_: Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase_: Tuple = [*signature.parameters.keys()] UpperCAmelCase_: str = ["""pixel_values"""] self.assertListEqual(arg_names[:1], SCREAMING_SNAKE_CASE_ ) @slow def __snake_case (self ) -> List[Any]: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: UpperCAmelCase_: Any = MaskaFormerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> Union[str, Any]: UpperCAmelCase_: str = (self.model_tester.min_size,) * 2 UpperCAmelCase_: str = { """pixel_values""": torch.randn((2, 3, *size), device=SCREAMING_SNAKE_CASE_ ), """mask_labels""": torch.randn((2, 10, *size), device=SCREAMING_SNAKE_CASE_ ), """class_labels""": torch.zeros(2, 10, device=SCREAMING_SNAKE_CASE_ ).long(), } UpperCAmelCase_: Dict = self.model_tester.get_config() UpperCAmelCase_: Optional[Any] = MaskaFormerForUniversalSegmentation(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_, output_hidden_states=SCREAMING_SNAKE_CASE_ ) def __snake_case (self ) -> List[Any]: UpperCAmelCase_ , UpperCAmelCase_: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase_: List[Any] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Any = model(**SCREAMING_SNAKE_CASE_, output_attentions=SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.attentions is not None ) def __snake_case (self ) -> Optional[int]: if not self.model_tester.is_training: return UpperCAmelCase_: Union[str, Any] = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: Any = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Optional[int] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ).loss loss.backward() def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = self.all_model_classes[1] UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = self.model_tester.prepare_config_and_inputs() UpperCAmelCase_: Union[str, Any] = True UpperCAmelCase_: str = True UpperCAmelCase_: Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) model.train() UpperCAmelCase_: Union[str, Any] = model(SCREAMING_SNAKE_CASE_, mask_labels=SCREAMING_SNAKE_CASE_, class_labels=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Tuple = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() UpperCAmelCase_: Union[str, Any] = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[int] = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() UpperCAmelCase_: Optional[Any] = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) a : int = 1E-4 def lowerCAmelCase_ (): """simple docstring""" UpperCAmelCase_: str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_vision @slow class _a ( unittest.TestCase ): @cached_property def __snake_case (self ) -> Optional[int]: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __snake_case (self ) -> Dict: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __snake_case (self ) -> List[str]: UpperCAmelCase_: int = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = self.default_image_processor UpperCAmelCase_: Optional[Any] = prepare_img() UpperCAmelCase_: str = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: List[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Union[str, Any] = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: Dict = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) UpperCAmelCase_: str = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Optional[Any]: UpperCAmelCase_: Any = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Tuple = self.default_image_processor UpperCAmelCase_: Dict = prepare_img() UpperCAmelCase_: Any = image_processor(SCREAMING_SNAKE_CASE_, return_tensors="""pt""" ).to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[Any] = inputs["""pixel_values"""].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(SCREAMING_SNAKE_CASE_, (1, 3, 384, 384) ) with torch.no_grad(): UpperCAmelCase_: int = model(**SCREAMING_SNAKE_CASE_ ) # masks_queries_logits UpperCAmelCase_: int = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) UpperCAmelCase_: Optional[Any] = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] UpperCAmelCase_: int = torch.tensor(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) # class_queries_logits UpperCAmelCase_: Dict = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape, (1, model.config.num_queries, model.config.num_labels + 1) ) UpperCAmelCase_: Any = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], SCREAMING_SNAKE_CASE_, atol=SCREAMING_SNAKE_CASE_ ) ) def __snake_case (self ) -> Tuple: UpperCAmelCase_: List[str] = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(SCREAMING_SNAKE_CASE_ ).eval() UpperCAmelCase_: Dict = self.default_image_processor UpperCAmelCase_: str = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )], segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )], return_tensors="""pt""", ) UpperCAmelCase_: int = inputs["""pixel_values"""].to(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_: Optional[int] = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""mask_labels"""]] UpperCAmelCase_: int = [el.to(SCREAMING_SNAKE_CASE_ ) for el in inputs["""class_labels"""]] with torch.no_grad(): UpperCAmelCase_: Union[str, Any] = model(**SCREAMING_SNAKE_CASE_ ) self.assertTrue(outputs.loss is not None )
82
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a_ : """simple docstring""" def __init__( self : List[Any] ,snake_case : Any ,snake_case : List[str]=3 ,snake_case : str=32 ,snake_case : Tuple=3 ,snake_case : Dict=10 ,snake_case : List[Any]=[10, 20, 30, 40] ,snake_case : List[Any]=[1, 1, 2, 1] ,snake_case : Any=True ,snake_case : Dict=True ,snake_case : Any="relu" ,snake_case : Union[str, Any]=3 ,snake_case : List[str]=None ,): SCREAMING_SNAKE_CASE =parent SCREAMING_SNAKE_CASE =batch_size SCREAMING_SNAKE_CASE =image_size SCREAMING_SNAKE_CASE =num_channels SCREAMING_SNAKE_CASE =embeddings_size SCREAMING_SNAKE_CASE =hidden_sizes SCREAMING_SNAKE_CASE =depths SCREAMING_SNAKE_CASE =is_training SCREAMING_SNAKE_CASE =use_labels SCREAMING_SNAKE_CASE =hidden_act SCREAMING_SNAKE_CASE =num_labels SCREAMING_SNAKE_CASE =scope SCREAMING_SNAKE_CASE =len(__snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE =None if self.use_labels: SCREAMING_SNAKE_CASE =ids_tensor([self.batch_size] ,self.num_labels ) SCREAMING_SNAKE_CASE =self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : int ): return ResNetConfig( num_channels=self.num_channels ,embeddings_size=self.embeddings_size ,hidden_sizes=self.hidden_sizes ,depths=self.depths ,hidden_act=self.hidden_act ,num_labels=self.num_labels ,image_size=self.image_size ,) def _lowerCAmelCase ( self : Optional[int] ,snake_case : Union[str, Any] ,snake_case : List[Any] ,snake_case : List[Any] ): SCREAMING_SNAKE_CASE =TFResNetModel(config=__snake_case ) SCREAMING_SNAKE_CASE =model(__snake_case ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) ,) def _lowerCAmelCase ( self : List[str] ,snake_case : Optional[int] ,snake_case : Union[str, Any] ,snake_case : str ): SCREAMING_SNAKE_CASE =self.num_labels SCREAMING_SNAKE_CASE =TFResNetForImageClassification(__snake_case ) SCREAMING_SNAKE_CASE =model(__snake_case ,labels=__snake_case ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.prepare_config_and_inputs() SCREAMING_SNAKE_CASE =config_and_inputs SCREAMING_SNAKE_CASE ={'''pixel_values''': pixel_values} return config, inputs_dict @require_tf class a_ ( A__ , A__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () __UpperCAmelCase = ( {'feature-extraction': TFResNetModel, 'image-classification': TFResNetForImageClassification} if is_tf_available() else {} ) __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False __UpperCAmelCase = False def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =TFResNetModelTester(self ) SCREAMING_SNAKE_CASE =ConfigTester(self ,config_class=__snake_case ,has_text_modality=__snake_case ) def _lowerCAmelCase ( self : List[str] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _lowerCAmelCase ( self : Dict ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _lowerCAmelCase ( self : str ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _lowerCAmelCase ( self : Dict ): pass def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE =model_class(__snake_case ) SCREAMING_SNAKE_CASE =inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE =[*signature.parameters.keys()] SCREAMING_SNAKE_CASE =['''pixel_values'''] self.assertListEqual(arg_names[:1] ,__snake_case ) def _lowerCAmelCase ( self : Any ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__snake_case ) def _lowerCAmelCase ( self : Dict ): def check_hidden_states_output(snake_case : int ,snake_case : List[Any] ,snake_case : Optional[int] ): SCREAMING_SNAKE_CASE =model_class(__snake_case ) SCREAMING_SNAKE_CASE =model(**self._prepare_for_class(__snake_case ,__snake_case ) ) SCREAMING_SNAKE_CASE =outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states SCREAMING_SNAKE_CASE =self.model_tester.num_stages self.assertEqual(len(__snake_case ) ,expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) ,[self.model_tester.image_size // 4, self.model_tester.image_size // 4] ,) SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE =['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: SCREAMING_SNAKE_CASE =layer_type SCREAMING_SNAKE_CASE =True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] SCREAMING_SNAKE_CASE =True check_hidden_states_output(__snake_case ,__snake_case ,__snake_case ) def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__snake_case ) @slow def _lowerCAmelCase ( self : str ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE =TFResNetModel.from_pretrained(__snake_case ) self.assertIsNotNone(__snake_case ) def snake_case__ ( ): """simple docstring""" SCREAMING_SNAKE_CASE =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class a_ ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : str ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _lowerCAmelCase ( self : Dict ): SCREAMING_SNAKE_CASE =TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) SCREAMING_SNAKE_CASE =self.default_image_processor SCREAMING_SNAKE_CASE =prepare_img() SCREAMING_SNAKE_CASE =image_processor(images=__snake_case ,return_tensors='tf' ) # forward pass SCREAMING_SNAKE_CASE =model(**__snake_case ) # verify the logits SCREAMING_SNAKE_CASE =tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape ,__snake_case ) SCREAMING_SNAKE_CASE =tf.constant([-11.1_069, -9.7_877, -8.3_777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() ,__snake_case ,atol=1e-4 ) )
334
'''simple docstring''' from manim import * class SCREAMING_SNAKE_CASE( A__ ): """simple docstring""" def A ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase : Optional[Any] = Rectangle(height=0.5 , width=0.5 ) UpperCAmelCase : str = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) UpperCAmelCase : Tuple = [mem.copy() for i in range(6 )] UpperCAmelCase : Optional[int] = [mem.copy() for i in range(6 )] UpperCAmelCase : Dict = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Union[str, Any] = VGroup(__snake_case , __snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Optional[Any] = Text('''CPU''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__snake_case ) UpperCAmelCase : Optional[Any] = [mem.copy() for i in range(4 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''GPU''' , font_size=24 ) UpperCAmelCase : Dict = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) gpu.move_to([-1, -1, 0] ) self.add(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : Union[str, Any] = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : List[str] = Text('''Model''' , font_size=24 ) UpperCAmelCase : Tuple = Group(__snake_case , __snake_case ).arrange(__snake_case , buff=0.5 , aligned_edge=__snake_case ) model.move_to([3, -1.0, 0] ) self.add(__snake_case ) UpperCAmelCase : Any = [] for i, rect in enumerate(__snake_case ): rect.set_stroke(__snake_case ) # target = fill.copy().set_fill(YELLOW, opacity=0.7) # target.move_to(rect) # self.add(target) UpperCAmelCase : Dict = Rectangle(height=0.46 / 4 , width=0.46 / 3 ).set_stroke(width=0.0 ).set_fill(__snake_case , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.02 , direction=__snake_case ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(cpu_targs[0] , direction=__snake_case , buff=0.0 ) else: cpu_target.next_to(cpu_targs[i - 1] , direction=__snake_case , buff=0.0 ) self.add(__snake_case ) cpu_targs.append(__snake_case ) UpperCAmelCase : int = [mem.copy() for i in range(6 )] UpperCAmelCase : int = VGroup(*__snake_case ).arrange(__snake_case , buff=0 ) UpperCAmelCase : Any = Text('''Loaded Checkpoint''' , font_size=24 ) UpperCAmelCase : Union[str, Any] = Group(__snake_case , __snake_case ).arrange(__snake_case , aligned_edge=__snake_case , buff=0.4 ) checkpoint.move_to([3, 0.5, 0] ) UpperCAmelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) UpperCAmelCase : str = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__snake_case , __snake_case ) UpperCAmelCase : Tuple = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=18 , ) blue_text.next_to(__snake_case , DOWN * 2.4 , aligned_edge=key_text.get_left() ) UpperCAmelCase : List[Any] = MarkupText( F"""Next, a <i><span fgcolor=\"{BLUE}\">second</span></i> model is loaded into memory,\nwith the weights of a <span fgcolor=\"{BLUE}\">single shard</span>.""" , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__snake_case ) , Write(__snake_case ) ) self.play(Write(__snake_case , run_time=1 ) , Create(__snake_case , run_time=1 ) ) UpperCAmelCase : Tuple = [] UpperCAmelCase : int = [] for i, rect in enumerate(__snake_case ): UpperCAmelCase : Any = fill.copy().set_fill(__snake_case , opacity=0.7 ) target.move_to(__snake_case ) first_animations.append(GrowFromCenter(__snake_case , run_time=1 ) ) UpperCAmelCase : List[str] = target.copy() cpu_target.generate_target() if i < 5: cpu_target.target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.target.move_to(cpu_right_col_base[i - 5] ) second_animations.append(MoveToTarget(__snake_case , run_time=1.5 ) ) self.play(*__snake_case ) self.play(*__snake_case ) self.wait()
23
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class __snake_case ( __lowerCAmelCase ): a__ = """ctrl""" a__ = ["""past_key_values"""] a__ = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , lowercase=24_65_34 , lowercase=2_56 , lowercase=12_80 , lowercase=81_92 , lowercase=48 , lowercase=16 , lowercase=0.1 , lowercase=0.1 , lowercase=1e-6 , lowercase=0.02 , lowercase=True , **lowercase , ) -> Dict: '''simple docstring''' a__: Any = vocab_size a__: str = n_positions a__: Optional[Any] = n_embd a__: Optional[int] = n_layer a__: List[str] = n_head a__: Union[str, Any] = dff a__: List[str] = resid_pdrop a__: Union[str, Any] = embd_pdrop a__: Union[str, Any] = layer_norm_epsilon a__: Any = initializer_range a__: List[str] = use_cache super().__init__(**lowercase)
203
"""simple docstring""" import math def __a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Optional[int]: if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_SCREAMING_SNAKE_CASE ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. lowercase__ = 'Enter the base and the power separated by a comma: ' lowercase__ , lowercase__ = map(int, input(prompt).split(',')) lowercase__ , lowercase__ = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. lowercase__ = res(xa, ya) lowercase__ = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
203
1
from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline lowerCamelCase = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase__ ) class __magic_name__ ( lowerCamelCase__ ): '''simple docstring''' def __init__( self, **lowercase_ ) -> Dict: """simple docstring""" super().__init__(**lowercase_ ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) # No specific FOR_XXX available yet def __call__( self, lowercase_, **lowercase_ ) -> Tuple: """simple docstring""" return super().__call__(lowercase_, **lowercase_ ) def _UpperCAmelCase ( self, **lowercase_ ) -> int: """simple docstring""" a__ ={} if "candidate_labels" in kwargs: a__ =kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: a__ =kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def _UpperCAmelCase ( self, lowercase_, lowercase_=None, lowercase_="This is a sound of {}." ) -> Union[str, Any]: """simple docstring""" if isinstance(lowercase_, lowercase_ ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png a__ =requests.get(lowercase_ ).content else: with open(lowercase_, '''rb''' ) as f: a__ =f.read() if isinstance(lowercase_, lowercase_ ): a__ =ffmpeg_read(lowercase_, self.feature_extractor.sampling_rate ) if not isinstance(lowercase_, np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) a__ =self.feature_extractor( [audio], sampling_rate=self.feature_extractor.sampling_rate, return_tensors='''pt''' ) a__ =candidate_labels a__ =[hypothesis_template.format(lowercase_ ) for x in candidate_labels] a__ =self.tokenizer(lowercase_, return_tensors=self.framework, padding=lowercase_ ) a__ =[text_inputs] return inputs def _UpperCAmelCase ( self, lowercase_ ) -> str: """simple docstring""" a__ =model_inputs.pop('''candidate_labels''' ) a__ =model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0], lowercase_ ): a__ =text_inputs[0] else: # Batching case. a__ =text_inputs[0][0] a__ =self.model(**lowercase_, **lowercase_ ) a__ ={ '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def _UpperCAmelCase ( self, lowercase_ ) -> Any: """simple docstring""" a__ =model_outputs.pop('''candidate_labels''' ) a__ =model_outputs['''logits'''][0] if self.framework == "pt": a__ =logits.softmax(dim=0 ) a__ =probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) a__ =[ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(lowercase_, lowercase_ ), key=lambda lowercase_ : -x[0] ) ] return result
188
import argparse import hashlib # hashlib is only used inside the Test class import struct class __magic_name__ : '''simple docstring''' def __init__( self, lowercase_ ) -> List[str]: """simple docstring""" a__ =data a__ =[0X67452301, 0Xefcdab89, 0X98badcfe, 0X10325476, 0Xc3d2e1f0] @staticmethod def _UpperCAmelCase ( lowercase_, lowercase_ ) -> Union[str, Any]: """simple docstring""" return ((n << b) | (n >> (32 - b))) & 0Xffffffff def _UpperCAmelCase ( self ) -> Optional[int]: """simple docstring""" a__ =b'''\x80''' + b'''\x00''' * (63 - (len(self.data ) + 8) % 64) a__ =self.data + padding + struct.pack('''>Q''', 8 * len(self.data ) ) return padded_data def _UpperCAmelCase ( self ) -> Any: """simple docstring""" return [ self.padded_data[i : i + 64] for i in range(0, len(self.padded_data ), 64 ) ] def _UpperCAmelCase ( self, lowercase_ ) -> List[Any]: """simple docstring""" a__ =list(struct.unpack('''>16L''', lowercase_ ) ) + [0] * 64 for i in range(16, 80 ): a__ =self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 14] ^ w[i - 16]), 1 ) return w def _UpperCAmelCase ( self ) -> Any: """simple docstring""" a__ =self.padding() a__ =self.split_blocks() for block in self.blocks: a__ =self.expand_block(lowercase_ ) a__, a__, a__, a__, a__ =self.h for i in range(0, 80 ): if 0 <= i < 20: a__ =(b & c) | ((~b) & d) a__ =0X5a827999 elif 20 <= i < 40: a__ =b ^ c ^ d a__ =0X6ed9eba1 elif 40 <= i < 60: a__ =(b & c) | (b & d) | (c & d) a__ =0X8f1bbcdc elif 60 <= i < 80: a__ =b ^ c ^ d a__ =0Xca62c1d6 a__, a__, a__, a__, a__ =( self.rotate(lowercase_, 5 ) + f + e + k + expanded_block[i] & 0Xffffffff, a, self.rotate(lowercase_, 30 ), c, d, ) a__ =( self.h[0] + a & 0Xffffffff, self.h[1] + b & 0Xffffffff, self.h[2] + c & 0Xffffffff, self.h[3] + d & 0Xffffffff, self.h[4] + e & 0Xffffffff, ) return ("{:08x}" * 5).format(*self.h ) def UpperCAmelCase__ ( ): '''simple docstring''' a__ =b'''Test String''' assert SHAaHash(_A ).final_hash() == hashlib.shaa(_A ).hexdigest() # noqa: S324 def UpperCAmelCase__ ( ): '''simple docstring''' a__ =argparse.ArgumentParser(description='''Process some strings or files''' ) parser.add_argument( '''--string''' , dest='''input_string''' , default='''Hello World!! Welcome to Cryptography''' , help='''Hash the string''' , ) parser.add_argument('''--file''' , dest='''input_file''' , help='''Hash contents of a file''' ) a__ =parser.parse_args() a__ =args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , '''rb''' ) as f: a__ =f.read() else: a__ =bytes(_A , '''utf-8''' ) print(SHAaHash(_A ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
188
1
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, "constant": get_constant_schedule, "constant_w_warmup": get_constant_schedule_with_warmup, } class A ( __lowerCAmelCase ): def __init__(self : Dict , __UpperCAmelCase : str=None , __UpperCAmelCase : List[str]=None , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" super().__init__(*lowerCamelCase__ , **lowerCamelCase__ ) if config is None: assert isinstance(self.model , lowerCamelCase__ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f""" {self.model.__class__}""" ) UpperCAmelCase__ = self.model.config else: UpperCAmelCase__ = config UpperCAmelCase__ = data_args UpperCAmelCase__ = self.config.tgt_vocab_size if isinstance(self.config , lowerCamelCase__ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f"""The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for""" " padding.." ) if self.args.label_smoothing == 0: UpperCAmelCase__ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss UpperCAmelCase__ = label_smoothed_nll_loss def lowercase_ (self : List[Any] , __UpperCAmelCase : int ) -> Optional[Any]: """simple docstring""" if self.optimizer is None: UpperCAmelCase__ = ['''bias''', '''LayerNorm.weight'''] UpperCAmelCase__ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] UpperCAmelCase__ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: UpperCAmelCase__ = Adafactor UpperCAmelCase__ = {'''scale_parameter''': False, '''relative_step''': False} else: UpperCAmelCase__ = AdamW UpperCAmelCase__ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } UpperCAmelCase__ = self.args.learning_rate if self.sharded_ddp: UpperCAmelCase__ = OSS( params=lowerCamelCase__ , optim=lowerCamelCase__ , **lowerCamelCase__ , ) else: UpperCAmelCase__ = optimizer_cls(lowerCamelCase__ , **lowerCamelCase__ ) if self.lr_scheduler is None: UpperCAmelCase__ = self._get_lr_scheduler(lowerCamelCase__ ) else: # ignoring --lr_scheduler logger.warning("scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored." ) def lowercase_ (self : List[Any] , __UpperCAmelCase : Union[str, Any] ) -> str: """simple docstring""" UpperCAmelCase__ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": UpperCAmelCase__ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": UpperCAmelCase__ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: UpperCAmelCase__ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=lowerCamelCase__ ) return scheduler def lowercase_ (self : Any ) -> Optional[torch.utils.data.Sampler]: """simple docstring""" if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def lowercase_ (self : Optional[Any] , __UpperCAmelCase : str , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ) -> int: """simple docstring""" if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token UpperCAmelCase__ = model(**lowerCamelCase__ , use_cache=lowerCamelCase__ )[0] UpperCAmelCase__ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models UpperCAmelCase__ = model(**lowerCamelCase__ , labels=lowerCamelCase__ , use_cache=lowerCamelCase__ )[:2] else: # compute label smoothed loss UpperCAmelCase__ = model(**lowerCamelCase__ , use_cache=lowerCamelCase__ )[0] UpperCAmelCase__ = torch.nn.functional.log_softmax(lowerCamelCase__ , dim=-1 ) UpperCAmelCase__ = self.loss_fn(lowerCamelCase__ , lowerCamelCase__ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def lowercase_ (self : Optional[int] , __UpperCAmelCase : Optional[Any] , __UpperCAmelCase : List[str] ) -> Dict: """simple docstring""" UpperCAmelCase__ = inputs.pop("labels" ) UpperCAmelCase__ = self._compute_loss(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) return loss def lowercase_ (self : List[Any] , __UpperCAmelCase : nn.Module , __UpperCAmelCase : Dict[str, Union[torch.Tensor, Any]] , __UpperCAmelCase : bool , __UpperCAmelCase : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: """simple docstring""" UpperCAmelCase__ = self._prepare_inputs(lowerCamelCase__ ) UpperCAmelCase__ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: UpperCAmelCase__ = self.model.generate( inputs["input_ids"] , attention_mask=inputs["attention_mask"] , **lowerCamelCase__ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase__ = self._pad_tensors_to_max_len(lowerCamelCase__ , gen_kwargs["max_length"] ) UpperCAmelCase__ = inputs.pop("labels" ) with torch.no_grad(): # compute loss on predict data UpperCAmelCase__ = self._compute_loss(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) UpperCAmelCase__ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) UpperCAmelCase__ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: UpperCAmelCase__ = self._pad_tensors_to_max_len(lowerCamelCase__ , gen_kwargs["max_length"] ) return (loss, logits, labels) def lowercase_ (self : int , __UpperCAmelCase : Tuple , __UpperCAmelCase : str ) -> Tuple: """simple docstring""" UpperCAmelCase__ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( "Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be" f""" padded to `max_length`={max_length}""" ) UpperCAmelCase__ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) UpperCAmelCase__ = tensor return padded_tensor
357
from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker UpperCamelCase__ = 'CompVis/stable-diffusion-v1-1' UpperCamelCase__ = 'CompVis/stable-diffusion-v1-2' UpperCamelCase__ = 'CompVis/stable-diffusion-v1-3' UpperCamelCase__ = 'CompVis/stable-diffusion-v1-4' class A ( UpperCAmelCase_ ): def __init__(self : Union[str, Any] , __UpperCAmelCase : AutoencoderKL , __UpperCAmelCase : CLIPTextModel , __UpperCAmelCase : CLIPTokenizer , __UpperCAmelCase : UNetaDConditionModel , __UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , __UpperCAmelCase : StableDiffusionSafetyChecker , __UpperCAmelCase : CLIPImageProcessor , __UpperCAmelCase : bool = True , ) -> Tuple: """simple docstring""" super()._init_() UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = StableDiffusionPipeline.from_pretrained(__UpperCAmelCase ) UpperCAmelCase__ = StableDiffusionPipeline( vae=__UpperCAmelCase , text_encoder=__UpperCAmelCase , tokenizer=__UpperCAmelCase , unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , safety_checker=__UpperCAmelCase , feature_extractor=__UpperCAmelCase , requires_safety_checker=__UpperCAmelCase , ) self.register_modules(pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea , pipelinea=self.pipea ) @property def lowercase_ (self : int ) -> Dict[str, Any]: """simple docstring""" return {k: getattr(self , __UpperCAmelCase ) for k in self.config.keys() if not k.startswith("_" )} def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Optional[int]: """simple docstring""" if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCAmelCase__ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(__UpperCAmelCase ) def lowercase_ (self : int ) -> Optional[int]: """simple docstring""" self.enable_attention_slicing(__UpperCAmelCase ) @torch.no_grad() def lowercase_ (self : Optional[int] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Any , ) -> Dict: """simple docstring""" return self.pipea( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) @torch.no_grad() def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Optional[Any] , ) -> Any: """simple docstring""" return self.pipea( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) @torch.no_grad() def lowercase_ (self : List[str] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Any , ) -> Dict: """simple docstring""" return self.pipea( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) @torch.no_grad() def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Union[str, Any] , ) -> List[str]: """simple docstring""" return self.pipea( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) @torch.no_grad() def lowercase_ (self : int , __UpperCAmelCase : Union[str, List[str]] , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_1_2 , __UpperCAmelCase : int = 5_0 , __UpperCAmelCase : float = 7.5 , __UpperCAmelCase : Optional[Union[str, List[str]]] = None , __UpperCAmelCase : Optional[int] = 1 , __UpperCAmelCase : float = 0.0 , __UpperCAmelCase : Optional[torch.Generator] = None , __UpperCAmelCase : Optional[torch.FloatTensor] = None , __UpperCAmelCase : Optional[str] = "pil" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __UpperCAmelCase : int = 1 , **__UpperCAmelCase : Any , ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase__ = "cuda" if torch.cuda.is_available() else "cpu" self.to(__UpperCAmelCase ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(f"""`height` and `width` must be divisible by 8 but are {height} and {width}.""" ) # Get first result from Stable Diffusion Checkpoint v1.1 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.2 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.3 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) # Get first result from Stable Diffusion Checkpoint v1.4 UpperCAmelCase__ = self.textaimg_sda_a( prompt=__UpperCAmelCase , height=__UpperCAmelCase , width=__UpperCAmelCase , num_inference_steps=__UpperCAmelCase , guidance_scale=__UpperCAmelCase , negative_prompt=__UpperCAmelCase , num_images_per_prompt=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , latents=__UpperCAmelCase , output_type=__UpperCAmelCase , return_dict=__UpperCAmelCase , callback=__UpperCAmelCase , callback_steps=__UpperCAmelCase , **__UpperCAmelCase , ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
143
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = { """^""": 3, """*""": 2, """/""": 2, """%""": 2, """+""": 1, """-""": 1, } # Priority of each operator __SCREAMING_SNAKE_CASE = len(UpperCamelCase_ ) if (len(UpperCamelCase_ ) > 7) else 7 # Print table header for output print( """Symbol""".center(8 ) , """Stack""".center(UpperCamelCase_ ) , """Postfix""".center(UpperCamelCase_ ) , sep=""" | """ , ) print("""-""" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCamelCase_ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCamelCase_ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCamelCase_ ) == 0: stack.append(UpperCamelCase_ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCamelCase_ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCamelCase_ ) # push x to stack print( x.center(8 ) , ("""""".join(UpperCamelCase_ )).ljust(UpperCamelCase_ ) , ("""""".join(UpperCamelCase_ )).ljust(UpperCamelCase_ ) , sep=""" | """ , ) # Output in tabular format while len(UpperCamelCase_ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( """ """.center(8 ) , ("""""".join(UpperCamelCase_ )).ljust(UpperCamelCase_ ) , ("""""".join(UpperCamelCase_ )).ljust(UpperCamelCase_ ) , sep=""" | """ , ) # Output in tabular format return "".join(UpperCamelCase_ ) # return Postfix as str def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCamelCase_ ) ): if infix[i] == "(": __SCREAMING_SNAKE_CASE = """)""" # change "(" to ")" elif infix[i] == ")": __SCREAMING_SNAKE_CASE = """(""" # change ")" to "(" return (infix_2_postfix("""""".join(UpperCamelCase_ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": __magic_name__ = input("\nEnter an Infix Equation = ") # Input an Infix equation __magic_name__ = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
100
"""simple docstring""" from __future__ import annotations import time import numpy as np __snake_case : Optional[Any] = [8, 5, 9, 7] __snake_case : List[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] __snake_case : Optional[int] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class A__ : '''simple docstring''' def __init__( self: Any , _SCREAMING_SNAKE_CASE: list[int] , _SCREAMING_SNAKE_CASE: list[list[int]] , _SCREAMING_SNAKE_CASE: list[list[int]] , ) -> None: """simple docstring""" __lowerCAmelCase : Any = claim_vector __lowerCAmelCase : Tuple = allocated_resources_table __lowerCAmelCase : Tuple = maximum_claim_table def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> list[int]: """simple docstring""" return [ sum(p_item[i] for p_item in self.__allocated_resources_table) for i in range(len(self.__allocated_resources_table[0])) ] def _SCREAMING_SNAKE_CASE ( self: int) -> list[int]: """simple docstring""" return np.array(self.__claim_vector) - np.array( self.__processes_resource_summation()) def _SCREAMING_SNAKE_CASE ( self: int) -> list[list[int]]: """simple docstring""" return [ list(np.array(self.__maximum_claim_table[i]) - np.array(_SCREAMING_SNAKE_CASE)) for i, allocated_resource in enumerate(self.__allocated_resources_table) ] def _SCREAMING_SNAKE_CASE ( self: List[Any]) -> dict[int, list[int]]: """simple docstring""" return {self.__need().index(_SCREAMING_SNAKE_CASE): i for i in self.__need()} def _SCREAMING_SNAKE_CASE ( self: Optional[Any] , **_SCREAMING_SNAKE_CASE: List[Any]) -> None: """simple docstring""" __lowerCAmelCase : Optional[int] = self.__need() __lowerCAmelCase : int = self.__allocated_resources_table __lowerCAmelCase : Dict = self.__available_resources() __lowerCAmelCase : str = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n") while need_list: __lowerCAmelCase : int = False for each_need in need_list: __lowerCAmelCase : Dict = True for index, need in enumerate(_SCREAMING_SNAKE_CASE): if need > available_resources[index]: __lowerCAmelCase : Dict = False break if execution: __lowerCAmelCase : Any = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: __lowerCAmelCase : Union[str, Any] = original_need_index print(F"""Process {process_number + 1} is executing.""") # remove the process run from stack need_list.remove(_SCREAMING_SNAKE_CASE) # update available/freed resources stack __lowerCAmelCase : Dict = np.array(_SCREAMING_SNAKE_CASE) + np.array( alloc_resources_table[process_number]) print( "Updated available resource stack for processes: " + " ".join([str(_SCREAMING_SNAKE_CASE) for x in available_resources])) break if safe: print("The process is in a safe state.\n") else: print("System in unsafe state. Aborting...\n") break def _SCREAMING_SNAKE_CASE ( self: Union[str, Any]) -> List[Any]: """simple docstring""" print(" " * 9 + "Allocated Resource Table") for item in self.__allocated_resources_table: print( F"""P{self.__allocated_resources_table.index(_SCREAMING_SNAKE_CASE) + 1}""" + " ".join(F"""{it:>8}""" for it in item) + "\n") print(" " * 9 + "System Resource Table") for item in self.__maximum_claim_table: print( F"""P{self.__maximum_claim_table.index(_SCREAMING_SNAKE_CASE) + 1}""" + " ".join(F"""{it:>8}""" for it in item) + "\n") print( "Current Usage by Active Processes: " + " ".join(str(_SCREAMING_SNAKE_CASE) for x in self.__claim_vector)) print( "Initial Available Resources: " + " ".join(str(_SCREAMING_SNAKE_CASE) for x in self.__available_resources())) time.sleep(1) if __name__ == "__main__": import doctest doctest.testmod()
