code
stringlengths
86
54.5k
code_codestyle
int64
0
371
style_context
stringlengths
87
49.2k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __UpperCamelCase ( lowerCAmelCase__ : Any ): __a : Optional[int] = model.config __a : List[str] = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) __a : Optional[Any] = MBartConfig( is_decoder=lowerCAmelCase__ , is_encoder_decoder=lowerCAmelCase__ , add_cross_attention=lowerCAmelCase__ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowerCAmelCase__ , add_final_layer_norm=lowerCAmelCase__ , ) return encoder_config, decoder_config def __UpperCamelCase ( lowerCAmelCase__ : List[str] ): if "encoder.model" in name: __a : Optional[int] = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: __a : Union[str, Any] = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: __a : Tuple = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __a : Optional[int] = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: __a : Dict = '''encoder.''' + name if "attn.proj" in name: __a : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: __a : Dict = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __a : Optional[int] = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __a : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __a : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __a : Dict = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __a : List[Any] = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": __a : int = '''encoder.layernorm.bias''' return name def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : Tuple ): for key in orig_state_dict.copy().keys(): __a : Optional[Any] = orig_state_dict.pop(lowerCAmelCase__ ) if "qkv" in key: __a : int = key.split('''.''' ) __a : Union[str, Any] = int(key_split[3] ) __a : Dict = int(key_split[5] ) __a : Optional[Any] = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __a : Optional[Any] = val[:dim, :] __a : List[Any] = val[dim : dim * 2, :] __a : str = val[-dim:, :] else: __a : Optional[Any] = val[:dim] __a : List[Any] = val[dim : dim * 2] __a : Optional[int] = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __a : Dict = val return orig_state_dict def __UpperCamelCase ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Any=None , lowerCAmelCase__ : Optional[int]=False ): # load original model __a : List[str] = DonutModel.from_pretrained(lowerCAmelCase__ ).eval() # load HuggingFace model __a , __a : int = get_configs(lowerCAmelCase__ ) __a : List[Any] = DonutSwinModel(lowerCAmelCase__ ) __a : Optional[Any] = MBartForCausalLM(lowerCAmelCase__ ) __a : int = VisionEncoderDecoderModel(encoder=lowerCAmelCase__ , decoder=lowerCAmelCase__ ) model.eval() __a : Dict = original_model.state_dict() __a : str = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) # verify results on scanned document __a : str = load_dataset('''hf-internal-testing/example-documents''' ) __a : Any = dataset['''test'''][0]['''image'''].convert('''RGB''' ) __a : Optional[Any] = XLMRobertaTokenizerFast.from_pretrained(lowerCAmelCase__ , from_slow=lowerCAmelCase__ ) __a : int = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __a : List[str] = DonutProcessor(lowerCAmelCase__ , lowerCAmelCase__ ) __a : List[str] = processor(lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __a : Tuple = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __a : List[Any] = '''When is the coffee break?''' __a : Union[str, Any] = task_prompt.replace('''{user_input}''' , lowerCAmelCase__ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __a : List[str] = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __a : Union[str, Any] = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __a : Optional[Any] = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __a : List[Any] = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __a : Union[str, Any] = '''hello world''' else: raise ValueError('''Model name not supported''' ) __a : str = original_model.decoder.tokenizer(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_tensors='''pt''' )[ '''input_ids''' ] __a : Tuple = original_model.encoder.model.patch_embed(lowerCAmelCase__ ) __a , __a : Optional[int] = model.encoder.embeddings(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) # verify encoder hidden states __a : Optional[int] = original_model.encoder(lowerCAmelCase__ ) __a : List[str] = model.encoder(lowerCAmelCase__ ).last_hidden_state assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-2 ) # verify decoder hidden states __a : str = original_model(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ).logits __a : Tuple = model(lowerCAmelCase__ , decoder_input_ids=lowerCAmelCase__ ).logits assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='naver-clova-ix/donut-base-finetuned-docvqa', required=False, type=str, help='Name of the original model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, required=False, type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model and processor to the 🤗 hub.', ) lowercase__ =parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
216
def __UpperCamelCase ( lowerCAmelCase__ : str ): if n_term == "": return [] __a : list = [] for temp in range(int(lowerCAmelCase__ ) ): series.append(f"1/{temp + 1}" if series else '''1''' ) return series if __name__ == "__main__": lowercase__ =input('Enter the last number (nth term) of the Harmonic Series') print('Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n') print(harmonic_series(nth_term))
216
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import PoolFormerImageProcessor class _a (unittest.TestCase ): '''simple docstring''' def __init__( self , A__ , A__=7 , A__=3 , A__=30 , A__=400 , A__=True , A__=None , A__=0.9 , A__=None , A__=True , A__=[0.5, 0.5, 0.5] , A__=[0.5, 0.5, 0.5] , ): A__ : Any = size if size is not None else {"""shortest_edge""": 30} A__ : Tuple = crop_size if crop_size is not None else {"""height""": 30, """width""": 30} A__ : Optional[Any] = parent A__ : Any = batch_size A__ : Any = num_channels A__ : Union[str, Any] = min_resolution A__ : List[str] = max_resolution A__ : Dict = do_resize_and_center_crop A__ : int = size A__ : Optional[Any] = crop_pct A__ : Optional[int] = crop_size A__ : Tuple = do_normalize A__ : Optional[Any] = image_mean A__ : int = image_std def __A ( self ): return { "size": self.size, "do_resize_and_center_crop": self.do_resize_and_center_crop, "crop_pct": self.crop_pct, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class _a (__snake_case , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__: List[Any] = PoolFormerImageProcessor if is_vision_available() else None def __A ( self ): A__ : Any = PoolFormerImageProcessingTester(self ) @property def __A ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ): A__ : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , """do_resize_and_center_crop""" ) ) self.assertTrue(hasattr(A__ , """size""" ) ) self.assertTrue(hasattr(A__ , """crop_pct""" ) ) self.assertTrue(hasattr(A__ , """do_normalize""" ) ) self.assertTrue(hasattr(A__ , """image_mean""" ) ) self.assertTrue(hasattr(A__ , """image_std""" ) ) def __A ( self ): A__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 30} ) self.assertEqual(image_processor.crop_size , {"""height""": 30, """width""": 30} ) A__ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def __A ( self ): pass def __A ( self ): # Initialize image_processing A__ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input A__ : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : List[Any] = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing A__ : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input A__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Optional[int] = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def __A ( self ): # Initialize image_processing A__ : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input A__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched A__ : Optional[int] = image_processing(A__ , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
362
from __future__ import annotations def UpperCamelCase (lowercase_: list[int] , lowercase_: list[int] , lowercase_: int ) -> tuple[float, list[float]]: A__ : Tuple = list(range(len(lowercase_ ) ) ) A__ : Union[str, Any] = [v / w for v, w in zip(lowercase_ , lowercase_ )] index.sort(key=lambda lowercase_ : ratio[i] , reverse=lowercase_ ) A__ : float = 0 A__ : list[float] = [0] * len(lowercase_ ) for i in index: if weight[i] <= capacity: A__ : Optional[int] = 1 max_value += value[i] capacity -= weight[i] else: A__ : Union[str, Any] = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
141
0
class UpperCAmelCase : '''simple docstring''' def __init__( self : int ,A : int ): __A = n __A = [None] * self.n __A = 0 # index of the first element __A = 0 __A = 0 def __len__( self : Tuple ): return self.size def UpperCamelCase_ ( self : int ): return self.size == 0 def UpperCamelCase_ ( self : str ): return False if self.is_empty() else self.array[self.front] def UpperCamelCase_ ( self : Union[str, Any] ,A : Dict ): if self.size >= self.n: raise Exception("QUEUE IS FULL" ) __A = data __A = (self.rear + 1) % self.n self.size += 1 return self def UpperCamelCase_ ( self : Union[str, Any] ): if self.size == 0: raise Exception("UNDERFLOW" ) __A = self.array[self.front] __A = None __A = (self.front + 1) % self.n self.size -= 1 return temp
15
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer a_ : str = logging.get_logger(__name__) a_ : Union[str, Any] = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} a_ : List[str] = { "vocab_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt" ), }, "tokenizer_file": { "yjernite/retribert-base-uncased": ( "https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json" ), }, } a_ : Any = { "yjernite/retribert-base-uncased": 5_1_2, } a_ : Tuple = { "yjernite/retribert-base-uncased": {"do_lower_case": True}, } class a ( _SCREAMING_SNAKE_CASE ): _lowerCAmelCase = VOCAB_FILES_NAMES _lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP _lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION _lowerCAmelCase = RetriBertTokenizer _lowerCAmelCase = ["""input_ids""", """attention_mask"""] def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=True , __magic_name__="[UNK]" , __magic_name__="[SEP]" , __magic_name__="[PAD]" , __magic_name__="[CLS]" , __magic_name__="[MASK]" , __magic_name__=True , __magic_name__=None , **__magic_name__ , ) -> Tuple: super().__init__( __magic_name__ , tokenizer_file=__magic_name__ , do_lower_case=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , pad_token=__magic_name__ , cls_token=__magic_name__ , mask_token=__magic_name__ , tokenize_chinese_chars=__magic_name__ , strip_accents=__magic_name__ , **__magic_name__ , ) _a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __magic_name__ ) != do_lower_case or normalizer_state.get('strip_accents' , __magic_name__ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __magic_name__ ) != tokenize_chinese_chars ): _a = getattr(__magic_name__ , normalizer_state.pop('type' ) ) _a = do_lower_case _a = strip_accents _a = tokenize_chinese_chars _a = normalizer_class(**__magic_name__ ) _a = do_lower_case def __UpperCAmelCase ( self , __magic_name__ , __magic_name__=None ) -> Union[str, Any]: _a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> List[int]: _a = [self.sep_token_id] _a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ) -> Tuple[str]: _a = self._tokenizer.model.save(__magic_name__ , name=__magic_name__ ) return tuple(__magic_name__ )
168
0
'''simple docstring''' import math import os import re import sys import unittest from pathlib import Path from typing import Tuple from unittest.mock import patch from parameterized import parameterized from transformers.testing_utils import ( CaptureStderr, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, get_torch_dist_unique_port, require_apex, require_bitsandbytes, require_fairscale, require_torch, require_torch_gpu, require_torch_multi_gpu, require_torch_non_multi_gpu, slow, ) from transformers.trainer_callback import TrainerState from transformers.trainer_utils import set_seed snake_case__ : Any = os.path.abspath(os.path.dirname(__file__)) with ExtendSysPath(f'''{bindir}/../../examples/pytorch/translation'''): from run_translation import main # noqa set_seed(42) snake_case__ : int = '''sshleifer/student_marian_en_ro_6_1''' snake_case__ : Tuple = '''sshleifer/tiny-mbart''' @require_torch class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ ): '''simple docstring''' def _UpperCamelCase ( self , snake_case_=False , snake_case_=None , snake_case_=True , snake_case_=True , snake_case_=True , snake_case_=True , ): '''simple docstring''' UpperCAmelCase_ : Dict = self.run_trainer( eval_steps=1 , max_len=1_2 , model_name=snake_case_ , num_train_epochs=1 , distributed=snake_case_ , extra_args_str=snake_case_ , predict_with_generate=snake_case_ , do_train=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , ) UpperCAmelCase_ : List[Any] = TrainerState.load_from_json(os.path.join(snake_case_ , 'trainer_state.json' ) ).log_history if not do_eval: return UpperCAmelCase_ : Tuple = [log for log in logs if 'eval_loss' in log.keys()] UpperCAmelCase_ : str = eval_metrics[0] if predict_with_generate: assert "eval_bleu" in first_step_stats UpperCAmelCase_ : List[str] = eval_metrics[-1] assert isinstance(last_step_stats['eval_bleu'] , snake_case_ ) assert not math.isnan(float(last_step_stats['eval_loss'] ) ), "eval_loss must not be `nan`" @require_torch_non_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick() @require_torch_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ ) @require_torch_multi_gpu def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='--sharded_ddp simple' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='--sharded_ddp simple --fp16' ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='--sharded_ddp zero_dp_2' , predict_with_generate=snake_case_ ) @unittest.skip('Requires an update of the env running those tests' ) @require_torch_multi_gpu @require_fairscale def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick( distributed=snake_case_ , extra_args_str='--sharded_ddp zero_dp_2 --fp16' , predict_with_generate=snake_case_ ) @require_apex @require_torch_gpu def _UpperCamelCase ( self ): '''simple docstring''' self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='--fp16 --fp16_backend=apex' ) # test 2nd time - was getting eval_loss': nan' # to reproduce the problem set distributed=False self.run_seqaseq_quick(distributed=snake_case_ , extra_args_str='--fp16 --fp16_backend=apex' ) @parameterized.expand(['base', 'low', 'high', 'mixed'] ) @require_torch_multi_gpu def _UpperCamelCase ( self , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = { # test with the default log_level - should be info and thus log info once 'base': {'extra_args_str': '', 'n_matches': 1}, # test with low log_level and log_level_replica - should be noisy on all processes # now the info string should appear twice on 2 processes 'low': {'extra_args_str': '--log_level debug --log_level_replica debug', 'n_matches': 2}, # test with high log_level and low log_level_replica # now the info string should appear once only on the replica 'high': {'extra_args_str': '--log_level error --log_level_replica debug', 'n_matches': 1}, # test with high log_level and log_level_replica - should be quiet on all processes 'mixed': {'extra_args_str': '--log_level error --log_level_replica error', 'n_matches': 0}, } UpperCAmelCase_ : Optional[Any] = experiments[experiment_id] UpperCAmelCase_ : Optional[int] = {'distributed': True, 'predict_with_generate': False, 'do_eval': False, 'do_predict': False} UpperCAmelCase_ : Optional[int] = 'Running training' with CaptureStderr() as cl: self.run_seqaseq_quick(**snake_case_ , extra_args_str=data['extra_args_str'] ) UpperCAmelCase_ : Tuple = len(re.findall(snake_case_ , cl.err ) ) self.assertEqual(snake_case_ , data['n_matches'] ) @slow def _UpperCamelCase ( self ): '''simple docstring''' UpperCAmelCase_ : Optional[Any] = self.run_trainer( eval_steps=2 , max_len=1_2_8 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1_0 , distributed=snake_case_ , ) # Check metrics UpperCAmelCase_ : int = TrainerState.load_from_json(os.path.join(snake_case_ , 'trainer_state.json' ) ).log_history UpperCAmelCase_ : Tuple = [log for log in logs if 'eval_loss' in log.keys()] UpperCAmelCase_ : Union[str, Any] = eval_metrics[0] UpperCAmelCase_ : Union[str, Any] = eval_metrics[-1] assert first_step_stats["eval_loss"] > last_step_stats["eval_loss"], "model learned nothing" assert isinstance(last_step_stats['eval_bleu'] , snake_case_ ) # test if do_predict saves generations and metrics UpperCAmelCase_ : Union[str, Any] = os.listdir(snake_case_ ) UpperCAmelCase_ : List[str] = {os.path.basename(snake_case_ ) for p in contents} assert "generated_predictions.txt" in contents assert "predict_results.json" in contents @slow @require_bitsandbytes def _UpperCamelCase ( self ): '''simple docstring''' from transformers.training_args import OptimizerNames def train_and_return_metrics(snake_case_ ) -> Tuple[int, float]: UpperCAmelCase_ : Union[str, Any] = '--skip_memory_metrics 0' UpperCAmelCase_ : List[str] = self.run_trainer( max_len=1_2_8 , model_name=snake_case_ , learning_rate=3E-4 , num_train_epochs=1 , optim=snake_case_ , distributed=snake_case_ , extra_args_str=snake_case_ , do_eval=snake_case_ , do_predict=snake_case_ , n_gpus_to_use=1 , ) # Check metrics UpperCAmelCase_ : List[str] = TrainerState.load_from_json(Path(snake_case_ , 'trainer_state.json' ) ).log_history UpperCAmelCase_ : Optional[int] = int(logs[0]['train_mem_gpu_peaked_delta'] / 2**2_0 ) UpperCAmelCase_ : Optional[int] = int(logs[0]['train_mem_gpu_alloc_delta'] / 2**2_0 ) UpperCAmelCase_ : List[Any] = logs[0]['train_loss'] return gpu_peak_mem_mb, gpu_alloc_mem_mb, loss UpperCAmelCase_ : Any = train_and_return_metrics(OptimizerNames.ADAMW_TORCH.value ) UpperCAmelCase_ : Optional[Any] = train_and_return_metrics(OptimizerNames.ADAMW_BNB.value ) UpperCAmelCase_ : Optional[int] = gpu_alloc_mem_orig - gpu_alloc_mem_bnb UpperCAmelCase_ : Optional[int] = gpu_peak_mem_orig + gpu_alloc_mem_orig UpperCAmelCase_ : List[str] = gpu_peak_mem_bnb + gpu_alloc_mem_bnb UpperCAmelCase_ : int = gpu_total_mem_orig - gpu_total_mem_bnb # sshleifer/student_marian_en_ro_6_1 has 54M parameter, 29M of which is `nn.Embedding` which # doesn't get quantized and remains in fp32. Therefore we only have 25M parameters quantized # in 2 bytes and the diff in optim memory usage is derived as so: # # - normal 25*8=~200MB (8 bytes per param) # - bnb 25*2= ~50MB (2 bytes per param) # # Thus we should expect ~150MB total memory saved. # # Peak memory should be the same - the total should be different by about that same margin # # After leaving a small margin to accommodate for differences between gpus let's check # that we have at least 120MB in savings UpperCAmelCase_ : Tuple = 1_2_0 # uncomment the following if this test starts failing - requires py38 for a new print feature # gpu_peak_mem_diff = gpu_peak_mem_orig - gpu_peak_mem_bnb # print(f"{gpu_alloc_mem_orig=}MB {gpu_peak_mem_orig=}MB {gpu_alloc_mem_orig+gpu_peak_mem_orig=}MB") # print(f" {gpu_alloc_mem_bnb=}MB {gpu_peak_mem_bnb=}MB {gpu_alloc_mem_bnb+gpu_peak_mem_bnb=}MB") # print(f"{gpu_alloc_mem_diff=}MB") # print(f"{gpu_peak_mem_diff=}MB") # print(f"{gpu_total_mem_orig=}MB, {gpu_total_mem_bnb=}MB") # print(f"{gpu_total_mem_diff=}MB, {gpu_total_mem_diff=}MB") self.assertGreater( snake_case_ , snake_case_ , 'should use ~150MB less alloc gpu memory with BNB, compared to without it for this model but got' F''' a difference of {gpu_alloc_mem_diff}MB, with gpu_alloc_mem_orig={gpu_alloc_mem_orig}MB and''' F''' gpu_alloc_mem_bnb={gpu_alloc_mem_bnb}MB''' , ) self.assertGreater( snake_case_ , snake_case_ , 'should use ~150MB less total gpu memory with BNB, compared to without it for this model but got' F''' a difference of {gpu_total_mem_diff}MB, with gpu_total_mem_orig={gpu_total_mem_orig}MB and''' F''' gpu_total_mem_bnb={gpu_total_mem_bnb}MB''' , ) self.assertEqual( snake_case_ , snake_case_ , F'''loss should be the same, but got loss_orig={loss_orig}, loss_bnb={loss_bnb}''' ) def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = 3E-3 , snake_case_ = "adafactor" , snake_case_ = False , snake_case_ = None , snake_case_ = 0 , snake_case_ = True , snake_case_ = True , snake_case_ = True , snake_case_ = True , snake_case_ = None , ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = self.test_file_dir / '../fixtures/tests_samples/wmt_en_ro' UpperCAmelCase_ : List[Any] = self.get_auto_remove_tmp_dir() UpperCAmelCase_ : Any = F''' --model_name_or_path {model_name} --train_file {data_dir}/train.json --validation_file {data_dir}/val.json --test_file {data_dir}/test.json --output_dir {output_dir} --overwrite_output_dir --max_train_samples 8 --max_source_length {max_len} --max_target_length {max_len} --do_train --num_train_epochs {str(snake_case_ )} --per_device_train_batch_size 4 --learning_rate {learning_rate} --warmup_steps 8 --logging_steps 0 --logging_strategy no --save_steps {str(snake_case_ )} --group_by_length --label_smoothing_factor 0.1 --target_lang ro_RO --source_lang en_XX '''.split() UpperCAmelCase_ : Tuple = F''' --do_eval --per_device_eval_batch_size 4 --max_eval_samples 8 --val_max_target_length {max_len} --evaluation_strategy steps --eval_steps {str(snake_case_ )} '''.split() UpperCAmelCase_ : List[str] = '\n --do_predict\n '.split() UpperCAmelCase_ : Optional[Any] = [] if do_train: args += args_train if do_eval: args += args_eval if do_predict: args += args_predict if predict_with_generate: args += "--predict_with_generate".split() if do_train: if optim == "adafactor": args += "--adafactor".split() else: args += F'''--optim {optim}'''.split() if extra_args_str is not None: args += extra_args_str.split() if distributed: if n_gpus_to_use is None: UpperCAmelCase_ : List[str] = get_gpu_count() UpperCAmelCase_ : int = get_torch_dist_unique_port() UpperCAmelCase_ : Union[str, Any] = F''' -m torch.distributed.run --nproc_per_node={n_gpus_to_use} --master_port={master_port} {self.examples_dir_str}/pytorch/translation/run_translation.py '''.split() UpperCAmelCase_ : Any = [sys.executable] + distributed_args + args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(snake_case_ , env=self.get_env() ) else: UpperCAmelCase_ : List[Any] = ['run_translation.py'] + args with patch.object(snake_case_ , 'argv' , snake_case_ ): main() return output_dir
356
'''simple docstring''' import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class __SCREAMING_SNAKE_CASE ( lowerCamelCase_ , lowerCamelCase_ ): '''simple docstring''' lowerCamelCase_ :Union[str, Any] = 1 @register_to_config def __init__( self , snake_case_ = 1_0_0_0 , snake_case_ = None ): '''simple docstring''' self.set_timesteps(snake_case_ ) # standard deviation of the initial noise distribution UpperCAmelCase_ : Union[str, Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. UpperCAmelCase_ : int = 4 # running values UpperCAmelCase_ : str = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' UpperCAmelCase_ : Union[str, Any] = num_inference_steps UpperCAmelCase_ : int = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] UpperCAmelCase_ : Tuple = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: UpperCAmelCase_ : Optional[int] = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: UpperCAmelCase_ : Tuple = torch.sin(steps * math.pi / 2 ) ** 2 UpperCAmelCase_ : Dict = (1.0 - self.betas**2) ** 0.5 UpperCAmelCase_ : str = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] UpperCAmelCase_ : str = timesteps.to(snake_case_ ) UpperCAmelCase_ : Any = [] def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ = True , ): '''simple docstring''' if self.num_inference_steps is None: raise ValueError( 'Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler' ) UpperCAmelCase_ : Any = (self.timesteps == timestep).nonzero().item() UpperCAmelCase_ : Optional[Any] = timestep_index + 1 UpperCAmelCase_ : Dict = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(snake_case_ ) if len(self.ets ) == 1: UpperCAmelCase_ : Tuple = self.ets[-1] elif len(self.ets ) == 2: UpperCAmelCase_ : Any = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: UpperCAmelCase_ : List[str] = (2_3 * self.ets[-1] - 1_6 * self.ets[-2] + 5 * self.ets[-3]) / 1_2 else: UpperCAmelCase_ : Union[str, Any] = (1 / 2_4) * (5_5 * self.ets[-1] - 5_9 * self.ets[-2] + 3_7 * self.ets[-3] - 9 * self.ets[-4]) UpperCAmelCase_ : Union[str, Any] = self._get_prev_sample(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=snake_case_ ) def _UpperCamelCase ( self , snake_case_ , *snake_case_ , **snake_case_ ): '''simple docstring''' return sample def _UpperCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' UpperCAmelCase_ : int = self.alphas[timestep_index] UpperCAmelCase_ : Union[str, Any] = self.betas[timestep_index] UpperCAmelCase_ : Any = self.alphas[prev_timestep_index] UpperCAmelCase_ : Dict = self.betas[prev_timestep_index] UpperCAmelCase_ : List[Any] = (sample - sigma * ets) / max(snake_case_ , 1E-8 ) UpperCAmelCase_ : Tuple = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
274
0
import json import os from pathlib import Path import pytest from datasets.download.download_config import DownloadConfig from datasets.download.download_manager import DownloadManager from datasets.utils.file_utils import hash_url_to_filename A__ = '''http://www.mocksite.com/file1.txt''' A__ = '''"text": ["foo", "foo"]''' A__ = '''6d8ce9aa78a471c7477201efbeabd3bb01ac2e7d100a6dc024ba1608361f90a8''' class a : __lowerCAmelCase : Optional[int] = 2_00 __lowerCAmelCase : List[str] = {"""Content-Length""": """100"""} __lowerCAmelCase : Dict = {} def __lowerCamelCase ( self :Dict ,**__lowercase :List[Any] ): return [bytes(__lowercase ,'''utf-8''' )] def _lowerCAmelCase ( *__lowerCAmelCase , **__lowerCAmelCase ) -> Optional[Any]: """simple docstring""" return MockResponse() @pytest.mark.parametrize('''urls_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" import requests monkeypatch.setattr(__lowerCAmelCase , '''request''' , __lowerCAmelCase ) snake_case__ : Union[str, Any] = URL if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[Any] = url elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = [url] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : int = {'''train''': url} snake_case__ : Dict = '''dummy''' snake_case__ : Any = '''downloads''' snake_case__ : int = tmp_path snake_case__ : Any = DownloadConfig( cache_dir=os.path.join(__lowerCAmelCase , __lowerCAmelCase ) , use_etag=__lowerCAmelCase , ) snake_case__ : Tuple = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : List[Any] = dl_manager.download(__lowerCAmelCase ) snake_case__ : Union[str, Any] = urls for downloaded_paths in [downloaded_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Optional[int] = [downloaded_paths] snake_case__ : Dict = [urls] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in downloaded_paths.keys() snake_case__ : str = downloaded_paths.values() snake_case__ : List[str] = urls.values() assert downloaded_paths for downloaded_path, input_url in zip(__lowerCAmelCase , __lowerCAmelCase ): assert downloaded_path == dl_manager.downloaded_paths[input_url] snake_case__ : List[Any] = Path(__lowerCAmelCase ) snake_case__ : Any = downloaded_path.parts assert parts[-1] == HASH assert parts[-2] == cache_subdir assert downloaded_path.exists() snake_case__ : List[str] = downloaded_path.read_text() assert content == CONTENT snake_case__ : List[str] = downloaded_path.with_suffix('''.json''' ) assert metadata_downloaded_path.exists() snake_case__ : str = json.loads(metadata_downloaded_path.read_text() ) assert metadata_content == {"url": URL, "etag": None} @pytest.mark.parametrize('''paths_type''' , [str, list, dict] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any: """simple docstring""" snake_case__ : Any = str(__lowerCAmelCase ) if issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Tuple = filename elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [filename] elif issubclass(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = {'''train''': filename} snake_case__ : Any = '''dummy''' snake_case__ : Any = xz_file.parent snake_case__ : List[str] = '''extracted''' snake_case__ : Dict = DownloadConfig( cache_dir=__lowerCAmelCase , use_etag=__lowerCAmelCase , ) snake_case__ : Dict = DownloadManager(dataset_name=__lowerCAmelCase , download_config=__lowerCAmelCase ) snake_case__ : str = dl_manager.extract(__lowerCAmelCase ) snake_case__ : int = paths for extracted_paths in [extracted_paths]: if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case__ : Dict = [extracted_paths] snake_case__ : Optional[Any] = [paths] elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): assert "train" in extracted_paths.keys() snake_case__ : int = extracted_paths.values() snake_case__ : int = paths.values() assert extracted_paths for extracted_path, input_path in zip(__lowerCAmelCase , __lowerCAmelCase ): assert extracted_path == dl_manager.extracted_paths[input_path] snake_case__ : Optional[int] = Path(__lowerCAmelCase ) snake_case__ : int = extracted_path.parts assert parts[-1] == hash_url_to_filename(__lowerCAmelCase , etag=__lowerCAmelCase ) assert parts[-2] == extracted_subdir assert extracted_path.exists() snake_case__ : List[Any] = extracted_path.read_text() snake_case__ : List[str] = text_file.read_text() assert extracted_file_content == expected_file_content def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[Any]: """simple docstring""" assert path.endswith('''.jsonl''' ) for num_items, line in enumerate(__lowerCAmelCase , start=1 ): snake_case__ : Any = json.loads(line.decode('''utf-8''' ) ) assert item.keys() == {"col_1", "col_2", "col_3"} assert num_items == 4 @pytest.mark.parametrize('''archive_jsonl''' , ['''tar_jsonl_path''', '''zip_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]: """simple docstring""" snake_case__ : Any = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Union[str, Any] = DownloadManager() for num_jsonl, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_jsonl == 2 @pytest.mark.parametrize('''archive_nested_jsonl''' , ['''tar_nested_jsonl_path''', '''zip_nested_jsonl_path'''] ) def _lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]: """simple docstring""" snake_case__ : Union[str, Any] = request.getfixturevalue(__lowerCAmelCase ) snake_case__ : Optional[int] = DownloadManager() for num_tar, (path, file) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): for num_jsonl, (subpath, subfile) in enumerate(dl_manager.iter_archive(__lowerCAmelCase ) , start=1 ): _test_jsonl(__lowerCAmelCase , __lowerCAmelCase ) assert num_tar == 1 assert num_jsonl == 2 def _lowerCAmelCase ( __lowerCAmelCase ) -> str: """simple docstring""" snake_case__ : Any = DownloadManager() for num_file, file in enumerate(dl_manager.iter_files(__lowerCAmelCase ) , start=1 ): assert os.path.basename(__lowerCAmelCase ) == ("test.txt" if num_file == 1 else "train.txt") assert num_file == 2
230
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.activations import gelu_new, gelu_python, get_activation @require_torch class a ( unittest.TestCase ): def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : Union[str, Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : int = get_activation('''gelu''' ) self.assertTrue(torch.allclose(gelu_python(__lowercase ) ,torch_builtin(__lowercase ) ) ) self.assertFalse(torch.allclose(gelu_python(__lowercase ) ,gelu_new(__lowercase ) ) ) def __lowerCamelCase ( self :Union[str, Any] ): snake_case__ : List[Any] = torch.tensor([-1_0_0, -1, -0.1, 0, 0.1, 1.0, 1_0_0] ) snake_case__ : Union[str, Any] = get_activation('''gelu''' ) snake_case__ : int = get_activation('''gelu_10''' ) snake_case__ : Optional[int] = torch_builtin(__lowercase ) snake_case__ : str = geluaa(__lowercase ) snake_case__ : Tuple = torch.where(y_gelu_aa < 10.0 ,1 ,0 ) self.assertTrue(torch.max(__lowercase ).item() == 10.0 ) self.assertTrue(torch.allclose(y_gelu * clipped_mask ,y_gelu_aa * clipped_mask ) ) def __lowerCamelCase ( self :Any ): get_activation('''gelu''' ) get_activation('''gelu_10''' ) get_activation('''gelu_fast''' ) get_activation('''gelu_new''' ) get_activation('''gelu_python''' ) get_activation('''gelu_pytorch_tanh''' ) get_activation('''linear''' ) get_activation('''mish''' ) get_activation('''quick_gelu''' ) get_activation('''relu''' ) get_activation('''sigmoid''' ) get_activation('''silu''' ) get_activation('''swish''' ) get_activation('''tanh''' ) with self.assertRaises(__lowercase ): get_activation('''bogus''' ) with self.assertRaises(__lowercase ): get_activation(__lowercase ) def __lowerCamelCase ( self :Optional[int] ): snake_case__ : str = get_activation('''gelu''' ) snake_case__ : List[Any] = 1 snake_case__ : Optional[Any] = get_activation('''gelu''' ) self.assertEqual(acta.a ,1 ) with self.assertRaises(__lowercase ): snake_case__ : str = acta.a
230
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _snake_case ( ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase = ArgumentParser("""Accelerate CLI tool""" , usage="""accelerate <command> [<args>]""" , allow_abbrev=_SCREAMING_SNAKE_CASE ) lowerCAmelCase = parser.add_subparsers(help="""accelerate command helpers""" ) # Register commands get_config_parser(subparsers=_SCREAMING_SNAKE_CASE ) env_command_parser(subparsers=_SCREAMING_SNAKE_CASE ) launch_command_parser(subparsers=_SCREAMING_SNAKE_CASE ) tpu_command_parser(subparsers=_SCREAMING_SNAKE_CASE ) test_command_parser(subparsers=_SCREAMING_SNAKE_CASE ) # Let's go lowerCAmelCase = parser.parse_args() if not hasattr(_SCREAMING_SNAKE_CASE , """func""" ): parser.print_help() exit(1 ) # Run args.func(_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
187
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __snake_case: '''simple docstring''' def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=32 , A_=2 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.0_2 , A_=3 , A_=4 , A_=None , ) -> Dict: lowerCAmelCase = parent lowerCAmelCase = 13 lowerCAmelCase = 7 lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = 99 lowerCAmelCase = 384 lowerCAmelCase = 2 lowerCAmelCase = 4 lowerCAmelCase = 37 lowerCAmelCase = """gelu""" lowerCAmelCase = 0.1 lowerCAmelCase = 0.1 lowerCAmelCase = 512 lowerCAmelCase = 16 lowerCAmelCase = 2 lowerCAmelCase = 0.0_2 lowerCAmelCase = 3 lowerCAmelCase = 4 lowerCAmelCase = 128 lowerCAmelCase = 2 lowerCAmelCase = 9 lowerCAmelCase = 1 lowerCAmelCase = None def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None if self.use_token_type_ids: lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=A_ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: lowerCAmelCase = TFConvBertModel(config=A_ ) lowerCAmelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCAmelCase = [input_ids, input_mask] lowerCAmelCase = model(A_ ) lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: lowerCAmelCase = TFConvBertForMaskedLM(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForSequenceClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Any: lowerCAmelCase = self.num_choices lowerCAmelCase = TFConvBertForMultipleChoice(config=A_ ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = tf.tile(tf.expand_dims(A_ , 1 ) , (1, self.num_choices, 1) ) lowerCAmelCase = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: lowerCAmelCase = self.num_labels lowerCAmelCase = TFConvBertForTokenClassification(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: lowerCAmelCase = TFConvBertForQuestionAnswering(config=A_ ) lowerCAmelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCAmelCase = model(A_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self ) -> Any: lowerCAmelCase = self.prepare_config_and_inputs() ( ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ( lowerCAmelCase ), ) = config_and_inputs lowerCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __snake_case( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase : Union[str, Any] = ( { "feature-extraction": TFConvBertModel, "fill-mask": TFConvBertForMaskedLM, "question-answering": TFConvBertForQuestionAnswering, "text-classification": TFConvBertForSequenceClassification, "token-classification": TFConvBertForTokenClassification, "zero-shot": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : Union[str, Any] = False UpperCAmelCase : Optional[int] = False UpperCAmelCase : Dict = False def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = TFConvBertModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=A_ , hidden_size=37 ) def __snake_case ( self ) -> Tuple: self.config_tester.run_common_tests() def __snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A_ ) def __snake_case ( self ) -> Optional[int]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A_ ) def __snake_case ( self ) -> List[str]: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) def __snake_case ( self ) -> str: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def __snake_case ( self ) -> Tuple: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) @slow def __snake_case ( self ) -> Any: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = True if hasattr(A_ , """use_cache""" ): lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) for model_class in self.all_model_classes: lowerCAmelCase = self._prepare_for_class(A_ , A_ ) lowerCAmelCase = model_class(A_ ) lowerCAmelCase = len(model(A_ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A_ , saved_model=A_ ) lowerCAmelCase = os.path.join(A_ , """saved_model""" , """1""" ) lowerCAmelCase = tf.keras.models.load_model(A_ ) lowerCAmelCase = model(A_ ) if self.is_encoder_decoder: lowerCAmelCase = outputs["""encoder_hidden_states"""] lowerCAmelCase = outputs["""encoder_attentions"""] else: lowerCAmelCase = outputs["""hidden_states"""] lowerCAmelCase = outputs["""attentions"""] self.assertEqual(len(A_ ) , A_ ) lowerCAmelCase = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A_ ) , A_ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def __snake_case ( self ) -> Optional[Any]: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(A_ ) def __snake_case ( self ) -> str: lowerCAmelCase, lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCAmelCase = True lowerCAmelCase = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) lowerCAmelCase = getattr(self.model_tester , """key_length""" , A_ ) def check_decoder_attentions_output(A_ ): lowerCAmelCase = len(A_ ) self.assertEqual(out_len % 2 , 0 ) lowerCAmelCase = outputs.decoder_attentions self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(A_ ): lowerCAmelCase = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A_ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCAmelCase = True lowerCAmelCase = False lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) lowerCAmelCase = len(A_ ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) if self.is_encoder_decoder: lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_decoder_attentions_output(A_ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) # Check attention is always last and order is fine lowerCAmelCase = True lowerCAmelCase = True lowerCAmelCase = model_class(A_ ) lowerCAmelCase = model(self._prepare_for_class(A_ , A_ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(A_ ) ) self.assertEqual(model.config.output_hidden_states , A_ ) check_encoder_attentions_output(A_ ) @require_tf class __snake_case( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ) -> Any: lowerCAmelCase = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCAmelCase = model(A_ )[0] lowerCAmelCase = [1, 6, 768] self.assertEqual(output.shape , A_ ) lowerCAmelCase = tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , A_ , atol=1e-4 )
187
1
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
339
import requests from bsa import BeautifulSoup def A ( _UpperCAmelCase : str , _UpperCAmelCase : dict ) -> str: '''simple docstring''' _UpperCAmelCase = BeautifulSoup(requests.get(_UpperCAmelCase , params=_UpperCAmelCase ).content , 'html.parser' ) _UpperCAmelCase = soup.find('div' , attrs={'class': 'gs_ri'} ) _UpperCAmelCase = div.find('div' , attrs={'class': 'gs_fl'} ).find_all('a' ) return anchors[2].get_text() if __name__ == "__main__": UpperCAmelCase__ = { "title": ( "Precisely geometry controlled microsupercapacitors for ultrahigh areal " "capacitance, volumetric capacitance, and energy density" ), "journal": "Chem. Mater.", "volume": 30, "pages": "3979-3990", "year": 2018, "hl": "en", } print(get_citation("https://scholar.google.com/scholar_lookup", params=params))
339
1
import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __UpperCAmelCase : List[str] = logging.get_logger(__name__) class __snake_case ( snake_case_ ): def __init__( self : Any , *A : Optional[int] , **A : int ): warnings.warn( """The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use MobileViTImageProcessor instead.""" , _A , ) super().__init__(*_A , **_A )
350
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __snake_case ( __lowerCamelCase ): '''simple docstring''' def __init__( self : str , *A : Dict , A : Optional[int]=None , A : Tuple=None , **A : Optional[int] ): super().__init__(*A , **A ) __snake_case: List[Any] = eval_examples __snake_case: str = post_process_function def UpperCAmelCase__ ( self : List[Any] , A : Dict=None , A : int=None , A : List[Any]=None , A : str = "eval" ): __snake_case: int = self.eval_dataset if eval_dataset is None else eval_dataset __snake_case: Any = self.get_eval_dataloader(A ) __snake_case: Optional[Any] = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. __snake_case: Union[str, Any] = self.compute_metrics __snake_case: List[str] = None __snake_case: Tuple = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case: Tuple = time.time() try: __snake_case: Any = eval_loop( A , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: __snake_case: Optional[int] = compute_metrics __snake_case: Union[str, Any] = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default __snake_case: List[str] = self.post_process_function(A , A , output.predictions ) __snake_case: List[Any] = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __snake_case: str = metrics.pop(A ) metrics.update(output.metrics ) else: __snake_case: List[Any] = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(A ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) __snake_case: str = self.callback_handler.on_evaluate(self.args , self.state , self.control , A ) return metrics def UpperCAmelCase__ ( self : Optional[Any] , A : List[Any] , A : List[str] , A : str=None , A : str = "test" ): __snake_case: Optional[Any] = self.get_test_dataloader(A ) # Temporarily disable metric computation, we will do it in the loop here. __snake_case: Optional[int] = self.compute_metrics __snake_case: List[Any] = None __snake_case: str = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop __snake_case: Dict = time.time() try: __snake_case: str = eval_loop( A , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=A , metric_key_prefix=A , ) finally: __snake_case: List[Any] = compute_metrics __snake_case: Dict = self.args.eval_batch_size * self.args.world_size if f'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[f'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( A , A , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output __snake_case: Union[str, Any] = self.post_process_function(A , A , output.predictions , """predict""" ) __snake_case: str = self.compute_metrics(A ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(f'''{metric_key_prefix}_''' ): __snake_case: List[str] = metrics.pop(A ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=A )
293
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType __SCREAMING_SNAKE_CASE : Tuple = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Optional[Any] = { """openai/whisper-base""": """https://huggingface.co/openai/whisper-base/resolve/main/config.json""", } # fmt: off __SCREAMING_SNAKE_CASE : Tuple = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 357, 366, 438, 532, 685, 705, 796, 930, 1_058, 1_220, 1_267, 1_279, 1_303, 1_343, 1_377, 1_391, 1_635, 1_782, 1_875, 2_162, 2_361, 2_488, 3_467, 4_008, 4_211, 4_600, 4_808, 5_299, 5_855, 6_329, 7_203, 9_609, 9_959, 10_563, 10_786, 11_420, 11_709, 11_907, 13_163, 13_697, 13_700, 14_808, 15_306, 16_410, 16_791, 17_992, 19_203, 19_510, 20_724, 22_305, 22_935, 27_007, 30_109, 30_420, 33_409, 34_949, 40_283, 40_493, 40_549, 47_282, 49_146, 50_257, 50_359, 50_360, 50_361 ] __SCREAMING_SNAKE_CASE : List[Any] = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 359, 503, 522, 542, 873, 893, 902, 918, 922, 931, 1_350, 1_853, 1_982, 2_460, 2_627, 3_246, 3_253, 3_268, 3_536, 3_846, 3_961, 4_183, 4_667, 6_585, 6_647, 7_273, 9_061, 9_383, 10_428, 10_929, 11_938, 12_033, 12_331, 12_562, 13_793, 14_157, 14_635, 15_265, 15_618, 16_553, 16_604, 18_362, 18_956, 20_075, 21_675, 22_520, 26_130, 26_161, 26_435, 28_279, 29_464, 31_650, 32_302, 32_470, 36_865, 42_863, 47_425, 49_870, 50_254, 50_258, 50_360, 50_361, 50_362 ] class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: List[Any] = "whisper" __UpperCamelCase: int = ["past_key_values"] __UpperCamelCase: Optional[int] = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self : Any , A : List[str]=51865 , A : Dict=80 , A : Any=6 , A : Any=4 , A : List[str]=6 , A : Union[str, Any]=4 , A : Optional[Any]=1536 , A : Optional[int]=1536 , A : Tuple=0.0 , A : str=0.0 , A : str=50257 , A : Optional[int]=True , A : Union[str, Any]=True , A : Dict="gelu" , A : Optional[Any]=256 , A : Tuple=0.0 , A : List[str]=0.0 , A : str=0.0 , A : Optional[Any]=0.02 , A : Tuple=False , A : Optional[Any]=1500 , A : Any=448 , A : Dict=50256 , A : int=50256 , A : str=50256 , A : str=None , A : Dict=[220, 50256] , A : str=False , A : int=256 , A : int=False , A : Optional[Any]=0.05 , A : Optional[Any]=10 , A : str=2 , A : str=0.0 , A : Any=10 , A : Any=0 , A : List[str]=7 , **A : Union[str, Any] , ): _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Union[str, Any] = num_mel_bins _UpperCAmelCase : int = d_model _UpperCAmelCase : Any = encoder_layers _UpperCAmelCase : Union[str, Any] = encoder_attention_heads _UpperCAmelCase : List[Any] = decoder_layers _UpperCAmelCase : Dict = decoder_attention_heads _UpperCAmelCase : List[Any] = decoder_ffn_dim _UpperCAmelCase : Tuple = encoder_ffn_dim _UpperCAmelCase : Tuple = dropout _UpperCAmelCase : List[str] = attention_dropout _UpperCAmelCase : Tuple = activation_dropout _UpperCAmelCase : Dict = activation_function _UpperCAmelCase : Any = init_std _UpperCAmelCase : Tuple = encoder_layerdrop _UpperCAmelCase : Any = decoder_layerdrop _UpperCAmelCase : Any = use_cache _UpperCAmelCase : Tuple = encoder_layers _UpperCAmelCase : List[str] = scale_embedding # scale factor will be sqrt(d_model) if True _UpperCAmelCase : Optional[Any] = max_source_positions _UpperCAmelCase : Optional[Any] = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. _UpperCAmelCase : Optional[int] = classifier_proj_size _UpperCAmelCase : List[Any] = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _UpperCAmelCase : Union[str, Any] = apply_spec_augment _UpperCAmelCase : List[str] = mask_time_prob _UpperCAmelCase : List[Any] = mask_time_length _UpperCAmelCase : Optional[Any] = mask_time_min_masks _UpperCAmelCase : Optional[Any] = mask_feature_prob _UpperCAmelCase : List[str] = mask_feature_length _UpperCAmelCase : str = mask_feature_min_masks _UpperCAmelCase : Optional[Any] = median_filter_width super().__init__( pad_token_id=A , bos_token_id=A , eos_token_id=A , is_encoder_decoder=A , decoder_start_token_id=A , suppress_tokens=A , begin_suppress_tokens=A , **A , ) class lowerCamelCase_ (snake_case__ ): '''simple docstring''' @property def _A ( self : Optional[Any] ): _UpperCAmelCase : Optional[int] = OrderedDict( [ ("input_features", {0: "batch", 1: "feature_size", 2: "encoder_sequence"}), ] ) if self.use_past: _UpperCAmelCase : Any = {0: "batch"} else: _UpperCAmelCase : Tuple = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(A , direction="inputs" ) return common_inputs def _A ( self : str , A : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , A : int = -1 , A : int = -1 , A : bool = False , A : Optional["TensorType"] = None , A : int = 22050 , A : float = 5.0 , A : int = 220 , ): _UpperCAmelCase : int = OrderedDict() _UpperCAmelCase : Optional[int] = OnnxConfig.generate_dummy_inputs( self , preprocessor=preprocessor.feature_extractor , batch_size=A , framework=A , sampling_rate=A , time_duration=A , frequency=A , ) _UpperCAmelCase : List[str] = encoder_inputs["input_features"].shape[2] _UpperCAmelCase : Optional[int] = encoder_sequence_length // 2 if self.use_past else seq_length _UpperCAmelCase : Any = super().generate_dummy_inputs( preprocessor.tokenizer , A , A , A , A ) _UpperCAmelCase : int = encoder_inputs.pop("input_features" ) _UpperCAmelCase : Any = decoder_inputs.pop("decoder_input_ids" ) if "past_key_values" in decoder_inputs: _UpperCAmelCase : str = decoder_inputs.pop("past_key_values" ) return dummy_inputs @property def _A ( self : Dict ): return 1E-3
31
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer UpperCAmelCase = logging.get_logger(__name__) UpperCAmelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCAmelCase = { '''vocab_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt''' ), '''google/realm-orqa-nq-openqa''': '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-nq-reader''': '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt''', '''google/realm-orqa-wq-openqa''': '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt''', '''google/realm-orqa-wq-reader''': '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt''', }, '''tokenizer_file''': { '''google/realm-cc-news-pretrained-embedder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont''' ), '''google/realm-cc-news-pretrained-encoder''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-scorer''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json''' ), '''google/realm-cc-news-pretrained-openqa''': ( '''https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-openqa''': ( '''https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-nq-reader''': ( '''https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-openqa''': ( '''https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json''' ), '''google/realm-orqa-wq-reader''': ( '''https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json''' ), }, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': 512, '''google/realm-cc-news-pretrained-encoder''': 512, '''google/realm-cc-news-pretrained-scorer''': 512, '''google/realm-cc-news-pretrained-openqa''': 512, '''google/realm-orqa-nq-openqa''': 512, '''google/realm-orqa-nq-reader''': 512, '''google/realm-orqa-wq-openqa''': 512, '''google/realm-orqa-wq-reader''': 512, } UpperCAmelCase = { '''google/realm-cc-news-pretrained-embedder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-encoder''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-scorer''': {'''do_lower_case''': True}, '''google/realm-cc-news-pretrained-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-nq-reader''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-openqa''': {'''do_lower_case''': True}, '''google/realm-orqa-wq-reader''': {'''do_lower_case''': True}, } class lowerCAmelCase ( A ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = RealmTokenizer def __init__( self : int , __lowercase : Union[str, Any]=None , __lowercase : int=None , __lowercase : List[Any]=True , __lowercase : Any="[UNK]" , __lowercase : Union[str, Any]="[SEP]" , __lowercase : Union[str, Any]="[PAD]" , __lowercase : Tuple="[CLS]" , __lowercase : List[Any]="[MASK]" , __lowercase : Tuple=True , __lowercase : Union[str, Any]=None , **__lowercase : int , ): """simple docstring""" super().__init__( __lowercase , tokenizer_file=__lowercase , do_lower_case=__lowercase , unk_token=__lowercase , sep_token=__lowercase , pad_token=__lowercase , cls_token=__lowercase , mask_token=__lowercase , tokenize_chinese_chars=__lowercase , strip_accents=__lowercase , **__lowercase , ) __lowercase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , __lowercase ) != do_lower_case or normalizer_state.get('strip_accents' , __lowercase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , __lowercase ) != tokenize_chinese_chars ): __lowercase =getattr(__lowercase , normalizer_state.pop('type' ) ) __lowercase =do_lower_case __lowercase =strip_accents __lowercase =tokenize_chinese_chars __lowercase =normalizer_class(**__lowercase ) __lowercase =do_lower_case def snake_case ( self : List[str] , __lowercase : Optional[Any] , **__lowercase : Any ): """simple docstring""" __lowercase =PaddingStrategy.MAX_LENGTH __lowercase =text __lowercase =kwargs.pop('text_pair' , __lowercase ) __lowercase =kwargs.pop('return_tensors' , __lowercase ) __lowercase ={ 'input_ids': [], 'attention_mask': [], 'token_type_ids': [], } for idx, candidate_text in enumerate(__lowercase ): if batch_text_pair is not None: __lowercase =batch_text_pair[idx] else: __lowercase =None __lowercase =super().__call__(__lowercase , __lowercase , return_tensors=__lowercase , **__lowercase ) __lowercase =encoded_candidates.get('input_ids' ) __lowercase =encoded_candidates.get('attention_mask' ) __lowercase =encoded_candidates.get('token_type_ids' ) if encoded_input_ids is not None: output_data["input_ids"].append(__lowercase ) if encoded_attention_mask is not None: output_data["attention_mask"].append(__lowercase ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(__lowercase ) __lowercase ={key: item for key, item in output_data.items() if len(__lowercase ) != 0} return BatchEncoding(__lowercase , tensor_type=__lowercase ) def snake_case ( self : List[str] , __lowercase : Tuple , __lowercase : Optional[int]=None ): """simple docstring""" __lowercase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case ( self : List[str] , __lowercase : List[int] , __lowercase : Optional[List[int]] = None ): """simple docstring""" __lowercase =[self.sep_token_id] __lowercase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case ( self : Dict , __lowercase : str , __lowercase : Optional[str] = None ): """simple docstring""" __lowercase =self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase )
141
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str =logging.get_logger(__name__) _lowercase : Union[str, Any] ="▁" _lowercase : List[Any] ={"vocab_file": "sentencepiece.bpe.model"} _lowercase : Optional[Any] ={ "vocab_file": { "facebook/mbart-large-50-one-to-many-mmt": ( "https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model" ), } } _lowercase : Dict ={ "facebook/mbart-large-50-one-to-many-mmt": 1024, } # fmt: off _lowercase : List[Any] =["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN", "af_ZA", "az_AZ", "bn_IN", "fa_IR", "he_IL", "hr_HR", "id_ID", "ka_GE", "km_KH", "mk_MK", "ml_IN", "mn_MN", "mr_IN", "pl_PL", "ps_AF", "pt_XX", "sv_SE", "sw_KE", "ta_IN", "te_IN", "th_TH", "tl_XX", "uk_UA", "ur_PK", "xh_ZA", "gl_ES", "sl_SI"] class snake_case__ (A__ ): """simple docstring""" __lowerCAmelCase :Optional[int] = VOCAB_FILES_NAMES __lowerCAmelCase :Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase :List[Any] = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase :Optional[int] = ["input_ids", "attention_mask"] __lowerCAmelCase :List[int] = [] __lowerCAmelCase :List[int] = [] def __init__( self , __lowercase , __lowercase=None , __lowercase=None , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase = None , **__lowercase , ) -> None: """simple docstring""" a__ : Union[str, Any] = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase ) if isinstance(__lowercase , __lowercase ) else mask_token a__ : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs a__ : Tuple = kwargs.get("""additional_special_tokens""" , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowercase , tgt_lang=__lowercase , eos_token=__lowercase , unk_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , sp_model_kwargs=self.sp_model_kwargs , **__lowercase , ) a__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__lowercase ) ) a__ : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token a__ : str = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab a__ : Tuple = 1 a__ : Optional[Any] = len(self.sp_model ) a__ : Tuple = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__lowercase ) } a__ : str = {v: k for k, v in self.lang_code_to_id.items()} a__ : int = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) a__ : Tuple = {v: k for k, v in self.fairseq_tokens_to_ids.items()} a__ : Optional[Any] = src_lang if src_lang is not None else """en_XX""" a__ : str = self.lang_code_to_id[self._src_lang] a__ : Any = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def SCREAMING_SNAKE_CASE__( self ) -> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__( self ) -> str: """simple docstring""" return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> None: """simple docstring""" a__ : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ) -> Dict: """simple docstring""" a__ : List[Any] = self.__dict__.copy() a__ : Union[str, Any] = None return state def __setstate__( self , __lowercase ) -> None: """simple docstring""" a__ : Union[str, Any] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): a__ : Union[str, Any] = {} a__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def SCREAMING_SNAKE_CASE__( self ) -> Dict: """simple docstring""" a__ : List[Any] = {self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> List[str]: """simple docstring""" return self.sp_model.encode(__lowercase , out_type=__lowercase ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] a__ : List[Any] = self.sp_model.PieceToId(__lowercase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int: """simple docstring""" a__ : List[str] = [] a__ : List[str] = """""" a__ : Optional[int] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowercase ) + token a__ : List[str] = True a__ : str = [] else: current_sub_tokens.append(__lowercase ) a__ : Any = False out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__lowercase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return a__ : List[Any] = os.path.join( __lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowercase ) elif not os.path.isfile(self.vocab_file ): with open(__lowercase , """wb""" ) as fi: a__ : Tuple = self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) a__ : Tuple = [1] * len(self.prefix_tokens ) a__ : Optional[int] = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowercase )) + suffix_ones return prefix_ones + ([0] * len(__lowercase )) + ([0] * len(__lowercase )) + suffix_ones def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , **__lowercase ) -> str: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) a__ : Any = src_lang a__ : int = self(__lowercase , add_special_tokens=__lowercase , return_tensors=__lowercase , **__lowercase ) a__ : int = self.convert_tokens_to_ids(__lowercase ) a__ : str = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase = "en_XX" , __lowercase = None , __lowercase = "ro_RO" , **__lowercase , ) -> BatchEncoding: """simple docstring""" a__ : str = src_lang a__ : Union[str, Any] = tgt_lang return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> None: """simple docstring""" a__ : List[str] = self.lang_code_to_id[src_lang] a__ : str = [self.cur_lang_code_id] a__ : Optional[int] = [self.eos_token_id] def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> None: """simple docstring""" a__ : List[str] = self.lang_code_to_id[tgt_lang] a__ : Optional[int] = [self.cur_lang_code_id] a__ : Union[str, Any] = [self.eos_token_id]
266
import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler _lowercase : Union[str, Any] =16 _lowercase : Dict =32 def lowerCAmelCase_ ( _lowercase : Accelerator , _lowercase : int = 16 , _lowercase : str = "bert-base-cased") -> Union[str, Any]: """simple docstring""" a__ : Union[str, Any] = AutoTokenizer.from_pretrained(_lowercase) a__ : Any = load_dataset("""glue""" , """mrpc""") def tokenize_function(_lowercase : str): # max_length=None => use the model max length (it's actually the default) a__ : List[str] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=_lowercase , max_length=_lowercase) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ : Any = datasets.map( _lowercase , batched=_lowercase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=_lowercase) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Tuple = tokenized_datasets.rename_column("""label""" , """labels""") def collate_fn(_lowercase : Optional[Any]): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(_lowercase , padding="""max_length""" , max_length=128 , return_tensors="""pt""") return tokenizer.pad(_lowercase , padding="""longest""" , return_tensors="""pt""") # Instantiate dataloaders. a__ : int = DataLoader( tokenized_datasets["""train"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) a__ : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=_lowercase , collate_fn=_lowercase , batch_size=_lowercase) return train_dataloader, eval_dataloader def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Dict) -> int: """simple docstring""" # Initialize accelerator a__ : Optional[int] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : Union[str, Any] = config["""lr"""] a__ : List[str] = int(config["""num_epochs"""]) a__ : List[str] = int(config["""seed"""]) a__ : Tuple = int(config["""batch_size"""]) a__ : int = args.model_name_or_path set_seed(_lowercase) a__ , a__ : int = get_dataloaders(_lowercase , _lowercase , _lowercase) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained(_lowercase , return_dict=_lowercase) # Instantiate optimizer a__ : int = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=_lowercase) if accelerator.state.deepspeed_plugin is not None: a__ : Dict = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: a__ : List[str] = 1 a__ : List[Any] = (len(_lowercase) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ : Dict = get_linear_schedule_with_warmup( optimizer=_lowercase , num_warmup_steps=0 , num_training_steps=_lowercase , ) else: a__ : Dict = DummyScheduler(_lowercase , total_num_steps=_lowercase , warmup_num_steps=0) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ , a__ , a__ , a__ , a__ : List[Any] = accelerator.prepare( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase) # We need to keep track of how many total steps we have iterated over a__ : Optional[int] = 0 # We also need to keep track of the stating epoch so files are named properly a__ : Optional[int] = 0 # Now we train the model a__ : Tuple = evaluate.load("""glue""" , """mrpc""") a__ : List[Any] = 0 a__ : Tuple = {} for epoch in range(_lowercase , _lowercase): model.train() for step, batch in enumerate(_lowercase): a__ : Union[str, Any] = model(**_lowercase) a__ : Tuple = outputs.loss a__ : Any = loss / gradient_accumulation_steps accelerator.backward(_lowercase) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 model.eval() a__ : int = 0 for step, batch in enumerate(_lowercase): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device) with torch.no_grad(): a__ : str = model(**_lowercase) a__ : Union[str, Any] = outputs.logits.argmax(dim=-1) # It is slightly faster to call this once, than multiple times a__ , a__ : Optional[int] = accelerator.gather( (predictions, batch["""labels"""])) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(_lowercase) - 1: a__ : Union[str, Any] = predictions[: len(eval_dataloader.dataset) - samples_seen] a__ : Any = references[: len(eval_dataloader.dataset) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=_lowercase , references=_lowercase , ) a__ : Optional[Any] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , _lowercase) a__ : Any = eval_metric["""accuracy"""] if best_performance < eval_metric["accuracy"]: a__ : List[str] = eval_metric["""accuracy"""] if args.performance_lower_bound is not None: assert ( args.performance_lower_bound <= best_performance ), F'''Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}''' accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , """all_results.json""") , """w""") as f: json.dump(_lowercase , _lowercase) def lowerCAmelCase_ ( ) -> Tuple: """simple docstring""" a__ : Optional[Any] = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""") parser.add_argument( """--model_name_or_path""" , type=_lowercase , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=_lowercase , ) parser.add_argument( """--output_dir""" , type=_lowercase , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--performance_lower_bound""" , type=_lowercase , default=_lowercase , help="""Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.""" , ) parser.add_argument( """--num_epochs""" , type=_lowercase , default=3 , help="""Number of train epochs.""" , ) a__ : Any = parser.parse_args() a__ : Dict = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(_lowercase , _lowercase) if __name__ == "__main__": main()