269
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowerCAmelCase__: '''simple docstring''' __snake_case = BlenderbotSmallConfig __snake_case = {} __snake_case = 'gelu' def __init__( self , __lowerCamelCase , __lowerCamelCase=1_3 , __lowerCamelCase=7 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=9_9 , __lowerCamelCase=3_2 , __lowerCamelCase=2 , __lowerCamelCase=4 , __lowerCamelCase=3_7 , __lowerCamelCase=0.1 , __lowerCamelCase=0.1 , __lowerCamelCase=2_0 , __lowerCamelCase=2 , __lowerCamelCase=1 , __lowerCamelCase=0 , ) -> List[str]: _SCREAMING_SNAKE_CASE : int = parent _SCREAMING_SNAKE_CASE : Tuple = batch_size _SCREAMING_SNAKE_CASE : Dict = seq_length _SCREAMING_SNAKE_CASE : List[str] = is_training _SCREAMING_SNAKE_CASE : List[str] = use_labels _SCREAMING_SNAKE_CASE : Dict = vocab_size _SCREAMING_SNAKE_CASE : Dict = hidden_size _SCREAMING_SNAKE_CASE : int = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[Any] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : str = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings _SCREAMING_SNAKE_CASE : Optional[int] = eos_token_id _SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id _SCREAMING_SNAKE_CASE : List[str] = bos_token_id def UpperCamelCase_ ( self ) -> List[str]: _SCREAMING_SNAKE_CASE : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[Any] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) _SCREAMING_SNAKE_CASE : List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) _SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _SCREAMING_SNAKE_CASE : str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _SCREAMING_SNAKE_CASE : List[Any] = prepare_blenderbot_small_inputs_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCamelCase_ ( self , __lowerCamelCase , __lowerCamelCase ) -> Tuple: _SCREAMING_SNAKE_CASE : Any = TFBlenderbotSmallModel(config=__lowerCamelCase ).get_decoder() _SCREAMING_SNAKE_CASE : Dict = inputs_dict["input_ids"] _SCREAMING_SNAKE_CASE : List[Any] = input_ids[:1, :] _SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict["attention_mask"][:1, :] _SCREAMING_SNAKE_CASE : List[str] = inputs_dict["head_mask"] _SCREAMING_SNAKE_CASE : int = 1 # first forward pass _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , head_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : str = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _SCREAMING_SNAKE_CASE : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size ) _SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and _SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens] , axis=-1 ) _SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) _SCREAMING_SNAKE_CASE : List[str] = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] _SCREAMING_SNAKE_CASE : Any = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice _SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) _SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx] _SCREAMING_SNAKE_CASE : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) def lowerCamelCase__ (__lowerCamelCase, __lowerCamelCase, __lowerCamelCase, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, __lowerCamelCase=None, ): if attention_mask is None: _SCREAMING_SNAKE_CASE : Optional[Any] = tf.cast(tf.math.not_equal(__lowerCamelCase, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _SCREAMING_SNAKE_CASE : Tuple = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _SCREAMING_SNAKE_CASE : List[str] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowerCAmelCase__( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) __snake_case = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () __snake_case = ( { 'conversational': TFBlenderbotSmallForConditionalGeneration, 'feature-extraction': TFBlenderbotSmallModel, 'summarization': TFBlenderbotSmallForConditionalGeneration, 'text2text-generation': TFBlenderbotSmallForConditionalGeneration, 'translation': TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) __snake_case = True __snake_case = False __snake_case = False def UpperCamelCase_ ( self ) -> Optional[int]: _SCREAMING_SNAKE_CASE : Union[str, Any] = TFBlenderbotSmallModelTester(self ) _SCREAMING_SNAKE_CASE : Dict = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCamelCase_ ( self ) -> Tuple: self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) @require_tokenizers @require_tf class lowerCAmelCase__( unittest.TestCase ): '''simple docstring''' __snake_case = [ 'Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like ' ' i\'m going to throw up.\nand why is that?' ] __snake_case = 'facebook/blenderbot_small-90M' @cached_property def UpperCamelCase_ ( self ) -> List[Any]: # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained("facebook/blenderbot-90M" ) @cached_property def UpperCamelCase_ ( self ) -> str: _SCREAMING_SNAKE_CASE : List[Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def UpperCamelCase_ ( self ) -> Tuple: _SCREAMING_SNAKE_CASE : Optional[int] = self.tokenizer(self.src_text , return_tensors="tf" ) _SCREAMING_SNAKE_CASE : Dict = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE : List[Any] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__lowerCamelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ ={ 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ =[ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys UpperCamelCase__ =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
325
1
"""simple docstring""" import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int __UpperCAmelCase = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class _SCREAMING_SNAKE_CASE ( datasets.BuilderConfig ): UpperCAmelCase_ :Optional[datasets.Features] = None def _snake_case ( lowercase__ : "pyspark.sql.DataFrame" , lowercase__ : List[int] , ) -> Any: '''simple docstring''' import pyspark def generate_fn(): lowerCAmelCase_ :List[Any] = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: lowerCAmelCase_ :Optional[int] = df_with_partition_id.select("""*""" ).where(f"""part_id = {partition_id}""" ).drop("""part_id""" ) lowerCAmelCase_ :Optional[Any] = partition_df.collect() lowerCAmelCase_ :Dict = 0 for row in rows: yield f"""{partition_id}_{row_id}""", row.asDict() row_id += 1 return generate_fn class _SCREAMING_SNAKE_CASE ( _BaseExamplesIterable ): def __init__( self , __A , __A=None , ) -> Optional[Any]: lowerCAmelCase_ :List[str] = df lowerCAmelCase_ :str = partition_order or range(self.df.rdd.getNumPartitions() ) lowerCAmelCase_ :int = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ) -> Tuple: yield from self.generate_examples_fn() def __lowerCAmelCase ( self , __A ) -> "SparkExamplesIterable": lowerCAmelCase_ :List[Any] = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(__A ) return SparkExamplesIterable(self.df , partition_order=__A ) def __lowerCAmelCase ( self , __A , __A ) -> "SparkExamplesIterable": lowerCAmelCase_ :Optional[Any] = self.split_shard_indices_by_worker(__A , __A ) return SparkExamplesIterable(self.df , partition_order=__A ) @property def __lowerCAmelCase ( self ) -> int: return len(self.partition_order ) class _SCREAMING_SNAKE_CASE ( datasets.DatasetBuilder ): UpperCAmelCase_ :Optional[Any] = SparkConfig def __init__( self , __A , __A = None , __A = None , **__A , ) -> int: import pyspark lowerCAmelCase_ :Tuple = pyspark.sql.SparkSession.builder.getOrCreate() lowerCAmelCase_ :Union[str, Any] = df lowerCAmelCase_ :Optional[Any] = working_dir super().__init__( cache_dir=__A , config_name=str(self.df.semanticHash() ) , **__A , ) def __lowerCAmelCase ( self ) -> int: # Returns the path of the created file. def create_cache_and_write_probe(__A ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=__A ) lowerCAmelCase_ :Union[str, Any] = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(__A , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: lowerCAmelCase_ :int = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__A ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def __lowerCAmelCase ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __lowerCAmelCase ( self , __A ) -> Any: return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def __lowerCAmelCase ( self , __A ) -> Union[str, Any]: import pyspark def get_arrow_batch_size(__A ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) lowerCAmelCase_ :Tuple = self.df.count() lowerCAmelCase_ :Union[str, Any] = df_num_rows if df_num_rows <= 100 else 100 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. lowerCAmelCase_ :Tuple = ( self.df.limit(__A ) .repartition(1 ) .mapInArrow(__A , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) lowerCAmelCase_ :List[Any] = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. lowerCAmelCase_ :str = min(__A , int(approx_total_size / max_shard_size ) ) lowerCAmelCase_ :Optional[int] = self.df.repartition(__A ) def __lowerCAmelCase ( self , __A , __A , __A , ) -> Iterable[Tuple[int, bool, Union[int, tuple]]]: import pyspark lowerCAmelCase_ :Optional[int] = ParquetWriter if file_format == """parquet""" else ArrowWriter lowerCAmelCase_ :Dict = os.path.join(self._working_dir , os.path.basename(__A ) ) if self._working_dir else fpath lowerCAmelCase_ :Optional[Any] = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. lowerCAmelCase_ :List[str] = self.config.features lowerCAmelCase_ :List[Any] = self._writer_batch_size lowerCAmelCase_ :str = self._fs.storage_options def write_arrow(__A ): # Within the same SparkContext, no two task attempts will share the same attempt ID. lowerCAmelCase_ :Dict = pyspark.TaskContext().taskAttemptId() lowerCAmelCase_ :int = next(__A , __A ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) lowerCAmelCase_ :Tuple = 0 lowerCAmelCase_ :List[str] = writer_class( features=__A , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) lowerCAmelCase_ :int = pa.Table.from_batches([first_batch] ) writer.write_table(__A ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: lowerCAmelCase_ , lowerCAmelCase_ :int = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 lowerCAmelCase_ :int = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , writer_batch_size=__A , storage_options=__A , embed_local_files=__A , ) lowerCAmelCase_ :Any = pa.Table.from_batches([batch] ) writer.write_table(__A ) if writer._num_bytes > 0: lowerCAmelCase_ , lowerCAmelCase_ :Any = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(__A ) ): lowerCAmelCase_ :Optional[int] = os.path.join(os.path.dirname(__A ) , os.path.basename(__A ) ) shutil.move(__A , __A ) lowerCAmelCase_ :Optional[int] = ( self.df.mapInArrow(__A , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def __lowerCAmelCase ( self , __A , __A = "arrow" , __A = None , __A = None , **__A , ) -> Any: self._validate_cache_dir() lowerCAmelCase_ :Tuple = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(__A ) lowerCAmelCase_ :Optional[Any] = not is_remote_filesystem(self._fs ) lowerCAmelCase_ :Tuple = os.path.join if is_local else posixpath.join lowerCAmelCase_ :List[Any] = """-TTTTT-SSSSS-of-NNNNN""" lowerCAmelCase_ :int = f"""{self.name}-{split_generator.name}{SUFFIX}.{file_format}""" lowerCAmelCase_ :Optional[Any] = path_join(self._output_dir , __A ) lowerCAmelCase_ :Dict = 0 lowerCAmelCase_ :Any = 0 lowerCAmelCase_ :str = 0 lowerCAmelCase_ :Union[str, Any] = [] lowerCAmelCase_ :List[str] = [] for task_id, content in self._prepare_split_single(__A , __A , __A ): ( ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ( lowerCAmelCase_ ) , ) :List[Any] = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(__A ) lowerCAmelCase_ :Optional[int] = total_num_examples lowerCAmelCase_ :Tuple = total_num_bytes # should rename everything at the end logger.debug(f"""Renaming {total_shards} shards.""" ) if total_shards > 1: lowerCAmelCase_ :Any = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. lowerCAmelCase_ :List[str] = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( __A , __A , __A , ): rename( __A , fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace("""TTTTT-SSSSS""" , f"""{global_shard_id:05d}""" ).replace("""NNNNN""" , f"""{total_shards:05d}""" ) , ) lowerCAmelCase_ :Tuple = [] lowerCAmelCase_ :Tuple = 0 for i in range(len(__A ) ): lowerCAmelCase_ , lowerCAmelCase_ :Dict = task_id_and_num_shards[i] for shard_id in range(__A ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(__A , len(__A ) ).map(lambda __A : _rename_shard(*__A ) ).collect() else: # don't use any pattern lowerCAmelCase_ :Optional[int] = 0 lowerCAmelCase_ :Optional[Any] = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f"""{shard_id:05d}""" ).replace("""TTTTT""" , f"""{task_id:05d}""" ) , fpath.replace(__A , """""" ) , ) def __lowerCAmelCase ( self , __A , ) -> SparkExamplesIterable: return SparkExamplesIterable(self.df )
84
from collections.abc import Iterable from typing import Generic, TypeVar A__ = TypeVar("""_T""") class __lowerCAmelCase ( Generic[_T] ): def __init__( self , _snake_case = None ): """simple docstring""" _lowerCAmelCase = list(iterable or [] ) _lowerCAmelCase = [] def __len__( self ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self ): """simple docstring""" return F'Queue({tuple(self._stacka[::-1] + self._stacka )})' def snake_case ( self , _snake_case ): """simple docstring""" self._stacka.append(_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self._stacka.pop _lowerCAmelCase = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
82
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a : Any = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a : int = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys a : Union[str, Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
79
"""simple docstring""" from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _SCREAMING_SNAKE_CASE ( ) ->Optional[Any]: '''simple docstring''' a : int = HfArgumentParser(_lowercase ) a : int = parser.parse_args_into_dataclasses()[0] a : Any = TensorFlowBenchmark(args=_lowercase ) try: a : Tuple = parser.parse_args_into_dataclasses()[0] except ValueError as e: a : Optional[Any] = "Arg --no_{0} is no longer used, please use --no-{0} instead." a : Tuple = " ".join(str(_lowercase ).split(" " )[:-1] ) a : Any = "" a : Any = eval(str(_lowercase ).split(" " )[-1] ) a : List[Any] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(_lowercase ) if len(_lowercase ) > 0: a : Tuple = full_error_msg + begin_error_msg + str(_lowercase ) raise ValueError(_lowercase ) benchmark.run() if __name__ == "__main__": main()
79
1
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _lowerCAmelCase ( snake_case_ ): def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=7 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=2 , UpperCamelCase__=99 , UpperCamelCase__=0 , UpperCamelCase__=32 , UpperCamelCase__=5 , UpperCamelCase__=4 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=512 , UpperCamelCase__=12 , UpperCamelCase__=2 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=4 , UpperCamelCase__="last" , UpperCamelCase__=None , UpperCamelCase__=None , ) -> List[Any]: '''simple docstring''' snake_case : List[Any] = parent snake_case : str = batch_size snake_case : Any = seq_length snake_case : Dict = is_training snake_case : Optional[int] = use_input_lengths snake_case : Tuple = use_token_type_ids snake_case : Optional[Any] = use_labels snake_case : int = gelu_activation snake_case : str = sinusoidal_embeddings snake_case : Optional[int] = causal snake_case : Tuple = asm snake_case : Union[str, Any] = n_langs snake_case : Tuple = vocab_size snake_case : int = n_special snake_case : Optional[int] = hidden_size snake_case : Optional[int] = num_hidden_layers snake_case : Any = num_attention_heads snake_case : List[str] = hidden_dropout_prob snake_case : List[str] = attention_probs_dropout_prob snake_case : Tuple = max_position_embeddings snake_case : List[str] = type_vocab_size snake_case : Any = type_sequence_label_size snake_case : List[Any] = initializer_range snake_case : int = num_labels snake_case : List[Any] = num_choices snake_case : Optional[int] = summary_type snake_case : Union[str, Any] = use_proj snake_case : List[Any] = scope def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case : Union[str, Any] = None if self.use_input_lengths: snake_case : List[Any] = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length snake_case : Dict = None if self.use_token_type_ids: snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) snake_case : int = None snake_case : Any = None snake_case : Union[str, Any] = None if self.use_labels: snake_case : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case : List[Any] = ids_tensor([self.batch_size] , 2 ).float() snake_case : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case : str = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = FlaubertModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[int] = model(UpperCamelCase__ , lengths=UpperCamelCase__ , langs=UpperCamelCase__ ) snake_case : Dict = model(UpperCamelCase__ , langs=UpperCamelCase__ ) snake_case : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Union[str, Any]: '''simple docstring''' snake_case : Any = FlaubertWithLMHeadModel(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Optional[Any] = model(UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> str: '''simple docstring''' snake_case : List[str] = FlaubertForQuestionAnsweringSimple(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Union[str, Any] = model(UpperCamelCase__ ) snake_case : Tuple = model(UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Any: '''simple docstring''' snake_case : List[Any] = FlaubertForQuestionAnswering(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Union[str, Any] = model(UpperCamelCase__ ) snake_case : Dict = model( UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , cls_index=UpperCamelCase__ , is_impossible=UpperCamelCase__ , p_mask=UpperCamelCase__ , ) snake_case : List[Any] = model( UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ , cls_index=UpperCamelCase__ , is_impossible=UpperCamelCase__ , ) ((snake_case) ,) : Optional[int] = result_with_labels.to_tuple() snake_case : Optional[int] = model(UpperCamelCase__ , start_positions=UpperCamelCase__ , end_positions=UpperCamelCase__ ) ((snake_case) ,) : int = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Dict: '''simple docstring''' snake_case : List[Any] = FlaubertForSequenceClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Tuple = model(UpperCamelCase__ ) snake_case : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Tuple: '''simple docstring''' snake_case : List[Any] = self.num_labels snake_case : List[str] = FlaubertForTokenClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , ) -> Optional[Any]: '''simple docstring''' snake_case : List[str] = self.num_choices snake_case : str = FlaubertForMultipleChoice(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() snake_case : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case : List[Any] = model( UpperCamelCase__ , attention_mask=UpperCamelCase__ , token_type_ids=UpperCamelCase__ , labels=UpperCamelCase__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase ( self ) -> str: '''simple docstring''' snake_case : Dict = self.prepare_config_and_inputs() ( ( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) ,( snake_case ) , ) : Union[str, Any] = config_and_inputs snake_case : int = { "input_ids": input_ids, "token_type_ids": token_type_ids, "lengths": input_lengths, "attention_mask": input_mask, } return config, inputs_dict @require_torch class _lowerCAmelCase ( snake_case_ , snake_case_ , unittest.TestCase ): __UpperCAmelCase : List[Any] = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase : List[str] = ( { '''feature-extraction''': FlaubertModel, '''fill-mask''': FlaubertWithLMHeadModel, '''question-answering''': FlaubertForQuestionAnsweringSimple, '''text-classification''': FlaubertForSequenceClassification, '''token-classification''': FlaubertForTokenClassification, '''zero-shot''': FlaubertForSequenceClassification, } if is_torch_available() else {} ) def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> int: '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__=False ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = super()._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": snake_case : int = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) snake_case : str = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ ) return inputs_dict def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : List[Any] = FlaubertModelTester(self ) snake_case : Any = ConfigTester(self , config_class=UpperCamelCase__ , emb_dim=37 ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' self.config_tester.run_common_tests() def lowerCamelCase ( self ) -> Dict: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Tuple: '''simple docstring''' snake_case : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase__ ) def lowerCamelCase ( self ) -> Any: '''simple docstring''' snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase__ ) @slow def lowerCamelCase ( self ) -> List[Any]: '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : List[str] = FlaubertModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) @slow @require_torch_gpu def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case ,snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return snake_case : Union[str, Any] = True snake_case : List[Any] = model_class(config=UpperCamelCase__ ) snake_case : List[str] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) snake_case : str = torch.jit.trace( UpperCamelCase__ , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase__ , os.path.join(UpperCamelCase__ , "traced_model.pt" ) ) snake_case : List[str] = torch.jit.load(os.path.join(UpperCamelCase__ , "traced_model.pt" ) , map_location=UpperCamelCase__ ) loaded(inputs_dict["input_ids"].to(UpperCamelCase__ ) , inputs_dict["attention_mask"].to(UpperCamelCase__ ) ) @require_torch class _lowerCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ) -> int: '''simple docstring''' snake_case : Optional[int] = FlaubertModel.from_pretrained("flaubert/flaubert_base_cased" ) snake_case : List[Any] = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) with torch.no_grad(): snake_case : Optional[int] = model(UpperCamelCase__ )[0] snake_case : str = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , UpperCamelCase__ ) snake_case : List[Any] = torch.tensor( [[[-2.6251, -1.4298, -0.0227], [-2.8510, -1.6387, 0.2258], [-2.8114, -1.1832, -0.3066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
203
"""simple docstring""" def __lowerCAmelCase ( lowercase : list ) -> int: """simple docstring""" if not grid or not grid[0]: raise TypeError("The grid does not contain the appropriate information" ) for cell_n in range(1 , len(grid[0] ) ): grid[0][cell_n] += grid[0][cell_n - 1] snake_case : int = grid[0] for row_n in range(1 , len(lowercase ) ): snake_case : Optional[Any] = grid[row_n] snake_case : List[str] = fill_row(lowercase , lowercase ) snake_case : Optional[int] = grid[row_n] return grid[-1][-1] def __lowerCAmelCase ( lowercase : list , lowercase : list ) -> list: """simple docstring""" current_row[0] += row_above[0] for cell_n in range(1 , len(lowercase ) ): current_row[cell_n] += min(current_row[cell_n - 1] , row_above[cell_n] ) return current_row if __name__ == "__main__": import doctest doctest.testmod()
203
1
import math import os import unittest from transformers import MegatronBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, ) class UpperCamelCase__ : def __init__(self : Optional[Any] , snake_case_ : str , snake_case_ : List[str]=1_3 , snake_case_ : Union[str, Any]=7 , snake_case_ : str=True , snake_case_ : Union[str, Any]=True , snake_case_ : Dict=True , snake_case_ : Dict=True , snake_case_ : Optional[Any]=9_9 , snake_case_ : Optional[Any]=6_4 , snake_case_ : Union[str, Any]=3_2 , snake_case_ : Any=5 , snake_case_ : Dict=4 , snake_case_ : List[str]=3_7 , snake_case_ : str="gelu" , snake_case_ : Dict=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : List[str]=5_1_2 , snake_case_ : Tuple=1_6 , snake_case_ : Union[str, Any]=2 , snake_case_ : Dict=0.02 , snake_case_ : Any=3 , snake_case_ : Optional[int]=4 , snake_case_ : Optional[Any]=None , ): __a : Tuple = parent __a : Dict = batch_size __a : Union[str, Any] = seq_length __a : str = is_training __a : Dict = use_input_mask __a : Tuple = use_token_type_ids __a : str = use_labels __a : int = vocab_size __a : List[str] = hidden_size __a : Dict = embedding_size __a : Dict = num_hidden_layers __a : Optional[int] = num_attention_heads __a : int = intermediate_size __a : Union[str, Any] = hidden_act __a : Optional[Any] = hidden_dropout_prob __a : str = attention_probs_dropout_prob __a : str = max_position_embeddings __a : List[str] = type_vocab_size __a : Tuple = type_sequence_label_size __a : Tuple = initializer_range __a : List[str] = num_labels __a : Dict = num_choices __a : List[str] = scope def lowerCAmelCase (self : Dict ): __a : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __a : Optional[Any] = None if self.use_input_mask: __a : Any = random_attention_mask([self.batch_size, self.seq_length] ) __a : List[Any] = None if self.use_token_type_ids: __a : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __a : str = None __a : Tuple = None __a : Union[str, Any] = None if self.use_labels: __a : int = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __a : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) __a : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase (self : Tuple ): return MegatronBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case_ , initializer_range=self.initializer_range , ) def lowerCAmelCase (self : str , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : List[str] , snake_case_ : Any , snake_case_ : Tuple ): __a : Tuple = MegatronBertModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ ) __a : Dict = model(snake_case_ , token_type_ids=snake_case_ ) __a : Tuple = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def lowerCAmelCase (self : Any , snake_case_ : Optional[int] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Dict , snake_case_ : str ): __a : Optional[Any] = MegatronBertForMaskedLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Any = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase (self : Any , snake_case_ : Tuple , snake_case_ : str , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] , snake_case_ : Any ): __a : Optional[Any] = MegatronBertForCausalLM(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : int = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase (self : Any , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : List[Any] , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] ): __a : Dict = MegatronBertForNextSentencePrediction(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Any , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Union[str, Any] , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : List[str] , snake_case_ : Optional[Any] ): __a : Union[str, Any] = MegatronBertForPreTraining(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : str = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , next_sentence_label=snake_case_ , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def lowerCAmelCase (self : Dict , snake_case_ : List[str] , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] , snake_case_ : str , snake_case_ : str ): __a : Optional[Any] = MegatronBertForQuestionAnswering(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Optional[int] = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , start_positions=snake_case_ , end_positions=snake_case_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : str , snake_case_ : Tuple , snake_case_ : Optional[Any] , snake_case_ : str , snake_case_ : Tuple ): __a : Optional[int] = self.num_labels __a : Optional[int] = MegatronBertForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __a : Tuple = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase (self : Optional[int] , snake_case_ : List[str] , snake_case_ : List[str] , snake_case_ : Dict , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Optional[int] , snake_case_ : Optional[int] ): __a : Union[str, Any] = self.num_labels __a : Dict = MegatronBertForTokenClassification(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : List[str] = model(snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase (self : int , snake_case_ : Dict , snake_case_ : Any , snake_case_ : str , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : int , snake_case_ : str ): __a : str = self.num_choices __a : Union[str, Any] = MegatronBertForMultipleChoice(config=snake_case_ ) model.to(snake_case_ ) model.eval() __a : Dict = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Any = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __a : Any = model( snake_case_ , attention_mask=snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase (self : Optional[Any] ): __a : Tuple = self.prepare_config_and_inputs() ( ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ( __a ) , ) : str = config_and_inputs __a : Dict = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase__ ( __lowercase ,__lowercase ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MegatronBertModel, MegatronBertForMaskedLM, MegatronBertForCausalLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Tuple = ( { "feature-extraction": MegatronBertModel, "fill-mask": MegatronBertForMaskedLM, "question-answering": MegatronBertForQuestionAnswering, "text-classification": MegatronBertForSequenceClassification, "text-generation": MegatronBertForCausalLM, "token-classification": MegatronBertForTokenClassification, "zero-shot": MegatronBertForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[Any] = True # test_resize_embeddings = False _SCREAMING_SNAKE_CASE : List[Any] = False def lowerCAmelCase (self : Any , snake_case_ : Optional[Any] , snake_case_ : int , snake_case_ : Dict=False ): __a : List[str] = super()._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) if return_labels: if model_class in get_values(snake_case_ ): __a : Optional[Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=snake_case_ ) __a : Any = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case_ ) return inputs_dict def lowerCAmelCase (self : Tuple ): __a : List[Any] = MegatronBertModelTester(self ) __a : Any = ConfigTester(self , config_class=snake_case_ , hidden_size=3_7 ) def lowerCAmelCase (self : List[Any] ): self.config_tester.run_common_tests() def lowerCAmelCase (self : Optional[Any] ): __a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_model(*snake_case_ ) def lowerCAmelCase (self : int ): __a : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_masked_lm(*snake_case_ ) def lowerCAmelCase (self : Optional[Any] ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_multiple_choice(*snake_case_ ) def lowerCAmelCase (self : str ): __a : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_next_sequence_prediction(*snake_case_ ) def lowerCAmelCase (self : Any ): __a : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_pretraining(*snake_case_ ) def lowerCAmelCase (self : Optional[int] ): __a : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_question_answering(*snake_case_ ) def lowerCAmelCase (self : List[Any] ): __a : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_sequence_classification(*snake_case_ ) def lowerCAmelCase (self : Dict ): __a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_megatron_bert_for_token_classification(*snake_case_ ) def __UpperCamelCase ( lowerCAmelCase__ : str ): return torch.tensor( lowerCAmelCase__ , dtype=torch.long , device=lowerCAmelCase__ , ) lowercase__ =1e-4 @require_torch @require_sentencepiece @require_tokenizers class UpperCamelCase__ ( unittest.TestCase ): @slow @unittest.skip('''Model is not available.''' ) def lowerCAmelCase (self : str ): __a : List[str] = '''nvidia/megatron-bert-uncased-345m''' if "MYDIR" in os.environ: __a : Tuple = os.path.join(os.environ['''MYDIR'''] , snake_case_ ) __a : Any = MegatronBertModel.from_pretrained(snake_case_ ) model.to(snake_case_ ) model.half() __a : Union[str, Any] = _long_tensor([[1_0_1, 7_1_1_0, 1_0_0_5, 1_0_5_6, 2_0_2_3, 1_1_3_3_3, 1_7_4_1_3, 1_0_2_9, 1_0_2]] ) with torch.no_grad(): __a : List[str] = model(snake_case_ )[0] __a : Optional[int] = torch.Size((1, 9, 1_0_2_4) ) self.assertEqual(output.shape , snake_case_ ) __a : Tuple = [-0.6040, -0.2517, -0.1025, 0.3420, -0.6758, -0.0017, -0.1089, -0.1990, 0.5728] for ii in range(3 ): for jj in range(3 ): __a : Optional[int] = output[0, ii, jj] __a : Any = expected[3 * ii + jj] __a : Union[str, Any] = '''ii={} jj={} a={} b={}'''.format(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) self.assertTrue(math.isclose(snake_case_ , snake_case_ , rel_tol=snake_case_ , abs_tol=snake_case_ ) , msg=snake_case_ )
90
import os import sys import unittest lowercase__ =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase__ =os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase__ =os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : List[Any] ): __a : str = get_test_to_tester_mapping(snake_case_ ) __a : Tuple = get_test_to_tester_mapping(snake_case_ ) __a : Union[str, Any] = {'''BertModelTest''': '''BertModelTester'''} __a : Tuple = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : str ): __a : Optional[int] = get_model_to_test_mapping(snake_case_ ) __a : Any = get_model_to_test_mapping(snake_case_ ) __a : List[Any] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } __a : Dict = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) def lowerCAmelCase (self : int ): __a : Any = get_model_to_tester_mapping(snake_case_ ) __a : List[str] = get_model_to_tester_mapping(snake_case_ ) __a : Any = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } __a : int = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ ) self.assertEqual(get_test_info.to_json(snake_case_ ) , snake_case_ )
90
1
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def A ( _SCREAMING_SNAKE_CASE ) -> bool: lowerCamelCase : int = int(number**0.5 ) return number == sq * sq def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> tuple[int, int]: lowerCamelCase : int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowerCamelCase : int = x_den * y_den * z_den lowerCamelCase : int = gcd(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) top //= hcf bottom //= hcf return top, bottom def A ( _SCREAMING_SNAKE_CASE = 35 ) -> int: lowerCamelCase : set = set() lowerCamelCase : int lowerCamelCase : Fraction = Fraction(0 ) lowerCamelCase : tuple[int, int] for x_num in range(1 ,order + 1 ): for x_den in range(x_num + 1 ,order + 1 ): for y_num in range(1 ,order + 1 ): for y_den in range(y_num + 1 ,order + 1 ): # n=1 lowerCamelCase : Dict = x_num * y_den + x_den * y_num lowerCamelCase : Any = x_den * y_den lowerCamelCase : int = gcd(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase : Tuple = add_three( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 lowerCamelCase : Dict = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowerCamelCase : Any = x_den * x_den * y_den * y_den if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): lowerCamelCase : List[str] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Tuple = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : int = gcd(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase : Optional[Any] = add_three( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=-1 lowerCamelCase : int = x_num * y_num lowerCamelCase : int = x_den * y_num + x_num * y_den lowerCamelCase : int = gcd(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase : Union[str, Any] = add_three( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) # n=2 lowerCamelCase : str = x_num * x_num * y_num * y_num lowerCamelCase : List[str] = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(_SCREAMING_SNAKE_CASE ) and is_sq(_SCREAMING_SNAKE_CASE ): lowerCamelCase : str = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : List[Any] = int(sqrt(_SCREAMING_SNAKE_CASE ) ) lowerCamelCase : Any = gcd(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowerCamelCase : Optional[int] = add_three( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) unique_s.add(_SCREAMING_SNAKE_CASE ) for num, den in unique_s: total += Fraction(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) return total.denominator + total.numerator if __name__ == "__main__": print(f'''{solution() = }''')
48
import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __snake_case ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: '''simple docstring''' super().tearDown() gc.collect() def __a ( self ) -> Dict: '''simple docstring''' snake_case__ , snake_case__ : List[str] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ , snake_case__ : List[str] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ : Optional[Any] = controlnet_params snake_case__ : Any = 'bird' snake_case__ : Any = jax.device_count() snake_case__ : Any = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ : Any = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) snake_case__ : Optional[int] = pipe.prepare_image_inputs([canny_image] * num_samples ) snake_case__ : Any = jax.random.PRNGKey(0 ) snake_case__ : Dict = jax.random.split(__UpperCamelCase , jax.device_count() ) snake_case__ : Any = replicate(__UpperCamelCase ) snake_case__ : Union[str, Any] = shard(__UpperCamelCase ) snake_case__ : Any = shard(__UpperCamelCase ) snake_case__ : Dict = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ : Any = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ : Optional[int] = images[0, 253:256, 253:256, -1] snake_case__ : Optional[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ : str = jnp.array( [0.1_6_7_9_6_9, 0.1_1_6_6_9_9, 0.0_8_1_5_4_3, 0.1_5_4_2_9_7, 0.1_3_2_8_1_2, 0.1_0_8_8_8_7, 0.1_6_9_9_2_2, 0.1_6_9_9_2_2, 0.2_0_5_0_7_8] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2 def __a ( self ) -> Tuple: '''simple docstring''' snake_case__ , snake_case__ : Union[str, Any] = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ , snake_case__ : Optional[Any] = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=__UpperCamelCase , from_pt=__UpperCamelCase , dtype=jnp.bfloataa ) snake_case__ : List[str] = controlnet_params snake_case__ : Optional[Any] = 'Chef in the kitchen' snake_case__ : List[Any] = jax.device_count() snake_case__ : int = pipe.prepare_text_inputs([prompts] * num_samples ) snake_case__ : Optional[Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) snake_case__ : int = pipe.prepare_image_inputs([pose_image] * num_samples ) snake_case__ : Optional[Any] = jax.random.PRNGKey(0 ) snake_case__ : Any = jax.random.split(__UpperCamelCase , jax.device_count() ) snake_case__ : List[Any] = replicate(__UpperCamelCase ) snake_case__ : List[str] = shard(__UpperCamelCase ) snake_case__ : Optional[int] = shard(__UpperCamelCase ) snake_case__ : Any = pipe( prompt_ids=__UpperCamelCase , image=__UpperCamelCase , params=__UpperCamelCase , prng_seed=__UpperCamelCase , num_inference_steps=50 , jit=__UpperCamelCase , ).images assert images.shape == (jax.device_count(), 1, 768, 512, 3) snake_case__ : str = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) snake_case__ : Optional[int] = images[0, 253:256, 253:256, -1] snake_case__ : str = jnp.asarray(jax.device_get(image_slice.flatten() ) ) snake_case__ : Any = jnp.array( [[0.2_7_1_4_8_4, 0.2_6_1_7_1_9, 0.2_7_5_3_9_1, 0.2_7_7_3_4_4, 0.2_7_9_2_9_7, 0.2_9_1_0_1_6, 0.2_9_4_9_2_2, 0.3_0_2_7_3_4, 0.3_0_2_7_3_4]] ) print(F"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
143
0
import numpy as np def snake_case (UpperCAmelCase__ ) -> np.array: return 1 / (1 + np.exp(-vector )) def snake_case (UpperCAmelCase__ ) -> np.array: return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
358
from abc import ABC, abstractmethod from argparse import ArgumentParser class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @staticmethod @abstractmethod def _a ( _lowerCamelCase ): raise NotImplementedError() @abstractmethod def _a ( self ): raise NotImplementedError()
292
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class A__ : lowerCAmelCase__ : Dict = BlenderbotSmallConfig lowerCAmelCase__ : List[Any] = {} lowerCAmelCase__ : int = "gelu" def __init__( self : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str=13 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : Tuple=False , _UpperCAmelCase : int=99 , _UpperCAmelCase : Tuple=32 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=20 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Optional[Any]=1 , _UpperCAmelCase : Union[str, Any]=0 , ) -> int: """simple docstring""" __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id def a__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __lowercase = prepare_blenderbot_small_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def a__ ( self : Optional[int] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" __lowercase = TFBlenderbotSmallModel(config=_UpperCAmelCase ).get_decoder() __lowercase = inputs_dict['input_ids'] __lowercase = input_ids[:1, :] __lowercase = inputs_dict['attention_mask'][:1, :] __lowercase = inputs_dict['head_mask'] __lowercase = 1 # first forward pass __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase ) __lowercase , __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] __lowercase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_UpperCAmelCase , _UpperCAmelCase , rtol=1e-3 ) def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , SCREAMING_SNAKE_CASE : Dict=None , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Optional[Any]=None , ) -> Tuple: if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __lowercase = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __lowercase = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowercase = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class A__ ( lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): lowerCAmelCase__ : Any = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) lowerCAmelCase__ : int = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () lowerCAmelCase__ : int = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) lowerCAmelCase__ : int = True lowerCAmelCase__ : Tuple = False lowerCAmelCase__ : Any = False def a__ ( self : Union[str, Any] ) -> Dict: """simple docstring""" __lowercase = TFBlenderbotSmallModelTester(self ) __lowercase = ConfigTester(self , config_class=_UpperCAmelCase ) def a__ ( self : Tuple ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ ( self : str ) -> Union[str, Any]: """simple docstring""" __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase ) @require_tokenizers @require_tf class A__ ( unittest.TestCase ): lowerCAmelCase__ : List[str] = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] lowerCAmelCase__ : Dict = "facebook/blenderbot_small-90M" @cached_property def a__ ( self : Optional[Any] ) -> Any: """simple docstring""" return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M' ) @cached_property def a__ ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" __lowercase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def a__ ( self : List[Any] ) -> Optional[int]: """simple docstring""" __lowercase = self.tokenizer(self.src_text , return_tensors='tf' ) __lowercase = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=_UpperCAmelCase , ) __lowercase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_UpperCAmelCase )[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
325
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class A__ ( lowerCAmelCase__ ): lowerCAmelCase__ : Union[str, Any] = "transfo-xl" lowerCAmelCase__ : int = ["mems"] lowerCAmelCase__ : Dict = { "n_token": "vocab_size", "hidden_size": "d_model", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self : Optional[int] , _UpperCAmelCase : Tuple=26_77_35 , _UpperCAmelCase : Any=[2_00_00, 4_00_00, 20_00_00] , _UpperCAmelCase : Tuple=10_24 , _UpperCAmelCase : Union[str, Any]=10_24 , _UpperCAmelCase : Optional[int]=16 , _UpperCAmelCase : Tuple=64 , _UpperCAmelCase : Tuple=40_96 , _UpperCAmelCase : List[Any]=4 , _UpperCAmelCase : str=False , _UpperCAmelCase : Optional[Any]=18 , _UpperCAmelCase : int=16_00 , _UpperCAmelCase : Optional[int]=10_00 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Any=0 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : List[str]=0.0 , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : int="normal" , _UpperCAmelCase : int=0.01 , _UpperCAmelCase : List[Any]=0.01 , _UpperCAmelCase : List[Any]=0.02 , _UpperCAmelCase : Optional[Any]=1e-5 , _UpperCAmelCase : Tuple=0 , **_UpperCAmelCase : List[str] , ) -> Tuple: """simple docstring""" __lowercase = vocab_size __lowercase = [] self.cutoffs.extend(_UpperCAmelCase ) if proj_share_all_but_first: __lowercase = [False] + [True] * len(self.cutoffs ) else: __lowercase = [False] + [False] * len(self.cutoffs ) __lowercase = d_model __lowercase = d_embed __lowercase = d_head __lowercase = d_inner __lowercase = div_val __lowercase = pre_lnorm __lowercase = n_layer __lowercase = n_head __lowercase = mem_len __lowercase = same_length __lowercase = attn_type __lowercase = clamp_len __lowercase = sample_softmax __lowercase = adaptive __lowercase = dropout __lowercase = dropatt __lowercase = untie_r __lowercase = init __lowercase = init_range __lowercase = proj_init_std __lowercase = init_std __lowercase = layer_norm_epsilon super().__init__(eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def a__ ( self : Tuple ) -> Any: """simple docstring""" logger.info(f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" ) return -1 @max_position_embeddings.setter def a__ ( self : Dict , _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" raise NotImplementedError( f"""The model {self.model_type} is one of the few models that has no sequence length limit.""" )
325
1
import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def A ( a_ ) -> Union[str, Any]: if is_torch_version('<' ,'2.0.0' ) or not hasattr(lowerCAmelCase__ ,'_dynamo' ): return False return isinstance(lowerCAmelCase__ ,torch._dynamo.eval_frame.OptimizedModule ) def A ( a_ ,a_ = True ) -> Optional[Any]: __UpperCamelCase : Union[str, Any] =(torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) __UpperCamelCase : Any =is_compiled_module(lowerCAmelCase__ ) if is_compiled: __UpperCamelCase : Optional[Any] =model __UpperCamelCase : List[Any] =model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): __UpperCamelCase : str =model.module if not keep_fpaa_wrapper: __UpperCamelCase : Union[str, Any] =getattr(lowerCAmelCase__ ,'forward' ) __UpperCamelCase : Optional[Any] =model.__dict__.pop('_original_forward' ,lowerCAmelCase__ ) if original_forward is not None: while hasattr(lowerCAmelCase__ ,'__wrapped__' ): __UpperCamelCase : Dict =forward.__wrapped__ if forward == original_forward: break __UpperCamelCase : str =forward if getattr(lowerCAmelCase__ ,'_converted_to_transformer_engine' ,lowerCAmelCase__ ): convert_model(lowerCAmelCase__ ,to_transformer_engine=lowerCAmelCase__ ) if is_compiled: __UpperCamelCase : Optional[Any] =model __UpperCamelCase : Tuple =compiled_model return model def A ( ) -> Optional[int]: PartialState().wait_for_everyone() def A ( a_ ,a_ ) -> List[str]: if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCAmelCase__ ,lowerCAmelCase__ ) elif PartialState().local_process_index == 0: torch.save(lowerCAmelCase__ ,lowerCAmelCase__ ) @contextmanager def A ( **a_ ) -> Dict: for key, value in kwargs.items(): __UpperCamelCase : Any =str(lowerCAmelCase__ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def A ( a_ ) -> int: if not hasattr(lowerCAmelCase__ ,'__qualname__' ) and not hasattr(lowerCAmelCase__ ,'__name__' ): __UpperCamelCase : Union[str, Any] =getattr(lowerCAmelCase__ ,'__class__' ,lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ ,'__qualname__' ): return obj.__qualname__ if hasattr(lowerCAmelCase__ ,'__name__' ): return obj.__name__ return str(lowerCAmelCase__ ) def A ( a_ ,a_ ) -> str: for key, value in source.items(): if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ): __UpperCamelCase : Any =destination.setdefault(lowerCAmelCase__ ,{} ) merge_dicts(lowerCAmelCase__ ,lowerCAmelCase__ ) else: __UpperCamelCase : Optional[Any] =value return destination def A ( a_ = None ) -> int: if port is None: __UpperCamelCase : List[Any] =29_500 with socket.socket(socket.AF_INET ,socket.SOCK_STREAM ) as s: return s.connect_ex(('localhost', port) ) == 0
366
import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[Any] =[ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =[ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =[ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Tuple =[ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : List[Any] ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =[ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : str ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =[ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __UpperCamelCase : int ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : str ='fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[str] =[ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __UpperCamelCase : Any ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =[ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __UpperCamelCase : Tuple ='fp16' self.assertTrue(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any =[ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase : Any ='fp16' self.assertFalse(is_safetensors_compatible(lowerCamelCase__ , variant=lowerCamelCase__ ) )
245
0
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_roberta import RobertaTokenizer lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCamelCase_ = { '''vocab_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/vocab.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/vocab.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/vocab.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/vocab.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/vocab.json''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/vocab.json''' ), }, '''merges_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/merges.txt''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/merges.txt''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/merges.txt''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/merges.txt''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/merges.txt''', '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/merges.txt''' ), }, '''tokenizer_file''': { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/tokenizer.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/tokenizer.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/tokenizer.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/tokenizer.json''', '''roberta-base-openai-detector''': ( '''https://huggingface.co/roberta-base-openai-detector/resolve/main/tokenizer.json''' ), '''roberta-large-openai-detector''': ( '''https://huggingface.co/roberta-large-openai-detector/resolve/main/tokenizer.json''' ), }, } lowerCamelCase_ = { '''roberta-base''': 5_12, '''roberta-large''': 5_12, '''roberta-large-mnli''': 5_12, '''distilroberta-base''': 5_12, '''roberta-base-openai-detector''': 5_12, '''roberta-large-openai-detector''': 5_12, } class _UpperCAmelCase ( snake_case_ ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['''input_ids''', '''attention_mask'''] snake_case = RobertaTokenizer def __init__( self : Optional[Any] , __UpperCAmelCase : str=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[Any]="replace" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : Optional[int]="</s>" , __UpperCAmelCase : Optional[Any]="</s>" , __UpperCAmelCase : List[str]="<s>" , __UpperCAmelCase : List[Any]="<unk>" , __UpperCAmelCase : List[str]="<pad>" , __UpperCAmelCase : Optional[Any]="<mask>" , __UpperCAmelCase : Optional[Any]=False , __UpperCAmelCase : int=True , **__UpperCAmelCase : List[Any] , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , errors=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , trim_offsets=__UpperCAmelCase , **__UpperCAmelCase , ) _A = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: _A = getattr(__UpperCAmelCase , pre_tok_state.pop("type" ) ) _A = add_prefix_space _A = pre_tok_class(**__UpperCAmelCase ) _A = add_prefix_space _A = "post_processor" _A = getattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) if tokenizer_component_instance: _A = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _A = tuple(state["sep"] ) if "cls" in state: _A = tuple(state["cls"] ) _A = False if state.get("add_prefix_space" , __UpperCAmelCase ) != add_prefix_space: _A = add_prefix_space _A = True if state.get("trim_offsets" , __UpperCAmelCase ) != trim_offsets: _A = trim_offsets _A = True if changes_to_apply: _A = getattr(__UpperCAmelCase , state.pop("type" ) ) _A = component_class(**__UpperCAmelCase ) setattr(self.backend_tokenizer , __UpperCAmelCase , __UpperCAmelCase ) @property def lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Tuple ): '''simple docstring''' _A = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else value _A = value def lowerCAmelCase ( self : Any , *__UpperCAmelCase : Union[str, Any] , **__UpperCAmelCase : Optional[Any] ): '''simple docstring''' _A = kwargs.get("is_split_into_words" , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , *__UpperCAmelCase : Tuple , **__UpperCAmelCase : List[str] ): '''simple docstring''' _A = kwargs.get("is_split_into_words" , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[str] = None ): '''simple docstring''' _A = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def lowerCAmelCase ( self : List[str] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : List[str]=None ): '''simple docstring''' _A = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : List[int] , __UpperCAmelCase : Optional[List[int]] = None ): '''simple docstring''' _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
79
'''simple docstring''' from typing import List import numpy as np def __lowercase ( __lowercase ) -> int: '''simple docstring''' _A = {key: len(__lowercase ) for key, value in gen_kwargs.items() if isinstance(__lowercase , __lowercase )} if len(set(lists_lengths.values() ) ) > 1: raise RuntimeError( ( "Sharding is ambiguous for this dataset: " + "we found several data sources lists of different lengths, and we don't know over which list we should parallelize:\n" + "\n".join(F'''\t- key {key} has length {length}''' for key, length in lists_lengths.items() ) + "\nTo fix this, check the 'gen_kwargs' and make sure to use lists only for data sources, " + "and use tuples otherwise. In the end there should only be one single list, or several lists with the same length." ) ) _A = max(lists_lengths.values() , default=0 ) return max(1 , __lowercase ) def __lowercase ( __lowercase , __lowercase ) -> List[range]: '''simple docstring''' _A = [] for group_idx in range(__lowercase ): _A = num_shards // max_num_jobs + (group_idx < (num_shards % max_num_jobs)) if num_shards_to_add == 0: break _A = shards_indices_per_group[-1].stop if shards_indices_per_group else 0 _A = range(__lowercase , start + num_shards_to_add ) shards_indices_per_group.append(__lowercase ) return shards_indices_per_group def __lowercase ( __lowercase , __lowercase ) -> List[dict]: '''simple docstring''' _A = _number_of_shards_in_gen_kwargs(__lowercase ) if num_shards == 1: return [dict(__lowercase )] else: _A = _distribute_shards(num_shards=__lowercase , max_num_jobs=__lowercase ) return [ { key: [value[shard_idx] for shard_idx in shard_indices_per_group[group_idx]] if isinstance(__lowercase , __lowercase ) else value for key, value in gen_kwargs.items() } for group_idx in range(len(__lowercase ) ) ] def __lowercase ( __lowercase ) -> dict: '''simple docstring''' return { key: [value for gen_kwargs in gen_kwargs_list for value in gen_kwargs[key]] if isinstance(gen_kwargs_list[0][key] , __lowercase ) else gen_kwargs_list[0][key] for key in gen_kwargs_list[0] } def __lowercase ( __lowercase , __lowercase ) -> dict: '''simple docstring''' _A = {len(__lowercase ) for value in gen_kwargs.values() if isinstance(__lowercase , __lowercase )} _A = {} for size in list_sizes: _A = list(range(__lowercase ) ) rng.shuffle(indices_per_size[size] ) # Now let's copy the gen_kwargs and shuffle the lists based on their sizes _A = dict(__lowercase ) for key, value in shuffled_kwargs.items(): if isinstance(__lowercase , __lowercase ): _A = [value[i] for i in indices_per_size[len(__lowercase )]] return shuffled_kwargs
79
1
def __UpperCamelCase ( _A ): lowerCAmelCase_ = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __UpperCamelCase ( _A = 100 ): lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 for i in range(2 , max_n + 1 ): lowerCAmelCase_ = pre_numerator lowerCAmelCase_ = 2 * i // 3 if i % 3 == 0 else 1 lowerCAmelCase_ = cur_numerator lowerCAmelCase_ = e_cont * pre_numerator + temp return sum_digits(_A ) if __name__ == "__main__": print(f"{solution() = }")
167
import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class A ( __UpperCAmelCase ): __snake_case = ['image_processor', 'tokenizer'] __snake_case = 'OwlViTImageProcessor' __snake_case = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self, UpperCamelCase__=None, UpperCamelCase__=None, **UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''', UpperCamelCase__, ) lowerCAmelCase_ = kwargs.pop('''feature_extractor''' ) lowerCAmelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__, UpperCamelCase__ ) def __call__( self, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__=None, UpperCamelCase__="max_length", UpperCamelCase__="np", **UpperCamelCase__ ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(UpperCamelCase__, UpperCamelCase__ ) or (isinstance(UpperCamelCase__, UpperCamelCase__ ) and not isinstance(text[0], UpperCamelCase__ )): lowerCAmelCase_ = [self.tokenizer(UpperCamelCase__, padding=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ )] elif isinstance(UpperCamelCase__, UpperCamelCase__ ) and isinstance(text[0], UpperCamelCase__ ): lowerCAmelCase_ = [] # Maximum number of queries across batch lowerCAmelCase_ = max([len(UpperCamelCase__ ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase__ ) != max_num_queries: lowerCAmelCase_ = t + [''' '''] * (max_num_queries - len(UpperCamelCase__ )) lowerCAmelCase_ = self.tokenizer(UpperCamelCase__, padding=UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ) encodings.append(UpperCamelCase__ ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": lowerCAmelCase_ = np.concatenate([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = np.concatenate([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCAmelCase_ = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCAmelCase_ = torch.cat([encoding['''input_ids'''] for encoding in encodings], dim=0 ) lowerCAmelCase_ = torch.cat([encoding['''attention_mask'''] for encoding in encodings], dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCAmelCase_ = tf.stack([encoding['''input_ids'''] for encoding in encodings], axis=0 ) lowerCAmelCase_ = tf.stack([encoding['''attention_mask'''] for encoding in encodings], axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) lowerCAmelCase_ = BatchEncoding() lowerCAmelCase_ = input_ids lowerCAmelCase_ = attention_mask if query_images is not None: lowerCAmelCase_ = BatchEncoding() lowerCAmelCase_ = self.image_processor( UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ).pixel_values lowerCAmelCase_ = query_pixel_values if images is not None: lowerCAmelCase_ = self.image_processor(UpperCamelCase__, return_tensors=UpperCamelCase__, **UpperCamelCase__ ) if text is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCAmelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ), tensor_type=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process_object_detection(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase__, **UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self, *UpperCamelCase__, **UpperCamelCase__ ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase__, **UpperCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''', UpperCamelCase__, ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''', UpperCamelCase__, ) return self.image_processor
167
1
import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): __A = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: __A = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def lowerCamelCase_ ( UpperCamelCase__ : Union[str, Any] ) -> Tuple: """simple docstring""" __lowerCamelCase = (images / 2 + 0.5).clamp(0 , 1 ) __lowerCamelCase = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __lowerCamelCase = numpy_to_pil(UpperCamelCase__ ) return images def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> str: """simple docstring""" if images.ndim == 3: __lowerCamelCase = images[None, ...] __lowerCamelCase = (images * 255).round().astype('uint8' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images __lowerCamelCase = [Image.fromarray(image.squeeze() , mode='L' ) for image in images] else: __lowerCamelCase = [Image.fromarray(UpperCamelCase__ ) for image in images] return pil_images
90
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __A = logging.get_logger(__name__) __A = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } __A = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", ] def lowerCamelCase_ ( UpperCamelCase__ : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] ) -> Tuple: """simple docstring""" for attribute in key.split('.' ): __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ) if weight_type is not None: __lowerCamelCase = getattr(UpperCamelCase__ , UpperCamelCase__ ).shape else: __lowerCamelCase = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase = value elif weight_type == "weight_g": __lowerCamelCase = value elif weight_type == "weight_v": __lowerCamelCase = value elif weight_type == "bias": __lowerCamelCase = value else: __lowerCamelCase = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def lowerCamelCase_ ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCamelCase = [] __lowerCamelCase = fairseq_model.state_dict() __lowerCamelCase = hf_model.feature_extractor __lowerCamelCase = hf_model.adapter for name, value in fairseq_dict.items(): __lowerCamelCase = False if "conv_layers" in name: load_conv_layer( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , hf_model.config.feat_extract_norm == 'group' , ) __lowerCamelCase = True elif any(x in name for x in ['adaptor', 'w2v_encoder.proj.', 'w2v_proj_ln.'] ): load_adapter(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __lowerCamelCase = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('w2v_model.' )[-1] == name.split('.' )[0]: __lowerCamelCase = True if "*" in mapped_key: __lowerCamelCase = name.split(UpperCamelCase__ )[0].split('.' )[-2] __lowerCamelCase = mapped_key.replace('*' , UpperCamelCase__ ) if "weight_g" in name: __lowerCamelCase = 'weight_g' elif "weight_v" in name: __lowerCamelCase = 'weight_v' elif "bias" in name: __lowerCamelCase = 'bias' elif "weight" in name: __lowerCamelCase = 'weight' else: __lowerCamelCase = None set_recursively(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) continue if not is_used: unused_weights.append(UpperCamelCase__ ) logger.warning(F"""Unused weights: {unused_weights}""" ) def lowerCamelCase_ ( UpperCamelCase__ : Dict , UpperCamelCase__ : Any , UpperCamelCase__ : str , UpperCamelCase__ : Tuple , UpperCamelCase__ : Tuple ) -> int: """simple docstring""" __lowerCamelCase = full_name.split('conv_layers.' )[-1] __lowerCamelCase = name.split('.' ) __lowerCamelCase = int(items[0] ) __lowerCamelCase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Any , UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" __lowerCamelCase = full_name.split('adaptor.' )[-1] __lowerCamelCase = name.split('.' ) if items[1].isdigit(): __lowerCamelCase = int(items[1] ) else: __lowerCamelCase = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __lowerCamelCase = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), F"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __lowerCamelCase = value logger.info(F"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(UpperCamelCase__ ) def lowerCamelCase_ ( UpperCamelCase__ : Tuple ) -> Tuple: """simple docstring""" __lowerCamelCase , __lowerCamelCase = emb.weight.shape __lowerCamelCase = nn.Linear(UpperCamelCase__ , UpperCamelCase__ , bias=UpperCamelCase__ ) __lowerCamelCase = emb.weight.data return lin_layer @torch.no_grad() def lowerCamelCase_ ( UpperCamelCase__ : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , ) -> str: """simple docstring""" __lowerCamelCase = WavaVecaConfig.from_pretrained( UpperCamelCase__ , add_adapter=UpperCamelCase__ , adapter_stride=UpperCamelCase__ , adapter_kernel_size=UpperCamelCase__ , use_auth_token=UpperCamelCase__ , output_hidden_size=UpperCamelCase__ , ) __lowerCamelCase = MBartConfig.from_pretrained(UpperCamelCase__ ) # load model __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ 'config_yaml': config_yaml_path, 'data': '/'.join(dict_path.split('/' )[:-1] ), 'w2v_path': checkpoint_path, 'load_pretrained_decoder_from': None, } , ) __lowerCamelCase = model[0].eval() # load feature extractor __lowerCamelCase = WavaVecaFeatureExtractor.from_pretrained(UpperCamelCase__ , use_auth_token=UpperCamelCase__ ) # set weights for wav2vec2 encoder __lowerCamelCase = WavaVecaModel(UpperCamelCase__ ) recursively_load_weights_wavaveca(model.encoder , UpperCamelCase__ ) # load decoder weights __lowerCamelCase = MBartForCausalLM(UpperCamelCase__ ) __lowerCamelCase , __lowerCamelCase = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCamelCase__ ) logger.warning(F"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(F"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowerCamelCase = SpeechEncoderDecoderModel(encoder=UpperCamelCase__ , decoder=UpperCamelCase__ ) __lowerCamelCase = False __lowerCamelCase = MBartaaTokenizer(UpperCamelCase__ ) tokenizer.save_pretrained(UpperCamelCase__ ) __lowerCamelCase = hf_wavavec.config.to_dict() __lowerCamelCase = tokenizer.pad_token_id __lowerCamelCase = tokenizer.bos_token_id __lowerCamelCase = tokenizer.eos_token_id __lowerCamelCase = 'mbart50' __lowerCamelCase = 'wav2vec2' __lowerCamelCase = tokenizer.eos_token_id __lowerCamelCase = 25_0004 __lowerCamelCase = tokenizer.eos_token_id __lowerCamelCase = SpeechEncoderDecoderConfig.from_dict(UpperCamelCase__ ) hf_wavavec.save_pretrained(UpperCamelCase__ ) feature_extractor.save_pretrained(UpperCamelCase__ ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_yaml_path", default=None, type=str, help="Path to yaml file of fine-tuned model") parser.add_argument( "--encoder_config_path", default="facebook/wav2vec2-xls-r-1b", type=str, help="Path to hf encoder wav2vec2 checkpoint config", ) parser.add_argument( "--decoder_config_path", default="facebook/mbart-large-50-one-to-many-mmt", type=str, help="Path to hf decoder checkpoint config", ) parser.add_argument("--add_adapter", default=True, type=bool, help="whethere to add model adapter layers") parser.add_argument("--adapter_stride", default=2, type=int, help="stride of adapter layers") parser.add_argument("--adapter_kernel_size", default=3, type=int, help="kernel size of adapter layers") parser.add_argument("--encoder_output_dim", default=10_24, type=int, help="encoder output dim") parser.add_argument("--start_token_id", default=25_00_04, type=int, help="`decoder_start_token_id` of model config") __A = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