266
1
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import AutoImageProcessor, SwinvaConfig, SwinvaForImageClassification def lowercase_ ( _A : int ): """simple docstring""" lowerCamelCase__ : List[Any] = SwinvaConfig() lowerCamelCase__ : Optional[int] = swinva_name.split("_" ) lowerCamelCase__ : Union[str, Any] = name_split[1] if "to" in name_split[3]: lowerCamelCase__ : Dict = int(name_split[3][-3:] ) else: lowerCamelCase__ : Any = int(name_split[3] ) if "to" in name_split[2]: lowerCamelCase__ : str = int(name_split[2][-2:] ) else: lowerCamelCase__ : Any = int(name_split[2][6:] ) if model_size == "tiny": lowerCamelCase__ : Union[str, Any] = 96 lowerCamelCase__ : Union[str, Any] = (2, 2, 6, 2) lowerCamelCase__ : int = (3, 6, 12, 24) elif model_size == "small": lowerCamelCase__ : Optional[int] = 96 lowerCamelCase__ : int = (2, 2, 18, 2) lowerCamelCase__ : Optional[Any] = (3, 6, 12, 24) elif model_size == "base": lowerCamelCase__ : Tuple = 128 lowerCamelCase__ : Any = (2, 2, 18, 2) lowerCamelCase__ : List[Any] = (4, 8, 16, 32) else: lowerCamelCase__ : Tuple = 192 lowerCamelCase__ : Optional[Any] = (2, 2, 18, 2) lowerCamelCase__ : List[Any] = (6, 12, 24, 48) if "to" in swinva_name: lowerCamelCase__ : Dict = (12, 12, 12, 6) if ("22k" in swinva_name) and ("to" not in swinva_name): lowerCamelCase__ : Optional[int] = 21841 lowerCamelCase__ : List[str] = "huggingface/label-files" lowerCamelCase__ : int = "imagenet-22k-id2label.json" lowerCamelCase__ : Dict = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : Dict = {int(__a ): v for k, v in idalabel.items()} lowerCamelCase__ : Tuple = idalabel lowerCamelCase__ : int = {v: k for k, v in idalabel.items()} else: lowerCamelCase__ : int = 1000 lowerCamelCase__ : Any = "huggingface/label-files" lowerCamelCase__ : Optional[int] = "imagenet-1k-id2label.json" lowerCamelCase__ : str = json.load(open(hf_hub_download(__a , __a , repo_type="dataset" ) , "r" ) ) lowerCamelCase__ : Dict = {int(__a ): v for k, v in idalabel.items()} lowerCamelCase__ : Union[str, Any] = idalabel lowerCamelCase__ : Dict = {v: k for k, v in idalabel.items()} lowerCamelCase__ : Tuple = img_size lowerCamelCase__ : Tuple = num_classes lowerCamelCase__ : List[str] = embed_dim lowerCamelCase__ : int = depths lowerCamelCase__ : List[Any] = num_heads lowerCamelCase__ : Dict = window_size return config def lowercase_ ( _A : List[str] ): """simple docstring""" if "patch_embed.proj" in name: lowerCamelCase__ : str = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCamelCase__ : List[Any] = name.replace("patch_embed.norm" , "embeddings.norm" ) if "layers" in name: lowerCamelCase__ : List[Any] = "encoder." + name if "attn.proj" in name: lowerCamelCase__ : str = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: lowerCamelCase__ : Tuple = name.replace("attn" , "attention.self" ) if "norm1" in name: lowerCamelCase__ : Tuple = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCamelCase__ : str = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCamelCase__ : List[str] = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCamelCase__ : Optional[int] = name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: lowerCamelCase__ : Dict = name.replace("q_bias" , "query.bias" ) if "k_bias" in name: lowerCamelCase__ : Optional[Any] = name.replace("k_bias" , "key.bias" ) if "v_bias" in name: lowerCamelCase__ : Optional[int] = name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: lowerCamelCase__ : Optional[int] = name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if name == "norm.weight": lowerCamelCase__ : List[Any] = "layernorm.weight" if name == "norm.bias": lowerCamelCase__ : Optional[Any] = "layernorm.bias" if "head" in name: lowerCamelCase__ : Union[str, Any] = name.replace("head" , "classifier" ) else: lowerCamelCase__ : List[str] = "swinv2." + name return name def lowercase_ ( _A : Tuple , _A : List[str] ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCamelCase__ : List[str] = orig_state_dict.pop(__a ) if "mask" in key: continue elif "qkv" in key: lowerCamelCase__ : Optional[Any] = key.split("." ) lowerCamelCase__ : Union[str, Any] = int(key_split[1] ) lowerCamelCase__ : str = int(key_split[3] ) lowerCamelCase__ : Union[str, Any] = model.swinva.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: lowerCamelCase__ : List[Any] = val[:dim, :] lowerCamelCase__ : List[Any] = val[dim : dim * 2, :] lowerCamelCase__ : List[Any] = val[-dim:, :] else: lowerCamelCase__ : Optional[Any] = val[:dim] lowerCamelCase__ : str = val[ dim : dim * 2 ] lowerCamelCase__ : Dict = val[-dim:] else: lowerCamelCase__ : List[Any] = val return orig_state_dict def lowercase_ ( _A : str , _A : Optional[Any] ): """simple docstring""" lowerCamelCase__ : Optional[Any] = timm.create_model(__a , pretrained=__a ) timm_model.eval() lowerCamelCase__ : int = get_swinva_config(__a ) lowerCamelCase__ : Optional[Any] = SwinvaForImageClassification(__a ) model.eval() lowerCamelCase__ : List[Any] = convert_state_dict(timm_model.state_dict() , __a ) model.load_state_dict(__a ) lowerCamelCase__ : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowerCamelCase__ : Optional[Any] = AutoImageProcessor.from_pretrained("microsoft/{}".format(swinva_name.replace("_" , "-" ) ) ) lowerCamelCase__ : Tuple = Image.open(requests.get(__a , stream=__a ).raw ) lowerCamelCase__ : Dict = image_processor(images=__a , return_tensors="pt" ) lowerCamelCase__ : Tuple = timm_model(inputs["pixel_values"] ) lowerCamelCase__ : Any = model(**__a ).logits assert torch.allclose(__a , __a , atol=1E-3 ) print(F"Saving model {swinva_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) model.push_to_hub( repo_path_or_name=Path(__a , __a ) , organization="nandwalritik" , commit_message="Add model" , ) if __name__ == "__main__": A : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swinv2_name", default="swinv2_tiny_patch4_window8_256", type=str, help="Name of the Swinv2 timm model you\'d like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) A : Optional[int] = parser.parse_args() convert_swinva_checkpoint(args.swinva_name, args.pytorch_dump_folder_path)
184
def __lowerCamelCase ( __a :str ) -> list: """simple docstring""" A__ = [0] * len(__a ) for i in range(1 , len(__a ) ): # use last results for better performance - dynamic programming A__ = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: A__ = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 A__ = j return prefix_result def __lowerCamelCase ( __a :str ) -> int: """simple docstring""" return max(prefix_function(__a ) ) if __name__ == "__main__": import doctest doctest.testmod()
274
0
from __future__ import annotations import math import random from typing import Any class __lowerCAmelCase : def __init__( self :int ): '''simple docstring''' a = [] a = 0 a = 0 def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' return self.head == self.tail def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any ): '''simple docstring''' self.data.append(__magic_name__ ) a = self.tail + 1 def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = self.data[self.head] a = self.head + 1 return ret def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' return self.tail - self.head def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class __lowerCAmelCase : def __init__( self :Tuple , __magic_name__ :Any ): '''simple docstring''' a = data a = None a = None a = 1 def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' return self.data def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' return self.left def lowerCamelCase__ ( self :int ): '''simple docstring''' return self.right def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' return self.height def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Any ): '''simple docstring''' a = data def lowerCamelCase__ ( self :int , __magic_name__ :MyNode | None ): '''simple docstring''' a = node def lowerCamelCase__ ( self :int , __magic_name__ :MyNode | None ): '''simple docstring''' a = node def lowerCamelCase__ ( self :List[Any] , __magic_name__ :int ): '''simple docstring''' a = height def __A ( __lowerCamelCase ) -> int: if node is None: return 0 return node.get_height() def __A ( __lowerCamelCase , __lowerCamelCase ) -> int: if a > b: return a return b def __A ( __lowerCamelCase ) -> MyNode: print("""left rotation node:""" , node.get_data() ) a = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(__lowerCamelCase ) a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCamelCase ) a = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCamelCase ) return ret def __A ( __lowerCamelCase ) -> MyNode: print("""right rotation node:""" , node.get_data() ) a = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(__lowerCamelCase ) a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCamelCase ) a = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(__lowerCamelCase ) return ret def __A ( __lowerCamelCase ) -> MyNode: a = node.get_left() assert left_child is not None node.set_left(left_rotation(__lowerCamelCase ) ) return right_rotation(__lowerCamelCase ) def __A ( __lowerCamelCase ) -> MyNode: a = node.get_right() assert right_child is not None node.set_right(right_rotation(__lowerCamelCase ) ) return left_rotation(__lowerCamelCase ) def __A ( __lowerCamelCase , __lowerCamelCase ) -> MyNode | None: if node is None: return MyNode(__lowerCamelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , __lowerCamelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected a = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child a = right_rotation(__lowerCamelCase ) else: a = lr_rotation(__lowerCamelCase ) else: node.set_right(insert_node(node.get_right() , __lowerCamelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: a = node.get_right() assert right_child is not None if data < right_child.get_data(): a = rl_rotation(__lowerCamelCase ) else: a = left_rotation(__lowerCamelCase ) a = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(__lowerCamelCase ) return node def __A ( __lowerCamelCase ) -> Any: while True: a = root.get_right() if right_child is None: break a = right_child return root.get_data() def __A ( __lowerCamelCase ) -> Any: while True: a = root.get_left() if left_child is None: break a = left_child return root.get_data() def __A ( __lowerCamelCase , __lowerCamelCase ) -> MyNode | None: a = root.get_left() a = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: a = get_left_most(__lowerCamelCase ) root.set_data(__lowerCamelCase ) root.set_right(del_node(__lowerCamelCase , __lowerCamelCase ) ) elif left_child is not None: a = left_child elif right_child is not None: a = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(__lowerCamelCase , __lowerCamelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(__lowerCamelCase , __lowerCamelCase ) ) if get_height(__lowerCamelCase ) - get_height(__lowerCamelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): a = left_rotation(__lowerCamelCase ) else: a = rl_rotation(__lowerCamelCase ) elif get_height(__lowerCamelCase ) - get_height(__lowerCamelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): a = right_rotation(__lowerCamelCase ) else: a = lr_rotation(__lowerCamelCase ) a = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(__lowerCamelCase ) return root class __lowerCAmelCase : def __init__( self :int ): '''simple docstring''' a = None def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' return get_height(self.root ) def lowerCamelCase__ ( self :List[str] , __magic_name__ :Any ): '''simple docstring''' print("""insert:""" + str(__magic_name__ ) ) a = insert_node(self.root , __magic_name__ ) def lowerCamelCase__ ( self :Tuple , __magic_name__ :Any ): '''simple docstring''' print("""delete:""" + str(__magic_name__ ) ) if self.root is None: print("""Tree is empty!""" ) return a = del_node(self.root , __magic_name__ ) def __str__( self :List[str] , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' a = """""" a = MyQueue() q.push(self.root ) a = self.get_height() if layer == 0: return output a = 0 while not q.is_empty(): a = q.pop() a = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(__magic_name__ ) q.push(__magic_name__ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space a = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , __magic_name__ ) - 1: a = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __A ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() __UpperCamelCase : Optional[int] = AVLtree() __UpperCamelCase : int = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
347
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __UpperCamelCase : Optional[Any] = { "configuration_wav2vec2": ["WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Wav2Vec2Config"], "feature_extraction_wav2vec2": ["Wav2Vec2FeatureExtractor"], "processing_wav2vec2": ["Wav2Vec2Processor"], "tokenization_wav2vec2": ["Wav2Vec2CTCTokenizer", "Wav2Vec2Tokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : str = [ "WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "Wav2Vec2ForAudioFrameClassification", "Wav2Vec2ForCTC", "Wav2Vec2ForMaskedLM", "Wav2Vec2ForPreTraining", "Wav2Vec2ForSequenceClassification", "Wav2Vec2ForXVector", "Wav2Vec2Model", "Wav2Vec2PreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Dict = [ "TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST", "TFWav2Vec2ForCTC", "TFWav2Vec2Model", "TFWav2Vec2PreTrainedModel", "TFWav2Vec2ForSequenceClassification", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Union[str, Any] = [ "FlaxWav2Vec2ForCTC", "FlaxWav2Vec2ForPreTraining", "FlaxWav2Vec2Model", "FlaxWav2Vec2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
347
1
from collections import defaultdict from math import ceil, sqrt def lowerCamelCase__ ( _A = 1000000 , _A = 10 ): '''simple docstring''' snake_case_ = defaultdict(_A ) for outer_width in range(3 , (t_limit // 4) + 2 ): if outer_width * outer_width > t_limit: snake_case_ = max( ceil(sqrt(outer_width * outer_width - t_limit ) ) , 1 ) else: snake_case_ = 1 hole_width_lower_bound += (outer_width - hole_width_lower_bound) % 2 for hole_width in range(_A , outer_width - 1 , 2 ): count[outer_width * outer_width - hole_width * hole_width] += 1 return sum(1 for n in count.values() if 1 <= n <= 10 ) if __name__ == "__main__": print(f'''{solution() = }''')
187
class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict ): """simple docstring""" snake_case_ = {} # Mapping from char to TrieNode snake_case_ = False def snake_case__ ( self : Dict , __lowercase : list[str] ): """simple docstring""" for word in words: self.insert(__lowercase ) def snake_case__ ( self : List[str] , __lowercase : str ): """simple docstring""" snake_case_ = self for char in word: if char not in curr.nodes: snake_case_ = TrieNode() snake_case_ = curr.nodes[char] snake_case_ = True def snake_case__ ( self : List[Any] , __lowercase : str ): """simple docstring""" snake_case_ = self for char in word: if char not in curr.nodes: return False snake_case_ = curr.nodes[char] return curr.is_leaf def snake_case__ ( self : Optional[Any] , __lowercase : str ): """simple docstring""" def _delete(__lowercase : TrieNode , __lowercase : str , __lowercase : int ) -> bool: if index == len(__lowercase ): # If word does not exist if not curr.is_leaf: return False snake_case_ = False return len(curr.nodes ) == 0 snake_case_ = word[index] snake_case_ = curr.nodes.get(__lowercase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted snake_case_ = _delete(__lowercase , __lowercase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , __lowercase , 0 ) def lowerCamelCase__ ( _A , _A ): '''simple docstring''' if node.is_leaf: print(_A , end=" " ) for key, value in node.nodes.items(): print_words(_A , word + key ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "banana bananas bandana band apple all beast".split() snake_case_ = TrieNode() root.insert_many(_A ) # print_words(root, "") assert all(root.find(_A ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def lowerCamelCase__ ( _A , _A ): '''simple docstring''' print(str(_A ) , "works!" if passes else "doesn't work :(" ) def lowerCamelCase__ ( ): '''simple docstring''' assert test_trie() def lowerCamelCase__ ( ): '''simple docstring''' print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
187
1
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ ( snake_case ): def __init__( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , )-> List[Any]: super().__init__() if hasattr(scheduler.config , "steps_offset" ) and scheduler.config.steps_offset != 1: UpperCamelCase_ = ( F"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" F" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " "to update the config accordingly as leaving `steps_offset` might led to incorrect results" " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" " file" ) deprecate("steps_offset!=1" , "1.0.0" , _lowercase , standard_warn=_lowercase ) UpperCamelCase_ = dict(scheduler.config ) UpperCamelCase_ = 1 UpperCamelCase_ = FrozenDict(_lowercase ) if hasattr(scheduler.config , "skip_prk_steps" ) and scheduler.config.skip_prk_steps is False: UpperCamelCase_ = ( F"The configuration file of this scheduler: {scheduler} has not set the configuration" " `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make" " sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to" " incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face" " Hub, it would be very nice if you could open a Pull request for the" " `scheduler/scheduler_config.json` file" ) deprecate("skip_prk_steps not set" , "1.0.0" , _lowercase , standard_warn=_lowercase ) UpperCamelCase_ = dict(scheduler.config ) UpperCamelCase_ = True UpperCamelCase_ = FrozenDict(_lowercase ) if safety_checker is None: logger.warning( F"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" " results in services or applications open to the public. Both the diffusers team and Hugging Face" " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" " it only for use-cases that involve analyzing network behavior or auditing its results. For more" " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." ) self.register_modules( segmentation_model=_lowercase , segmentation_processor=_lowercase , vae=_lowercase , text_encoder=_lowercase , tokenizer=_lowercase , unet=_lowercase , scheduler=_lowercase , safety_checker=_lowercase , feature_extractor=_lowercase , ) def UpperCAmelCase_ ( self , _lowercase = "auto" )-> int: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory UpperCamelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_lowercase ) def UpperCAmelCase_ ( self )-> List[Any]: self.enable_attention_slicing(_lowercase ) def UpperCAmelCase_ ( self )-> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) UpperCamelCase_ = torch.device("cuda" ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_lowercase , _lowercase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self )-> Union[str, Any]: if self.device != torch.device("meta" ) or not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(_lowercase , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self , _lowercase , _lowercase , _lowercase , _lowercase = 512 , _lowercase = 512 , _lowercase = 50 , _lowercase = 7.5 , _lowercase = None , _lowercase = 1 , _lowercase = 0.0 , _lowercase = None , _lowercase = None , _lowercase = "pil" , _lowercase = True , _lowercase = None , _lowercase = 1 , **_lowercase , )-> List[Any]: UpperCamelCase_ = self.segmentation_processor( text=[text] , images=[image] , padding="max_length" , return_tensors="pt" ).to(self.device ) UpperCamelCase_ = self.segmentation_model(**_lowercase ) UpperCamelCase_ = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() UpperCamelCase_ = self.numpy_to_pil(_lowercase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask UpperCamelCase_ = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_lowercase , image=_lowercase , mask_image=_lowercase , height=_lowercase , width=_lowercase , num_inference_steps=_lowercase , guidance_scale=_lowercase , negative_prompt=_lowercase , num_images_per_prompt=_lowercase , eta=_lowercase , generator=_lowercase , latents=_lowercase , output_type=_lowercase , return_dict=_lowercase , callback=_lowercase , callback_steps=_lowercase , )
60
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE :Union[str, Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE :Union[str, Any] = { """BridgeTower/bridgetower-base""": """https://huggingface.co/BridgeTower/bridgetower-base/blob/main/config.json""", """BridgeTower/bridgetower-base-itm-mlm""": ( """https://huggingface.co/BridgeTower/bridgetower-base-itm-mlm/blob/main/config.json""" ), } class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower_vision_model""" def __init__( self , _lowercase=768 , _lowercase=12 , _lowercase=3 , _lowercase=16 , _lowercase=288 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase=True , _lowercase=False , **_lowercase , )-> Optional[Any]: super().__init__(**_lowercase ) UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_channels UpperCamelCase_ = patch_size UpperCamelCase_ = image_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = stop_gradient UpperCamelCase_ = share_layernorm UpperCamelCase_ = remove_last_layer @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :Optional[int] = """bridgetower_text_model""" def __init__( self , _lowercase=50_265 , _lowercase=768 , _lowercase=12 , _lowercase=12 , _lowercase=1 , _lowercase=3_072 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=514 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=1 , _lowercase=0 , _lowercase=2 , _lowercase="absolute" , _lowercase=True , **_lowercase , )-> Optional[int]: super().__init__(**_lowercase ) UpperCamelCase_ = vocab_size UpperCamelCase_ = hidden_size UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = num_attention_heads UpperCamelCase_ = hidden_act UpperCamelCase_ = initializer_factor UpperCamelCase_ = intermediate_size UpperCamelCase_ = hidden_dropout_prob UpperCamelCase_ = attention_probs_dropout_prob UpperCamelCase_ = max_position_embeddings UpperCamelCase_ = type_vocab_size UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = position_embedding_type UpperCamelCase_ = use_cache UpperCamelCase_ = pad_token_id UpperCamelCase_ = bos_token_id UpperCamelCase_ = eos_token_id @classmethod def UpperCAmelCase_ ( cls , _lowercase , **_lowercase )-> "PretrainedConfig": UpperCamelCase_ , UpperCamelCase_ = cls.get_config_dict(_lowercase , **_lowercase ) if config_dict.get("model_type" ) == "bridgetower": UpperCamelCase_ = config_dict["text_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(_lowercase , **_lowercase ) class __magic_name__ ( snake_case ): UpperCamelCase_ :List[Any] = """bridgetower""" def __init__( self , _lowercase=True , _lowercase="gelu" , _lowercase=768 , _lowercase=1 , _lowercase=1e-0_5 , _lowercase=False , _lowercase="add" , _lowercase=12 , _lowercase=6 , _lowercase=False , _lowercase=False , _lowercase=None , _lowercase=None , **_lowercase , )-> List[Any]: # TODO: remove this once the Hub files are updated. UpperCamelCase_ = kwargs.pop("text_config_dict" , _lowercase ) UpperCamelCase_ = kwargs.pop("vision_config_dict" , _lowercase ) super().__init__(**_lowercase ) UpperCamelCase_ = share_cross_modal_transformer_layers UpperCamelCase_ = hidden_act UpperCamelCase_ = hidden_size UpperCamelCase_ = initializer_factor UpperCamelCase_ = layer_norm_eps UpperCamelCase_ = share_link_tower_layers UpperCamelCase_ = link_tower_type UpperCamelCase_ = num_attention_heads UpperCamelCase_ = num_hidden_layers UpperCamelCase_ = tie_word_embeddings UpperCamelCase_ = init_layernorm_from_vision_encoder if text_config is None: UpperCamelCase_ = {} logger.info("`text_config` is `None`. Initializing the `BridgeTowerTextConfig` with default values." ) if vision_config is None: UpperCamelCase_ = {} logger.info("`vision_config` is `None`. Initializing the `BridgeTowerVisionConfig` with default values." ) UpperCamelCase_ = BridgeTowerTextConfig(**_lowercase ) UpperCamelCase_ = BridgeTowerVisionConfig(**_lowercase ) @classmethod def UpperCAmelCase_ ( cls , _lowercase , _lowercase , **_lowercase )-> List[str]: return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_lowercase ) def UpperCAmelCase_ ( self )-> Union[str, Any]: UpperCamelCase_ = copy.deepcopy(self.__dict__ ) UpperCamelCase_ = self.text_config.to_dict() UpperCamelCase_ = self.vision_config.to_dict() UpperCamelCase_ = self.__class__.model_type return output
60
1
"""simple docstring""" def _A ( lowercase ): """simple docstring""" if n_term == "": return [] a =[] for temp in range(int(lowercase ) ): series.append(f'''1/{temp + 1}''' if series else '''1''' ) return series if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = input("""Enter the last number (nth term) of the Harmonic Series""") print("""Formula of Harmonic Series => 1+1/2+1/3 ..... 1/n""") print(harmonic_series(nth_term))
81
"""simple docstring""" import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->Dict: """simple docstring""" lowerCAmelCase__ :str = BertConfig.from_json_file(_SCREAMING_SNAKE_CASE ) print(F"Building PyTorch model from configuration: {config}" ) lowerCAmelCase__ :int = BertForPreTraining(_SCREAMING_SNAKE_CASE ) # Load weights from tf checkpoint load_tf_weights_in_bert(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Save pytorch-model print(F"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __A = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--bert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained BERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __A = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
293
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer UpperCamelCase__ = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast UpperCamelCase__ = TaTokenizerFast UpperCamelCase__ = {'configuration_mt5': ['MT5Config', 'MT5OnnxConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'MT5EncoderModel', 'MT5ForConditionalGeneration', 'MT5ForQuestionAnswering', 'MT5Model', 'MT5PreTrainedModel', 'MT5Stack', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['TFMT5EncoderModel', 'TFMT5ForConditionalGeneration', 'TFMT5Model'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['FlaxMT5EncoderModel', 'FlaxMT5ForConditionalGeneration', 'FlaxMT5Model'] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys UpperCamelCase__ = _LazyModule( __name__, globals()['__file__'], _import_structure, extra_objects={'MT5Tokenizer': MTaTokenizer, 'MT5TokenizerFast': MTaTokenizerFast}, module_spec=__spec__, )
356
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase_ ( __A, __A=False ) -> Any: '''simple docstring''' UpperCAmelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "deit.embeddings.cls_token"), ("dist_token", "deit.embeddings.distillation_token"), ("patch_embed.proj.weight", "deit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "deit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "deit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" UpperCAmelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("deit" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("norm.weight", "deit.layernorm.weight"), ("norm.bias", "deit.layernorm.bias"), ("head.weight", "cls_classifier.weight"), ("head.bias", "cls_classifier.bias"), ("head_dist.weight", "distillation_classifier.weight"), ("head_dist.bias", "distillation_classifier.bias"), ] ) return rename_keys def lowerCAmelCase_ ( __A, __A, __A=False ) -> Tuple: '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCAmelCase__ = "" else: UpperCAmelCase__ = "deit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) UpperCAmelCase__ = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCAmelCase__ = in_proj_bias[: config.hidden_size] UpperCAmelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCAmelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCAmelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCAmelCase__ = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( __A, __A, __A ) -> Dict: '''simple docstring''' UpperCAmelCase__ = dct.pop(__A ) UpperCAmelCase__ = val def lowerCAmelCase_ ( ) -> Dict: '''simple docstring''' UpperCAmelCase__ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase__ = Image.open(requests.get(__A, stream=__A ).raw ) return im @torch.no_grad() def lowerCAmelCase_ ( __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = DeiTConfig() # all deit models have fine-tuned heads UpperCAmelCase__ = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase__ = 1_000 UpperCAmelCase__ = "huggingface/label-files" UpperCAmelCase__ = "imagenet-1k-id2label.json" UpperCAmelCase__ = json.load(open(hf_hub_download(__A, __A, repo_type="dataset" ), "r" ) ) UpperCAmelCase__ = {int(__A ): v for k, v in idalabel.items()} UpperCAmelCase__ = idalabel UpperCAmelCase__ = {v: k for k, v in idalabel.items()} UpperCAmelCase__ = int(deit_name[-6:-4] ) UpperCAmelCase__ = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("tiny" ): UpperCAmelCase__ = 192 UpperCAmelCase__ = 768 UpperCAmelCase__ = 12 UpperCAmelCase__ = 3 elif deit_name[9:].startswith("small" ): UpperCAmelCase__ = 384 UpperCAmelCase__ = 1_536 UpperCAmelCase__ = 12 UpperCAmelCase__ = 6 if deit_name[9:].startswith("base" ): pass elif deit_name[4:].startswith("large" ): UpperCAmelCase__ = 1_024 UpperCAmelCase__ = 4_096 UpperCAmelCase__ = 24 UpperCAmelCase__ = 16 # load original model from timm UpperCAmelCase__ = timm.create_model(__A, pretrained=__A ) timm_model.eval() # load state_dict of original model, remove and rename some keys UpperCAmelCase__ = timm_model.state_dict() UpperCAmelCase__ = create_rename_keys(__A, __A ) for src, dest in rename_keys: rename_key(__A, __A, __A ) read_in_q_k_v(__A, __A, __A ) # load HuggingFace model UpperCAmelCase__ = DeiTForImageClassificationWithTeacher(__A ).eval() model.load_state_dict(__A ) # Check outputs on an image, prepared by DeiTImageProcessor UpperCAmelCase__ = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 UpperCAmelCase__ = DeiTImageProcessor(size=__A, crop_size=config.image_size ) UpperCAmelCase__ = image_processor(images=prepare_img(), return_tensors="pt" ) UpperCAmelCase__ = encoding["pixel_values"] UpperCAmelCase__ = model(__A ) UpperCAmelCase__ = timm_model(__A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__A, outputs.logits, atol=1e-3 ) Path(__A ).mkdir(exist_ok=__A ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__A ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--deit_name', default='vit_deit_base_distilled_patch16_224', type=str, help='Name of the DeiT timm model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) UpperCamelCase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
143
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Any class snake_case : '''simple docstring''' def __init__( self : Dict, _lowerCamelCase : Any ): '''simple docstring''' __A = data __A = None class snake_case : '''simple docstring''' def __init__( self : str ): '''simple docstring''' __A = None __A = None def __iter__( self : Any ): '''simple docstring''' __A = self.head while self.head: yield node.data __A = node.next if node == self.head: break def __len__( self : int ): '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : str ): '''simple docstring''' return "->".join(str(_lowerCamelCase ) for item in iter(self ) ) def _SCREAMING_SNAKE_CASE ( self : int, _lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(len(self ), _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[int], _lowerCamelCase : Any ): '''simple docstring''' self.insert_nth(0, _lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : int, _lowerCamelCase : Any ): '''simple docstring''' if index < 0 or index > len(self ): raise IndexError('''list index out of range.''' ) __A = Node(_lowerCamelCase ) if self.head is None: __A = new_node # first node points itself __A = __A = new_node elif index == 0: # insert at head __A = self.head __A = __A = new_node else: __A = self.head for _ in range(index - 1 ): __A = temp.next __A = temp.next __A = new_node if index == len(self ) - 1: # insert at tail __A = new_node def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' return self.delete_nth(0 ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def _SCREAMING_SNAKE_CASE ( self : List[str], _lowerCamelCase : int = 0 ): '''simple docstring''' if not 0 <= index < len(self ): raise IndexError('''list index out of range.''' ) __A = self.head if self.head == self.tail: # just one node __A = __A = None elif index == 0: # delete head node __A = self.tail.next.next __A = self.head.next else: __A = self.head for _ in range(index - 1 ): __A = temp.next __A = temp.next __A = temp.next.next if index == len(self ) - 1: # delete at tail __A = temp return delete_node.data def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' return len(self ) == 0 def lowerCAmelCase ( ): """simple docstring""" __A = CircularLinkedList() assert len(__UpperCamelCase ) == 0 assert circular_linked_list.is_empty() is True assert str(__UpperCamelCase ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(__UpperCamelCase ) == i circular_linked_list.insert_nth(__UpperCamelCase , i + 1 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(__UpperCamelCase ) == "->".join(str(__UpperCamelCase ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
266
"""simple docstring""" import os import tempfile import unittest from pathlib import Path from transformers import AutoConfig, is_torch_available from transformers.testing_utils import require_torch, torch_device if is_torch_available(): from transformers import PyTorchBenchmark, PyTorchBenchmarkArguments @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : Optional[int] ): '''simple docstring''' for model_result in results.values(): for batch_size, sequence_length in zip(model_result['''bs'''], model_result['''ss'''] ): __A = model_result['''result'''][batch_size][sequence_length] self.assertIsNotNone(_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sgugger/tiny-distilbert-classification''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, only_pretrain_model=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, torchscript=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) @unittest.skipIf(torch_device == '''cpu''', '''Cant do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, fpaa=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) # set architectures equal to `None` __A = None __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) @unittest.skipIf(torch_device == '''cpu''', '''Can\'t do half precision''' ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], fpaa=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_inference_result ) self.check_results_dict_not_empty(results.memory_inference_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = '''sshleifer/tinier_bart''' __A = AutoConfig.from_pretrained(_lowerCamelCase ) __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase, configs=[config] ) __A = benchmark.run() self.check_results_dict_not_empty(results.time_train_result ) self.check_results_dict_not_empty(results.memory_train_result ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, save_to_csv=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], inference_time_csv_file=os.path.join(_lowerCamelCase, '''inf_time.csv''' ), train_memory_csv_file=os.path.join(_lowerCamelCase, '''train_mem.csv''' ), inference_memory_csv_file=os.path.join(_lowerCamelCase, '''inf_mem.csv''' ), train_time_csv_file=os.path.join(_lowerCamelCase, '''train_time.csv''' ), env_info_csv_file=os.path.join(_lowerCamelCase, '''env.csv''' ), multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) benchmark.run() self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_time.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''inf_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''train_mem.csv''' ) ).exists() ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''env.csv''' ) ).exists() ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = '''sshleifer/tiny-gpt2''' def _check_summary_is_not_empty(_lowerCamelCase : List[Any] ): self.assertTrue(hasattr(_lowerCamelCase, '''sequential''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''cumulative''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''current''' ) ) self.assertTrue(hasattr(_lowerCamelCase, '''total''' ) ) with tempfile.TemporaryDirectory() as tmp_dir: __A = PyTorchBenchmarkArguments( models=[MODEL_ID], training=_lowerCamelCase, inference=_lowerCamelCase, sequence_lengths=[8], batch_sizes=[1], log_filename=os.path.join(_lowerCamelCase, '''log.txt''' ), log_print=_lowerCamelCase, trace_memory_line_by_line=_lowerCamelCase, multi_process=_lowerCamelCase, ) __A = PyTorchBenchmark(_lowerCamelCase ) __A = benchmark.run() _check_summary_is_not_empty(result.inference_summary ) _check_summary_is_not_empty(result.train_summary ) self.assertTrue(Path(os.path.join(_lowerCamelCase, '''log.txt''' ) ).exists() )
266
1
"""simple docstring""" import argparse import math import traceback import dateutil.parser as date_parser import requests def _snake_case ( UpperCAmelCase_ : Union[str, Any] ): A__ = {} A__ = job["""started_at"""] A__ = job["""completed_at"""] A__ = date_parser.parse(UpperCAmelCase_ ) A__ = date_parser.parse(UpperCAmelCase_ ) A__ = round((end_datetime - start_datetime).total_seconds() / 60.0 ) A__ = start A__ = end A__ = duration_in_min return job_info def _snake_case ( UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[Any]=None ): A__ = None if token is not None: A__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": F"""Bearer {token}"""} A__ = F"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100""" A__ = requests.get(UpperCAmelCase_ , headers=UpperCAmelCase_ ).json() A__ = {} try: job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase_ ) for job in result["""jobs"""]} ) A__ = math.ceil((result["""total_count"""] - 100) / 100 ) for i in range(UpperCAmelCase_ ): A__ = requests.get(url + F"""&page={i + 2}""" , headers=UpperCAmelCase_ ).json() job_time.update({job["""name"""]: extract_time_from_single_job(UpperCAmelCase_ ) for job in result["""jobs"""]} ) return job_time except Exception: print(F"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" ) return {} if __name__ == "__main__": SCREAMING_SNAKE_CASE_ : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument('--workflow_run_id', type=str, required=True, help='A GitHub Actions workflow run id.') SCREAMING_SNAKE_CASE_ : Tuple = parser.parse_args() SCREAMING_SNAKE_CASE_ : int = get_job_time(args.workflow_run_id) SCREAMING_SNAKE_CASE_ : Union[str, Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True)) for k, v in job_time.items(): print(f"""{k}: {v['duration']}""")
359
"""simple docstring""" import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor SCREAMING_SNAKE_CASE_ : Tuple = logging.get_logger(__name__) class a ( _lowerCamelCase ): """simple docstring""" def __init__( self: int , *UpperCamelCase: Optional[Any] , **UpperCamelCase: str ): """simple docstring""" warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , UpperCamelCase , ) super().__init__(*UpperCamelCase , **UpperCamelCase )
69
0
"""simple docstring""" from __future__ import annotations import math import random from typing import Any class __A : '''simple docstring''' def __init__( self : Optional[int] ) ->None: """simple docstring""" snake_case_ = [] snake_case_ = 0 snake_case_ = 0 def lowerCAmelCase ( self : List[str] ) ->bool: """simple docstring""" return self.head == self.tail def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : Any ) ->None: """simple docstring""" self.data.append(UpperCAmelCase_ ) snake_case_ = self.tail + 1 def lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" snake_case_ = self.data[self.head] snake_case_ = self.head + 1 return ret def lowerCAmelCase ( self : int ) ->int: """simple docstring""" return self.tail - self.head def lowerCAmelCase ( self : str ) ->None: """simple docstring""" print(self.data ) print("""**************""" ) print(self.data[self.head : self.tail] ) class __A : '''simple docstring''' def __init__( self : Tuple , UpperCAmelCase_ : Any ) ->None: """simple docstring""" snake_case_ = data snake_case_ = None snake_case_ = None snake_case_ = 1 def lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" return self.data def lowerCAmelCase ( self : Tuple ) ->MyNode | None: """simple docstring""" return self.left def lowerCAmelCase ( self : List[Any] ) ->MyNode | None: """simple docstring""" return self.right def lowerCAmelCase ( self : Union[str, Any] ) ->int: """simple docstring""" return self.height def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Any ) ->None: """simple docstring""" snake_case_ = data def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : MyNode | None ) ->None: """simple docstring""" snake_case_ = node def lowerCAmelCase ( self : str , UpperCAmelCase_ : MyNode | None ) ->None: """simple docstring""" snake_case_ = node def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : int ) ->None: """simple docstring""" snake_case_ = height def _a ( _SCREAMING_SNAKE_CASE ) -> int: if node is None: return 0 return node.get_height() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> int: if a > b: return a return b def _a ( _SCREAMING_SNAKE_CASE ) -> MyNode: print("""left rotation node:""" , node.get_data() ) snake_case_ = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_SCREAMING_SNAKE_CASE ) snake_case_ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) snake_case_ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def _a ( _SCREAMING_SNAKE_CASE ) -> MyNode: print("""right rotation node:""" , node.get_data() ) snake_case_ = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_SCREAMING_SNAKE_CASE ) snake_case_ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) snake_case_ = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_SCREAMING_SNAKE_CASE ) return ret def _a ( _SCREAMING_SNAKE_CASE ) -> MyNode: snake_case_ = node.get_left() assert left_child is not None node.set_left(left_rotation(_SCREAMING_SNAKE_CASE ) ) return right_rotation(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE ) -> MyNode: snake_case_ = node.get_right() assert right_child is not None node.set_right(right_rotation(_SCREAMING_SNAKE_CASE ) ) return left_rotation(_SCREAMING_SNAKE_CASE ) def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> MyNode | None: if node is None: return MyNode(_SCREAMING_SNAKE_CASE ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _SCREAMING_SNAKE_CASE ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected snake_case_ = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child snake_case_ = right_rotation(_SCREAMING_SNAKE_CASE ) else: snake_case_ = lr_rotation(_SCREAMING_SNAKE_CASE ) else: node.set_right(insert_node(node.get_right() , _SCREAMING_SNAKE_CASE ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: snake_case_ = node.get_right() assert right_child is not None if data < right_child.get_data(): snake_case_ = rl_rotation(_SCREAMING_SNAKE_CASE ) else: snake_case_ = left_rotation(_SCREAMING_SNAKE_CASE ) snake_case_ = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_SCREAMING_SNAKE_CASE ) return node def _a ( _SCREAMING_SNAKE_CASE ) -> Any: while True: snake_case_ = root.get_right() if right_child is None: break snake_case_ = right_child return root.get_data() def _a ( _SCREAMING_SNAKE_CASE ) -> Any: while True: snake_case_ = root.get_left() if left_child is None: break snake_case_ = left_child return root.get_data() def _a ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> MyNode | None: snake_case_ = root.get_left() snake_case_ = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: snake_case_ = get_left_most(_SCREAMING_SNAKE_CASE ) root.set_data(_SCREAMING_SNAKE_CASE ) root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) elif left_child is not None: snake_case_ = left_child elif right_child is not None: snake_case_ = right_child else: return None elif root.get_data() > data: if left_child is None: print("""No such data""" ) return root else: root.set_left(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): snake_case_ = left_rotation(_SCREAMING_SNAKE_CASE ) else: snake_case_ = rl_rotation(_SCREAMING_SNAKE_CASE ) elif get_height(_SCREAMING_SNAKE_CASE ) - get_height(_SCREAMING_SNAKE_CASE ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): snake_case_ = right_rotation(_SCREAMING_SNAKE_CASE ) else: snake_case_ = lr_rotation(_SCREAMING_SNAKE_CASE ) snake_case_ = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_SCREAMING_SNAKE_CASE ) return root class __A : '''simple docstring''' def __init__( self : Dict ) ->None: """simple docstring""" snake_case_ = None def lowerCAmelCase ( self : List[str] ) ->int: """simple docstring""" return get_height(self.root ) def lowerCAmelCase ( self : str , UpperCAmelCase_ : Any ) ->None: """simple docstring""" print("""insert:""" + str(UpperCAmelCase_ ) ) snake_case_ = insert_node(self.root , UpperCAmelCase_ ) def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Any ) ->None: """simple docstring""" print("""delete:""" + str(UpperCAmelCase_ ) ) if self.root is None: print("""Tree is empty!""" ) return snake_case_ = del_node(self.root , UpperCAmelCase_ ) def __str__( self : Dict , ) ->str: # a level traversale, gives a more intuitive look on the tree """simple docstring""" snake_case_ = """""" snake_case_ = MyQueue() q.push(self.root ) snake_case_ = self.get_height() if layer == 0: return output snake_case_ = 0 while not q.is_empty(): snake_case_ = q.pop() snake_case_ = """ """ * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(UpperCAmelCase_ ) q.push(UpperCAmelCase_ ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space snake_case_ = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , UpperCAmelCase_ ) - 1: snake_case_ = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def _a ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() __SCREAMING_SNAKE_CASE : Any = AVLtree() __SCREAMING_SNAKE_CASE : Any = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
347
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __A : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any=14 , UpperCAmelCase_ : Union[str, Any]=7 , UpperCAmelCase_ : Tuple=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=False , UpperCAmelCase_ : Union[str, Any]=True , UpperCAmelCase_ : str=99 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : List[Any]=4 , UpperCAmelCase_ : Optional[int]=4 , UpperCAmelCase_ : int=4 , UpperCAmelCase_ : str=37 , UpperCAmelCase_ : Any="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Union[str, Any]=0.1 , UpperCAmelCase_ : int=512 , UpperCAmelCase_ : Tuple=0.02 , ) ->List[str]: """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_input_mask snake_case_ = use_token_type_ids snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = rotary_dim snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = initializer_range snake_case_ = None snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 snake_case_ = vocab_size - 1 def lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ = None if self.use_input_mask: snake_case_ = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=UpperCAmelCase_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def lowerCAmelCase ( self : Dict ) ->Tuple: """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"""input_ids""": input_ids, """attention_mask""": attention_mask} return config, inputs_dict def lowerCAmelCase ( self : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict ) ->Tuple: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , attention_mask=UpperCAmelCase_ , past_key_values=outputs_cache.past_key_values , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def lowerCAmelCase ( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Dict: """simple docstring""" snake_case_ = 20 snake_case_ = model_class_name(UpperCAmelCase_ ) snake_case_ = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) snake_case_ = model.init_cache(input_ids.shape[0] , UpperCAmelCase_ ) snake_case_ = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) snake_case_ = model( input_ids[:, :-1] , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype="""i4""" ) snake_case_ = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=UpperCAmelCase_ , position_ids=UpperCAmelCase_ , ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ) snake_case_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) @require_flax class __A (snake_case__ , snake_case__ , unittest.TestCase): '''simple docstring''' __lowercase: Any = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () __lowercase: List[str] = (FlaxGPTJForCausalLM,) if is_flax_available() else () def lowerCAmelCase ( self : Tuple ) ->List[str]: """simple docstring""" snake_case_ = FlaxGPTJModelTester(self ) def lowerCAmelCase ( self : int ) ->List[Any]: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def lowerCAmelCase ( self : List[str] ) ->Any: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ , snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) @tooslow def lowerCAmelCase ( self : List[str] ) ->Optional[Any]: """simple docstring""" snake_case_ = GPTaTokenizer.from_pretrained("""gpt2""" , pad_token="""<|endoftext|>""" , padding_side="""left""" ) snake_case_ = tokenizer(["""Hello this is a long string""", """Hey"""] , return_tensors="""np""" , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ ) snake_case_ = FlaxGPTJForCausalLM.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = False snake_case_ = model.config.eos_token_id snake_case_ = jax.jit(model.generate ) snake_case_ = jit_generate( inputs["""input_ids"""] , attention_mask=inputs["""attention_mask"""] , pad_token_id=tokenizer.pad_token_id ).sequences snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = [ """Hello this is a long string of text.\n\nI'm trying to get the text of the""", """Hey, I'm a little late to the party. I'm going to""", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) @is_pt_flax_cross_test def lowerCAmelCase ( self : int ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , UpperCAmelCase_ ) snake_case_ = fx_state with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = model_class.from_pretrained(UpperCAmelCase_ , from_pt=UpperCAmelCase_ ) snake_case_ = fx_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output_loaded, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs snake_case_ = self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class snake_case_ = model_class.__name__[4:] # Skip the "Flax" at the beginning snake_case_ = getattr(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case_ = pt_model_class(UpperCAmelCase_ ).eval() snake_case_ = model_class(UpperCAmelCase_ , dtype=jnp.floataa ) snake_case_ = load_flax_weights_in_pytorch_model(UpperCAmelCase_ , fx_model.params ) snake_case_ , snake_case_ = pt_inputs["""input_ids"""].shape snake_case_ = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(UpperCAmelCase_ ): snake_case_ = 0 snake_case_ = 1 snake_case_ = 0 snake_case_ = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): snake_case_ = pt_model(**UpperCAmelCase_ ).to_tuple() snake_case_ = fx_model(**UpperCAmelCase_ ).to_tuple() self.assertEqual(len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(UpperCAmelCase_ ) snake_case_ = pt_model_class.from_pretrained(UpperCAmelCase_ , from_flax=UpperCAmelCase_ ) with torch.no_grad(): snake_case_ = pt_model_loaded(**UpperCAmelCase_ ).to_tuple() self.assertEqual( len(UpperCAmelCase_ ) , len(UpperCAmelCase_ ) , """Output lengths differ between Flax and PyTorch""" ) for fx_output, pt_output in zip(UpperCAmelCase_ , UpperCAmelCase_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def lowerCAmelCase ( self : List[Any] ) ->str: """simple docstring""" for model_class_name in self.all_model_classes: snake_case_ = model_class_name.from_pretrained("""EleutherAI/gpt-j-6B""" ) snake_case_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCAmelCase_ )
347
1
"""simple docstring""" import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: __A =None __A =logging.get_logger(__name__) __A ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} __A ={ "vocab_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/spiece.model", "t5-base": "https://huggingface.co/t5-base/resolve/main/spiece.model", "t5-large": "https://huggingface.co/t5-large/resolve/main/spiece.model", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/spiece.model", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/spiece.model", }, "tokenizer_file": { "t5-small": "https://huggingface.co/t5-small/resolve/main/tokenizer.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/tokenizer.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/tokenizer.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/tokenizer.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/tokenizer.json", }, } # TODO(PVP) - this should be removed in Transformers v5 __A ={ "t5-small": 5_1_2, "t5-base": 5_1_2, "t5-large": 5_1_2, "t5-3b": 5_1_2, "t5-11b": 5_1_2, } class _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ ): lowerCAmelCase__ = VOCAB_FILES_NAMES lowerCAmelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase__ = ['input_ids', 'attention_mask'] lowerCAmelCase__ = TaTokenizer lowerCAmelCase__ = [] def __init__( self , lowercase=None , lowercase=None , lowercase="</s>" , lowercase="<unk>" , lowercase="<pad>" , lowercase=100 , lowercase=None , **lowercase , ) -> Dict: if extra_ids > 0 and additional_special_tokens is None: lowerCamelCase_ = [f'<extra_id_{i}>' for i in range(a_ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowerCamelCase_ = len(set(filter(lambda lowercase : bool("extra_id_" in str(a_ ) ) , a_ ) ) ) if extra_tokens != extra_ids: raise ValueError( f'Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are' " provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids" " tokens" ) super().__init__( a_ , tokenizer_file=a_ , eos_token=a_ , unk_token=a_ , pad_token=a_ , extra_ids=a_ , additional_special_tokens=a_ , **a_ , ) lowerCamelCase_ = vocab_file lowerCamelCase_ = False if not self.vocab_file else True lowerCamelCase_ = extra_ids @staticmethod def SCREAMING_SNAKE_CASE_( lowercase , lowercase , lowercase ) -> Any: if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowerCamelCase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( "This tokenizer was incorrectly instantiated with a model max length of" f' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this' " behavior is kept to avoid breaking backwards compatibility when padding/encoding with" " `truncation is True`.\n- Be aware that you SHOULD NOT rely on" f' {pretrained_model_name_or_path} automatically truncating your input to' f' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences' f' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with' " `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please" " instantiate this tokenizer with `model_max_length` set to your preferred value." , a_ , ) return max_model_length def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Any: if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(a_ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return lowerCamelCase_ = os.path.join( a_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(a_ ): copyfile(self.vocab_file , a_ ) logger.info(f'Copy vocab file to {out_vocab_file}' ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Optional[Any]: lowerCamelCase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowerCamelCase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase = None ) -> Optional[int]: lowerCamelCase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: return list( set(filter(lambda lowercase : bool(re.search(R"<extra_id_\d+>" , a_ ) ) is not None , self.additional_special_tokens ) ) ) def SCREAMING_SNAKE_CASE_( self ) -> Any: return [self.convert_tokens_to_ids(a_ ) for token in self.get_sentinel_tokens()]
359
from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class _SCREAMING_SNAKE_CASE ( nn.Module ): def __init__( self , lowercase = 16 , lowercase = 88 , lowercase = None , lowercase = 1 , lowercase = 0.0 , lowercase = 32 , lowercase = None , lowercase = False , lowercase = None , lowercase = None , lowercase = "geglu" , lowercase = None , ) -> Any: super().__init__() lowerCamelCase_ = nn.ModuleList( [ TransformeraDModel( num_attention_heads=lowercase , attention_head_dim=lowercase , in_channels=lowercase , num_layers=lowercase , dropout=lowercase , norm_num_groups=lowercase , cross_attention_dim=lowercase , attention_bias=lowercase , sample_size=lowercase , num_vector_embeds=lowercase , activation_fn=lowercase , num_embeds_ada_norm=lowercase , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference lowerCamelCase_ = 0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` lowerCamelCase_ = [77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` lowerCamelCase_ = [1, 0] def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase = True , ) -> int: lowerCamelCase_ = hidden_states lowerCamelCase_ = [] lowerCamelCase_ = 0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens lowerCamelCase_ = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] lowerCamelCase_ = self.transformer_index_for_condition[i] lowerCamelCase_ = self.transformers[transformer_index]( lowercase , encoder_hidden_states=lowercase , timestep=lowercase , cross_attention_kwargs=lowercase , return_dict=lowercase , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] lowerCamelCase_ = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) lowerCamelCase_ = output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=lowercase )
47
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging snake_case__ : List[str] = logging.get_logger(__name__) class snake_case_( a__ ): __UpperCamelCase = ['''input_features''', '''is_longer'''] def __init__( self : int , UpperCamelCase_ : Any=6_4 , UpperCamelCase_ : Dict=4_8_0_0_0 , UpperCamelCase_ : Dict=4_8_0 , UpperCamelCase_ : Optional[int]=1_0 , UpperCamelCase_ : str=1_0_2_4 , UpperCamelCase_ : Any=0.0 , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : float = 0 , UpperCamelCase_ : float = 1_4_0_0_0 , UpperCamelCase_ : int = None , UpperCamelCase_ : str = "fusion" , UpperCamelCase_ : str = "repeatpad" , **UpperCamelCase_ : List[str] , ): super().__init__( feature_size=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , padding_value=UpperCamelCase_ , return_attention_mask=UpperCamelCase_ , **UpperCamelCase_ , ) lowerCAmelCase : str = top_db lowerCAmelCase : str = truncation lowerCAmelCase : Optional[Any] = padding lowerCAmelCase : List[Any] = fft_window_size lowerCAmelCase : Any = (fft_window_size >> 1) + 1 lowerCAmelCase : Union[str, Any] = hop_length lowerCAmelCase : int = max_length_s lowerCAmelCase : str = max_length_s * sampling_rate lowerCAmelCase : Any = sampling_rate lowerCAmelCase : str = frequency_min lowerCAmelCase : List[str] = frequency_max lowerCAmelCase : Optional[int] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm=UpperCamelCase_ , mel_scale='''htk''' , ) lowerCAmelCase : Union[str, Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=UpperCamelCase_ , min_frequency=UpperCamelCase_ , max_frequency=UpperCamelCase_ , sampling_rate=UpperCamelCase_ , norm='''slaney''' , mel_scale='''slaney''' , ) def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Optional[int] = copy.deepcopy(self.__dict__ ) lowerCAmelCase : Optional[int] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCamelCase__ ( self : Any , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[np.array] = None ): lowerCAmelCase : List[str] = spectrogram( UpperCamelCase_ , window_function(self.fft_window_size , '''hann''' ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=UpperCamelCase_ , log_mel='''dB''' , ) return log_mel_spectrogram.T def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Any ): lowerCAmelCase : List[str] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase : Union[str, Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk lowerCAmelCase : List[Any] = [0] # randomly choose index for each part lowerCAmelCase : Dict = np.random.choice(ranges[0] ) lowerCAmelCase : str = np.random.choice(ranges[1] ) lowerCAmelCase : List[Any] = np.random.choice(ranges[2] ) lowerCAmelCase : Any = mel[idx_front : idx_front + chunk_frames, :] lowerCAmelCase : int = mel[idx_middle : idx_middle + chunk_frames, :] lowerCAmelCase : Optional[int] = mel[idx_back : idx_back + chunk_frames, :] lowerCAmelCase : List[Any] = torch.tensor(mel[None, None, :] ) lowerCAmelCase : Optional[int] = torch.nn.functional.interpolate( UpperCamelCase_ , size=[chunk_frames, 6_4] , mode='''bilinear''' , align_corners=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = mel_shrink[0][0].numpy() lowerCAmelCase : List[str] = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCamelCase__ ( self : List[str] , UpperCamelCase_ : np.array , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : List[Any] ): if waveform.shape[0] > max_length: if truncation == "rand_trunc": lowerCAmelCase : List[str] = True # random crop to max_length (for compatibility) -> this should be handled by self.pad lowerCAmelCase : Optional[int] = len(UpperCamelCase_ ) - max_length lowerCAmelCase : List[str] = np.random.randint(0 , overflow + 1 ) lowerCAmelCase : List[Any] = waveform[idx : idx + max_length] lowerCAmelCase : str = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": lowerCAmelCase : List[str] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) lowerCAmelCase : Union[str, Any] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed lowerCAmelCase : Tuple = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. lowerCAmelCase : Union[str, Any] = np.stack([mel, mel, mel, mel] , axis=0 ) lowerCAmelCase : Union[str, Any] = False else: lowerCAmelCase : Union[str, Any] = self._random_mel_fusion(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Any = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: lowerCAmelCase : Any = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": lowerCAmelCase : Optional[Any] = int(max_length / len(UpperCamelCase_ ) ) lowerCAmelCase : Optional[int] = np.stack(np.tile(UpperCamelCase_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": lowerCAmelCase : Any = int(max_length / len(UpperCamelCase_ ) ) lowerCAmelCase : Tuple = np.stack(np.tile(UpperCamelCase_ , UpperCamelCase_ ) ) lowerCAmelCase : Any = np.pad(UpperCamelCase_ , (0, max_length - waveform.shape[0]) , mode='''constant''' , constant_values=0 ) if truncation == "fusion": lowerCAmelCase : Optional[Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters ) lowerCAmelCase : List[str] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: lowerCAmelCase : Union[str, Any] = self._np_extract_fbank_features(UpperCamelCase_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self : Optional[int] , UpperCamelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCamelCase_ : str = None , UpperCamelCase_ : Optional[str] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[int] = None , UpperCamelCase_ : Optional[Union[str, TensorType]] = None , **UpperCamelCase_ : Optional[Any] , ): lowerCAmelCase : Optional[int] = truncation if truncation is not None else self.truncation lowerCAmelCase : str = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the `sampling_rate` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) lowerCAmelCase : Tuple = isinstance(UpperCamelCase_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) lowerCAmelCase : Any = is_batched_numpy or ( isinstance(UpperCamelCase_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: lowerCAmelCase : Tuple = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(UpperCamelCase_ , np.ndarray ): lowerCAmelCase : List[str] = np.asarray(UpperCamelCase_ , dtype=np.floataa ) elif isinstance(UpperCamelCase_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): lowerCAmelCase : str = raw_speech.astype(np.floataa ) # always return batch if not is_batched: lowerCAmelCase : Tuple = [np.asarray(UpperCamelCase_ )] # convert to mel spectrogram, truncate and pad if needed. lowerCAmelCase : Union[str, Any] = [ self._get_input_mel(UpperCamelCase_ , max_length if max_length else self.nb_max_samples , UpperCamelCase_ , UpperCamelCase_ ) for waveform in raw_speech ] lowerCAmelCase : str = [] lowerCAmelCase : List[Any] = [] for mel, longer in padded_inputs: input_mel.append(UpperCamelCase_ ) is_longer.append(UpperCamelCase_ ) if truncation == "fusion" and sum(UpperCamelCase_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer lowerCAmelCase : List[Any] = np.random.randint(0 , len(UpperCamelCase_ ) ) lowerCAmelCase : Optional[Any] = True if isinstance(input_mel[0] , UpperCamelCase_ ): lowerCAmelCase : Dict = [np.asarray(UpperCamelCase_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool lowerCAmelCase : Any = [[longer] for longer in is_longer] lowerCAmelCase : str = {'''input_features''': input_mel, '''is_longer''': is_longer} lowerCAmelCase : int = BatchFeature(UpperCamelCase_ ) if return_tensors is not None: lowerCAmelCase : Dict = input_features.convert_to_tensors(UpperCamelCase_ ) return input_features