90
1
"""simple docstring""" import importlib import shutil import threading import warnings from typing import List import fsspec import fsspec.asyn from . import compression from .hffilesystem import HfFileSystem __SCREAMING_SNAKE_CASE =importlib.util.find_spec("s3fs") is not None if _has_safs: from .safilesystem import SaFileSystem # noqa: F401 __SCREAMING_SNAKE_CASE =[ compression.BzaFileSystem, compression.GzipFileSystem, compression.LzaFileSystem, compression.XzFileSystem, compression.ZstdFileSystem, ] # Register custom filesystems for fs_class in COMPRESSION_FILESYSTEMS + [HfFileSystem]: if fs_class.protocol in fsspec.registry and fsspec.registry[fs_class.protocol] is not fs_class: warnings.warn(F"A filesystem protocol was already set for {fs_class.protocol} and will be overwritten.") fsspec.register_implementation(fs_class.protocol, fs_class, clobber=True) def lowercase__( __SCREAMING_SNAKE_CASE : str ): if "://" in dataset_path: lowercase_ : List[Any] = dataset_path.split('://' )[1] return dataset_path def lowercase__( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem ): if fs is not None and fs.protocol != "file": return True else: return False def lowercase__( __SCREAMING_SNAKE_CASE : fsspec.AbstractFileSystem , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ): lowercase_ : Optional[int] = not is_remote_filesystem(__SCREAMING_SNAKE_CASE ) if is_local: # LocalFileSystem.mv does copy + rm, it is more efficient to simply move a local directory shutil.move(fs._strip_protocol(__SCREAMING_SNAKE_CASE ) , fs._strip_protocol(__SCREAMING_SNAKE_CASE ) ) else: fs.mv(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , recursive=__SCREAMING_SNAKE_CASE ) def lowercase__( ): if hasattr(fsspec.asyn , 'reset_lock' ): # for future fsspec>2022.05.0 fsspec.asyn.reset_lock() else: lowercase_ : str = None lowercase_ : Dict = None lowercase_ : Optional[Any] = threading.Lock()
321
"""simple docstring""" __SCREAMING_SNAKE_CASE ={ "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } __SCREAMING_SNAKE_CASE ={value: key for key, value in encode_dict.items()} def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase__( __SCREAMING_SNAKE_CASE : str ): if set(__SCREAMING_SNAKE_CASE ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) lowercase_ : Dict = '' for word in coded.split(): while len(__SCREAMING_SNAKE_CASE ) != 0: decoded += decode_dict[word[:5]] lowercase_ : Any = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
321
1
class UpperCAmelCase_ : '''simple docstring''' def __init__( self : Optional[Any] , UpperCamelCase__ : list ) -> Dict: """simple docstring""" __magic_name__ = set_counts __magic_name__ = max(__UpperCamelCase ) __magic_name__ = len(__UpperCamelCase ) __magic_name__ = [1] * num_sets __magic_name__ = list(range(__UpperCamelCase ) ) def _lowercase ( self : str , UpperCamelCase__ : int , UpperCamelCase__ : int ) -> str: """simple docstring""" __magic_name__ = self.get_parent(__UpperCamelCase ) __magic_name__ = self.get_parent(__UpperCamelCase ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] __magic_name__ = 0 __magic_name__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 __magic_name__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] __magic_name__ = 0 __magic_name__ = src_parent __magic_name__ = self.set_counts[src_parent] __magic_name__ = max(self.max_set , __UpperCamelCase ) return True def _lowercase ( self : str , UpperCamelCase__ : int ) -> Union[str, Any]: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set __magic_name__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
88
"""simple docstring""" def A__ ( UpperCamelCase ): A = generate_pascal_triangle(UpperCamelCase ) for row_idx in range(UpperCamelCase ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [] for current_row_idx in range(UpperCamelCase ): A = populate_current_row(UpperCamelCase , UpperCamelCase ) triangle.append(UpperCamelCase ) return triangle def A__ ( UpperCamelCase , UpperCamelCase ): A = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A, A = 1, 1 for current_col_idx in range(1 , UpperCamelCase ): calculate_current_element( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ) return current_row def A__ ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , ): A = triangle[current_row_idx - 1][current_col_idx - 1] A = triangle[current_row_idx - 1][current_col_idx] A = above_to_left_elt + above_to_right_elt def A__ ( UpperCamelCase ): if not isinstance(UpperCamelCase , UpperCamelCase ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) A = [[1]] for row_index in range(1 , UpperCamelCase ): A = [0] + result[-1] + [0] A = row_index + 1 # Calculate the number of distinct elements in a row A = sum(divmod(UpperCamelCase , 2 ) ) A = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A = row_first_half + row_second_half result.append(UpperCamelCase ) return result def A__ ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(UpperCamelCase , UpperCamelCase ) -> None: A = F"{func.__name__}({value})" A = timeit(F"__main__.{call}" , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F"{call:38} -- {timing:.4f} seconds" ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(UpperCamelCase , UpperCamelCase ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
292
0
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = [ 'decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = emb.weight.shape __UpperCAmelCase : Optional[Any] = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = emb.weight.data return lin_layer def lowerCamelCase ( _UpperCamelCase : List[str] ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = torch.load(_UpperCAmelCase , map_location="""cpu""" ) __UpperCAmelCase : str = Namespace(**checkpoint["""cfg"""]["""model"""] ) __UpperCAmelCase : Optional[int] = checkpoint['model'] remove_ignore_keys_(_UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = state_dict['decoder.embed_tokens.weight'].shape[0] __UpperCAmelCase : Any = {key.replace("""decoder""" , """model""" ): val for key, val in state_dict.items()} __UpperCAmelCase : int = XGLMConfig( vocab_size=_UpperCAmelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function="""gelu""" , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) __UpperCAmelCase : int = XGLMForCausalLM(_UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = model.load_state_dict(_UpperCAmelCase , strict=_UpperCAmelCase ) print(_UpperCAmelCase ) __UpperCAmelCase : int = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase : Any = parser.parse_args() UpperCAmelCase : int = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
351
"""simple docstring""" from __future__ import annotations def lowerCamelCase ( _UpperCamelCase : list[float] , _UpperCamelCase : list[float] ) -> float: '''simple docstring''' __UpperCAmelCase : Tuple = sorted(numsa + numsa ) __UpperCAmelCase ,__UpperCAmelCase : Dict = divmod(len(_UpperCamelCase ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase : List[Any] = [float(x) for x in input('Enter the elements of first array: ').split()] UpperCAmelCase : Optional[int] = [float(x) for x in input('Enter the elements of second array: ').split()] print(F"The median of two arrays is: {median_of_two_arrays(array_a, array_a)}")
320
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging __A = logging.get_logger(__name__) # pylint: disable=invalid-name class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__(self : Any , UpperCAmelCase_ : CLIPSegForImageSegmentation , UpperCAmelCase_ : CLIPSegProcessor , UpperCAmelCase_ : AutoencoderKL , UpperCAmelCase_ : CLIPTextModel , UpperCAmelCase_ : CLIPTokenizer , UpperCAmelCase_ : UNetaDConditionModel , UpperCAmelCase_ : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase_ : StableDiffusionSafetyChecker , UpperCAmelCase_ : CLIPImageProcessor , ) ->List[Any]: '''simple docstring''' super().__init__() if hasattr(scheduler.config , "steps_offset") and scheduler.config.steps_offset != 1: lowerCamelCase__: List[str] =( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_) lowerCamelCase__: Tuple =dict(scheduler.config) lowerCamelCase__: List[str] =1 lowerCamelCase__: Optional[int] =FrozenDict(UpperCAmelCase_) if hasattr(scheduler.config , "skip_prk_steps") and scheduler.config.skip_prk_steps is False: lowerCamelCase__: Tuple =( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , UpperCAmelCase_ , standard_warn=UpperCAmelCase_) lowerCamelCase__: Optional[int] =dict(scheduler.config) lowerCamelCase__: str =True lowerCamelCase__: Optional[Any] =FrozenDict(UpperCAmelCase_) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 .") self.register_modules( segmentation_model=UpperCAmelCase_ , segmentation_processor=UpperCAmelCase_ , vae=UpperCAmelCase_ , text_encoder=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ , safety_checker=UpperCAmelCase_ , feature_extractor=UpperCAmelCase_ , ) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Union[str, int]] = "auto") ->List[Any]: '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__: Dict =self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Any) ->Tuple: '''simple docstring''' self.enable_attention_slicing(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : Dict) ->List[Any]: '''simple docstring''' if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") lowerCamelCase__: Dict =torch.device("cuda") for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(UpperCAmelCase_ , UpperCAmelCase_) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def SCREAMING_SNAKE_CASE_ (self : Dict) ->str: '''simple docstring''' if self.device != torch.device("meta") or not hasattr(self.unet , "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(UpperCAmelCase_ , "_hf_hook") and hasattr(module._hf_hook , "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() def __call__(self : int , UpperCAmelCase_ : Union[str, List[str]] , UpperCAmelCase_ : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase_ : str , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 512 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : float = 7.5 , UpperCAmelCase_ : Optional[Union[str, List[str]]] = None , UpperCAmelCase_ : Optional[int] = 1 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : Optional[torch.Generator] = None , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase_ : int = 1 , **UpperCAmelCase_ : str , ) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Dict =self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt").to(self.device) lowerCamelCase__: Dict =self.segmentation_model(**UpperCAmelCase_) lowerCamelCase__: Tuple =torch.sigmoid(outputs.logits).cpu().detach().unsqueeze(-1).numpy() lowerCamelCase__: List[Any] =self.numpy_to_pil(UpperCAmelCase_)[0].resize(image.size) # Run inpainting pipeline with the generated mask lowerCamelCase__: int =StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=UpperCAmelCase_ , image=UpperCAmelCase_ , mask_image=UpperCAmelCase_ , height=UpperCAmelCase_ , width=UpperCAmelCase_ , num_inference_steps=UpperCAmelCase_ , guidance_scale=UpperCAmelCase_ , negative_prompt=UpperCAmelCase_ , num_images_per_prompt=UpperCAmelCase_ , eta=UpperCAmelCase_ , generator=UpperCAmelCase_ , latents=UpperCAmelCase_ , output_type=UpperCAmelCase_ , return_dict=UpperCAmelCase_ , callback=UpperCAmelCase_ , callback_steps=UpperCAmelCase_ , )
10
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowercase ( _A ) -> List[Tuple[int, ...]]: SCREAMING_SNAKE_CASE : Optional[int] = [] if isinstance(_A , _A ): for v in tree.values(): shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(_A ) ) elif isinstance(_A , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def __lowercase ( _A , _A ) -> Tuple[int, ...]: SCREAMING_SNAKE_CASE : List[Any] = [] for d in reversed(_A ): idx.append(flat_idx % d ) SCREAMING_SNAKE_CASE : Tuple = flat_idx // d return tuple(reversed(_A ) ) @torch.jit.ignore def __lowercase ( _A , _A , _A , _A = None , _A = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(_A ) -> None: SCREAMING_SNAKE_CASE : int = True for i in range(len(_A ) ): SCREAMING_SNAKE_CASE : Dict = -1 * (i + 1) l[reversed_idx] &= tally SCREAMING_SNAKE_CASE : Any = l[reversed_idx] if start_edges is None: SCREAMING_SNAKE_CASE : Tuple = [s == 0 for s in start] reduce_edge_list(_A ) if end_edges is None: SCREAMING_SNAKE_CASE : Tuple = [e == (d - 1) for e, d in zip(_A , _A )] reduce_edge_list(_A ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(_A ) == 0: return [()] elif len(_A ) == 1: return [(slice(start[0] , end[0] + 1 ),)] SCREAMING_SNAKE_CASE : List[Tuple[slice, ...]] = [] SCREAMING_SNAKE_CASE : List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(_A , _A ): if s == e: path_list.append(slice(_A , s + 1 ) ) else: break SCREAMING_SNAKE_CASE : Tuple[slice, ...] = tuple(_A ) SCREAMING_SNAKE_CASE : List[str] = len(_A ) # start == end, and we're done if divergence_idx == len(_A ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : List[str] = start[divergence_idx] return tuple( path + (slice(_A , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None SCREAMING_SNAKE_CASE : Tuple = end[divergence_idx] return tuple( path + (slice(_A , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) SCREAMING_SNAKE_CASE : int = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowercase ( _A , _A , _A , _A ) -> torch.Tensor: SCREAMING_SNAKE_CASE : Tuple = t.shape[:no_batch_dims] SCREAMING_SNAKE_CASE : Union[str, Any] = list(_flat_idx_to_idx(_A , _A ) ) # _get_minimal_slice_set is inclusive SCREAMING_SNAKE_CASE : Any = list(_flat_idx_to_idx(flat_end - 1 , _A ) ) # Get an ordered list of slices to perform SCREAMING_SNAKE_CASE : List[Any] = _get_minimal_slice_set( _A , _A , _A , ) SCREAMING_SNAKE_CASE : List[Any] = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowercase ( _A , _A , _A , _A , _A = False , _A = None , _A = False , ) -> Any: if not (len(_A ) > 0): raise ValueError("""Must provide at least one input""" ) SCREAMING_SNAKE_CASE : Tuple = [shape[:no_batch_dims] for shape in _fetch_dims(_A )] SCREAMING_SNAKE_CASE : str = tuple([max(_A ) for s in zip(*_A )] ) def _prep_inputs(_A ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: SCREAMING_SNAKE_CASE : List[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) SCREAMING_SNAKE_CASE : Union[str, Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: SCREAMING_SNAKE_CASE : Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_prep_inputs , _A ) SCREAMING_SNAKE_CASE : Optional[int] = None if _out is not None: SCREAMING_SNAKE_CASE : Optional[int] = tensor_tree_map(lambda _A : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) SCREAMING_SNAKE_CASE : Optional[int] = 1 for d in orig_batch_dims: flat_batch_dim *= d SCREAMING_SNAKE_CASE : Tuple = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(_A ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t SCREAMING_SNAKE_CASE : Union[str, Any] = 0 SCREAMING_SNAKE_CASE : Union[str, Any] = prepped_outputs for _ in range(_A ): # Chunk the input if not low_mem: SCREAMING_SNAKE_CASE : int = _select_chunk else: SCREAMING_SNAKE_CASE : Optional[int] = partial( _chunk_slice , flat_start=_A , flat_end=min(_A , i + chunk_size ) , no_batch_dims=len(_A ) , ) SCREAMING_SNAKE_CASE : Dict[str, Any] = tensor_tree_map(_A , _A ) # Run the layer on the chunk SCREAMING_SNAKE_CASE : Tuple = layer(**_A ) # Allocate space for the output if out is None: SCREAMING_SNAKE_CASE : List[str] = tensor_tree_map(lambda _A : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , _A ) # Put the chunk in its pre-allocated space if isinstance(_A , _A ): def assign(_A , _A ) -> None: for k, v in da.items(): if isinstance(_A , _A ): assign(_A , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: SCREAMING_SNAKE_CASE : Optional[Any] = da[k] assign(_A , _A ) elif isinstance(_A , _A ): for xa, xa in zip(_A , _A ): if _add_into_out: xa[i : i + chunk_size] += xa else: SCREAMING_SNAKE_CASE : str = xa elif isinstance(_A , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: SCREAMING_SNAKE_CASE : List[Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size SCREAMING_SNAKE_CASE : Any = tensor_tree_map(lambda _A : t.view(orig_batch_dims + t.shape[1:] ) , _A ) return out class a__ : """simple docstring""" def __init__( self : Optional[Any] , UpperCAmelCase__ : int = 5_1_2 , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : str = max_chunk_size SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Optional[tuple] = None def _lowercase ( self : List[Any] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int ) ->int: """simple docstring""" logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size SCREAMING_SNAKE_CASE : List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] SCREAMING_SNAKE_CASE : Dict = [c for c in candidates if c > min_chunk_size] SCREAMING_SNAKE_CASE : List[str] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase__ : int ) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase__ , chunk_size=UpperCAmelCase__ ) return True except RuntimeError: return False SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[str] = len(UpperCAmelCase__ ) - 1 while i > min_viable_chunk_size_index: SCREAMING_SNAKE_CASE : int = test_chunk_size(candidates[i] ) if not viable: SCREAMING_SNAKE_CASE : Tuple = (min_viable_chunk_size_index + i) // 2 else: SCREAMING_SNAKE_CASE : List[str] = i SCREAMING_SNAKE_CASE : List[str] = (i + len(UpperCAmelCase__ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase ( self : List[Any] , UpperCAmelCase__ : Iterable , UpperCAmelCase__ : Iterable ) ->bool: """simple docstring""" SCREAMING_SNAKE_CASE : str = True for aa, aa in zip(UpperCAmelCase__ , UpperCAmelCase__ ): assert type(UpperCAmelCase__ ) == type(UpperCAmelCase__ ) if isinstance(UpperCAmelCase__ , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): SCREAMING_SNAKE_CASE : Optional[Any] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] SCREAMING_SNAKE_CASE : List[str] = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase__ : x[0] )] consistent &= self._compare_arg_caches(UpperCAmelCase__ , UpperCAmelCase__ ) else: consistent &= aa == aa return consistent def _lowercase ( self : List[str] , UpperCAmelCase__ : Callable , UpperCAmelCase__ : tuple , UpperCAmelCase__ : int , ) ->int: """simple docstring""" SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : tuple = tree_map(lambda UpperCAmelCase__ : a.shape if isinstance(UpperCAmelCase__ , torch.Tensor ) else a , UpperCAmelCase__ , UpperCAmelCase__ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase__ ) else: # Otherwise, we can reuse the precomputed value SCREAMING_SNAKE_CASE : List[Any] = False if not consistent: SCREAMING_SNAKE_CASE : List[Any] = self._determine_favorable_chunk_size( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ) SCREAMING_SNAKE_CASE : Union[str, Any] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
245
0
'''simple docstring''' import math def __lowerCamelCase ( __lowerCAmelCase : float , __lowerCAmelCase : float ) -> float: if initial_intensity < 0: raise ValueError("""The value of intensity cannot be negative""" ) # handling of negative values of initial intensity if angle < 0 or angle > 3_60: raise ValueError("""In Malus Law, the angle is in the range 0-360 degrees""" ) # handling of values out of allowed range return initial_intensity * (math.cos(math.radians(_UpperCamelCase ) ) ** 2) if __name__ == "__main__": import doctest doctest.testmod(name="malus_law")
367
'''simple docstring''' def __lowerCamelCase ( __lowerCAmelCase : list , __lowerCAmelCase : list , __lowerCAmelCase : int ) -> list: snake_case = len(__lowerCAmelCase ) snake_case = [[0] * n for i in range(__lowerCAmelCase )] for i in range(__lowerCAmelCase ): snake_case = y_points[i] for i in range(2 , __lowerCAmelCase ): for j in range(__lowerCAmelCase , __lowerCAmelCase ): snake_case = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
3
0
"""simple docstring""" import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging _lowerCamelCase : List[str] = ['bart.large', 'bart.large.mnli', 'bart.large.cnn', 'bart_xsum/model.pt'] _lowerCamelCase : Optional[Any] = {'bart.large': BartModel, 'bart.large.mnli': BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse('0.9.0'): raise Exception('requires fairseq >= 0.9.0') logging.set_verbosity_info() _lowerCamelCase : List[Any] = logging.get_logger(__name__) _lowerCamelCase : int = ' Hello world! cécé herlolip' _lowerCamelCase : Tuple = [ ('model.classification_heads.mnli.dense.weight', 'classification_head.dense.weight'), ('model.classification_heads.mnli.dense.bias', 'classification_head.dense.bias'), ('model.classification_heads.mnli.out_proj.weight', 'classification_head.out_proj.weight'), ('model.classification_heads.mnli.out_proj.bias', 'classification_head.out_proj.bias'), ] def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''_float_tensor''', ] for k in ignore_keys: state_dict.pop(_UpperCAmelCase , _UpperCAmelCase ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : Tuple = dct.pop(_UpperCAmelCase ) A_ : List[str] = val def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = torch.load(_UpperCAmelCase , map_location='''cpu''' ) A_ : Tuple = torch.hub.load('''pytorch/fairseq''' , '''bart.large.cnn''' ).eval() hub_interface.model.load_state_dict(sd['''model'''] ) return hub_interface def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ , A_ : str = emb.weight.shape A_ : str = nn.Linear(_UpperCAmelCase , _UpperCAmelCase , bias=_UpperCAmelCase ) A_ : int = emb.weight.data return lin_layer @torch.no_grad() def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None ): """simple docstring""" if not os.path.exists(_UpperCAmelCase ): A_ : int = torch.hub.load('''pytorch/fairseq''' , _UpperCAmelCase ).eval() else: A_ : Any = load_xsum_checkpoint(_UpperCAmelCase ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: A_ : List[str] = checkpoint_path.replace('''.''' , '''-''' ) A_ : Optional[Any] = BartConfig.from_pretrained(_UpperCAmelCase ) A_ : int = bart.encode(_UpperCAmelCase ).unsqueeze(0 ) A_ : List[str] = BartTokenizer.from_pretrained(_UpperCAmelCase ).encode(_UpperCAmelCase , return_tensors='''pt''' ).unsqueeze(0 ) if not torch.eq(_UpperCAmelCase , _UpperCAmelCase ).all(): raise ValueError( f"""converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}""" ) if checkpoint_path == "bart.large.mnli": A_ : Optional[Any] = bart.state_dict() remove_ignore_keys_(_UpperCAmelCase ) A_ : str = state_dict['''model.decoder.embed_tokens.weight'''] for src, dest in mnli_rename_keys: rename_key(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) A_ : List[str] = BartForSequenceClassification(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) A_ : Tuple = bart.predict('''mnli''' , _UpperCAmelCase , return_logits=_UpperCAmelCase ) A_ : str = model(_UpperCAmelCase )[0] # logits else: # no classification heads to worry about A_ : str = bart.model.state_dict() remove_ignore_keys_(_UpperCAmelCase ) A_ : List[Any] = state_dict['''decoder.embed_tokens.weight'''] A_ : Optional[int] = bart.extract_features(_UpperCAmelCase ) if hf_checkpoint_name == "facebook/bart-large": A_ : int = BartModel(_UpperCAmelCase ).eval() model.load_state_dict(_UpperCAmelCase ) A_ : Optional[Any] = model(_UpperCAmelCase ).model[0] else: A_ : Optional[Any] = BartForConditionalGeneration(_UpperCAmelCase ).eval() # an existing summarization ckpt model.model.load_state_dict(_UpperCAmelCase ) if hasattr(_UpperCAmelCase , '''lm_head''' ): A_ : Any = make_linear_from_emb(model.model.shared ) A_ : Dict = model.model(_UpperCAmelCase )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( f"""`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}""" ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError('''Some values in `fairseq_output` are different from `new_model_outputs`''' ) Path(_UpperCAmelCase ).mkdir(exist_ok=_UpperCAmelCase ) model.save_pretrained(_UpperCAmelCase ) if __name__ == "__main__": _lowerCamelCase : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default=None, type=str, help='Which huggingface architecture to use: bart-large-xsum' ) _lowerCamelCase : Tuple = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
167
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _lowerCamelCase : Tuple = 'platform' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , ): """simple docstring""" if attention_mask is None: A_ : int = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: A_ : List[Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: A_ : List[Any] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: A_ : Dict = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: A_ : Optional[Any] = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase : def __init__( self : int , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any]=13 , _lowerCamelCase : Optional[int]=7 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Tuple=False , _lowerCamelCase : Dict=99 , _lowerCamelCase : List[Any]=16 , _lowerCamelCase : Any=2 , _lowerCamelCase : Union[str, Any]=4 , _lowerCamelCase : Dict=4 , _lowerCamelCase : Any="gelu" , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=0.1 , _lowerCamelCase : List[Any]=32 , _lowerCamelCase : str=2 , _lowerCamelCase : List[Any]=1 , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Optional[Any]=0.02 , ): """simple docstring""" A_ : Any = parent A_ : Any = batch_size A_ : Optional[Any] = seq_length A_ : Union[str, Any] = is_training A_ : Optional[Any] = use_labels A_ : str = vocab_size A_ : Optional[Any] = hidden_size A_ : Dict = num_hidden_layers A_ : List[str] = num_attention_heads A_ : List[str] = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : List[Any] = attention_probs_dropout_prob A_ : List[Any] = max_position_embeddings A_ : Tuple = eos_token_id A_ : int = pad_token_id A_ : int = bos_token_id A_ : str = initializer_range def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[Any] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) A_ : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) A_ : Optional[Any] = shift_tokens_right(_lowerCamelCase , 1 , 2 ) A_ : Optional[Any] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_lowerCamelCase , ) A_ : Any = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def a_ ( self : Optional[int] ): """simple docstring""" A_ , A_ : str = self.prepare_config_and_inputs() return config, inputs_dict def a_ ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : Dict ): """simple docstring""" A_ : str = 20 A_ : Any = model_class_name(_lowerCamelCase ) A_ : List[Any] = model.encode(inputs_dict['''input_ids'''] ) A_ , A_ : int = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) A_ : int = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) A_ : List[Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) A_ : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) A_ : List[str] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ : Tuple = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_lowerCamelCase , ) A_ : str = model.decode(_lowerCamelCase , _lowerCamelCase ) A_ : List[str] = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def a_ ( self : List[Any] , _lowerCamelCase : Any , _lowerCamelCase : int , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Union[str, Any] = 20 A_ : Dict = model_class_name(_lowerCamelCase ) A_ : Dict = model.encode(inputs_dict['''input_ids'''] ) A_ , A_ : Optional[int] = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) A_ : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) A_ : Dict = model.init_cache(decoder_input_ids.shape[0] , _lowerCamelCase , _lowerCamelCase ) A_ : Union[str, Any] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) A_ : Optional[int] = model.decode( decoder_input_ids[:, :-1] , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) A_ : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) A_ : List[str] = model.decode( decoder_input_ids[:, -1:] , _lowerCamelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_lowerCamelCase , decoder_position_ids=_lowerCamelCase , ) A_ : Tuple = model.decode(_lowerCamelCase , _lowerCamelCase , decoder_attention_mask=_lowerCamelCase ) A_ : Dict = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class lowercase ( unittest.TestCase): __lowerCAmelCase : Dict = 99 def a_ ( self : str ): """simple docstring""" A_ : List[str] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) A_ : List[str] = input_ids.shape[0] A_ : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def a_ ( self : List[str] ): """simple docstring""" A_ , A_ , A_ : List[Any] = self._get_config_and_data() A_ : Dict = FlaxBlenderbotSmallForConditionalGeneration(_lowerCamelCase ) A_ : Optional[int] = lm_model(input_ids=_lowerCamelCase ) A_ : Optional[Any] = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Tuple = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) A_ : Optional[int] = FlaxBlenderbotSmallForConditionalGeneration(_lowerCamelCase ) A_ : List[str] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) A_ : Optional[int] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) A_ : Dict = lm_model(input_ids=_lowerCamelCase , decoder_input_ids=_lowerCamelCase ) A_ : Any = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , _lowerCamelCase ) def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : int = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) A_ : Tuple = shift_tokens_right(_lowerCamelCase , 1 , 2 ) A_ : Optional[int] = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() A_ : Tuple = np.equal(_lowerCamelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_lowerCamelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowercase ( __UpperCAmelCase , unittest.TestCase , __UpperCAmelCase): __lowerCAmelCase : Any = True __lowerCAmelCase : List[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) __lowerCAmelCase : List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[int] = FlaxBlenderbotSmallModelTester(self ) def a_ ( self : List[str] ): """simple docstring""" A_ , A_ : int = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" A_ , A_ : Tuple = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def a_ ( self : List[Any] ): """simple docstring""" A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ : str = self._prepare_for_class(_lowerCamelCase , _lowerCamelCase ) A_ : Tuple = model_class(_lowerCamelCase ) @jax.jit def encode_jitted(_lowerCamelCase : Optional[int] , _lowerCamelCase : Union[str, Any]=None , **_lowerCamelCase : List[str] ): return model.encode(input_ids=_lowerCamelCase , attention_mask=_lowerCamelCase ) with self.subTest('''JIT Enabled''' ): A_ : Optional[Any] = encode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A_ : List[Any] = encode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) def a_ ( self : Tuple ): """simple docstring""" A_ , A_ : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): A_ : Union[str, Any] = model_class(_lowerCamelCase ) A_ : Optional[Any] = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) A_ : Tuple = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(_lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : Dict ): return model.decode( decoder_input_ids=_lowerCamelCase , decoder_attention_mask=_lowerCamelCase , encoder_outputs=_lowerCamelCase , ) with self.subTest('''JIT Enabled''' ): A_ : Union[str, Any] = decode_jitted(**_lowerCamelCase ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): A_ : Optional[Any] = decode_jitted(**_lowerCamelCase ).to_tuple() self.assertEqual(len(_lowerCamelCase ) , len(_lowerCamelCase ) ) for jitted_output, output in zip(_lowerCamelCase , _lowerCamelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a_ ( self : Tuple ): """simple docstring""" for model_class_name in self.all_model_classes: A_ : str = model_class_name.from_pretrained('''facebook/blenderbot_small-90M''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids A_ : str = np.ones((1, 1) ) * model.config.eos_token_id A_ : List[Any] = model(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase )
167
1
'''simple docstring''' import unittest from transformers.utils.backbone_utils import ( BackboneMixin, get_aligned_output_features_output_indices, verify_out_features_out_indices, ) class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[int] )-> int: """simple docstring""" UpperCAmelCase = ["a", "b", "c"] # Defaults to last layer if both are None UpperCAmelCase = get_aligned_output_features_output_indices(_a , _a , _a ) self.assertEqual(_a , ['''c'''] ) self.assertEqual(_a , [2] ) # Out indices set to match out features UpperCAmelCase = get_aligned_output_features_output_indices(['''a''', '''c'''] , _a , _a ) self.assertEqual(_a , ['''a''', '''c'''] ) self.assertEqual(_a , [0, 2] ) # Out features set to match out indices UpperCAmelCase = get_aligned_output_features_output_indices(_a , [0, 2] , _a ) self.assertEqual(_a , ['''a''', '''c'''] ) self.assertEqual(_a , [0, 2] ) # Out features selected from negative indices UpperCAmelCase = get_aligned_output_features_output_indices(_a , [-3, -1] , _a ) self.assertEqual(_a , ['''a''', '''c'''] ) self.assertEqual(_a , [-3, -1] ) def a__( self : str )-> Tuple: """simple docstring""" with self.assertRaises(_a ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , _a ) # Out features must be a list with self.assertRaises(_a ): verify_out_features_out_indices(('''a''', '''b''') , (0, 1) , ['''a''', '''b'''] ) # Out features must be a subset of stage names with self.assertRaises(_a ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 1) , ['''a'''] ) # Out indices must be a list or tuple with self.assertRaises(_a ): verify_out_features_out_indices(_a , 0 , ['''a''', '''b'''] ) # Out indices must be a subset of stage names with self.assertRaises(_a ): verify_out_features_out_indices(_a , (0, 1) , ['''a'''] ) # Out features and out indices must be the same length with self.assertRaises(_a ): verify_out_features_out_indices(['''a''', '''b'''] , (0,) , ['''a''', '''b''', '''c'''] ) # Out features should match out indices with self.assertRaises(_a ): verify_out_features_out_indices(['''a''', '''b'''] , (0, 2) , ['''a''', '''b''', '''c'''] ) # Out features and out indices should be in order with self.assertRaises(_a ): verify_out_features_out_indices(['''b''', '''a'''] , (0, 1) , ['''a''', '''b'''] ) # Check passes with valid inputs verify_out_features_out_indices(['''a''', '''b''', '''d'''] , (0, 1, -1) , ['''a''', '''b''', '''c''', '''d'''] ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" UpperCAmelCase = BackboneMixin() UpperCAmelCase = ["a", "b", "c"] UpperCAmelCase = ["a", "c"] UpperCAmelCase = [0, 2] # Check that the output features and indices are set correctly self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [0, 2] ) # Check out features and indices are updated correctly UpperCAmelCase = ["a", "b"] self.assertEqual(backbone.out_features , ['''a''', '''b'''] ) self.assertEqual(backbone.out_indices , [0, 1] ) UpperCAmelCase = [-3, -1] self.assertEqual(backbone.out_features , ['''a''', '''c'''] ) self.assertEqual(backbone.out_indices , [-3, -1] )
370
'''simple docstring''' _lowercase : Any = range(2, 20 + 1) _lowercase : str = [10**k for k in range(ks[-1] + 1)] _lowercase : dict[int, dict[int, list[list[int]]]] = {} def lowerCamelCase__ ( A : int , A : str , A : List[Any] , A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase = sum(a_i[j] for j in range(A , len(A ) ) ) UpperCAmelCase = sum(a_i[j] * base[j] for j in range(min(len(A ) , A ) ) ) UpperCAmelCase , UpperCAmelCase = 0, 0 UpperCAmelCase = n - i UpperCAmelCase = memo.get(A ) if sub_memo is not None: UpperCAmelCase = sub_memo.get(A ) if jumps is not None and len(A ) > 0: # find and make the largest jump without going over UpperCAmelCase = -1 for _k in range(len(A ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: UpperCAmelCase = _k break if max_jump >= 0: UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = jumps[max_jump] # since the difference between jumps is cached, add c UpperCAmelCase = diff + c for j in range(min(A , len(A ) ) ): UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) if new_c > 0: add(A , A , A ) else: UpperCAmelCase = [] else: UpperCAmelCase = {c: []} UpperCAmelCase = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps UpperCAmelCase , UpperCAmelCase = next_term(A , k - 1 , i + dn , A ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead UpperCAmelCase , UpperCAmelCase = compute(A , A , i + dn , A ) diff += _diff dn += terms_jumped UpperCAmelCase = sub_memo[c] # keep jumps sorted by # of terms skipped UpperCAmelCase = 0 while j < len(A ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(A , (diff, dn, k) ) return (diff, dn) def lowerCamelCase__ ( A : Dict , A : Optional[int] , A : List[Any] , A : int ): '''simple docstring''' if i >= n: return 0, i if k > len(A ): a_i.extend([0 for _ in range(k - len(A ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) UpperCAmelCase = i UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = 0, 0, 0 for j in range(len(A ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 UpperCAmelCase = ds_c + ds_b diff += addend UpperCAmelCase = 0 for j in range(A ): UpperCAmelCase = a_i[j] + addend UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(A , A , A ) return diff, i - start_i def lowerCamelCase__ ( A : List[str] , A : Optional[int] , A : Optional[Any] ): '''simple docstring''' for j in range(A , len(A ) ): UpperCAmelCase = digits[j] + addend if s >= 10: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) UpperCAmelCase = addend // 10 + quotient else: UpperCAmelCase = s UpperCAmelCase = addend // 10 if addend == 0: break while addend > 0: UpperCAmelCase , UpperCAmelCase = divmod(A , 10 ) digits.append(A ) def lowerCamelCase__ ( A : int = 10**15 ): '''simple docstring''' UpperCAmelCase = [1] UpperCAmelCase = 1 UpperCAmelCase = 0 while True: UpperCAmelCase , UpperCAmelCase = next_term(A , 20 , i + dn , A ) dn += terms_jumped if dn == n - i: break UpperCAmelCase = 0 for j in range(len(A ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(F"""{solution() = }""")
91
0
'''simple docstring''' import datasets SCREAMING_SNAKE_CASE__ = '\\n@InProceedings{conneau2018xnli,\n author = "Conneau, Alexis\n and Rinott, Ruty\n and Lample, Guillaume\n and Williams, Adina\n and Bowman, Samuel R.\n and Schwenk, Holger\n and Stoyanov, Veselin",\n title = "XNLI: Evaluating Cross-lingual Sentence Representations",\n booktitle = "Proceedings of the 2018 Conference on Empirical Methods\n in Natural Language Processing",\n year = "2018",\n publisher = "Association for Computational Linguistics",\n location = "Brussels, Belgium",\n}\n' SCREAMING_SNAKE_CASE__ = '\\nXNLI is a subset of a few thousand examples from MNLI which has been translated\ninto a 14 different languages (some low-ish resource). As with MNLI, the goal is\nto predict textual entailment (does sentence A imply/contradict/neither sentence\nB) and is a classification task (given two sentences, predict one of three\nlabels).\n' SCREAMING_SNAKE_CASE__ = '\nComputes XNLI score which is just simple accuracy.\nArgs:\n predictions: Predicted labels.\n references: Ground truth labels.\nReturns:\n \'accuracy\': accuracy\nExamples:\n\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> xnli_metric = datasets.load_metric("xnli")\n >>> results = xnli_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n' def lowercase__ ( __UpperCamelCase , __UpperCamelCase )-> List[Any]: return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a_ ( datasets.Metric ): def A__ ( self ) -> Optional[int]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """sts-b""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def A__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" return {"accuracy": simple_accuracy(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )}
321
'''simple docstring''' import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def lowercase__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[str]: UpperCamelCase = 1.5 UpperCamelCase = int(factor * num_class_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 ) os.makedirs(F"{class_data_dir}/images" , exist_ok=__UpperCamelCase ) if len(list(Path(F"{class_data_dir}/images" ).iterdir() ) ) >= num_class_images: return while True: UpperCamelCase = client.query(text=__UpperCamelCase ) if len(__UpperCamelCase ) >= factor * num_class_images or num_images > 1E4: break else: UpperCamelCase = int(factor * num_images ) UpperCamelCase = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__UpperCamelCase , aesthetic_weight=0.1 , ) UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = tqdm(desc="""downloading real regularization images""" , total=__UpperCamelCase ) with open(F"{class_data_dir}/caption.txt" , """w""" ) as fa, open(F"{class_data_dir}/urls.txt" , """w""" ) as fa, open( F"{class_data_dir}/images.txt" , """w""" ) as fa: while total < num_class_images: UpperCamelCase = class_images[count] count += 1 try: UpperCamelCase = requests.get(images["""url"""] ) if img.status_code == 200: UpperCamelCase = Image.open(BytesIO(img.content ) ) with open(F"{class_data_dir}/images/{total}.jpg" , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F"{class_data_dir}/images/{total}.jpg" + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def lowercase__ ( )-> str: UpperCamelCase = argparse.ArgumentParser("""""" , add_help=__UpperCamelCase ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__UpperCamelCase , type=__UpperCamelCase ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__UpperCamelCase ) return parser.parse_args() if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
321
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase = '▁' _lowerCamelCase = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class a ( _A , unittest.TestCase ): '''simple docstring''' lowerCAmelCase : Dict = BigBirdTokenizer lowerCAmelCase : List[str] = BigBirdTokenizerFast lowerCAmelCase : Union[str, Any] = True lowerCAmelCase : Optional[int] = True def lowerCamelCase_ ( self : List[str] ): super().setUp() UpperCAmelCase_ = self.tokenizer_class(__snake_case , keep_accents=__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCamelCase_ ( self : Dict ): UpperCAmelCase_ = '''<s>''' UpperCAmelCase_ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCamelCase_ ( self : Union[str, Any] ): UpperCAmelCase_ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''[MASK]''' ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCamelCase_ ( self : Union[str, Any] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def lowerCamelCase_ ( self : Union[str, Any] ): if not self.test_rust_tokenizer: return UpperCAmelCase_ = self.get_tokenizer() UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = '''I was born in 92000, and this is falsé.''' UpperCAmelCase_ = tokenizer.tokenize(__snake_case ) UpperCAmelCase_ = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase_ = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) UpperCAmelCase_ = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) UpperCAmelCase_ = self.get_rust_tokenizer() UpperCAmelCase_ = tokenizer.encode(__snake_case ) UpperCAmelCase_ = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCamelCase_ ( self : List[str] ): UpperCAmelCase_ = BigBirdTokenizer(__snake_case , keep_accents=__snake_case ) UpperCAmelCase_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(__snake_case , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case ) , [2_85, 46, 10, 1_70, 3_82] , ) UpperCAmelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(__snake_case ) self.assertListEqual( __snake_case , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) UpperCAmelCase_ = tokenizer.convert_ids_to_tokens(__snake_case ) self.assertListEqual( __snake_case , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def lowerCamelCase_ ( self : List[str] ): return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) @slow def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = '''Hello World!''' UpperCAmelCase_ = [65, 1_85_36, 22_60, 1_01, 66] self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @slow def lowerCamelCase_ ( self : List[Any] ): UpperCAmelCase_ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase_ = [65, 8_71, 4_19, 3_58, 9_46, 9_91, 25_21, 4_52, 3_58, 13_57, 3_87, 77_51, 35_36, 1_12, 9_85, 4_56, 1_26, 8_65, 9_38, 54_00, 57_34, 4_58, 13_68, 4_67, 7_86, 24_62, 52_46, 11_59, 6_33, 8_65, 45_19, 4_57, 5_82, 8_52, 25_57, 4_27, 9_16, 5_08, 4_05, 3_43_24, 4_97, 3_91, 4_08, 1_13_42, 12_44, 3_85, 1_00, 9_38, 9_85, 4_56, 5_74, 3_62, 1_25_97, 32_00, 31_29, 11_72, 66] # noqa: E231 # fmt: on self.assertListEqual(__snake_case , self.big_tokenizer.encode(__snake_case ) ) @require_torch @slow def lowerCamelCase_ ( self : Any ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence UpperCAmelCase_ = list(self.big_tokenizer.get_vocab().keys() )[:10] UpperCAmelCase_ = ''' '''.join(__snake_case ) UpperCAmelCase_ = self.big_tokenizer.encode_plus(__snake_case , return_tensors='''pt''' , return_token_type_ids=__snake_case ) UpperCAmelCase_ = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=__snake_case ) UpperCAmelCase_ = BigBirdConfig(attention_type='''original_full''' ) UpperCAmelCase_ = BigBirdModel(__snake_case ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__snake_case ) model(**__snake_case ) @slow def lowerCamelCase_ ( self : Tuple ): UpperCAmelCase_ = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''' ) UpperCAmelCase_ = tokenizer.decode(tokenizer('''Paris is the [MASK].''' ).input_ids ) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''' ) @slow def lowerCamelCase_ ( self : Union[str, Any] ): # fmt: off UpperCAmelCase_ = {'''input_ids''': [[65, 3_92_86, 4_58, 3_63_35, 20_01, 4_56, 1_30_73, 1_32_66, 4_55, 1_13, 77_46, 17_41, 1_11_57, 3_91, 1_30_73, 1_32_66, 4_55, 1_13, 39_67, 3_54_12, 1_13, 49_36, 1_09, 38_70, 23_77, 1_13, 3_00_84, 4_57_20, 4_58, 1_34, 1_74_96, 1_12, 5_03, 1_16_72, 1_13, 1_18, 1_12, 56_65, 1_33_47, 3_86_87, 1_12, 14_96, 3_13_89, 1_12, 32_68, 4_72_64, 1_34, 9_62, 1_12, 1_63_77, 80_35, 2_31_30, 4_30, 1_21_69, 1_55_18, 2_85_92, 4_58, 1_46, 4_16_97, 1_09, 3_91, 1_21_69, 1_55_18, 1_66_89, 4_58, 1_46, 4_13_58, 1_09, 4_52, 7_26, 40_34, 1_11, 7_63, 3_54_12, 50_82, 3_88, 19_03, 1_11, 90_51, 3_91, 28_70, 4_89_18, 19_00, 11_23, 5_50, 9_98, 1_12, 95_86, 1_59_85, 4_55, 3_91, 4_10, 2_29_55, 3_76_36, 1_14, 66], [65, 4_48, 1_74_96, 4_19, 36_63, 3_85, 7_63, 1_13, 2_75_33, 28_70, 32_83, 1_30_43, 16_39, 2_47_13, 5_23, 6_56, 2_40_13, 1_85_50, 25_21, 5_17, 2_70_14, 2_12_44, 4_20, 12_12, 14_65, 3_91, 9_27, 48_33, 3_88, 5_78, 1_17_86, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 4_84, 21_69, 76_87, 2_19_32, 1_81_46, 7_26, 3_63, 1_70_32, 33_91, 1_14, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
177
def SCREAMING_SNAKE_CASE ( __UpperCamelCase : float , __UpperCamelCase : float ) -> float: if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
177
1
'''simple docstring''' import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''vocab_file''': '''vocab.txt''', '''merges_file''': '''bpe.codes''', } _lowerCAmelCase = { '''vocab_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt''', }, '''merges_file''': { '''vinai/phobert-base''': '''https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes''', '''vinai/phobert-large''': '''https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes''', }, } _lowerCAmelCase = { '''vinai/phobert-base''': 256, '''vinai/phobert-large''': 256, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : str = set() lowerCAmelCase__ : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCAmelCase__ : Dict = char lowerCAmelCase__ : Any = set(UpperCamelCase ) return pairs class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="</s>" ,__UpperCAmelCase="<s>" ,__UpperCAmelCase="<unk>" ,__UpperCAmelCase="<pad>" ,__UpperCAmelCase="<mask>" ,**__UpperCAmelCase ,) -> List[str]: super().__init__( bos_token=__UpperCAmelCase ,eos_token=__UpperCAmelCase ,unk_token=__UpperCAmelCase ,sep_token=__UpperCAmelCase ,cls_token=__UpperCAmelCase ,pad_token=__UpperCAmelCase ,mask_token=__UpperCAmelCase ,**__UpperCAmelCase ,) lowerCAmelCase__ : List[Any] = vocab_file lowerCAmelCase__ : Dict = merges_file lowerCAmelCase__ : int = {} lowerCAmelCase__ : str = 0 lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : Union[str, Any] = 2 lowerCAmelCase__ : Optional[int] = 3 self.add_from_file(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = {v: k for k, v in self.encoder.items()} with open(__UpperCAmelCase ,encoding="""utf-8""" ) as merges_handle: lowerCAmelCase__ : int = merges_handle.read().split("""\n""" )[:-1] lowerCAmelCase__ : Optional[int] = [tuple(merge.split()[:-1] ) for merge in merges] lowerCAmelCase__ : Dict = dict(zip(__UpperCAmelCase ,range(len(__UpperCAmelCase ) ) ) ) lowerCAmelCase__ : Dict = {} def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowerCAmelCase__ : Optional[int] = [self.cls_token_id] lowerCAmelCase__ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCAmelCase ,token_ids_a=__UpperCAmelCase ,already_has_special_tokens=__UpperCAmelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> List[int]: lowerCAmelCase__ : Optional[Any] = [self.sep_token_id] lowerCAmelCase__ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCAmelCase_ ( self ) -> Tuple: return len(self.encoder ) def UpperCAmelCase_ ( self ) -> Optional[Any]: return dict(self.encoder ,**self.added_tokens_encoder ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: if token in self.cache: return self.cache[token] lowerCAmelCase__ : List[Any] = tuple(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = tuple(list(word[:-1] ) + [word[-1] + """</w>"""] ) lowerCAmelCase__ : Optional[int] = get_pairs(__UpperCAmelCase ) if not pairs: return token while True: lowerCAmelCase__ : Tuple = min(__UpperCAmelCase ,key=lambda __UpperCAmelCase : self.bpe_ranks.get(__UpperCAmelCase ,float("""inf""" ) ) ) if bigram not in self.bpe_ranks: break lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = bigram lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : List[str] = 0 while i < len(__UpperCAmelCase ): try: lowerCAmelCase__ : Any = word.index(__UpperCAmelCase ,__UpperCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCAmelCase__ : Dict = j if word[i] == first and i < len(__UpperCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCAmelCase__ : str = tuple(__UpperCAmelCase ) lowerCAmelCase__ : int = new_word if len(__UpperCAmelCase ) == 1: break else: lowerCAmelCase__ : Any = get_pairs(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = """@@ """.join(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = word[:-4] lowerCAmelCase__ : Optional[Any] = word return word def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Dict = [] lowerCAmelCase__ : str = re.findall(R"""\S+\n?""" ,__UpperCAmelCase ) for token in words: split_tokens.extend(list(self.bpe(__UpperCAmelCase ).split(""" """ ) ) ) return split_tokens def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: return self.encoder.get(__UpperCAmelCase ,self.encoder.get(self.unk_token ) ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: return self.decoder.get(__UpperCAmelCase ,self.unk_token ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> List[str]: lowerCAmelCase__ : List[str] = """ """.join(__UpperCAmelCase ).replace("""@@ """ ,"""""" ).strip() return out_string def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[str] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) lowerCAmelCase__ : List[str] = os.path.join( __UpperCAmelCase ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""merges_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file ,__UpperCAmelCase ) if os.path.abspath(self.merges_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.merges_file ,__UpperCAmelCase ) return out_vocab_file, out_merge_file def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Tuple: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): try: with open(__UpperCAmelCase ,"""r""" ,encoding="""utf-8""" ) as fd: self.add_from_file(__UpperCAmelCase ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(F"""Incorrect encoding detected in {f}, please rebuild the dataset""" ) return lowerCAmelCase__ : Tuple = f.readlines() for lineTmp in lines: lowerCAmelCase__ : Optional[int] = lineTmp.strip() lowerCAmelCase__ : List[str] = line.rfind(""" """ ) if idx == -1: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt>'""" ) lowerCAmelCase__ : Optional[Any] = line[:idx] lowerCAmelCase__ : int = len(self.encoder )
37
"""simple docstring""" import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __snake_case = logging.get_logger(__name__) __snake_case = { '''facebook/bart-large''': '''https://huggingface.co/facebook/bart-large/resolve/main/config.json''', # See all BART models at https://huggingface.co/models?filter=bart } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : List[str] = 'bart' A_ : Optional[Any] = ['past_key_values'] A_ : Union[str, Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self , __UpperCAmelCase=50265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.02 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ) -> Tuple: _a = vocab_size _a = max_position_embeddings _a = d_model _a = encoder_ffn_dim _a = encoder_layers _a = encoder_attention_heads _a = decoder_ffn_dim _a = decoder_layers _a = decoder_attention_heads _a = dropout _a = attention_dropout _a = activation_dropout _a = activation_function _a = init_std _a = encoder_layerdrop _a = decoder_layerdrop _a = classifier_dropout _a = use_cache _a = encoder_layers _a = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , __UpperCAmelCase ): _a = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' '''The config can simply be saved and uploaded again to be fixed.''' ) class __lowerCamelCase ( a__ ): '''simple docstring''' @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a = {0: '''batch'''} _a = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _a = {0: '''batch''', 1: '''decoder_sequence'''} _a = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__UpperCAmelCase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} else: _a = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def _UpperCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: _a = super().outputs else: _a = super(__UpperCAmelCase , self ).outputs if self.use_past: _a , _a = self.num_layers for i in range(__UpperCAmelCase ): _a = {0: '''batch''', 2: '''past_sequence + sequence'''} _a = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # Generate decoder inputs _a = seq_length if not self.use_past else 1 _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) _a = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} _a = dict(**__UpperCAmelCase , **__UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape _a = common_inputs['''decoder_input_ids'''].shape[1] _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = decoder_seq_length + 3 _a = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) _a = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 ) _a = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered _a , _a = self.num_layers _a = min(__UpperCAmelCase , __UpperCAmelCase ) _a = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers _a = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__UpperCAmelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase ), ) ) # TODO: test this. _a = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__UpperCAmelCase , __UpperCAmelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch _a , _a = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values _a = seqlen + 2 _a , _a = self.num_layers _a , _a = self.num_attention_heads _a = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) _a = common_inputs['''attention_mask'''].dtype _a = torch.cat( [common_inputs['''attention_mask'''], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 ) _a = [ (torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase ) ] return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _a = tokenizer.num_special_tokens_to_add(__UpperCAmelCase ) _a = compute_effective_axis_dimension( __UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence _a = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size _a = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ) -> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: _a = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) elif self.task == "causal-lm": _a = self._generate_dummy_inputs_for_causal_lm( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) else: _a = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase ) return common_inputs def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: if self.task in ["default", "seq2seq-lm"]: _a = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) else: _a = super(__UpperCAmelCase , self )._flatten_past_key_values_( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
320
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" @slow def _a ( self ): UpperCamelCase_: Optional[int] = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) UpperCamelCase_: int = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase_: Union[str, Any] = torch.Size((1, 1_2, 7_6_8) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase_: int = torch.tensor( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase_: Tuple = model(_lowerCamelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3 ) ) @slow def _a ( self ): UpperCamelCase_: List[str] = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) UpperCamelCase_: Any = torch.tensor([[0, 5_8_1, 1_0_2_6_9, 8_3, 9_9_9_4_2, 1_3_6, 6_0_7_4_2, 2_3, 7_0, 8_0_5_8_3, 1_8_2_7_6, 2]] ) # The dog is cute and lives in the garden house UpperCamelCase_: Optional[int] = torch.Size((1, 1_2, 1_0_2_4) ) # batch_size, sequence_length, embedding_vector_dim UpperCamelCase_: Tuple = torch.tensor( [[-0.0_6_9_9, -0.0_3_1_8, 0.0_7_0_5, -0.1_2_4_1, 0.0_9_9_9, -0.0_5_2_0, 0.1_0_0_4, -0.1_8_3_8, -0.4_7_0_4, 0.1_4_3_7, 0.0_8_2_1, 0.0_1_2_6]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): UpperCamelCase_: Optional[int] = model(_lowerCamelCase )['last_hidden_state'].detach() self.assertEqual(output.shape , _lowerCamelCase ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _lowerCamelCase , atol=1e-3 ) )
292
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input A_ : Any = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def snake_case () -> Union[str, Any]: UpperCamelCase_: Tuple = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: UpperCamelCase_: List[str] = get_sagemaker_input() else: UpperCamelCase_: List[str] = get_cluster_input() return config def snake_case (UpperCAmelCase__=None ) -> Union[str, Any]: if subparsers is not None: UpperCamelCase_: List[Any] = subparsers.add_parser('config' , description=UpperCAmelCase__ ) else: UpperCamelCase_: List[Any] = argparse.ArgumentParser('Accelerate config command' , description=UpperCAmelCase__ ) parser.add_argument( '--config_file' , default=UpperCAmelCase__ , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=UpperCAmelCase__ ) return parser def snake_case (UpperCAmelCase__ ) -> List[Any]: UpperCamelCase_: Union[str, Any] = get_user_input() if args.config_file is not None: UpperCamelCase_: Tuple = args.config_file else: if not os.path.isdir(UpperCAmelCase__ ): os.makedirs(UpperCAmelCase__ ) UpperCamelCase_: Dict = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(UpperCAmelCase__ ) else: config.to_yaml_file(UpperCAmelCase__ ) print(F'''accelerate configuration saved at {config_file}''' ) def snake_case () -> str: UpperCamelCase_: Tuple = config_command_parser() UpperCamelCase_: int = parser.parse_args() config_command(UpperCAmelCase__ ) if __name__ == "__main__": main()
292
1
from math import factorial class a__ : def __init__( self : List[str],_A : Tuple,_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = real if isinstance(_A,_A ): SCREAMING_SNAKE_CASE_ : Tuple = [1] * rank else: SCREAMING_SNAKE_CASE_ : Optional[Any] = rank def __repr__( self : List[Any] ): """simple docstring""" return ( F'{self.real}+' F'{"+".join(str(_A )+"E"+str(n+1 )for n,dual in enumerate(self.duals ) )}' ) def __UpperCamelCase ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real,_A ) def __add__( self : Any,_A : List[Any] ): """simple docstring""" if not isinstance(_A,_A ): return Dual(self.real + other,self.duals ) SCREAMING_SNAKE_CASE_ : str = self.duals.copy() SCREAMING_SNAKE_CASE_ : Union[str, Any] = other.duals.copy() if len(_A ) > len(_A ): o_dual.extend([1] * (len(_A ) - len(_A )) ) elif len(_A ) < len(_A ): s_dual.extend([1] * (len(_A ) - len(_A )) ) SCREAMING_SNAKE_CASE_ : int = [] for i in range(len(_A ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real,_A ) A = __add__ def __sub__( self : Any,_A : Union[str, Any] ): """simple docstring""" return self + other * -1 def __mul__( self : Tuple,_A : Any ): """simple docstring""" if not isinstance(_A,_A ): SCREAMING_SNAKE_CASE_ : int = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other,_A ) SCREAMING_SNAKE_CASE_ : str = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real,_A ) A = __mul__ def __truediv__( self : Optional[Any],_A : Dict ): """simple docstring""" if not isinstance(_A,_A ): SCREAMING_SNAKE_CASE_ : Dict = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other,_A ) raise ValueError def __floordiv__( self : List[str],_A : Any ): """simple docstring""" if not isinstance(_A,_A ): SCREAMING_SNAKE_CASE_ : Optional[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other,_A ) raise ValueError def __pow__( self : Optional[Any],_A : Any ): """simple docstring""" if n < 0 or isinstance(_A,_A ): raise ValueError("power must be a positive integer" ) if n == 0: return 1 if n == 1: return self SCREAMING_SNAKE_CASE_ : Union[str, Any] = self for _ in range(n - 1 ): x *= self return x def _snake_case ( lowerCAmelCase : Tuple , lowerCAmelCase : List[str] , lowerCAmelCase : Any ): """simple docstring""" if not callable(lowerCAmelCase ): raise ValueError("differentiate() requires a function as input for func" ) if not isinstance(lowerCAmelCase , (float, int) ): raise ValueError("differentiate() requires a float as input for position" ) if not isinstance(lowerCAmelCase , lowerCAmelCase ): raise ValueError("differentiate() requires an int as input for order" ) SCREAMING_SNAKE_CASE_ : Tuple = Dual(lowerCAmelCase , 1 ) SCREAMING_SNAKE_CASE_ : Dict = func(lowerCAmelCase ) if order == 0: return result.real return result.duals[order - 1] * factorial(lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() def _snake_case ( lowerCAmelCase : Any ): """simple docstring""" return y**2 * y**4 print(differentiate(f, 9, 2))
18
'''simple docstring''' import os from pickle import UnpicklingError from typing import Dict, Tuple import jax import jax.numpy as jnp import numpy as np from flax.serialization import from_bytes from flax.traverse_util import flatten_dict, unflatten_dict import transformers from .utils import logging lowercase : Dict = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__=False ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a PyTorch model in Flax, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise if not is_sharded: A : Union[str, Any] = os.path.abspath(snake_case__ ) logger.info(F'Loading PyTorch weights from {pt_path}' ) A : Any = torch.load(snake_case__ , map_location='''cpu''' ) logger.info(F'PyTorch checkpoint contains {sum(t.numel() for t in pt_state_dict.values() ):,} parameters.' ) A : List[str] = convert_pytorch_state_dict_to_flax(snake_case__ , snake_case__ ) else: # model is sharded and pytorch_checkpoint_path already contains the list of .pt shard files A : Any = convert_pytorch_sharded_state_dict_to_flax(snake_case__ , snake_case__ ) return flax_state_dict def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , ): '''simple docstring''' def is_key_or_prefix_key_in_dict(snake_case__ ) -> bool: return len(set(snake_case__ ) & {key, (model_prefix,) + key} ) > 0 # layer norm A : Union[str, Any] = pt_tuple_key[:-1] + ('''scale''',) if pt_tuple_key[-1] in ["weight", "gamma"] and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer mean A : Tuple = pt_tuple_key[:-1] + ('''mean''',) if pt_tuple_key[-1] == "running_mean" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # batch norm layer var A : Dict = pt_tuple_key[:-1] + ('''var''',) if pt_tuple_key[-1] == "running_var" and not is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # embedding A : Any = pt_tuple_key[:-1] + ('''embedding''',) if pt_tuple_key[-1] == "weight" and is_key_or_prefix_key_in_dict(snake_case__ ): return renamed_pt_tuple_key, pt_tensor # conv layer A : Optional[Any] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4 and not is_key_or_prefix_key_in_dict(snake_case__ ): A : List[Any] = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : Optional[int] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and not is_key_or_prefix_key_in_dict(snake_case__ ): A : str = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : Dict = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : List[Any] = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 A : Dict = None if pt_tuple_key[-3::2] == ("parametrizations", "original0"): A : List[Any] = pt_tuple_key[-2] + '''_g''' elif pt_tuple_key[-3::2] == ("parametrizations", "original1"): A : List[str] = pt_tuple_key[-2] + '''_v''' if name is not None: A : int = pt_tuple_key[:-3] + (name,) return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} A : int = flax_model.base_model_prefix # use params dict if the model contains batch norm layers if "params" in flax_model.params: A : List[str] = flax_model.params['''params'''] else: A : Dict = flax_model.params A : List[Any] = flatten_dict(snake_case__ ) # add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : List[str] = flatten_dict(flax_model.params['''batch_stats'''] ) random_flax_state_dict.update(snake_case__ ) A : int = {} A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : int = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : str = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : Union[str, Any] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Any = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Dict = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : Any = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1] or "var" in flax_key[-1]: A : Tuple = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : List[str] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' import torch # Load the index A : Union[str, Any] = {} for shard_file in shard_filenames: # load using msgpack utils A : List[str] = torch.load(snake_case__ ) A : int = {k: v.numpy() for k, v in pt_state_dict.items()} A : Tuple = flax_model.base_model_prefix # use params dict if the model contains batch norm layers and then add batch_stats keys,values to dict if "batch_stats" in flax_model.params: A : Optional[int] = flax_model.params['''params'''] A : List[Any] = flatten_dict(snake_case__ ) random_flax_state_dict.update(flatten_dict(flax_model.params['''batch_stats'''] ) ) else: A : Dict = flax_model.params A : Tuple = flatten_dict(snake_case__ ) A : List[str] = (model_prefix not in flax_model_params) and ( model_prefix in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) A : List[str] = (model_prefix in flax_model_params) and ( model_prefix not in {k.split('''.''' )[0] for k in pt_state_dict.keys()} ) # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : int = tuple(pt_key.split('''.''' ) ) # remove base model prefix if necessary A : List[str] = pt_tuple_key[0] == model_prefix if load_model_with_head_into_base_model and has_base_model_prefix: A : Union[str, Any] = pt_tuple_key[1:] # Correctly rename weight parameters A, A : Any = rename_key_and_reshape_tensor( snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # add model prefix if necessary A : int = (model_prefix,) + flax_key in random_flax_state_dict if load_base_model_into_model_with_head and require_base_model_prefix: A : int = (model_prefix,) + flax_key if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # add batch stats if the model contains batchnorm layers if "batch_stats" in flax_model.params: if "mean" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue if "var" in flax_key[-1]: A : Optional[int] = jnp.asarray(snake_case__ ) continue # remove num_batches_tracked key if "num_batches_tracked" in flax_key[-1]: flax_state_dict.pop(snake_case__ , snake_case__ ) continue # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) else: # also add unexpected weight so that warning is thrown A : Optional[Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' A : Dict = os.path.abspath(snake_case__ ) logger.info(F'Loading Flax weights from {flax_checkpoint_path}' ) # import correct flax class A : List[str] = getattr(snake_case__ , '''Flax''' + model.