60
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def _snake_case ( _snake_case : list[list[float]] ): lowerCAmelCase : str = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(_snake_case ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase : int = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase : Optional[int] = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase, lowerCAmelCase : List[Any] = matrix[1][1], matrix[0][0] lowerCAmelCase, lowerCAmelCase : Union[str, Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(_snake_case ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(_snake_case ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase : int = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError('''This matrix has no inverse.''' ) # Creating cofactor matrix lowerCAmelCase : Dict = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase : Any = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase : Any = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase : Optional[int] = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase : Optional[int] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase : Dict = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase : List[Any] = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase : str = array(_snake_case ) for i in range(3 ): for j in range(3 ): lowerCAmelCase : Optional[Any] = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase : Tuple = array(_snake_case ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(_snake_case ) # Calculate the inverse of the matrix return [[float(d(_snake_case ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError('''Please provide a matrix of size 2x2 or 3x3.''' )
60
1
'''simple docstring''' import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __UpperCAmelCase = Mapping[str, np.ndarray] __UpperCAmelCase = Mapping[str, Any] # Is a nested dict. __UpperCAmelCase = 0.01 @dataclasses.dataclass(frozen=a__ ) class a__ : '''simple docstring''' lowercase__ : np.ndarray # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. lowercase__ : np.ndarray # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. lowercase__ : np.ndarray # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. lowercase__ : np.ndarray # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. lowercase__ : np.ndarray # [num_res, num_atom_type] # Chain indices for multi-chain predictions lowercase__ : Optional[np.ndarray] = None # Optional remark about the protein. Included as a comment in output PDB # files lowercase__ : Optional[str] = None # Templates used to generate this protein (prediction-only) lowercase__ : Optional[Sequence[str]] = None # Chain corresponding to each parent lowercase__ : Optional[Sequence[int]] = None def _snake_case ( A ) -> Protein: lowerCAmelCase__ = R'''(\[[A-Z]+\]\n)''' lowerCAmelCase__ = [tag.strip() for tag in re.split(A , A ) if len(A ) > 0] lowerCAmelCase__ = zip(tags[0::2] , [l.split('''\n''' ) for l in tags[1::2]] ) lowerCAmelCase__ = ["N", "CA", "C"] lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None for g in groups: if "[PRIMARY]" == g[0]: lowerCAmelCase__ = g[1][0].strip() for i in range(len(A ) ): if seq[i] not in residue_constants.restypes: lowerCAmelCase__ = '''X''' # FIXME: strings are immutable lowerCAmelCase__ = np.array( [residue_constants.restype_order.get(A , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: lowerCAmelCase__ = [] for axis in range(3 ): tertiary.append(list(map(A , g[1][axis].split() ) ) ) lowerCAmelCase__ = np.array(A ) lowerCAmelCase__ = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(A ): lowerCAmelCase__ = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: lowerCAmelCase__ = np.array(list(map({'''-''': 0, '''+''': 1}.get , g[1][0].strip() ) ) ) lowerCAmelCase__ = np.zeros( ( len(A ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(A ): lowerCAmelCase__ = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=A , atom_mask=A , aatype=A , residue_index=np.arange(len(A ) ) , b_factors=A , ) def _snake_case ( A , A = 0 ) -> List[str]: lowerCAmelCase__ = [] lowerCAmelCase__ = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) lowerCAmelCase__ = prot.parents lowerCAmelCase__ = prot.parents_chain_index if parents is not None and parents_chain_index is not None: lowerCAmelCase__ = [p for i, p in zip(A , A ) if i == chain_id] if parents is None or len(A ) == 0: lowerCAmelCase__ = ['''N/A'''] pdb_headers.append(F"""PARENT {" ".join(A )}""" ) return pdb_headers def _snake_case ( A , A ) -> str: lowerCAmelCase__ = [] lowerCAmelCase__ = pdb_str.split('''\n''' ) lowerCAmelCase__ = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) lowerCAmelCase__ = 42 if prot.parents is not None and len(prot.parents ) > 0: lowerCAmelCase__ = [] if prot.parents_chain_index is not None: lowerCAmelCase__ = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(A ) , [] ) parent_dict[str(A )].append(A ) lowerCAmelCase__ = max([int(A ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): lowerCAmelCase__ = parent_dict.get(str(A ) , ['''N/A'''] ) parents_per_chain.append(A ) else: parents_per_chain.append(list(prot.parents ) ) else: lowerCAmelCase__ = [['''N/A''']] def make_parent_line(A ) -> str: return F"""PARENT {" ".join(A )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) lowerCAmelCase__ = 0 for i, l in enumerate(A ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(A ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(A ): lowerCAmelCase__ = parents_per_chain[chain_counter] else: lowerCAmelCase__ = ['''N/A'''] out_pdb_lines.append(make_parent_line(A ) ) return "\n".join(A ) def _snake_case ( A ) -> str: lowerCAmelCase__ = residue_constants.restypes + ['''X'''] def res_atoa(A ) -> str: return residue_constants.restype_atoa.get(restypes[r] , '''UNK''' ) lowerCAmelCase__ = residue_constants.atom_types lowerCAmelCase__ = [] lowerCAmelCase__ = prot.atom_mask lowerCAmelCase__ = prot.aatype lowerCAmelCase__ = prot.atom_positions lowerCAmelCase__ = prot.residue_index.astype(np.intaa ) lowerCAmelCase__ = prot.b_factors lowerCAmelCase__ = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError('''Invalid aatypes.''' ) lowerCAmelCase__ = get_pdb_headers(A ) if len(A ) > 0: pdb_lines.extend(A ) lowerCAmelCase__ = aatype.shape[0] lowerCAmelCase__ = 1 lowerCAmelCase__ = 0 lowerCAmelCase__ = string.ascii_uppercase lowerCAmelCase__ = None # Add all atom sites. for i in range(A ): lowerCAmelCase__ = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(A , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue lowerCAmelCase__ = '''ATOM''' lowerCAmelCase__ = atom_name if len(A ) == 4 else F""" {atom_name}""" lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''''' lowerCAmelCase__ = 1.00 lowerCAmelCase__ = atom_name[0] # Protein supports only C, N, O, S, this works. lowerCAmelCase__ = '''''' lowerCAmelCase__ = '''A''' if chain_index is not None: lowerCAmelCase__ = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! lowerCAmelCase__ = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(A ) atom_index += 1 lowerCAmelCase__ = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: lowerCAmelCase__ = True lowerCAmelCase__ = chain_index[i + 1] if should_terminate: # Close the chain. lowerCAmelCase__ = '''TER''' lowerCAmelCase__ = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(A ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(A , A ) ) pdb_lines.append('''END''' ) pdb_lines.append('''''' ) return "\n".join(A ) def _snake_case ( A ) -> np.ndarray: return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def _snake_case ( A , A , A = None , A = None , A = None , A = None , A = None , ) -> Protein: return Protein( aatype=features['''aatype'''] , atom_positions=result['''final_atom_positions'''] , atom_mask=result['''final_atom_mask'''] , residue_index=features['''residue_index'''] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result['''final_atom_mask'''] ) , chain_index=A , remark=A , parents=A , parents_chain_index=A , )
228
'''simple docstring''' import json import os import unittest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_ftfy, require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = CLIPTokenizer lowercase__ : List[str] = CLIPTokenizerFast lowercase__ : Dict = True lowercase__ : Any = {} lowercase__ : Optional[int] = False def __SCREAMING_SNAKE_CASE ( self ) -> Any: super().setUp() # fmt: off lowerCAmelCase__ = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase__ = dict(zip(lowerCamelCase_ , range(len(lowerCamelCase_ ) ) ) ) lowerCAmelCase__ = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>'''] lowerCAmelCase__ = {'''unk_token''': '''<unk>'''} lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase_ ) ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> Any: kwargs.update(self.special_tokens_map ) return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , **lowerCamelCase_ ) -> int: kwargs.update(self.special_tokens_map ) return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Any: lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = '''lower newer''' return input_text, output_text def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = CLIPTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCAmelCase__ = '''lower newer''' lowerCAmelCase__ = ['''lo''', '''w''', '''er</w>''', '''n''', '''e''', '''w''', '''er</w>'''] lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokens + [tokenizer.unk_token] lowerCAmelCase__ = [10, 2, 16, 9, 3, 2, 16, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , lowerCamelCase_ ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = '''A\n\'ll 11p223RF☆ho!!to?\'d\'d\'\'d of a cat to-$\'\'d.''' lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on an example containing a character (Latin Small Letter A # with Tilde) encoded in 2 different ways lowerCAmelCase__ = '''xa\u0303y''' + ''' ''' + '''x\xe3y''' lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of space type lowerCAmelCase__ = [ '''\u0009''', # (horizontal tab, '\t') '''\u000B''', # (vertical tab) '''\u000C''', # (form feed) '''\u0020''', # (space, ' ') '''\u200E''', # (left-to-right mark):w '''\u200F''', # (right-to-left mark) ] for unicode_seq in spaces_unicodes: lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) # Test that the tokenization is identical on unicode of line break type lowerCAmelCase__ = [ '''\u000A''', # (line feed, '\n') '''\r\n''', # (carriage return and line feed, '\r\n') '''\u000D''', # (carriage return, '\r') '''\r''', # (carriage return, '\r') '''\u000D''', # (carriage return, '\r') '''\u2028''', # (line separator) '''\u2029''', # (paragraph separator) # "\u0085", # (next line) ] # The tokenization is not identical for the character "\u0085" (next line). The slow version using ftfy transforms # it into the Horizontal Ellipsis character "…" ("\u2026") while the fast version transforms it into a # space (and thus into an empty list). for unicode_seq in line_break_unicodes: lowerCAmelCase__ = tokenizer_s.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_r.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> str: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name` lowerCAmelCase__ = F"""{text_of_1_token} {text_of_1_token}""" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCamelCase_ ) + 1, len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) lowerCAmelCase__ = F""" {text}""" lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained( lowerCamelCase_ , use_fast=lowerCamelCase_ , ) lowerCAmelCase__ = tokenizer_r(lowerCamelCase_ , return_offsets_mapping=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCamelCase_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCamelCase_ ) + 1, 1 + len(lowerCamelCase_ ) + 1 + len(lowerCamelCase_ )) , ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: # Test related to the breaking change introduced in transformers v4.17.0 # We need to check that an error in raised when the user try to load a previous version of the tokenizer. with self.assertRaises(lowerCamelCase_ ) as context: self.rust_tokenizer_class.from_pretrained('''robot-test/old-clip-tokenizer''' ) self.assertTrue( context.exception.args[0].startswith( '''The `backend_tokenizer` provided does not match the expected format.''' ) ) @require_ftfy def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().test_tokenization_python_rust_equals() def __SCREAMING_SNAKE_CASE ( self ) -> Any: # CLIP always lower cases letters pass
228
1
"""simple docstring""" import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline __UpperCamelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowercase (SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple=False , ) -> List[str]: output_path.parent.mkdir(parents=A__ , exist_ok=A__ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , use_external_data_format=A__ , enable_onnx_checker=A__ , opset_version=A__ , ) else: export( A__ , A__ , f=output_path.as_posix() , input_names=A__ , output_names=A__ , dynamic_axes=A__ , do_constant_folding=A__ , opset_version=A__ , ) @torch.no_grad() def lowercase (SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Dict = False ) -> Optional[int]: SCREAMING_SNAKE_CASE = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = StableDiffusionPipeline.from_pretrained(A__ , torch_dtype=A__ ).to(A__ ) SCREAMING_SNAKE_CASE = Path(A__ ) # TEXT ENCODER SCREAMING_SNAKE_CASE = pipeline.text_encoder.config.max_position_embeddings SCREAMING_SNAKE_CASE = pipeline.text_encoder.config.hidden_size SCREAMING_SNAKE_CASE = pipeline.tokenizer( 'A sample prompt' , padding='max_length' , max_length=pipeline.tokenizer.model_max_length , truncation=A__ , return_tensors='pt' , ) onnx_export( pipeline.text_encoder , model_args=(text_input.input_ids.to(device=A__ , dtype=torch.intaa )) , output_path=output_path / 'text_encoder' / 'model.onnx' , ordered_input_names=['input_ids'] , output_names=['last_hidden_state', 'pooler_output'] , dynamic_axes={ 'input_ids': {0: 'batch', 1: 'sequence'}, } , opset=A__ , ) del pipeline.text_encoder # UNET SCREAMING_SNAKE_CASE = pipeline.unet.config.in_channels SCREAMING_SNAKE_CASE = pipeline.unet.config.sample_size SCREAMING_SNAKE_CASE = output_path / 'unet' / 'model.onnx' onnx_export( pipeline.unet , model_args=( torch.randn(2 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), torch.randn(2 ).to(device=A__ , dtype=A__ ), torch.randn(2 , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=A__ , ordered_input_names=['sample', 'timestep', 'encoder_hidden_states', 'return_dict'] , output_names=['out_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'timestep': {0: 'batch'}, 'encoder_hidden_states': {0: 'batch', 1: 'sequence'}, } , opset=A__ , use_external_data_format=A__ , ) SCREAMING_SNAKE_CASE = str(unet_path.absolute().as_posix() ) SCREAMING_SNAKE_CASE = os.path.dirname(A__ ) SCREAMING_SNAKE_CASE = onnx.load(A__ ) # clean up existing tensor files shutil.rmtree(A__ ) os.mkdir(A__ ) # collate external tensor files into one onnx.save_model( A__ , A__ , save_as_external_data=A__ , all_tensors_to_one_file=A__ , location='weights.pb' , convert_attribute=A__ , ) del pipeline.unet # VAE ENCODER SCREAMING_SNAKE_CASE = pipeline.vae SCREAMING_SNAKE_CASE = vae_encoder.config.in_channels SCREAMING_SNAKE_CASE = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder SCREAMING_SNAKE_CASE = lambda SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : vae_encoder.encode(A__ , A__ )[0].sample() onnx_export( A__ , model_args=( torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / 'vae_encoder' / 'model.onnx' , ordered_input_names=['sample', 'return_dict'] , output_names=['latent_sample'] , dynamic_axes={ 'sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=A__ , ) # VAE DECODER SCREAMING_SNAKE_CASE = pipeline.vae SCREAMING_SNAKE_CASE = vae_decoder.config.latent_channels SCREAMING_SNAKE_CASE = vae_decoder.config.out_channels # forward only through the decoder part SCREAMING_SNAKE_CASE = vae_encoder.decode onnx_export( A__ , model_args=( torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=A__ , ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: SCREAMING_SNAKE_CASE = pipeline.safety_checker SCREAMING_SNAKE_CASE = safety_checker.config.vision_config.num_channels SCREAMING_SNAKE_CASE = safety_checker.config.vision_config.image_size SCREAMING_SNAKE_CASE = safety_checker.forward_onnx onnx_export( pipeline.safety_checker , model_args=( torch.randn( 1 , A__ , A__ , A__ , ).to(device=A__ , dtype=A__ ), torch.randn(1 , A__ , A__ , A__ ).to(device=A__ , dtype=A__ ), ) , output_path=output_path / 'safety_checker' / 'model.onnx' , ordered_input_names=['clip_input', 'images'] , output_names=['out_images', 'has_nsfw_concepts'] , dynamic_axes={ 'clip_input': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, 'images': {0: 'batch', 1: 'height', 2: 'width', 3: 'channels'}, } , opset=A__ , ) del pipeline.safety_checker SCREAMING_SNAKE_CASE = OnnxRuntimeModel.from_pretrained(output_path / 'safety_checker' ) SCREAMING_SNAKE_CASE = pipeline.feature_extractor else: SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_encoder' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / 'vae_decoder' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / 'text_encoder' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / 'unet' ) , scheduler=pipeline.scheduler , safety_checker=A__ , feature_extractor=A__ , requires_safety_checker=safety_checker is not None , ) onnx_pipeline.save_pretrained(A__ ) print('ONNX pipeline saved to' , A__ ) del pipeline del onnx_pipeline SCREAMING_SNAKE_CASE = OnnxStableDiffusionPipeline.from_pretrained(A__ , provider='CPUExecutionProvider' ) print('ONNX pipeline is loadable' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') __UpperCamelCase = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
113
import argparse import json import os import re import torch from transformers import BloomConfig, BloomModel from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : int = [ '''word_embeddings_layernorm.weight''', '''word_embeddings_layernorm.bias''', '''input_layernorm.weight''', '''input_layernorm.bias''', '''post_attention_layernorm.weight''', '''post_attention_layernorm.bias''', '''self_attention.dense.bias''', '''mlp.dense_4h_to_h.bias''', '''ln_f.weight''', '''ln_f.bias''', ] lowerCAmelCase__ : Union[str, Any] = [ '''mlp.dense_4h_to_h.weight''', '''self_attention.dense.weight''', ] def UpperCamelCase__ ( A__ , A__ ) -> List[str]: snake_case__ : Optional[Any] = { 'word_embeddings.weight': 'word_embeddings.weight', 'word_embeddings.norm.weight': 'word_embeddings_layernorm.weight', 'word_embeddings.norm.bias': 'word_embeddings_layernorm.bias', 'weight': 'ln_f.weight', 'bias': 'ln_f.bias', } if key in layer_rename_map: return layer_rename_map[key] # Handle transformer blocks snake_case__ : Dict = int(re.match(r'.*layer_(\d*).*' , A__ )[1] ) layer_number -= 3 return F"""h.{layer_number}.""" + key def UpperCamelCase__ ( A__ ) -> str: if dtype == torch.bool: return 1 / 8 snake_case__ : List[str] = re.search(r'[^\d](\d+)$' , str(A__ ) ) if bit_search is None: raise ValueError(F"""`dtype` is not a valid dtype: {dtype}.""" ) snake_case__ : Union[str, Any] = int(bit_search.groups()[0] ) return bit_size // 8 def UpperCamelCase__ ( A__ , A__ , A__ , A__ , A__ ) -> List[str]: # Construct model if bloom_config_file == "": snake_case__ : Union[str, Any] = BloomConfig() else: snake_case__ : int = BloomConfig.from_json_file(A__ ) if shard_model: snake_case__ : Tuple = os.listdir(A__ ) snake_case__ : str = sorted(filter(lambda A__ : s.startswith('layer' ) and "model_00" in s , A__ ) ) snake_case__ : str = {'weight_map': {}, 'metadata': {}} snake_case__ : Optional[int] = 0 snake_case__ : Tuple = None snake_case__ : Any = BloomConfig() for j, file in enumerate(A__ ): print('Processing file: {}'.format(A__ ) ) snake_case__ : str = None for i in range(A__ ): # load all TP files snake_case__ : Optional[int] = file.replace('model_00' , F"""model_0{i}""" ) snake_case__ : int = torch.load(os.path.join(A__ , A__ ) , map_location='cpu' ) # Rename keys in the transformers names snake_case__ : List[Any] = list(temp.keys() ) for key in keys: snake_case__ : List[Any] = temp.pop(A__ ) if tensors is None: snake_case__ : Optional[Any] = temp else: for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : Dict = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Optional[int] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Dict = tensors[key] / pretraining_tp torch.save( A__ , os.path.join( A__ , 'pytorch_model_{}-of-{}.bin'.format(str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) , ) , ) for key in tensors.keys(): snake_case__ : List[Any] = tensors[key] total_size += value.numel() * get_dtype_size(value.dtype ) if key not in index_dict["weight_map"]: snake_case__ : Optional[int] = 'pytorch_model_{}-of-{}.bin'.format( str(j + 1 ).zfill(5 ) , str(len(A__ ) ).zfill(5 ) ) snake_case__ : Dict = BloomConfig() snake_case__ : str = pytorch_dump_folder_path + '/' + CONFIG_NAME snake_case__ : int = total_size with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) with open(os.path.join(A__ , WEIGHTS_NAME + '.index.json' ) , 'w' , encoding='utf-8' ) as f: snake_case__ : List[str] = json.dumps(A__ , indent=2 , sort_keys=A__ ) + '\n' f.write(A__ ) else: snake_case__ : int = BloomModel(A__ ) snake_case__ : Dict = os.listdir(A__ ) snake_case__ : Union[str, Any] = sorted(filter(lambda A__ : s.startswith('layer' ) and "model_00" in s , A__ ) ) snake_case__ : List[str] = None for i, file in enumerate(A__ ): snake_case__ : Dict = None for i in range(A__ ): # load all TP files snake_case__ : List[Any] = file.replace('model_00' , F"""model_0{i}""" ) snake_case__ : int = torch.load(os.path.join(A__ , A__ ) , map_location='cpu' ) # Rename keys in the transformers names snake_case__ : List[str] = list(temp.keys() ) for key in keys: snake_case__ : Any = temp.pop(A__ ) if tensors is None: snake_case__ : Union[str, Any] = temp else: for key in tensors.keys(): # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): tensors[key] += temp[key] else: # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel snake_case__ : int = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN ) else 0 # We concatenate these weights accross TP ranks snake_case__ : Optional[Any] = torch.cat([tensors[key], temp[key]] , dim=A__ ) # Divide by the number of TP the weights we want to average for key in tensors.keys(): if any(key.endswith(A__ ) for end in WEIGHTS_TO_AVERAGE_ENDSWITH ): snake_case__ : Optional[int] = tensors[key] / pretraining_tp snake_case__ : int = model.load_state_dict(A__ , strict=A__ ) assert not other_keys.unexpected_keys, F"""The keys {other_keys.unexpected_keys} are unexpected""" if missing_keys is None: snake_case__ : List[Any] = set(other_keys.missing_keys ) else: snake_case__ : Tuple = missing_keys.intersection(set(other_keys.missing_keys ) ) assert not missing_keys, F"""The keys {missing_keys} are missing""" # Save pytorch-model os.makedirs(A__ , exist_ok=A__ ) snake_case__ : Any = pytorch_dump_folder_path + '/' + WEIGHTS_NAME snake_case__ : List[Any] = pytorch_dump_folder_path + '/' + CONFIG_NAME print(F"""Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}""" ) if config.torch_dtype is not None: snake_case__ : str = model.to(config.torch_dtype ) torch.save(model.state_dict() , A__ ) print(F"""Save configuration file to {pytorch_config_dump_path}""" ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowerCAmelCase__ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--bloom_checkpoint_path''', default=None, type=str, required=True, help='''Path to the Megatron-LM checkpoint path.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--bloom_config_file''', default='''''', type=str, help=( '''An optional config json file corresponding to the pre-trained model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--shard_model''', action='''store_true''', help='''An optional setting to shard the output model \nThis enables sharding the converted checkpoint''', ) parser.add_argument( '''--pretraining_tp''', default=4, type=int, help='''Pretraining TP rank that has been used when training the model in Megatron-LM \n''', ) lowerCAmelCase__ : Any = parser.parse_args() convert_bloom_checkpoint_to_pytorch( args.bloom_checkpoint_path, args.bloom_config_file, args.pytorch_dump_folder_path, args.shard_model, args.pretraining_tp, )
143
0
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def _SCREAMING_SNAKE_CASE ( self : Optional[int] , lowercase_ : int , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = jnp.ones((batch_size, length)) / length return scores def _SCREAMING_SNAKE_CASE ( self : Any): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : List[str] = 20 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(batch_size=2 , length=lowercase_) # tweak scores to not be uniform anymore SCREAMING_SNAKE_CASE_ : Tuple = scores.at[1, 5].set((1 / length) + 0.1) # peak, 1st batch SCREAMING_SNAKE_CASE_ : str = scores.at[1, 10].set((1 / length) - 0.4) # valley, 1st batch # compute softmax SCREAMING_SNAKE_CASE_ : int = jax.nn.softmax(lowercase_ , axis=-1) SCREAMING_SNAKE_CASE_ : Optional[Any] = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=1.3) SCREAMING_SNAKE_CASE_ : Optional[int] = jax.nn.softmax(temp_dist_warper_sharper(lowercase_ , scores.copy() , cur_len=lowercase_) , axis=-1) SCREAMING_SNAKE_CASE_ : List[Any] = jax.nn.softmax(temp_dist_warper_smoother(lowercase_ , scores.copy() , cur_len=lowercase_) , axis=-1) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1e-3)) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1e-3)) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max()) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min()) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max()) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min()) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = None SCREAMING_SNAKE_CASE_ : Optional[int] = 10 SCREAMING_SNAKE_CASE_ : Any = 2 # create ramp distribution SCREAMING_SNAKE_CASE_ : Optional[Any] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, vocab_size)).copy() SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1:, : vocab_size // 2] + vocab_size SCREAMING_SNAKE_CASE_ : int = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_ : Optional[int] = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0]).tolist() , 7 * [True] + 3 * [False]) self.assertListEqual(jnp.isinf(scores[1]).tolist() , 2 * [True] + 3 * [False] + 5 * [True]) # check special case SCREAMING_SNAKE_CASE_ : Optional[int] = 5 SCREAMING_SNAKE_CASE_ : str = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3) SCREAMING_SNAKE_CASE_ : List[str] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, length)).copy() SCREAMING_SNAKE_CASE_ : Tuple = top_k_warp_safety_check(lowercase_ , lowercase_ , cur_len=lowercase_) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1).tolist() , [2, 2]) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = None SCREAMING_SNAKE_CASE_ : int = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) SCREAMING_SNAKE_CASE_ : List[str] = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]])) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTopPLogitsWarper(0.8) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.exp(top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_)) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]]) self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3)) # check edge cases with negative and extreme logits SCREAMING_SNAKE_CASE_ : List[str] = np.broadcast_to(np.arange(lowercase_)[None, :] , (batch_size, vocab_size)).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme SCREAMING_SNAKE_CASE_ : Optional[int] = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept SCREAMING_SNAKE_CASE_ : str = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0) SCREAMING_SNAKE_CASE_ : int = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1).tolist() , [3, 2]) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = 20 SCREAMING_SNAKE_CASE_ : Optional[Any] = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_) # check that min length is applied at length 5 SCREAMING_SNAKE_CASE_ : str = ids_tensor((batch_size, 20) , vocab_size=20) SCREAMING_SNAKE_CASE_ : Any = 5 SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = min_dist_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float('''inf''')]) # check that min length is not applied anymore at length 15 SCREAMING_SNAKE_CASE_ : int = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = 15 SCREAMING_SNAKE_CASE_ : Union[str, Any] = min_dist_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertFalse(jnp.isinf(lowercase_).any()) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = 20 SCREAMING_SNAKE_CASE_ : Optional[int] = 4 SCREAMING_SNAKE_CASE_ : Optional[int] = 0 SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_) # check that all scores are -inf except the bos_token_id score SCREAMING_SNAKE_CASE_ : Any = ids_tensor((batch_size, 1) , vocab_size=20) SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : List[Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :]).all()) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0]) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 3 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Any = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertFalse(jnp.isinf(lowercase_).any()) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = 20 SCREAMING_SNAKE_CASE_ : str = 4 SCREAMING_SNAKE_CASE_ : Dict = 0 SCREAMING_SNAKE_CASE_ : List[str] = 5 SCREAMING_SNAKE_CASE_ : Dict = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_) # check that all scores are -inf except the eos_token_id when max_length is reached SCREAMING_SNAKE_CASE_ : Optional[int] = ids_tensor((batch_size, 4) , vocab_size=20) SCREAMING_SNAKE_CASE_ : Optional[Any] = 4 SCREAMING_SNAKE_CASE_ : Union[str, Any] = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :]).all()) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0]) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached SCREAMING_SNAKE_CASE_ : Optional[int] = 3 SCREAMING_SNAKE_CASE_ : Any = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Dict = logits_processor(lowercase_ , lowercase_ , cur_len=lowercase_) self.assertFalse(jnp.isinf(lowercase_).any()) def _SCREAMING_SNAKE_CASE ( self : str): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = 4 SCREAMING_SNAKE_CASE_ : Optional[Any] = 10 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 SCREAMING_SNAKE_CASE_ : Optional[int] = 2 SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor((batch_size, sequence_length) , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = input_ids.copy() SCREAMING_SNAKE_CASE_ : Dict = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_ : List[Any] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : Tuple = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : Any = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 10 # no processor list SCREAMING_SNAKE_CASE_ : Tuple = temp_dist_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[int] = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : int = min_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Any = bos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : str = eos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) # with processor list SCREAMING_SNAKE_CASE_ : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_ : Dict = processor(lowercase_ , lowercase_ , cur_len=lowercase_) # scores should be equal self.assertTrue(jnp.allclose(lowercase_ , lowercase_ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist()) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = 4 SCREAMING_SNAKE_CASE_ : int = 10 SCREAMING_SNAKE_CASE_ : List[Any] = 15 SCREAMING_SNAKE_CASE_ : str = 2 SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : str = 15 # dummy input_ids and scores SCREAMING_SNAKE_CASE_ : Union[str, Any] = ids_tensor((batch_size, sequence_length) , lowercase_) SCREAMING_SNAKE_CASE_ : int = input_ids.copy() SCREAMING_SNAKE_CASE_ : str = self._get_uniform_logits(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = scores.copy() # instantiate all dist processors SCREAMING_SNAKE_CASE_ : str = FlaxTemperatureLogitsWarper(temperature=0.5) SCREAMING_SNAKE_CASE_ : Optional[int] = FlaxTopKLogitsWarper(3) SCREAMING_SNAKE_CASE_ : List[str] = FlaxTopPLogitsWarper(0.8) # instantiate all logits processors SCREAMING_SNAKE_CASE_ : List[str] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : int = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : str = FlaxForcedEOSTokenLogitsProcessor(max_length=lowercase_ , eos_token_id=lowercase_) SCREAMING_SNAKE_CASE_ : str = 10 # no processor list def run_no_processor_list(lowercase_ : str , lowercase_ : Tuple , lowercase_ : str): SCREAMING_SNAKE_CASE_ : Tuple = temp_dist_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : int = top_k_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = top_p_warp(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = min_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = bos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) SCREAMING_SNAKE_CASE_ : Dict = eos_dist_proc(lowercase_ , lowercase_ , cur_len=lowercase_) return scores # with processor list def run_processor_list(lowercase_ : Optional[int] , lowercase_ : List[Any] , lowercase_ : Any): SCREAMING_SNAKE_CASE_ : int = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc]) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor(lowercase_ , lowercase_ , cur_len=lowercase_) return scores SCREAMING_SNAKE_CASE_ : List[str] = jax.jit(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = jax.jit(lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = jitted_run_no_processor_list(lowercase_ , lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : int = jitted_run_processor_list(lowercase_ , lowercase_ , lowercase_) # scores should be equal self.assertTrue(jnp.allclose(lowercase_ , lowercase_ , atol=1e-3)) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist())
365
"""simple docstring""" from itertools import permutations def _A (__a ) -> bool: """simple docstring""" if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False SCREAMING_SNAKE_CASE_ : List[str] = [7, 11, 13, 17] for i, test in enumerate(__a ): if (num[i + 4] * 1_00 + num[i + 5] * 10 + num[i + 6]) % test != 0: return False return True def _A (__a = 10 ) -> int: """simple docstring""" return sum( int(''''''.join(map(__a , __a ) ) ) for num in permutations(range(__a ) ) if is_substring_divisible(__a ) ) if __name__ == "__main__": print(f'''{solution() = }''')
318
0
def _snake_case( SCREAMING_SNAKE_CASE__ : int = 600851475143 ) -> int: '''simple docstring''' try: A__ = int(SCREAMING_SNAKE_CASE__ ) except (TypeError, ValueError): raise TypeError('Parameter n must be int or castable to int.' ) if n <= 0: raise ValueError('Parameter n must be greater than or equal to one.' ) A__ = 2 A__ = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 A__ = i while n % i == 0: A__ = n // i i += 1 return int(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(f"""{solution() = }""")
7
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'''vocab_file''': '''sentencepiece.bpe.model''', '''tokenizer_file''': '''tokenizer.json'''} __UpperCamelCase = { '''vocab_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model''' ), }, '''tokenizer_file''': { '''facebook/nllb-200-distilled-600M''': ( '''https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json''' ), }, } __UpperCamelCase = { '''facebook/nllb-large-en-ro''': 1024, '''facebook/nllb-200-distilled-600M''': 1024, } # fmt: off __UpperCamelCase = ['''ace_Arab''', '''ace_Latn''', '''acm_Arab''', '''acq_Arab''', '''aeb_Arab''', '''afr_Latn''', '''ajp_Arab''', '''aka_Latn''', '''amh_Ethi''', '''apc_Arab''', '''arb_Arab''', '''ars_Arab''', '''ary_Arab''', '''arz_Arab''', '''asm_Beng''', '''ast_Latn''', '''awa_Deva''', '''ayr_Latn''', '''azb_Arab''', '''azj_Latn''', '''bak_Cyrl''', '''bam_Latn''', '''ban_Latn''', '''bel_Cyrl''', '''bem_Latn''', '''ben_Beng''', '''bho_Deva''', '''bjn_Arab''', '''bjn_Latn''', '''bod_Tibt''', '''bos_Latn''', '''bug_Latn''', '''bul_Cyrl''', '''cat_Latn''', '''ceb_Latn''', '''ces_Latn''', '''cjk_Latn''', '''ckb_Arab''', '''crh_Latn''', '''cym_Latn''', '''dan_Latn''', '''deu_Latn''', '''dik_Latn''', '''dyu_Latn''', '''dzo_Tibt''', '''ell_Grek''', '''eng_Latn''', '''epo_Latn''', '''est_Latn''', '''eus_Latn''', '''ewe_Latn''', '''fao_Latn''', '''pes_Arab''', '''fij_Latn''', '''fin_Latn''', '''fon_Latn''', '''fra_Latn''', '''fur_Latn''', '''fuv_Latn''', '''gla_Latn''', '''gle_Latn''', '''glg_Latn''', '''grn_Latn''', '''guj_Gujr''', '''hat_Latn''', '''hau_Latn''', '''heb_Hebr''', '''hin_Deva''', '''hne_Deva''', '''hrv_Latn''', '''hun_Latn''', '''hye_Armn''', '''ibo_Latn''', '''ilo_Latn''', '''ind_Latn''', '''isl_Latn''', '''ita_Latn''', '''jav_Latn''', '''jpn_Jpan''', '''kab_Latn''', '''kac_Latn''', '''kam_Latn''', '''kan_Knda''', '''kas_Arab''', '''kas_Deva''', '''kat_Geor''', '''knc_Arab''', '''knc_Latn''', '''kaz_Cyrl''', '''kbp_Latn''', '''kea_Latn''', '''khm_Khmr''', '''kik_Latn''', '''kin_Latn''', '''kir_Cyrl''', '''kmb_Latn''', '''kon_Latn''', '''kor_Hang''', '''kmr_Latn''', '''lao_Laoo''', '''lvs_Latn''', '''lij_Latn''', '''lim_Latn''', '''lin_Latn''', '''lit_Latn''', '''lmo_Latn''', '''ltg_Latn''', '''ltz_Latn''', '''lua_Latn''', '''lug_Latn''', '''luo_Latn''', '''lus_Latn''', '''mag_Deva''', '''mai_Deva''', '''mal_Mlym''', '''mar_Deva''', '''min_Latn''', '''mkd_Cyrl''', '''plt_Latn''', '''mlt_Latn''', '''mni_Beng''', '''khk_Cyrl''', '''mos_Latn''', '''mri_Latn''', '''zsm_Latn''', '''mya_Mymr''', '''nld_Latn''', '''nno_Latn''', '''nob_Latn''', '''npi_Deva''', '''nso_Latn''', '''nus_Latn''', '''nya_Latn''', '''oci_Latn''', '''gaz_Latn''', '''ory_Orya''', '''pag_Latn''', '''pan_Guru''', '''pap_Latn''', '''pol_Latn''', '''por_Latn''', '''prs_Arab''', '''pbt_Arab''', '''quy_Latn''', '''ron_Latn''', '''run_Latn''', '''rus_Cyrl''', '''sag_Latn''', '''san_Deva''', '''sat_Beng''', '''scn_Latn''', '''shn_Mymr''', '''sin_Sinh''', '''slk_Latn''', '''slv_Latn''', '''smo_Latn''', '''sna_Latn''', '''snd_Arab''', '''som_Latn''', '''sot_Latn''', '''spa_Latn''', '''als_Latn''', '''srd_Latn''', '''srp_Cyrl''', '''ssw_Latn''', '''sun_Latn''', '''swe_Latn''', '''swh_Latn''', '''szl_Latn''', '''tam_Taml''', '''tat_Cyrl''', '''tel_Telu''', '''tgk_Cyrl''', '''tgl_Latn''', '''tha_Thai''', '''tir_Ethi''', '''taq_Latn''', '''taq_Tfng''', '''tpi_Latn''', '''tsn_Latn''', '''tso_Latn''', '''tuk_Latn''', '''tum_Latn''', '''tur_Latn''', '''twi_Latn''', '''tzm_Tfng''', '''uig_Arab''', '''ukr_Cyrl''', '''umb_Latn''', '''urd_Arab''', '''uzn_Latn''', '''vec_Latn''', '''vie_Latn''', '''war_Latn''', '''wol_Latn''', '''xho_Latn''', '''ydd_Hebr''', '''yor_Latn''', '''yue_Hant''', '''zho_Hans''', '''zho_Hant''', '''zul_Latn'''] class UpperCamelCase ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE_ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE_ = NllbTokenizer SCREAMING_SNAKE_CASE_ = [] SCREAMING_SNAKE_CASE_ = [] def __init__( self, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__="<s>", lowerCAmelCase__="</s>", lowerCAmelCase__="</s>", lowerCAmelCase__="<s>", lowerCAmelCase__="<unk>", lowerCAmelCase__="<pad>", lowerCAmelCase__="<mask>", lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=None, lowerCAmelCase__=False, **lowerCAmelCase__, ) -> List[str]: # Mask token behave like a normal word, i.e. include the space before it snake_case_ = AddedToken(lowerCAmelCase__, lstrip=lowerCAmelCase__, rstrip=lowerCAmelCase__) if isinstance(lowerCAmelCase__, lowerCAmelCase__) else mask_token snake_case_ = legacy_behaviour super().__init__( vocab_file=lowerCAmelCase__, tokenizer_file=lowerCAmelCase__, bos_token=lowerCAmelCase__, eos_token=lowerCAmelCase__, sep_token=lowerCAmelCase__, cls_token=lowerCAmelCase__, unk_token=lowerCAmelCase__, pad_token=lowerCAmelCase__, mask_token=lowerCAmelCase__, src_lang=lowerCAmelCase__, tgt_lang=lowerCAmelCase__, additional_special_tokens=lowerCAmelCase__, legacy_behaviour=lowerCAmelCase__, **lowerCAmelCase__, ) snake_case_ = vocab_file snake_case_ = False if not self.vocab_file else True snake_case_ = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({'additional_special_tokens': _additional_special_tokens}) snake_case_ = { lang_code: self.convert_tokens_to_ids(lowerCAmelCase__) for lang_code in FAIRSEQ_LANGUAGE_CODES } snake_case_ = src_lang if src_lang is not None else 'eng_Latn' snake_case_ = self.convert_tokens_to_ids(self._src_lang) snake_case_ = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def a_ ( self) -> str: return self._src_lang @src_lang.setter def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> List[int]: snake_case_ = [self.sep_token_id] snake_case_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def a_ ( self, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) -> str: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model') snake_case_ = src_lang snake_case_ = self(lowerCAmelCase__, add_special_tokens=lowerCAmelCase__, return_tensors=lowerCAmelCase__, **lowerCAmelCase__) snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) snake_case_ = tgt_lang_id return inputs def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = "eng_Latn", lowerCAmelCase__ = None, lowerCAmelCase__ = "fra_Latn", **lowerCAmelCase__, ) -> BatchEncoding: snake_case_ = src_lang snake_case_ = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase__, lowerCAmelCase__, **lowerCAmelCase__) def a_ ( self) -> List[Any]: return self.set_src_lang_special_tokens(self.src_lang) def a_ ( self) -> Tuple: return self.set_tgt_lang_special_tokens(self.tgt_lang) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def a_ ( self, lowerCAmelCase__) -> None: snake_case_ = self.convert_tokens_to_ids(lowerCAmelCase__) if self.legacy_behaviour: snake_case_ = [] snake_case_ = [self.eos_token_id, self.cur_lang_code] else: snake_case_ = [self.cur_lang_code] snake_case_ = [self.eos_token_id] snake_case_ = self.convert_ids_to_tokens(self.prefix_tokens) snake_case_ = self.convert_ids_to_tokens(self.suffix_tokens) snake_case_ = processors.TemplateProcessing( single=prefix_tokens_str + ['$A'] + suffix_tokens_str, pair=prefix_tokens_str + ['$A', '$B'] + suffix_tokens_str, special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), ) def a_ ( self, lowerCAmelCase__, lowerCAmelCase__ = None) -> Tuple[str]: if not self.can_save_slow_tokenizer: raise ValueError( 'Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ' 'tokenizer.') if not os.path.isdir(lowerCAmelCase__): logger.error(f'Vocabulary path ({save_directory}) should be a directory.') return snake_case_ = os.path.join( lowerCAmelCase__, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file']) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__): copyfile(self.vocab_file, lowerCAmelCase__) return (out_vocab_file,)
69
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: _UpperCAmelCase : str = [] _UpperCAmelCase : Dict = [] for i in range(self.num_layers ): _UpperCAmelCase : Optional[int] = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : Dict = FlaxResnetBlockaD( in_channels=a_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : Dict = resnets _UpperCAmelCase : Any = attentions if self.add_downsample: _UpperCAmelCase : List[str] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> Any: _UpperCAmelCase : Optional[Any] = () for resnet, attn in zip(self.resnets ,self.attentions ): _UpperCAmelCase : Any = resnet(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : List[str] = attn(a_ ,a_ ,deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : Any = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[Any]: _UpperCAmelCase : Optional[int] = [] for i in range(self.num_layers ): _UpperCAmelCase : str = self.in_channels if i == 0 else self.out_channels _UpperCAmelCase : List[str] = FlaxResnetBlockaD( in_channels=a_ ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Optional[int] = resnets if self.add_downsample: _UpperCAmelCase : List[Any] = FlaxDownsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_=True ) -> str: _UpperCAmelCase : str = () for resnet in self.resnets: _UpperCAmelCase : Optional[Any] = resnet(a_ ,a_ ,deterministic=a_ ) output_states += (hidden_states,) if self.add_downsample: _UpperCAmelCase : int = self.downsamplers_a(a_ ) output_states += (hidden_states,) return hidden_states, output_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> Tuple: _UpperCAmelCase : List[str] = [] _UpperCAmelCase : List[Any] = [] for i in range(self.num_layers ): _UpperCAmelCase : Tuple = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : int = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : Optional[int] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : int = FlaxTransformeraDModel( in_channels=self.out_channels ,n_heads=self.num_attention_heads ,d_head=self.out_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,only_cross_attention=self.only_cross_attention ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : List[str] = resnets _UpperCAmelCase : Tuple = attentions if self.add_upsample: _UpperCAmelCase : int = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_ ,a_=True ) -> Optional[Any]: for resnet, attn in zip(self.resnets ,self.attentions ): # pop res hidden states _UpperCAmelCase : Dict = res_hidden_states_tuple[-1] _UpperCAmelCase : str = res_hidden_states_tuple[:-1] _UpperCAmelCase : Union[str, Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _UpperCAmelCase : List[str] = resnet(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : str = attn(a_ ,a_ ,deterministic=a_ ) if self.add_upsample: _UpperCAmelCase : Optional[int] = self.upsamplers_a(a_ ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = True UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: _UpperCAmelCase : Union[str, Any] = [] for i in range(self.num_layers ): _UpperCAmelCase : int = self.in_channels if (i == self.num_layers - 1) else self.out_channels _UpperCAmelCase : str = self.prev_output_channel if i == 0 else self.out_channels _UpperCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels ,out_channels=self.out_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Dict = resnets if self.add_upsample: _UpperCAmelCase : Dict = FlaxUpsampleaD(self.out_channels ,dtype=self.dtype ) def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> int: for resnet in self.resnets: # pop res hidden states _UpperCAmelCase : Any = res_hidden_states_tuple[-1] _UpperCAmelCase : List[str] = res_hidden_states_tuple[:-1] _UpperCAmelCase : Optional[Any] = jnp.concatenate((hidden_states, res_hidden_states) ,axis=-1 ) _UpperCAmelCase : Dict = resnet(a_ ,a_ ,deterministic=a_ ) if self.add_upsample: _UpperCAmelCase : str = self.upsamplers_a(a_ ) return hidden_states class lowercase ( nn.Module ): """simple docstring""" UpperCAmelCase = 42 UpperCAmelCase = 0.0 UpperCAmelCase = 1 UpperCAmelCase = 1 UpperCAmelCase = False UpperCAmelCase = False UpperCAmelCase = jnp.floataa def _snake_case ( self ) -> List[str]: # there is always at least one resnet _UpperCAmelCase : Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) ] _UpperCAmelCase : List[Any] = [] for _ in range(self.num_layers ): _UpperCAmelCase : str = FlaxTransformeraDModel( in_channels=self.in_channels ,n_heads=self.num_attention_heads ,d_head=self.in_channels // self.num_attention_heads ,depth=1 ,use_linear_projection=self.use_linear_projection ,use_memory_efficient_attention=self.use_memory_efficient_attention ,dtype=self.dtype ,) attentions.append(a_ ) _UpperCAmelCase : List[Any] = FlaxResnetBlockaD( in_channels=self.in_channels ,out_channels=self.in_channels ,dropout_prob=self.dropout ,dtype=self.dtype ,) resnets.append(a_ ) _UpperCAmelCase : Optional[Any] = resnets _UpperCAmelCase : List[str] = attentions def __call__( self ,a_ ,a_ ,a_ ,a_=True ) -> List[Any]: _UpperCAmelCase : Any = self.resnets[0](a_ ,a_ ) for attn, resnet in zip(self.attentions ,self.resnets[1:] ): _UpperCAmelCase : int = attn(a_ ,a_ ,deterministic=a_ ) _UpperCAmelCase : List[Any] = resnet(a_ ,a_ ,deterministic=a_ ) return hidden_states
349
'''simple docstring''' from __future__ import annotations import math def snake_case_ ( lowerCAmelCase_ )-> list[int]: '''simple docstring''' if num <= 0: _UpperCAmelCase : List[Any] = F'''{num}: Invalid input, please enter a positive integer.''' raise ValueError(lowerCAmelCase_ ) _UpperCAmelCase : List[Any] = [True] * (num + 1) _UpperCAmelCase : int = [] _UpperCAmelCase : int = 2 _UpperCAmelCase : int = int(math.sqrt(lowerCAmelCase_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase_ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase_ ): if sieve[i] is True: _UpperCAmelCase : Tuple = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
349
1
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class lowerCamelCase (_snake_case ): '''simple docstring''' _snake_case : Dict = '''xlnet''' _snake_case : Optional[int] = ['''mems'''] _snake_case : List[str] = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _UpperCamelCase=3_2_0_0_0 , _UpperCamelCase=1_0_2_4 , _UpperCamelCase=2_4 , _UpperCamelCase=1_6 , _UpperCamelCase=4_0_9_6 , _UpperCamelCase="gelu" , _UpperCamelCase=True , _UpperCamelCase="bi" , _UpperCamelCase=0.02 , _UpperCamelCase=1E-12 , _UpperCamelCase=0.1 , _UpperCamelCase=5_1_2 , _UpperCamelCase=None , _UpperCamelCase=True , _UpperCamelCase=False , _UpperCamelCase=False , _UpperCamelCase=-1 , _UpperCamelCase=False , _UpperCamelCase="last" , _UpperCamelCase=True , _UpperCamelCase="tanh" , _UpperCamelCase=0.1 , _UpperCamelCase=5 , _UpperCamelCase=5 , _UpperCamelCase=5 , _UpperCamelCase=1 , _UpperCamelCase=2 , **_UpperCamelCase , ) -> Any: UpperCAmelCase_ : int = vocab_size UpperCAmelCase_ : int = d_model UpperCAmelCase_ : Any = n_layer UpperCAmelCase_ : Tuple = n_head if d_model % n_head != 0: raise ValueError(f"'d_model % n_head' ({d_model % n_head}) should be equal to 0" ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( f"`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})" ) UpperCAmelCase_ : Dict = d_model // n_head UpperCAmelCase_ : int = ff_activation UpperCAmelCase_ : Tuple = d_inner UpperCAmelCase_ : Any = untie_r UpperCAmelCase_ : Optional[int] = attn_type UpperCAmelCase_ : Optional[int] = initializer_range UpperCAmelCase_ : Union[str, Any] = layer_norm_eps UpperCAmelCase_ : int = dropout UpperCAmelCase_ : Optional[int] = mem_len UpperCAmelCase_ : str = reuse_len UpperCAmelCase_ : List[Any] = bi_data UpperCAmelCase_ : Tuple = clamp_len UpperCAmelCase_ : Dict = same_length UpperCAmelCase_ : int = summary_type UpperCAmelCase_ : Optional[Any] = summary_use_proj UpperCAmelCase_ : List[str] = summary_activation UpperCAmelCase_ : Dict = summary_last_dropout UpperCAmelCase_ : str = start_n_top UpperCAmelCase_ : str = end_n_top UpperCAmelCase_ : Any = bos_token_id UpperCAmelCase_ : Tuple = pad_token_id UpperCAmelCase_ : str = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCamelCase , ) UpperCAmelCase_ : Any = kwargs['use_cache'] UpperCAmelCase_ : Union[str, Any] = use_mems_eval UpperCAmelCase_ : Union[str, Any] = use_mems_train super().__init__(pad_token_id=_UpperCamelCase , bos_token_id=_UpperCamelCase , eos_token_id=_UpperCamelCase , **_UpperCamelCase ) @property def __UpperCAmelCase ( self ) -> Tuple: logger.info(f"The model {self.model_type} is one of the few models that has no sequence length limit." ) return -1 @max_position_embeddings.setter def __UpperCAmelCase ( self , _UpperCamelCase ) -> Optional[int]: # Message copied from Transformer-XL documentation raise NotImplementedError( f"The model {self.model_type} is one of the few models that has no sequence length limit." )
29
'''simple docstring''' # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class A__ ( A__ ): A__ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) A__ = 'CIDAS/clipseg-rd64-refined' A__ = 'image_segmenter' A__ = CLIPSegForImageSegmentation A__ = ['image', 'text'] A__ = ['image'] def __init__( self : Any , *_a : Dict , **_a : str ) -> Any: '''simple docstring''' requires_backends(self , ['vision'] ) super().__init__(*_a , **_a ) def A ( self : int , _a : "Image" , _a : str ) -> Optional[Any]: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=_a , return_tensors='pt' ) def A ( self : Dict , _a : Dict ) -> str: '''simple docstring''' with torch.no_grad(): _SCREAMING_SNAKE_CASE =self.model(**_a ).logits return logits def A ( self : Any , _a : str ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =outputs.cpu().detach().numpy() _SCREAMING_SNAKE_CASE =0 _SCREAMING_SNAKE_CASE =1 return Image.fromarray((array * 255).astype(np.uinta ) )
47
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy lowerCamelCase : Optional[Any] =logging.getLogger(__name__) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , ) -> Optional[Any]: UpperCamelCase__ : int = bnb_quantization_config.load_in_abit UpperCamelCase__ : List[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( "You have a version of `bitsandbytes` that is not compatible with 8bit quantization," " make sure you have the latest version of `bitsandbytes` installed." ) if load_in_abit and not is_abit_bnb_available(): raise ValueError( "You have a version of `bitsandbytes` that is not compatible with 4bit quantization," "make sure you have the latest version of `bitsandbytes` installed." ) UpperCamelCase__ : List[Any] = [] # custom device map if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(device_map.keys() ) > 1: UpperCamelCase__ : int = [key for key, value in device_map.items() if value in ["disk", "cpu"]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: UpperCamelCase__ : int = get_keys_to_not_convert(__lowerCAmelCase ) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(__lowerCAmelCase ) UpperCamelCase__ : Tuple = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: UpperCamelCase__ : Optional[Any] = [] UpperCamelCase__ : Optional[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(__lowerCAmelCase ) # compatibility with peft UpperCamelCase__ : Union[str, Any] = load_in_abit UpperCamelCase__ : str = load_in_abit UpperCamelCase__ : Tuple = get_parameter_device(__lowerCAmelCase ) if model_device.type != "meta": # quantization of an already loaded model logger.warning( "It is not recommended to quantize a loaded model. " "The model should be instantiated under the `init_empty_weights` context manager." ) UpperCamelCase__ : int = replace_with_bnb_layers(__lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) # convert param to the right dtype UpperCamelCase__ : Optional[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules ): param.to(torch.floataa ) if param.dtype != torch.floataa: UpperCamelCase__ : List[Any] = name.replace(".weight" , "" ).replace(".bias" , "" ) UpperCamelCase__ : Union[str, Any] = getattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if param is not None: param.to(torch.floataa ) elif torch.is_floating_point(__lowerCAmelCase ): param.to(__lowerCAmelCase ) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device() ) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device() ) else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info( f'The model device type is {model_device.type}. However, cuda is needed for quantization.' "We move the model to cuda." ) return model elif weights_location is None: raise RuntimeError( f'`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ' ) else: with init_empty_weights(): UpperCamelCase__ : Optional[int] = replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , modules_to_not_convert=__lowerCAmelCase ) UpperCamelCase__ : Optional[int] = get_quantized_model_device_map( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , max_memory=__lowerCAmelCase , no_split_module_classes=__lowerCAmelCase , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): UpperCamelCase__ : Optional[Any] = True UpperCamelCase__ : int = any(x in list(device_map.values() ) for x in ["cpu", "disk"] ) load_checkpoint_in_model( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , dtype=bnb_quantization_config.torch_dtype , offload_folder=__lowerCAmelCase , offload_state_dict=__lowerCAmelCase , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(__lowerCAmelCase , device_map=__lowerCAmelCase , offload_dir=__lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> int: if device_map is None: if torch.cuda.is_available(): UpperCamelCase__ : Any = {"": torch.cuda.current_device()} else: raise RuntimeError("No GPU found. A GPU is needed for quantization." ) logger.info("The device_map was not initialized." "Setting device_map to `{'':torch.cuda.current_device()}`." ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( "If passing a string for `device_map`, please choose 'auto', 'balanced', 'balanced_low_0' or " "'sequential'." ) UpperCamelCase__ : Optional[Any] = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules ) } ) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules ) } ) UpperCamelCase__ : Any = {} UpperCamelCase__ : Optional[int] = special_dtypes UpperCamelCase__ : str = no_split_module_classes UpperCamelCase__ : Optional[Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": UpperCamelCase__ : str = get_balanced_memory( __lowerCAmelCase , low_zero=(device_map == "balanced_low_0") , max_memory=__lowerCAmelCase , **__lowerCAmelCase , ) UpperCamelCase__ : int = max_memory UpperCamelCase__ : Any = infer_auto_device_map(__lowerCAmelCase , **__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # check if don't have any quantized module on the cpu UpperCamelCase__ : Union[str, Any] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules UpperCamelCase__ : List[str] = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( "\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n " ) else: logger.info( "Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit" ) del device_map_without_some_modules return device_map def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Tuple: if modules_to_not_convert is None: UpperCamelCase__ : List[Any] = [] UpperCamelCase__ : Tuple = _replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if not has_been_replaced: logger.warning( "You are loading your model in 8bit or 4bit but no linear modules were found in your model." " this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers." " Please double check your model architecture, or submit an issue on github if you think this is" " a bug." ) return model def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , ) -> Any: UpperCamelCase__ : str = False for name, module in model.named_children(): if current_key_name is None: UpperCamelCase__ : Tuple = [] current_key_name.append(__lowerCAmelCase ) if isinstance(__lowerCAmelCase , nn.Linear ) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` UpperCamelCase__ : Optional[Any] = ".".join(__lowerCAmelCase ) UpperCamelCase__ : List[str] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: UpperCamelCase__ : List[Any] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: UpperCamelCase__ : str = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=__lowerCAmelCase , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: UpperCamelCase__ : int = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("load_in_8bit and load_in_4bit can't be both False" ) UpperCamelCase__ : Optional[Any] = module.weight.data if module.bias is not None: UpperCamelCase__ : Optional[Any] = module.bias.data bnb_module.requires_grad_(__lowerCAmelCase ) setattr(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = True if len(list(module.children() ) ) > 0: UpperCamelCase__ : int = _replace_with_bnb_layers( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) UpperCamelCase__ : Any = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1 ) return model, has_been_replaced def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> List[str]: # Create a copy of the model with init_empty_weights(): UpperCamelCase__ : Tuple = deepcopy(__lowerCAmelCase ) # this has 0 cost since it is done inside `init_empty_weights` context manager` UpperCamelCase__ : str = find_tied_parameters(__lowerCAmelCase ) # For compatibility with Accelerate < 0.18 if isinstance(__lowerCAmelCase , __lowerCAmelCase ): UpperCamelCase__ : Optional[int] = sum(list(tied_params.values() ) , [] ) + list(tied_params.keys() ) else: UpperCamelCase__ : str = sum(__lowerCAmelCase , [] ) UpperCamelCase__ : List[Any] = len(__lowerCAmelCase ) > 0 # Check if it is a base model UpperCamelCase__ : Any = False if hasattr(__lowerCAmelCase , "base_model_prefix" ): UpperCamelCase__ : int = not hasattr(__lowerCAmelCase , model.base_model_prefix ) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head UpperCamelCase__ : Tuple = list(model.named_children() ) UpperCamelCase__ : List[Any] = [list_modules[-1][0]] # add last module together with tied weights UpperCamelCase__ : List[str] = set(__lowerCAmelCase ) - set(__lowerCAmelCase ) UpperCamelCase__ : Optional[int] = list(set(__lowerCAmelCase ) ) + list(__lowerCAmelCase ) # remove ".weight" from the keys UpperCamelCase__ : List[str] = [".weight", ".bias"] UpperCamelCase__ : List[str] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: UpperCamelCase__ : str = name.replace(__lowerCAmelCase , "" ) filtered_module_names.append(__lowerCAmelCase ) return filtered_module_names def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Optional[int]: for m in model.modules(): if isinstance(__lowerCAmelCase , bnb.nn.Linearabit ): return True return False def SCREAMING_SNAKE_CASE ( __lowerCAmelCase ) -> Dict: return next(parameter.parameters() ).device def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str: # if it is not quantized, we quantize and offload the quantized weights and the SCB stats if fpaa_statistics is None: set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , 0 , dtype=__lowerCAmelCase , value=__lowerCAmelCase ) UpperCamelCase__ : Union[str, Any] = param_name UpperCamelCase__ : Optional[Any] = model if "." in tensor_name: UpperCamelCase__ : Dict = tensor_name.split("." ) for split in splits[:-1]: UpperCamelCase__ : Union[str, Any] = getattr(__lowerCAmelCase , __lowerCAmelCase ) if new_module is None: raise ValueError(f'{module} has no attribute {split}.' ) UpperCamelCase__ : Any = new_module UpperCamelCase__ : Dict = splits[-1] # offload weights UpperCamelCase__ : str = False offload_weight(module._parameters[tensor_name] , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) if hasattr(module._parameters[tensor_name] , "SCB" ): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("weight" , "SCB" ) , __lowerCAmelCase , index=__lowerCAmelCase , ) else: offload_weight(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , index=__lowerCAmelCase ) offload_weight(__lowerCAmelCase , param_name.replace("weight" , "SCB" ) , __lowerCAmelCase , index=__lowerCAmelCase ) set_module_tensor_to_device(__lowerCAmelCase , __lowerCAmelCase , "meta" , dtype=__lowerCAmelCase , value=torch.empty(*param.size() ) )