__class__.__name__ ) # load flax weight dict with open(snake_case__ , '''rb''' ) as state_f: try: A : int = from_bytes(snake_case__ , state_f.read() ) except UnpicklingError: raise EnvironmentError(F'Unable to convert {flax_checkpoint_path} to Flax deserializable object. ' ) return load_flax_weights_in_pytorch_model(snake_case__ , snake_case__ ) def lowerCAmelCase_ ( snake_case__ , snake_case__ ): '''simple docstring''' try: import torch # noqa: F401 except ImportError: logger.error( '''Loading a Flax weights in PyTorch, requires both PyTorch and Flax to be installed. Please see''' ''' https://pytorch.org/ and https://flax.readthedocs.io/en/latest/installation.html for installation''' ''' instructions.''' ) raise # check if we have bf16 weights A : List[str] = flatten_dict(jax.tree_util.tree_map(lambda snake_case__ : x.dtype == jnp.bfloataa , snake_case__ ) ).values() if any(snake_case__ ): # convert all weights to fp32 if the are bf16 since torch.from_numpy can-not handle bf16 # and bf16 is not fully supported in PT yet. logger.warning( '''Found ``bfloat16`` weights in Flax model. Casting all ``bfloat16`` weights to ``float32`` ''' '''before loading those in PyTorch model.''' ) A : Optional[Any] = jax.tree_util.tree_map( lambda snake_case__ : params.astype(np.floataa ) if params.dtype == jnp.bfloataa else params , snake_case__ ) A : Union[str, Any] = flatten_dict(snake_case__ ) A : List[Any] = pt_model.state_dict() A : Union[str, Any] = (pt_model.base_model_prefix in flax_state) and ( pt_model.base_model_prefix not in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) A : Tuple = (pt_model.base_model_prefix not in flax_state) and ( pt_model.base_model_prefix in {k.split('''.''' )[0] for k in pt_model_dict.keys()} ) # keep track of unexpected & missing keys A : int = [] A : Any = set(pt_model_dict.keys() ) for flax_key_tuple, flax_tensor in flax_state_dict.items(): A : Union[str, Any] = flax_key_tuple[0] == pt_model.base_model_prefix A : int = '''.'''.join((pt_model.base_model_prefix,) + flax_key_tuple ) in pt_model_dict # adapt flax_key to prepare for loading from/to base model only if load_model_with_head_into_base_model and has_base_model_prefix: A : List[str] = flax_key_tuple[1:] elif load_base_model_into_model_with_head and require_base_model_prefix: A : Optional[Any] = (pt_model.base_model_prefix,) + flax_key_tuple # rename flax weights to PyTorch format if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 4 and ".".join(snake_case__ ) not in pt_model_dict: # conv layer A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) A : Optional[int] = jnp.transpose(snake_case__ , (3, 2, 0, 1) ) elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case__ ) not in pt_model_dict: # linear layer A : Tuple = flax_key_tuple[:-1] + ('''weight''',) A : Tuple = flax_tensor.T elif flax_key_tuple[-1] in ["scale", "embedding"]: A : Optional[int] = flax_key_tuple[:-1] + ('''weight''',) # adding batch stats from flax batch norm to pt elif "mean" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_mean''',) elif "var" in flax_key_tuple[-1]: A : Tuple = flax_key_tuple[:-1] + ('''running_var''',) if "batch_stats" in flax_state: A : List[Any] = '''.'''.join(flax_key_tuple[1:] ) # Remove the params/batch_stats header else: A : Union[str, Any] = '''.'''.join(snake_case__ ) # We also need to look at `pt_model_dict` and see if there are keys requiring further transformation. A : int = {} # New `weight_norm` from https://github.com/huggingface/transformers/pull/24030 for key in pt_model_dict: A : Optional[int] = key.split('''.''' ) A : Dict = None if key_components[-3::2] == ["parametrizations", "original0"]: A : List[str] = key_components[-2] + '''_g''' elif key_components[-3::2] == ["parametrizations", "original1"]: A : List[Any] = key_components[-2] + '''_v''' if name is not None: A : str = key_components[:-3] + [name] A : Optional[Any] = '''.'''.join(snake_case__ ) A : Optional[Any] = key if flax_key in special_pt_names: A : Optional[Any] = special_pt_names[flax_key] if flax_key in pt_model_dict: if flax_tensor.shape != pt_model_dict[flax_key].shape: raise ValueError( F'Flax checkpoint seems to be incorrect. Weight {flax_key_tuple} was expected ' F'to be of shape {pt_model_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) else: # add weight to pytorch dict A : Dict = np.asarray(snake_case__ ) if not isinstance(snake_case__ , np.ndarray ) else flax_tensor A : Dict = torch.from_numpy(snake_case__ ) # remove from missing keys missing_keys.remove(snake_case__ ) else: # weight is not expected by PyTorch model unexpected_keys.append(snake_case__ ) pt_model.load_state_dict(snake_case__ ) # re-transform missing_keys to list A : List[Any] = list(snake_case__ ) if len(snake_case__ ) > 0: logger.warning( '''Some weights of the Flax model were not used when initializing the PyTorch model''' F' {pt_model.__class__.__name__}: {unexpected_keys}\n- This IS expected if you are initializing' F' {pt_model.__class__.__name__} from a Flax model trained on another task or with another architecture' ''' (e.g. initializing a BertForSequenceClassification model from a FlaxBertForPreTraining model).\n- This''' F' IS NOT expected if you are initializing {pt_model.__class__.__name__} from a Flax model that you expect' ''' to be exactly identical (e.g. initializing a BertForSequenceClassification model from a''' ''' FlaxBertForSequenceClassification model).''' ) else: logger.warning(F'All Flax model weights were used when initializing {pt_model.__class__.__name__}.\n' ) if len(snake_case__ ) > 0: logger.warning( F'Some weights of {pt_model.__class__.__name__} were not initialized from the Flax model and are newly' F' initialized: {missing_keys}\nYou should probably TRAIN this model on a down-stream task to be able to' ''' use it for predictions and inference.''' ) else: logger.warning( F'All the weights of {pt_model.__class__.__name__} were initialized from the Flax model.\n' '''If your task is similar to the task the model of the checkpoint was trained on, ''' F'you can already use {pt_model.__class__.__name__} for predictions without further training.' ) return pt_model
3
0
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class a_ : '''simple docstring''' def __init__( self : Tuple , lowercase__ : int , lowercase__ : List[Any]=2 , lowercase__ : Any=True , lowercase__ : int=False , lowercase__ : Optional[Any]=10 , lowercase__ : Tuple=3 , lowercase__ : Tuple=32 * 4 , lowercase__ : Union[str, Any]=32 * 6 , lowercase__ : List[Any]=4 , lowercase__ : Any=32 , ): '''simple docstring''' lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = is_training lowerCAmelCase__ = use_auxiliary_loss lowerCAmelCase__ = num_queries lowerCAmelCase__ = num_channels lowerCAmelCase__ = min_size lowerCAmelCase__ = max_size lowerCAmelCase__ = num_labels lowerCAmelCase__ = mask_feature_size def __snake_case ( self : int): '''simple docstring''' lowerCAmelCase__ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size]).to( UpperCamelCase__) lowerCAmelCase__ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=UpperCamelCase__) lowerCAmelCase__ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=UpperCamelCase__) > 0.5 ).float() lowerCAmelCase__ = (torch.rand((self.batch_size, self.num_labels) , device=UpperCamelCase__) > 0.5).long() lowerCAmelCase__ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __snake_case ( self : List[str]): '''simple docstring''' return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1] , ) , decoder_config=DetrConfig( decoder_ffn_dim=128 , num_queries=self.num_queries , decoder_attention_heads=2 , d_model=self.mask_feature_size , ) , mask_feature_size=self.mask_feature_size , fpn_feature_size=self.mask_feature_size , num_channels=self.num_channels , num_labels=self.num_labels , ) def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.prepare_config_and_inputs() lowerCAmelCase__ = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __snake_case ( self : int , lowercase__ : Dict , lowercase__ : str): '''simple docstring''' lowerCAmelCase__ = output.encoder_hidden_states lowerCAmelCase__ = output.pixel_decoder_hidden_states lowerCAmelCase__ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase__) , len(config.backbone_config.depths)) self.parent.assertTrue(len(UpperCamelCase__) , config.decoder_config.decoder_layers) def __snake_case ( self : Dict , lowercase__ : Any , lowercase__ : Any , lowercase__ : int , lowercase__ : str=False): '''simple docstring''' with torch.no_grad(): lowerCAmelCase__ = MaskFormerModel(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() lowerCAmelCase__ = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__) lowerCAmelCase__ = model(UpperCamelCase__ , output_hidden_states=UpperCamelCase__) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.mask_feature_size) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(output.encoder_last_hidden_state is not None) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase__ , UpperCamelCase__) def __snake_case ( self : Optional[int] , lowercase__ : List[str] , lowercase__ : List[Any] , lowercase__ : Any , lowercase__ : Optional[Any] , lowercase__ : List[Any]): '''simple docstring''' lowerCAmelCase__ = MaskFormerForInstanceSegmentation(config=UpperCamelCase__) model.to(UpperCamelCase__) model.eval() def comm_check_on_output(lowercase__ : Optional[Any]): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None) self.parent.assertTrue(result.encoder_last_hidden_state is not None) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1)) with torch.no_grad(): lowerCAmelCase__ = model(pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__) lowerCAmelCase__ = model(UpperCamelCase__) comm_check_on_output(UpperCamelCase__) lowerCAmelCase__ = model( pixel_values=UpperCamelCase__ , pixel_mask=UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__) comm_check_on_output(UpperCamelCase__) self.parent.assertTrue(result.loss is not None) self.parent.assertEqual(result.loss.shape , torch.Size([1])) @require_torch class a_ ( __a , __a , unittest.TestCase ): '''simple docstring''' UpperCAmelCase_ = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () UpperCAmelCase_ = ( {'feature-extraction': MaskFormerModel, 'image-segmentation': MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = MaskFormerModelTester(self) lowerCAmelCase__ = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__) def __snake_case ( self : str): '''simple docstring''' self.config_tester.run_common_tests() def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase__) @unittest.skip(reason='MaskFormer does not use inputs_embeds') def __snake_case ( self : Any): '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method') def __snake_case ( self : Optional[int]): '''simple docstring''' pass @unittest.skip(reason='MaskFormer is not a generative model') def __snake_case ( self : Optional[int]): '''simple docstring''' pass @unittest.skip(reason='MaskFormer does not use token embeddings') def __snake_case ( self : Optional[int]): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`') def __snake_case ( self : Union[str, Any]): '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def __snake_case ( self : Any): '''simple docstring''' pass def __snake_case ( self : str): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(UpperCamelCase__) lowerCAmelCase__ = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase__ = [*signature.parameters.keys()] lowerCAmelCase__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , UpperCamelCase__) @slow def __snake_case ( self : Union[str, Any]): '''simple docstring''' for model_name in ["facebook/maskformer-swin-small-coco"]: lowerCAmelCase__ = MaskFormerModel.from_pretrained(UpperCamelCase__) self.assertIsNotNone(UpperCamelCase__) def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = (self.model_tester.min_size,) * 2 lowerCAmelCase__ = { 'pixel_values': torch.randn((2, 3, *size) , device=UpperCamelCase__), 'mask_labels': torch.randn((2, 10, *size) , device=UpperCamelCase__), 'class_labels': torch.zeros(2 , 10 , device=UpperCamelCase__).long(), } lowerCAmelCase__ = MaskFormerForInstanceSegmentation(MaskFormerConfig()).to(UpperCamelCase__) lowerCAmelCase__ = model(**UpperCamelCase__) self.assertTrue(outputs.loss is not None) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__ , **UpperCamelCase__ , output_hidden_states=UpperCamelCase__) def __snake_case ( self : Dict): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase__ = model_class(UpperCamelCase__).to(UpperCamelCase__) lowerCAmelCase__ = model(**UpperCamelCase__ , output_attentions=UpperCamelCase__) self.assertTrue(outputs.attentions is not None) def __snake_case ( self : Dict): '''simple docstring''' if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss lowerCAmelCase__ = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = model_class(UpperCamelCase__) model.to(UpperCamelCase__) model.train() lowerCAmelCase__ = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__).loss loss.backward() def __snake_case ( self : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = self.all_model_classes[1] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = model_class(UpperCamelCase__) model.to(UpperCamelCase__) model.train() lowerCAmelCase__ = model(UpperCamelCase__ , mask_labels=UpperCamelCase__ , class_labels=UpperCamelCase__) lowerCAmelCase__ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase__ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't lowerCAmelCase__ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase__ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase__) self.assertIsNotNone(encoder_hidden_states.grad) self.assertIsNotNone(pixel_decoder_hidden_states.grad) self.assertIsNotNone(transformer_decoder_hidden_states.grad) self.assertIsNotNone(attentions.grad) lowerCAmelCase__ = 1e-4 def __lowerCamelCase ( ): lowerCAmelCase__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class a_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __snake_case ( self : Union[str, Any]): '''simple docstring''' return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco') if is_vision_available() else None ) def __snake_case ( self : List[str]): '''simple docstring''' lowerCAmelCase__ = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco').to(UpperCamelCase__) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(UpperCamelCase__ , return_tensors='pt').to(UpperCamelCase__) lowerCAmelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase__) lowerCAmelCase__ = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]]).to(UpperCamelCase__) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) lowerCAmelCase__ = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]]).to(UpperCamelCase__) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) lowerCAmelCase__ = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]]).to(UpperCamelCase__) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) def __snake_case ( self : Optional[int]): '''simple docstring''' lowerCAmelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCamelCase__) .eval() ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(UpperCamelCase__ , return_tensors='pt').to(UpperCamelCase__) lowerCAmelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase__) # masks_queries_logits lowerCAmelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase__ = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] lowerCAmelCase__ = torch.tensor(UpperCamelCase__).to(UpperCamelCase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) # class_queries_logits lowerCAmelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) lowerCAmelCase__ = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ]).to(UpperCamelCase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff') .to(UpperCamelCase__) .eval() ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = prepare_img() lowerCAmelCase__ = image_processor(UpperCamelCase__ , return_tensors='pt').to(UpperCamelCase__) lowerCAmelCase__ = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0) # check size self.assertEqual(UpperCamelCase__ , (1, 3, 800, 1_088)) with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase__) # masks_queries_logits lowerCAmelCase__ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) , ) lowerCAmelCase__ = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] lowerCAmelCase__ = torch.tensor(UpperCamelCase__).to(UpperCamelCase__) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) # class_queries_logits lowerCAmelCase__ = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape , (1, model.config.decoder_config.num_queries, model.config.num_labels + 1)) lowerCAmelCase__ = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]]).to(UpperCamelCase__) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , UpperCamelCase__ , atol=UpperCamelCase__)) def __snake_case ( self : Tuple): '''simple docstring''' lowerCAmelCase__ = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco') .to(UpperCamelCase__) .eval() ) lowerCAmelCase__ = self.default_image_processor lowerCAmelCase__ = image_processor( [np.zeros((3, 800, 1_333)), np.zeros((3, 800, 1_333))] , segmentation_maps=[np.zeros((384, 384)).astype(np.floataa), np.zeros((384, 384)).astype(np.floataa)] , return_tensors='pt' , ) lowerCAmelCase__ = inputs['pixel_values'].to(UpperCamelCase__) lowerCAmelCase__ = [el.to(UpperCamelCase__) for el in inputs['mask_labels']] lowerCAmelCase__ = [el.to(UpperCamelCase__) for el in inputs['class_labels']] with torch.no_grad(): lowerCAmelCase__ = model(**UpperCamelCase__) self.assertTrue(outputs.loss is not None)
369
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['image_processor'] UpperCAmelCase_ = 'SamImageProcessor' def __init__( self : Tuple , lowercase__ : Dict): '''simple docstring''' super().__init__(lowercase__) lowerCAmelCase__ = self.image_processor lowerCAmelCase__ = -10 lowerCAmelCase__ = self.image_processor.size['longest_edge'] def __call__( self : List[Any] , lowercase__ : Optional[int]=None , lowercase__ : Any=None , lowercase__ : Tuple=None , lowercase__ : List[str]=None , lowercase__ : Optional[Union[str, TensorType]] = None , **lowercase__ : Dict , ): '''simple docstring''' lowerCAmelCase__ = self.image_processor( lowercase__ , return_tensors=lowercase__ , **lowercase__ , ) # pop arguments that are not used in the foward but used nevertheless lowerCAmelCase__ = encoding_image_processor['original_sizes'] if hasattr(lowercase__ , 'numpy'): # Checks if Torch or TF tensor lowerCAmelCase__ = original_sizes.numpy() lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = self._check_and_preprocess_points( input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , ) lowerCAmelCase__ = self._normalize_and_convert( lowercase__ , lowercase__ , input_points=lowercase__ , input_labels=lowercase__ , input_boxes=lowercase__ , return_tensors=lowercase__ , ) return encoding_image_processor def __snake_case ( self : Optional[Any] , lowercase__ : List[str] , lowercase__ : List[str] , lowercase__ : str=None , lowercase__ : Optional[int]=None , lowercase__ : str=None , lowercase__ : Optional[Any]="pt" , ): '''simple docstring''' if input_points is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0]) for point in input_points ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__) for point, original_size in zip(lowercase__ , lowercase__) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowerCAmelCase__ , lowerCAmelCase__ = self._pad_points_and_labels(lowercase__ , lowercase__) lowerCAmelCase__ = np.array(lowercase__) if input_labels is not None: lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if len(lowercase__) != len(lowercase__): lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , original_sizes[0] , is_bounding_box=lowercase__) for box in input_boxes ] else: lowerCAmelCase__ = [ self._normalize_coordinates(self.target_size , lowercase__ , lowercase__ , is_bounding_box=lowercase__) for box, original_size in zip(lowercase__ , lowercase__) ] lowerCAmelCase__ = np.array(lowercase__) if input_boxes is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # boxes batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({'input_boxes': input_boxes}) if input_points is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({'input_points': input_points}) if input_labels is not None: if return_tensors == "pt": lowerCAmelCase__ = torch.from_numpy(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowerCAmelCase__ = tf.convert_to_tensor(lowercase__) # point batch size of 1 by default lowerCAmelCase__ = tf.expand_dims(lowercase__ , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({'input_labels': input_labels}) return encoding_image_processor def __snake_case ( self : str , lowercase__ : Optional[int] , lowercase__ : Optional[Any]): '''simple docstring''' lowerCAmelCase__ = max([point.shape[0] for point in input_points]) lowerCAmelCase__ = [] for i, point in enumerate(lowercase__): if point.shape[0] != expected_nb_points: lowerCAmelCase__ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowerCAmelCase__ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(lowercase__) lowerCAmelCase__ = processed_input_points return input_points, input_labels def __snake_case ( self : Optional[Any] , lowercase__ : int , lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : Optional[Any]=False): '''simple docstring''' lowerCAmelCase__ , lowerCAmelCase__ = original_size lowerCAmelCase__ , lowerCAmelCase__ = self.image_processor._get_preprocess_shape(lowercase__ , longest_edge=lowercase__) lowerCAmelCase__ = deepcopy(lowercase__).astype(lowercase__) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 2 , 2) lowerCAmelCase__ = coords[..., 0] * (new_w / old_w) lowerCAmelCase__ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowerCAmelCase__ = coords.reshape(-1 , 4) return coords def __snake_case ( self : Dict , lowercase__ : Optional[Any]=None , lowercase__ : Tuple=None , lowercase__ : int=None , ): '''simple docstring''' if input_points is not None: if hasattr(lowercase__ , 'numpy'): # Checks for TF or Torch tensor lowerCAmelCase__ = input_points.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_points[0] , lowercase__): raise ValueError('Input points must be a list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__) for input_point in input_points] else: lowerCAmelCase__ = None if input_labels is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_labels.numpy().tolist() if not isinstance(lowercase__ , lowercase__) or not isinstance(input_labels[0] , lowercase__): raise ValueError('Input labels must be a list of list integers.') lowerCAmelCase__ = [np.array(lowercase__) for label in input_labels] else: lowerCAmelCase__ = None if input_boxes is not None: if hasattr(lowercase__ , 'numpy'): lowerCAmelCase__ = input_boxes.numpy().tolist() if ( not isinstance(lowercase__ , lowercase__) or not isinstance(input_boxes[0] , lowercase__) or not isinstance(input_boxes[0][0] , lowercase__) ): raise ValueError('Input boxes must be a list of list of list of floating points.') lowerCAmelCase__ = [np.array(lowercase__).astype(np.floataa) for box in input_boxes] else: lowerCAmelCase__ = None return input_points, input_labels, input_boxes @property def __snake_case ( self : List[Any]): '''simple docstring''' lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(lowercase__)) def __snake_case ( self : int , *lowercase__ : int , **lowercase__ : int): '''simple docstring''' return self.image_processor.post_process_masks(*lowercase__ , **lowercase__)
119
0
"""simple docstring""" import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __lowercase = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") __lowercase = parser.parse_args() if args.model_type == "bert": __lowercase = BertForMaskedLM.from_pretrained(args.model_name) __lowercase = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") __lowercase = model.state_dict() __lowercase = {} for w in ["word_embeddings", "position_embeddings"]: __lowercase = state_dict[f'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: __lowercase = state_dict[f'''{prefix}.embeddings.LayerNorm.{w}'''] __lowercase = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] __lowercase = state_dict[ f'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 __lowercase = state_dict["""cls.predictions.decoder.weight"""] __lowercase = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: __lowercase = state_dict[f'''cls.predictions.transform.dense.{w}'''] __lowercase = state_dict[f'''cls.predictions.transform.LayerNorm.{w}'''] print(f'''N layers selected for distillation: {std_idx}''') print(f'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(f'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
40
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Dict = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase_ : Dict = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } UpperCAmelCase_ : List[str] = { """gpt2""": 1024, """gpt2-medium""": 1024, """gpt2-large""": 1024, """gpt2-xl""": 1024, """distilgpt2""": 1024, } class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = VOCAB_FILES_NAMES __UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP __UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCamelCase = ["input_ids", "attention_mask"] __UpperCamelCase = GPTaTokenizer def __init__( self : Optional[int] , lowercase_ : int=None , lowercase_ : List[str]=None , lowercase_ : Union[str, Any]=None , lowercase_ : Tuple="<|endoftext|>" , lowercase_ : str="<|endoftext|>" , lowercase_ : Dict="<|endoftext|>" , lowercase_ : Tuple=False , **lowercase_ : Optional[int] , ): '''simple docstring''' super().__init__( lowercase_ , lowercase_ , tokenizer_file=lowercase_ , unk_token=lowercase_ , bos_token=lowercase_ , eos_token=lowercase_ , add_prefix_space=lowercase_ , **lowercase_ , ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('''add_bos_token''' , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , lowercase_) != add_prefix_space: SCREAMING_SNAKE_CASE_ : int = getattr(lowercase_ , pre_tok_state.pop('''type''')) SCREAMING_SNAKE_CASE_ : str = add_prefix_space SCREAMING_SNAKE_CASE_ : Dict = pre_tok_class(**lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = add_prefix_space def _SCREAMING_SNAKE_CASE ( self : str , *lowercase_ : List[Any] , **lowercase_ : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = kwargs.get('''is_split_into_words''' , lowercase_) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowercase_ : List[str] , **lowercase_ : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = kwargs.get('''is_split_into_words''' , lowercase_) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str , lowercase_ : Optional[str] = None): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self._tokenizer.model.save(lowercase_ , name=lowercase_) return tuple(lowercase_) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : "Conversation"): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(lowercase_ , add_special_tokens=lowercase_) + [self.eos_token_id]) if len(lowercase_) > self.model_max_length: SCREAMING_SNAKE_CASE_ : Any = input_ids[-self.model_max_length :] return input_ids
91
0
"""simple docstring""" import argparse import intel_extension_for_pytorch as ipex import torch from diffusers import DPMSolverMultistepScheduler, StableDiffusionPipeline _UpperCamelCase : Tuple = argparse.ArgumentParser('Stable Diffusion script with intel optimization', add_help=False) parser.add_argument('--dpm', action='store_true', help='Enable DPMSolver or not') parser.add_argument('--steps', default=None, type=int, help='Num inference steps') _UpperCamelCase : Any = parser.parse_args() _UpperCamelCase : List[Any] = 'cpu' _UpperCamelCase : Dict = 'a lovely <dicoo> in red dress and hat, in the snowly and brightly night, with many brighly buildings' _UpperCamelCase : Optional[int] = 'path-to-your-trained-model' _UpperCamelCase : str = StableDiffusionPipeline.from_pretrained(model_id) if args.dpm: _UpperCamelCase : Tuple = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) _UpperCamelCase : List[Any] = pipe.to(device) # to channels last _UpperCamelCase : Tuple = pipe.unet.to(memory_format=torch.channels_last) _UpperCamelCase : int = pipe.vae.to(memory_format=torch.channels_last) _UpperCamelCase : Optional[Any] = pipe.text_encoder.to(memory_format=torch.channels_last) if pipe.requires_safety_checker: _UpperCamelCase : Optional[int] = pipe.safety_checker.to(memory_format=torch.channels_last) # optimize with ipex _UpperCamelCase : Dict = torch.randn(2, 4, 64, 64) _UpperCamelCase : Any = torch.rand(1) * 999 _UpperCamelCase : List[str] = torch.randn(2, 77, 768) _UpperCamelCase : List[Any] = (sample, timestep, encoder_hidden_status) try: _UpperCamelCase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True, sample_input=input_example) except Exception: _UpperCamelCase : List[str] = ipex.optimize(pipe.unet.eval(), dtype=torch.bfloataa, inplace=True) _UpperCamelCase : Union[str, Any] = ipex.optimize(pipe.vae.eval(), dtype=torch.bfloataa, inplace=True) _UpperCamelCase : int = ipex.optimize(pipe.text_encoder.eval(), dtype=torch.bfloataa, inplace=True) if pipe.requires_safety_checker: _UpperCamelCase : int = ipex.optimize(pipe.safety_checker.eval(), dtype=torch.bfloataa, inplace=True) # compute _UpperCamelCase : List[Any] = 666 _UpperCamelCase : List[Any] = torch.Generator(device).manual_seed(seed) _UpperCamelCase : List[Any] = {'generator': generator} if args.steps is not None: _UpperCamelCase : Optional[int] = args.steps with torch.cpu.amp.autocast(enabled=True, dtype=torch.bfloataa): _UpperCamelCase : Tuple = pipe(prompt, **generate_kwargs).images[0] # save image image.save('generated.png')
371
"""simple docstring""" import argparse import os import re import packaging.version _UpperCamelCase : Optional[Any] = 'examples/' _UpperCamelCase : Any = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } _UpperCamelCase : List[str] = { 'init': 'src/diffusers/__init__.py', 'setup': 'setup.py', } _UpperCamelCase : List[str] = 'README.md' def snake_case (A_ :str , A_ :Optional[Any] , A_ :Any ): '''simple docstring''' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Tuple = f.read() a, a : Any = REPLACE_PATTERNS[pattern] a : Dict = replace.replace('VERSION' , A_ ) a : Union[str, Any] = re_pattern.sub(A_ , A_ ) with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(A_ ) def snake_case (A_ :List[Any] ): '''simple docstring''' for folder, directories, fnames in os.walk(A_ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(A_ , A_ ) , A_ , pattern='examples' ) def snake_case (A_ :Tuple , A_ :Optional[Any]=False ): '''simple docstring''' for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A_ , A_ , A_ ) if not patch: update_version_in_examples(A_ ) def snake_case (): '''simple docstring''' a : str = '🤗 Transformers currently provides the following architectures' a : Dict = '1. Want to contribute a new model?' with open(A_ , 'r' , encoding='utf-8' , newline='\n' ) as f: a : Optional[Any] = f.readlines() # Find the start of the list. a : List[str] = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 a : Optional[Any] = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): a : int = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(A_ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(A_ ) def snake_case (): '''simple docstring''' with open(REPLACE_FILES['init'] , 'r' ) as f: a : List[str] = f.read() a : str = REPLACE_PATTERNS['init'][0].search(A_ ).groups()[0] return packaging.version.parse(A_ ) def snake_case (A_ :Optional[Any]=False ): '''simple docstring''' a : Optional[int] = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: a : Tuple = default_version.base_version elif patch: a : Union[str, Any] = f'''{default_version.major}.{default_version.minor}.{default_version.micro + 1}''' else: a : Optional[Any] = f'''{default_version.major}.{default_version.minor + 1}.0''' # Now let's ask nicely if that's the right one. a : Union[str, Any] = input(f'''Which version are you releasing? [{default_version}]''' ) if len(A_ ) == 0: a : int = default_version print(f'''Updating version to {version}.''' ) global_version_update(A_ , patch=A_ ) def snake_case (): '''simple docstring''' a : str = get_version() a : Optional[int] = f'''{current_version.major}.{current_version.minor + 1}.0.dev0''' a : Optional[int] = current_version.base_version # Check with the user we got that right. a : str = input(f'''Which version are we developing now? [{dev_version}]''' ) if len(A_ ) == 0: a : Union[str, Any] = dev_version print(f'''Updating version to {version}.''' ) global_version_update(A_ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": _UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') _UpperCamelCase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
186
0
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionControlNetImgaImgPipeline _UpperCAmelCase :Tuple = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _UpperCAmelCase :Any = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _UpperCAmelCase :Union[str, Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) _UpperCAmelCase :Dict = IMAGE_TO_IMAGE_IMAGE_PARAMS def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: List[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) lowercase__: Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) lowercase__: Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__: Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: Tuple = CLIPTextModel(_UpperCAmelCase ) lowercase__: List[str] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: Tuple = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('''mps''' ): lowercase__: List[Any] = torch.manual_seed(_UpperCAmelCase ) else: lowercase__: List[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__: Tuple = 2 lowercase__: Any = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_UpperCAmelCase , device=torch.device(_UpperCAmelCase ) , ) lowercase__: Tuple = floats_tensor(control_image.shape , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__: Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__: Tuple = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__: List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def _snake_case ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _snake_case ( self ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class UpperCAmelCase (_UpperCAmelCase ,_UpperCAmelCase ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = StableDiffusionControlNetImgaImgPipeline _UpperCAmelCase :Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} _UpperCAmelCase :Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _UpperCAmelCase :Tuple = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def _snake_case ( self ): torch.manual_seed(0 ) lowercase__: Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_UpperCAmelCase ): if isinstance(_UpperCAmelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) lowercase__: Any = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_UpperCAmelCase ) torch.manual_seed(0 ) lowercase__: List[str] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_UpperCAmelCase ) torch.manual_seed(0 ) lowercase__: Any = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_UpperCAmelCase , set_alpha_to_one=_UpperCAmelCase , ) torch.manual_seed(0 ) lowercase__: Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__: Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) lowercase__: str = CLIPTextModel(_UpperCAmelCase ) lowercase__: str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__: str = MultiControlNetModel([controlneta, controlneta] ) lowercase__: Union[str, Any] = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0 ): if str(_UpperCAmelCase ).startswith('''mps''' ): lowercase__: Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: lowercase__: Union[str, Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowercase__: List[Any] = 2 lowercase__: Tuple = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_UpperCAmelCase , device=torch.device(_UpperCAmelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_UpperCAmelCase , device=torch.device(_UpperCAmelCase ) , ), ] lowercase__: int = floats_tensor(control_image[0].shape , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) lowercase__: List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase__: Union[str, Any] = Image.fromarray(np.uinta(_UpperCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) lowercase__: int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def _snake_case ( self ): lowercase__: Optional[Any] = self.get_dummy_components() lowercase__: str = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) lowercase__: Optional[Any] = 10.0 lowercase__: Dict = 4 lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: int = steps lowercase__: Dict = scale lowercase__: Tuple = pipe(**_UpperCAmelCase )[0] lowercase__: Dict = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Optional[Any] = steps lowercase__: int = scale lowercase__: Tuple = pipe(**_UpperCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] lowercase__: Optional[int] = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Optional[int] = steps lowercase__: List[Any] = scale lowercase__: Tuple = pipe(**_UpperCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] lowercase__: Tuple = self.get_dummy_inputs(_UpperCAmelCase ) lowercase__: Tuple = steps lowercase__: List[Any] = scale lowercase__: Union[str, Any] = pipe(**_UpperCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def _snake_case ( self ): return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _snake_case ( self ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def _snake_case ( self ): self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def _snake_case ( self ): lowercase__: Optional[int] = self.get_dummy_components() lowercase__: Optional[Any] = self.pipeline_class(**_UpperCAmelCase ) pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_UpperCAmelCase ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ): lowercase__: List[str] = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) lowercase__: List[Any] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=_UpperCAmelCase , controlnet=_UpperCAmelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowercase__: Union[str, Any] = torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase__: str = '''evil space-punk bird''' lowercase__: List[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) lowercase__: str = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) lowercase__: Any = pipe( _UpperCAmelCase , _UpperCAmelCase , control_image=_UpperCAmelCase , generator=_UpperCAmelCase , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) lowercase__: int = output.images[0] assert image.shape == (512, 512, 3) lowercase__: int = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9e-2
177
"""simple docstring""" from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(_UpperCAmelCase ) class UpperCAmelCase (_UpperCAmelCase ): """simple docstring""" def __init__( self , **_UpperCAmelCase ): super().__init__(**_UpperCAmelCase ) requires_backends(self , '''vision''' ) requires_backends(self , '''torch''' ) if self.framework != "pt": raise ValueError(F"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_UpperCAmelCase ) def _snake_case ( self , **_UpperCAmelCase ): lowercase__: List[Any] = {} lowercase__: List[Any] = {} lowercase__: Dict = {} # preprocess args if "points_per_batch" in kwargs: lowercase__: Dict = kwargs['''points_per_batch'''] if "points_per_crop" in kwargs: lowercase__: Any = kwargs['''points_per_crop'''] if "crops_n_layers" in kwargs: lowercase__: Union[str, Any] = kwargs['''crops_n_layers'''] if "crop_overlap_ratio" in kwargs: lowercase__: Optional[Any] = kwargs['''crop_overlap_ratio'''] if "crop_n_points_downscale_factor" in kwargs: lowercase__: Union[str, Any] = kwargs['''crop_n_points_downscale_factor'''] # postprocess args if "pred_iou_thresh" in kwargs: lowercase__: Any = kwargs['''pred_iou_thresh'''] if "stability_score_offset" in kwargs: lowercase__: Tuple = kwargs['''stability_score_offset'''] if "mask_threshold" in kwargs: lowercase__: List[str] = kwargs['''mask_threshold'''] if "stability_score_thresh" in kwargs: lowercase__: str = kwargs['''stability_score_thresh'''] if "crops_nms_thresh" in kwargs: lowercase__: List[str] = kwargs['''crops_nms_thresh'''] if "output_rle_mask" in kwargs: lowercase__: Dict = kwargs['''output_rle_mask'''] if "output_bboxes_mask" in kwargs: lowercase__: int = kwargs['''output_bboxes_mask'''] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , _UpperCAmelCase , *_UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase ): return super().__call__(_UpperCAmelCase , *_UpperCAmelCase , num_workers=_UpperCAmelCase , batch_size=_UpperCAmelCase , **_UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=64 , _UpperCAmelCase = 0 , _UpperCAmelCase = 512 / 1500 , _UpperCAmelCase = 32 , _UpperCAmelCase = 1 , ): lowercase__: Union[str, Any] = load_image(_UpperCAmelCase ) lowercase__: Dict = self.image_processor.size['''longest_edge'''] lowercase__, lowercase__, lowercase__, lowercase__: Optional[Any] = self.image_processor.generate_crop_boxes( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: List[Any] = self.image_processor(images=_UpperCAmelCase , return_tensors='''pt''' ) with self.device_placement(): if self.framework == "pt": lowercase__: Tuple = self.get_inference_context() with inference_context(): lowercase__: Optional[Any] = self._ensure_tensor_on_device(_UpperCAmelCase , device=self.device ) lowercase__: Any = self.model.get_image_embeddings(model_inputs.pop('''pixel_values''' ) ) lowercase__: Tuple = image_embeddings lowercase__: Optional[Any] = grid_points.shape[1] lowercase__: Tuple = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( '''Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ''' '''To return all points at once, set points_per_batch to None''' ) for i in range(0 , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Dict = grid_points[:, i : i + points_per_batch, :, :] lowercase__: int = input_labels[:, i : i + points_per_batch] lowercase__: Any = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=0.88 , _UpperCAmelCase=0.95 , _UpperCAmelCase=0 , _UpperCAmelCase=1 , ): lowercase__: List[Any] = model_inputs.pop('''input_boxes''' ) lowercase__: List[Any] = model_inputs.pop('''is_last''' ) lowercase__: Any = model_inputs.pop('''original_sizes''' ).tolist() lowercase__: Union[str, Any] = model_inputs.pop('''reshaped_input_sizes''' ).tolist() lowercase__: List[Any] = self.model(**_UpperCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks lowercase__: int = model_outputs['''pred_masks'''] lowercase__: str = self.image_processor.post_process_masks( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , binarize=_UpperCAmelCase ) lowercase__: str = model_outputs['''iou_scores'''] lowercase__, lowercase__, lowercase__: Optional[int] = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=0.7 , ): lowercase__: int = [] lowercase__: str = [] lowercase__: List[Any] = [] for model_output in model_outputs: all_scores.append(model_output.pop('''iou_scores''' ) ) all_masks.extend(model_output.pop('''masks''' ) ) all_boxes.append(model_output.pop('''boxes''' ) ) lowercase__: Any = torch.cat(_UpperCAmelCase ) lowercase__: Dict = torch.cat(_UpperCAmelCase ) lowercase__, lowercase__, lowercase__, lowercase__: Any = self.image_processor.post_process_for_mask_generation( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__: Union[str, Any] = defaultdict(_UpperCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_UpperCAmelCase ) lowercase__: Any = {} if output_rle_mask: lowercase__: Optional[Any] = rle_mask if output_bboxes_mask: lowercase__: Optional[int] = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
177
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
3
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece_bpe.model") _SCREAMING_SNAKE_CASE = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class _lowerCAmelCase ( A__ , unittest.TestCase ): """simple docstring""" snake_case_ = CamembertTokenizer snake_case_ = CamembertTokenizerFast snake_case_ = True snake_case_ = True def lowerCAmelCase ( self : Union[str, Any] )-> List[Any]: super().setUp() # We have a SentencePiece fixture for testing snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Tuple )-> List[Any]: snake_case = """<pad>""" snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case ) , __snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case ) , __snake_case ) def lowerCAmelCase ( self : Dict )-> Optional[Any]: snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(__snake_case ) , 10_04 ) def lowerCAmelCase ( self : List[str] )-> Any: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def lowerCAmelCase ( self : List[str] )-> List[str]: snake_case = CamembertTokenizer(__snake_case ) tokenizer.save_pretrained(self.tmpdirname ) snake_case = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) snake_case = tokenizer.convert_ids_to_tokens(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) def lowerCAmelCase ( self : str )-> Any: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer() snake_case = """I was born in 92000, and this is falsé.""" snake_case = tokenizer.tokenize(__snake_case ) snake_case = rust_tokenizer.tokenize(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) snake_case = rust_tokenizer.encode(__snake_case , add_special_tokens=__snake_case ) self.assertListEqual(__snake_case , __snake_case ) snake_case = self.get_rust_tokenizer() snake_case = tokenizer.encode(__snake_case ) snake_case = rust_tokenizer.encode(__snake_case ) self.assertListEqual(__snake_case , __snake_case ) @slow def lowerCAmelCase ( self : Any )-> Optional[int]: # fmt: off snake_case = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. snake_case = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=__snake_case , )
3
1
"""simple docstring""" import string def A__ ( UpperCamelCase ): A = "" for i in sequence: A = ord(UpperCamelCase ) if 65 <= extract <= 90: output += chr(155 - extract ) elif 97 <= extract <= 122: output += chr(219 - extract ) else: output += i return output def A__ ( UpperCamelCase ): A = string.ascii_letters A = string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(UpperCamelCase )] if c in letters else c for c in sequence ) def A__ ( ): from timeit import timeit print("Running performance benchmarks..." ) A = "from string import printable ; from __main__ import atbash, atbash_slow" print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=UpperCamelCase )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=UpperCamelCase )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
292
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( UpperCamelCase = "laptop" ): A = F"https://www.amazon.in/laptop/s?k={product}" A = { "User-Agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36\n (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36", "Accept-Language": "en-US, en;q=0.5", } A = BeautifulSoup(requests.get(UpperCamelCase , headers=UpperCamelCase ).text ) # Initialize a Pandas dataframe with the column titles A = DataFrame( columns=[ "Product Title", "Product Link", "Current Price of the product", "Product Rating", "MRP of the product", "Discount", ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( "div" , attrs={"class": "s-result-item", "data-component-type": "s-search-result"} , ) , soup.find_all("div" , attrs={"class": "a-row a-size-base a-color-base"} ) , ): try: A = item.ha.text A = "https://www.amazon.in/" + item.ha.a["href"] A = item.find("span" , attrs={"class": "a-offscreen"} ).text try: A = item.find("span" , attrs={"class": "a-icon-alt"} ).text except AttributeError: A = "Not available" try: A = ( "₹" + item.find( "span" , attrs={"class": "a-price a-text-price"} ).text.split("₹" )[1] ) except AttributeError: A = "" try: A = float( ( ( float(product_mrp.strip("₹" ).replace("," , "" ) ) - float(product_price.strip("₹" ).replace("," , "" ) ) ) / float(product_mrp.strip("₹" ).replace("," , "" ) ) ) * 100 ) except ValueError: A = float("nan" ) except AttributeError: pass A = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] A = " " A = " " data_frame.index += 1 return data_frame if __name__ == "__main__": _snake_case : Optional[int] = 'headphones' get_amazon_product_data(product).to_csv(F"""Amazon Product Data for {product}.csv""")
292
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image snake_case_ = ['''text''', '''image''', '''audio'''] def snake_case__ ( SCREAMING_SNAKE_CASE_ : List[str] ): '''simple docstring''' lowercase__ : Union[str, Any] = [] for input_type in input_types: if input_type == "text": inputs.append('Text input' ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' ).resize((512, 512) ) ) elif input_type == "audio": inputs.append(torch.ones(3_000 ) ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): inputs.append(create_inputs(SCREAMING_SNAKE_CASE_ ) ) else: raise ValueError(f"""Invalid type requested: {input_type}""" ) return inputs def snake_case__ ( SCREAMING_SNAKE_CASE_ : List ): '''simple docstring''' lowercase__ : str = [] for output in outputs: if isinstance(SCREAMING_SNAKE_CASE_ , (str, AgentText) ): output_types.append('text' ) elif isinstance(SCREAMING_SNAKE_CASE_ , (Image.Image, AgentImage) ): output_types.append('image' ) elif isinstance(SCREAMING_SNAKE_CASE_ , (torch.Tensor, AgentAudio) ): output_types.append('audio' ) else: raise ValueError(f"""Invalid output: {output}""" ) return output_types @is_tool_test class SCREAMING_SNAKE_CASE__ : def snake_case_ ( self): self.assertTrue(hasattr(self.tool , 'inputs')) self.assertTrue(hasattr(self.tool , 'outputs')) lowercase__ : List[Any] = self.tool.inputs for _input in inputs: if isinstance(_input , a): for __input in _input: self.assertTrue(__input in authorized_types) else: self.assertTrue(_input in authorized_types) lowercase__ : Dict = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types) def snake_case_ ( self): lowercase__ : Optional[int] = create_inputs(self.tool.inputs) lowercase__ : Optional[int] = self.tool(*a) # There is a single output if len(self.tool.outputs) == 1: lowercase__ : Optional[int] = [outputs] self.assertListEqual(output_types(a) , self.tool.outputs) def snake_case_ ( self): self.assertTrue(hasattr(self.tool , 'description')) self.assertTrue(hasattr(self.tool , 'default_checkpoint')) self.assertTrue(self.tool.description.startswith('This is a tool that')) def snake_case_ ( self): lowercase__ : str = create_inputs(self.tool.inputs) lowercase__ : List[str] = self.tool(*a) if not isinstance(a , a): lowercase__ : List[str] = [outputs] self.assertEqual(len(a) , len(self.tool.outputs)) for output, output_type in zip(a , self.tool.outputs): lowercase__ : Union[str, Any] = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a)) def snake_case_ ( self): lowercase__ : Union[str, Any] = create_inputs(self.tool.inputs) lowercase__ : Dict = [] for _input, input_type in zip(a , self.tool.inputs): if isinstance(a , a): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input) for _input_type in input_type]) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input)) # Should not raise an error lowercase__ : List[Any] = self.tool(*a) if not isinstance(a , a): lowercase__ : Optional[Any] = [outputs] self.assertEqual(len(a) , len(self.tool.outputs))
216
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel snake_case_ = False snake_case_ = True snake_case_ = False if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument( '''--repo_path''', default=None, type=str, required=True, help='''The config json file corresponding to the architecture.''', ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') snake_case_ = parser.parse_args() snake_case_ = { '''image_size''': '''sample_size''', '''num_res_blocks''': '''layers_per_block''', '''block_channels''': '''block_out_channels''', '''down_blocks''': '''down_block_types''', '''up_blocks''': '''up_block_types''', '''downscale_freq_shift''': '''freq_shift''', '''resnet_num_groups''': '''norm_num_groups''', '''resnet_act_fn''': '''act_fn''', '''resnet_eps''': '''norm_eps''', '''num_head_channels''': '''attention_head_dim''', } snake_case_ = { '''time_steps''': '''time_proj''', '''mid''': '''mid_block''', '''downsample_blocks''': '''down_blocks''', '''upsample_blocks''': '''up_blocks''', } snake_case_ = '''''' if has_file(args.repo_path, '''config.json''') else '''unet''' with open(os.path.join(args.repo_path, subfolder, '''config.json'''), '''r''', encoding='''utf-8''') as reader: snake_case_ = reader.read() snake_case_ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, '''config.json'''): snake_case_ = UNetaDModel(**config) else: snake_case_ = UNetaDConditionModel if '''ldm-text2im-large-256''' in args.repo_path else UNetaDModel snake_case_ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) snake_case_ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: snake_case_ = config[key] del config[key] snake_case_ = [k.replace('''UNetRes''', '''''') for k in config['''down_block_types''']] snake_case_ = [k.replace('''UNetRes''', '''''') for k in config['''up_block_types''']] if do_only_weights: snake_case_ = torch.load(os.path.join(args.repo_path, subfolder, '''diffusion_pytorch_model.bin''')) snake_case_ = {} for param_key, param_value in state_dict.items(): if param_key.endswith('''.op.bias''') or param_key.endswith('''.op.weight'''): continue snake_case_ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split('''.''')[0] == key: snake_case_ = param_value snake_case_ = True if not has_changed: snake_case_ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
216
1
from __future__ import annotations import inspect import unittest from math import floor import numpy as np from transformers import CvtConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFCvtForImageClassification, TFCvtModel from transformers.models.cvt.modeling_tf_cvt import TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __lowerCAmelCase ( lowerCamelCase__ ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_snake_case , """embed_dim""" ) ) self.parent.assertTrue(hasattr(_snake_case , """num_heads""" ) ) class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case=13 , _snake_case=64 , _snake_case=3 , _snake_case=[16, 48, 96] , _snake_case=[1, 3, 6] , _snake_case=[1, 2, 10] , _snake_case=[7, 3, 3] , _snake_case=[4, 2, 2] , _snake_case=[2, 1, 1] , _snake_case=[2, 2, 2] , _snake_case=[False, False, True] , _snake_case=[0.0, 0.0, 0.0] , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=True , _snake_case=True , _snake_case=2 , ): """simple docstring""" _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = image_size _lowerCAmelCase = patch_sizes _lowerCAmelCase = patch_stride _lowerCAmelCase = patch_padding _lowerCAmelCase = is_training _lowerCAmelCase = use_labels _lowerCAmelCase = num_labels _lowerCAmelCase = num_channels _lowerCAmelCase = embed_dim _lowerCAmelCase = num_heads _lowerCAmelCase = stride_kv _lowerCAmelCase = depth _lowerCAmelCase = cls_token _lowerCAmelCase = attention_drop_rate _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps def snake_case ( self ): """simple docstring""" _lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCAmelCase = None if self.use_labels: # create a random int32 tensor of given shape _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_labels ) _lowerCAmelCase = self.get_config() return config, pixel_values, labels def snake_case ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = TFCvtModel(config=_snake_case ) _lowerCAmelCase = model(_snake_case , training=_snake_case ) _lowerCAmelCase = (self.image_size, self.image_size) _lowerCAmelCase , _lowerCAmelCase = image_size[0], image_size[1] for i in range(len(self.depth ) ): _lowerCAmelCase = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _lowerCAmelCase = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def snake_case ( self , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = self.num_labels _lowerCAmelCase = TFCvtForImageClassification(_snake_case ) _lowerCAmelCase = model(_snake_case , labels=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.prepare_config_and_inputs() _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = config_and_inputs _lowerCAmelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = (TFCvtModel, TFCvtForImageClassification) if is_tf_available() else () __lowerCamelCase = ( {'''feature-extraction''': TFCvtModel, '''image-classification''': TFCvtForImageClassification} if is_tf_available() else {} ) __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False __lowerCamelCase = False def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCvtModelTester(self ) _lowerCAmelCase = TFCvtConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def snake_case ( self ): """simple docstring""" self.config_tester.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() @unittest.skip(reason="""Cvt does not output attentions""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not use inputs_embeds""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skip(reason="""Cvt does not support input and output embeddings""" ) def snake_case ( self ): """simple docstring""" pass @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) def snake_case ( self ): """simple docstring""" super().test_dataset_conversion() @unittest.skipIf( not is_tf_available() or len(tf.config.list_physical_devices("""GPU""" ) ) == 0 , reason="""TF does not support backprop for grouped convolutions on CPU.""" , ) @slow def snake_case ( self ): """simple docstring""" super().test_keras_fit() @unittest.skip(reason="""Get `Failed to determine best cudnn convolution algo.` error after using TF 2.12+cuda 11.8""" ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = tf.keras.mixed_precision.Policy("""mixed_float16""" ) tf.keras.mixed_precision.set_global_policy(_snake_case ) super().test_keras_fit() tf.keras.mixed_precision.set_global_policy("""float32""" ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase = [*signature.parameters.keys()] _lowerCAmelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _snake_case ) def snake_case ( self ): """simple docstring""" def check_hidden_states_output(_snake_case , _snake_case , _snake_case ): _lowerCAmelCase = model_class(_snake_case ) _lowerCAmelCase = model(**self._prepare_for_class(_snake_case , _snake_case ) ) _lowerCAmelCase = outputs.hidden_states _lowerCAmelCase = len(self.model_tester.depth ) self.assertEqual(len(_snake_case ) , _snake_case ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) _lowerCAmelCase , _lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _lowerCAmelCase = True check_hidden_states_output(_snake_case , _snake_case , _snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def snake_case ( self ): """simple docstring""" for model_name in TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = TFCvtModel.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def snake_case ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = TFCvtForImageClassification.from_pretrained(TF_CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _lowerCAmelCase = self.default_image_processor _lowerCAmelCase = prepare_img() _lowerCAmelCase = image_processor(images=_snake_case , return_tensors="""tf""" ) # forward pass _lowerCAmelCase = model(**_snake_case ) # verify the logits _lowerCAmelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) _lowerCAmelCase = tf.constant([0.9285, 0.9015, -0.3150] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , _snake_case , atol=1e-4 ) )
82
import math from collections import defaultdict from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput def UpperCamelCase ( snake_case__ : Dict , snake_case__ : Any=0.999 , snake_case__ : List[Any]="cosine" , ) -> Optional[int]: if alpha_transform_type == "cosine": def alpha_bar_fn(snake_case__ : int ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(snake_case__ : Optional[Any] ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCamelCase : List[Any] = [] for i in range(snake_case__ ): UpperCamelCase : Optional[Any] = i / num_diffusion_timesteps UpperCamelCase : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(snake_case__ ) / alpha_bar_fn(snake_case__ ) , snake_case__ ) ) return torch.tensor(snake_case__ , dtype=torch.floataa ) class lowerCAmelCase_ ( a__ , a__ ): UpperCAmelCase__ : List[Any] = [e.name for e in KarrasDiffusionSchedulers] UpperCAmelCase__ : List[str] = 2 @register_to_config def __init__( self, SCREAMING_SNAKE_CASE_ = 1000, SCREAMING_SNAKE_CASE_ = 0.0_00_85, SCREAMING_SNAKE_CASE_ = 0.0_12, SCREAMING_SNAKE_CASE_ = "linear", SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "epsilon", SCREAMING_SNAKE_CASE_ = "linspace", SCREAMING_SNAKE_CASE_ = 0, ) -> List[str]: if trained_betas is not None: UpperCamelCase : Union[str, Any] = torch.tensor(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "linear": UpperCamelCase : List[Any] = torch.linspace(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. UpperCamelCase : int = ( torch.linspace(beta_start**0.5, beta_end**0.5, SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) ** 2 ) elif beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule UpperCamelCase : Optional[int] = betas_for_alpha_bar(SCREAMING_SNAKE_CASE_ ) else: raise NotImplementedError(F"""{beta_schedule} does is not implemented for {self.__class__}""" ) UpperCamelCase : Optional[int] = 1.0 - self.betas UpperCamelCase : int = torch.cumprod(self.alphas, dim=0 ) # set all values self.set_timesteps(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=None ) -> str: if schedule_timesteps is None: UpperCamelCase : Union[str, Any] = self.timesteps UpperCamelCase : Dict = (schedule_timesteps == timestep).nonzero() # The sigma index that is taken for the **very** first `step` # is always the second index (or the last index if there is only 1) # This way we can ensure we don't accidentally skip a sigma in # case we start in the middle of the denoising schedule (e.g. for image-to-image) if len(self._index_counter ) == 0: UpperCamelCase : Optional[int] = 1 if len(SCREAMING_SNAKE_CASE_ ) > 1 else 0 else: UpperCamelCase : str = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep UpperCamelCase : int = self._index_counter[timestep_int] return indices[pos].item() @property def snake_case_ ( self ) -> List[Any]: # standard deviation of the initial noise distribution if self.config.timestep_spacing in ["linspace", "trailing"]: return self.sigmas.max() return (self.sigmas.max() ** 2 + 1) ** 0.5 def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: UpperCamelCase : Optional[int] = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) if self.state_in_first_order: UpperCamelCase : Dict = self.sigmas[step_index] else: UpperCamelCase : int = self.sigmas_interpol[step_index] UpperCamelCase : Any = sample / ((sigma**2 + 1) ** 0.5) return sample def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, ) -> Optional[int]: UpperCamelCase : Dict = num_inference_steps UpperCamelCase : List[Any] = num_train_timesteps or self.config.num_train_timesteps # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891 if self.config.timestep_spacing == "linspace": UpperCamelCase : int = np.linspace(0, num_train_timesteps - 1, SCREAMING_SNAKE_CASE_, dtype=SCREAMING_SNAKE_CASE_ )[::-1].copy() elif self.config.timestep_spacing == "leading": UpperCamelCase : List[Any] = num_train_timesteps // self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Optional[Any] = (np.arange(0, SCREAMING_SNAKE_CASE_ ) * step_ratio).round()[::-1].copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps += self.config.steps_offset elif self.config.timestep_spacing == "trailing": UpperCamelCase : Optional[int] = num_train_timesteps / self.num_inference_steps # creates integer timesteps by multiplying by ratio # casting to int to avoid issues when num_inference_step is power of 3 UpperCamelCase : Any = (np.arange(SCREAMING_SNAKE_CASE_, 0, -step_ratio )).round().copy().astype(SCREAMING_SNAKE_CASE_ ) timesteps -= 1 else: raise ValueError( F"""{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'.""" ) UpperCamelCase : Tuple = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 ) UpperCamelCase : Optional[int] = torch.from_numpy(np.log(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = np.interp(SCREAMING_SNAKE_CASE_, np.arange(0, len(SCREAMING_SNAKE_CASE_ ) ), SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = np.concatenate([sigmas, [0.0]] ).astype(np.floataa ) UpperCamelCase : Optional[int] = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ ) # interpolate sigmas UpperCamelCase : Union[str, Any] = sigmas.log().lerp(sigmas.roll(1 ).log(), 0.5 ).exp() UpperCamelCase : Any = torch.cat([sigmas[:1], sigmas[1:].repeat_interleave(2 ), sigmas[-1:]] ) UpperCamelCase : Optional[Any] = torch.cat( [sigmas_interpol[:1], sigmas_interpol[1:].repeat_interleave(2 ), sigmas_interpol[-1:]] ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): # mps does not support float64 UpperCamelCase : Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=torch.floataa ) else: UpperCamelCase : Dict = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) # interpolate timesteps UpperCamelCase : int = self.sigma_to_t(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_, dtype=timesteps.dtype ) UpperCamelCase : List[str] = torch.stack((timesteps_interpol[1:-1, None], timesteps[1:, None]), dim=-1 ).flatten() UpperCamelCase : Optional[Any] = torch.cat([timesteps[:1], interleaved_timesteps] ) UpperCamelCase : Optional[Any] = None # for exp beta schedules, such as the one for `pipeline_shap_e.py` # we need an index counter UpperCamelCase : Dict = defaultdict(SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: # get log sigma UpperCamelCase : List[Any] = sigma.log() # get distribution UpperCamelCase : Optional[int] = log_sigma - self.log_sigmas[:, None] # get sigmas range UpperCamelCase : Optional[int] = dists.ge(0 ).cumsum(dim=0 ).argmax(dim=0 ).clamp(max=self.log_sigmas.shape[0] - 2 ) UpperCamelCase : Tuple = low_idx + 1 UpperCamelCase : List[str] = self.log_sigmas[low_idx] UpperCamelCase : Optional[Any] = self.log_sigmas[high_idx] # interpolate sigmas UpperCamelCase : int = (low - log_sigma) / (low - high) UpperCamelCase : Tuple = w.clamp(0, 1 ) # transform interpolation to time range UpperCamelCase : List[str] = (1 - w) * low_idx + w * high_idx UpperCamelCase : Dict = t.view(sigma.shape ) return t @property def snake_case_ ( self ) -> Optional[int]: return self.sample is None def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = True, ) -> Union[SchedulerOutput, Tuple]: UpperCamelCase : str = self.index_for_timestep(SCREAMING_SNAKE_CASE_ ) # advance index counter by 1 UpperCamelCase : Optional[int] = timestep.cpu().item() if torch.is_tensor(SCREAMING_SNAKE_CASE_ ) else timestep self._index_counter[timestep_int] += 1 if self.state_in_first_order: UpperCamelCase : Tuple = self.sigmas[step_index] UpperCamelCase : Dict = self.sigmas_interpol[step_index + 1] UpperCamelCase : Optional[int] = self.sigmas[step_index + 1] else: # 2nd order / KDPM2's method UpperCamelCase : str = self.sigmas[step_index - 1] UpperCamelCase : Dict = self.sigmas_interpol[step_index] UpperCamelCase : Any = self.sigmas[step_index] # currently only gamma=0 is supported. This usually works best anyways. # We can support gamma in the future but then need to scale the timestep before # passing it to the model which requires a change in API UpperCamelCase : Dict = 0 UpperCamelCase : Any = sigma * (gamma + 1) # Note: sigma_hat == sigma for now # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise if self.config.prediction_type == "epsilon": UpperCamelCase : Any = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : List[Any] = sample - sigma_input * model_output elif self.config.prediction_type == "v_prediction": UpperCamelCase : Union[str, Any] = sigma_hat if self.state_in_first_order else sigma_interpol UpperCamelCase : Optional[int] = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + ( sample / (sigma_input**2 + 1) ) elif self.config.prediction_type == "sample": raise NotImplementedError('prediction_type not implemented yet: sample' ) else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`""" ) if self.state_in_first_order: # 2. Convert to an ODE derivative for 1st order UpperCamelCase : int = (sample - pred_original_sample) / sigma_hat # 3. delta timestep UpperCamelCase : Any = sigma_interpol - sigma_hat # store for 2nd order step UpperCamelCase : Tuple = sample else: # DPM-Solver-2 # 2. Convert to an ODE derivative for 2nd order UpperCamelCase : Union[str, Any] = (sample - pred_original_sample) / sigma_interpol # 3. delta timestep UpperCamelCase : Dict = sigma_next - sigma_hat UpperCamelCase : Any = self.sample UpperCamelCase : str = None UpperCamelCase : Any = sample + derivative * dt if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, ) -> torch.FloatTensor: # Make sure sigmas and timesteps have the same device and dtype as original_samples UpperCamelCase : Optional[Any] = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype ) if original_samples.device.type == "mps" and torch.is_floating_point(SCREAMING_SNAKE_CASE_ ): # mps does not support float64 UpperCamelCase : List[str] = self.timesteps.to(original_samples.device, dtype=torch.floataa ) UpperCamelCase : str = timesteps.to(original_samples.device, dtype=torch.floataa ) else: UpperCamelCase : Dict = self.timesteps.to(original_samples.device ) UpperCamelCase : int = timesteps.to(original_samples.device ) UpperCamelCase : str = [self.index_for_timestep(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) for t in timesteps] UpperCamelCase : List[Any] = sigmas[step_indices].flatten() while len(sigma.shape ) < len(original_samples.shape ): UpperCamelCase : int = sigma.unsqueeze(-1 ) UpperCamelCase : Any = original_samples + noise * sigma return noisy_samples def __len__( self ) -> Optional[int]: return self.config.num_train_timesteps