366
lowerCamelCase : Optional[int] ={ '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> list[str]: UpperCamelCase__ : Optional[Any] = set() # keep track of all the paths to be checked UpperCamelCase__ : Optional[Any] = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase__ : int = queue.pop(0 ) # get the last node from the path UpperCamelCase__ : Dict = path[-1] if node not in explored: UpperCamelCase__ : Tuple = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase__ : List[str] = list(__lowerCAmelCase ) new_path.append(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(__lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def SCREAMING_SNAKE_CASE ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase__ : Tuple = [start] UpperCamelCase__ : Optional[int] = set(__lowerCAmelCase ) # Keep tab on distances from `start` node. UpperCamelCase__ : str = {start: 0, target: -1} while queue: UpperCamelCase__ : Any = queue.pop(0 ) if node == target: UpperCamelCase__ : Union[str, Any] = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(__lowerCAmelCase ) queue.append(__lowerCAmelCase ) UpperCamelCase__ : List[Any] = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
196
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : Any = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "adapter_layer": "encoder.layers.*.adapter_layer", "w2v_model.layer_norm": "feature_projection.layer_norm", "quantizer.weight_proj": "quantizer.weight_proj", "quantizer.vars": "quantizer.codevectors", "project_q": "project_q", "final_proj": "project_hid", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", "pooling_layer.linear": "projector", "pooling_layer.projection": "classifier", } __UpperCamelCase : Dict = [ "lm_head", "quantizer.weight_proj", "quantizer.codevectors", "project_q", "project_hid", "projector", "classifier", ] def __A ( __lowerCamelCase ) -> List[str]: a = {} with open(__lowerCamelCase , """r""" ) as file: for line_number, line in enumerate(__lowerCamelCase ): a = line.strip() if line: a = line.split() a = line_number a = words[0] a = value return result def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Dict: for attribute in key.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = getattr(__lowerCamelCase , __lowerCamelCase ).shape elif weight_type is not None and weight_type == "param": a = hf_pointer for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = shape_pointer.shape # let's reduce dimension a = value[0] else: a = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' f' {value.shape} for {full_name}' ) if weight_type == "weight": a = value elif weight_type == "weight_g": a = value elif weight_type == "weight_v": a = value elif weight_type == "bias": a = value elif weight_type == "param": for attribute in hf_param_name.split(""".""" ): a = getattr(__lowerCamelCase , __lowerCamelCase ) a = value else: a = value logger.info(f'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Union[str, Any]: a = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(__lowerCamelCase ): a = PARAM_MAPPING[full_name.split(""".""" )[-1]] a = """param""" if weight_type is not None and weight_type != "param": a = """.""".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": a = """.""".join([key, hf_param_name] ) else: a = key a = value if """lm_head""" in full_key else value[0] __UpperCamelCase : List[Any] = { "W_a": "linear_1.weight", "W_b": "linear_2.weight", "b_a": "linear_1.bias", "b_b": "linear_2.bias", "ln_W": "norm.weight", "ln_b": "norm.bias", } def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None ) -> Optional[Any]: a = False for key, mapped_key in MAPPING.items(): a = """wav2vec2.""" + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: a = True if "*" in mapped_key: a = name.split(__lowerCamelCase )[0].split(""".""" )[-2] a = mapped_key.replace("""*""" , __lowerCamelCase ) if "weight_g" in name: a = """weight_g""" elif "weight_v" in name: a = """weight_v""" elif "bias" in name: a = """bias""" elif "weight" in name: # TODO: don't match quantizer.weight_proj a = """weight""" else: a = None if hf_dict is not None: rename_dict(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) else: set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return is_used return is_used def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> List[Any]: a = [] a = fairseq_model.state_dict() a = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): a = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) a = True else: a = load_wavaveca_layer(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(f'Unused weights: {unused_weights}' ) def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) -> Any: a = full_name.split("""conv_layers.""" )[-1] a = name.split(""".""" ) a = int(items[0] ) a = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'{full_name} has size {value.shape}, but' f' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.' ) a = value logger.info(f'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) @torch.no_grad() def __A ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase=None , __lowerCamelCase=None , __lowerCamelCase=True , __lowerCamelCase=False ) -> List[Any]: if config_path is not None: a = WavaVecaConfig.from_pretrained(__lowerCamelCase ) else: a = WavaVecaConfig() if is_seq_class: a = read_txt_into_dict(__lowerCamelCase ) a = idalabel a = WavaVecaForSequenceClassification(__lowerCamelCase ) a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) feature_extractor.save_pretrained(__lowerCamelCase ) elif is_finetuned: if dict_path: a = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq a = target_dict.pad_index a = target_dict.bos_index a = target_dict.eos_index a = len(target_dict.symbols ) a = os.path.join(__lowerCamelCase , """vocab.json""" ) if not os.path.isdir(__lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) a = target_dict.indices # fairseq has the <pad> and <s> switched a = 0 a = 1 with open(__lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowerCamelCase , __lowerCamelCase ) a = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowerCamelCase , ) a = True if config.feat_extract_norm == """layer""" else False a = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) a = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) a = WavaVecaForCTC(__lowerCamelCase ) else: a = WavaVecaForPreTraining(__lowerCamelCase ) if is_finetuned or is_seq_class: a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: a = argparse.Namespace(task="""audio_pretraining""" ) a = fairseq.tasks.setup_task(__lowerCamelCase ) a , a , a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=__lowerCamelCase ) a = model[0].eval() recursively_load_weights(__lowerCamelCase , __lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) parser.add_argument( "--is_seq_class", action="store_true", help="Whether the model to convert is a fine-tuned sequence classification model or not", ) __UpperCamelCase : Union[str, Any] = parser.parse_args() __UpperCamelCase : Any = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
228
import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): UpperCamelCase__ = ShapEImgaImgPipeline UpperCamelCase__ = ['''image'''] UpperCamelCase__ = ['''image'''] UpperCamelCase__ = [ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] UpperCamelCase__ = False @property def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Any ): '''simple docstring''' return 32 @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase__ ( self :str ): '''simple docstring''' return 8 @property def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' torch.manual_seed(0 ) a = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) a = CLIPVisionModel(__magic_name__ ) return model @property def lowerCamelCase__ ( self :Dict ): '''simple docstring''' a = CLIPImageProcessor( crop_size=224 , do_center_crop=__magic_name__ , do_normalize=__magic_name__ , do_resize=__magic_name__ , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowerCamelCase__ ( self :str ): '''simple docstring''' torch.manual_seed(0 ) a = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """embedding_proj_norm_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } a = PriorTransformer(**__magic_name__ ) return model @property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' torch.manual_seed(0 ) a = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } a = ShapERenderer(**__magic_name__ ) return model def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = self.dummy_prior a = self.dummy_image_encoder a = self.dummy_image_processor a = self.dummy_renderer a = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=__magic_name__ , clip_sample=__magic_name__ , clip_sample_range=1.0 , ) a = { """prior""": prior, """image_encoder""": image_encoder, """image_processor""": image_processor, """renderer""": renderer, """scheduler""": scheduler, } return components def lowerCamelCase__ ( self :List[Any] , __magic_name__ :str , __magic_name__ :Tuple=0 ): '''simple docstring''' a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__magic_name__ ) ).to(__magic_name__ ) if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """image""": input_image, """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def lowerCamelCase__ ( self :int ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = pipe(**self.get_dummy_inputs(__magic_name__ ) ) a = output.images[0] a = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) a = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowerCamelCase__ ( self :Union[str, Any] ): '''simple docstring''' a = torch_device == """cpu""" a = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__magic_name__ , relax_max_difference=__magic_name__ , ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = 1 a = 2 a = self.get_dummy_inputs(__magic_name__ ) for key in inputs.keys(): if key in self.batch_params: a = batch_size * [inputs[key]] a = pipe(**__magic_name__ , num_images_per_prompt=__magic_name__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :Any ): '''simple docstring''' a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/corgi.png""" ) a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_img2img_out.npy""" ) a = ShapEImgaImgPipeline.from_pretrained("""openai/shap-e-img2img""" ) a = pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = torch.Generator(device=__magic_name__ ).manual_seed(0 ) a = pipe( __magic_name__ , generator=__magic_name__ , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__magic_name__ , __magic_name__ )
228
1
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
355
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''google/mobilenet_v1_1.0_224''': '''https://huggingface.co/google/mobilenet_v1_1.0_224/resolve/main/config.json''', '''google/mobilenet_v1_0.75_192''': '''https://huggingface.co/google/mobilenet_v1_0.75_192/resolve/main/config.json''', # See all MobileNetV1 models at https://huggingface.co/models?filter=mobilenet_v1 } class lowerCamelCase__ ( _a ): _lowerCAmelCase = '''mobilenet_v1''' def __init__( self : int , _a : Tuple=3 , _a : str=2_2_4 , _a : Dict=1.0 , _a : List[Any]=8 , _a : Tuple="relu6" , _a : Dict=True , _a : Optional[int]=0.9_9_9 , _a : List[Any]=0.0_2 , _a : Optional[Any]=0.0_0_1 , **_a : Optional[int] , ): super().__init__(**_a ) if depth_multiplier <= 0: raise ValueError("depth_multiplier must be greater than zero." ) a__: str =num_channels a__: Union[str, Any] =image_size a__: Dict =depth_multiplier a__: Union[str, Any] =min_depth a__: Any =hidden_act a__: int =tf_padding a__: Dict =classifier_dropout_prob a__: Any =initializer_range a__: List[str] =layer_norm_eps class lowerCamelCase__ ( _a ): _lowerCAmelCase = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : int ): return OrderedDict([("pixel_values", {0: "batch"})] ) @property def _lowerCamelCase ( self : Tuple ): if self.task == "image-classification": return OrderedDict([("logits", {0: "batch"})] ) else: return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})] ) @property def _lowerCamelCase ( self : Dict ): return 1e-4
42
0
from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_cpmant''': ['''CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CpmAntConfig'''], '''tokenization_cpmant''': ['''CpmAntTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CpmAntForCausalLM''', '''CpmAntModel''', '''CpmAntPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
188
'''simple docstring''' import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _lowercase , unittest.TestCase ): lowerCamelCase : Any = LayoutLMTokenizer lowerCamelCase : Union[str, Any] = LayoutLMTokenizerFast lowerCamelCase : Optional[int] = True lowerCamelCase : int = True def UpperCAmelCase__ (self ): super().setUp() lowerCamelCase_ : Dict = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] lowerCamelCase_ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def UpperCAmelCase__ (self , **A ): return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Any = '''UNwant\u00E9d,running''' lowerCamelCase_ : List[Any] = '''unwanted, running''' return input_text, output_text def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Optional[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , [7, 4, 5, 1_0, 8, 9] ) def UpperCAmelCase__ (self ): pass
318
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING A_ : int = logging.get_logger(__name__) A_ : Tuple = { """ut/deta""": """https://huggingface.co/ut/deta/resolve/main/config.json""", } class a_ ( lowerCAmelCase__ ): '''simple docstring''' lowerCamelCase__ : int = "deta" lowerCamelCase__ : Union[str, Any] = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__(self, lowerCamelCase_=None, lowerCamelCase_=9_0_0, lowerCamelCase_=2_0_4_8, lowerCamelCase_=6, lowerCamelCase_=2_0_4_8, lowerCamelCase_=8, lowerCamelCase_=6, lowerCamelCase_=1_0_2_4, lowerCamelCase_=8, lowerCamelCase_=0.0, lowerCamelCase_=True, lowerCamelCase_="relu", lowerCamelCase_=2_5_6, lowerCamelCase_=0.1, lowerCamelCase_=0.0, lowerCamelCase_=0.0, lowerCamelCase_=0.02, lowerCamelCase_=1.0, lowerCamelCase_=True, lowerCamelCase_=False, lowerCamelCase_="sine", lowerCamelCase_=5, lowerCamelCase_=4, lowerCamelCase_=4, lowerCamelCase_=True, lowerCamelCase_=3_0_0, lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_=1, lowerCamelCase_=5, lowerCamelCase_=2, lowerCamelCase_=1, lowerCamelCase_=1, lowerCamelCase_=5, lowerCamelCase_=2, lowerCamelCase_=0.1, lowerCamelCase_=0.25, **lowerCamelCase_, ): '''simple docstring''' if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) lowerCamelCase__ : Optional[int] = CONFIG_MAPPING['resnet'](out_features=['stage2', 'stage3', 'stage4'] ) else: if isinstance(a__, a__ ): lowerCamelCase__ : int = backbone_config.pop('model_type' ) lowerCamelCase__ : int = CONFIG_MAPPING[backbone_model_type] lowerCamelCase__ : Optional[Any] = config_class.from_dict(a__ ) lowerCamelCase__ : Any = backbone_config lowerCamelCase__ : Optional[Any] = num_queries lowerCamelCase__ : Dict = max_position_embeddings lowerCamelCase__ : Union[str, Any] = d_model lowerCamelCase__ : Optional[Any] = encoder_ffn_dim lowerCamelCase__ : int = encoder_layers lowerCamelCase__ : Dict = encoder_attention_heads lowerCamelCase__ : List[str] = decoder_ffn_dim lowerCamelCase__ : Optional[int] = decoder_layers lowerCamelCase__ : Dict = decoder_attention_heads lowerCamelCase__ : Dict = dropout lowerCamelCase__ : Optional[int] = attention_dropout lowerCamelCase__ : Tuple = activation_dropout lowerCamelCase__ : Optional[Any] = activation_function lowerCamelCase__ : Optional[Any] = init_std lowerCamelCase__ : int = init_xavier_std lowerCamelCase__ : List[Any] = encoder_layerdrop lowerCamelCase__ : List[Any] = auxiliary_loss lowerCamelCase__ : List[Any] = position_embedding_type # deformable attributes lowerCamelCase__ : Tuple = num_feature_levels lowerCamelCase__ : str = encoder_n_points lowerCamelCase__ : List[str] = decoder_n_points lowerCamelCase__ : Any = two_stage lowerCamelCase__ : Any = two_stage_num_proposals lowerCamelCase__ : Tuple = with_box_refine lowerCamelCase__ : Tuple = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher lowerCamelCase__ : Optional[Any] = class_cost lowerCamelCase__ : Optional[Any] = bbox_cost lowerCamelCase__ : Dict = giou_cost # Loss coefficients lowerCamelCase__ : Any = mask_loss_coefficient lowerCamelCase__ : Optional[Any] = dice_loss_coefficient lowerCamelCase__ : Optional[Any] = bbox_loss_coefficient lowerCamelCase__ : Optional[int] = giou_loss_coefficient lowerCamelCase__ : Optional[int] = eos_coefficient lowerCamelCase__ : Union[str, Any] = focal_alpha super().__init__(is_encoder_decoder=a__, **a__ ) @property def a__ (self ): '''simple docstring''' return self.encoder_attention_heads @property def a__ (self ): '''simple docstring''' return self.d_model def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = copy.deepcopy(self.__dict__ ) lowerCamelCase__ : Optional[Any] = self.backbone_config.to_dict() lowerCamelCase__ : List[Any] = self.__class__.model_type return output
364
"""simple docstring""" # Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() A_ : Optional[Any] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model A_ : List[Any] = { # fairseq: "wmt19-ru-en": {"length_penalty": 1.1}, "wmt19-en-ru": {"length_penalty": 1.15}, "wmt19-en-de": {"length_penalty": 1.0}, "wmt19-de-en": {"length_penalty": 1.1}, # allenai: "wmt16-en-de-dist-12-1": {"length_penalty": 0.6}, "wmt16-en-de-dist-6-1": {"length_penalty": 0.6}, "wmt16-en-de-12-1": {"length_penalty": 0.8}, "wmt19-de-en-6-6-base": {"length_penalty": 0.6}, "wmt19-de-en-6-6-big": {"length_penalty": 0.6}, } # this remaps the different models to their organization names A_ : str = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: A_ : str = "facebook" for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: A_ : Optional[Any] = "allenai" def lowerCamelCase_ ( _lowerCamelCase ): # (1) remove word breaking symbol, (2) add word ending symbol where the word is not broken up, # e.g.: d = {'le@@': 5, 'tt@@': 6, 'er': 7} => {'le': 5, 'tt': 6, 'er</w>': 7} lowerCamelCase__ : List[Any] = dict((re.sub(r'@@$' , '' , _lowerCamelCase ), v) if k.endswith('@@' ) else (re.sub(r'$' , '</w>' , _lowerCamelCase ), v) for k, v in d.items() ) lowerCamelCase__ : int = '<s> <pad> </s> <unk>'.split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] lowerCamelCase__ : List[str] = d[k] # restore return da def lowerCamelCase_ ( _lowerCamelCase , _lowerCamelCase ): # prep assert os.path.exists(_lowerCamelCase ) os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models lowerCamelCase__ : Optional[int] = basename(_lowerCamelCase ) lowerCamelCase__ : str = dirname(_lowerCamelCase ) lowerCamelCase__ : Any = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel lowerCamelCase__ : int = cls.hub_models() lowerCamelCase__ : str = {'bpe': 'fastbpe', 'tokenizer': 'moses'} lowerCamelCase__ : Optional[Any] = '.' # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) lowerCamelCase__ : Any = hub_utils.from_pretrained( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , archive_map=_lowerCamelCase , **_lowerCamelCase ) lowerCamelCase__ : List[str] = vars(chkpt['args']['model'] ) lowerCamelCase__ : Optional[Any] = args['source_lang'] lowerCamelCase__ : List[str] = args['target_lang'] lowerCamelCase__ : List[str] = dirname(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = basename(_lowerCamelCase ) # dicts lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{src_lang}.txt''' ) lowerCamelCase__ : Optional[Any] = os.path.join(_lowerCamelCase , f'''dict.{tgt_lang}.txt''' ) lowerCamelCase__ : Dict = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : List[Any] = rewrite_dict_keys(src_dict.indices ) lowerCamelCase__ : int = len(_lowerCamelCase ) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , 'vocab-src.json' ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab lowerCamelCase__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): lowerCamelCase__ : int = False break lowerCamelCase__ : str = Dictionary.load(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = rewrite_dict_keys(tgt_dict.indices ) lowerCamelCase__ : Optional[Any] = len(_lowerCamelCase ) lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'vocab-tgt.json' ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # merges_file (bpecodes) lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , VOCAB_FILES_NAMES['merges_file'] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" lowerCamelCase__ : Optional[int] = os.path.join(_lowerCamelCase , _lowerCamelCase ) if os.path.exists(_lowerCamelCase ): break with open(_lowerCamelCase , encoding='utf-8' ) as fin: lowerCamelCase__ : Union[str, Any] = fin.read() lowerCamelCase__ : Any = re.sub(r' \d+$' , '' , _lowerCamelCase , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as fout: fout.write(_lowerCamelCase ) # model config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , 'config.json' ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args['bpe']}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args['tokenizer']}''' lowerCamelCase__ : Optional[int] = { 'architectures': ['FSMTForConditionalGeneration'], 'model_type': 'fsmt', 'activation_dropout': args['activation_dropout'], 'activation_function': 'relu', 'attention_dropout': args['attention_dropout'], 'd_model': args['decoder_embed_dim'], 'dropout': args['dropout'], 'init_std': 0.02, 'max_position_embeddings': args['max_source_positions'], 'num_hidden_layers': args['encoder_layers'], 'src_vocab_size': src_vocab_size, 'tgt_vocab_size': tgt_vocab_size, 'langs': [src_lang, tgt_lang], 'encoder_attention_heads': args['encoder_attention_heads'], 'encoder_ffn_dim': args['encoder_ffn_embed_dim'], 'encoder_layerdrop': args['encoder_layerdrop'], 'encoder_layers': args['encoder_layers'], 'decoder_attention_heads': args['decoder_attention_heads'], 'decoder_ffn_dim': args['decoder_ffn_embed_dim'], 'decoder_layerdrop': args['decoder_layerdrop'], 'decoder_layers': args['decoder_layers'], 'bos_token_id': 0, 'pad_token_id': 1, 'eos_token_id': 2, 'is_encoder_decoder': True, 'scale_embedding': not args['no_scale_embedding'], 'tie_word_embeddings': args['share_all_embeddings'], } # good hparam defaults to start with lowerCamelCase__ : str = 5 lowerCamelCase__ : Tuple = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: lowerCamelCase__ : List[str] = best_score_hparams[model_dir]['length_penalty'] else: lowerCamelCase__ : List[Any] = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # tokenizer config lowerCamelCase__ : Dict = os.path.join(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : int = { 'langs': [src_lang, tgt_lang], 'model_max_length': 1024, 'do_lower_case': do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(_lowerCamelCase , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(_lowerCamelCase , ensure_ascii=_lowerCamelCase , indent=_lowerCamelCase ) ) # model lowerCamelCase__ : List[str] = chkpt['models'][0] lowerCamelCase__ : Optional[Any] = model.state_dict() # rename keys to start with 'model.' lowerCamelCase__ : str = OrderedDict(('model.' + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys lowerCamelCase__ : int = [ 'model.model', 'model.encoder.version', 'model.decoder.version', 'model.encoder_embed_tokens.weight', 'model.decoder_embed_tokens.weight', 'model.encoder.embed_positions._float_tensor', 'model.decoder.embed_positions._float_tensor', ] for k in ignore_keys: model_state_dict.pop(_lowerCamelCase , _lowerCamelCase ) lowerCamelCase__ : Any = FSMTConfig.from_pretrained(_lowerCamelCase ) lowerCamelCase__ : Union[str, Any] = FSMTForConditionalGeneration(_lowerCamelCase ) # check that it loads ok model_new.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) # save lowerCamelCase__ : List[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(_lowerCamelCase , _lowerCamelCase ) print('Conversion is done!' ) print('\nLast step is to upload the files to s3' ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": A_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fsmt_checkpoint_path", default=None, type=str, required=True, help=( "Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts," " bpecodes, etc." ), ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) A_ : Dict = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
316
0
'''simple docstring''' import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase__ ( nn.Module): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = jnp.floataa def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = [] __UpperCamelCase = [] for i in range(self.num_layers ): __UpperCamelCase = self.in_channels if i == 0 else self.out_channels __UpperCamelCase = FlaxResnetBlockaD( in_channels=lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) __UpperCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase ) __UpperCamelCase = resnets __UpperCamelCase = attentions if self.add_downsample: __UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase , lowercase=True ) -> Dict: __UpperCamelCase = () for resnet, attn in zip(self.resnets , self.attentions ): __UpperCamelCase = resnet(lowercase , lowercase , deterministic=lowercase ) __UpperCamelCase = attn(lowercase , lowercase , deterministic=lowercase ) output_states += (hidden_states,) if self.add_downsample: __UpperCamelCase = self.downsamplers_a(lowercase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = jnp.floataa def __lowerCamelCase ( self ) -> Optional[int]: __UpperCamelCase = [] for i in range(self.num_layers ): __UpperCamelCase = self.in_channels if i == 0 else self.out_channels __UpperCamelCase = FlaxResnetBlockaD( in_channels=lowercase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) __UpperCamelCase = resnets if self.add_downsample: __UpperCamelCase = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase=True ) -> Any: __UpperCamelCase = () for resnet in self.resnets: __UpperCamelCase = resnet(lowercase , lowercase , deterministic=lowercase ) output_states += (hidden_states,) if self.add_downsample: __UpperCamelCase = self.downsamplers_a(lowercase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase__ ( nn.Module): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = jnp.floataa def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = [] __UpperCamelCase = [] for i in range(self.num_layers ): __UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels __UpperCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) __UpperCamelCase = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase ) __UpperCamelCase = resnets __UpperCamelCase = attentions if self.add_upsample: __UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase , lowercase , lowercase=True ) -> Any: for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states __UpperCamelCase = res_hidden_states_tuple[-1] __UpperCamelCase = res_hidden_states_tuple[:-1] __UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __UpperCamelCase = resnet(lowercase , lowercase , deterministic=lowercase ) __UpperCamelCase = attn(lowercase , lowercase , deterministic=lowercase ) if self.add_upsample: __UpperCamelCase = self.upsamplers_a(lowercase ) return hidden_states class UpperCAmelCase__ ( nn.Module): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = jnp.floataa def __lowerCamelCase ( self ) -> Dict: __UpperCamelCase = [] for i in range(self.num_layers ): __UpperCamelCase = self.in_channels if (i == self.num_layers - 1) else self.out_channels __UpperCamelCase = self.prev_output_channel if i == 0 else self.out_channels __UpperCamelCase = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) __UpperCamelCase = resnets if self.add_upsample: __UpperCamelCase = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowercase , lowercase , lowercase , lowercase=True ) -> Tuple: for resnet in self.resnets: # pop res hidden states __UpperCamelCase = res_hidden_states_tuple[-1] __UpperCamelCase = res_hidden_states_tuple[:-1] __UpperCamelCase = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) __UpperCamelCase = resnet(lowercase , lowercase , deterministic=lowercase ) if self.add_upsample: __UpperCamelCase = self.upsamplers_a(lowercase ) return hidden_states class UpperCAmelCase__ ( nn.Module): __SCREAMING_SNAKE_CASE = 42 __SCREAMING_SNAKE_CASE = 0.0 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = 1 __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = jnp.floataa def __lowerCamelCase ( self ) -> Optional[Any]: # there is always at least one resnet __UpperCamelCase = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] __UpperCamelCase = [] for _ in range(self.num_layers ): __UpperCamelCase = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase ) __UpperCamelCase = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase ) __UpperCamelCase = resnets __UpperCamelCase = attentions def __call__( self , lowercase , lowercase , lowercase , lowercase=True ) -> Dict: __UpperCamelCase = self.resnets[0](lowercase , lowercase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): __UpperCamelCase = attn(lowercase , lowercase , deterministic=lowercase ) __UpperCamelCase = resnet(lowercase , lowercase , deterministic=lowercase ) return hidden_states
349
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_squeezebert import SqueezeBertTokenizer a__ : Optional[Any] = logging.get_logger(__name__) a__ : Union[str, Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} a__ : Any = { 'vocab_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt' ), 'squeezebert/squeezebert-mnli': 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt', 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'squeezebert/squeezebert-uncased': ( 'https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli': ( 'https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json' ), 'squeezebert/squeezebert-mnli-headless': ( 'https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json' ), }, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': 5_1_2, 'squeezebert/squeezebert-mnli': 5_1_2, 'squeezebert/squeezebert-mnli-headless': 5_1_2, } a__ : Optional[Any] = { 'squeezebert/squeezebert-uncased': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli': {'do_lower_case': True}, 'squeezebert/squeezebert-mnli-headless': {'do_lower_case': True}, } class UpperCAmelCase__ ( UpperCAmelCase_): __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_INIT_CONFIGURATION __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = SqueezeBertTokenizer def __init__( self , lowercase=None , lowercase=None , lowercase=True , lowercase="[UNK]" , lowercase="[SEP]" , lowercase="[PAD]" , lowercase="[CLS]" , lowercase="[MASK]" , lowercase=True , lowercase=None , **lowercase , ) -> Tuple: super().__init__( lowercase , tokenizer_file=lowercase , do_lower_case=lowercase , unk_token=lowercase , sep_token=lowercase , pad_token=lowercase , cls_token=lowercase , mask_token=lowercase , tokenize_chinese_chars=lowercase , strip_accents=lowercase , **lowercase , ) __UpperCamelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("""lowercase""" , lowercase ) != do_lower_case or normalizer_state.get("""strip_accents""" , lowercase ) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowercase ) != tokenize_chinese_chars ): __UpperCamelCase = getattr(lowercase , normalizer_state.pop("""type""" ) ) __UpperCamelCase = do_lower_case __UpperCamelCase = strip_accents __UpperCamelCase = tokenize_chinese_chars __UpperCamelCase = normalizer_class(**lowercase ) __UpperCamelCase = do_lower_case def __lowerCamelCase ( self , lowercase , lowercase=None ) -> Tuple: __UpperCamelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __lowerCamelCase ( self , lowercase , lowercase = None ) -> List[int]: __UpperCamelCase = [self.sep_token_id] __UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __lowerCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: __UpperCamelCase = self._tokenizer.model.save(lowercase , name=lowercase ) return tuple(lowercase )
349
1
def lowercase_ ( A__ , A__ ) -> float: """simple docstring""" if digit_amount > 0: return round(number - int(A__ ) , A__ ) return number - int(A__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
137
from __future__ import annotations from decimal import Decimal from numpy import array def lowercase_ ( A__ ) -> list[list[float]]: """simple docstring""" snake_case = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(A__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix snake_case = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements snake_case = [[0.0, 0.0], [0.0, 0.0]] snake_case , snake_case = matrix[1][1], matrix[0][0] snake_case , snake_case = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(A__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(A__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule snake_case = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix snake_case = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] snake_case = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) snake_case = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) snake_case = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) snake_case = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) snake_case = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) snake_case = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) snake_case = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) snake_case = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) snake_case = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) snake_case = array(A__ ) for i in range(3 ): for j in range(3 ): snake_case = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix snake_case = array(A__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(A__ ) # Calculate the inverse of the matrix return [[float(d(A__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
137
1
import math def __UpperCamelCase ( _A , _A ): return math.pow(_A , 2 ) - a def __UpperCamelCase ( _A ): return 2 * x def __UpperCamelCase ( _A ): lowerCAmelCase_ = 2.0 while start <= a: lowerCAmelCase_ = math.pow(_A , 2 ) return start def __UpperCamelCase ( _A , _A = 9999 , _A = 0.0_0_0_0_0_0_0_0_0_0_0_0_0_1 ): if a < 0: raise ValueError('''math domain error''' ) lowerCAmelCase_ = get_initial_point(_A ) for _ in range(_A ): lowerCAmelCase_ = value lowerCAmelCase_ = value - fx(_A , _A ) / fx_derivative(_A ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
278
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging __lowerCAmelCase = logging.get_logger(__name__) def snake_case_ ( snake_case , snake_case ) -> List[str]: lowercase__: List[str] = set() lowercase__: List[Any] = [] def parse_line(snake_case ): for line in fp: if isinstance(snake_case , snake_case ): lowercase__: Optional[Any] = line.decode('UTF-8' ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(' ' ): # process a single warning and move it to `selected_warnings`. if len(snake_case ) > 0: lowercase__: List[str] = '\n'.join(snake_case ) # Only keep the warnings specified in `targets` if any(f': {x}: ' in warning for x in targets ): selected_warnings.add(snake_case ) buffer.clear() continue else: lowercase__: Union[str, Any] = line.strip() buffer.append(snake_case ) if from_gh: for filename in os.listdir(snake_case ): lowercase__: Dict = os.path.join(snake_case , snake_case ) if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with open(snake_case ) as fp: parse_line(snake_case ) else: try: with zipfile.ZipFile(snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case ): # read the file if filename != "warnings.txt": continue with z.open(snake_case ) as fp: parse_line(snake_case ) except Exception: logger.warning( f'{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.' ) return selected_warnings def snake_case_ ( snake_case , snake_case ) -> Any: lowercase__: Optional[Any] = set() lowercase__: int = [os.path.join(snake_case , snake_case ) for p in os.listdir(snake_case ) if (p.endswith('.zip' ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(snake_case , snake_case ) ) return selected_warnings if __name__ == "__main__": def snake_case_ ( snake_case ) -> str: return values.split(',' ) __lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''--workflow_run_id''', type=str, required=True, help='''A GitHub Actions workflow run id.''') parser.add_argument( '''--output_dir''', type=str, required=True, help='''Where to store the downloaded artifacts and other result files.''', ) parser.add_argument('''--token''', default=None, type=str, help='''A token that has actions:read permission.''') # optional parameters parser.add_argument( '''--targets''', default='''DeprecationWarning,UserWarning,FutureWarning''', type=list_str, help='''Comma-separated list of target warning(s) which we want to extract.''', ) parser.add_argument( '''--from_gh''', action='''store_true''', help='''If running from a GitHub action workflow and collecting warnings from its artifacts.''', ) __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links __lowerCAmelCase = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, '''artifacts.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print('''=''' * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts __lowerCAmelCase = extract_warnings(args.output_dir, args.targets) __lowerCAmelCase = sorted(selected_warnings) with open(os.path.join(args.output_dir, '''selected_warnings.json'''), '''w''', encoding='''UTF-8''') as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
196
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
369
from __future__ import annotations def __lowercase ( _SCREAMING_SNAKE_CASE ) -> list[int]: '''simple docstring''' SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = [] while i * i <= n: if n % i: i += 1 else: n //= i factors.append(_SCREAMING_SNAKE_CASE ) if n > 1: factors.append(_SCREAMING_SNAKE_CASE ) return factors if __name__ == "__main__": import doctest doctest.testmod()
193
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __snake_case :List[Any] = logging.get_logger(__name__) __snake_case :Dict = { '''google/mobilenet_v2_1.4_224''': '''https://huggingface.co/google/mobilenet_v2_1.4_224/resolve/main/config.json''', '''google/mobilenet_v2_1.0_224''': '''https://huggingface.co/google/mobilenet_v2_1.0_224/resolve/main/config.json''', '''google/mobilenet_v2_0.75_160''': '''https://huggingface.co/google/mobilenet_v2_0.75_160/resolve/main/config.json''', '''google/mobilenet_v2_0.35_96''': '''https://huggingface.co/google/mobilenet_v2_0.35_96/resolve/main/config.json''', # See all MobileNetV2 models at https://huggingface.co/models?filter=mobilenet_v2 } class _A ( __UpperCAmelCase ): UpperCamelCase__ : Tuple = '''mobilenet_v2''' def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Tuple=3 , __SCREAMING_SNAKE_CASE : int=224 , __SCREAMING_SNAKE_CASE : Optional[int]=1.0 , __SCREAMING_SNAKE_CASE : Union[str, Any]=8 , __SCREAMING_SNAKE_CASE : List[Any]=8 , __SCREAMING_SNAKE_CASE : int=6 , __SCREAMING_SNAKE_CASE : Dict=32 , __SCREAMING_SNAKE_CASE : List[Any]=True , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict="relu6" , __SCREAMING_SNAKE_CASE : Dict=True , __SCREAMING_SNAKE_CASE : Dict=0.8 , __SCREAMING_SNAKE_CASE : Dict=0.02 , __SCREAMING_SNAKE_CASE : Dict=0.0_01 , __SCREAMING_SNAKE_CASE : Dict=255 , **__SCREAMING_SNAKE_CASE : Optional[int] , ): '''simple docstring''' super().__init__(**__SCREAMING_SNAKE_CASE) if depth_multiplier <= 0: raise ValueError('''depth_multiplier must be greater than zero.''') __a = num_channels __a = image_size __a = depth_multiplier __a = depth_divisible_by __a = min_depth __a = expand_ratio __a = output_stride __a = first_layer_is_expansion __a = finegrained_output __a = hidden_act __a = tf_padding __a = classifier_dropout_prob __a = initializer_range __a = layer_norm_eps __a = semantic_loss_ignore_index class _A ( __UpperCAmelCase ): UpperCamelCase__ : Any = version.parse('''1.11''' ) @property def _lowerCamelCase ( self : Dict): '''simple docstring''' return OrderedDict([('''pixel_values''', {0: '''batch'''})]) @property def _lowerCamelCase ( self : Optional[Any]): '''simple docstring''' if self.task == "image-classification": return OrderedDict([('''logits''', {0: '''batch'''})]) else: return OrderedDict([('''last_hidden_state''', {0: '''batch'''}), ('''pooler_output''', {0: '''batch'''})]) @property def _lowerCamelCase ( self : Union[str, Any]): '''simple docstring''' return 1E-4
49
'''simple docstring''' from collections import defaultdict from math import gcd def SCREAMING_SNAKE_CASE__ ( __A = 1_500_000 ) -> int: _snake_case = defaultdict(__A ) _snake_case = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __A , 2 ): if gcd(__A , __A ) > 1: continue _snake_case = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__A , limit + 1 , __A ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(F'''{solution() = }''')
42
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCAmelCase__ ( __magic_name__ , unittest.TestCase ): SCREAMING_SNAKE_CASE_ =KandinskyImgaImgPipeline SCREAMING_SNAKE_CASE_ =['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] SCREAMING_SNAKE_CASE_ =[ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] SCREAMING_SNAKE_CASE_ =[ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE_ =False @property def __a ( self : str ): '''simple docstring''' return 3_2 @property def __a ( self : str ): '''simple docstring''' return 3_2 @property def __a ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def __a ( self : Union[str, Any] ): '''simple docstring''' return self.time_input_dim * 4 @property def __a ( self : int ): '''simple docstring''' return 1_0_0 @property def __a ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def __a ( self : Optional[int] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Union[str, Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1_0_0_5 , ) UpperCAmelCase__ : List[Any] = MultilingualCLIP(snake_case__ ) UpperCAmelCase__ : Tuple = text_encoder.eval() return text_encoder @property def __a ( self : Any ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : Optional[Any] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } UpperCAmelCase__ : Any = UNetaDConditionModel(**snake_case__ ) return model @property def __a ( self : Union[str, Any] ): '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def __a ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCAmelCase__ : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def __a ( self : Tuple ): '''simple docstring''' UpperCAmelCase__ : Dict = self.dummy_text_encoder UpperCAmelCase__ : Tuple = self.dummy_tokenizer UpperCAmelCase__ : List[str] = self.dummy_unet UpperCAmelCase__ : Dict = self.dummy_movq UpperCAmelCase__ : Optional[Any] = { "num_train_timesteps": 1_0_0_0, "beta_schedule": "linear", "beta_start": 0.0_0085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } UpperCAmelCase__ : Dict = DDIMScheduler(**snake_case__ ) UpperCAmelCase__ : List[Any] = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def __a ( self : Dict , snake_case__ : Dict , snake_case__ : Union[str, Any]=0 ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : List[str] = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(snake_case__ ) # create init_image UpperCAmelCase__ : Any = floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(snake_case__ ) ).to(snake_case__ ) UpperCAmelCase__ : str = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase__ : Union[str, Any] = Image.fromarray(np.uinta(snake_case__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) if str(snake_case__ ).startswith("mps" ): UpperCAmelCase__ : int = torch.manual_seed(snake_case__ ) else: UpperCAmelCase__ : Tuple = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) UpperCAmelCase__ : Dict = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 1_0, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def __a ( self : int ): '''simple docstring''' UpperCAmelCase__ : Any = "cpu" UpperCAmelCase__ : int = self.get_dummy_components() UpperCAmelCase__ : Optional[Any] = self.pipeline_class(**snake_case__ ) UpperCAmelCase__ : Optional[Any] = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : int = pipe(**self.get_dummy_inputs(snake_case__ ) ) UpperCAmelCase__ : Any = output.images UpperCAmelCase__ : Optional[int] = pipe( **self.get_dummy_inputs(snake_case__ ) , return_dict=snake_case__ , )[0] UpperCAmelCase__ : Any = image[0, -3:, -3:, -1] UpperCAmelCase__ : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) UpperCAmelCase__ : Tuple = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class lowerCAmelCase__ ( unittest.TestCase ): def __a ( self : int ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) UpperCAmelCase__ : List[str] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) UpperCAmelCase__ : Union[str, Any] = "A red cartoon frog, 4k" UpperCAmelCase__ : Dict = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(snake_case__ ) UpperCAmelCase__ : Any = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) UpperCAmelCase__ : Tuple = pipeline.to(snake_case__ ) pipeline.set_progress_bar_config(disable=snake_case__ ) UpperCAmelCase__ : Tuple = torch.Generator(device="cpu" ).manual_seed(0 ) UpperCAmelCase__ , UpperCAmelCase__ : List[str] = pipe_prior( snake_case__ , generator=snake_case__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() UpperCAmelCase__ : Any = pipeline( snake_case__ , image=snake_case__ , image_embeds=snake_case__ , negative_image_embeds=snake_case__ , generator=snake_case__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , strength=0.2 , output_type="np" , ) UpperCAmelCase__ : List[str] = output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(snake_case__ , snake_case__ )
298
"""simple docstring""" import os import re from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Optional[int] = { """vocab_file""": """vocab.txt""", """merges_file""": """bpe.codes""", } _lowerCAmelCase : List[Any] = { """vocab_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt""", }, """merges_file""": { """vinai/phobert-base""": """https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes""", """vinai/phobert-large""": """https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes""", }, } _lowerCAmelCase : int = { """vinai/phobert-base""": 256, """vinai/phobert-large""": 256, } def SCREAMING_SNAKE_CASE__ ( snake_case : List[Any] )-> str: '''simple docstring''' UpperCAmelCase__ : Optional[Any] = set() UpperCAmelCase__ : Optional[int] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) UpperCAmelCase__ : Dict = char UpperCAmelCase__ : Tuple = set(snake_case ) return pairs class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : List[Any] , snake_case__ : int , snake_case__ : Union[str, Any] , snake_case__ : Tuple="<s>" , snake_case__ : List[Any]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Union[str, Any]="<s>" , snake_case__ : Any="<unk>" , snake_case__ : int="<pad>" , snake_case__ : List[str]="<mask>" , **snake_case__ : Optional[int] , ): '''simple docstring''' super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : Dict = vocab_file UpperCAmelCase__ : Tuple = merges_file UpperCAmelCase__ : List[Any] = {} UpperCAmelCase__ : Dict = 0 UpperCAmelCase__ : int = 1 UpperCAmelCase__ : Dict = 2 UpperCAmelCase__ : Dict = 3 self.add_from_file(snake_case__ ) UpperCAmelCase__ : Optional[Any] = {v: k for k, v in self.encoder.items()} with open(snake_case__ , encoding="utf-8" ) as merges_handle: UpperCAmelCase__ : Tuple = merges_handle.read().split("\n" )[:-1] UpperCAmelCase__ : Optional[Any] = [tuple(merge.split()[:-1] ) for merge in merges] UpperCAmelCase__ : List[Any] = dict(zip(snake_case__ , range(len(snake_case__ ) ) ) ) UpperCAmelCase__ : Dict = {} def __a ( self : int , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] UpperCAmelCase__ : Any = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __a ( self : List[str] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1, 1] + ([0] * len(snake_case__ )) + [1] def __a ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Tuple = [self.sep_token_id] UpperCAmelCase__ : str = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __a ( self : List[str] ): '''simple docstring''' return len(self.encoder ) def __a ( self : Any ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Dict , snake_case__ : Tuple ): '''simple docstring''' if token in self.cache: return self.cache[token] UpperCAmelCase__ : Optional[Any] = tuple(snake_case__ ) UpperCAmelCase__ : Optional[Any] = tuple(list(word[:-1] ) + [word[-1] + "</w>"] ) UpperCAmelCase__ : Any = get_pairs(snake_case__ ) if not pairs: return token while True: UpperCAmelCase__ : List[Any] = min(snake_case__ , key=lambda snake_case__ : self.bpe_ranks.get(snake_case__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break UpperCAmelCase__ , UpperCAmelCase__ : Tuple = bigram UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : Tuple = 0 while i < len(snake_case__ ): try: UpperCAmelCase__ : Union[str, Any] = word.index(snake_case__ , snake_case__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) UpperCAmelCase__ : Dict = j if word[i] == first and i < len(snake_case__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 UpperCAmelCase__ : Dict = tuple(snake_case__ ) UpperCAmelCase__ : List[Any] = new_word if len(snake_case__ ) == 1: break else: UpperCAmelCase__ : Dict = get_pairs(snake_case__ ) UpperCAmelCase__ : List[Any] = "@@ ".join(snake_case__ ) UpperCAmelCase__ : Optional[int] = word[:-4] UpperCAmelCase__ : Union[str, Any] = word return word def __a ( self : List[Any] , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [] UpperCAmelCase__ : int = re.findall(R"\S+\n?" , snake_case__ ) for token in words: split_tokens.extend(list(self.bpe(snake_case__ ).split(" " ) ) ) return split_tokens def __a ( self : Dict , snake_case__ : List[str] ): '''simple docstring''' return self.encoder.get(snake_case__ , self.encoder.get(self.unk_token ) ) def __a ( self : List[Any] , snake_case__ : Any ): '''simple docstring''' return self.decoder.get(snake_case__ , self.unk_token ) def __a ( self : str , snake_case__ : Tuple ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = " ".join(snake_case__ ).replace("@@ " , "" ).strip() return out_string def __a ( self : Any , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return UpperCAmelCase__ : Tuple = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase__ : str = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ): copyfile(self.vocab_file , snake_case__ ) if os.path.abspath(self.merges_file ) != os.path.abspath(snake_case__ ): copyfile(self.merges_file , snake_case__ ) return out_vocab_file, out_merge_file def __a ( self : List[Any] , snake_case__ : Union[str, Any] ): '''simple docstring''' if isinstance(snake_case__ , snake_case__ ): try: with open(snake_case__ , "r" , encoding="utf-8" ) as fd: self.add_from_file(snake_case__ ) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception(f'Incorrect encoding detected in {f}, please rebuild the dataset' ) return UpperCAmelCase__ : Dict = f.readlines() for lineTmp in lines: UpperCAmelCase__ : Optional[int] = lineTmp.strip() UpperCAmelCase__ : Tuple = line.rfind(" " ) if idx == -1: raise ValueError("Incorrect dictionary format, expected '<token> <cnt>'" ) UpperCAmelCase__ : Any = line[:idx] UpperCAmelCase__ : str = len(self.encoder )
298
1
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __snake_case : def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): """simple docstring""" return None class __snake_case : def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : int ): """simple docstring""" return None class __snake_case ( unittest.TestCase): snake_case__ : Optional[Any] = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCAmelCase , '''tf''' , 1_2 , **__lowerCAmelCase ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCAmelCase , '''pt''' , 1_2 , **__lowerCAmelCase ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" from transformers import BertModel _lowerCamelCase : Optional[int] = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__lowerCAmelCase ) ) vocab_file.flush() _lowerCamelCase : str = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _lowerCamelCase : List[str] = BertModel(BertConfig(vocab_size=len(__lowerCAmelCase ) ) ) model.save_pretrained(__lowerCAmelCase ) self._test_export(__lowerCAmelCase , '''pt''' , 1_2 , __lowerCAmelCase ) @require_tf @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCamelCase : Dict = self._test_export(__lowerCAmelCase , '''tf''' , 1_2 , **__lowerCAmelCase ) _lowerCamelCase : str = quantize(Path(__lowerCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCamelCase : Dict = self._test_export(__lowerCAmelCase , '''pt''' , 1_2 , **__lowerCAmelCase ) _lowerCamelCase : str = quantize(__lowerCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=None , **__lowerCAmelCase : int ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: _lowerCamelCase : List[Any] = Path(__lowerCAmelCase ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return path except Exception as e: self.fail(__lowerCAmelCase ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" from transformers import BertModel _lowerCamelCase : Any = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _lowerCamelCase : Optional[Any] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__lowerCAmelCase , __lowerCAmelCase , '''pt''' ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" from transformers import TFBertModel _lowerCamelCase : Union[str, Any] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _lowerCamelCase : Optional[int] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__lowerCAmelCase , __lowerCAmelCase , '''tf''' ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : List[str] = FeatureExtractionPipeline(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = infer_shapes(__lowerCAmelCase , __lowerCAmelCase ) # Assert all variables are present self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCAmelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] _lowerCamelCase : List[str] = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} _lowerCamelCase , _lowerCamelCase : str = ensure_valid_input(FuncContiguousArgs() , __lowerCAmelCase , __lowerCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCAmelCase ) , set(__lowerCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCAmelCase , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowerCamelCase , _lowerCamelCase : Optional[Any] = ensure_valid_input(FuncNonContiguousArgs() , __lowerCAmelCase , __lowerCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCAmelCase ) , 1 ) self.assertEqual(len(__lowerCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
72
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
'''simple docstring''' import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class UpperCAmelCase ( a__ ): '''simple docstring''' SCREAMING_SNAKE_CASE = 4_2 SCREAMING_SNAKE_CASE = None def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=0.9_9_9 , UpperCAmelCase="cosine" , ): if alpha_transform_type == "cosine": def alpha_bar_fn(UpperCAmelCase ): return math.cos((t + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(UpperCAmelCase ): return math.exp(t * -12.0 ) else: raise ValueError(F"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) lowercase__ : str = [] for i in range(UpperCAmelCase ): lowercase__ : int = i / num_diffusion_timesteps lowercase__ : Tuple = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(UpperCAmelCase ) / alpha_bar_fn(UpperCAmelCase ) , UpperCAmelCase ) ) return torch.tensor(UpperCAmelCase , dtype=torch.floataa ) class UpperCAmelCase ( a__ , a__ ): '''simple docstring''' @register_to_config def __init__( self , __lowerCAmelCase = 1000 , __lowerCAmelCase = "fixed_small_log" , __lowerCAmelCase = True , __lowerCAmelCase = 1.0 , __lowerCAmelCase = "epsilon" , __lowerCAmelCase = "squaredcos_cap_v2" , ) -> Optional[int]: if beta_schedule != "squaredcos_cap_v2": raise ValueError('''UnCLIPScheduler only supports `beta_schedule`: \'squaredcos_cap_v2\'''' ) lowercase__ : Union[str, Any] = betas_for_alpha_bar(__lowerCAmelCase ) lowercase__ : List[Any] = 1.0 - self.betas lowercase__ : int = torch.cumprod(self.alphas , dim=0 ) lowercase__ : str = torch.tensor(1.0 ) # standard deviation of the initial noise distribution lowercase__ : Optional[Any] = 1.0 # setable values lowercase__ : Optional[Any] = None lowercase__ : List[Any] = torch.from_numpy(np.arange(0 , __lowerCAmelCase )[::-1].copy() ) lowercase__ : Tuple = variance_type def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> torch.FloatTensor: return sample def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase = None ) -> Optional[int]: lowercase__ : List[str] = num_inference_steps lowercase__ : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) lowercase__ : List[str] = (np.arange(0 , __lowerCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) lowercase__ : str = torch.from_numpy(__lowerCAmelCase ).to(__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> Tuple: if prev_timestep is None: lowercase__ : Any = t - 1 lowercase__ : Any = self.alphas_cumprod[t] lowercase__ : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : str = 1 - alpha_prod_t lowercase__ : int = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Tuple = self.betas[t] else: lowercase__ : Dict = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample lowercase__ : Any = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: lowercase__ : Union[str, Any] = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": lowercase__ : int = torch.log(torch.clamp(__lowerCAmelCase , min=1E-20 ) ) lowercase__ : Dict = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler lowercase__ : Union[str, Any] = variance.log() lowercase__ : Optional[int] = beta.log() lowercase__ : Tuple = (predicted_variance + 1) / 2 lowercase__ : Dict = frac * max_log + (1 - frac) * min_log return variance def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase=None , __lowerCAmelCase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: lowercase__ : Tuple = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": lowercase__ : str = torch.split(__lowerCAmelCase , sample.shape[1] , dim=1 ) else: lowercase__ : Dict = None # 1. compute alphas, betas if prev_timestep is None: lowercase__ : int = t - 1 lowercase__ : Optional[int] = self.alphas_cumprod[t] lowercase__ : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one lowercase__ : Optional[int] = 1 - alpha_prod_t lowercase__ : List[Any] = 1 - alpha_prod_t_prev if prev_timestep == t - 1: lowercase__ : Optional[int] = self.betas[t] lowercase__ : Optional[Any] = self.alphas[t] else: lowercase__ : Any = 1 - alpha_prod_t / alpha_prod_t_prev lowercase__ : Optional[int] = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": lowercase__ : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": lowercase__ : Dict = model_output else: raise ValueError( F"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" ''' for the UnCLIPScheduler.''' ) # 3. Clip "predicted x_0" if self.config.clip_sample: lowercase__ : List[Any] = torch.clamp( __lowerCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : Optional[Any] = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t lowercase__ : Tuple = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf lowercase__ : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise lowercase__ : List[Any] = 0 if t > 0: lowercase__ : Dict = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__lowerCAmelCase , device=model_output.device ) lowercase__ : Union[str, Any] = self._get_variance( __lowerCAmelCase , predicted_variance=__lowerCAmelCase , prev_timestep=__lowerCAmelCase , ) if self.variance_type == "fixed_small_log": lowercase__ : List[Any] = variance elif self.variance_type == "learned_range": lowercase__ : int = (0.5 * variance).exp() else: raise ValueError( F"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" ''' for the UnCLIPScheduler.''' ) lowercase__ : List[str] = variance * variance_noise lowercase__ : Union[str, Any] = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__lowerCAmelCase , pred_original_sample=__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) -> torch.FloatTensor: # Make sure alphas_cumprod and timestep have same device and dtype as original_samples lowercase__ : Tuple = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) lowercase__ : str = timesteps.to(original_samples.device ) lowercase__ : Union[str, Any] = alphas_cumprod[timesteps] ** 0.5 lowercase__ : List[str] = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : List[str] = sqrt_alpha_prod.unsqueeze(-1 ) lowercase__ : int = (1 - alphas_cumprod[timesteps]) ** 0.5 lowercase__ : List[Any] = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): lowercase__ : int = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) lowercase__ : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
359
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): def merge(UpperCAmelCase , UpperCAmelCase ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase ) <= 1: return collection lowercase__ : int = len(UpperCAmelCase ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() __a: str = input("""Enter numbers separated by a comma:\n""").strip() __a: Optional[int] = [int(item) for item in user_input.split(""",""")] print(*merge_sort(unsorted), sep=""",""")
214
0
from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup a_ : Dict = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowerCamelCase__ (_UpperCAmelCase = "mumbai"): SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(url + location).content , 'html.parser') # This attribute finds out all the specifics listed in a job for job in soup.find_all('div' , attrs={'data-tn-component': 'organicJob'}): SCREAMING_SNAKE_CASE = job.find('a' , attrs={'data-tn-element': 'jobTitle'}).text.strip() SCREAMING_SNAKE_CASE = job.find('span' , {'class': 'company'}).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
137