119
0
"""simple docstring""" lowerCAmelCase : Optional[int] = '''Tobias Carryer''' from time import time class __magic_name__ : '''simple docstring''' def __init__( self , _a , _a , _a , _a=int(time() ) ): # noqa: B008 """simple docstring""" lowerCamelCase = multiplier lowerCamelCase = increment lowerCamelCase = modulo lowerCamelCase = seed def _lowerCAmelCase ( self ): """simple docstring""" lowerCamelCase = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. lowerCAmelCase : Dict = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
369
"""simple docstring""" from google.protobuf import descriptor as _descriptor from google.protobuf import descriptor_pool as _descriptor_pool from google.protobuf import symbol_database as _symbol_database from google.protobuf.internal import builder as _builder # @@protoc_insertion_point(imports) lowerCAmelCase : Tuple = _symbol_database.Default() lowerCAmelCase : int = _descriptor_pool.Default().AddSerializedFile( b"""\n\x19sentencepiece_model.proto\x12\rsentencepiece\"\x80\x0c\n\x0bTrainerSpec\x12\r\n\x05input\x18\x01 \x03(\t\x12\x14\n\x0cinput_format\x18\x07 \x01(\t\x12\x14\n\x0cmodel_prefix\x18\x02 \x01(\t\x12\x41\n\nmodel_type\x18\x03 \x01(\x0e\x32$.sentencepiece.TrainerSpec.ModelType:\x07UNIGRAM\x12\x18\n\nvocab_size\x18\x04 \x01(\x05:\x04\x38\x30\x30\x30\x12\x17\n\x0f\x61\x63\x63\x65pt_language\x18\x05 \x03(\t\x12 \n\x15self_test_sample_size\x18\x06 \x01(\x05:\x01\x30\x12*\n\x1b\x65nable_differential_privacy\x18\x32 \x01(\x08:\x05\x66\x61lse\x12+\n differential_privacy_noise_level\x18\x33 \x01(\x02:\x01\x30\x12\x32\n\'differential_privacy_clipping_threshold\x18\x34 \x01(\x04:\x01\x30\x12\"\n\x12\x63haracter_coverage\x18\n \x01(\x02:\x06\x30.9995\x12\x1e\n\x13input_sentence_size\x18\x0b \x01(\x04:\x01\x30\x12$\n\x16shuffle_input_sentence\x18\x13 \x01(\x08:\x04true\x12 \n\x14mining_sentence_size\x18\x0c \x01(\x05\x42\x02\x18\x01\x12\"\n\x16training_sentence_size\x18\r \x01(\x05\x42\x02\x18\x01\x12(\n\x17seed_sentencepiece_size\x18\x0e \x01(\x05:\x07\x31\x30\x30\x30\x30\x30\x30\x12\x1e\n\x10shrinking_factor\x18\x0f \x01(\x02:\x04\x30.75\x12!\n\x13max_sentence_length\x18\x12 \x01(\x05:\x04\x34\x31\x39\x32\x12\x17\n\x0bnum_threads\x18\x10 \x01(\x05:\x02\x31\x36\x12\x1d\n\x12num_sub_iterations\x18\x11 \x01(\x05:\x01\x32\x12$\n\x18max_sentencepiece_length\x18\x14 \x01(\x05:\x02\x31\x36\x12%\n\x17split_by_unicode_script\x18\x15 \x01(\x08:\x04true\x12\x1d\n\x0fsplit_by_number\x18\x17 \x01(\x08:\x04true\x12!\n\x13split_by_whitespace\x18\x16 \x01(\x08:\x04true\x12)\n\x1atreat_whitespace_as_suffix\x18\x18 \x01(\x08:\x05\x66\x61lse\x12+\n\x1c\x61llow_whitespace_only_pieces\x18\x1a \x01(\x08:\x05\x66\x61lse\x12\x1b\n\x0csplit_digits\x18\x19 \x01(\x08:\x05\x66\x61lse\x12#\n\x19pretokenization_delimiter\x18\x35 \x01(\t:\x00\x12\x17\n\x0f\x63ontrol_symbols\x18\x1e \x03(\t\x12\x1c\n\x14user_defined_symbols\x18\x1f \x03(\t\x12\x16\n\x0erequired_chars\x18$ \x01(\t\x12\x1c\n\rbyte_fallback\x18# \x01(\x08:\x05\x66\x61lse\x12+\n\x1dvocabulary_output_piece_score\x18 \x01(\x08:\x04true\x12\x1e\n\x10hard_vocab_limit\x18! \x01(\x08:\x04true\x12\x1c\n\ruse_all_vocab\x18\" \x01(\x08:\x05\x66\x61lse\x12\x11\n\x06unk_id\x18( \x01(\x05:\x01\x30\x12\x11\n\x06\x62os_id\x18) \x01(\x05:\x01\x31\x12\x11\n\x06\x65os_id\x18* \x01(\x05:\x01\x32\x12\x12\n\x06pad_id\x18+ \x01(\x05:\x02-1\x12\x18\n\tunk_piece\x18- \x01(\t:\x05<unk>\x12\x16\n\tbos_piece\x18. \x01(\t:\x03<s>\x12\x17\n\teos_piece\x18/ \x01(\t:\x04</s>\x12\x18\n\tpad_piece\x18\x30 \x01(\t:\x05<pad>\x12\x1a\n\x0bunk_surface\x18, \x01(\t:\x05 \xe2\x81\x87 \x12+\n\x1ctrain_extremely_large_corpus\x18\x31 \x01(\x08:\x05\x66\x61lse\"5\n\tModelType\x12\x0b\n\x07UNIGRAM\x10\x01\x12\x07\n\x03\x42PE\x10\x02\x12\x08\n\x04WORD\x10\x03\x12\x08\n\x04\x43HAR\x10\x04*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xd1\x01\n\x0eNormalizerSpec\x12\x0c\n\x04name\x18\x01 \x01(\t\x12\x1c\n\x14precompiled_charsmap\x18\x02 \x01(\x0c\x12\x1e\n\x10\x61\x64\x64_dummy_prefix\x18\x03 \x01(\x08:\x04true\x12&\n\x18remove_extra_whitespaces\x18\x04 \x01(\x08:\x04true\x12 \n\x12\x65scape_whitespaces\x18\x05 \x01(\x08:\x04true\x12\x1e\n\x16normalization_rule_tsv\x18\x06 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"y\n\x0cSelfTestData\x12\x33\n\x07samples\x18\x01 \x03(\x0b\x32\".sentencepiece.SelfTestData.Sample\x1a)\n\x06Sample\x12\r\n\x05input\x18\x01 \x01(\t\x12\x10\n\x08\x65xpected\x18\x02 \x01(\t*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\"\xfe\x03\n\nModelProto\x12\x37\n\x06pieces\x18\x01 \x03(\x0b\x32\'.sentencepiece.ModelProto.SentencePiece\x12\x30\n\x0ctrainer_spec\x18\x02 \x01(\x0b\x32\x1a.sentencepiece.TrainerSpec\x12\x36\n\x0fnormalizer_spec\x18\x03 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x12\x33\n\x0eself_test_data\x18\x04 \x01(\x0b\x32\x1b.sentencepiece.SelfTestData\x12\x38\n\x11\x64\x65normalizer_spec\x18\x05 \x01(\x0b\x32\x1d.sentencepiece.NormalizerSpec\x1a\xd2\x01\n\rSentencePiece\x12\r\n\x05piece\x18\x01 \x01(\t\x12\r\n\x05score\x18\x02 \x01(\x02\x12\x42\n\x04type\x18\x03 \x01(\x0e\x32,.sentencepiece.ModelProto.SentencePiece.Type:\x06NORMAL\"T\n\x04Type\x12\n\n\x06NORMAL\x10\x01\x12\x0b\n\x07UNKNOWN\x10\x02\x12\x0b\n\x07\x43ONTROL\x10\x03\x12\x10\n\x0cUSER_DEFINED\x10\x04\x12\x08\n\x04\x42YTE\x10\x06\x12\n\n\x06UNUSED\x10\x05*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02*\t\x08\xc8\x01\x10\x80\x80\x80\x80\x02\x42\x02H\x03""" ) lowerCAmelCase : Tuple = globals() _builder.BuildMessageAndEnumDescriptors(DESCRIPTOR, _globals) _builder.BuildTopDescriptorsAndMessages(DESCRIPTOR, """sentencepiece_model_pb2""", _globals) if _descriptor._USE_C_DESCRIPTORS is False: lowerCAmelCase : Dict = None lowerCAmelCase : Union[str, Any] = b"""H\003""" # (generated by protobuf compiler, but `_TRAINERSPEC` is not defined) # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["mining_sentence_size"]._serialized_options = b"\030\001" # _TRAINERSPEC.fields_by_name["training_sentence_size"]._options = None # _TRAINERSPEC.fields_by_name["training_sentence_size"]._serialized_options = b"\030\001" lowerCAmelCase : List[Any] = 45 lowerCAmelCase : List[str] = 1581 lowerCAmelCase : List[str] = 1517 lowerCAmelCase : List[Any] = 1570 lowerCAmelCase : List[str] = 1584 lowerCAmelCase : Tuple = 1793 lowerCAmelCase : Union[str, Any] = 1795 lowerCAmelCase : Tuple = 1916 lowerCAmelCase : Tuple = 1864 lowerCAmelCase : Any = 1905 lowerCAmelCase : int = 1919 lowerCAmelCase : Union[str, Any] = 2429 lowerCAmelCase : List[Any] = 2208 lowerCAmelCase : Tuple = 2418 lowerCAmelCase : str = 2323 lowerCAmelCase : List[str] = 2407 # @@protoc_insertion_point(module_scope)
168
0
"""simple docstring""" import os import sys import unittest __A = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path __A = os.path.join(git_repo_path, "src", "transformers") __A = "\n{0} = None\n" __A = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" __A = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self ): """simple docstring""" snake_case : List[Any] = find_backend(" _import_structure[\"models.albert\"].append(\"AlbertTokenizerFast\")" ) self.assertIsNone(_SCREAMING_SNAKE_CASE ) snake_case : Any = find_backend(" if not is_tokenizers_available():" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "tokenizers" ) snake_case : Any = find_backend(" if not is_tensorflow_text_available():" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "tensorflow_text" ) snake_case : Optional[Any] = find_backend(" if not (is_sentencepiece_available() and is_tokenizers_available()):" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "sentencepiece_and_tokenizers" ) snake_case : str = find_backend( " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "sentencepiece_and_tensorflow_text" ) snake_case : int = find_backend( " if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "sentencepiece_and_tokenizers_and_vision" ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Any = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch" , _SCREAMING_SNAKE_CASE ) self.assertIn("tensorflow_text" , _SCREAMING_SNAKE_CASE ) self.assertIn("sentencepiece_and_tokenizers" , _SCREAMING_SNAKE_CASE ) # Likewise, we can't assert on the exact content of a key self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertModel" , objects["tf"] ) self.assertIn("FlaxBertModel" , objects["flax"] ) self.assertIn("BertModel" , objects["torch"] ) self.assertIn("TFBertTokenizer" , objects["tensorflow_text"] ) self.assertIn("convert_slow_tokenizer" , objects["sentencepiece_and_tokenizers"] ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Optional[Any] = create_dummy_object("CONSTANT" , "\'torch\'" ) self.assertEqual(_SCREAMING_SNAKE_CASE , "\nCONSTANT = None\n" ) snake_case : List[Any] = create_dummy_object("function" , "\'torch\'" ) self.assertEqual( _SCREAMING_SNAKE_CASE , "\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n" ) snake_case : Tuple = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') ''' snake_case : int = create_dummy_object("FakeClass" , "\'torch\'" ) self.assertEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase_ ( self ): """simple docstring""" snake_case : Union[str, Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) ''' snake_case : Optional[Any] = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]} ) self.assertEqual(dummy_files["torch"] , _SCREAMING_SNAKE_CASE )
148
import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class _lowerCamelCase ( unittest.TestCase ): """simple docstring""" def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[Any]: '''simple docstring''' A_ : Optional[int] = jnp.ones((batch_size, length) ) / length return scores def _snake_case ( self )->Tuple: '''simple docstring''' A_ : Union[str, Any] = None A_ : Any = 20 A_ : Any = self._get_uniform_logits(batch_size=2 , length=_SCREAMING_SNAKE_CASE ) # tweak scores to not be uniform anymore A_ : Dict = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch A_ : Tuple = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax A_ : List[str] = jax.nn.softmax(_SCREAMING_SNAKE_CASE , axis=-1 ) A_ : Any = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[int] = FlaxTemperatureLogitsWarper(temperature=1.3 ) A_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) A_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(_SCREAMING_SNAKE_CASE , scores.copy() , cur_len=_SCREAMING_SNAKE_CASE ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def _snake_case ( self )->List[Any]: '''simple docstring''' A_ : Any = None A_ : List[Any] = 10 A_ : str = 2 # create ramp distribution A_ : Any = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() A_ : List[Any] = ramp_logits[1:, : vocab_size // 2] + vocab_size A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : Tuple = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case A_ : Optional[int] = 5 A_ : List[Any] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) A_ : Optional[Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, length) ).copy() A_ : Dict = top_k_warp_safety_check(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = None A_ : Optional[Any] = 10 A_ : Any = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) A_ : Optional[int] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.1_5, 0.3, 0.3, 0.2_5]] ) ) A_ : str = FlaxTopPLogitsWarper(0.8 ) A_ : Optional[int] = np.exp(top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 A_ : Tuple = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.2_5]] ) self.assertTrue(np.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # check edge cases with negative and extreme logits A_ : Union[str, Any] = np.broadcast_to(np.arange(_SCREAMING_SNAKE_CASE )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme A_ : str = ramp_logits[1] * 1_0_0.0 # make sure at least 2 tokens are kept A_ : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) A_ : str = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def _snake_case ( self )->Any: '''simple docstring''' A_ : str = 20 A_ : Union[str, Any] = 4 A_ : Optional[Any] = 0 A_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that min length is applied at length 5 A_ : int = ids_tensor((batch_size, 20) , vocab_size=20 ) A_ : List[Any] = 5 A_ : Optional[int] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Optional[int] = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''' )] ) # check that min length is not applied anymore at length 15 A_ : Tuple = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Any = 15 A_ : int = min_dist_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->Optional[Any]: '''simple docstring''' A_ : Optional[int] = 20 A_ : Optional[int] = 4 A_ : Optional[int] = 0 A_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the bos_token_id score A_ : Optional[Any] = ids_tensor((batch_size, 1) , vocab_size=20 ) A_ : str = 1 A_ : List[str] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 A_ : Optional[int] = 3 A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->List[str]: '''simple docstring''' A_ : Union[str, Any] = 20 A_ : str = 4 A_ : Dict = 0 A_ : Optional[int] = 5 A_ : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) # check that all scores are -inf except the eos_token_id when max_length is reached A_ : List[Any] = ids_tensor((batch_size, 4) , vocab_size=20 ) A_ : Any = 4 A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached A_ : int = 3 A_ : Union[str, Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Dict = logits_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) self.assertFalse(jnp.isinf(_SCREAMING_SNAKE_CASE ).any() ) def _snake_case ( self )->str: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Union[str, Any] = 15 A_ : str = 2 A_ : int = 1 A_ : List[str] = 15 # dummy input_ids and scores A_ : Tuple = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : int = input_ids.copy() A_ : List[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = scores.copy() # instantiate all dist processors A_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Any = FlaxTopKLogitsWarper(3 ) A_ : List[Any] = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = 10 # no processor list A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[str] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[int] = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # with processor list A_ : Any = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : List[str] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def _snake_case ( self )->Dict: '''simple docstring''' A_ : str = 4 A_ : Dict = 10 A_ : Tuple = 15 A_ : List[str] = 2 A_ : List[str] = 1 A_ : Union[str, Any] = 15 # dummy input_ids and scores A_ : Any = ids_tensor((batch_size, sequence_length) , _SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = input_ids.copy() A_ : Optional[Any] = self._get_uniform_logits(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : Tuple = scores.copy() # instantiate all dist processors A_ : List[str] = FlaxTemperatureLogitsWarper(temperature=0.5 ) A_ : Optional[Any] = FlaxTopKLogitsWarper(3 ) A_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors A_ : List[Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE ) A_ : str = 10 # no processor list def run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : int = temp_dist_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = top_k_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : List[Any] = top_p_warp(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Dict = min_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Any = bos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) A_ : Optional[Any] = eos_dist_proc(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores # with processor list def run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): A_ : Optional[int] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) A_ : Optional[int] = processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , cur_len=_SCREAMING_SNAKE_CASE ) return scores A_ : Optional[int] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Union[str, Any] = jax.jit(_SCREAMING_SNAKE_CASE ) A_ : Dict = jitted_run_no_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = jitted_run_processor_list(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # scores should be equal self.assertTrue(jnp.allclose(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , atol=1e-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
186
0
"""simple docstring""" from __future__ import annotations def _SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ ) -> tuple[float, list[float]]: A__ = list(range(len(lowercase_ ) ) ) A__ = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ = 0 A__ = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ = 1 max_value += value[i] capacity -= weight[i] else: A__ = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
230
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class UpperCAmelCase_ ( nn.Module ): def __init__( self : Optional[int] , snake_case_ : int = 16 , snake_case_ : int = 88 , snake_case_ : Optional[int] = None , snake_case_ : int = 1 , snake_case_ : float = 0.0 , snake_case_ : int = 32 , snake_case_ : Optional[int] = None , snake_case_ : bool = False , snake_case_ : Optional[int] = None , snake_case_ : Optional[int] = None , snake_case_ : str = "geglu" , snake_case_ : Optional[int] = None , ) -> str: '''simple docstring''' super().__init__() A__ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=snake_case_ , attention_head_dim=snake_case_ , in_channels=snake_case_ , num_layers=snake_case_ , dropout=snake_case_ , norm_num_groups=snake_case_ , cross_attention_dim=snake_case_ , attention_bias=snake_case_ , sample_size=snake_case_ , num_vector_embeds=snake_case_ , activation_fn=snake_case_ , num_embeds_ada_norm=snake_case_ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A__ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A__ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A__ = [1, 0] def __magic_name__ ( self : Dict , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : Any=None , snake_case_ : int=None , snake_case_ : Union[str, Any]=None , snake_case_ : bool = True , ) -> Union[str, Any]: '''simple docstring''' A__ = hidden_states A__ = [] A__ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A__ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A__ = self.transformer_index_for_condition[i] A__ = self.transformers[transformer_index]( snake_case_ , encoder_hidden_states=snake_case_ , timestep=snake_case_ , cross_attention_kwargs=snake_case_ , return_dict=snake_case_ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A__ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A__ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=snake_case_ )
230
1
'''simple docstring''' from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
3
'''simple docstring''' import os import sys import unittest lowercase : Dict = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, 'utils')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) lowercase : Any = os.path.join('tests', 'models', 'bert', 'test_modeling_bert.py') lowercase : Optional[int] = os.path.join('tests', 'models', 'blip', 'test_modeling_blip.py') class A ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> List[str]: """simple docstring""" A : Tuple = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Any = get_test_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : List[Any] = {'''BertModelTest''': '''BertModelTester'''} A : int = { '''BlipModelTest''': '''BlipModelTester''', '''BlipTextImageModelTest''': '''BlipTextImageModelsModelTester''', '''BlipTextModelTest''': '''BlipTextModelTester''', '''BlipTextRetrievalModelTest''': '''BlipTextRetrievalModelTester''', '''BlipVQAModelTest''': '''BlipVQAModelTester''', '''BlipVisionModelTest''': '''BlipVisionModelTester''', } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : Tuple = get_model_to_test_mapping(SCREAMING_SNAKE_CASE ) A : List[str] = { '''BertForMaskedLM''': ['''BertModelTest'''], '''BertForMultipleChoice''': ['''BertModelTest'''], '''BertForNextSentencePrediction''': ['''BertModelTest'''], '''BertForPreTraining''': ['''BertModelTest'''], '''BertForQuestionAnswering''': ['''BertModelTest'''], '''BertForSequenceClassification''': ['''BertModelTest'''], '''BertForTokenClassification''': ['''BertModelTest'''], '''BertLMHeadModel''': ['''BertModelTest'''], '''BertModel''': ['''BertModelTest'''], } A : Union[str, Any] = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelTest'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTest'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTest'''], '''BlipModel''': ['''BlipModelTest'''], '''BlipTextModel''': ['''BlipTextModelTest'''], '''BlipVisionModel''': ['''BlipVisionModelTest'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" A : int = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Union[str, Any] = get_model_to_tester_mapping(SCREAMING_SNAKE_CASE ) A : Dict = { '''BertForMaskedLM''': ['''BertModelTester'''], '''BertForMultipleChoice''': ['''BertModelTester'''], '''BertForNextSentencePrediction''': ['''BertModelTester'''], '''BertForPreTraining''': ['''BertModelTester'''], '''BertForQuestionAnswering''': ['''BertModelTester'''], '''BertForSequenceClassification''': ['''BertModelTester'''], '''BertForTokenClassification''': ['''BertModelTester'''], '''BertLMHeadModel''': ['''BertModelTester'''], '''BertModel''': ['''BertModelTester'''], } A : str = { '''BlipForConditionalGeneration''': ['''BlipTextImageModelsModelTester'''], '''BlipForImageTextRetrieval''': ['''BlipTextRetrievalModelTester'''], '''BlipForQuestionAnswering''': ['''BlipVQAModelTester'''], '''BlipModel''': ['''BlipModelTester'''], '''BlipTextModel''': ['''BlipTextModelTester'''], '''BlipVisionModel''': ['''BlipVisionModelTester'''], } self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(get_test_info.to_json(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE )
3
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
339
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class lowerCAmelCase__ : def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any]=99 , SCREAMING_SNAKE_CASE__ : List[Any]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : int=9 , SCREAMING_SNAKE_CASE__ : Dict=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : Dict=False , SCREAMING_SNAKE_CASE__ : int=32 , SCREAMING_SNAKE_CASE__ : Tuple=5 , SCREAMING_SNAKE_CASE__ : List[str]=4 , SCREAMING_SNAKE_CASE__ : str=37 , SCREAMING_SNAKE_CASE__ : int=8 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.002 , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0 , SCREAMING_SNAKE_CASE__ : int=None , SCREAMING_SNAKE_CASE__ : Dict=None , ) -> Optional[Any]: __lowerCamelCase = parent __lowerCamelCase = batch_size __lowerCamelCase = encoder_seq_length __lowerCamelCase = decoder_seq_length # For common tests __lowerCamelCase = self.decoder_seq_length __lowerCamelCase = is_training __lowerCamelCase = use_attention_mask __lowerCamelCase = use_labels __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = d_ff __lowerCamelCase = relative_attention_num_buckets __lowerCamelCase = dropout_rate __lowerCamelCase = initializer_factor __lowerCamelCase = eos_token_id __lowerCamelCase = pad_token_id __lowerCamelCase = decoder_start_token_id __lowerCamelCase = None __lowerCamelCase = decoder_layers def __A ( self : Any ) -> Tuple: return TaConfig.from_pretrained('''google/umt5-base''' ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Optional[int]=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , ) -> Optional[int]: if attention_mask is None: __lowerCamelCase = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __lowerCamelCase = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __lowerCamelCase = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if decoder_head_mask is None: __lowerCamelCase = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) if cross_attn_head_mask is None: __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=SCREAMING_SNAKE_CASE__ ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def __A ( self : List[Any] ) -> Tuple: __lowerCamelCase = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) __lowerCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __lowerCamelCase = input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = decoder_input_ids.clamp(self.pad_token_id + 1 ) __lowerCamelCase = self.get_config() __lowerCamelCase = config.num_attention_heads __lowerCamelCase = self.prepare_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, input_dict def __A ( self : Tuple ) -> List[str]: __lowerCamelCase , __lowerCamelCase = self.prepare_config_and_inputs() return config, inputs_dict def __A ( self : Optional[Any] ) -> Any: return TaConfig( vocab_size=1_66 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : List[Any] ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def __A ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> int: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() __lowerCamelCase = model( input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , ) __lowerCamelCase = model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = result.last_hidden_state __lowerCamelCase = result.past_key_values __lowerCamelCase = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def __A ( self : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Dict: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).get_decoder().to(SCREAMING_SNAKE_CASE__ ).eval() # first forward pass __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , use_cache=SCREAMING_SNAKE_CASE__ ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) ) self.parent.assertTrue(len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) + 1 ) __lowerCamelCase , __lowerCamelCase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowerCamelCase = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and __lowerCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] __lowerCamelCase = model(SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] # select random slice __lowerCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __lowerCamelCase = output_from_no_past[:, -1, random_slice_idx].detach() __lowerCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , atol=1e-3 ) ) def __A ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple , ) -> Optional[int]: __lowerCamelCase = UMTaModel(config=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ).half().eval() __lowerCamelCase = model(**SCREAMING_SNAKE_CASE__ )['''last_hidden_state'''] self.parent.assertFalse(torch.isnan(SCREAMING_SNAKE_CASE__ ).any().item() ) @require_torch class lowerCAmelCase__ ( __lowercase , __lowercase , __lowercase , unittest.TestCase ): a__ : List[Any] = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) a__ : Union[str, Any] = (UMTaForConditionalGeneration,) if is_torch_available() else () a__ : Tuple = ( { """conversational""": UMTaForConditionalGeneration, """feature-extraction""": UMTaModel, """summarization""": UMTaForConditionalGeneration, """text2text-generation""": UMTaForConditionalGeneration, """translation""": UMTaForConditionalGeneration, """question-answering""": UMTaForQuestionAnswering, } if is_torch_available() else {} ) a__ : int = True a__ : int = False a__ : Tuple = False a__ : Optional[int] = True a__ : Optional[int] = True # The small UMT5 model needs higher percentages for CPU/MP tests a__ : Tuple = [0.8, 0.9] def __A ( self : Tuple ) -> Tuple: __lowerCamelCase = UMTaModelTester(self ) @unittest.skip('''Test has a segmentation fault on torch 1.8.0''' ) def __A ( self : List[str] ) -> Union[str, Any]: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = UMTaModel(config_and_inputs[0] ).to(SCREAMING_SNAKE_CASE__ ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( SCREAMING_SNAKE_CASE__ , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'''{tmpdirname}/t5_test.onnx''' , export_params=SCREAMING_SNAKE_CASE__ , opset_version=9 , input_names=['''input_ids''', '''decoder_input_ids'''] , ) @unittest.skipIf(torch_device == '''cpu''' , '''Cant do half precision''' ) def __A ( self : Union[str, Any] ) -> Any: __lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*SCREAMING_SNAKE_CASE__ ) def __A ( self : Any ) -> Any: __lowerCamelCase = ['''encoder_attentions''', '''decoder_attentions''', '''cross_attentions'''] __lowerCamelCase = self.model_tester.prepare_config_and_inputs() __lowerCamelCase = config_and_inputs[0] __lowerCamelCase = UMTaForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() model.to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = { '''head_mask''': torch.zeros(config.num_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''decoder_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), '''cross_attn_head_mask''': torch.zeros(config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ), } for attn_name, (name, mask) in zip(SCREAMING_SNAKE_CASE__ , head_masking.items() ): __lowerCamelCase = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": __lowerCamelCase = torch.ones( config.num_decoder_layers , config.num_heads , device=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate( config_and_inputs[1]['''input_ids'''] , num_beams=1 , max_length=3 , output_attentions=SCREAMING_SNAKE_CASE__ , return_dict_in_generate=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # We check the state of decoder_attentions and cross_attentions just from the last step __lowerCamelCase = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip('''Does not work on the tiny model as we keep hitting edge cases.''' ) def __A ( self : Tuple ) -> Optional[Any]: pass @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): @slow @unittest.skip( '''Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged''' ) def __A ( self : int ) -> Optional[Any]: __lowerCamelCase = UMTaForConditionalGeneration.from_pretrained('''google/umt5-small''' , return_dict=SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/umt5-small''' , use_fast=SCREAMING_SNAKE_CASE__ , legacy=SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = [ '''Bonjour monsieur <extra_id_0> bien <extra_id_1>.''', '''No se como puedo <extra_id_0>.''', '''This is the reason why we <extra_id_0> them.''', '''The <extra_id_0> walks in <extra_id_1>, seats''', '''A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.''', ] __lowerCamelCase = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' , padding=SCREAMING_SNAKE_CASE__ ).input_ids # fmt: off __lowerCamelCase = torch.tensor( [ [ 3_85_30, 21_07_03, 25_62_99, 14_10, 25_62_98, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 8_26, 3_21, 6_71, 2_59_22, 25_62_99, 2_74, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 14_60, 3_39, 3_12, 1_90_14, 1_06_20, 7_58, 25_62_99, 23_55,2_74, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 5_17, 25_62_99, 1_48_69, 2_81, 3_01, 25_62_98, 2_75, 11_99_83,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 3_20, 25_62_99, 1_48_69, 2_81, 22_34, 2_89, 22_75, 3_33,6_13_91, 2_89, 25_62_98, 5_43, 25_62_97, 16_87_14, 3_29, 25_62_96,2_74, 1], ] ) # fmt: on torch.testing.assert_allclose(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCamelCase = model.generate(input_ids.to(SCREAMING_SNAKE_CASE__ ) ) __lowerCamelCase = [ '''<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>''', '''<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', '''<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>''', ] __lowerCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ ) self.assertEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
339
1