import logging import math import os from dataclasses import dataclass, field from glob import glob from typing import Optional from torch.utils.data import ConcatDataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_WITH_LM_HEAD_MAPPING, AutoConfig, AutoModelWithLMHead, AutoTokenizer, DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForWholeWordMask, HfArgumentParser, LineByLineTextDataset, LineByLineWithRefDataset, PreTrainedTokenizer, TextDataset, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process a_ : int = logging.getLogger(__name__) a_ : List[str] = list(MODEL_WITH_LM_HEAD_MAPPING.keys()) a_ : int = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The model checkpoint for weights initialization. Leave None if you want to train a model from''' ''' scratch.''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(A__ )} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) @dataclass class _snake_case : _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''The input training data file (a text file).'''} ) _lowercase : Optional[str] = field( default=A__ , metadata={ '''help''': ( '''The input training data files (multiple files in glob format). ''' '''Very often splitting large files to smaller files can prevent tokenizer going out of memory''' ) } , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input train ref data file for whole word mask in Chinese.'''} , ) _lowercase : Optional[str] = field( default=A__ , metadata={'''help''': '''An optional input eval ref data file for whole word mask in Chinese.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Whether distinct lines of text in the dataset are to be handled as distinct sequences.'''} , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Train with masked-language modeling loss instead of language modeling.'''} ) _lowercase : bool = field(default=A__ , metadata={'''help''': '''Whether ot not to use whole word mask.'''} ) _lowercase : float = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) _lowercase : float = field( default=1 / 6 , metadata={ '''help''': ( '''Ratio of length of a span of masked tokens to surrounding context length for permutation language''' ''' modeling.''' ) } , ) _lowercase : int = field( default=5 , metadata={'''help''': '''Maximum length of a span of masked tokens for permutation language modeling.'''} ) _lowercase : int = field( default=-1 , metadata={ '''help''': ( '''Optional input sequence length after tokenization.''' '''The training dataset will be truncated in block of this size for training.''' '''Default to the model max input length for single sentence inputs (take into account special tokens).''' ) } , ) _lowercase : bool = field( default=A__ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = False , _UpperCAmelCase = None , ): def _dataset(_UpperCAmelCase , _UpperCAmelCase=None): if args.line_by_line: if ref_path is not None: if not args.whole_word_mask or not args.mlm: raise ValueError('You need to set world whole masking and mlm to True for Chinese Whole Word Mask') return LineByLineWithRefDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , ref_path=_UpperCAmelCase , ) return LineByLineTextDataset(tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size) else: return TextDataset( tokenizer=_UpperCAmelCase , file_path=_UpperCAmelCase , block_size=args.block_size , overwrite_cache=args.overwrite_cache , cache_dir=_UpperCAmelCase , ) if evaluate: return _dataset(args.eval_data_file , args.eval_ref_file) elif args.train_data_files: return ConcatDataset([_dataset(_UpperCAmelCase) for f in glob(args.train_data_files)]) else: return _dataset(args.train_data_file , args.train_ref_file) def lowerCamelCase__ (): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. SCREAMING_SNAKE_CASE = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments)) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = parser.parse_args_into_dataclasses() if data_args.eval_data_file is None and training_args.do_eval: raise ValueError( 'Cannot do evaluation without an evaluation data file. Either supply a file to --eval_data_file ' 'or remove the --do_eval argument.') if ( os.path.exists(training_args.output_dir) and os.listdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. Use''' ' --overwrite_output_dir to overcome.') # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('Training/evaluation parameters %s' , _UpperCAmelCase) # Set seed set_seed(training_args.seed) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. if model_args.config_name: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.config_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoConfig.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: SCREAMING_SNAKE_CASE = CONFIG_MAPPING[model_args.model_type]() logger.warning('You are instantiating a new config instance from scratch.') if model_args.tokenizer_name: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.tokenizer_name , cache_dir=model_args.cache_dir) elif model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(model_args.model_name_or_path , cache_dir=model_args.cache_dir) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported, but you can do it from another' ' script, save it,and load it from here, using --tokenizer_name') if model_args.model_name_or_path: SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path) , config=_UpperCAmelCase , cache_dir=model_args.cache_dir , ) else: logger.info('Training new model from scratch') SCREAMING_SNAKE_CASE = AutoModelWithLMHead.from_config(_UpperCAmelCase) model.resize_token_embeddings(len(_UpperCAmelCase)) if config.model_type in ["bert", "roberta", "distilbert", "camembert"] and not data_args.mlm: raise ValueError( 'BERT and RoBERTa-like models do not have LM heads but masked LM heads. They must be run using the' '--mlm flag (masked language modeling).') if data_args.block_size <= 0: SCREAMING_SNAKE_CASE = tokenizer.max_len # Our input block size will be the max possible for the model else: SCREAMING_SNAKE_CASE = min(data_args.block_size , tokenizer.max_len) # Get datasets SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_train else None ) SCREAMING_SNAKE_CASE = ( get_dataset(_UpperCAmelCase , tokenizer=_UpperCAmelCase , evaluate=_UpperCAmelCase , cache_dir=model_args.cache_dir) if training_args.do_eval else None ) if config.model_type == "xlnet": SCREAMING_SNAKE_CASE = DataCollatorForPermutationLanguageModeling( tokenizer=_UpperCAmelCase , plm_probability=data_args.plm_probability , max_span_length=data_args.max_span_length , ) else: if data_args.mlm and data_args.whole_word_mask: SCREAMING_SNAKE_CASE = DataCollatorForWholeWordMask( tokenizer=_UpperCAmelCase , mlm_probability=data_args.mlm_probability) else: SCREAMING_SNAKE_CASE = DataCollatorForLanguageModeling( tokenizer=_UpperCAmelCase , mlm=data_args.mlm , mlm_probability=data_args.mlm_probability) # Initialize our Trainer SCREAMING_SNAKE_CASE = Trainer( model=_UpperCAmelCase , args=_UpperCAmelCase , data_collator=_UpperCAmelCase , train_dataset=_UpperCAmelCase , eval_dataset=_UpperCAmelCase , prediction_loss_only=_UpperCAmelCase , ) # Training if training_args.do_train: SCREAMING_SNAKE_CASE = ( model_args.model_name_or_path if model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path) else None ) trainer.train(model_path=_UpperCAmelCase) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_master(): tokenizer.save_pretrained(training_args.output_dir) # Evaluation SCREAMING_SNAKE_CASE = {} if training_args.do_eval: logger.info('*** Evaluate ***') SCREAMING_SNAKE_CASE = trainer.evaluate() SCREAMING_SNAKE_CASE = math.exp(eval_output['eval_loss']) SCREAMING_SNAKE_CASE = {'perplexity': perplexity} SCREAMING_SNAKE_CASE = os.path.join(training_args.output_dir , 'eval_results_lm.txt') if trainer.is_world_master(): with open(_UpperCAmelCase , 'w') as writer: logger.info('***** Eval results *****') for key in sorted(result.keys()): logger.info(' %s = %s' , _UpperCAmelCase , str(result[key])) writer.write('%s = %s\n' % (key, str(result[key]))) results.update(_UpperCAmelCase) return results def lowerCamelCase__ (_UpperCAmelCase): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
137
1
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 class UpperCAmelCase_ ( a , a): lowerCamelCase__ = True @register_to_config def __init__( self, __a = 3, __a = 3, __a = ("DownEncoderBlock2D",), __a = ("UpDecoderBlock2D",), __a = (64,), __a = 1, __a = "silu", __a = 4, __a = 32, __a = 32, __a = 0.18_215, ): '''simple docstring''' super().__init__() # pass init params to Encoder _lowerCAmelCase : Union[str, Any] = Encoder( in_channels=__a, out_channels=__a, down_block_types=__a, block_out_channels=__a, layers_per_block=__a, act_fn=__a, norm_num_groups=__a, double_z=__a, ) # pass init params to Decoder _lowerCAmelCase : List[Any] = Decoder( in_channels=__a, out_channels=__a, up_block_types=__a, block_out_channels=__a, layers_per_block=__a, norm_num_groups=__a, act_fn=__a, ) _lowerCAmelCase : List[str] = nn.Convad(2 * latent_channels, 2 * latent_channels, 1) _lowerCAmelCase : str = nn.Convad(__a, __a, 1) _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : int = False # only relevant if vae tiling is enabled _lowerCAmelCase : Optional[int] = self.config.sample_size _lowerCAmelCase : Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size, (list, tuple)) else self.config.sample_size ) _lowerCAmelCase : Tuple = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) _lowerCAmelCase : Dict = 0.25 def snake_case__ ( self, __a, __a=False): '''simple docstring''' if isinstance(__a, (Encoder, Decoder)): _lowerCAmelCase : Any = value def snake_case__ ( self, __a = True): '''simple docstring''' _lowerCAmelCase : Dict = use_tiling def snake_case__ ( self): '''simple docstring''' self.enable_tiling(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = True def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = {} def fn_recursive_add_processors(__a, __a, __a): if hasattr(__a, "set_processor"): _lowerCAmelCase : str = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f"{name}.{sub_name}", __a, __a) return processors for name, module in self.named_children(): fn_recursive_add_processors(__a, __a, __a) return processors def snake_case__ ( self, __a): '''simple docstring''' _lowerCAmelCase : List[str] = len(self.attn_processors.keys()) if isinstance(__a, __a) and len(__a) != count: raise ValueError( f"A dict of processors was passed, but the number of processors {len(__a)} does not match the" f" number of attention layers: {count}. Please make sure to pass {count} processor classes.") def fn_recursive_attn_processor(__a, __a, __a): if hasattr(__a, "set_processor"): if not isinstance(__a, __a): module.set_processor(__a) else: module.set_processor(processor.pop(f"{name}.processor")) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f"{name}.{sub_name}", __a, __a) for name, module in self.named_children(): fn_recursive_attn_processor(__a, __a, __a) def snake_case__ ( self): '''simple docstring''' self.set_attn_processor(AttnProcessor()) @apply_forward_hook def snake_case__ ( self, __a, __a = True): '''simple docstring''' if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(__a, return_dict=__a) if self.use_slicing and x.shape[0] > 1: _lowerCAmelCase : List[str] = [self.encoder(__a) for x_slice in x.split(1)] _lowerCAmelCase : Optional[int] = torch.cat(__a) else: _lowerCAmelCase : List[str] = self.encoder(__a) _lowerCAmelCase : Union[str, Any] = self.quant_conv(__a) _lowerCAmelCase : Any = DiagonalGaussianDistribution(__a) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__a) def snake_case__ ( self, __a, __a = True): '''simple docstring''' if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(__a, return_dict=__a) _lowerCAmelCase : Dict = self.post_quant_conv(__a) _lowerCAmelCase : int = self.decoder(__a) if not return_dict: return (dec,) return DecoderOutput(sample=__a) @apply_forward_hook def snake_case__ ( self, __a, __a = True): '''simple docstring''' if self.use_slicing and z.shape[0] > 1: _lowerCAmelCase : int = [self._decode(__a).sample for z_slice in z.split(1)] _lowerCAmelCase : Tuple = torch.cat(__a) else: _lowerCAmelCase : int = self._decode(__a).sample if not return_dict: return (decoded,) return DecoderOutput(sample=__a) def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = min(a.shape[2], b.shape[2], __a) for y in range(__a): _lowerCAmelCase : Any = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def snake_case__ ( self, __a, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = min(a.shape[3], b.shape[3], __a) for x in range(__a): _lowerCAmelCase : Any = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def snake_case__ ( self, __a, __a = True): '''simple docstring''' _lowerCAmelCase : Dict = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) _lowerCAmelCase : Tuple = int(self.tile_latent_min_size * self.tile_overlap_factor) _lowerCAmelCase : Tuple = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _lowerCAmelCase : str = [] for i in range(0, x.shape[2], __a): _lowerCAmelCase : List[str] = [] for j in range(0, x.shape[3], __a): _lowerCAmelCase : str = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _lowerCAmelCase : Union[str, Any] = self.encoder(__a) _lowerCAmelCase : List[str] = self.quant_conv(__a) row.append(__a) rows.append(__a) _lowerCAmelCase : Dict = [] for i, row in enumerate(__a): _lowerCAmelCase : Union[str, Any] = [] for j, tile in enumerate(__a): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCAmelCase : Optional[Any] = self.blend_v(rows[i - 1][j], __a, __a) if j > 0: _lowerCAmelCase : Union[str, Any] = self.blend_h(row[j - 1], __a, __a) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__a, dim=3)) _lowerCAmelCase : Union[str, Any] = torch.cat(__a, dim=2) _lowerCAmelCase : Any = DiagonalGaussianDistribution(__a) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=__a) def snake_case__ ( self, __a, __a = True): '''simple docstring''' _lowerCAmelCase : List[Any] = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) _lowerCAmelCase : Dict = int(self.tile_sample_min_size * self.tile_overlap_factor) _lowerCAmelCase : Optional[Any] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _lowerCAmelCase : Tuple = [] for i in range(0, z.shape[2], __a): _lowerCAmelCase : Tuple = [] for j in range(0, z.shape[3], __a): _lowerCAmelCase : Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _lowerCAmelCase : List[str] = self.post_quant_conv(__a) _lowerCAmelCase : Union[str, Any] = self.decoder(__a) row.append(__a) rows.append(__a) _lowerCAmelCase : str = [] for i, row in enumerate(__a): _lowerCAmelCase : Any = [] for j, tile in enumerate(__a): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _lowerCAmelCase : Optional[int] = self.blend_v(rows[i - 1][j], __a, __a) if j > 0: _lowerCAmelCase : Dict = self.blend_h(row[j - 1], __a, __a) result_row.append(tile[:, :, :row_limit, :row_limit]) result_rows.append(torch.cat(__a, dim=3)) _lowerCAmelCase : Any = torch.cat(__a, dim=2) if not return_dict: return (dec,) return DecoderOutput(sample=__a) def snake_case__ ( self, __a, __a = False, __a = True, __a = None, ): '''simple docstring''' _lowerCAmelCase : Tuple = sample _lowerCAmelCase : Any = self.encode(__a).latent_dist if sample_posterior: _lowerCAmelCase : int = posterior.sample(generator=__a) else: _lowerCAmelCase : List[str] = posterior.mode() _lowerCAmelCase : str = self.decode(__a).sample if not return_dict: return (dec,) return DecoderOutput(sample=__a)
300
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _snake_case = False try: _snake_case = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCAmelCase_ : def __init__( self, __a = None, __a = []): '''simple docstring''' _lowerCAmelCase : Optional[int] = 0 _lowerCAmelCase : Optional[int] = choices _lowerCAmelCase : Tuple = prompt if sys.platform == "win32": _lowerCAmelCase : Optional[Any] = "*" else: _lowerCAmelCase : Dict = "➔ " def snake_case__ ( self, __a, __a = ""): '''simple docstring''' if sys.platform != "win32": writeColor(self.choices[index], 32, __a) else: forceWrite(self.choices[index], __a) def snake_case__ ( self, __a): '''simple docstring''' if index == self.position: forceWrite(f" {self.arrow_char} ") self.write_choice(__a) else: forceWrite(f" {self.choices[index]}") reset_cursor() def snake_case__ ( self, __a, __a = 1): '''simple docstring''' _lowerCAmelCase : Union[str, Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__a) move_cursor(__a, direction.name) self.print_choice(self.position) @input.mark(KEYMAP["up"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.UP) @input.mark(KEYMAP["down"]) def snake_case__ ( self): '''simple docstring''' self.move_direction(Direction.DOWN) @input.mark(KEYMAP["newline"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") return self.position @input.mark(KEYMAP["interrupt"]) def snake_case__ ( self): '''simple docstring''' move_cursor(len(self.choices) - self.position, "DOWN") raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__a)] for number in range(10)]) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : str = int(chr(self.current_selection)) _lowerCAmelCase : List[str] = index - self.position if index == self.position: return if index < len(self.choices): if self.position > index: self.move_direction(Direction.UP, -movement) elif self.position < index: self.move_direction(Direction.DOWN, __a) else: return else: return def snake_case__ ( self, __a = 0): '''simple docstring''' if self.prompt: linebreak() forceWrite(self.prompt, "\n") if in_colab: forceWrite("Please input a choice index (starting from 0), and press enter", "\n") else: forceWrite("Please select a choice using the arrow or number keys, and selecting with enter", "\n") _lowerCAmelCase : List[Any] = default_choice for i in range(len(self.choices)): self.print_choice(__a) forceWrite("\n") move_cursor(len(self.choices) - self.position, "UP") with cursor.hide(): while True: if in_colab: try: _lowerCAmelCase : str = int(builtins.input()) except ValueError: _lowerCAmelCase : List[Any] = default_choice else: _lowerCAmelCase : List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices) + 1): move_cursor(1, "UP") clear_line() self.write_choice(__a, "\n") return choice
300
1
import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowerCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right __lowerCamelCase = 25_60_47 __lowerCamelCase = 25_61_45 @require_sentencepiece @require_tokenizers class UpperCAmelCase ( A_ ,unittest.TestCase ): A__ : str = NllbTokenizer A__ : str = NllbTokenizerFast A__ : List[Any] = True A__ : int = True A__ : Union[str, Any] = {} def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Dict: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing snake_case : Any = NllbTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Dict: '''simple docstring''' snake_case : Any = NllbTokenizer(snake_case__ , keep_accents=snake_case__ ) snake_case : Optional[int] = tokenizer.tokenize("This is a test" ) self.assertListEqual(snake_case__ , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) snake_case : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) snake_case : int = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) snake_case : Optional[Any] = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-nllb", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : Tuple = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) snake_case : Any = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) snake_case : List[Any] = tempfile.mkdtemp() snake_case : Union[str, Any] = tokenizer_r.save_pretrained(snake_case__ ) snake_case : int = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) snake_case : Optional[Any] = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way snake_case : Optional[Any] = tokenizer_r.from_pretrained(snake_case__ ) snake_case : Optional[Any] = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True snake_case : Optional[int] = tempfile.mkdtemp() snake_case : int = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) snake_case : str = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way snake_case : Optional[int] = tokenizer_r.from_pretrained(snake_case__ ) snake_case : int = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False snake_case : List[Any] = tempfile.mkdtemp() snake_case : Optional[int] = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) snake_case : List[str] = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way snake_case : Union[str, Any] = tokenizer_r.from_pretrained(snake_case__ ) snake_case : Tuple = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE (self : str ) -> Union[str, Any]: '''simple docstring''' if not self.test_seqaseq: return snake_case : Dict = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Longer text that will definitely require truncation. snake_case : List[str] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for" " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons" " will only worsen the violence and misery for millions of people.", ] snake_case : Union[str, Any] = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al" " Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi" " că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] try: snake_case : str = tokenizer.prepare_seqaseq_batch( src_texts=snake_case__ , tgt_texts=snake_case__ , max_length=3 , max_target_length=10 , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="ron_Latn" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified snake_case : List[Any] = tokenizer.prepare_seqaseq_batch( snake_case__ , tgt_texts=snake_case__ , max_length=3 , return_tensors="pt" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) snake_case : int = tokenizer.prepare_seqaseq_batch( src_texts=snake_case__ , max_length=3 , max_target_length=10 , return_tensors="pt" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("decoder_input_ids" , snake_case__ ) @unittest.skip("Unfortunately way too slow to build a BPE with SentencePiece." ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Dict: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> str: '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : int = [AddedToken("<special>" , lstrip=snake_case__ )] snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ ) snake_case : str = tokenizer_r.encode("Hey this is a <special> token" ) snake_case : str = tokenizer_r.encode("<special>" , add_special_tokens=snake_case__ )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: snake_case : int = self.rust_tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ , ) snake_case : str = self.tokenizer_class.from_pretrained( snake_case__ , additional_special_tokens=snake_case__ , **snake_case__ ) snake_case : Any = tokenizer_p.encode("Hey this is a <special> token" ) snake_case : Optional[Any] = tokenizer_cr.encode("Hey this is a <special> token" ) self.assertEqual(snake_case__ , snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class UpperCAmelCase ( unittest.TestCase ): A__ : int = "facebook/nllb-200-distilled-600M" A__ : List[str] = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] A__ : Tuple = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] A__ : Union[str, Any] = [ 25_60_47, 1_62_97, 13_44_08, 81_65, 24_80_66, 1_47_34, 9_50, 11_35, 10_57_21, 35_73, 83, 2_73_52, 1_08, 4_94_86, 2, ] @classmethod def _SCREAMING_SNAKE_CASE (cls : List[Any] ) -> Tuple: '''simple docstring''' snake_case : NllbTokenizer = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="eng_Latn" , tgt_lang="ron_Latn" ) snake_case : str = 1 return cls def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Tuple: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Arab"] , 25_60_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["ace_Latn"] , 25_60_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["fra_Latn"] , 25_60_57 ) def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' snake_case : int = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : List[str] ) -> str: '''simple docstring''' self.assertIn(snake_case__ , self.tokenizer.all_special_ids ) # fmt: off snake_case : int = [RO_CODE, 42_54, 9_80_68, 11_29_23, 3_90_72, 39_09, 7_13, 10_27_67, 26, 1_73_14, 3_56_42, 1_46_83, 3_31_18, 20_22, 6_69_87, 2, 25_60_47] # fmt: on snake_case : Tuple = self.tokenizer.decode(snake_case__ , skip_special_tokens=snake_case__ ) snake_case : Tuple = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=snake_case__ ) self.assertEqual(snake_case__ , snake_case__ ) self.assertNotIn(self.tokenizer.eos_token , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : List[Any] = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , snake_case__ ) snake_case : Optional[int] = 10 snake_case : str = self.tokenizer(snake_case__ , max_length=snake_case__ , truncation=snake_case__ ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , snake_case__ ) self.assertEqual(len(snake_case__ ) , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Tuple: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["<mask>", "ar_AR"] ) , [25_62_03, 3] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = tempfile.mkdtemp() snake_case : Optional[int] = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(snake_case__ ) snake_case : int = NllbTokenizer.from_pretrained(snake_case__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , snake_case__ ) @require_torch def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' snake_case : Tuple = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=len(self.expected_src_tokens ) , return_tensors="pt" , ) snake_case : int = shift_tokens_right( batch["labels"] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["ron_Latn"] ) self.assertIsInstance(snake_case__ , snake_case__ ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) snake_case : Optional[int] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , snake_case__ ) self.assertEqual(snake_case__ , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def _SCREAMING_SNAKE_CASE (self : int ) -> List[str]: '''simple docstring''' snake_case : Tuple = self.tokenizer(self.src_text , padding=snake_case__ , truncation=snake_case__ , max_length=3 , return_tensors="pt" ) snake_case : List[str] = self.tokenizer( text_target=self.tgt_text , padding=snake_case__ , truncation=snake_case__ , max_length=10 , return_tensors="pt" ) snake_case : List[Any] = targets["input_ids"] snake_case : str = shift_tokens_right( snake_case__ , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _SCREAMING_SNAKE_CASE (self : List[str] ) -> Optional[int]: '''simple docstring''' snake_case : Any = self.tokenizer._build_translation_inputs( "A test" , return_tensors="pt" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( nested_simplify(snake_case__ ) , { # A, test, EOS, en_XX "input_ids": [[25_60_47, 70, 73_56, 2]], "attention_mask": [[1, 1, 1, 1]], # ar_AR "forced_bos_token_id": 25_60_57, } , ) @require_torch def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[Any]: '''simple docstring''' snake_case : List[Any] = True snake_case : int = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2, 25_60_47] ) snake_case : Optional[Any] = False snake_case : Tuple = self.tokenizer( "UN Chief says there is no military solution in Syria" , src_lang="eng_Latn" , tgt_lang="fra_Latn" ) self.assertEqual( inputs.input_ids , [25_60_47, 1_62_97, 13_44_08, 2_56_53, 63_70, 2_48, 2_54, 10_39_29, 9_49_95, 1_08, 4_94_86, 2] )
59
import argparse import torch from transformers import BertConfig, BertForPreTraining, load_tf_weights_in_bert from transformers.utils import logging logging.set_verbosity_info() def UpperCamelCase__( UpperCamelCase__ : Any , UpperCamelCase__ : int , UpperCamelCase__ : int )->int: # Initialise PyTorch model A__ = BertConfig.from_json_file(UpperCamelCase__ ) print(f"Building PyTorch model from configuration: {config}" ) A__ = BertForPreTraining(UpperCamelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_bert(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # Save pytorch-model print(f"Save PyTorch model to {pytorch_dump_path}" ) torch.save(model.state_dict() , UpperCamelCase__ ) if __name__ == "__main__": a__: str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--bert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained BERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a__: Any = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
193
0
"""simple docstring""" from __future__ import annotations import numpy as np def UpperCamelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" return np.maximum(0 , UpperCAmelCase ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
303
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/config.json', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/config.json', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json' ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): a_ : str = """xlm-roberta""" def __init__( self , __UpperCAmelCase=3_05_22 , __UpperCAmelCase=7_68 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=30_72 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ) ->Union[str, Any]: super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase) a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = hidden_act a_ = intermediate_size a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = initializer_range a_ = layer_norm_eps a_ = position_embedding_type a_ = use_cache a_ = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): @property def UpperCAmelCase__ ( self) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": a_ = {0: "batch", 1: "choice", 2: "sequence"} else: a_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ])
303
1
'''simple docstring''' from pathlib import Path import fire def __lowerCAmelCase ( snake_case__ , snake_case__ , snake_case__ ): __UpperCamelCase : str = Path(snake_case__ ) __UpperCamelCase : List[Any] = Path(snake_case__ ) dest_dir.mkdir(exist_ok=snake_case__ ) for path in src_dir.iterdir(): __UpperCamelCase : List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] __UpperCamelCase : Dict = dest_dir.joinpath(path.name ) print(snake_case__ ) dest_path.open("w" ).write("\n".join(snake_case__ ) ) if __name__ == "__main__": fire.Fire(minify)
298
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import datasets import datasets.config from .utils import require_beam class A ( datasets.BeamBasedBuilder ): '''simple docstring''' def a_ (self ) -> Tuple: return datasets.DatasetInfo( features=datasets.Features({"content": datasets.Value("string" )} ) , supervised_keys=_UpperCAmelCase , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_dummy_examples()} )] def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> int: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) class A ( datasets.BeamBasedBuilder ): '''simple docstring''' def a_ (self ) -> str: return datasets.DatasetInfo( features=datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) , supervised_keys=_UpperCAmelCase , ) def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: return [ datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"examples": get_test_nested_examples()} ) ] def a_ (self , _UpperCAmelCase , _UpperCAmelCase ) -> List[str]: import apache_beam as beam return pipeline | "Load Examples" >> beam.Create(_UpperCAmelCase ) def __lowerCAmelCase ( ): return [(i, {"content": content}) for i, content in enumerate(["foo", "bar", "foobar"] )] def __lowerCAmelCase ( ): return [(i, {"a": {"b": [content]}}) for i, content in enumerate(["foo", "bar", "foobar"] )] class A ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' @require_beam def a_ (self ) -> Union[str, Any]: __UpperCamelCase : Union[str, Any] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : str = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __UpperCamelCase : Optional[int] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _UpperCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_dummy_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_dummy_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def a_ (self ) -> Optional[Any]: import apache_beam as beam __UpperCamelCase : Optional[int] = beam.io.parquetio.WriteToParquet __UpperCamelCase : List[str] = len(get_test_dummy_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Optional[int] = DummyBeamDataset(cache_dir=_UpperCAmelCase , beam_runner="DirectRunner" ) with patch("apache_beam.io.parquetio.WriteToParquet" ) as write_parquet_mock: __UpperCamelCase : List[str] = partial(_UpperCAmelCase , num_shards=2 ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertTrue( os.path.exists( os.path.join( _UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train-00000-of-00002.arrow" ) ) ) self.assertDictEqual(builder.info.features , datasets.Features({"content": datasets.Value("string" )} ) ) __UpperCamelCase : List[str] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _UpperCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _UpperCAmelCase ) # Order is not preserved when sharding, so we just check that all the elements are there self.assertListEqual(sorted(dset["train"]["content"] ) , sorted(["foo", "bar", "foobar"] ) ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset @require_beam def a_ (self ) -> str: with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : Optional[Any] = DummyBeamDataset(cache_dir=_UpperCAmelCase ) self.assertRaises(datasets.builder.MissingBeamOptions , builder.download_and_prepare ) @require_beam def a_ (self ) -> List[str]: __UpperCamelCase : Tuple = len(get_test_nested_examples() ) with tempfile.TemporaryDirectory() as tmp_cache_dir: __UpperCamelCase : str = NestedBeamDataset(cache_dir=_UpperCAmelCase , beam_runner="DirectRunner" ) builder.download_and_prepare() self.assertTrue( os.path.exists( os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , f"{builder.name}-train.arrow" ) ) ) self.assertDictEqual( builder.info.features , datasets.Features({"a": datasets.Sequence({"b": datasets.Value("string" )} )} ) ) __UpperCamelCase : Union[str, Any] = builder.as_dataset() self.assertEqual(dset["train"].num_rows , _UpperCAmelCase ) self.assertEqual(dset["train"].info.splits["train"].num_examples , _UpperCAmelCase ) self.assertDictEqual(dset["train"][0] , get_test_nested_examples()[0][1] ) self.assertDictEqual( dset["train"][expected_num_examples - 1] , get_test_nested_examples()[expected_num_examples - 1][1] ) self.assertTrue( os.path.exists(os.path.join(_UpperCAmelCase , builder.name , "default" , "0.0.0" , "dataset_info.json" ) ) ) del dset
298
1
import sys from collections import defaultdict class __SCREAMING_SNAKE_CASE : def __init__( self : str ) ->List[Any]: lowerCamelCase__ : List[Any] = [] def __lowerCamelCase ( self : Optional[int] , A : List[Any] ) ->Any: return self.node_position[vertex] def __lowerCamelCase ( self : Dict , A : Tuple , A : List[str] ) ->Dict: lowerCamelCase__ : Union[str, Any] = pos def __lowerCamelCase ( self : Dict , A : List[Any] , A : int , A : List[Any] , A : Tuple ) ->List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: lowerCamelCase__ : Optional[Any] = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: lowerCamelCase__ : List[Any] = 2 * start + 1 else: lowerCamelCase__ : Tuple = 2 * start + 2 if heap[smallest_child] < heap[start]: lowerCamelCase__ , lowerCamelCase__ : str = heap[smallest_child], positions[smallest_child] lowerCamelCase__ , lowerCamelCase__ : List[str] = ( heap[start], positions[start], ) lowerCamelCase__ , lowerCamelCase__ : str = temp, tempa lowerCamelCase__ : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , A ) self.top_to_bottom(A , A , A , A ) def __lowerCamelCase ( self : Optional[Any] , A : Tuple , A : Any , A : str , A : Any ) ->Tuple: lowerCamelCase__ : Tuple = position[index] while index != 0: lowerCamelCase__ : List[Any] = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: lowerCamelCase__ : List[str] = heap[parent] lowerCamelCase__ : Optional[Any] = position[parent] self.set_position(position[parent] , A ) else: lowerCamelCase__ : Dict = val lowerCamelCase__ : Optional[int] = temp self.set_position(A , A ) break lowerCamelCase__ : List[Any] = parent else: lowerCamelCase__ : Optional[int] = val lowerCamelCase__ : Optional[int] = temp self.set_position(A , 0 ) def __lowerCamelCase ( self : List[str] , A : List[Any] , A : Tuple ) ->Optional[int]: lowerCamelCase__ : List[str] = len(A ) // 2 - 1 for i in range(A , -1 , -1 ): self.top_to_bottom(A , A , len(A ) , A ) def __lowerCamelCase ( self : List[str] , A : Dict , A : Optional[int] ) ->Union[str, Any]: lowerCamelCase__ : int = positions[0] lowerCamelCase__ : Any = sys.maxsize self.top_to_bottom(A , 0 , len(A ) , A ) return temp def _a ( UpperCAmelCase ) -> Tuple: """simple docstring""" lowerCamelCase__ : List[str] = Heap() lowerCamelCase__ : Optional[int] = [0] * len(UpperCAmelCase ) lowerCamelCase__ : Optional[Any] = [-1] * len(UpperCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph lowerCamelCase__ : Any = [] # Heap of Distance of vertices from their neighboring vertex lowerCamelCase__ : Dict = [] for vertex in range(len(UpperCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(UpperCAmelCase ) heap.node_position.append(UpperCAmelCase ) lowerCamelCase__ : List[str] = [] lowerCamelCase__ : Dict = 1 lowerCamelCase__ : Tuple = sys.maxsize for neighbor, distance in adjacency_list[0]: lowerCamelCase__ : Union[str, Any] = 0 lowerCamelCase__ : Tuple = distance heap.heapify(UpperCAmelCase , UpperCAmelCase ) for _ in range(1 , len(UpperCAmelCase ) ): lowerCamelCase__ : Any = heap.delete_minimum(UpperCAmelCase , UpperCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) lowerCamelCase__ : Optional[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(UpperCAmelCase )] ): lowerCamelCase__ : List[str] = distance heap.bottom_to_top( UpperCAmelCase , heap.get_position(UpperCAmelCase ) , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Optional[int] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _A : Tuple = int(input('Enter number of edges: ').strip()) _A : Tuple = defaultdict(list) for _ in range(edges_number): _A : Optional[Any] = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
265
def _a ( UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ): raise TypeError('''only integers accepted as input''' ) else: lowerCamelCase__ : Any = str(abs(UpperCAmelCase ) ) lowerCamelCase__ : Union[str, Any] = [list(UpperCAmelCase ) for char in range(len(UpperCAmelCase ) )] for index in range(len(UpperCAmelCase ) ): num_transpositions[index].pop(UpperCAmelCase ) return max( int(''''''.join(list(UpperCAmelCase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('doctest').testmod()
265
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version _snake_case : List[Any] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('4.31.0') require_version('datasets>=1.14.0', 'To fix: pip install -r examples/pytorch/audio-classification/requirements.txt') def a_ ( lowerCAmelCase_ : np.ndarray, lowerCAmelCase_ : float, lowerCAmelCase_ : int = 1_6000 ): __lowerCAmelCase = int(round(sample_rate * max_length ) ) if len(SCREAMING_SNAKE_CASE_ ) <= sample_length: return wav __lowerCAmelCase = randint(0, len(SCREAMING_SNAKE_CASE_ ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field(default=__snake_case , metadata={"""help""": """Name of a dataset from the datasets package"""} ) a_ = field( default=__snake_case , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) a_ = field( default=__snake_case , metadata={"""help""": """A file containing the training audio paths and labels."""} ) a_ = field( default=__snake_case , metadata={"""help""": """A file containing the validation audio paths and labels."""} ) a_ = field( default="""train""" , metadata={ """help""": """The name of the training data set split to use (via the datasets library). Defaults to 'train'""" } , ) a_ = field( default="""validation""" , metadata={ """help""": ( """The name of the training data set split to use (via the datasets library). Defaults to 'validation'""" ) } , ) a_ = field( default="""audio""" , metadata={"""help""": """The name of the dataset column containing the audio data. Defaults to 'audio'"""} , ) a_ = field( default="""label""" , metadata={"""help""": """The name of the dataset column containing the labels. Defaults to 'label'"""} ) a_ = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of training examples to this """ """value if set.""" ) } , ) a_ = field( default=__snake_case , metadata={ """help""": ( """For debugging purposes or quicker training, truncate the number of evaluation examples to this """ """value if set.""" ) } , ) a_ = field( default=20 , metadata={"""help""": """Audio clips will be randomly cut to this length during training if the value is set."""} , ) @dataclass class _UpperCAmelCase : """simple docstring""" a_ = field( default="""facebook/wav2vec2-base""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , ) a_ = field( default=__snake_case , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) a_ = field( default=__snake_case , metadata={"""help""": """Where do you want to store the pretrained models downloaded from the Hub"""} ) a_ = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) a_ = field( default=__snake_case , metadata={"""help""": """Name or path of preprocessor config."""} ) a_ = field( default=__snake_case , metadata={"""help""": """Whether to freeze the feature encoder layers of the model."""} ) a_ = field( default=__snake_case , metadata={"""help""": """Whether to generate an attention mask in the feature extractor."""} ) a_ = field( default=__snake_case , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) a_ = field( default=__snake_case , metadata={"""help""": """Whether to freeze the feature extractor layers of the model."""} ) a_ = field( default=__snake_case , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , ) def lowercase ( self : int ) -> Optional[int]: if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , lowerCAmelCase_ , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def a_ ( ): __lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowerCAmelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification', SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowerCAmelCase = training_args.get_process_log_level() logger.setLevel(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.set_verbosity(SCREAMING_SNAKE_CASE_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} """ + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) logger.info(F"""Training/evaluation parameters {training_args}""" ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. __lowerCAmelCase = DatasetDict() __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.train_split_name, use_auth_token=True if model_args.use_auth_token else None, ) __lowerCAmelCase = load_dataset( data_args.dataset_name, data_args.dataset_config_name, split=data_args.eval_split_name, use_auth_token=True if model_args.use_auth_token else None, ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--audio_column_name {data_args.audio_column_name} not found in dataset '{data_args.dataset_name}'. """ 'Make sure to set `--audio_column_name` to the correct audio column - one of ' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F"""--label_column_name {data_args.label_column_name} not found in dataset '{data_args.dataset_name}'. """ 'Make sure to set `--label_column_name` to the correct text column - one of ' F"""{", ".join(raw_datasets["train"].column_names )}.""" ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __lowerCAmelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path, return_attention_mask=model_args.attention_mask, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __lowerCAmelCase = raw_datasets.cast_column( data_args.audio_column_name, datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __lowerCAmelCase = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase_ : Optional[Any] ): __lowerCAmelCase = [] for audio in batch[data_args.audio_column_name]: __lowerCAmelCase = random_subsample( audio['array'], max_length=data_args.max_length_seconds, sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_, sampling_rate=feature_extractor.sampling_rate ) __lowerCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )} __lowerCAmelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase_ : int ): __lowerCAmelCase = [audio['array'] for audio in batch[data_args.audio_column_name]] __lowerCAmelCase = feature_extractor(SCREAMING_SNAKE_CASE_, sampling_rate=feature_extractor.sampling_rate ) __lowerCAmelCase = {model_input_name: inputs.get(SCREAMING_SNAKE_CASE_ )} __lowerCAmelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __lowerCAmelCase = raw_datasets['train'].features[data_args.label_column_name].names __lowerCAmelCase = {}, {} for i, label in enumerate(SCREAMING_SNAKE_CASE_ ): __lowerCAmelCase = str(SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = label # Load the accuracy metric from the datasets package __lowerCAmelCase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase_ : Tuple ): __lowerCAmelCase = np.argmax(eval_pred.predictions, axis=1 ) return metric.compute(predictions=SCREAMING_SNAKE_CASE_, references=eval_pred.label_ids ) __lowerCAmelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path, num_labels=len(SCREAMING_SNAKE_CASE_ ), labelaid=SCREAMING_SNAKE_CASE_, idalabel=SCREAMING_SNAKE_CASE_, finetuning_task='audio-classification', cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) __lowerCAmelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=SCREAMING_SNAKE_CASE_, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ignore_mismatched_sizes=model_args.ignore_mismatched_sizes, ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __lowerCAmelCase = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(SCREAMING_SNAKE_CASE_, output_all_columns=SCREAMING_SNAKE_CASE_ ) if training_args.do_eval: if data_args.max_eval_samples is not None: __lowerCAmelCase = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(SCREAMING_SNAKE_CASE_, output_all_columns=SCREAMING_SNAKE_CASE_ ) # Initialize our trainer __lowerCAmelCase = Trainer( model=SCREAMING_SNAKE_CASE_, args=SCREAMING_SNAKE_CASE_, train_dataset=raw_datasets['train'] if training_args.do_train else None, eval_dataset=raw_datasets['eval'] if training_args.do_eval else None, compute_metrics=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_, ) # Training if training_args.do_train: __lowerCAmelCase = None if training_args.resume_from_checkpoint is not None: __lowerCAmelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowerCAmelCase = last_checkpoint __lowerCAmelCase = trainer.train(resume_from_checkpoint=SCREAMING_SNAKE_CASE_ ) trainer.save_model() trainer.log_metrics('train', train_result.metrics ) trainer.save_metrics('train', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowerCAmelCase = trainer.evaluate() trainer.log_metrics('eval', SCREAMING_SNAKE_CASE_ ) trainer.save_metrics('eval', SCREAMING_SNAKE_CASE_ ) # Write model card and (optionally) push to hub __lowerCAmelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**SCREAMING_SNAKE_CASE_ ) else: trainer.create_model_card(**SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": main()
284
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self , a , a=2 , a=3 , a=4 , a=2 , a=7 , a=True , a=True , a=True , a=True , a=99 , a=36 , a=2 , a=4 , a=37 , a="gelu" , a=0.1 , a=0.1 , a=512 , a=16 , a=2 , a=0.02 , a=6 , a=6 , a=3 , a=4 , a=None , a=1000 , ): lowercase__ : List[str] = parent lowercase__ : List[str] = batch_size lowercase__ : int = num_channels lowercase__ : List[Any] = image_size lowercase__ : List[str] = patch_size lowercase__ : List[Any] = is_training lowercase__ : Tuple = use_input_mask lowercase__ : str = use_token_type_ids lowercase__ : Optional[int] = use_labels lowercase__ : Any = vocab_size lowercase__ : List[str] = hidden_size lowercase__ : Union[str, Any] = num_hidden_layers lowercase__ : List[Any] = num_attention_heads lowercase__ : Dict = intermediate_size lowercase__ : int = hidden_act lowercase__ : Optional[Any] = hidden_dropout_prob lowercase__ : int = attention_probs_dropout_prob lowercase__ : str = max_position_embeddings lowercase__ : List[Any] = type_vocab_size lowercase__ : str = type_sequence_label_size lowercase__ : List[Any] = initializer_range lowercase__ : Union[str, Any] = coordinate_size lowercase__ : Union[str, Any] = shape_size lowercase__ : Any = num_labels lowercase__ : List[str] = num_choices lowercase__ : Optional[Any] = scope lowercase__ : Optional[Any] = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) lowercase__ : Optional[int] = text_seq_length lowercase__ : Optional[int] = (image_size // patch_size) ** 2 + 1 lowercase__ : str = self.text_seq_length + self.image_seq_length def snake_case_ ( self): lowercase__ : Dict = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size) lowercase__ : List[Any] = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox) lowercase__ : str = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0]): for j in range(bbox.shape[1]): if bbox[i, j, 3] < bbox[i, j, 1]: lowercase__ : Optional[Any] = bbox[i, j, 3] lowercase__ : List[Any] = bbox[i, j, 1] lowercase__ : List[str] = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: lowercase__ : int = bbox[i, j, 2] lowercase__ : List[Any] = bbox[i, j, 0] lowercase__ : Optional[Any] = tmp_coordinate lowercase__ : Dict = tf.constant(a) lowercase__ : Dict = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) lowercase__ : Optional[Any] = None if self.use_input_mask: lowercase__ : str = random_attention_mask([self.batch_size, self.text_seq_length]) lowercase__ : Tuple = None if self.use_token_type_ids: lowercase__ : str = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size) lowercase__ : List[Any] = None lowercase__ : Optional[int] = None if self.use_labels: lowercase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels) lowercase__ : List[str] = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self , a , a , a , a , a , a): lowercase__ : str = TFLayoutLMvaModel(config=a) # text + image lowercase__ : List[str] = model(a , pixel_values=a , training=a) lowercase__ : Any = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , training=a , ) lowercase__ : List[Any] = model(a , bbox=a , pixel_values=a , training=a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) # text only lowercase__ : List[Any] = model(a , training=a) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size)) # image only lowercase__ : Dict = model({'pixel_values': pixel_values} , training=a) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size)) def snake_case_ ( self , a , a , a , a , a , a , a): lowercase__ : Optional[Any] = self.num_labels lowercase__ : Optional[Any] = TFLayoutLMvaForSequenceClassification(config=a) lowercase__ : List[str] = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , labels=a , training=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def snake_case_ ( self , a , a , a , a , a , a , a): lowercase__ : Tuple = self.num_labels lowercase__ : Dict = TFLayoutLMvaForTokenClassification(config=a) lowercase__ : Any = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , labels=a , training=a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels)) def snake_case_ ( self , a , a , a , a , a , a , a): lowercase__ : Optional[int] = 2 lowercase__ : List[str] = TFLayoutLMvaForQuestionAnswering(config=a) lowercase__ : Tuple = model( a , bbox=a , pixel_values=a , attention_mask=a , token_type_ids=a , start_positions=a , end_positions=a , training=a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def snake_case_ ( self): lowercase__ : Union[str, Any] = self.prepare_config_and_inputs() ((lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__) , (lowercase__)) : Optional[Any] = config_and_inputs lowercase__ : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ (__snake_case , __snake_case , unittest.TestCase ): __lowerCamelCase : List[str] = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) __lowerCamelCase : Dict = ( {"""document-question-answering""": TFLayoutLMvaForQuestionAnswering, """feature-extraction""": TFLayoutLMvaModel} if is_tf_available() else {} ) __lowerCamelCase : Optional[Any] = False __lowerCamelCase : int = False __lowerCamelCase : int = False def snake_case_ ( self , a , a , a , a , a): return True def snake_case_ ( self , a , a , a=False): lowercase__ : Tuple = copy.deepcopy(a) if model_class in get_values(a): lowercase__ : Optional[Any] = { k: tf.tile(tf.expand_dims(a , 1) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1)) if isinstance(a , tf.Tensor) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(a): lowercase__ : Union[str, Any] = tf.ones(self.model_tester.batch_size , dtype=tf.intaa) elif model_class in get_values(a): lowercase__ : Dict = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) lowercase__ : Optional[int] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) elif model_class in get_values(a): lowercase__ : Optional[Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) elif model_class in get_values(a): lowercase__ : Optional[int] = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa) return inputs_dict def snake_case_ ( self): lowercase__ : Tuple = TFLayoutLMvaModelTester(self) lowercase__ : Optional[Any] = ConfigTester(self , config_class=a , hidden_size=37) def snake_case_ ( self): self.config_tester.run_common_tests() def snake_case_ ( self): lowercase__ , lowercase__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__ : List[Any] = model_class(a) if getattr(a , 'hf_compute_loss' , a): # The number of elements in the loss should be the same as the number of elements in the label lowercase__ : Optional[int] = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a) lowercase__ : Union[str, Any] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=a)[0] ] lowercase__ : Tuple = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs lowercase__ : Dict = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a) lowercase__ : int = prepared_for_class.pop('input_ids') lowercase__ : Optional[int] = model(a , **a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss when we mask some positions lowercase__ : str = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a) lowercase__ : str = prepared_for_class.pop('input_ids') if "labels" in prepared_for_class: lowercase__ : Optional[Any] = prepared_for_class['labels'].numpy() if len(labels.shape) > 1 and labels.shape[1] != 1: lowercase__ : Union[str, Any] = -100 lowercase__ : Optional[Any] = tf.convert_to_tensor(a) lowercase__ : Any = model(a , **a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) self.assertTrue(not np.any(np.isnan(loss.numpy()))) # Test that model correctly compute the loss with a dict lowercase__ : List[Any] = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a) lowercase__ : Optional[Any] = model(a)[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) # Test that model correctly compute the loss with a tuple lowercase__ : List[str] = self._prepare_for_class(inputs_dict.copy() , a , return_labels=a) # Get keys that were added with the _prepare_for_class function lowercase__ : int = prepared_for_class.keys() - inputs_dict.keys() lowercase__ : List[Any] = inspect.signature(model.call).parameters lowercase__ : List[str] = list(signature.keys()) # Create a dictionary holding the location of the tensors in the tuple lowercase__ : Dict = {0: 'input_ids'} for label_key in label_keys: lowercase__ : Tuple = signature_names.index(a) lowercase__ : List[str] = label_key lowercase__ : int = sorted(tuple_index_mapping.items()) # Initialize a list with their default values, update the values and convert to a tuple lowercase__ : List[Any] = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default) for index, value in sorted_tuple_index_mapping: lowercase__ : Optional[int] = prepared_for_class[value] lowercase__ : Any = tuple(a) # Send to model lowercase__ : List[str] = model(tuple_input[:-1])[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1]) def snake_case_ ( self): ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(a , a , a , a , a , a) def snake_case_ ( self): ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : int = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase__ : Dict = type self.model_tester.create_and_check_model(a , a , a , a , a , a) def snake_case_ ( self): ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( a , a , a , a , a , a , a) def snake_case_ ( self): ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( a , a , a , a , a , a , a) def snake_case_ ( self): ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( a , a , a , a , a , a , a) @slow def snake_case_ ( self): for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = TFLayoutLMvaModel.from_pretrained(a) self.assertIsNotNone(a) def snake_case__ ( ): '''simple docstring''' lowercase__ : str = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf class SCREAMING_SNAKE_CASE__ (unittest.TestCase ): @cached_property def snake_case_ ( self): return LayoutLMvaImageProcessor(apply_ocr=a) if is_vision_available() else None @slow def snake_case_ ( self): lowercase__ : Optional[int] = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base') lowercase__ : Tuple = self.default_image_processor lowercase__ : Union[str, Any] = prepare_img() lowercase__ : Optional[int] = image_processor(images=a , return_tensors='tf').pixel_values lowercase__ : List[Any] = tf.constant([[1, 2]]) lowercase__ : str = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]]) , axis=0) # forward pass lowercase__ : List[str] = model(input_ids=a , bbox=a , pixel_values=a , training=a) # verify the logits lowercase__ : Optional[int] = (1, 199, 768) self.assertEqual(outputs.last_hidden_state.shape , a) lowercase__ : Union[str, Any] = tf.constant( [[-0.0_529, 0.3_618, 0.1_632], [-0.1_587, -0.1_667, -0.0_400], [-0.1_557, -0.1_671, -0.0_505]]) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , a , atol=1e-4))
214
0
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class lowercase_ ( __SCREAMING_SNAKE_CASE ): A__ : Tuple = (EulerDiscreteScheduler,) A__ : int = 10 def lowerCamelCase_ ( self , **__UpperCamelCase ): """simple docstring""" UpperCamelCase_ = { """num_train_timesteps""": 1_1_0_0, """beta_start""": 0.0_001, """beta_end""": 0.02, """beta_schedule""": """linear""", } config.update(**__UpperCamelCase ) return config def lowerCamelCase_ ( self ): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" for beta_start, beta_end in zip([0.00_001, 0.0_001, 0.001] , [0.0_002, 0.002, 0.02] ): self.check_over_configs(beta_start=__UpperCamelCase , beta_end=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=__UpperCamelCase ) def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase_ = sample.to(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config(prediction_type="""v_prediction""" ) UpperCamelCase_ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase_ = sample.to(__UpperCamelCase ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase_ = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 0.0_002 ) < 1e-2 assert abs(result_mean.item() - 2.26_76e-06 ) < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCamelCase_ = sample.to(__UpperCamelCase ) for t in scheduler.timesteps: UpperCamelCase_ = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 10.0_807 ) < 1e-2 assert abs(result_mean.item() - 0.0_131 ) < 1e-3 def lowerCamelCase_ ( self ): """simple docstring""" UpperCamelCase_ = self.scheduler_classes[0] UpperCamelCase_ = self.get_scheduler_config() UpperCamelCase_ = scheduler_class(**__UpperCamelCase , use_karras_sigmas=__UpperCamelCase ) scheduler.set_timesteps(self.num_inference_steps , device=__UpperCamelCase ) UpperCamelCase_ = torch.manual_seed(0 ) UpperCamelCase_ = self.dummy_model() UpperCamelCase_ = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() UpperCamelCase_ = sample.to(__UpperCamelCase ) for t in scheduler.timesteps: UpperCamelCase_ = scheduler.scale_model_input(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = model(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ = scheduler.step(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , generator=__UpperCamelCase ) UpperCamelCase_ = output.prev_sample UpperCamelCase_ = torch.sum(torch.abs(__UpperCamelCase ) ) UpperCamelCase_ = torch.mean(torch.abs(__UpperCamelCase ) ) assert abs(result_sum.item() - 124.52_299_499_511_719 ) < 1e-2 assert abs(result_mean.item() - 0.16_213_932_633_399_963 ) < 1e-3
261
import multiprocessing import time from arguments import PretokenizationArguments from datasets import load_dataset from transformers import AutoTokenizer, HfArgumentParser def lowerCamelCase__ ( a__ : Dict ) -> List[Any]: UpperCamelCase_ = {} UpperCamelCase_ = tokenizer(example["""content"""] , truncation=a__ )["""input_ids"""] UpperCamelCase_ = len(example["""content"""] ) / len(output["""input_ids"""] ) return output _A = HfArgumentParser(PretokenizationArguments) _A = parser.parse_args() if args.num_workers is None: _A = multiprocessing.cpu_count() _A = AutoTokenizer.from_pretrained(args.tokenizer_dir) _A = time.time() _A = load_dataset(args.dataset_name, split='''train''') print(F'''Dataset loaded in {time.time()-t_start:.2f}s''') _A = time.time() _A = ds.map( tokenize, num_proc=args.num_workers, remove_columns=[ '''repo_name''', '''path''', '''copies''', '''size''', '''content''', '''license''', '''hash''', '''line_mean''', '''line_max''', '''alpha_frac''', '''autogenerated''', ], ) print(F'''Dataset tokenized in {time.time()-t_start:.2f}s''') _A = time.time() ds.push_to_hub(args.tokenized_data_repo) print(F'''Data pushed to the hub in {time.time()-t_start:.2f}s''')
261
1
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class __magic_name__ ( unittest.TestCase ): """simple docstring""" def __init__( self :Tuple , snake_case :Any , snake_case :List[Any]=13 , snake_case :int=7 , snake_case :int=True , snake_case :Union[str, Any]=True , snake_case :Tuple=True , snake_case :Dict=True , snake_case :Optional[int]=99 , snake_case :Tuple=32 , snake_case :List[Any]=5 , snake_case :int=4 , snake_case :List[str]=37 , snake_case :Tuple="gelu" , snake_case :List[str]=0.1 , snake_case :List[Any]=0.1 , snake_case :Union[str, Any]=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Union[str, Any]=0.02 , snake_case :List[Any]=4 , ): '''simple docstring''' A_ : Any = parent A_ : Union[str, Any] = batch_size A_ : int = seq_length A_ : Optional[int] = is_training A_ : Optional[Any] = use_attention_mask A_ : Union[str, Any] = use_token_type_ids A_ : str = use_labels A_ : Any = vocab_size A_ : Any = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : Any = num_attention_heads A_ : int = intermediate_size A_ : Tuple = hidden_act A_ : Union[str, Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : Dict = type_vocab_size A_ : Tuple = type_sequence_label_size A_ : Any = initializer_range A_ : int = num_choices def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ : Tuple = None if self.use_attention_mask: A_ : Dict = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : List[Any] = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' A_ : Optional[Any] = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : str = config_and_inputs A_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : str = self.prepare_config_and_inputs() A_ , A_ , A_ , A_ : List[Any] = config_and_inputs A_ : Dict = True A_ : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) A_ : Dict = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class __magic_name__ ( lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = True __UpperCamelCase = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE ( self :Union[str, Any] ): '''simple docstring''' A_ : Tuple = FlaxRobertaModelTester(self ) @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' for model_class_name in self.all_model_classes: A_ : List[str] = model_class_name.from_pretrained("roberta-base" , from_pt=snake_case ) A_ : List[str] = model(np.ones((1, 1) ) ) self.assertIsNotNone(snake_case )
300
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class __magic_name__ : """simple docstring""" def __init__( self :Tuple , snake_case :Optional[Any] , snake_case :Tuple=13 , snake_case :Dict=7 , snake_case :List[Any]=True , snake_case :List[Any]=True , snake_case :Dict=True , snake_case :Any=True , snake_case :Optional[int]=99 , snake_case :Any=32 , snake_case :Dict=2 , snake_case :int=4 , snake_case :Optional[int]=37 , snake_case :List[str]="gelu" , snake_case :List[Any]=0.1 , snake_case :Optional[Any]=0.1 , snake_case :Tuple=512 , snake_case :Tuple=16 , snake_case :Tuple=2 , snake_case :Optional[int]=0.02 , snake_case :str=3 , snake_case :Optional[int]=4 , snake_case :List[str]=None , snake_case :Tuple=1_000 , ): '''simple docstring''' A_ : str = parent A_ : str = batch_size A_ : str = seq_length A_ : Any = is_training A_ : Any = use_input_mask A_ : str = use_token_type_ids A_ : Tuple = use_labels A_ : Optional[Any] = vocab_size A_ : Dict = hidden_size A_ : str = num_hidden_layers A_ : Dict = num_attention_heads A_ : str = intermediate_size A_ : int = hidden_act A_ : List[Any] = hidden_dropout_prob A_ : Dict = attention_probs_dropout_prob A_ : Optional[Any] = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Any = type_sequence_label_size A_ : Dict = initializer_range A_ : Any = num_labels A_ : Optional[int] = num_choices A_ : Optional[Any] = scope A_ : Any = range_bbox def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : Tuple = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : str = bbox[i, j, 3] A_ : Union[str, Any] = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : Any = bbox[i, j, 2] A_ : Tuple = bbox[i, j, 0] A_ : int = t A_ : int = tf.convert_to_tensor(snake_case ) A_ : Any = None if self.use_input_mask: A_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : str = None if self.use_token_type_ids: A_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : Dict = None A_ : List[Any] = None A_ : List[str] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : str = ids_tensor([self.batch_size] , self.num_choices ) A_ : int = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self :str , snake_case :Dict , snake_case :Union[str, Any] , snake_case :int , snake_case :int , snake_case :Union[str, Any] , snake_case :Tuple , snake_case :Optional[int] , snake_case :List[Any] ): '''simple docstring''' A_ : Any = TFLayoutLMModel(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) A_ : str = model(snake_case , snake_case , token_type_ids=snake_case ) A_ : List[Any] = model(snake_case , snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :Any , snake_case :List[Any] , snake_case :List[str] , snake_case :Optional[Any] , snake_case :Dict , snake_case :Any , snake_case :Union[str, Any] , snake_case :List[Any] ): '''simple docstring''' A_ : Optional[int] = TFLayoutLMForMaskedLM(config=snake_case ) A_ : Tuple = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Dict , snake_case :Tuple , snake_case :Tuple , snake_case :List[str] , snake_case :Tuple , snake_case :str , snake_case :Optional[int] , snake_case :Any ): '''simple docstring''' A_ : Union[str, Any] = self.num_labels A_ : int = TFLayoutLMForSequenceClassification(config=snake_case ) A_ : Optional[int] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Dict , snake_case :str , snake_case :Optional[Any] , snake_case :int , snake_case :Any , snake_case :Tuple , snake_case :List[str] , snake_case :Union[str, Any] ): '''simple docstring''' A_ : List[Any] = self.num_labels A_ : str = TFLayoutLMForTokenClassification(config=snake_case ) A_ : Union[str, Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE ( self :int , snake_case :List[str] , snake_case :Optional[int] , snake_case :Union[str, Any] , snake_case :List[Any] , snake_case :int , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering(config=snake_case ) A_ : List[Any] = model(snake_case , snake_case , attention_mask=snake_case , token_type_ids=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : int = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Union[str, Any] = config_and_inputs A_ : Optional[Any] = { "input_ids": input_ids, "bbox": bbox, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class __magic_name__ ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" __UpperCamelCase = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __UpperCamelCase = ( { '''feature-extraction''': TFLayoutLMModel, '''fill-mask''': TFLayoutLMForMaskedLM, '''text-classification''': TFLayoutLMForSequenceClassification, '''token-classification''': TFLayoutLMForTokenClassification, '''zero-shot''': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = 10 def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' A_ : Tuple = TFLayoutLMModelTester(self ) A_ : List[Any] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' A_ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[Any] ): '''simple docstring''' for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : List[str] = TFLayoutLMModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @unittest.skip("Onnx compliancy broke with TF 2.10" ) def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' pass def __snake_case ( ) -> Optional[Any]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off A_ : int = tf.convert_to_tensor([[101,1019,1014,1016,1037,12849,4747,1004,14246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,11300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,19274,2772,6205,27814,16147,16147,4343,2047,10283,10969,14389,1012,2338,102]] ) # noqa: E231 A_ : int = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : List[Any] = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Tuple = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class __magic_name__ ( unittest.TestCase ): """simple docstring""" @slow def SCREAMING_SNAKE_CASE ( self :Tuple ): '''simple docstring''' A_ : str = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : Tuple = prepare_layoutlm_batch_inputs() # forward pass A_ : Tuple = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the sequence output on [0, :3, :3] A_ : List[Any] = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case , atol=1e-3 ) ) # test the pooled output on [1, :3] A_ : Optional[Any] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , snake_case , atol=1e-3 ) ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Union[str, Any] = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Dict = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : List[str] = outputs.loss A_ : Union[str, Any] = (2,) self.assertEqual(loss.shape , snake_case ) # test the shape of the logits A_ : Tuple = outputs.logits A_ : Tuple = (2, 2) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' A_ : int = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model( input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) # test the shape of the logits A_ : Dict = outputs.logits A_ : List[Any] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , snake_case ) @slow def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' A_ : Optional[Any] = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" ) A_ , A_ , A_ , A_ , A_ : str = prepare_layoutlm_batch_inputs() # forward pass A_ : Union[str, Any] = model(input_ids=snake_case , bbox=snake_case , attention_mask=snake_case , token_type_ids=snake_case ) # test the shape of the logits A_ : Union[str, Any] = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , snake_case ) self.assertEqual(outputs.end_logits.shape , snake_case )
300
1
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
267
import numpy as np import datasets UpperCAmelCase = """ Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] """ UpperCAmelCase = """\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } """ UpperCAmelCase = """ Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric(\"mahalanobis\") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {'mahalanobis': array([0.5])} """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def UpperCamelCase__ ( self , _UpperCAmelCase , _UpperCAmelCase ): # convert to numpy arrays snake_case_ = np.array(_UpperCAmelCase ) snake_case_ = np.array(_UpperCAmelCase ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction snake_case_ = X - np.mean(_UpperCAmelCase ) snake_case_ = np.cov(reference_distribution.T ) try: snake_case_ = np.linalg.inv(_UpperCAmelCase ) except np.linalg.LinAlgError: snake_case_ = np.linalg.pinv(_UpperCAmelCase ) snake_case_ = np.dot(_UpperCAmelCase , _UpperCAmelCase ) snake_case_ = np.dot(_UpperCAmelCase , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
267
1
import copy import tempfile import unittest from transformers import MaMaaaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from transformers.utils import cached_property from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaMaaaForConditionalGeneration, MaMaaaModel, MaMaaaTokenizer from transformers.models.mam_aaa.modeling_mam_aaa import MaMaaaDecoder, MaMaaaEncoder def a__ ( snake_case , snake_case , snake_case , snake_case=None , snake_case=None , snake_case=None , snake_case=None , snake_case=None , ): """simple docstring""" if attention_mask is None: __SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: __SCREAMING_SNAKE_CASE : Any = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: __SCREAMING_SNAKE_CASE : List[Any] = torch.ones(config.encoder_layers , config.encoder_attention_heads , device=snake_case ) if decoder_head_mask is None: __SCREAMING_SNAKE_CASE : Dict = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case ) if cross_attn_head_mask is None: __SCREAMING_SNAKE_CASE : Tuple = torch.ones(config.decoder_layers , config.decoder_attention_heads , device=snake_case ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } class __UpperCamelCase : """simple docstring""" def __init__( self : int , _A : Optional[int] , _A : Optional[int]=13 , _A : int=7 , _A : Dict=True , _A : str=False , _A : Dict=99 , _A : int=16 , _A : str=2 , _A : Optional[Any]=4 , _A : Tuple=4 , _A : Union[str, Any]="relu" , _A : Optional[Any]=0.1 , _A : int=0.1 , _A : str=0.0 , _A : int=0.0 , _A : Dict=20 , _A : str=2 , _A : Dict=1 , _A : Optional[Any]=0 , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = parent __SCREAMING_SNAKE_CASE : Optional[Any] = batch_size __SCREAMING_SNAKE_CASE : Union[str, Any] = seq_length __SCREAMING_SNAKE_CASE : int = is_training __SCREAMING_SNAKE_CASE : Tuple = use_labels __SCREAMING_SNAKE_CASE : Dict = vocab_size __SCREAMING_SNAKE_CASE : List[Any] = hidden_size __SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers __SCREAMING_SNAKE_CASE : Any = num_attention_heads __SCREAMING_SNAKE_CASE : List[Any] = intermediate_size __SCREAMING_SNAKE_CASE : Tuple = hidden_act __SCREAMING_SNAKE_CASE : int = hidden_dropout_prob __SCREAMING_SNAKE_CASE : Any = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE : Optional[Any] = encoder_layerdrop __SCREAMING_SNAKE_CASE : Optional[Any] = decoder_layerdrop __SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings __SCREAMING_SNAKE_CASE : Dict = eos_token_id __SCREAMING_SNAKE_CASE : Dict = pad_token_id __SCREAMING_SNAKE_CASE : Tuple = bos_token_id def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE : List[Any] = self.eos_token_id # Eos Token __SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for M2M100 the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input __SCREAMING_SNAKE_CASE : Dict = input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE : List[str] = decoder_input_ids.clamp(self.pad_token_id + 1 ) __SCREAMING_SNAKE_CASE : List[Any] = self.get_config() __SCREAMING_SNAKE_CASE : Tuple = prepare_mam_aaa_inputs_dict(_A , _A , _A ) return config, inputs_dict def UpperCAmelCase__ ( self : str ): """simple docstring""" return MaMaaaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , encoder_layerdrop=self.encoder_layerdrop , decoder_layerdrop=self.decoder_layerdrop , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : int = self.prepare_config_and_inputs() return config, inputs_dict def UpperCAmelCase__ ( self : int , _A : List[str] , _A : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = MaMaaaModel(config=_A ).get_decoder().to(_A ).eval() __SCREAMING_SNAKE_CASE : Union[str, Any] = inputs_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Optional[int] = inputs_dict['''attention_mask'''] __SCREAMING_SNAKE_CASE : Any = inputs_dict['''head_mask'''] # first forward pass __SCREAMING_SNAKE_CASE : List[Any] = model(_A , attention_mask=_A , head_mask=_A , use_cache=_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Dict = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __SCREAMING_SNAKE_CASE : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __SCREAMING_SNAKE_CASE : Optional[int] = ids_tensor((self.batch_size, 3) , 2 ) # append to next input_ids and __SCREAMING_SNAKE_CASE : Tuple = torch.cat([input_ids, next_tokens] , dim=-1 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([attention_mask, next_attn_mask] , dim=-1 ) __SCREAMING_SNAKE_CASE : Optional[int] = model(_A , attention_mask=_A )['''last_hidden_state'''] __SCREAMING_SNAKE_CASE : List[str] = model(_A , attention_mask=_A , past_key_values=_A )[ '''last_hidden_state''' ] # select random slice __SCREAMING_SNAKE_CASE : Tuple = ids_tensor((1,) , output_from_past.shape[-1] ).item() __SCREAMING_SNAKE_CASE : Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __SCREAMING_SNAKE_CASE : Optional[Any] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_A , _A , atol=1e-2 ) ) def UpperCAmelCase__ ( self : Optional[int] , _A : List[str] , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[Any] = MaMaaaModel(config=_A ).to(_A ).eval() __SCREAMING_SNAKE_CASE : Tuple = model(**_A ) __SCREAMING_SNAKE_CASE : Any = outputs.encoder_last_hidden_state __SCREAMING_SNAKE_CASE : Tuple = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Dict = model.get_encoder() encoder.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : List[str] = MaMaaaEncoder.from_pretrained(_A ).to(_A ) __SCREAMING_SNAKE_CASE : Optional[Any] = encoder(inputs_dict['''input_ids'''] , attention_mask=inputs_dict['''attention_mask'''] )[ 0 ] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1e-3 ) with tempfile.TemporaryDirectory() as tmpdirname: __SCREAMING_SNAKE_CASE : Tuple = model.get_decoder() decoder.save_pretrained(_A ) __SCREAMING_SNAKE_CASE : int = MaMaaaDecoder.from_pretrained(_A ).to(_A ) __SCREAMING_SNAKE_CASE : Any = decoder( input_ids=inputs_dict['''decoder_input_ids'''] , attention_mask=inputs_dict['''decoder_attention_mask'''] , encoder_hidden_states=_A , encoder_attention_mask=inputs_dict['''attention_mask'''] , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1e-3 ) @require_torch class __UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ = ( ( MaMaaaModel, MaMaaaForConditionalGeneration, ) if is_torch_available() else () ) lowerCAmelCase_ = (MaMaaaForConditionalGeneration,) if is_torch_available() else () lowerCAmelCase_ = ( { '''conversational''': MaMaaaForConditionalGeneration, '''feature-extraction''': MaMaaaModel, '''summarization''': MaMaaaForConditionalGeneration, '''text2text-generation''': MaMaaaForConditionalGeneration, '''translation''': MaMaaaForConditionalGeneration, } if is_torch_available() else {} ) lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = False lowerCAmelCase_ = False def UpperCAmelCase__ ( self : Dict , _A : Union[str, Any] , _A : Any , _A : int , _A : str , _A : int ): """simple docstring""" if pipeline_test_casse_name == "TranslationPipelineTests": # Get `ValueError: Translation requires a `src_lang` and a `tgt_lang` for this model`. # `M2M100Config` was never used in pipeline tests: cannot create a simple tokenizer. return True return False def UpperCAmelCase__ ( self : Optional[int] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MaMaaaModelTester(self ) __SCREAMING_SNAKE_CASE : Tuple = ConfigTester(self , config_class=_A ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : Optional[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Optional[int] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: __SCREAMING_SNAKE_CASE : Tuple = model_class(_A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_A ) __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : List[str] = model_class.from_pretrained(_A , output_loading_info=_A ) self.assertEqual(info['''missing_keys'''] , [] ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(*_A ) def UpperCAmelCase__ ( self : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*_A ) def UpperCAmelCase__ ( self : int ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in (MaMaaaModel, MaMaaaForConditionalGeneration): __SCREAMING_SNAKE_CASE : str = model_class(_A ) model.to(_A ) model.eval() __SCREAMING_SNAKE_CASE : Optional[Any] = copy.deepcopy(self._prepare_for_class(_A , _A ) ) if not self.is_encoder_decoder: __SCREAMING_SNAKE_CASE : int = inputs['''input_ids'''] del inputs["input_ids"] else: __SCREAMING_SNAKE_CASE : List[str] = inputs['''input_ids'''] __SCREAMING_SNAKE_CASE : Optional[Any] = inputs.get('''decoder_input_ids''' , _A ) del inputs["input_ids"] inputs.pop('''decoder_input_ids''' , _A ) __SCREAMING_SNAKE_CASE : Dict = model.get_input_embeddings() if not self.is_encoder_decoder: __SCREAMING_SNAKE_CASE : Optional[Any] = wte(_A ) else: __SCREAMING_SNAKE_CASE : Dict = wte(_A ) __SCREAMING_SNAKE_CASE : str = wte(_A ) with torch.no_grad(): model(**_A )[0] def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() __SCREAMING_SNAKE_CASE : int = input_dict['''input_ids'''] __SCREAMING_SNAKE_CASE : Optional[Any] = input_ids.ne(1 ).to(_A ) __SCREAMING_SNAKE_CASE : int = MaMaaaForConditionalGeneration(_A ).eval().to(_A ) if torch_device == "cuda": model.half() model.generate(_A , attention_mask=_A ) model.generate(num_beams=4 , do_sample=_A , early_stopping=_A , num_return_sequences=3 ) def a__ ( snake_case ): """simple docstring""" return torch.tensor(snake_case , dtype=torch.long , device=snake_case ) lowercase_ = 1e-4 @require_torch @require_sentencepiece @require_tokenizers @slow class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' ) def UpperCAmelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MaMaaaModel.from_pretrained('''facebook/m2m100_418M''' ).to(_A ) __SCREAMING_SNAKE_CASE : Dict = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) __SCREAMING_SNAKE_CASE : int = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) __SCREAMING_SNAKE_CASE : Optional[int] = prepare_mam_aaa_inputs_dict(model.config , _A , _A ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[Any] = model(**_A )[0] __SCREAMING_SNAKE_CASE : List[Any] = torch.Size((1, 11, 1024) ) self.assertEqual(output.shape , _A ) # change to expected output here __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor( [[-0.77_80, -0.16_76, 0.10_38], [-6.75_56, -1.39_92, 0.05_67], [-7.53_83, -0.59_20, -0.27_79]] , device=_A ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=_A ) ) def UpperCAmelCase__ ( self : Any ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_A ) # change to intended input __SCREAMING_SNAKE_CASE : Dict = _long_tensor([[12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38, 2]] ) __SCREAMING_SNAKE_CASE : Optional[Any] = _long_tensor([[2, 12_8028, 98, 12, 3_0527, 2732, 159, 7755, 6_1904, 3_9144, 38]] ) __SCREAMING_SNAKE_CASE : Tuple = prepare_mam_aaa_inputs_dict(model.config , _A , _A ) with torch.no_grad(): __SCREAMING_SNAKE_CASE : Optional[int] = model(**_A )[0] __SCREAMING_SNAKE_CASE : Any = torch.Size((1, 11, model.config.vocab_size) ) self.assertEqual(output.shape , _A ) # change to expected output here __SCREAMING_SNAKE_CASE : int = torch.tensor( [[-1.04_48, -1.04_11, 3.79_92], [-3.21_91, -3.23_86, -1.34_51], [-3.62_10, -3.59_93, 0.49_25]] , device=_A ) self.assertTrue(torch.allclose(output[:, :3, :3] , _A , atol=_A ) ) def UpperCAmelCase__ ( self : List[Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = MaMaaaForConditionalGeneration.from_pretrained('''facebook/m2m100_418M''' ).to(_A ) __SCREAMING_SNAKE_CASE : Any = MaMaaaTokenizer.from_pretrained('''facebook/m2m100_418M''' , src_lang='''fr''' , tgt_lang='''en''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = [ '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''Lorsque François Hollande téléphone à Barack Obama ou quand le ministre des affaires étrangères Laurent''' ''' Fabius convoque l\'ambassadeur des Etats-Unis, ils réagissent à une vraie découverte, qui est celle de''' ''' l\'ampleur de la surveillance américaine sur l\'ensemble des communications en France.''', ] # The below article tests that we don't add any hypotheses outside of the top n_beams __SCREAMING_SNAKE_CASE : List[str] = tokenizer(_A , padding=_A , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Tuple = model.generate( input_ids=dct['''input_ids'''].to(_A ) , attention_mask=dct['''attention_mask'''].to(_A ) , num_beams=5 , forced_bos_token_id=tokenizer.get_lang_id('''en''' ) , ) __SCREAMING_SNAKE_CASE : Optional[int] = [ '''The NSA case highlights the total absence of intelligence debate''', '''I think there are two levels of response from the French government.''', '''When François Hollande calls Barack Obama or when Foreign Minister Laurent Fabius calls the U.S.''' ''' Ambassador, they respond to a real discovery, which is that of the scale of U.S. surveillance on all''' ''' communications in France.''', ] __SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode( hypotheses_batch.tolist() , clean_up_tokenization_spaces=_A , skip_special_tokens=_A ) assert generated == expected_en
303
from typing import List, Optional, Tuple, Union import torch from ...utils import logging, randn_tensor from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline lowercase_ = logging.get_logger(__name__) # pylint: disable=invalid-name class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" def __init__( self : List[str] , _A : Dict , _A : List[Any] ): """simple docstring""" super().__init__() self.register_modules(unet=_A , scheduler=_A ) @torch.no_grad() def __call__( self : List[str] , _A : int = 1 , _A : int = 100 , _A : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _A : Optional[float] = None , _A : bool = True , ): """simple docstring""" if audio_length_in_s is None: __SCREAMING_SNAKE_CASE : Optional[Any] = self.unet.config.sample_size / self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : List[Any] = audio_length_in_s * self.unet.config.sample_rate __SCREAMING_SNAKE_CASE : Any = 2 ** len(self.unet.up_blocks ) if sample_size < 3 * down_scale_factor: raise ValueError( F'''{audio_length_in_s} is too small. Make sure it\'s bigger or equal to''' F''' {3 * down_scale_factor / self.unet.config.sample_rate}.''' ) __SCREAMING_SNAKE_CASE : int = int(_A ) if sample_size % down_scale_factor != 0: __SCREAMING_SNAKE_CASE : Optional[int] = ( (audio_length_in_s * self.unet.config.sample_rate) // down_scale_factor + 1 ) * down_scale_factor logger.info( F'''{audio_length_in_s} is increased to {sample_size / self.unet.config.sample_rate} so that it can be handled''' F''' by the model. It will be cut to {original_sample_size / self.unet.config.sample_rate} after the denoising''' ''' process.''' ) __SCREAMING_SNAKE_CASE : List[Any] = int(_A ) __SCREAMING_SNAKE_CASE : Union[str, Any] = next(iter(self.unet.parameters() ) ).dtype __SCREAMING_SNAKE_CASE : int = (batch_size, self.unet.config.in_channels, sample_size) if isinstance(_A , _A ) and len(_A ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(_A )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __SCREAMING_SNAKE_CASE : Dict = randn_tensor(_A , generator=_A , device=self.device , dtype=_A ) # set step values self.scheduler.set_timesteps(_A , device=audio.device ) __SCREAMING_SNAKE_CASE : Dict = self.scheduler.timesteps.to(_A ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __SCREAMING_SNAKE_CASE : List[Any] = self.unet(_A , _A ).sample # 2. compute previous image: x_t -> t_t-1 __SCREAMING_SNAKE_CASE : Optional[int] = self.scheduler.step(_A , _A , _A ).prev_sample __SCREAMING_SNAKE_CASE : str = audio.clamp(-1 , 1 ).float().cpu().numpy() __SCREAMING_SNAKE_CASE : str = audio[:, :, :original_sample_size] if not return_dict: return (audio,) return AudioPipelineOutput(audios=_A )
303
1
def _a ( UpperCAmelCase , UpperCAmelCase ) -> List[Any]: """simple docstring""" lowerCamelCase__ : Tuple = (boundary[1] - boundary[0]) / steps lowerCamelCase__ : Optional[Any] = boundary[0] lowerCamelCase__ : List[str] = boundary[1] lowerCamelCase__ : Union[str, Any] = make_points(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowerCamelCase__ : Tuple = 0.0 y += (h / 2.0) * f(UpperCAmelCase ) for i in x_i: # print(i) y += h * f(UpperCAmelCase ) y += (h / 2.0) * f(UpperCAmelCase ) return y def _a ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Any: """simple docstring""" lowerCamelCase__ : Union[str, Any] = a + h while x < (b - h): yield x lowerCamelCase__ : Tuple = x + h def _a ( UpperCAmelCase ) -> int: # enter your function here """simple docstring""" lowerCamelCase__ : Optional[int] = (x - 0) * (x - 0) return y def _a ( ) -> Any: """simple docstring""" lowerCamelCase__ : List[str] = 0.0 # Lower bound of integration lowerCamelCase__ : int = 1.0 # Upper bound of integration lowerCamelCase__ : Dict = 10.0 # define number of steps or resolution lowerCamelCase__ : str = [a, b] # define boundary of integration lowerCamelCase__ : str = method_a(UpperCAmelCase , UpperCAmelCase ) print(f"y = {y}" ) if __name__ == "__main__": main()
354
def _a ( UpperCAmelCase ) -> int: """simple docstring""" if not isinstance(UpperCAmelCase , UpperCAmelCase ) or number < 0: raise ValueError('''Input must be a non-negative integer''' ) lowerCamelCase__ : List[str] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
265
0
'''simple docstring''' import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset a : List[str] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCamelCase_ ( nn.Module ): def __init__( self , A ) -> str: super().__init__() UpperCAmelCase : str = torchvision.models.resnetaaa(pretrained=A ) UpperCAmelCase : List[str] = list(model.children() )[:-2] UpperCAmelCase : Any = nn.Sequential(*A ) UpperCAmelCase : int = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def _lowercase( self , A ) -> List[str]: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 UpperCAmelCase : str = self.pool(self.model(A ) ) UpperCAmelCase : Dict = torch.flatten(A , start_dim=2 ) UpperCAmelCase : int = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A , A , A , A , A ) -> int: UpperCAmelCase : List[str] = [json.loads(A ) for l in open(A )] UpperCAmelCase : List[Any] = os.path.dirname(A ) UpperCAmelCase : Optional[Any] = tokenizer UpperCAmelCase : Tuple = labels UpperCAmelCase : List[Any] = len(A ) UpperCAmelCase : Dict = max_seq_length UpperCAmelCase : List[Any] = transforms def __len__( self ) -> Optional[int]: return len(self.data ) def __getitem__( self , A ) -> Any: UpperCAmelCase : Optional[Any] = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=A ) ) UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Optional[Any] = sentence[0], sentence[1:-1], sentence[-1] UpperCAmelCase : List[Any] = sentence[: self.max_seq_length] UpperCAmelCase : Optional[int] = torch.zeros(self.n_classes ) UpperCAmelCase : str = 1 UpperCAmelCase : List[Any] = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""] ) ).convert("""RGB""" ) UpperCAmelCase : Optional[int] = self.transforms(A ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _lowercase( self ) -> int: UpperCAmelCase : Tuple = Counter() for row in self.data: label_freqs.update(row["""label"""] ) return label_freqs def __lowerCamelCase ( _lowercase ) -> Dict: UpperCAmelCase : Dict = [len(row["""sentence"""] ) for row in batch] UpperCAmelCase , UpperCAmelCase : Union[str, Any] = len(_lowercase ), max(_lowercase ) UpperCAmelCase : Dict = torch.zeros(_lowercase , _lowercase , dtype=torch.long ) UpperCAmelCase : str = torch.zeros(_lowercase , _lowercase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(_lowercase , _lowercase ) ): UpperCAmelCase : List[Any] = input_row["""sentence"""] UpperCAmelCase : List[str] = 1 UpperCAmelCase : Union[str, Any] = torch.stack([row["""image"""] for row in batch] ) UpperCAmelCase : Any = torch.stack([row["""label"""] for row in batch] ) UpperCAmelCase : List[Any] = torch.stack([row["""image_start_token"""] for row in batch] ) UpperCAmelCase : Optional[int] = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def __lowerCamelCase ( ) -> Tuple: return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def __lowerCamelCase ( ) -> List[str]: return transforms.Compose( [ transforms.Resize(2_5_6 ), transforms.CenterCrop(2_2_4 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
265
'''simple docstring''' import unittest import torch from torch import nn from accelerate.test_utils import require_cuda from accelerate.utils.memory import find_executable_batch_size, release_memory def __lowerCamelCase ( ) -> Any: raise RuntimeError("""CUDA out of memory.""" ) class UpperCamelCase_ ( nn.Module ): def __init__( self ) -> Any: super().__init__() UpperCAmelCase : Tuple = nn.Linear(3 , 4 ) UpperCAmelCase : Tuple = nn.BatchNormad(4 ) UpperCAmelCase : int = nn.Linear(4 , 5 ) def _lowercase( self , A ) -> Any: return self.lineara(self.batchnorm(self.lineara(A ) ) ) class UpperCamelCase_ ( unittest.TestCase ): def _lowercase( self ) -> Optional[Any]: UpperCAmelCase : Optional[int] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() mock_training_loop_function() self.assertListEqual(A , [128, 64, 32, 16, 8] ) def _lowercase( self ) -> Any: UpperCAmelCase : Optional[Any] = [] @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A ): nonlocal batch_sizes batch_sizes.append(A ) if batch_size != 8: raise_fake_out_of_memory() return batch_size, arga UpperCAmelCase , UpperCAmelCase : Optional[int] = mock_training_loop_function("""hello""" ) self.assertListEqual(A , [128, 64, 32, 16, 8] ) self.assertListEqual([bs, arga] , [8, """hello"""] ) def _lowercase( self ) -> Any: @find_executable_batch_size(starting_batch_size=0 ) def mock_training_loop_function(A ): pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> Optional[int]: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): if batch_size > 0: raise_fake_out_of_memory() pass with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""No executable batch size found, reached zero.""" , cm.exception.args[0] ) def _lowercase( self ) -> Optional[Any]: @find_executable_batch_size(starting_batch_size=128 ) def mock_training_loop_function(A , A , A ): if batch_size != 8: raise raise_fake_out_of_memory() with self.assertRaises(A ) as cm: mock_training_loop_function(128 , """hello""" , """world""" ) self.assertIn("""Batch size was passed into `f`""" , cm.exception.args[0] ) self.assertIn("""`f(arg1='hello', arg2='world')""" , cm.exception.args[0] ) def _lowercase( self ) -> int: @find_executable_batch_size(starting_batch_size=16 ) def mock_training_loop_function(A ): raise ValueError("""Oops, we had an error!""" ) with self.assertRaises(A ) as cm: mock_training_loop_function() self.assertIn("""Oops, we had an error!""" , cm.exception.args[0] ) @require_cuda def _lowercase( self ) -> Optional[int]: UpperCAmelCase : Optional[Any] = torch.cuda.memory_allocated() UpperCAmelCase : List[str] = ModelForTest() model.cuda() self.assertGreater(torch.cuda.memory_allocated() , A ) UpperCAmelCase : Tuple = release_memory(A ) self.assertEqual(torch.cuda.memory_allocated() , A )
265
1
"""simple docstring""" import os import sys import unittest _a = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _a = os.path.join(git_repo_path, """src""", """diffusers""") class _UpperCAmelCase( unittest.TestCase ): def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = find_backend(''' if not is_torch_available():''') self.assertEqual(__a , '''torch''') # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") _UpperCamelCase = find_backend(''' if not (is_torch_available() and is_transformers_available()):''') self.assertEqual(__a , '''torch_and_transformers''') # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") _UpperCamelCase = find_backend( ''' if not (is_torch_available() and is_transformers_available() and is_onnx_available()):''') self.assertEqual(__a , '''torch_and_transformers_and_onnx''') def UpperCAmelCase ( self) -> str: '''simple docstring''' _UpperCamelCase = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('''torch''' , __a) self.assertIn('''torch_and_transformers''' , __a) self.assertIn('''flax_and_transformers''' , __a) self.assertIn('''torch_and_transformers_and_onnx''' , __a) # Likewise, we can't assert on the exact content of a key self.assertIn('''UNet2DModel''' , objects['''torch''']) self.assertIn('''FlaxUNet2DConditionModel''' , objects['''flax''']) self.assertIn('''StableDiffusionPipeline''' , objects['''torch_and_transformers''']) self.assertIn('''FlaxStableDiffusionPipeline''' , objects['''flax_and_transformers''']) self.assertIn('''LMSDiscreteScheduler''' , objects['''torch_and_scipy''']) self.assertIn('''OnnxStableDiffusionPipeline''' , objects['''torch_and_transformers_and_onnx''']) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = create_dummy_object('''CONSTANT''' , '''\'torch\'''') self.assertEqual(__a , '''\nCONSTANT = None\n''') _UpperCamelCase = create_dummy_object('''function''' , '''\'torch\'''') self.assertEqual( __a , '''\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n''') _UpperCamelCase = ''' class FakeClass(metaclass=DummyObject): _backends = \'torch\' def __init__(self, *args, **kwargs): requires_backends(self, \'torch\') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, \'torch\') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, \'torch\') ''' _UpperCamelCase = create_dummy_object('''FakeClass''' , '''\'torch\'''') self.assertEqual(__a , __a) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' _UpperCamelCase = '''# This file is autogenerated by the command `make fix-copies`, do not edit. from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) ''' _UpperCamelCase = create_dummy_files({'''torch''': ['''CONSTANT''', '''function''', '''FakeClass''']}) self.assertEqual(dummy_files['''torch'''] , __a)
100
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _UpperCAmelCase( lowerCamelCase ): lowercase__ = ( 'This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.' 'It takes two arguments named `image` which should be the original image, and `label` which should be a text ' 'describing the elements what should be identified in the segmentation mask. The tool returns the mask.' ) lowercase__ = 'CIDAS/clipseg-rd64-refined' lowercase__ = 'image_segmenter' lowercase__ = CLIPSegForImageSegmentation lowercase__ = ['image', 'text'] lowercase__ = ['image'] def __init__( self , *__a , **__a) -> Any: '''simple docstring''' requires_backends(self , ['''vision''']) super().__init__(*__a , **__a) def UpperCAmelCase ( self , __a , __a) -> Dict: '''simple docstring''' return self.pre_processor(text=[label] , images=[image] , padding=__a , return_tensors='''pt''') def UpperCAmelCase ( self , __a) -> Tuple: '''simple docstring''' with torch.no_grad(): _UpperCamelCase = self.model(**__a).logits return logits def UpperCAmelCase ( self , __a) -> Any: '''simple docstring''' _UpperCamelCase = outputs.cpu().detach().numpy() _UpperCamelCase = 0 _UpperCamelCase = 1 return Image.fromarray((array * 2_55).astype(np.uinta))
100
1
from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = "layer_norm" , __SCREAMING_SNAKE_CASE = False , ) ->Tuple: super().__init__() lowerCAmelCase = only_cross_attention lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' lowerCAmelCase = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to" F" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}." ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: lowerCAmelCase = AdaLayerNorm(__UpperCamelCase , __UpperCamelCase ) elif self.use_ada_layer_norm_zero: lowerCAmelCase = AdaLayerNormZero(__UpperCamelCase , __UpperCamelCase ) else: lowerCAmelCase = nn.LayerNorm(__UpperCamelCase , elementwise_affine=__UpperCamelCase ) lowerCAmelCase = Attention( query_dim=__UpperCamelCase , heads=__UpperCamelCase , dim_head=__UpperCamelCase , dropout=__UpperCamelCase , bias=__UpperCamelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__UpperCamelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. lowerCAmelCase = ( AdaLayerNorm(__UpperCamelCase , __UpperCamelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__UpperCamelCase , elementwise_affine=__UpperCamelCase ) ) lowerCAmelCase = Attention( query_dim=__UpperCamelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__UpperCamelCase , dim_head=__UpperCamelCase , dropout=__UpperCamelCase , bias=__UpperCamelCase , upcast_attention=__UpperCamelCase , ) # is self-attn if encoder_hidden_states is none else: lowerCAmelCase = None lowerCAmelCase = None # 3. Feed-forward lowerCAmelCase = nn.LayerNorm(__UpperCamelCase , elementwise_affine=__UpperCamelCase ) lowerCAmelCase = FeedForward(__UpperCamelCase , dropout=__UpperCamelCase , activation_fn=__UpperCamelCase , final_dropout=__UpperCamelCase ) # let chunk size default to None lowerCAmelCase = None lowerCAmelCase = 0 def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]: # Sets chunk feed-forward lowerCAmelCase = chunk_size lowerCAmelCase = dim def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ) ->Dict: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: lowerCAmelCase = self.norma(__UpperCamelCase , __UpperCamelCase ) elif self.use_ada_layer_norm_zero: lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = self.norma( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , hidden_dtype=hidden_states.dtype ) else: lowerCAmelCase = self.norma(__UpperCamelCase ) lowerCAmelCase = cross_attention_kwargs if cross_attention_kwargs is not None else {} lowerCAmelCase = self.attna( __UpperCamelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__UpperCamelCase , **__UpperCamelCase , ) if self.use_ada_layer_norm_zero: lowerCAmelCase = gate_msa.unsqueeze(1 ) * attn_output lowerCAmelCase = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: lowerCAmelCase = ( self.norma(__UpperCamelCase , __UpperCamelCase ) if self.use_ada_layer_norm else self.norma(__UpperCamelCase ) ) lowerCAmelCase = self.attna( __UpperCamelCase , encoder_hidden_states=__UpperCamelCase , attention_mask=__UpperCamelCase , **__UpperCamelCase , ) lowerCAmelCase = attn_output + hidden_states # 3. Feed-forward lowerCAmelCase = self.norma(__UpperCamelCase ) if self.use_ada_layer_norm_zero: lowerCAmelCase = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F"`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." ) lowerCAmelCase = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size lowerCAmelCase = torch.cat( [self.ff(__UpperCamelCase ) for hid_slice in norm_hidden_states.chunk(__UpperCamelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: lowerCAmelCase = self.ff(__UpperCamelCase ) if self.use_ada_layer_norm_zero: lowerCAmelCase = gate_mlp.unsqueeze(1 ) * ff_output lowerCAmelCase = ff_output + hidden_states return hidden_states class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 4 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = False , ) ->str: super().__init__() lowerCAmelCase = int(dim * mult ) lowerCAmelCase = dim_out if dim_out is not None else dim if activation_fn == "gelu": lowerCAmelCase = GELU(__UpperCamelCase , __UpperCamelCase ) if activation_fn == "gelu-approximate": lowerCAmelCase = GELU(__UpperCamelCase , __UpperCamelCase , approximate='''tanh''' ) elif activation_fn == "geglu": lowerCAmelCase = GEGLU(__UpperCamelCase , __UpperCamelCase ) elif activation_fn == "geglu-approximate": lowerCAmelCase = ApproximateGELU(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase = nn.ModuleList([] ) # project in self.net.append(__UpperCamelCase ) # project dropout self.net.append(nn.Dropout(__UpperCamelCase ) ) # project out self.net.append(nn.Linear(__UpperCamelCase , __UpperCamelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Dict: for module in self.net: lowerCAmelCase = module(__UpperCamelCase ) return hidden_states class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "none" ) ->List[Any]: super().__init__() lowerCAmelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase = approximate def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->str: if gate.device.type != "mps": return F.gelu(__UpperCamelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->int: lowerCAmelCase = self.proj(__UpperCamelCase ) lowerCAmelCase = self.gelu(__UpperCamelCase ) return hidden_states class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Optional[int]: super().__init__() lowerCAmelCase = nn.Linear(__UpperCamelCase , dim_out * 2 ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[Any]: if gate.device.type != "mps": return F.gelu(__UpperCamelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->List[str]: lowerCAmelCase , lowerCAmelCase = self.proj(__UpperCamelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__UpperCamelCase ) class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int: super().__init__() lowerCAmelCase = nn.Linear(__UpperCamelCase , __UpperCamelCase ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE ) ->Optional[int]: lowerCAmelCase = self.proj(__UpperCamelCase ) return x * torch.sigmoid(1.7_0_2 * x ) class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->Union[str, Any]: super().__init__() lowerCAmelCase = nn.Embedding(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase = nn.SiLU() lowerCAmelCase = nn.Linear(__UpperCamelCase , embedding_dim * 2 ) lowerCAmelCase = nn.LayerNorm(__UpperCamelCase , elementwise_affine=__UpperCamelCase ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->int: lowerCAmelCase = self.linear(self.silu(self.emb(__UpperCamelCase ) ) ) lowerCAmelCase , lowerCAmelCase = torch.chunk(__UpperCamelCase , 2 ) lowerCAmelCase = self.norm(__UpperCamelCase ) * (1 + scale) + shift return x class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[str]: super().__init__() lowerCAmelCase = CombinedTimestepLabelEmbeddings(__UpperCamelCase , __UpperCamelCase ) lowerCAmelCase = nn.SiLU() lowerCAmelCase = nn.Linear(__UpperCamelCase , 6 * embedding_dim , bias=__UpperCamelCase ) lowerCAmelCase = nn.LayerNorm(__UpperCamelCase , elementwise_affine=__UpperCamelCase , eps=1e-6 ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) ->Any: lowerCAmelCase = self.linear(self.silu(self.emb(__UpperCamelCase , __UpperCamelCase , hidden_dtype=__UpperCamelCase ) ) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = emb.chunk(6 , dim=1 ) lowerCAmelCase = self.norm(__UpperCamelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class lowercase_ ( nn.Module ): """simple docstring""" def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1e-5 ) ->List[str]: super().__init__() lowerCAmelCase = num_groups lowerCAmelCase = eps if act_fn is None: lowerCAmelCase = None else: lowerCAmelCase = get_activation(__UpperCamelCase ) lowerCAmelCase = nn.Linear(__UpperCamelCase , out_dim * 2 ) def SCREAMING_SNAKE_CASE_ ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ->List[str]: if self.act: lowerCAmelCase = self.act(__UpperCamelCase ) lowerCAmelCase = self.linear(__UpperCamelCase ) lowerCAmelCase = emb[:, :, None, None] lowerCAmelCase , lowerCAmelCase = emb.chunk(2 , dim=1 ) lowerCAmelCase = F.group_norm(__UpperCamelCase , self.num_groups , eps=self.eps ) lowerCAmelCase = x * (1 + scale) + shift return x
338
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Dict = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """camembert""" def __init__( self : List[str] , __UpperCamelCase : Union[str, Any]=3_0_5_2_2 , __UpperCamelCase : Optional[Any]=7_6_8 , __UpperCamelCase : Optional[int]=1_2 , __UpperCamelCase : Union[str, Any]=1_2 , __UpperCamelCase : List[Any]=3_0_7_2 , __UpperCamelCase : Dict="gelu" , __UpperCamelCase : Tuple=0.1 , __UpperCamelCase : int=0.1 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : Dict=2 , __UpperCamelCase : int=0.0_2 , __UpperCamelCase : int=1e-12 , __UpperCamelCase : Optional[Any]=1 , __UpperCamelCase : Dict=0 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : Any="absolute" , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : str=None , **__UpperCamelCase : Optional[Any] , )->str: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = hidden_act _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = initializer_range _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = position_embedding_type _UpperCAmelCase = use_cache _UpperCAmelCase = classifier_dropout class _a ( lowerCAmelCase): """simple docstring""" @property def lowercase__ ( self : int )->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _UpperCAmelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _UpperCAmelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
260
0
from typing import List, Optional, Union import numpy as np import torch import torchaudio.compliance.kaldi as ta_kaldi from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = ['input_features', 'attention_mask'] def __init__( self : Tuple , lowercase__ : List[str]=80 , lowercase__ : Optional[int]=16_000 , lowercase__ : Any=80 , lowercase__ : Optional[Any]=0.0 , lowercase__ : int=True , lowercase__ : Optional[int]=True , lowercase__ : Any=True , **lowercase__ : Optional[Any] , ): '''simple docstring''' super().__init__(feature_size=lowercase__ , sampling_rate=lowercase__ , padding_value=lowercase__ , **lowercase__) lowerCAmelCase__ = num_mel_bins lowerCAmelCase__ = do_ceptral_normalize lowerCAmelCase__ = normalize_means lowerCAmelCase__ = normalize_vars lowerCAmelCase__ = True def __snake_case ( self : List[Any] , lowercase__ : np.ndarray , ): '''simple docstring''' lowerCAmelCase__ = waveform * (2**15) # Kaldi compliance: 16-bit signed integers lowerCAmelCase__ = torch.from_numpy(lowercase__).unsqueeze(0) lowerCAmelCase__ = ta_kaldi.fbank(lowercase__ , num_mel_bins=self.num_mel_bins , sample_frequency=self.sampling_rate) return features.numpy() @staticmethod def __snake_case ( lowercase__ : np.ndarray , lowercase__ : int , lowercase__ : Optional[bool] = True , lowercase__ : Optional[bool] = True , lowercase__ : float = 0.0 , ): '''simple docstring''' if normalize_means: lowerCAmelCase__ = x[:input_length].mean(axis=0) lowerCAmelCase__ = np.subtract(lowercase__ , lowercase__) if normalize_vars: lowerCAmelCase__ = x[:input_length].std(axis=0) lowerCAmelCase__ = np.divide(lowercase__ , lowercase__) if input_length < x.shape[0]: lowerCAmelCase__ = padding_value # make sure array is in float32 lowerCAmelCase__ = x.astype(np.floataa) return x def __snake_case ( self : Dict , lowercase__ : List[np.ndarray] , lowercase__ : Optional[np.ndarray] = None): '''simple docstring''' lowerCAmelCase__ = attention_mask.sum(-1) if attention_mask is not None else [x.shape[0] for x in input_features] return [ self.utterance_cmvn(lowercase__ , lowercase__ , self.normalize_means , self.normalize_vars , self.padding_value) for x, n in zip(lowercase__ , lowercase__) ] def __call__( self : List[str] , lowercase__ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , lowercase__ : Union[bool, str, PaddingStrategy] = False , lowercase__ : Optional[int] = None , lowercase__ : bool = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[int] = None , lowercase__ : Optional[bool] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F"""The model corresponding to this feature extractor: {self} was trained using a sampling rate of""" F""" {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with""" F""" {self.sampling_rate} and not {sampling_rate}.""") else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.') lowerCAmelCase__ = isinstance(lowercase__ , np.ndarray) and len(raw_speech.shape) > 1 if is_batched_numpy and len(raw_speech.shape) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""") lowerCAmelCase__ = is_batched_numpy or ( isinstance(lowercase__ , (list, tuple)) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list))) ) if is_batched: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for speech in raw_speech] elif not is_batched and not isinstance(lowercase__ , np.ndarray): lowerCAmelCase__ = np.asarray(lowercase__ , dtype=np.floataa) elif isinstance(lowercase__ , np.ndarray) and raw_speech.dtype is np.dtype(np.floataa): lowerCAmelCase__ = raw_speech.astype(np.floataa) # always return batch if not is_batched: lowerCAmelCase__ = [raw_speech] # extract fbank features lowerCAmelCase__ = [self._extract_fbank_features(lowercase__) for waveform in raw_speech] # convert into correct format for padding lowerCAmelCase__ = BatchFeature({'input_features': features}) lowerCAmelCase__ = self.pad( lowercase__ , padding=lowercase__ , max_length=lowercase__ , truncation=lowercase__ , pad_to_multiple_of=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) # make sure list is in array format lowerCAmelCase__ = padded_inputs.get('input_features') if isinstance(input_features[0] , lowercase__): lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.floataa) for feature in input_features] lowerCAmelCase__ = padded_inputs.get('attention_mask') if attention_mask is not None: lowerCAmelCase__ = [np.asarray(lowercase__ , dtype=np.intaa) for array in attention_mask] # Utterance-level cepstral mean and variance normalization if self.do_ceptral_normalize: lowerCAmelCase__ = ( np.array(lowercase__ , dtype=np.intaa) if self._get_padding_strategies(lowercase__ , max_length=lowercase__) is not PaddingStrategy.DO_NOT_PAD else None ) lowerCAmelCase__ = self.normalize( padded_inputs['input_features'] , attention_mask=lowercase__) if return_tensors is not None: lowerCAmelCase__ = padded_inputs.convert_to_tensors(lowercase__) return padded_inputs
367
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert import BertTokenizer lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'vocab_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json' ), }, } lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': 512, 'facebook/dpr-ctx_encoder-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-question_encoder-single-nq-base': 512, 'facebook/dpr-question_encoder-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-reader-single-nq-base': 512, 'facebook/dpr-reader-multiset-base': 512, } lowerCAmelCase__ = { 'facebook/dpr-ctx_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-ctx_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ = { 'facebook/dpr-question_encoder-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-question_encoder-multiset-base': {'do_lower_case': True}, } lowerCAmelCase__ = { 'facebook/dpr-reader-single-nq-base': {'do_lower_case': True}, 'facebook/dpr-reader-multiset-base': {'do_lower_case': True}, } class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION class a_ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION lowerCAmelCase__ = collections.namedtuple( 'DPRSpanPrediction', ['span_score', 'relevance_score', 'doc_id', 'start_index', 'end_index', 'text'] ) lowerCAmelCase__ = collections.namedtuple('DPRReaderOutput', ['start_logits', 'end_logits', 'relevance_logits']) lowerCAmelCase__ = r'\n Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.\n It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),\n using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`\n with the format:\n\n ```\n [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>\n ```\n\n Args:\n questions (`str` or `List[str]`):\n The questions to be encoded. You can specify one question for many passages. In this case, the question\n will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in\n `titles` or `texts`.\n titles (`str` or `List[str]`):\n The passages titles to be encoded. This can be a string or a list of strings if there are several passages.\n texts (`str` or `List[str]`):\n The passages texts to be encoded. This can be a string or a list of strings if there are several passages.\n padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):\n Activates and controls padding. Accepts the following values:\n\n - `True` or `\'longest\'`: Pad to the longest sequence in the batch (or no padding if only a single sequence\n if provided).\n - `\'max_length\'`: Pad to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided.\n - `False` or `\'do_not_pad\'` (default): No padding (i.e., can output a batch with sequences of different\n lengths).\n truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):\n Activates and controls truncation. Accepts the following values:\n\n - `True` or `\'longest_first\'`: Truncate to a maximum length specified with the argument `max_length` or to\n the maximum acceptable input length for the model if that argument is not provided. This will truncate\n token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch\n of pairs) is provided.\n - `\'only_first\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the first\n sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `\'only_second\'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum\n acceptable input length for the model if that argument is not provided. This will only truncate the\n second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.\n - `False` or `\'do_not_truncate\'` (default): No truncation (i.e., can output batch with sequence lengths\n greater than the model maximum admissible input size).\n max_length (`int`, *optional*):\n Controls the maximum length to use by one of the truncation/padding parameters.\n\n If left unset or set to `None`, this will use the predefined model maximum length if a maximum length\n is required by one of the truncation/padding parameters. If the model has no specific maximum input\n length (like XLNet) truncation/padding to a maximum length will be deactivated.\n return_tensors (`str` or [`~utils.TensorType`], *optional*):\n If set, will return tensors instead of list of python integers. Acceptable values are:\n\n - `\'tf\'`: Return TensorFlow `tf.constant` objects.\n - `\'pt\'`: Return PyTorch `torch.Tensor` objects.\n - `\'np\'`: Return Numpy `np.ndarray` objects.\n return_attention_mask (`bool`, *optional*):\n Whether or not to return the attention mask. If not set, will return the attention mask according to the\n specific tokenizer\'s default, defined by the `return_outputs` attribute.\n\n [What are attention masks?](../glossary#attention-mask)\n\n Returns:\n `Dict[str, List[List[int]]]`: A dictionary with the following keys:\n\n - `input_ids`: List of token ids to be fed to a model.\n - `attention_mask`: List of indices specifying which tokens should be attended to by the model.\n ' @add_start_docstrings(SCREAMING_SNAKE_CASE ) class a_ : '''simple docstring''' def __call__( self : Optional[int] , lowercase__ : List[str] , lowercase__ : Optional[str] = None , lowercase__ : Optional[str] = None , lowercase__ : Union[bool, str] = False , lowercase__ : Union[bool, str] = False , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : Optional[bool] = None , **lowercase__ : Union[str, Any] , ): '''simple docstring''' if titles is None and texts is None: return super().__call__( lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) elif titles is None or texts is None: lowerCAmelCase__ = titles if texts is None else texts return super().__call__( lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__ , return_attention_mask=lowercase__ , **lowercase__ , ) lowerCAmelCase__ = titles if not isinstance(lowercase__ , lowercase__) else [titles] lowerCAmelCase__ = texts if not isinstance(lowercase__ , lowercase__) else [texts] lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = questions if not isinstance(lowercase__ , lowercase__) else [questions] * n_passages if len(lowercase__) != len(lowercase__): raise ValueError( F"""There should be as many titles than texts but got {len(lowercase__)} titles and {len(lowercase__)} texts.""") lowerCAmelCase__ = super().__call__(lowercase__ , lowercase__ , padding=lowercase__ , truncation=lowercase__)['input_ids'] lowerCAmelCase__ = super().__call__(lowercase__ , add_special_tokens=lowercase__ , padding=lowercase__ , truncation=lowercase__)['input_ids'] lowerCAmelCase__ = { 'input_ids': [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowercase__ , lowercase__) ] } if return_attention_mask is not False: lowerCAmelCase__ = [] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids]) lowerCAmelCase__ = attention_mask return self.pad(lowercase__ , padding=lowercase__ , max_length=lowercase__ , return_tensors=lowercase__) def __snake_case ( self : Union[str, Any] , lowercase__ : BatchEncoding , lowercase__ : DPRReaderOutput , lowercase__ : int = 16 , lowercase__ : int = 64 , lowercase__ : int = 4 , ): '''simple docstring''' lowerCAmelCase__ = reader_input['input_ids'] lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = reader_output[:3] lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = sorted(range(lowercase__) , reverse=lowercase__ , key=relevance_logits.__getitem__) lowerCAmelCase__ = [] for doc_id in sorted_docs: lowerCAmelCase__ = list(input_ids[doc_id]) # assuming question & title information is at the beginning of the sequence lowerCAmelCase__ = sequence_ids.index(self.sep_token_id , 2) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: lowerCAmelCase__ = sequence_ids.index(self.pad_token_id) else: lowerCAmelCase__ = len(lowercase__) lowerCAmelCase__ = self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowercase__ , top_spans=lowercase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowercase__ , start_index=lowercase__ , end_index=lowercase__ , text=self.decode(sequence_ids[start_index : end_index + 1]) , )) if len(lowercase__) >= num_spans: break return nbest_spans_predictions[:num_spans] def __snake_case ( self : Optional[int] , lowercase__ : List[int] , lowercase__ : List[int] , lowercase__ : int , lowercase__ : int , ): '''simple docstring''' lowerCAmelCase__ = [] for start_index, start_score in enumerate(lowercase__): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]): scores.append(((start_index, start_index + answer_length), start_score + end_score)) lowerCAmelCase__ = sorted(lowercase__ , key=lambda lowercase__: x[1] , reverse=lowercase__) lowerCAmelCase__ = [] for (start_index, end_index), score in scores: if start_index > end_index: raise ValueError(F"""Wrong span indices: [{start_index}:{end_index}]""") lowerCAmelCase__ = end_index - start_index + 1 if length > max_answer_length: raise ValueError(F"""Span is too long: {length} > {max_answer_length}""") if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals): continue chosen_span_intervals.append((start_index, end_index)) if len(lowercase__) == top_spans: break return chosen_span_intervals @add_end_docstrings(SCREAMING_SNAKE_CASE ) class a_ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase_ = VOCAB_FILES_NAMES UpperCAmelCase_ = READER_PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase_ = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase_ = READER_PRETRAINED_INIT_CONFIGURATION UpperCAmelCase_ = ['input_ids', 'attention_mask']
119
0
'''simple docstring''' import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ : """simple docstring""" def __init__( self : List[str] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : int=3 , __SCREAMING_SNAKE_CASE : Any=4 , __SCREAMING_SNAKE_CASE : List[Any]=2 , __SCREAMING_SNAKE_CASE : Dict=7 , __SCREAMING_SNAKE_CASE : str=True , __SCREAMING_SNAKE_CASE : Optional[int]=True , __SCREAMING_SNAKE_CASE : List[str]=True , __SCREAMING_SNAKE_CASE : Optional[Any]=True , __SCREAMING_SNAKE_CASE : int=99 , __SCREAMING_SNAKE_CASE : Union[str, Any]=36 , __SCREAMING_SNAKE_CASE : Optional[int]=3 , __SCREAMING_SNAKE_CASE : Optional[Any]=4 , __SCREAMING_SNAKE_CASE : Union[str, Any]=37 , __SCREAMING_SNAKE_CASE : Union[str, Any]="gelu" , __SCREAMING_SNAKE_CASE : Tuple=0.1 , __SCREAMING_SNAKE_CASE : Dict=0.1 , __SCREAMING_SNAKE_CASE : Tuple=512 , __SCREAMING_SNAKE_CASE : Tuple=16 , __SCREAMING_SNAKE_CASE : Dict=2 , __SCREAMING_SNAKE_CASE : int=0.02 , __SCREAMING_SNAKE_CASE : Tuple=6 , __SCREAMING_SNAKE_CASE : int=6 , __SCREAMING_SNAKE_CASE : str=3 , __SCREAMING_SNAKE_CASE : List[Any]=4 , __SCREAMING_SNAKE_CASE : List[Any]=None , __SCREAMING_SNAKE_CASE : Tuple=1_000 , ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = parent __SCREAMING_SNAKE_CASE = batch_size __SCREAMING_SNAKE_CASE = num_channels __SCREAMING_SNAKE_CASE = image_size __SCREAMING_SNAKE_CASE = patch_size __SCREAMING_SNAKE_CASE = text_seq_length __SCREAMING_SNAKE_CASE = is_training __SCREAMING_SNAKE_CASE = use_input_mask __SCREAMING_SNAKE_CASE = use_token_type_ids __SCREAMING_SNAKE_CASE = use_labels __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = type_sequence_label_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = coordinate_size __SCREAMING_SNAKE_CASE = shape_size __SCREAMING_SNAKE_CASE = num_labels __SCREAMING_SNAKE_CASE = num_choices __SCREAMING_SNAKE_CASE = scope __SCREAMING_SNAKE_CASE = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __SCREAMING_SNAKE_CASE = text_seq_length __SCREAMING_SNAKE_CASE = (image_size // patch_size) ** 2 + 1 __SCREAMING_SNAKE_CASE = self.text_seq_length + self.image_seq_length def UpperCAmelCase__ ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __SCREAMING_SNAKE_CASE = bbox[i, j, 3] __SCREAMING_SNAKE_CASE = bbox[i, j, 1] __SCREAMING_SNAKE_CASE = t if bbox[i, j, 2] < bbox[i, j, 0]: __SCREAMING_SNAKE_CASE = bbox[i, j, 2] __SCREAMING_SNAKE_CASE = bbox[i, j, 0] __SCREAMING_SNAKE_CASE = t __SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __SCREAMING_SNAKE_CASE = None if self.use_input_mask: __SCREAMING_SNAKE_CASE = random_attention_mask([self.batch_size, self.text_seq_length] ) __SCREAMING_SNAKE_CASE = None if self.use_token_type_ids: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __SCREAMING_SNAKE_CASE = None __SCREAMING_SNAKE_CASE = None if self.use_labels: __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __SCREAMING_SNAKE_CASE = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = LayoutLMvaModel(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() # text + image __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __SCREAMING_SNAKE_CASE = model(__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __SCREAMING_SNAKE_CASE = model(pixel_values=__SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCAmelCase__ ( self : Tuple , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = LayoutLMvaForSequenceClassification(__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[int] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str ) -> Union[str, Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.num_labels __SCREAMING_SNAKE_CASE = LayoutLMvaForTokenClassification(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCAmelCase__ ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = LayoutLMvaForQuestionAnswering(config=__SCREAMING_SNAKE_CASE ) model.to(__SCREAMING_SNAKE_CASE ) model.eval() __SCREAMING_SNAKE_CASE = model( __SCREAMING_SNAKE_CASE , bbox=__SCREAMING_SNAKE_CASE , pixel_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , start_positions=__SCREAMING_SNAKE_CASE , end_positions=__SCREAMING_SNAKE_CASE , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase__ ( self : Tuple ) -> int: """simple docstring""" __SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ( __SCREAMING_SNAKE_CASE ) , ) = config_and_inputs __SCREAMING_SNAKE_CASE = { """input_ids""": input_ids, """bbox""": bbox, """pixel_values""": pixel_values, """token_type_ids""": token_type_ids, """attention_mask""": input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( a , a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase__ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCAmelCase__ ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" return True def UpperCAmelCase__ ( self : Any ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = LayoutLMvaModelTester(self ) __SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self : Dict , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : List[Any] , __SCREAMING_SNAKE_CASE : str=False ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = copy.deepcopy(__SCREAMING_SNAKE_CASE ) if model_class in get_values(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) elif model_class in get_values(__SCREAMING_SNAKE_CASE ): __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) elif model_class in [ *get_values(__SCREAMING_SNAKE_CASE ), ]: __SCREAMING_SNAKE_CASE = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__SCREAMING_SNAKE_CASE ) elif model_class in [ *get_values(__SCREAMING_SNAKE_CASE ), ]: __SCREAMING_SNAKE_CASE = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE , ) return inputs_dict def UpperCAmelCase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self : List[Any] ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __SCREAMING_SNAKE_CASE = type self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> Tuple: """simple docstring""" __SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE ) @slow def UpperCAmelCase__ ( self : str ) -> Tuple: """simple docstring""" for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertIsNotNone(__SCREAMING_SNAKE_CASE ) def a__ ( ): """simple docstring""" __SCREAMING_SNAKE_CASE = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def UpperCAmelCase__ ( self : Tuple ) -> Optional[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=__SCREAMING_SNAKE_CASE ) if is_vision_available() else None @slow def UpperCAmelCase__ ( self : int ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = LayoutLMvaModel.from_pretrained("""microsoft/layoutlmv3-base""" ).to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.default_image_processor __SCREAMING_SNAKE_CASE = prepare_img() __SCREAMING_SNAKE_CASE = image_processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values.to(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 2]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __SCREAMING_SNAKE_CASE = model( input_ids=input_ids.to(__SCREAMING_SNAKE_CASE ) , bbox=bbox.to(__SCREAMING_SNAKE_CASE ) , pixel_values=pixel_values.to(__SCREAMING_SNAKE_CASE ) , ) # verify the logits __SCREAMING_SNAKE_CASE = torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(__SCREAMING_SNAKE_CASE ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1E-4 ) )
267
'''simple docstring''' import shutil import tempfile import unittest from transformers import ( SPIECE_UNDERLINE, AddedToken, BatchEncoding, NllbTokenizer, NllbTokenizerFast, is_torch_available, ) from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase : Optional[int] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right UpperCAmelCase : Optional[int] = 2_5_6_0_4_7 UpperCAmelCase : Union[str, Any] = 2_5_6_1_4_5 @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( a , unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = NllbTokenizer lowerCAmelCase__ = NllbTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True lowerCAmelCase__ = {} def UpperCAmelCase__ ( self : List[Any] ) -> int: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing __SCREAMING_SNAKE_CASE = NllbTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = NllbTokenizer(__SCREAMING_SNAKE_CASE , keep_accents=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__SCREAMING_SNAKE_CASE , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) self.assertListEqual( __SCREAMING_SNAKE_CASE , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCAmelCase__ ( self : Dict ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-nllb""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __SCREAMING_SNAKE_CASE = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=True __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it save with the same files self.assertSequenceEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) # Save tokenizer rust, legacy_format=False __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = tokenizer_r.save_pretrained(__SCREAMING_SNAKE_CASE , legacy_format=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.save_pretrained(__SCREAMING_SNAKE_CASE ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __SCREAMING_SNAKE_CASE = tokenizer_r.from_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.from_pretrained(__SCREAMING_SNAKE_CASE ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) shutil.rmtree(__SCREAMING_SNAKE_CASE ) @require_torch def UpperCAmelCase__ ( self : List[Any] ) -> Any: """simple docstring""" if not self.test_seqaseq: return __SCREAMING_SNAKE_CASE = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}' ): # Longer text that will definitely require truncation. __SCREAMING_SNAKE_CASE = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for""" """ Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons""" """ will only worsen the violence and misery for millions of people.""", ] __SCREAMING_SNAKE_CASE = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al""" """ Rusiei pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi""" """ că noi arme nu vor face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] try: __SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( src_texts=__SCREAMING_SNAKE_CASE , tgt_texts=__SCREAMING_SNAKE_CASE , max_length=3 , max_target_length=10 , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" , ) except NotImplementedError: return self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 10 ) # max_target_length will default to max_length if not specified __SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( __SCREAMING_SNAKE_CASE , tgt_texts=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.labels.shape[1] , 3 ) __SCREAMING_SNAKE_CASE = tokenizer.prepare_seqaseq_batch( src_texts=__SCREAMING_SNAKE_CASE , max_length=3 , max_target_length=10 , return_tensors="""pt""" ) self.assertEqual(batch_encoder_only.input_ids.shape[1] , 3 ) self.assertEqual(batch_encoder_only.attention_mask.shape[1] , 3 ) self.assertNotIn("""decoder_input_ids""" , __SCREAMING_SNAKE_CASE ) @unittest.skip("""Unfortunately way too slow to build a BPE with SentencePiece.""" ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" pass def UpperCAmelCase__ ( self : List[str] ) -> Dict: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): __SCREAMING_SNAKE_CASE = [AddedToken("""<special>""" , lstrip=__SCREAMING_SNAKE_CASE )] __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode("""Hey this is a <special> token""" ) __SCREAMING_SNAKE_CASE = tokenizer_r.encode("""<special>""" , add_special_tokens=__SCREAMING_SNAKE_CASE )[0] self.assertTrue(special_token_id in r_output ) if self.test_slow_tokenizer: __SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained( __SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = tokenizer_p.encode("""Hey this is a <special> token""" ) __SCREAMING_SNAKE_CASE = tokenizer_cr.encode("""Hey this is a <special> token""" ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertTrue(special_token_id in p_output ) self.assertTrue(special_token_id in cr_output ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" lowerCAmelCase__ = "facebook/nllb-200-distilled-600M" lowerCAmelCase__ = [ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] lowerCAmelCase__ = [ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] lowerCAmelCase__ = [ 256047, 16297, 134408, 8165, 248066, 14734, 950, 1135, 105721, 3573, 83, 27352, 108, 49486, 2, ] @classmethod def UpperCAmelCase__ ( cls : List[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = NllbTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""eng_Latn""" , tgt_lang="""ron_Latn""" ) __SCREAMING_SNAKE_CASE = 1 return cls def UpperCAmelCase__ ( self : Union[str, Any] ) -> List[str]: """simple docstring""" self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Arab"""] , 256_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ace_Latn"""] , 256_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""fra_Latn"""] , 256_057 ) def UpperCAmelCase__ ( self : Optional[int] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Any ) -> int: """simple docstring""" self.assertIn(__SCREAMING_SNAKE_CASE , self.tokenizer.all_special_ids ) # fmt: off __SCREAMING_SNAKE_CASE = [RO_CODE, 4_254, 98_068, 112_923, 39_072, 3_909, 713, 102_767, 26, 17_314, 35_642, 14_683, 33_118, 2_022, 66_987, 2, 256_047] # fmt: on __SCREAMING_SNAKE_CASE = self.tokenizer.decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertNotIn(self.tokenizer.eos_token , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , __SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = 10 __SCREAMING_SNAKE_CASE = self.tokenizer(__SCREAMING_SNAKE_CASE , max_length=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE ).input_ids[0] self.assertEqual(ids[-1] , 2 ) self.assertEqual(ids[0] , __SCREAMING_SNAKE_CASE ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self : int ) -> List[Any]: """simple docstring""" self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [256_203, 3] ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = tempfile.mkdtemp() __SCREAMING_SNAKE_CASE = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = NllbTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , __SCREAMING_SNAKE_CASE ) @require_torch def UpperCAmelCase__ ( self : str ) -> List[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __SCREAMING_SNAKE_CASE = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.lang_code_to_id["""ron_Latn"""] ) self.assertIsInstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) self.assertEqual((2, 15) , batch.input_ids.shape ) self.assertEqual((2, 15) , batch.attention_mask.shape ) __SCREAMING_SNAKE_CASE = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , __SCREAMING_SNAKE_CASE ) self.assertEqual(__SCREAMING_SNAKE_CASE , batch.decoder_input_ids[0, 0] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer(self.src_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=3 , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = self.tokenizer( text_target=self.tgt_text , padding=__SCREAMING_SNAKE_CASE , truncation=__SCREAMING_SNAKE_CASE , max_length=10 , return_tensors="""pt""" ) __SCREAMING_SNAKE_CASE = targets["""input_ids"""] __SCREAMING_SNAKE_CASE = shift_tokens_right( __SCREAMING_SNAKE_CASE , self.tokenizer.pad_token_id , decoder_start_token_id=self.tokenizer.lang_code_to_id[self.tokenizer.tgt_lang] , ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase__ ( self : int ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( nested_simplify(__SCREAMING_SNAKE_CASE ) , { # A, test, EOS, en_XX """input_ids""": [[256_047, 70, 7_356, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 256_057, } , ) @require_torch def UpperCAmelCase__ ( self : Optional[Any] ) -> Optional[int]: """simple docstring""" __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2, 256_047] ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = self.tokenizer( """UN Chief says there is no military solution in Syria""" , src_lang="""eng_Latn""" , tgt_lang="""fra_Latn""" ) self.assertEqual( inputs.input_ids , [256_047, 16_297, 134_408, 25_653, 6_370, 248, 254, 103_929, 94_995, 108, 49_486, 2] )
267
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowerCamelCase (__lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = KandinskyVaaPipeline UpperCAmelCase_ = [ "image_embeds", "negative_image_embeds", ] UpperCAmelCase_ = ["image_embeds", "negative_image_embeds"] UpperCAmelCase_ = [ "generator", "height", "width", "latents", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] UpperCAmelCase_ = False @property def A_ ( self : Tuple ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def A_ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return 3_2 @property def A_ ( self : Tuple ) -> Any: """simple docstring""" return self.time_input_dim @property def A_ ( self : str ) -> List[Any]: """simple docstring""" return self.time_input_dim * 4 @property def A_ ( self : List[Any] ) -> Optional[int]: """simple docstring""" return 1_0_0 @property def A_ ( self : str ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } SCREAMING_SNAKE_CASE__ : str = UNetaDConditionModel(**_UpperCAmelCase ) return model @property def A_ ( self : Dict ) -> List[Any]: """simple docstring""" return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def A_ ( self : int ) -> Dict: """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = VQModel(**self.dummy_movq_kwargs ) return model def A_ ( self : Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.dummy_unet SCREAMING_SNAKE_CASE__ : List[str] = self.dummy_movq SCREAMING_SNAKE_CASE__ : Optional[Any] = DDIMScheduler( num_train_timesteps=1_0_0_0, beta_schedule="linear", beta_start=0.00085, beta_end=0.012, clip_sample=_UpperCAmelCase, set_alpha_to_one=_UpperCAmelCase, steps_offset=1, prediction_type="epsilon", thresholding=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[Any] = { "unet": unet, "scheduler": scheduler, "movq": movq, } return components def A_ ( self : Dict, _UpperCAmelCase : Dict, _UpperCAmelCase : int=0 ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = floats_tensor((1, self.text_embedder_hidden_size), rng=random.Random(seed + 1 ) ).to( _UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("mps" ): SCREAMING_SNAKE_CASE__ : List[str] = torch.manual_seed(_UpperCAmelCase ) else: SCREAMING_SNAKE_CASE__ : Tuple = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = { "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def A_ ( self : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE__ : str = "cpu" SCREAMING_SNAKE_CASE__ : Optional[Any] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : List[Any] = self.pipeline_class(**_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[str] = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : List[str] = output.images SCREAMING_SNAKE_CASE__ : Tuple = pipe( **self.get_dummy_inputs(_UpperCAmelCase ), return_dict=_UpperCAmelCase, )[0] SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE__ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 6_4, 6_4, 3) SCREAMING_SNAKE_CASE__ : Optional[int] = np.array( [0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): """simple docstring""" def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def A_ ( self : Optional[int] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy" ) SCREAMING_SNAKE_CASE__ : Optional[Any] = KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.floataa ) pipe_prior.to(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = KandinskyVaaPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE__ : Any = pipeline.to(_UpperCAmelCase ) pipeline.set_progress_bar_config(disable=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = "red cat, 4k photo" SCREAMING_SNAKE_CASE__ : Union[str, Any] = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : str = pipe_prior( _UpperCAmelCase, generator=_UpperCAmelCase, num_inference_steps=5, negative_prompt="", ).to_tuple() SCREAMING_SNAKE_CASE__ : Any = torch.Generator(device="cuda" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = pipeline( image_embeds=_UpperCAmelCase, negative_image_embeds=_UpperCAmelCase, generator=_UpperCAmelCase, num_inference_steps=1_0_0, output_type="np", ) SCREAMING_SNAKE_CASE__ : Optional[int] = output.images[0] assert image.shape == (5_1_2, 5_1_2, 3) assert_mean_pixel_difference(_UpperCAmelCase, _UpperCAmelCase )
191
from __future__ import annotations import copy import inspect import unittest import numpy as np from transformers import is_tf_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST, TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, TFLayoutLMvaModel, ) if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase : """simple docstring""" def __init__( self : List[Any], _UpperCAmelCase : List[str], _UpperCAmelCase : Any=2, _UpperCAmelCase : List[str]=3, _UpperCAmelCase : Union[str, Any]=4, _UpperCAmelCase : Union[str, Any]=2, _UpperCAmelCase : int=7, _UpperCAmelCase : Tuple=True, _UpperCAmelCase : int=True, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : List[str]=True, _UpperCAmelCase : Tuple=9_9, _UpperCAmelCase : Any=3_6, _UpperCAmelCase : List[str]=2, _UpperCAmelCase : int=4, _UpperCAmelCase : str=3_7, _UpperCAmelCase : List[str]="gelu", _UpperCAmelCase : Optional[int]=0.1, _UpperCAmelCase : str=0.1, _UpperCAmelCase : Optional[int]=5_1_2, _UpperCAmelCase : Optional[Any]=1_6, _UpperCAmelCase : int=2, _UpperCAmelCase : Tuple=0.02, _UpperCAmelCase : Optional[int]=6, _UpperCAmelCase : List[Any]=6, _UpperCAmelCase : Any=3, _UpperCAmelCase : List[str]=4, _UpperCAmelCase : Tuple=None, _UpperCAmelCase : str=1_0_0_0, ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = parent SCREAMING_SNAKE_CASE__ : Union[str, Any] = batch_size SCREAMING_SNAKE_CASE__ : int = num_channels SCREAMING_SNAKE_CASE__ : List[Any] = image_size SCREAMING_SNAKE_CASE__ : List[Any] = patch_size SCREAMING_SNAKE_CASE__ : List[Any] = is_training SCREAMING_SNAKE_CASE__ : List[Any] = use_input_mask SCREAMING_SNAKE_CASE__ : Optional[int] = use_token_type_ids SCREAMING_SNAKE_CASE__ : List[Any] = use_labels SCREAMING_SNAKE_CASE__ : int = vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE__ : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE__ : int = num_attention_heads SCREAMING_SNAKE_CASE__ : List[str] = intermediate_size SCREAMING_SNAKE_CASE__ : Optional[int] = hidden_act SCREAMING_SNAKE_CASE__ : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE__ : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE__ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE__ : Union[str, Any] = type_vocab_size SCREAMING_SNAKE_CASE__ : List[str] = type_sequence_label_size SCREAMING_SNAKE_CASE__ : Dict = initializer_range SCREAMING_SNAKE_CASE__ : List[str] = coordinate_size SCREAMING_SNAKE_CASE__ : Tuple = shape_size SCREAMING_SNAKE_CASE__ : Dict = num_labels SCREAMING_SNAKE_CASE__ : List[str] = num_choices SCREAMING_SNAKE_CASE__ : Optional[Any] = scope SCREAMING_SNAKE_CASE__ : Any = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) SCREAMING_SNAKE_CASE__ : str = text_seq_length SCREAMING_SNAKE_CASE__ : Dict = (image_size // patch_size) ** 2 + 1 SCREAMING_SNAKE_CASE__ : List[str] = self.text_seq_length + self.image_seq_length def A_ ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = ids_tensor([self.batch_size, self.text_seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ids_tensor([self.batch_size, self.text_seq_length, 4], self.range_bbox ) SCREAMING_SNAKE_CASE__ : List[Any] = bbox.numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox[i, j, 3] SCREAMING_SNAKE_CASE__ : Optional[Any] = bbox[i, j, 1] SCREAMING_SNAKE_CASE__ : Tuple = tmp_coordinate if bbox[i, j, 2] < bbox[i, j, 0]: SCREAMING_SNAKE_CASE__ : Tuple = bbox[i, j, 2] SCREAMING_SNAKE_CASE__ : str = bbox[i, j, 0] SCREAMING_SNAKE_CASE__ : Dict = tmp_coordinate SCREAMING_SNAKE_CASE__ : Optional[int] = tf.constant(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) SCREAMING_SNAKE_CASE__ : List[Any] = None if self.use_input_mask: SCREAMING_SNAKE_CASE__ : Dict = random_attention_mask([self.batch_size, self.text_seq_length] ) SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE__ : int = None SCREAMING_SNAKE_CASE__ : Tuple = None if self.use_labels: SCREAMING_SNAKE_CASE__ : Optional[int] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE__ : Dict = ids_tensor([self.batch_size, self.text_seq_length], self.num_labels ) SCREAMING_SNAKE_CASE__ : List[Any] = LayoutLMvaConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, coordinate_size=self.coordinate_size, shape_size=self.shape_size, input_size=self.image_size, patch_size=self.patch_size, ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def A_ ( self : Tuple, _UpperCAmelCase : str, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Any, _UpperCAmelCase : List[Any], _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = TFLayoutLMvaModel(config=_UpperCAmelCase ) # text + image SCREAMING_SNAKE_CASE__ : str = model(_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, training=_UpperCAmelCase, ) SCREAMING_SNAKE_CASE__ : List[Any] = model(_UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) # text only SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase, training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only SCREAMING_SNAKE_CASE__ : Union[str, Any] = model({"pixel_values": pixel_values}, training=_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.image_seq_length, self.hidden_size) ) def A_ ( self : List[Any], _UpperCAmelCase : List[Any], _UpperCAmelCase : int, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Dict, _UpperCAmelCase : List[str], _UpperCAmelCase : Dict, _UpperCAmelCase : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = self.num_labels SCREAMING_SNAKE_CASE__ : List[str] = TFLayoutLMvaForSequenceClassification(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def A_ ( self : List[Any], _UpperCAmelCase : str, _UpperCAmelCase : int, _UpperCAmelCase : str, _UpperCAmelCase : Any, _UpperCAmelCase : List[str], _UpperCAmelCase : List[str], _UpperCAmelCase : Dict ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = self.num_labels SCREAMING_SNAKE_CASE__ : Dict = TFLayoutLMvaForTokenClassification(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, labels=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.text_seq_length, self.num_labels) ) def A_ ( self : Dict, _UpperCAmelCase : Optional[int], _UpperCAmelCase : Optional[Any], _UpperCAmelCase : Dict, _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : int, _UpperCAmelCase : Any, _UpperCAmelCase : Optional[Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = 2 SCREAMING_SNAKE_CASE__ : str = TFLayoutLMvaForQuestionAnswering(config=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = model( _UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, attention_mask=_UpperCAmelCase, token_type_ids=_UpperCAmelCase, start_positions=_UpperCAmelCase, end_positions=_UpperCAmelCase, training=_UpperCAmelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def A_ ( self : List[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = self.prepare_config_and_inputs() ((SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__) ,(SCREAMING_SNAKE_CASE__)) : Optional[Any] = config_and_inputs SCREAMING_SNAKE_CASE__ : List[str] = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_tf class lowerCamelCase (__lowerCamelCase , __lowerCamelCase , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ = ( ( TFLayoutLMvaModel, TFLayoutLMvaForQuestionAnswering, TFLayoutLMvaForSequenceClassification, TFLayoutLMvaForTokenClassification, ) if is_tf_available() else () ) UpperCAmelCase_ = ( {"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel} if is_tf_available() else {} ) UpperCAmelCase_ = False UpperCAmelCase_ = False UpperCAmelCase_ = False def A_ ( self : Optional[Any], _UpperCAmelCase : Tuple, _UpperCAmelCase : Any, _UpperCAmelCase : Dict, _UpperCAmelCase : str, _UpperCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" return True def A_ ( self : Optional[int], _UpperCAmelCase : Optional[int], _UpperCAmelCase : str, _UpperCAmelCase : Dict=False ) -> dict: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = copy.deepcopy(_UpperCAmelCase ) if model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = { k: tf.tile(tf.expand_dims(_UpperCAmelCase, 1 ), (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) ) if isinstance(_UpperCAmelCase, tf.Tensor ) and v.ndim > 0 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : List[Any] = tf.ones(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : str = tf.zeros(self.model_tester.batch_size, dtype=tf.intaa ) elif model_class in get_values(_UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Tuple = tf.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length), dtype=tf.intaa ) return inputs_dict def A_ ( self : Union[str, Any] ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModelTester(self ) SCREAMING_SNAKE_CASE__ : List[Any] = ConfigTester(self, config_class=_UpperCAmelCase, hidden_size=3_7 ) def A_ ( self : Optional[int] ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def A_ ( self : List[Any] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE__ : Dict = model_class(_UpperCAmelCase ) if getattr(_UpperCAmelCase, "hf_compute_loss", _UpperCAmelCase ): # The number of elements in the loss should be the same as the number of elements in the label SCREAMING_SNAKE_CASE__ : Optional[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = prepared_for_class[ sorted(prepared_for_class.keys() - inputs_dict.keys(), reverse=_UpperCAmelCase )[0] ] SCREAMING_SNAKE_CASE__ : Dict = added_label.shape.as_list()[:1] # Test that model correctly compute the loss with kwargs SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : int = prepared_for_class.pop("input_ids" ) SCREAMING_SNAKE_CASE__ : Dict = model(_UpperCAmelCase, **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss when we mask some positions SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = prepared_for_class.pop("input_ids" ) if "labels" in prepared_for_class: SCREAMING_SNAKE_CASE__ : str = prepared_for_class["labels"].numpy() if len(labels.shape ) > 1 and labels.shape[1] != 1: SCREAMING_SNAKE_CASE__ : Any = -1_0_0 SCREAMING_SNAKE_CASE__ : Dict = tf.convert_to_tensor(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Tuple = model(_UpperCAmelCase, **_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) ) # Test that model correctly compute the loss with a dict SCREAMING_SNAKE_CASE__ : List[Any] = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = model(_UpperCAmelCase )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) # Test that model correctly compute the loss with a tuple SCREAMING_SNAKE_CASE__ : int = self._prepare_for_class(inputs_dict.copy(), _UpperCAmelCase, return_labels=_UpperCAmelCase ) # Get keys that were added with the _prepare_for_class function SCREAMING_SNAKE_CASE__ : List[Any] = prepared_for_class.keys() - inputs_dict.keys() SCREAMING_SNAKE_CASE__ : List[Any] = inspect.signature(model.call ).parameters SCREAMING_SNAKE_CASE__ : Dict = list(signature.keys() ) # Create a dictionary holding the location of the tensors in the tuple SCREAMING_SNAKE_CASE__ : Tuple = {0: "input_ids"} for label_key in label_keys: SCREAMING_SNAKE_CASE__ : str = signature_names.index(_UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : List[Any] = label_key SCREAMING_SNAKE_CASE__ : str = sorted(tuple_index_mapping.items() ) # Initialize a list with their default values, update the values and convert to a tuple SCREAMING_SNAKE_CASE__ : Any = [] for name in signature_names: if name != "kwargs": list_input.append(signature[name].default ) for index, value in sorted_tuple_index_mapping: SCREAMING_SNAKE_CASE__ : int = prepared_for_class[value] SCREAMING_SNAKE_CASE__ : List[Any] = tuple(_UpperCAmelCase ) # Send to model SCREAMING_SNAKE_CASE__ : Union[str, Any] = model(tuple_input[:-1] )[0] self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] ) def A_ ( self : Dict ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : List[Any] ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: SCREAMING_SNAKE_CASE__ : Optional[int] = type self.model_tester.create_and_check_model(_UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Dict ) -> Optional[Any]: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Dict ) -> str: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) def A_ ( self : Any ) -> int: """simple docstring""" ( ( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) ,( SCREAMING_SNAKE_CASE__ ) , ) : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ) @slow def A_ ( self : Optional[int] ) -> int: """simple docstring""" for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def _a ( ) -> List[str]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_tf class lowerCamelCase (unittest.TestCase ): """simple docstring""" @cached_property def A_ ( self : Tuple ) -> List[Any]: """simple docstring""" return LayoutLMvaImageProcessor(apply_ocr=_UpperCAmelCase ) if is_vision_available() else None @slow def A_ ( self : Any ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[Any] = TFLayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ) SCREAMING_SNAKE_CASE__ : Optional[int] = self.default_image_processor SCREAMING_SNAKE_CASE__ : Dict = prepare_img() SCREAMING_SNAKE_CASE__ : List[str] = image_processor(images=_UpperCAmelCase, return_tensors="tf" ).pixel_values SCREAMING_SNAKE_CASE__ : int = tf.constant([[1, 2]] ) SCREAMING_SNAKE_CASE__ : int = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ), axis=0 ) # forward pass SCREAMING_SNAKE_CASE__ : Dict = model(input_ids=_UpperCAmelCase, bbox=_UpperCAmelCase, pixel_values=_UpperCAmelCase, training=_UpperCAmelCase ) # verify the logits SCREAMING_SNAKE_CASE__ : Union[str, Any] = (1, 1_9_9, 7_6_8) self.assertEqual(outputs.last_hidden_state.shape, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Optional[int] = tf.constant( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3], _UpperCAmelCase, atol=1E-4 ) )
191
1
'''simple docstring''' from collections import UserDict from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax lowerCamelCase__ = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class lowerCAmelCase__ ( UpperCAmelCase__ ): def __init__( self : Optional[Any] , **lowerCamelCase__ : Tuple ) ->List[str]: '''simple docstring''' super().__init__(**lowerCamelCase__ ) requires_backends(self , "vision" ) self.check_model_type( TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING if self.framework == "tf" else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING ) def __call__( self : Any , lowerCamelCase__ : Any , **lowerCamelCase__ : Optional[int] ) ->Optional[Any]: '''simple docstring''' return super().__call__(lowerCamelCase__ , **lowerCamelCase__ ) def lowerCAmelCase__ ( self : int , **lowerCamelCase__ : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : List[Any] = {} if "candidate_labels" in kwargs: _UpperCAmelCase : Dict = kwargs["""candidate_labels"""] if "hypothesis_template" in kwargs: _UpperCAmelCase : Optional[Any] = kwargs["""hypothesis_template"""] return preprocess_params, {}, {} def lowerCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : Any , lowerCamelCase__ : str=None , lowerCamelCase__ : str="This is a photo of {}." ) ->Optional[Any]: '''simple docstring''' _UpperCAmelCase : int = load_image(lowerCamelCase__ ) _UpperCAmelCase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework ) _UpperCAmelCase : List[str] = candidate_labels _UpperCAmelCase : Tuple = [hypothesis_template.format(lowerCamelCase__ ) for x in candidate_labels] _UpperCAmelCase : Union[str, Any] = self.tokenizer(lowerCamelCase__ , return_tensors=self.framework , padding=lowerCamelCase__ ) _UpperCAmelCase : Union[str, Any] = [text_inputs] return inputs def lowerCAmelCase__ ( self : int , lowerCamelCase__ : List[str] ) ->Optional[int]: '''simple docstring''' _UpperCAmelCase : List[Any] = model_inputs.pop("candidate_labels" ) _UpperCAmelCase : Optional[Any] = model_inputs.pop("text_inputs" ) if isinstance(text_inputs[0] , lowerCamelCase__ ): _UpperCAmelCase : Optional[Any] = text_inputs[0] else: # Batching case. _UpperCAmelCase : Any = text_inputs[0][0] _UpperCAmelCase : Dict = self.model(**lowerCamelCase__ , **lowerCamelCase__ ) _UpperCAmelCase : List[Any] = { """candidate_labels""": candidate_labels, """logits""": outputs.logits_per_image, } return model_outputs def lowerCAmelCase__ ( self : Union[str, Any] , lowerCamelCase__ : List[str] ) ->Union[str, Any]: '''simple docstring''' _UpperCAmelCase : int = model_outputs.pop("candidate_labels" ) _UpperCAmelCase : int = model_outputs["""logits"""][0] if self.framework == "pt": _UpperCAmelCase : Optional[int] = logits.softmax(dim=-1 ).squeeze(-1 ) _UpperCAmelCase : Any = probs.tolist() if not isinstance(lowerCamelCase__ , lowerCamelCase__ ): _UpperCAmelCase : Any = [scores] elif self.framework == "tf": _UpperCAmelCase : List[str] = stable_softmax(lowerCamelCase__ , axis=-1 ) _UpperCAmelCase : Union[str, Any] = probs.numpy().tolist() else: raise ValueError(F"""Unsupported framework: {self.framework}""" ) _UpperCAmelCase : Any = [ {"""score""": score, """label""": candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase__ , lowerCamelCase__ ) , key=lambda lowerCamelCase__ : -x[0] ) ] return result
234
'''simple docstring''' from __future__ import annotations import math class UpperCamelCase_ : def __init__( self , A ) -> None: UpperCAmelCase : Optional[int] = size # approximate the overall size of segment tree with given value UpperCAmelCase : Optional[int] = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase : Any = [0 for i in range(0 , 4 * size )] UpperCAmelCase : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def _lowercase( self , A ) -> int: return idx * 2 def _lowercase( self , A ) -> int: return idx * 2 + 1 def _lowercase( self , A , A , A , A ) -> None: if left_element == right_element: UpperCAmelCase : str = a[left_element - 1] else: UpperCAmelCase : Tuple = (left_element + right_element) // 2 self.build(self.left(A ) , A , A , A ) self.build(self.right(A ) , mid + 1 , A , A ) UpperCAmelCase : str = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) def _lowercase( self , A , A , A , A , A , A ) -> bool: if self.flag[idx] is True: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : int = False if left_element != right_element: UpperCAmelCase : List[str] = self.lazy[idx] UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : int = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase : Optional[Any] = val if left_element != right_element: UpperCAmelCase : Tuple = val UpperCAmelCase : int = val UpperCAmelCase : Any = True UpperCAmelCase : str = True return True UpperCAmelCase : str = (left_element + right_element) // 2 self.update(self.left(A ) , A , A , A , A , A ) self.update(self.right(A ) , mid + 1 , A , A , A , A ) UpperCAmelCase : List[str] = max( self.segment_tree[self.left(A )] , self.segment_tree[self.right(A )] ) return True def _lowercase( self , A , A , A , A , A ) -> int | float: if self.flag[idx] is True: UpperCAmelCase : Any = self.lazy[idx] UpperCAmelCase : Any = False if left_element != right_element: UpperCAmelCase : Optional[Any] = self.lazy[idx] UpperCAmelCase : Tuple = self.lazy[idx] UpperCAmelCase : List[str] = True UpperCAmelCase : Tuple = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase : Dict = (left_element + right_element) // 2 UpperCAmelCase : List[Any] = self.query(self.left(A ) , A , A , A , A ) UpperCAmelCase : str = self.query(self.right(A ) , mid + 1 , A , A , A ) return max(A , A ) def __str__( self ) -> str: return str([self.query(1 , 1 , self.size , A , A ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a : Optional[int] = [1, 2, -4, 7, 3, -5, 6, 1_1, -2_0, 9, 1_4, 1_5, 5, 2, -8] a : Optional[Any] = 1_5 a : Union[str, Any] = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 1_1)) print(segt.query(1, 1, size, 7, 1_2)) segt.update(1, 1, size, 1, 3, 1_1_1) print(segt.query(1, 1, size, 1, 1_5)) segt.update(1, 1, size, 7, 8, 2_3_5) print(segt)
265
0
from torch import nn def UpperCamelCase ( lowerCAmelCase__ ): '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f'Unsupported activation function: {act_fn}' )
97
lowercase__ :Any = 8.3_144_598 def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowercase__ :Optional[Any] = 300 lowercase__ :List[Any] = 28 lowercase__ :Dict = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
97
1
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def _lowerCAmelCase ( UpperCamelCase_ ): for param in module.parameters(): __SCREAMING_SNAKE_CASE = False def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __SCREAMING_SNAKE_CASE = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = plt.imshow(UpperCamelCase_ ) fig.axes.get_xaxis().set_visible(UpperCamelCase_ ) fig.axes.get_yaxis().set_visible(UpperCamelCase_ ) plt.show() def _lowerCAmelCase ( ): __SCREAMING_SNAKE_CASE = datetime.now() __SCREAMING_SNAKE_CASE = current_time.strftime("""%H:%M:%S""" ) return timestamp
100
"""simple docstring""" import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() __magic_name__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) __magic_name__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""")) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""")) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""")) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""")) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = val def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __SCREAMING_SNAKE_CASE = key.replace("""backbone.0.body""" , """backbone.conv_encoder.model""" ) __SCREAMING_SNAKE_CASE = value else: __SCREAMING_SNAKE_CASE = value return new_state_dict def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = """""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias[:256] __SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias" ) # next, add query, keys and values (in that order) to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias[:256] __SCREAMING_SNAKE_CASE = in_proj_weight[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __SCREAMING_SNAKE_CASE = state_dict.pop( f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight" ) __SCREAMING_SNAKE_CASE = state_dict.pop(f"{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[:256, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[:256] __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[256:512, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[256:512] __SCREAMING_SNAKE_CASE = in_proj_weight_cross_attn[-256:, :] __SCREAMING_SNAKE_CASE = in_proj_bias_cross_attn[-256:] def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = image.size __SCREAMING_SNAKE_CASE = max(UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = 800 if """detection""" in checkpoint_url else 1000 __SCREAMING_SNAKE_CASE = target_max_size / current_max_size __SCREAMING_SNAKE_CASE = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = F.to_tensor(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = F.normalize(UpperCamelCase_ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): logger.info("""Converting model...""" ) # load original state dict __SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCamelCase_ , map_location="""cpu""" ) # rename keys for src, dest in rename_keys: rename_key(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = rename_backbone_keys(UpperCamelCase_ ) # query, key and value matrices need special treatment read_in_q_k_v(UpperCamelCase_ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __SCREAMING_SNAKE_CASE = """model.""" for key in state_dict.copy().keys(): if not key.startswith("""class_labels_classifier""" ) and not key.startswith("""bbox_predictor""" ): __SCREAMING_SNAKE_CASE = state_dict.pop(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = val # create HuggingFace model and load state dict __SCREAMING_SNAKE_CASE = TableTransformerConfig( backbone="""resnet18""" , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: __SCREAMING_SNAKE_CASE = 15 __SCREAMING_SNAKE_CASE = 2 __SCREAMING_SNAKE_CASE = {0: """table""", 1: """table rotated"""} __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} else: __SCREAMING_SNAKE_CASE = 125 __SCREAMING_SNAKE_CASE = 6 __SCREAMING_SNAKE_CASE = { 0: """table""", 1: """table column""", 2: """table row""", 3: """table column header""", 4: """table projected row header""", 5: """table spanning cell""", } __SCREAMING_SNAKE_CASE = idalabel __SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} __SCREAMING_SNAKE_CASE = DetrImageProcessor( format="""coco_detection""" , max_size=800 if """detection""" in checkpoint_url else 1000 ) __SCREAMING_SNAKE_CASE = TableTransformerForObjectDetection(UpperCamelCase_ ) model.load_state_dict(UpperCamelCase_ ) model.eval() # verify our conversion __SCREAMING_SNAKE_CASE = """example_pdf.png""" if """detection""" in checkpoint_url else """example_table.png""" __SCREAMING_SNAKE_CASE = hf_hub_download(repo_id="""nielsr/example-pdf""" , repo_type="""dataset""" , filename=UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = Image.open(UpperCamelCase_ ).convert("""RGB""" ) __SCREAMING_SNAKE_CASE = normalize(resize(UpperCamelCase_ , UpperCamelCase_ ) ).unsqueeze(0 ) __SCREAMING_SNAKE_CASE = model(UpperCamelCase_ ) if "detection" in checkpoint_url: __SCREAMING_SNAKE_CASE = (1, 15, 3) __SCREAMING_SNAKE_CASE = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: __SCREAMING_SNAKE_CASE = (1, 125, 7) __SCREAMING_SNAKE_CASE = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) __SCREAMING_SNAKE_CASE = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , UpperCamelCase_ , atol=1e-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(UpperCamelCase_ ).mkdir(exist_ok=UpperCamelCase_ ) model.save_pretrained(UpperCamelCase_ ) image_processor.save_pretrained(UpperCamelCase_ ) if push_to_hub: # Push model to HF hub logger.info("""Pushing model to the hub...""" ) __SCREAMING_SNAKE_CASE = ( """microsoft/table-transformer-detection""" if """detection""" in checkpoint_url else """microsoft/table-transformer-structure-recognition""" ) model.push_to_hub(UpperCamelCase_ ) image_processor.push_to_hub(UpperCamelCase_ ) if __name__ == "__main__": __magic_name__ = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) __magic_name__ = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
100
1
"""simple docstring""" def A__ ( SCREAMING_SNAKE_CASE__) -> str: if not all(char in """01""" for char in bin_string): raise ValueError("""Non-binary value was passed to the function""") if not bin_string: raise ValueError("""Empty string was passed to the function""") __snake_case: List[Any] = """""" while len(SCREAMING_SNAKE_CASE__) % 3 != 0: __snake_case: int = """0""" + bin_string __snake_case: int = [ bin_string[index : index + 3] for index in range(len(SCREAMING_SNAKE_CASE__)) if index % 3 == 0 ] for bin_group in bin_string_in_3_list: __snake_case: Optional[Any] = 0 for index, val in enumerate(SCREAMING_SNAKE_CASE__): oct_val += int(2 ** (2 - index) * int(SCREAMING_SNAKE_CASE__)) oct_string += str(SCREAMING_SNAKE_CASE__) return oct_string if __name__ == "__main__": from doctest import testmod testmod()
352
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartaaTokenizer, MBartaaTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase : str = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __UpperCAmelCase : Any = 250_004 __UpperCAmelCase : List[str] = 250_020 @require_sentencepiece @require_tokenizers class __snake_case ( __lowerCamelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = MBartaaTokenizer lowerCAmelCase__ = MBartaaTokenizerFast lowerCAmelCase__ = True lowerCAmelCase__ = True def UpperCAmelCase__ ( self : Tuple ): super().setUp() # We have a SentencePiece fixture for testing __snake_case: Optional[int] = MBartaaTokenizer(A , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=A ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Any = """<s>""" __snake_case: Tuple = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(A ) , A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(A ) , A ) def UpperCAmelCase__ ( self : Any ): __snake_case: Dict = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(A ) , 1_054 ) def UpperCAmelCase__ ( self : Any ): self.assertEqual(self.get_tokenizer().vocab_size , 1_054 ) def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Dict = MBartaaTokenizer(A , src_lang="""en_XX""" , tgt_lang="""ro_RO""" , keep_accents=A ) __snake_case: int = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) __snake_case: Union[str, Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """."""] , ) __snake_case: List[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual( A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) __snake_case: int = tokenizer.convert_ids_to_tokens(A ) self.assertListEqual( A , [SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """."""] , ) @slow def UpperCAmelCase__ ( self : Optional[int] ): # fmt: off __snake_case: List[str] = {"""input_ids""": [[250_004, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [250_004, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [250_004, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=A , model_name="""facebook/mbart-large-50""" , revision="""d3913889c59cd5c9e456b269c376325eabad57e2""" , ) def UpperCAmelCase__ ( self : Union[str, Any] ): if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __snake_case: Any = (self.rust_tokenizer_class, """hf-internal-testing/tiny-random-mbart50""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __snake_case: Optional[int] = self.rust_tokenizer_class.from_pretrained(A , **A ) __snake_case: Union[str, Any] = self.tokenizer_class.from_pretrained(A , **A ) __snake_case: List[str] = tempfile.mkdtemp() __snake_case: Tuple = tokenizer_r.save_pretrained(A ) __snake_case: Optional[int] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) __snake_case: Dict = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way __snake_case: Tuple = tokenizer_r.from_pretrained(A ) __snake_case: Optional[Any] = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=True __snake_case: Tuple = tempfile.mkdtemp() __snake_case: Any = tokenizer_r.save_pretrained(A , legacy_format=A ) __snake_case: List[str] = tokenizer_p.save_pretrained(A ) # Checks it save with the same files self.assertSequenceEqual(A , A ) # Checks everything loads correctly in the same way __snake_case: List[Any] = tokenizer_r.from_pretrained(A ) __snake_case: Dict = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) # Save tokenizer rust, legacy_format=False __snake_case: List[str] = tempfile.mkdtemp() __snake_case: Any = tokenizer_r.save_pretrained(A , legacy_format=A ) __snake_case: Dict = tokenizer_p.save_pretrained(A ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __snake_case: Any = tokenizer_r.from_pretrained(A ) __snake_case: Any = tokenizer_p.from_pretrained(A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A , A ) ) shutil.rmtree(A ) @require_torch @require_sentencepiece @require_tokenizers class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = """facebook/mbart-large-50-one-to-many-mmt""" lowerCAmelCase__ = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] lowerCAmelCase__ = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] lowerCAmelCase__ = [EN_CODE, 82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2] @classmethod def UpperCAmelCase__ ( cls : int ): __snake_case: MBartaaTokenizer = MBartaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en_XX""" , tgt_lang="""ro_RO""" ) __snake_case: str = 1 return cls def UpperCAmelCase__ ( self : Any ): self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ar_AR"""] , 250_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""en_EN"""] , 250_004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""ro_RO"""] , 250_020 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""mr_IN"""] , 250_038 ) def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[str] = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , A ) def UpperCAmelCase__ ( self : Union[str, Any] ): self.assertIn(A , self.tokenizer.all_special_ids ) __snake_case: Dict = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] __snake_case: str = self.tokenizer.decode(A , skip_special_tokens=A ) __snake_case: Union[str, Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A ) self.assertEqual(A , A ) self.assertNotIn(self.tokenizer.eos_token , A ) def UpperCAmelCase__ ( self : Dict ): __snake_case: List[str] = ["""this is gunna be a long sentence """ * 20] assert isinstance(src_text[0] , A ) __snake_case: Union[str, Any] = 10 __snake_case: List[Any] = self.tokenizer(A , max_length=A , truncation=A ).input_ids[0] self.assertEqual(ids[0] , A ) self.assertEqual(ids[-1] , 2 ) self.assertEqual(len(A ) , A ) def UpperCAmelCase__ ( self : Tuple ): self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """ar_AR"""] ) , [250_053, 250_001] ) def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[Any] = tempfile.mkdtemp() __snake_case: Any = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A ) __snake_case: Union[str, Any] = MBartaaTokenizer.from_pretrained(A ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A ) @require_torch def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[str] = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A , return_tensors="""pt""" ) __snake_case: List[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == RO_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2].tolist() == [2, RO_CODE] @require_torch def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: int = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A , truncation=A , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) __snake_case: Optional[Any] = shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(A , A ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __snake_case: List[str] = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A ) self.assertEqual(2 , batch.decoder_input_ids[0, 0] ) # decoder_start_token_id # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [EN_CODE] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) def UpperCAmelCase__ ( self : str ): __snake_case: List[Any] = self.tokenizer(self.src_text , padding=A , truncation=A , max_length=3 , return_tensors="""pt""" ) __snake_case: Union[str, Any] = self.tokenizer( text_target=self.tgt_text , padding=A , truncation=A , max_length=10 , return_tensors="""pt""" ) __snake_case: Dict = targets["""input_ids"""] __snake_case: Any = shift_tokens_right(A , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: int = self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""ar_AR""" ) self.assertEqual( nested_simplify(A ) , { # en_XX, A, test, EOS """input_ids""": [[250_004, 62, 3_034, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 250_001, } , )
293
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """facebook/data2vec-text-base""": """https://huggingface.co/data2vec/resolve/main/config.json""", } class a__ ( a__ ): _a : List[str] = "data2vec-text" def __init__( self , _A=3_0_5_2_2 , _A=7_6_8 , _A=1_2 , _A=1_2 , _A=3_0_7_2 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=2 , _A=0.02 , _A=1E-1_2 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=None , **_A , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = hidden_act __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = type_vocab_size __lowerCAmelCase = initializer_range __lowerCAmelCase = layer_norm_eps __lowerCAmelCase = position_embedding_type __lowerCAmelCase = use_cache __lowerCAmelCase = classifier_dropout class a__ ( a__ ): @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if self.task == "multiple-choice": __lowerCAmelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCAmelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
92
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } __UpperCAmelCase = { '''b0''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1_408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1_536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1_792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2_304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2_560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def UpperCamelCase ( snake_case__ : int ) -> Optional[int]: UpperCamelCase : str = EfficientNetConfig() UpperCamelCase : Union[str, Any] = CONFIG_MAP[model_name]['hidden_dim'] UpperCamelCase : Union[str, Any] = CONFIG_MAP[model_name]['width_coef'] UpperCamelCase : str = CONFIG_MAP[model_name]['depth_coef'] UpperCamelCase : List[str] = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[str] = CONFIG_MAP[model_name]['dropout_rate'] UpperCamelCase : str = CONFIG_MAP[model_name]['dw_padding'] UpperCamelCase : str = 'huggingface/label-files' UpperCamelCase : Optional[Any] = 'imagenet-1k-id2label.json' UpperCamelCase : Optional[Any] = 1000 UpperCamelCase : Dict = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='dataset' ) , 'r' ) ) UpperCamelCase : Tuple = {int(snake_case__ ): v for k, v in idalabel.items()} UpperCamelCase : Optional[int] = idalabel UpperCamelCase : Tuple = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( ) -> Tuple: UpperCamelCase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' UpperCamelCase : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im def UpperCamelCase ( snake_case__ : List[str] ) -> List[Any]: UpperCamelCase : int = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[str] = EfficientNetImageProcessor( size={'height': size, 'width': size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=snake_case__ , ) return preprocessor def UpperCamelCase ( snake_case__ : Optional[int] ) -> Dict: UpperCamelCase : int = [v.split('_' )[0].split('block' )[1] for v in original_param_names if v.startswith('block' )] UpperCamelCase : str = sorted(set(snake_case__ ) ) UpperCamelCase : int = len(snake_case__ ) UpperCamelCase : str = {b: str(snake_case__ ) for b, i in zip(snake_case__ , range(snake_case__ ) )} UpperCamelCase : Optional[int] = [] rename_keys.append(('stem_conv/kernel:0', 'embeddings.convolution.weight') ) rename_keys.append(('stem_bn/gamma:0', 'embeddings.batchnorm.weight') ) rename_keys.append(('stem_bn/beta:0', 'embeddings.batchnorm.bias') ) rename_keys.append(('stem_bn/moving_mean:0', 'embeddings.batchnorm.running_mean') ) rename_keys.append(('stem_bn/moving_variance:0', 'embeddings.batchnorm.running_var') ) for b in block_names: UpperCamelCase : Union[str, Any] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('top_conv/kernel:0', 'encoder.top_conv.weight') ) rename_keys.append(('top_bn/gamma:0', 'encoder.top_bn.weight') ) rename_keys.append(('top_bn/beta:0', 'encoder.top_bn.bias') ) rename_keys.append(('top_bn/moving_mean:0', 'encoder.top_bn.running_mean') ) rename_keys.append(('top_bn/moving_variance:0', 'encoder.top_bn.running_var') ) UpperCamelCase : List[str] = {} for item in rename_keys: if item[0] in original_param_names: UpperCamelCase : Dict = 'efficientnet.' + item[1] UpperCamelCase : Dict = 'classifier.weight' UpperCamelCase : Dict = 'classifier.bias' return key_mapping def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : List[Any] , snake_case__ : int ) -> Dict: for key, value in tf_params.items(): if "normalization" in key: continue UpperCamelCase : Any = key_mapping[key] if "_conv" in key and "kernel" in key: UpperCamelCase : str = torch.from_numpy(snake_case__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: UpperCamelCase : Any = torch.from_numpy(snake_case__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: UpperCamelCase : str = torch.from_numpy(np.transpose(snake_case__ ) ) else: UpperCamelCase : str = torch.from_numpy(snake_case__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(snake_case__ ) @torch.no_grad() def UpperCamelCase ( snake_case__ : Optional[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] ) -> Any: UpperCamelCase : Union[str, Any] = model_classes[model_name]( include_top=snake_case__ , weights='imagenet' , input_tensor=snake_case__ , input_shape=snake_case__ , pooling=snake_case__ , classes=1000 , classifier_activation='softmax' , ) UpperCamelCase : Optional[int] = original_model.trainable_variables UpperCamelCase : Optional[int] = original_model.non_trainable_variables UpperCamelCase : Tuple = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: UpperCamelCase : List[Any] = param.numpy() UpperCamelCase : List[str] = list(tf_params.keys() ) # Load HuggingFace model UpperCamelCase : str = get_efficientnet_config(snake_case__ ) UpperCamelCase : Any = EfficientNetForImageClassification(snake_case__ ).eval() UpperCamelCase : Tuple = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('Converting parameters...' ) UpperCamelCase : List[Any] = rename_keys(snake_case__ ) replace_params(snake_case__ , snake_case__ , snake_case__ ) # Initialize preprocessor and preprocess input image UpperCamelCase : List[Any] = convert_image_processor(snake_case__ ) UpperCamelCase : Dict = preprocessor(images=prepare_img() , return_tensors='pt' ) # HF model inference hf_model.eval() with torch.no_grad(): UpperCamelCase : Optional[int] = hf_model(**snake_case__ ) UpperCamelCase : Dict = outputs.logits.detach().numpy() # Original model inference UpperCamelCase : Optional[int] = False UpperCamelCase : int = CONFIG_MAP[model_name]['image_size'] UpperCamelCase : List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) UpperCamelCase : List[Any] = image.img_to_array(snake_case__ ) UpperCamelCase : str = np.expand_dims(snake_case__ , axis=0 ) UpperCamelCase : Any = original_model.predict(snake_case__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(snake_case__ , snake_case__ , atol=1E-3 ), "The predicted logits are not the same." print('Model outputs match!' ) if save_model: # Create folder to save model if not os.path.isdir(snake_case__ ): os.mkdir(snake_case__ ) # Save converted model and image processor hf_model.save_pretrained(snake_case__ ) preprocessor.save_pretrained(snake_case__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) UpperCamelCase : List[str] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(snake_case__ ) hf_model.push_to_hub(snake_case__ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') __UpperCAmelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
119
0
import json import os from functools import lru_cache from typing import TYPE_CHECKING, List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowercase : Union[str, Any] = logging.get_logger(__name__) lowercase : Any = { "vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_config_file": "tokenizer_config.json", } lowercase : Tuple = { "vocab_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json"}, "merges_file": {"facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt"}, "tokenizer_config_file": { "facebook/blenderbot-3B": "https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json" }, } lowercase : Dict = {"facebook/blenderbot-3B": 1_28} @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def lowerCAmelCase__ ( ): snake_case_ : List[str] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) snake_case_ : Any = bs[:] snake_case_ : Any = 0 for b in range(2**8 ): if b not in bs: bs.append(_a ) cs.append(2**8 + n ) n += 1 snake_case_ : Any = [chr(_a ) for n in cs] return dict(zip(_a , _a ) ) def lowerCAmelCase__ ( _a : Any ): snake_case_ : Any = set() snake_case_ : str = word[0] for char in word[1:]: pairs.add((prev_char, char) ) snake_case_ : Any = char return pairs class UpperCAmelCase_ ( lowercase_ ): '''simple docstring''' A : Union[str, Any] = VOCAB_FILES_NAMES A : int = PRETRAINED_VOCAB_FILES_MAP A : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A : Union[str, Any] = ["input_ids", "attention_mask"] def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="replace" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="</s>" , _SCREAMING_SNAKE_CASE="<s>" , _SCREAMING_SNAKE_CASE="<unk>" , _SCREAMING_SNAKE_CASE="<pad>" , _SCREAMING_SNAKE_CASE="<mask>" , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE , ) -> Any: snake_case_ : Tuple = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else bos_token snake_case_ : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else eos_token snake_case_ : int = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else sep_token snake_case_ : Optional[int] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else cls_token snake_case_ : Optional[Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else unk_token snake_case_ : Tuple = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it snake_case_ : Union[str, Any] = AddedToken(a__ , lstrip=a__ , rstrip=a__ ) if isinstance(a__ , a__ ) else mask_token super().__init__( errors=a__ , bos_token=a__ , eos_token=a__ , unk_token=a__ , sep_token=a__ , cls_token=a__ , pad_token=a__ , mask_token=a__ , add_prefix_space=a__ , **a__ , ) with open(a__ , encoding="utf-8" ) as vocab_handle: snake_case_ : Optional[Any] = json.load(a__ ) snake_case_ : Any = {v: k for k, v in self.encoder.items()} snake_case_ : Tuple = errors # how to handle errors in decoding snake_case_ : Any = bytes_to_unicode() snake_case_ : str = {v: k for k, v in self.byte_encoder.items()} with open(a__ , encoding="utf-8" ) as merges_handle: snake_case_ : Optional[int] = merges_handle.read().split("\n" )[1:-1] snake_case_ : Optional[int] = [tuple(merge.split() ) for merge in bpe_merges] snake_case_ : Union[str, Any] = dict(zip(a__ , range(len(a__ ) ) ) ) snake_case_ : Union[str, Any] = {} snake_case_ : int = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions snake_case_ : Optional[int] = re.compile(r"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property # Copied from transformers.models.roberta.tokenization_roberta.RobertaTokenizer.vocab_size with Roberta->Blenderbot, RoBERTa->Blenderbot def _lowerCAmelCase ( self ) -> Tuple: return len(self.encoder ) def _lowerCAmelCase ( self ) -> str: return dict(self.encoder , **self.added_tokens_encoder ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: if token in self.cache: return self.cache[token] snake_case_ : Union[str, Any] = tuple(a__ ) snake_case_ : Tuple = get_pairs(a__ ) if not pairs: return token while True: snake_case_ : List[Any] = min(a__ , key=lambda _SCREAMING_SNAKE_CASE : self.bpe_ranks.get(a__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break snake_case_ , snake_case_ : List[Any] = bigram snake_case_ : Optional[Any] = [] snake_case_ : Any = 0 while i < len(a__ ): try: snake_case_ : Any = word.index(a__ , a__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) snake_case_ : List[Any] = j if word[i] == first and i < len(a__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 snake_case_ : Optional[Any] = tuple(a__ ) snake_case_ : Tuple = new_word if len(a__ ) == 1: break else: snake_case_ : Optional[int] = get_pairs(a__ ) snake_case_ : List[str] = " ".join(a__ ) snake_case_ : List[str] = word return word def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[int]: snake_case_ : Optional[Any] = [] for token in re.findall(self.pat , a__ ): snake_case_ : List[Any] = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a__ ).split(" " ) ) return bpe_tokens def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Optional[Any]: return self.encoder.get(a__ , self.encoder.get(self.unk_token ) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: return self.decoder.get(a__ ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[str]: snake_case_ : Optional[Any] = "".join(a__ ) snake_case_ : Union[str, Any] = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> Tuple[str]: if not os.path.isdir(a__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case_ : Optional[Any] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : Union[str, Any] = os.path.join( a__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a__ , ensure_ascii=a__ ) + "\n" ) snake_case_ : Union[str, Any] = 0 with open(a__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _SCREAMING_SNAKE_CASE : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) snake_case_ : List[Any] = token_index writer.write(" ".join(a__ ) + "\n" ) index += 1 return vocab_file, merge_file def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a__ , token_ids_a=a__ , already_has_special_tokens=a__ ) if token_ids_a is None: return [1] + ([0] * len(a__ )) + [1] return [1] + ([0] * len(a__ )) + [1, 1] + ([0] * len(a__ )) + [1] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> List[int]: snake_case_ : List[Any] = [self.sep_token_id] snake_case_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: snake_case_ : Union[str, Any] = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a__ ) > 0 and not text[0].isspace()): snake_case_ : str = " " + text return (text, kwargs) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None ) -> str: return token_ids_a + [self.eos_token_id] def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> List[int]: snake_case_ : str = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(" " + text ) else: # Generated responses should contain them already. inputs.append(a__ ) snake_case_ : Dict = " ".join(a__ ) snake_case_ : Tuple = self.encode(a__ ) if len(a__ ) > self.model_max_length: snake_case_ : Dict = input_ids[-self.model_max_length :] logger.warning(f'''Trimmed input from conversation as it was longer than {self.model_max_length} tokens.''' ) return input_ids
353
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=4 , ) -> List[str]: snake_case_ : Dict = parent snake_case_ : List[Any] = batch_size snake_case_ : Union[str, Any] = seq_length snake_case_ : Tuple = is_training snake_case_ : List[str] = use_attention_mask snake_case_ : Union[str, Any] = use_token_type_ids snake_case_ : Optional[Any] = use_labels snake_case_ : Tuple = vocab_size snake_case_ : Dict = hidden_size snake_case_ : List[str] = num_hidden_layers snake_case_ : Tuple = num_attention_heads snake_case_ : Dict = intermediate_size snake_case_ : str = hidden_act snake_case_ : List[Any] = hidden_dropout_prob snake_case_ : Optional[int] = attention_probs_dropout_prob snake_case_ : Optional[Any] = max_position_embeddings snake_case_ : Optional[Any] = type_vocab_size snake_case_ : Union[str, Any] = type_sequence_label_size snake_case_ : str = initializer_range snake_case_ : List[Any] = num_choices def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case_ : str = None if self.use_attention_mask: snake_case_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case_ : Any = None if self.use_token_type_ids: snake_case_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case_ : Tuple = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _lowerCAmelCase ( self ) -> List[Any]: snake_case_ : int = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : Any = config_and_inputs snake_case_ : Union[str, Any] = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Union[str, Any] = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ , snake_case_ : List[Any] = config_and_inputs snake_case_ : str = True snake_case_ : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) snake_case_ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : List[str] = True A : List[str] = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : List[str] = FlaxBertModelTester(self ) @slow def _lowerCAmelCase ( self ) -> Dict: # Only check this for base model, not necessary for all model classes. # This will also help speed-up tests. snake_case_ : int = FlaxBertModel.from_pretrained("bert-base-cased" ) snake_case_ : Tuple = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
36
0
"""simple docstring""" import inspect import unittest class _SCREAMING_SNAKE_CASE( unittest.TestCase ): def _UpperCamelCase ( self ) -> Optional[int]: """simple docstring""" try: import diffusers # noqa: F401 except ImportError: assert False def _UpperCamelCase ( self ) -> Any: """simple docstring""" import diffusers from diffusers.dependency_versions_table import deps __SCREAMING_SNAKE_CASE :int = inspect.getmembers(SCREAMING_SNAKE_CASE__ ,inspect.isclass ) for cls_name, cls_module in all_classes: if "dummy_" in cls_module.__module__: for backend in cls_module._backends: if backend == "k_diffusion": __SCREAMING_SNAKE_CASE :Optional[int] = '''k-diffusion''' elif backend == "invisible_watermark": __SCREAMING_SNAKE_CASE :int = '''invisible-watermark''' assert backend in deps, f'''{backend} is not in the deps table!'''
191
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "google/vivit-b-16x2-kinetics400": ( "https://huggingface.co/google/vivit-b-16x2-kinetics400/resolve/main/config.json" ), # See all Vivit models at https://huggingface.co/models?filter=vivit } class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : List[str] = '''vivit''' def __init__( self ,SCREAMING_SNAKE_CASE__=2_24 ,SCREAMING_SNAKE_CASE__=32 ,SCREAMING_SNAKE_CASE__=[2, 16, 16] ,SCREAMING_SNAKE_CASE__=3 ,SCREAMING_SNAKE_CASE__=7_68 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=12 ,SCREAMING_SNAKE_CASE__=30_72 ,SCREAMING_SNAKE_CASE__="gelu_fast" ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0 ,SCREAMING_SNAKE_CASE__=0.0_2 ,SCREAMING_SNAKE_CASE__=1E-06 ,SCREAMING_SNAKE_CASE__=True ,**SCREAMING_SNAKE_CASE__ ,) -> Any: """simple docstring""" __SCREAMING_SNAKE_CASE :int = hidden_size __SCREAMING_SNAKE_CASE :List[Any] = num_hidden_layers __SCREAMING_SNAKE_CASE :Union[str, Any] = num_attention_heads __SCREAMING_SNAKE_CASE :Union[str, Any] = intermediate_size __SCREAMING_SNAKE_CASE :Any = hidden_act __SCREAMING_SNAKE_CASE :Optional[Any] = hidden_dropout_prob __SCREAMING_SNAKE_CASE :str = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE :Any = initializer_range __SCREAMING_SNAKE_CASE :Optional[int] = layer_norm_eps __SCREAMING_SNAKE_CASE :Optional[int] = image_size __SCREAMING_SNAKE_CASE :List[str] = num_frames __SCREAMING_SNAKE_CASE :Any = tubelet_size __SCREAMING_SNAKE_CASE :str = num_channels __SCREAMING_SNAKE_CASE :Any = qkv_bias super().__init__(**SCREAMING_SNAKE_CASE__ )
191
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _a = logging.get_logger(__name__) class _UpperCAmelCase( __a ): """simple docstring""" lowercase__ = 'upernet' def __init__( self , __a=None , __a=5_12 , __a=0.02 , __a=[1, 2, 3, 6] , __a=True , __a=0.4 , __a=3_84 , __a=2_56 , __a=1 , __a=False , __a=2_55 , **__a , ) -> str: '''simple docstring''' super().__init__(**UpperCamelCase__) if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage1''', '''stage2''', '''stage3''', '''stage4''']) elif isinstance(UpperCamelCase__ , UpperCamelCase__): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(UpperCamelCase__) _UpperCamelCase = backbone_config _UpperCamelCase = hidden_size _UpperCamelCase = initializer_range _UpperCamelCase = pool_scales _UpperCamelCase = use_auxiliary_head _UpperCamelCase = auxiliary_loss_weight _UpperCamelCase = auxiliary_in_channels _UpperCamelCase = auxiliary_channels _UpperCamelCase = auxiliary_num_convs _UpperCamelCase = auxiliary_concat_input _UpperCamelCase = loss_ignore_index def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output
369
"""simple docstring""" import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict _a = namedtuple( """_TestCommandArgs""", [ """dataset""", """name""", """cache_dir""", """data_dir""", """all_configs""", """save_infos""", """ignore_verifications""", """force_redownload""", """clear_cache""", ], defaults=[None, None, None, False, False, False, False, False], ) def lowerCamelCase__ ( __snake_case, __snake_case ) -> Optional[int]: """simple docstring""" return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def lowerCamelCase__ ( __snake_case ) -> Dict: """simple docstring""" _UpperCamelCase = _TestCommandArgs(dataset=__snake_case, all_configs=__snake_case, save_infos=__snake_case ) _UpperCamelCase = TestCommand(*__snake_case ) test_command.run() _UpperCamelCase = os.path.join(__snake_case, '''README.md''' ) assert os.path.exists(__snake_case ) _UpperCamelCase = DatasetInfosDict.from_directory(__snake_case ) _UpperCamelCase = DatasetInfosDict( { '''default''': DatasetInfo( features=Features( { '''tokens''': Sequence(Value('''string''' ) ), '''ner_tags''': Sequence( ClassLabel(names=['''O''', '''B-PER''', '''I-PER''', '''B-ORG''', '''I-ORG''', '''B-LOC''', '''I-LOC'''] ) ), '''langs''': Sequence(Value('''string''' ) ), '''spans''': Sequence(Value('''string''' ) ), } ), splits=[ { '''name''': '''train''', '''num_bytes''': 2_35_15_63, '''num_examples''': 1_00_00, }, { '''name''': '''validation''', '''num_bytes''': 23_84_18, '''num_examples''': 10_00, }, ], download_size=3_94_06_80, dataset_size=2_58_99_81, ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: _UpperCamelCase , _UpperCamelCase = getattr(dataset_infos['''default'''], __snake_case ), getattr(expected_dataset_infos['''default'''], __snake_case ) if key == "num_bytes": assert is_apercent_close(__snake_case, __snake_case ) elif key == "splits": assert list(__snake_case ) == list(__snake_case ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes, expected[split].num_bytes ) else: result == expected
100
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## __snake_case = 16 __snake_case = 32 def a ( __a , __a = 16 ) -> List[Any]: '''simple docstring''' UpperCamelCase__ :Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' ) UpperCamelCase__ :Optional[int] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__a ): # max_length=None => use the model max length (it's actually the default) UpperCamelCase__ :Union[str, Any] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__a , max_length=__a ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): UpperCamelCase__ :Optional[int] = datasets.map( __a , batched=__a , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library UpperCamelCase__ :List[str] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__a ): # On TPU it's best to pad everything to the same length or training will be very slow. UpperCamelCase__ :Any = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": UpperCamelCase__ :Tuple = 16 elif accelerator.mixed_precision != "no": UpperCamelCase__ :int = 8 else: UpperCamelCase__ :Dict = None return tokenizer.pad( __a , padding='''longest''' , max_length=__a , pad_to_multiple_of=__a , return_tensors='''pt''' , ) # Instantiate dataloaders. UpperCamelCase__ :List[str] = DataLoader( tokenized_datasets['''train'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) UpperCamelCase__ :Tuple = DataLoader( tokenized_datasets['''validation'''] , shuffle=__a , collate_fn=__a , batch_size=__a ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1": from accelerate.test_utils.training import mocked_dataloaders __snake_case = mocked_dataloaders # noqa: F811 def a ( __a , __a ) -> Optional[int]: '''simple docstring''' if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __a ) == "1": UpperCamelCase__ :List[str] = 2 # New Code # UpperCamelCase__ :Dict = int(args.gradient_accumulation_steps ) UpperCamelCase__ :str = int(args.local_sgd_steps ) # Initialize accelerator UpperCamelCase__ :List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__a ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs UpperCamelCase__ :Tuple = config['''lr'''] UpperCamelCase__ :str = int(config['''num_epochs'''] ) UpperCamelCase__ :int = int(config['''seed'''] ) UpperCamelCase__ :Optional[Any] = int(config['''batch_size'''] ) UpperCamelCase__ :List[str] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__a ) UpperCamelCase__ , UpperCamelCase__ :str = get_dataloaders(__a , __a ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) UpperCamelCase__ :List[Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__a ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). UpperCamelCase__ :Optional[int] = model.to(accelerator.device ) # Instantiate optimizer UpperCamelCase__ :Dict = AdamW(params=model.parameters() , lr=__a ) # Instantiate scheduler UpperCamelCase__ :Union[str, Any] = get_linear_schedule_with_warmup( optimizer=__a , num_warmup_steps=100 , num_training_steps=(len(__a ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ :int = accelerator.prepare( __a , __a , __a , __a , __a ) # Now we train the model for epoch in range(__a ): model.train() with LocalSGD( accelerator=__a , model=__a , local_sgd_steps=__a , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__a ): UpperCamelCase__ :Dict = model(**__a ) UpperCamelCase__ :Optional[Any] = output.loss accelerator.backward(__a ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__a ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): UpperCamelCase__ :int = model(**__a ) UpperCamelCase__ :List[str] = outputs.logits.argmax(dim=-1 ) UpperCamelCase__ , UpperCamelCase__ :List[str] = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__a , references=__a , ) UpperCamelCase__ :Optional[int] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , __a ) def a ( ) -> Any: '''simple docstring''' UpperCamelCase__ :int = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__a , default=__a , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__a , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=__a , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) UpperCamelCase__ :List[Any] = parser.parse_args() UpperCamelCase__ :Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__a , __a ) if __name__ == "__main__": main()
97
'''simple docstring''' import unittest from dataclasses import dataclass import pytest from accelerate.commands.config.config_args import SageMakerConfig from accelerate.utils import ComputeEnvironment from accelerate.utils.launch import _convert_nargs_to_dict @dataclass class lowercase ( A__ ): """simple docstring""" _a = ComputeEnvironment.AMAZON_SAGEMAKER _a = True _a = 'ml.p3.2xlarge' _a = 'accelerate_sagemaker_execution_role' _a = 'hf-sm' _a = 'us-east-1' _a = 1 _a = 'accelerate-sagemaker-1' _a = '1.6' _a = '4.4' _a = 'train.py' _a = [ '--model_name_or_path', 'bert', '--do_train', 'False', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] _a = [ '--model_name_or_path', 'bert', '--do_train', '--do_test', 'False', '--do_predict', '--epochs', '3', '--learning_rate', '5e-5', '--max_steps', '50.5', ] class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Union[str, Any] = _convert_nargs_to_dict(MockLaunchConfig.success_training_script_args ) assert isinstance(converted_args['''model_name_or_path'''] , UpperCamelCase_ ) assert isinstance(converted_args['''do_train'''] , UpperCamelCase_ ) assert isinstance(converted_args['''epochs'''] , UpperCamelCase_ ) assert isinstance(converted_args['''learning_rate'''] , UpperCamelCase_ ) assert isinstance(converted_args['''max_steps'''] , UpperCamelCase_ ) with pytest.raises(UpperCamelCase_ ): _convert_nargs_to_dict(MockLaunchConfig.fail_training_script_args )
97
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __UpperCamelCase : Union[str, Any] = "Run commands across TPU VMs for initial setup before running `accelerate launch`." def __A ( __lowerCamelCase=None ) -> Union[str, Any]: if subparsers is not None: a = subparsers.add_parser("""tpu-config""" , description=_description ) else: a = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments a = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=__lowerCamelCase , default=__lowerCamelCase , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=__lowerCamelCase , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=__lowerCamelCase , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) a = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=__lowerCamelCase , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=__lowerCamelCase ) return parser def __A ( __lowerCamelCase ) -> Union[str, Any]: a = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__lowerCamelCase ): a = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: a = defaults.command_file if not args.command and defaults.commands is not None: a = defaults.commands if not args.tpu_name: a = defaults.tpu_name if not args.tpu_zone: a = defaults.tpu_zone if args.accelerate_version == "dev": a = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": a = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , __lowerCamelCase ): a = f'accelerate=={args.accelerate_version}' if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: a = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __lowerCamelCase ): a = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate a = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f'pip install {args.accelerate_version}'] new_cmd += args.command a = """; """.join(__lowerCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess a = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'Running {" ".join(__lowerCamelCase )}' ) return subprocess.run(__lowerCamelCase ) print("""Successfully setup pod.""" ) def __A ( ) -> Dict: a = tpu_command_parser() a = parser.parse_args() tpu_command_launcher(__lowerCamelCase )
347
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : int = { "shi-labs/nat-mini-in1k-224": "https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json", # See all Nat models at https://huggingface.co/models?filter=nat } class __lowerCAmelCase ( __magic_name__ , __magic_name__ ): UpperCamelCase__ = '''nat''' UpperCamelCase__ = { '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Any , __magic_name__ :int=4 , __magic_name__ :Dict=3 , __magic_name__ :List[str]=64 , __magic_name__ :Optional[int]=[3, 4, 6, 5] , __magic_name__ :int=[2, 4, 8, 16] , __magic_name__ :str=7 , __magic_name__ :Tuple=3.0 , __magic_name__ :Dict=True , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.0 , __magic_name__ :List[Any]=0.1 , __magic_name__ :Optional[Any]="gelu" , __magic_name__ :Optional[Any]=0.02 , __magic_name__ :Tuple=1E-5 , __magic_name__ :Union[str, Any]=0.0 , __magic_name__ :int=None , __magic_name__ :Any=None , **__magic_name__ :Dict , ): '''simple docstring''' super().__init__(**__magic_name__ ) a = patch_size a = num_channels a = embed_dim a = depths a = len(__magic_name__ ) a = num_heads a = kernel_size a = mlp_ratio a = qkv_bias a = hidden_dropout_prob a = attention_probs_dropout_prob a = drop_path_rate a = hidden_act a = layer_norm_eps a = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model a = int(embed_dim * 2 ** (len(__magic_name__ ) - 1) ) a = layer_scale_init_value a = ["""stem"""] + [F'stage{idx}' for idx in range(1 , len(__magic_name__ ) + 1 )] a , a = get_aligned_output_features_output_indices( out_features=__magic_name__ , out_indices=__magic_name__ , stage_names=self.stage_names )
347
1
from __future__ import annotations from fractions import Fraction def __A ( __lowerCAmelCase , __lowerCAmelCase )-> bool: """simple docstring""" return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def __A ( __lowerCAmelCase )-> list[str]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = 11 _UpperCAmelCase = int('1' + '0' * digit_len ) for num in range(__lowerCAmelCase , __lowerCAmelCase ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(__lowerCAmelCase , __lowerCAmelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 _UpperCAmelCase = 10 return solutions def __A ( __lowerCAmelCase = 2 )-> int: """simple docstring""" _UpperCAmelCase = 1.0 for fraction in fraction_list(__lowerCAmelCase ): _UpperCAmelCase = Fraction(__lowerCAmelCase ) result *= frac.denominator / frac.numerator return int(__lowerCAmelCase ) if __name__ == "__main__": print(solution())
39
"""simple docstring""" from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time __A = Lock() def __A (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ->List[Any]: """simple docstring""" global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowerCAmelCase__ :Any = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowerCAmelCase__ :Tuple = min(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(_SCREAMING_SNAKE_CASE ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowerCAmelCase__ :Optional[int] = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowerCAmelCase__ :Optional[int] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # after all swaps are performed, send the values back to main result_pipe[1].send(_SCREAMING_SNAKE_CASE ) def __A (_SCREAMING_SNAKE_CASE ) ->Optional[int]: """simple docstring""" lowerCAmelCase__ :str = [] lowerCAmelCase__ :Optional[Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowerCAmelCase__ :List[str] = Pipe() lowerCAmelCase__ :List[Any] = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowerCAmelCase__ :Dict = temp_rs lowerCAmelCase__ :Optional[Any] = temp_rr for i in range(1 , len(_SCREAMING_SNAKE_CASE ) - 1 ): lowerCAmelCase__ :Union[str, Any] = Pipe() lowerCAmelCase__ :List[str] = Pipe() process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowerCAmelCase__ :Union[str, Any] = temp_rs lowerCAmelCase__ :Any = temp_rr process_array_.append( Process( target=_SCREAMING_SNAKE_CASE , args=( len(_SCREAMING_SNAKE_CASE ) - 1, arr[len(_SCREAMING_SNAKE_CASE ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(_SCREAMING_SNAKE_CASE ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(_SCREAMING_SNAKE_CASE ) ): lowerCAmelCase__ :str = result_pipe[p][0].recv() process_array_[p].join() return arr def __A () ->List[Any]: """simple docstring""" lowerCAmelCase__ :Union[str, Any] = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*_SCREAMING_SNAKE_CASE ) lowerCAmelCase__ :List[str] = odd_even_transposition(_SCREAMING_SNAKE_CASE ) print('Sorted List\n' ) print(*_SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
293
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
196
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[int] =logging.get_logger(__name__) lowerCamelCase : Optional[Any] ={ '''edbeeching/decision-transformer-gym-hopper-medium''': ( '''https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json''' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class __a ( A__ ): _lowerCAmelCase : str = '''decision_transformer''' _lowerCAmelCase : Optional[Any] = ['''past_key_values'''] _lowerCAmelCase : Optional[int] = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[int]=17 , SCREAMING_SNAKE_CASE : Optional[int]=4 , SCREAMING_SNAKE_CASE : Optional[int]=1_28 , SCREAMING_SNAKE_CASE : Dict=40_96 , SCREAMING_SNAKE_CASE : Union[str, Any]=True , SCREAMING_SNAKE_CASE : Tuple=1 , SCREAMING_SNAKE_CASE : Optional[int]=10_24 , SCREAMING_SNAKE_CASE : Any=3 , SCREAMING_SNAKE_CASE : str=1 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Dict="relu" , SCREAMING_SNAKE_CASE : Optional[int]=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : str=0.1 , SCREAMING_SNAKE_CASE : Union[str, Any]=1e-5 , SCREAMING_SNAKE_CASE : Optional[int]=0.0_2 , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : Tuple=True , SCREAMING_SNAKE_CASE : int=5_02_56 , SCREAMING_SNAKE_CASE : List[Any]=5_02_56 , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : List[Any]=False , **SCREAMING_SNAKE_CASE : Optional[int] , ): '''simple docstring''' UpperCamelCase__ : List[str] = state_dim UpperCamelCase__ : Optional[int] = act_dim UpperCamelCase__ : Dict = hidden_size UpperCamelCase__ : Any = max_ep_len UpperCamelCase__ : Optional[Any] = action_tanh UpperCamelCase__ : str = vocab_size UpperCamelCase__ : List[str] = n_positions UpperCamelCase__ : Tuple = n_layer UpperCamelCase__ : Union[str, Any] = n_head UpperCamelCase__ : Dict = n_inner UpperCamelCase__ : int = activation_function UpperCamelCase__ : List[str] = resid_pdrop UpperCamelCase__ : Optional[int] = embd_pdrop UpperCamelCase__ : Optional[Any] = attn_pdrop UpperCamelCase__ : Optional[Any] = layer_norm_epsilon UpperCamelCase__ : int = initializer_range UpperCamelCase__ : Dict = scale_attn_weights UpperCamelCase__ : Tuple = use_cache UpperCamelCase__ : List[str] = scale_attn_by_inverse_layer_idx UpperCamelCase__ : Union[str, Any] = reorder_and_upcast_attn UpperCamelCase__ : Optional[Any] = bos_token_id UpperCamelCase__ : Optional[int] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
196
1
"""simple docstring""" from ...processing_utils import ProcessorMixin class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' __UpperCamelCase = "WhisperFeatureExtractor" __UpperCamelCase = "WhisperTokenizer" def __init__( self : List[str] , lowercase_ : List[Any] , lowercase_ : Dict): '''simple docstring''' super().__init__(lowercase_ , lowercase_) SCREAMING_SNAKE_CASE_ : Optional[Any] = self.feature_extractor SCREAMING_SNAKE_CASE_ : Dict = False def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : str=None , lowercase_ : Optional[Any]=None , lowercase_ : Any=True): '''simple docstring''' return self.tokenizer.get_decoder_prompt_ids(task=lowercase_ , language=lowercase_ , no_timestamps=lowercase_) def __call__( self : Dict , *lowercase_ : Dict , **lowercase_ : Union[str, Any]): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowercase_ , **lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = kwargs.pop('''audio''' , lowercase_) SCREAMING_SNAKE_CASE_ : str = kwargs.pop('''sampling_rate''' , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = kwargs.pop('''text''' , lowercase_) if len(lowercase_) > 0: SCREAMING_SNAKE_CASE_ : Optional[int] = args[0] SCREAMING_SNAKE_CASE_ : Tuple = args[1:] if audio is None and text is None: raise ValueError('''You need to specify either an `audio` or `text` input to process.''') if audio is not None: SCREAMING_SNAKE_CASE_ : Any = self.feature_extractor(lowercase_ , *lowercase_ , sampling_rate=lowercase_ , **lowercase_) if text is not None: SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.tokenizer(lowercase_ , **lowercase_) if text is None: return inputs elif audio is None: return encodings else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = encodings['''input_ids'''] return inputs def _SCREAMING_SNAKE_CASE ( self : List[str] , *lowercase_ : Optional[Any] , **lowercase_ : Tuple): '''simple docstring''' return self.tokenizer.batch_decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , *lowercase_ : Dict , **lowercase_ : Optional[Any]): '''simple docstring''' return self.tokenizer.decode(*lowercase_ , **lowercase_) def _SCREAMING_SNAKE_CASE ( self : Dict , lowercase_ : str , lowercase_ : Optional[Any]="np"): '''simple docstring''' return self.tokenizer.get_prompt_ids(lowercase_ , return_tensors=lowercase_)
91
from __future__ import annotations import bisect def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : int = len(_lowerCamelCase ) while lo < hi: _lowerCAmelCase : Optional[Any] = lo + (hi - lo) // 2 if sorted_collection[mid] < item: _lowerCAmelCase : Union[str, Any] = mid + 1 else: _lowerCAmelCase : str = mid return lo def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' if hi < 0: _lowerCAmelCase : str = len(_lowerCamelCase ) while lo < hi: _lowerCAmelCase : Tuple = lo + (hi - lo) // 2 if sorted_collection[mid] <= item: _lowerCAmelCase : Dict = mid + 1 else: _lowerCAmelCase : str = mid return lo def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_left(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 0 , _lowerCamelCase = -1 ): '''simple docstring''' sorted_collection.insert(bisect_right(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) , _lowerCamelCase ) def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : int = 0 _lowerCAmelCase : Union[str, Any] = len(_lowerCamelCase ) - 1 while left <= right: _lowerCAmelCase : int = left + (right - left) // 2 _lowerCAmelCase : int = sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: _lowerCAmelCase : str = midpoint - 1 else: _lowerCAmelCase : Any = midpoint + 1 return None def A ( _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' _lowerCAmelCase : Tuple = bisect.bisect_left(_lowerCamelCase , _lowerCamelCase ) if index != len(_lowerCamelCase ) and sorted_collection[index] == item: return index return None def A ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): '''simple docstring''' if right < left: return None _lowerCAmelCase : Optional[int] = left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , midpoint - 1 ) else: return binary_search_by_recursion(_lowerCamelCase , _lowerCamelCase , midpoint + 1 , _lowerCamelCase ) if __name__ == "__main__": _snake_case = input("Enter numbers separated by comma:\n").strip() _snake_case = sorted(int(item) for item in user_input.split(",")) _snake_case = int(input("Enter a single number to be found in the list:\n")) _snake_case = binary_search(collection, target) if result is None: print(f'''{target} was not found in {collection}.''') else: print(f'''{target} was found at position {result} in {collection}.''')
36
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ : Optional[int] = logging.get_logger(__name__) lowerCamelCase_ : Dict = { """microsoft/git-base""": """https://huggingface.co/microsoft/git-base/resolve/main/config.json""", } class a__ ( __snake_case ): A__ : Optional[Any] = 'git_vision_model' def __init__( self , UpperCAmelCase=7_6_8 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase=1_2 , UpperCAmelCase=1_2 , UpperCAmelCase=3 , UpperCAmelCase=2_2_4 , UpperCAmelCase=1_6 , UpperCAmelCase="quick_gelu" , UpperCAmelCase=1e-5 , UpperCAmelCase=0.0 , UpperCAmelCase=0.02 , **UpperCAmelCase , ) -> List[str]: super().__init__(**UpperCAmelCase ) __a = hidden_size __a = intermediate_size __a = num_hidden_layers __a = num_attention_heads __a = num_channels __a = patch_size __a = image_size __a = initializer_range __a = attention_dropout __a = layer_norm_eps __a = hidden_act @classmethod def __SCREAMING_SNAKE_CASE ( cls , UpperCAmelCase , **UpperCAmelCase ) -> "PretrainedConfig": cls._set_token_in_kwargs(UpperCAmelCase ) __a , __a = cls.get_config_dict(UpperCAmelCase , **UpperCAmelCase ) # get the vision config dict if we are loading from GITConfig if config_dict.get('model_type' ) == "git": __a = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase , **UpperCAmelCase ) class a__ ( __snake_case ): A__ : Dict = 'git' def __init__( self , UpperCAmelCase=None , UpperCAmelCase=3_0_5_2_2 , UpperCAmelCase=7_6_8 , UpperCAmelCase=6 , UpperCAmelCase=1_2 , UpperCAmelCase=3_0_7_2 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0_2_4 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-12 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=True , UpperCAmelCase=False , UpperCAmelCase=1_0_1 , UpperCAmelCase=1_0_2 , UpperCAmelCase=None , **UpperCAmelCase , ) -> Any: super().__init__(bos_token_id=UpperCAmelCase , eos_token_id=UpperCAmelCase , pad_token_id=UpperCAmelCase , **UpperCAmelCase ) if vision_config is None: __a = {} logger.info('vision_config is None. initializing the GitVisionConfig with default values.' ) __a = GitVisionConfig(**UpperCAmelCase ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = tie_word_embeddings __a = num_image_with_embedding __a = bos_token_id __a = eos_token_id def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = copy.deepcopy(self.__dict__ ) __a = self.vision_config.to_dict() __a = self.__class__.model_type return output
368
from datetime import datetime import matplotlib.pyplot as plt import torch def lowerCAmelCase( __lowerCamelCase ): for param in module.parameters(): __a = False def lowerCAmelCase( ): __a = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __a = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def lowerCAmelCase( __lowerCamelCase ): __a = plt.imshow(__lowerCamelCase ) fig.axes.get_xaxis().set_visible(__lowerCamelCase ) fig.axes.get_yaxis().set_visible(__lowerCamelCase ) plt.show() def lowerCAmelCase( ): __a = datetime.now() __a = current_time.strftime('%H:%M:%S' ) return timestamp
197
0
'''simple docstring''' def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): return [sentence[i : i + ngram_size] for i in range(len(UpperCAmelCase_ ) - ngram_size + 1 )] if __name__ == "__main__": from doctest import testmod testmod()
83
"""simple docstring""" from __future__ import annotations from fractions import Fraction def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def _lowerCAmelCase ( UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = [] __SCREAMING_SNAKE_CASE = 11 __SCREAMING_SNAKE_CASE = int("""1""" + """0""" * digit_len ) for num in range(UpperCamelCase_ , UpperCamelCase_ ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(UpperCamelCase_ , UpperCamelCase_ ): solutions.append(f"{num}/{den}" ) den += 1 num += 1 __SCREAMING_SNAKE_CASE = 10 return solutions def _lowerCAmelCase ( UpperCamelCase_ = 2 ): __SCREAMING_SNAKE_CASE = 1.0 for fraction in fraction_list(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = Fraction(UpperCamelCase_ ) result *= frac.denominator / frac.numerator return int(UpperCamelCase_ ) if __name__ == "__main__": print(solution())
100
0
import math def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(_UpperCAmelCase) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen') if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. a_ : Any = 'Enter the base and the power separated by a comma: ' a_ , a_ : List[str] = map(int, input(prompt).split(',')) a_ , a_ : Union[str, Any] = map(int, input(prompt).split(',')) # We find the log of each number, using the function res(), which takes two # arguments. a_ : List[Any] = res(xa, ya) a_ : Union[str, Any] = res(xa, ya) # We check for the largest number if resa > resa: print('Largest number is', xa, '^', ya) elif resa > resa: print('Largest number is', xa, '^', ya) else: print('Both are equal')
327
import os import tempfile import unittest import numpy as np from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard from diffusers import FlaxDDIMScheduler, FlaxDiffusionPipeline, FlaxStableDiffusionPipeline @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: with tempfile.TemporaryDirectory() as tmpdirname: # pipeline has Flax weights SCREAMING_SNAKE_CASE = FlaxDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a , cache_dir=a) SCREAMING_SNAKE_CASE = [t[-1] for t in os.walk(os.path.join(a , os.listdir(a)[0] , 'snapshots'))] SCREAMING_SNAKE_CASE = [item for sublist in all_root_files for item in sublist] # None of the downloaded files should be a PyTorch file even if we have some here: # https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_pytorch_model.bin assert not any(f.endswith('.bin') for f in files) @slow @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'hf-internal-testing/tiny-stable-diffusion-pipe' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 4 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 64, 64, 3) if jax.device_count() == 8: assert np.abs(np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 4.1_51_47_45) < 1E-3 assert np.abs(np.abs(a , dtype=np.floataa).sum() - 4_99_47.8_75) < 5E-1 SCREAMING_SNAKE_CASE = pipeline.numpy_to_pil(np.asarray(images.reshape((num_samples,) + images.shape[-3:]))) assert len(a) == num_samples def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='flax' , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.05_65_24_01)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_38_38_08.2)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Union[str, Any]: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa) SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.04_00_39_06)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_37_35_16.75)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = FlaxDDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='scaled_linear' , set_alpha_to_one=a , steps_offset=1 , ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , scheduler=a , safety_checker=a , ) SCREAMING_SNAKE_CASE = scheduler.create_state() SCREAMING_SNAKE_CASE = scheduler_state SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.random.PRNGKey(0) SCREAMING_SNAKE_CASE = 50 SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) # shard inputs and rng SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = jax.random.split(a , a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) if jax.device_count() == 8: assert np.abs((np.abs(images[0, 0, :2, :2, -2:] , dtype=np.floataa).sum() - 0.0_45_04_39_45)) < 1E-3 assert np.abs((np.abs(a , dtype=np.floataa).sum() - 2_34_76_93.5)) < 5E-1 def SCREAMING_SNAKE_CASE__ ( self) -> str: SCREAMING_SNAKE_CASE = ( 'A cinematic film still of Morgan Freeman starring as Jimi Hendrix, portrait, 40mm lens, shallow depth of' ' field, close up, split lighting, cinematic' ) SCREAMING_SNAKE_CASE = jax.device_count() SCREAMING_SNAKE_CASE = num_samples * [prompt] SCREAMING_SNAKE_CASE = jax.random.split(jax.random.PRNGKey(0) , a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # With memory efficient attention SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = FlaxStableDiffusionPipeline.from_pretrained( 'CompVis/stable-diffusion-v1-4' , revision='bf16' , dtype=jnp.bfloataa , safety_checker=a , use_memory_efficient_attention=a , ) SCREAMING_SNAKE_CASE = replicate(a) SCREAMING_SNAKE_CASE = pipeline.prepare_inputs(a) SCREAMING_SNAKE_CASE = shard(a) SCREAMING_SNAKE_CASE = pipeline(a , a , a , jit=a).images assert images_eff.shape == (num_samples, 1, 512, 512, 3) SCREAMING_SNAKE_CASE = images[2, 0, 256, 10:17, 1] # I checked the results visually and they are very similar. However, I saw that the max diff is `1` and the `sum` # over the 8 images is exactly `256`, which is very suspicious. Testing a random slice for now. assert abs(slice_eff - slice).max() < 1E-2
327
1
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file __SCREAMING_SNAKE_CASE : Optional[Any] = 'Run commands across TPU VMs for initial setup before running `accelerate launch`.' def _a ( _SCREAMING_SNAKE_CASE=None ) -> Dict: if subparsers is not None: snake_case_ = subparsers.add_parser("""tpu-config""" , description=_description ) else: snake_case_ = argparse.ArgumentParser("""Accelerate tpu-config command""" , description=_description ) # Core arguments snake_case_ = parser.add_argument_group( """Config Arguments""" , """Arguments that can be configured through `accelerate config`.""" ) config_args.add_argument( """--config_file""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Path to the config file to use for accelerate.""" , ) config_args.add_argument( """--tpu_name""" , default=_SCREAMING_SNAKE_CASE , help="""The name of the TPU to use. If not specified, will use the TPU specified in the config file.""" , ) config_args.add_argument( """--tpu_zone""" , default=_SCREAMING_SNAKE_CASE , help="""The zone of the TPU to use. If not specified, will use the zone specified in the config file.""" , ) snake_case_ = parser.add_argument_group("""TPU Arguments""" , """Arguments for options ran inside the TPU.""" ) pod_args.add_argument( """--use_alpha""" , action="""store_true""" , help="""Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.""" , ) pod_args.add_argument( """--command_file""" , default=_SCREAMING_SNAKE_CASE , help="""The path to the file containing the commands to run on the pod on startup.""" , ) pod_args.add_argument( """--command""" , action="""append""" , nargs="""+""" , help="""A command to run on the pod. Can be passed multiple times.""" , ) pod_args.add_argument( """--install_accelerate""" , action="""store_true""" , help="""Whether to install accelerate on the pod. Defaults to False.""" , ) pod_args.add_argument( """--accelerate_version""" , default="""latest""" , help="""The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify 'dev' to install from GitHub.""" , ) pod_args.add_argument( """--debug""" , action="""store_true""" , help="""If set, will print the command that would be run instead of running it.""" ) if subparsers is not None: parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) return parser def _a ( _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: snake_case_ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(_SCREAMING_SNAKE_CASE ): snake_case_ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: snake_case_ = defaults.command_file if not args.command and defaults.commands is not None: snake_case_ = defaults.commands if not args.tpu_name: snake_case_ = defaults.tpu_name if not args.tpu_zone: snake_case_ = defaults.tpu_zone if args.accelerate_version == "dev": snake_case_ = """git+https://github.com/huggingface/accelerate.git""" elif args.accelerate_version == "latest": snake_case_ = """accelerate -U""" elif isinstance(parse(args.accelerate_version ) , _SCREAMING_SNAKE_CASE ): snake_case_ = f"""accelerate=={args.accelerate_version}""" if not args.command_file and not args.command: raise ValueError("""You must specify either a command file or a command to run on the pod.""" ) if args.command_file: with open(args.command_file , """r""" ) as f: snake_case_ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , _SCREAMING_SNAKE_CASE ): snake_case_ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate snake_case_ = ["""cd /usr/share"""] if args.install_accelerate: new_cmd += [f"""pip install {args.accelerate_version}"""] new_cmd += args.command snake_case_ = """; """.join(_SCREAMING_SNAKE_CASE ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess snake_case_ = ["""gcloud"""] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f"""Running {" ".join(_SCREAMING_SNAKE_CASE )}""" ) return subprocess.run(_SCREAMING_SNAKE_CASE ) print("""Successfully setup pod.""" ) def _a ( ) -> List[Any]: snake_case_ = tpu_command_parser() snake_case_ = parser.parse_args() tpu_command_launcher(_SCREAMING_SNAKE_CASE )
347
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Tuple ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : int ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : int ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Dict ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Union[str, Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[Any] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : Optional[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : str , **UpperCAmelCase_ : int ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : List[Any] ) ->Tuple: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Optional[int] , **UpperCAmelCase_ : Union[str, Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : List[Any] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[Any] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : List[str] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Tuple = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : Tuple , **UpperCAmelCase_ : Optional[Any] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Optional[Any] ) ->int: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : Optional[Any] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Dict ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : List[str] , **UpperCAmelCase_ : List[str] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : List[Any] ) ->Union[str, Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : Any , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[Any] ) ->List[str]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : int , *UpperCAmelCase_ : str , **UpperCAmelCase_ : Union[str, Any] ) ->List[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[Any] = ["""sentencepiece"""] def __init__( self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Optional[int] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Union[str, Any] = ["""sentencepiece"""] def __init__( self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : str ) ->Optional[int]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Optional[int] = ["""sentencepiece"""] def __init__( self : Tuple , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Optional[int] ) ->Dict: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Dict = ["""sentencepiece"""] def __init__( self : Optional[int] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : List[str] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: int = ["""sentencepiece"""] def __init__( self : Dict , *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Optional[int] ) ->Any: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: List[str] = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : Dict , **UpperCAmelCase_ : Union[str, Any] ) ->Optional[Any]: """simple docstring""" requires_backends(self , ["""sentencepiece"""] ) class __A (metaclass=snake_case__): '''simple docstring''' __lowercase: Any = ["""sentencepiece"""] def __init__( self : List[str] , *UpperCAmelCase_ : List[Any] , **UpperCAmelCase_ : Optional[int] ) ->str: """simple docstring""" requires_backends(self , ["""sentencepiece"""] )
347
1
'''simple docstring''' def lowercase_ ( lowerCAmelCase__ : str ): """simple docstring""" __UpperCAmelCase : str = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) __UpperCAmelCase : Tuple = hex_num[0] == """-""" if is_negative: __UpperCAmelCase : Union[str, Any] = hex_num[1:] try: __UpperCAmelCase : Optional[Any] = int(lowerCAmelCase__ , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) __UpperCAmelCase : Union[str, Any] = """""" while int_num > 0: __UpperCAmelCase : int = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
358
'''simple docstring''' import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=8 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=16 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=36 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Union[str, Any] = seq_length __UpperCAmelCase : int = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : List[str] = use_labels __UpperCAmelCase : Optional[Any] = vocab_size __UpperCAmelCase : Tuple = hidden_size __UpperCAmelCase : Union[str, Any] = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : List[Any] = hidden_act __UpperCAmelCase : Optional[Any] = hidden_dropout_prob __UpperCAmelCase : List[Any] = attention_probs_dropout_prob __UpperCAmelCase : Optional[Any] = max_position_embeddings __UpperCAmelCase : List[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Optional[Any] = initializer_range __UpperCAmelCase : Optional[Any] = num_labels __UpperCAmelCase : Optional[Any] = num_choices __UpperCAmelCase : int = scope def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : List[Any] = None if self.use_input_mask: __UpperCAmelCase : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Any = None if self.use_token_type_ids: __UpperCAmelCase : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Any = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> List[str]: '''simple docstring''' return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_config() __UpperCAmelCase : List[Any] = 300 return config def __A ( self ) -> Dict: '''simple docstring''' ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = self.prepare_config_and_inputs() __UpperCAmelCase : Tuple = True __UpperCAmelCase : Union[str, Any] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = MraModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[str] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : Any = model(__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) __UpperCAmelCase : List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> str: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[Any] = MraModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Any = MraForMaskedLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[int] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> int: '''simple docstring''' __UpperCAmelCase : str = MraForQuestionAnswering(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Optional[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> str: '''simple docstring''' __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : int = MraForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Tuple = self.num_labels __UpperCAmelCase : str = MraForTokenClassification(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: '''simple docstring''' __UpperCAmelCase : Dict = self.num_choices __UpperCAmelCase : int = MraForMultipleChoice(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : List[str] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : List[Any] = config_and_inputs __UpperCAmelCase : Tuple = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) _SCREAMING_SNAKE_CASE : Union[str, Any] = False _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : int = False _SCREAMING_SNAKE_CASE : List[str] = False _SCREAMING_SNAKE_CASE : Dict = () def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = MraModelTester(self ) __UpperCAmelCase : Optional[Any] = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> int: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : str = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[Any] = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__UpperCAmelCase ) @slow def __A ( self ) -> Any: '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Tuple = MraModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @unittest.skip(reason="""MRA does not output attentions""" ) def __A ( self ) -> List[Any]: '''simple docstring''' return @require_torch class _A ( unittest.TestCase ): @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Tuple = MraModel.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : str = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : List[Any] = model(__UpperCAmelCase )[0] __UpperCAmelCase : Optional[Any] = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[-0.0140, 0.0830, -0.0381], [0.1546, 0.1402, 0.0220], [0.1162, 0.0851, 0.0165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-512-4""" ) __UpperCAmelCase : Union[str, Any] = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : int = model(__UpperCAmelCase )[0] __UpperCAmelCase : Union[str, Any] = 50_265 __UpperCAmelCase : Union[str, Any] = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : int = torch.tensor( [[[9.2595, -3.6038, 11.8819], [9.3869, -3.2693, 11.0956], [11.8524, -3.4938, 13.1210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = MraForMaskedLM.from_pretrained("""uw-madison/mra-base-4096-8-d3""" ) __UpperCAmelCase : Dict = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): __UpperCAmelCase : Any = model(__UpperCAmelCase )[0] __UpperCAmelCase : Dict = 50_265 __UpperCAmelCase : Optional[int] = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , __UpperCAmelCase ) __UpperCAmelCase : str = torch.tensor( [[[5.4789, -2.3564, 7.5064], [7.9067, -1.3369, 9.9668], [9.0712, -1.8106, 7.0380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
16
0
from math import factorial __lowerCAmelCase = {str(d): factorial(d) for d in range(10)} def snake_case_ ( snake_case ) -> int: return sum(DIGIT_FACTORIAL[d] for d in str(snake_case ) ) def snake_case_ ( ) -> int: lowercase__: Optional[Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , snake_case ) if sum_of_digit_factorial(snake_case ) == i ) if __name__ == "__main__": print(F'''{solution() = }''')
196
def snake_case_ ( snake_case , snake_case ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowercase__: str = str(bin(snake_case ) ) binary_number += "0" * shift_amount return binary_number def snake_case_ ( snake_case , snake_case ) -> str: if number < 0 or shift_amount < 0: raise ValueError('both inputs must be positive integers' ) lowercase__: Optional[Any] = str(bin(snake_case ) )[2:] if shift_amount >= len(snake_case ): return "0b0" lowercase__: Optional[int] = binary_number[: len(snake_case ) - shift_amount] return "0b" + shifted_binary_number def snake_case_ ( snake_case , snake_case ) -> str: if number >= 0: # Get binary representation of positive number lowercase__: Union[str, Any] = '0' + str(bin(snake_case ) ).strip('-' )[2:] else: # Get binary (2's complement) representation of negative number lowercase__: Dict = len(bin(snake_case )[3:] ) # Find 2's complement of number lowercase__: int = bin(abs(snake_case ) - (1 << binary_number_length) )[3:] lowercase__: Any = ( '1' + '0' * (binary_number_length - len(snake_case )) + binary_number ) if shift_amount >= len(snake_case ): return "0b" + binary_number[0] * len(snake_case ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(snake_case ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
196
1
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Optional[Any]: snake_case = r"""\w+[.]\d+""" snake_case = re.findall(__lowerCAmelCase , __lowerCAmelCase ) for pat in pats: snake_case = key.replace(__lowerCAmelCase , """_""".join(pat.split(""".""" ) ) ) return key def __lowerCamelCase ( __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : Tuple ) -> List[str]: snake_case = pt_tuple_key[:-1] + ("""scale""",) if ( any("""norm""" in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): snake_case = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ("""scale""",) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: snake_case = pt_tuple_key[:-1] + ("""embedding""",) return renamed_pt_tuple_key, pt_tensor # conv layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: snake_case = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer snake_case = pt_tuple_key[:-1] + ("""kernel""",) if pt_tuple_key[-1] == "weight": snake_case = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight snake_case = pt_tuple_key[:-1] + ("""weight""",) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias snake_case = pt_tuple_key[:-1] + ("""bias""",) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any]=42 ) -> Any: # Step 1: Convert pytorch tensor to numpy snake_case = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params snake_case = flax_model.init_weights(PRNGKey(__lowerCAmelCase ) ) snake_case = flatten_dict(__lowerCAmelCase ) snake_case = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): snake_case = rename_key(__lowerCAmelCase ) snake_case = tuple(renamed_pt_key.split(""".""" ) ) # Correctly rename weight parameters snake_case , snake_case = rename_key_and_reshape_tensor(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'''PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ''' F'''{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.''' ) # also add unexpected weight so that warning is thrown snake_case = jnp.asarray(__lowerCAmelCase ) return unflatten_dict(__lowerCAmelCase )
3
'''simple docstring''' import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] ) -> Dict: snake_case = [] embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight''', F'''stage{idx}.patch_embed.proj.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias''', F'''stage{idx}.patch_embed.proj.bias''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight''', F'''stage{idx}.patch_embed.norm.weight''', ) ) embed.append( ( F'''cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias''', F'''stage{idx}.patch_embed.norm.bias''', ) ) return embed def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] ) -> List[Any]: snake_case = [] attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked''', F'''stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_q.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_k.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj_v.bias''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.attn.proj.weight''', ) ) attention_weights.append( ( F'''cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.attn.proj.bias''', ) ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias''', F'''stage{idx}.blocks.{cnt}.mlp.fc2.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight''', F'''stage{idx}.blocks.{cnt}.norm1.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias''', F'''stage{idx}.blocks.{cnt}.norm1.bias''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight''', F'''stage{idx}.blocks.{cnt}.norm2.weight''') ) attention_weights.append( (F'''cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias''', F'''stage{idx}.blocks.{cnt}.norm2.bias''') ) return attention_weights def __lowerCamelCase ( __lowerCAmelCase : Any ) -> Optional[Any]: snake_case = [] token.append((F'''cvt.encoder.stages.{idx}.cls_token''', """stage2.cls_token""") ) return token def __lowerCamelCase ( ) -> Any: snake_case = [] head.append(("""layernorm.weight""", """norm.weight""") ) head.append(("""layernorm.bias""", """norm.bias""") ) head.append(("""classifier.weight""", """head.weight""") ) head.append(("""classifier.bias""", """head.bias""") ) return head def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str ) -> Optional[int]: snake_case = """imagenet-1k-id2label.json""" snake_case = 10_00 snake_case = """huggingface/label-files""" snake_case = num_labels snake_case = json.load(open(cached_download(hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="""dataset""" ) ) , """r""" ) ) snake_case = {int(__lowerCAmelCase ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} snake_case = snake_case = CvtConfig(num_labels=__lowerCAmelCase , idalabel=__lowerCAmelCase , labelaid=__lowerCAmelCase ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "13": snake_case = [1, 2, 10] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("""/""" , 1 )[-1][4:6] == "21": snake_case = [1, 4, 16] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: snake_case = [2, 2, 20] snake_case = [3, 12, 16] snake_case = [1_92, 7_68, 10_24] snake_case = CvtForImageClassification(__lowerCAmelCase ) snake_case = AutoImageProcessor.from_pretrained("""facebook/convnext-base-224-22k-1k""" ) snake_case = image_size snake_case = torch.load(__lowerCAmelCase , map_location=torch.device("""cpu""" ) ) snake_case = OrderedDict() snake_case = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: snake_case = list_of_state_dict + cls_token(__lowerCAmelCase ) snake_case = list_of_state_dict + embeddings(__lowerCAmelCase ) for cnt in range(config.depth[idx] ): snake_case = list_of_state_dict + attention(__lowerCAmelCase , __lowerCAmelCase ) snake_case = list_of_state_dict + final() for gg in list_of_state_dict: print(__lowerCAmelCase ) for i in range(len(__lowerCAmelCase ) ): snake_case = original_weights[list_of_state_dict[i][1]] model.load_state_dict(__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) image_processor.save_pretrained(__lowerCAmelCase ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--cvt_model", default="cvt-w24", type=str, help="Name of the cvt model you'd like to convert.", ) parser.add_argument( "--image_size", default=384, type=int, help="Input Image Size", ) parser.add_argument( "--cvt_file_name", default=r"cvtmodels\CvT-w24-384x384-IN-22k.pth", type=str, help="Input Image Size", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) _SCREAMING_SNAKE_CASE = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
3
1
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=snake_case_ ): __magic_name__: List[str] = ['onnx'] def __init__( self : str , *_A : str , **_A : Tuple ) -> List[Any]: """simple docstring""" requires_backends(self , ['onnx'] ) @classmethod def UpperCAmelCase_ ( cls : Union[str, Any] , *_A : Optional[Any] , **_A : List[str] ) -> Any: """simple docstring""" requires_backends(cls , ['onnx'] ) @classmethod def UpperCAmelCase_ ( cls : int , *_A : int , **_A : Dict ) -> List[str]: """simple docstring""" requires_backends(cls , ['onnx'] )
327
"""simple docstring""" def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[Any] ) -> int: '''simple docstring''' lowercase = [0 for i in range(r + 1 )] # nc0 = 1 lowercase = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. lowercase = min(lowerCAmelCase__ , lowerCAmelCase__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=1_0, r=5))
197
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : '''simple docstring''' def __init__( self, A, A=13, A=7, A=True, A=True, A=True, A=True, A=99, A=32, A=2, A=4, A=37, A="gelu", A=0.1, A=0.1, A=512, A=16, A=2, A=0.02, A=3, A=4, A=None, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : Tuple = 13 SCREAMING_SNAKE_CASE : List[str] = 7 SCREAMING_SNAKE_CASE : List[str] = True SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Dict = True SCREAMING_SNAKE_CASE : Optional[Any] = 99 SCREAMING_SNAKE_CASE : str = 384 SCREAMING_SNAKE_CASE : List[Any] = 2 SCREAMING_SNAKE_CASE : int = 4 SCREAMING_SNAKE_CASE : List[str] = 37 SCREAMING_SNAKE_CASE : Union[str, Any] = 'gelu' SCREAMING_SNAKE_CASE : Dict = 0.1 SCREAMING_SNAKE_CASE : List[Any] = 0.1 SCREAMING_SNAKE_CASE : Optional[int] = 512 SCREAMING_SNAKE_CASE : Union[str, Any] = 16 SCREAMING_SNAKE_CASE : Optional[Any] = 2 SCREAMING_SNAKE_CASE : Dict = 0.02 SCREAMING_SNAKE_CASE : Dict = 3 SCREAMING_SNAKE_CASE : List[str] = 4 SCREAMING_SNAKE_CASE : int = 128 SCREAMING_SNAKE_CASE : Tuple = 2 SCREAMING_SNAKE_CASE : Union[str, Any] = 9 SCREAMING_SNAKE_CASE : int = 1 SCREAMING_SNAKE_CASE : List[str] = None def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) SCREAMING_SNAKE_CASE : int = None if self.use_input_mask: SCREAMING_SNAKE_CASE : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE : List[str] = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = None SCREAMING_SNAKE_CASE : Any = None SCREAMING_SNAKE_CASE : Dict = None if self.use_labels: SCREAMING_SNAKE_CASE : Union[str, Any] = ids_tensor([self.batch_size], self.type_sequence_label_size ) SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) SCREAMING_SNAKE_CASE : str = ids_tensor([self.batch_size], self.num_choices ) SCREAMING_SNAKE_CASE : Any = ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=A, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = TFConvBertModel(config=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} SCREAMING_SNAKE_CASE : str = [input_ids, input_mask] SCREAMING_SNAKE_CASE : List[Any] = model(A ) SCREAMING_SNAKE_CASE : Tuple = model(A ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFConvBertForMaskedLM(config=A ) SCREAMING_SNAKE_CASE : List[Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE : int = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = self.num_labels SCREAMING_SNAKE_CASE : Tuple = TFConvBertForSequenceClassification(config=A ) SCREAMING_SNAKE_CASE : Optional[int] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE : Union[str, Any] = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.num_choices SCREAMING_SNAKE_CASE : Optional[Any] = TFConvBertForMultipleChoice(config=A ) SCREAMING_SNAKE_CASE : List[str] = tf.tile(tf.expand_dims(A, 1 ), (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(A, 1 ), (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : List[Any] = tf.tile(tf.expand_dims(A, 1 ), (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE : Optional[Any] = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE : Union[str, Any] = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.num_labels SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForTokenClassification(config=A ) SCREAMING_SNAKE_CASE : Dict = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE : List[str] = model(A ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self, A, A, A, A, A, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertForQuestionAnswering(config=A ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } SCREAMING_SNAKE_CASE : Dict = model(A ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = self.prepare_config_and_inputs() ( SCREAMING_SNAKE_CASE ) : Tuple = config_and_inputs SCREAMING_SNAKE_CASE : int = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : Optional[int] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) A : Any = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) A : Optional[Any] = False A : int = False A : Any = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = TFConvBertModelTester(self ) SCREAMING_SNAKE_CASE : List[str] = ConfigTester(self, config_class=A, hidden_size=37 ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Dict = True if hasattr(A, 'use_cache' ): SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Tuple = getattr(self.model_tester, 'encoder_seq_length', self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[int] = getattr(self.model_tester, 'key_length', A ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : str = self._prepare_for_class(A, A ) SCREAMING_SNAKE_CASE : Optional[Any] = model_class(A ) SCREAMING_SNAKE_CASE : str = len(model(A ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A, saved_model=A ) SCREAMING_SNAKE_CASE : Any = os.path.join(A, 'saved_model', '1' ) SCREAMING_SNAKE_CASE : Tuple = tf.keras.models.load_model(A ) SCREAMING_SNAKE_CASE : str = model(A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Optional[Any] = outputs['encoder_hidden_states'] SCREAMING_SNAKE_CASE : Union[str, Any] = outputs['encoder_attentions'] else: SCREAMING_SNAKE_CASE : Optional[Any] = outputs['hidden_states'] SCREAMING_SNAKE_CASE : str = outputs['attentions'] self.assertEqual(len(A ), A ) SCREAMING_SNAKE_CASE : Dict = getattr( self.model_tester, 'expected_num_hidden_layers', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(A ), A ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(A ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = self.model_tester.prepare_config_and_inputs_for_common() SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(self.model_tester, 'decoder_seq_length', self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(self.model_tester, 'encoder_seq_length', self.model_tester.seq_length ) SCREAMING_SNAKE_CASE : List[Any] = getattr(self.model_tester, 'key_length', A ) SCREAMING_SNAKE_CASE : Optional[Any] = getattr(self.model_tester, 'key_length', A ) def check_decoder_attentions_output(A ): SCREAMING_SNAKE_CASE : List[str] = len(A ) self.assertEqual(out_len % 2, 0 ) SCREAMING_SNAKE_CASE : str = outputs.decoder_attentions self.assertEqual(len(A ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(A ): SCREAMING_SNAKE_CASE : List[Any] = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(A ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : List[str] = False SCREAMING_SNAKE_CASE : Dict = model_class(A ) SCREAMING_SNAKE_CASE : str = model(self._prepare_for_class(A, A ) ) SCREAMING_SNAKE_CASE : str = len(A ) self.assertEqual(config.output_hidden_states, A ) check_encoder_attentions_output(A ) if self.is_encoder_decoder: SCREAMING_SNAKE_CASE : Any = model_class(A ) SCREAMING_SNAKE_CASE : Any = model(self._prepare_for_class(A, A ) ) self.assertEqual(config.output_hidden_states, A ) check_decoder_attentions_output(A ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : Union[str, Any] = model_class(A ) SCREAMING_SNAKE_CASE : List[str] = model(self._prepare_for_class(A, A ) ) self.assertEqual(config.output_hidden_states, A ) check_encoder_attentions_output(A ) # Check attention is always last and order is fine SCREAMING_SNAKE_CASE : Optional[int] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True SCREAMING_SNAKE_CASE : str = model_class(A ) SCREAMING_SNAKE_CASE : List[Any] = model(self._prepare_for_class(A, A ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(A ) ) self.assertEqual(model.config.output_hidden_states, A ) check_encoder_attentions_output(A ) @require_tf class _a ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) SCREAMING_SNAKE_CASE : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE : Dict = model(A )[0] SCREAMING_SNAKE_CASE : Union[str, Any] = [1, 6, 768] self.assertEqual(output.shape, A ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [ [-0.03_47_54_93, -0.4_68_60_34, -0.30_63_88_32], [0.22_63_72_48, -0.26_98_86_46, -0.7_42_34_24], [0.10_32_48_68, -0.45_01_35_08, -0.58_28_07_84], ] ] ) tf.debugging.assert_near(output[:, :3, :3], A, atol=1E-4 )
354
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"openai-gpt": "https://huggingface.co/openai-gpt/resolve/main/config.json"} class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : int = '''openai-gpt''' A : Dict = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self, A=40_478, A=512, A=768, A=12, A=12, A="gelu", A=0.1, A=0.1, A=0.1, A=1E-5, A=0.02, A="cls_index", A=True, A=None, A=True, A=0.1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : int = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = n_positions SCREAMING_SNAKE_CASE : Tuple = n_embd SCREAMING_SNAKE_CASE : Any = n_layer SCREAMING_SNAKE_CASE : Tuple = n_head SCREAMING_SNAKE_CASE : Union[str, Any] = afn SCREAMING_SNAKE_CASE : List[str] = resid_pdrop SCREAMING_SNAKE_CASE : List[str] = embd_pdrop SCREAMING_SNAKE_CASE : Tuple = attn_pdrop SCREAMING_SNAKE_CASE : List[str] = layer_norm_epsilon SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : List[Any] = summary_type SCREAMING_SNAKE_CASE : int = summary_use_proj SCREAMING_SNAKE_CASE : Union[str, Any] = summary_activation SCREAMING_SNAKE_CASE : List[str] = summary_first_dropout SCREAMING_SNAKE_CASE : Any = summary_proj_to_labels super().__init__(**A )
246
0
import math def SCREAMING_SNAKE_CASE__ ( __a , __a ): if 0 not in (x, y): # We use the relation x^y = y*log10(x), where 10 is the base. return y * math.logaa(__a ) else: if x == 0: # 0 raised to any number is 0 return 0 elif y == 0: return 1 # any number raised to 0 is 1 raise AssertionError('This should never happen' ) if __name__ == "__main__": # Main function # Read two numbers from input and typecast them to int using map function. # Here x is the base and y is the power. _SCREAMING_SNAKE_CASE = """Enter the base and the power separated by a comma: """ _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input(prompt).split(""",""")) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = map(int, input(prompt).split(""",""")) # We find the log of each number, using the function res(), which takes two # arguments. _SCREAMING_SNAKE_CASE = res(xa, ya) _SCREAMING_SNAKE_CASE = res(xa, ya) # We check for the largest number if resa > resa: print("""Largest number is""", xa, """^""", ya) elif resa > resa: print("""Largest number is""", xa, """^""", ya) else: print("""Both are equal""")
327
import os import torch from ..logging import get_logger from .constants import FSDP_PYTORCH_VERSION, MODEL_NAME, OPTIMIZER_NAME from .versions import is_torch_version if is_torch_version(""">=""", FSDP_PYTORCH_VERSION): import torch.distributed.checkpoint as dist_cp from torch.distributed.checkpoint.default_planner import DefaultLoadPlanner, DefaultSavePlanner from torch.distributed.checkpoint.optimizer import load_sharded_optimizer_state_dict from torch.distributed.fsdp.fully_sharded_data_parallel import FullyShardedDataParallel as FSDP from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType _SCREAMING_SNAKE_CASE = get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : Dict = model.state_dict() if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Dict = os.path.join(__a , __a ) if accelerator.process_index == 0: logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Dict = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Dict = os.path.join(__a , __a ) logger.info(f"""Saving model to {output_model_file}""" ) torch.save(__a , __a ) logger.info(f"""Model saved to {output_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Optional[int] = os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving model to {ckpt_dir}""" ) snake_case_ : int = {'model': state_dict} dist_cp.save_state_dict( state_dict=__a , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Model saved to {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if type(__a ) != FSDP and accelerator.process_index != 0: if not fsdp_plugin.sync_module_states: raise ValueError( 'Set the `sync_module_states` flag to `True` so that model states are synced across processes when ' 'initializing FSDP object' ) return snake_case_ : Optional[int] = f"""{MODEL_NAME}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}.bin""" snake_case_ : Optional[Any] = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[Any] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.LOCAL_STATE_DICT: snake_case_ : Optional[Any] = ( f"""{MODEL_NAME}_rank{accelerator.process_index}.bin""" if model_index == 0 else f"""{MODEL_NAME}_{model_index}_rank{accelerator.process_index}.bin""" ) snake_case_ : Tuple = os.path.join(__a , __a ) logger.info(f"""Loading model from {input_model_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Model loaded from {input_model_file}""" ) elif fsdp_plugin.state_dict_type == StateDictType.SHARDED_STATE_DICT: snake_case_ : Tuple = ( os.path.join(__a , f"""{MODEL_NAME}_{model_index}""" ) if f"""{MODEL_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading model from {ckpt_dir}""" ) snake_case_ : List[Any] = {'model': model.state_dict()} dist_cp.load_state_dict( state_dict=__a , storage_reader=dist_cp.FileSystemReader(__a ) , planner=DefaultLoadPlanner() , ) snake_case_ : Any = state_dict['model'] logger.info(f"""Model loaded from {ckpt_dir}""" ) model.load_state_dict(__a ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): os.makedirs(__a , exist_ok=__a ) with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): snake_case_ : List[str] = FSDP.optim_state_dict(__a , __a ) if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: if accelerator.process_index == 0: snake_case_ : str = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : Any = os.path.join(__a , __a ) logger.info(f"""Saving Optimizer state to {output_optimizer_file}""" ) torch.save(__a , __a ) logger.info(f"""Optimizer state saved in {output_optimizer_file}""" ) else: snake_case_ : Optional[int] = os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) os.makedirs(__a , exist_ok=__a ) logger.info(f"""Saving Optimizer state to {ckpt_dir}""" ) dist_cp.save_state_dict( state_dict={'optimizer': optim_state} , storage_writer=dist_cp.FileSystemWriter(__a ) , planner=DefaultSavePlanner() , ) logger.info(f"""Optimizer state saved in {ckpt_dir}""" ) def SCREAMING_SNAKE_CASE__ ( __a , __a , __a , __a , __a , __a=0 ): accelerator.wait_for_everyone() with FSDP.state_dict_type( __a , fsdp_plugin.state_dict_type , fsdp_plugin.state_dict_config , fsdp_plugin.optim_state_dict_config ): if fsdp_plugin.state_dict_type == StateDictType.FULL_STATE_DICT: snake_case_ : Optional[Any] = None # below check should work but currently it isn't working (mostly opytorch issue), # in the meantime disabling it at the cost of excess memory usage # if accelerator.process_index == 0 or not fsdp_plugin.optim_state_dict_config.rank0_only: snake_case_ : Union[str, Any] = ( f"""{OPTIMIZER_NAME}.bin""" if optimizer_index == 0 else f"""{OPTIMIZER_NAME}_{optimizer_index}.bin""" ) snake_case_ : List[Any] = os.path.join(__a , __a ) logger.info(f"""Loading Optimizer state from {input_optimizer_file}""" ) snake_case_ : Optional[int] = torch.load(__a ) logger.info(f"""Optimizer state loaded from {input_optimizer_file}""" ) else: snake_case_ : str = ( os.path.join(__a , f"""{OPTIMIZER_NAME}_{optimizer_index}""" ) if f"""{OPTIMIZER_NAME}""" not in input_dir else input_dir ) logger.info(f"""Loading Optimizer from {ckpt_dir}""" ) snake_case_ : Any = load_sharded_optimizer_state_dict( model_state_dict=model.state_dict() , optimizer_key='optimizer' , storage_reader=dist_cp.FileSystemReader(__a ) , ) snake_case_ : Optional[int] = optim_state['optimizer'] logger.info(f"""Optimizer loaded from {ckpt_dir}""" ) snake_case_ : Optional[Any] = FSDP.optim_state_dict_to_load(__a , __a , __a ) optimizer.load_state_dict(__a )
327
1
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[int] = { '''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''', '''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''', '''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''owlvit_text_model''' def __init__( self , _UpperCAmelCase=4_9408 , _UpperCAmelCase=512 , _UpperCAmelCase=2048 , _UpperCAmelCase=12 , _UpperCAmelCase=8 , _UpperCAmelCase=16 , _UpperCAmelCase="quick_gelu" , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , _UpperCAmelCase=0 , _UpperCAmelCase=4_9406 , _UpperCAmelCase=4_9407 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = vocab_size __A : List[str] = hidden_size __A : Any = intermediate_size __A : str = num_hidden_layers __A : int = num_attention_heads __A : Union[str, Any] = max_position_embeddings __A : Optional[int] = hidden_act __A : Optional[int] = layer_norm_eps __A : List[str] = attention_dropout __A : int = initializer_range __A : List[Any] = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase) __A : Dict = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('model_type') == "owlvit": __A : Dict = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''owlvit_vision_model''' def __init__( self , _UpperCAmelCase=768 , _UpperCAmelCase=3072 , _UpperCAmelCase=12 , _UpperCAmelCase=12 , _UpperCAmelCase=3 , _UpperCAmelCase=768 , _UpperCAmelCase=32 , _UpperCAmelCase="quick_gelu" , _UpperCAmelCase=1e-5 , _UpperCAmelCase=0.0 , _UpperCAmelCase=0.02 , _UpperCAmelCase=1.0 , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : List[Any] = hidden_size __A : Optional[int] = intermediate_size __A : int = num_hidden_layers __A : List[str] = num_attention_heads __A : Dict = num_channels __A : Dict = image_size __A : Dict = patch_size __A : Tuple = hidden_act __A : int = layer_norm_eps __A : Optional[int] = attention_dropout __A : int = initializer_range __A : List[Any] = initializer_factor @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase) __A : str = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('model_type') == "owlvit": __A : Optional[int] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase) class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = '''owlvit''' lowerCAmelCase = True def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=512 , _UpperCAmelCase=2.6592 , _UpperCAmelCase=True , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) if text_config is None: __A : str = {} logger.info('text_config is None. Initializing the OwlViTTextConfig with default values.') if vision_config is None: __A : int = {} logger.info('vision_config is None. initializing the OwlViTVisionConfig with default values.') __A : Dict = OwlViTTextConfig(**_UpperCAmelCase) __A : List[str] = OwlViTVisionConfig(**_UpperCAmelCase) __A : Dict = projection_dim __A : Optional[int] = logit_scale_init_value __A : Optional[Any] = return_dict __A : str = 1.0 @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' cls._set_token_in_kwargs(_UpperCAmelCase) __A : int = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase) if "model_type" in config_dict and hasattr(cls , 'model_type') and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.') return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase) @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' __A : int = {} __A : str = text_config __A : Any = vision_config return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = copy.deepcopy(self.__dict__) __A : List[Any] = self.text_config.to_dict() __A : Tuple = self.vision_config.to_dict() __A : int = self.__class__.model_type return output class SCREAMING_SNAKE_CASE (a__ ): @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return OrderedDict( [ ('input_ids', {0: 'batch', 1: 'sequence'}), ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ('attention_mask', {0: 'batch', 1: 'sequence'}), ]) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return OrderedDict( [ ('logits_per_image', {0: 'batch'}), ('logits_per_text', {0: 'batch'}), ('text_embeds', {0: 'batch'}), ('image_embeds', {0: 'batch'}), ]) @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 1e-4 def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = -1 , _UpperCAmelCase = -1 , _UpperCAmelCase = None , ): '''simple docstring''' __A : List[str] = super().generate_dummy_inputs( processor.tokenizer , batch_size=_UpperCAmelCase , seq_length=_UpperCAmelCase , framework=_UpperCAmelCase) __A : Union[str, Any] = super().generate_dummy_inputs( processor.image_processor , batch_size=_UpperCAmelCase , framework=_UpperCAmelCase) return {**text_input_dict, **image_input_dict} @property def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return 14
355
'''simple docstring''' from collections.abc import Iterable from typing import Any class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = None): '''simple docstring''' __A : str = value __A : Node | None = None # Added in order to delete a node easier __A : Node | None = None __A : Node | None = None def __repr__( self): '''simple docstring''' from pprint import pformat if self.left is None and self.right is None: return str(self.value) return pformat({F'{self.value}': (self.left, self.right)} , indent=1) class SCREAMING_SNAKE_CASE : def __init__( self , _UpperCAmelCase = None): '''simple docstring''' __A : int = root def __str__( self): '''simple docstring''' return str(self.root) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if new_children is not None: # reset its kids __A : Optional[int] = node.parent if node.parent is not None: # reset its parent if self.is_right(_UpperCAmelCase): # If it is the right children __A : int = new_children else: __A : Union[str, Any] = new_children else: __A : Tuple = new_children def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if node.parent and node.parent.right: return node == node.parent.right return False def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return self.root is None def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Dict = Node(_UpperCAmelCase) # create a new Node if self.empty(): # if Tree is empty __A : Union[str, Any] = new_node # set its root else: # Tree is not empty __A : Dict = self.root # from root if parent_node is None: return while True: # While we don't get to a leaf if value < parent_node.value: # We go left if parent_node.left is None: __A : Tuple = new_node # We insert the new node in a leaf break else: __A : str = parent_node.left else: if parent_node.right is None: __A : List[str] = new_node break else: __A : int = parent_node.right __A : int = parent_node def SCREAMING_SNAKE_CASE ( self , *_UpperCAmelCase): '''simple docstring''' for value in values: self.__insert(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if self.empty(): raise IndexError('Warning: Tree is empty! please use another.') else: __A : Any = self.root # use lazy evaluation here to avoid NoneType Attribute error while node is not None and node.value is not value: __A : List[Any] = node.left if value < node.value else node.right return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if node is None: if self.root is None: return None __A : str = self.root if not self.empty(): while node.right is not None: __A : Dict = node.right return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if node is None: __A : Optional[Any] = self.root if self.root is None: return None if not self.empty(): __A : Optional[int] = self.root while node.left is not None: __A : Tuple = node.left return node def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : Optional[Any] = self.search(_UpperCAmelCase) # Look for the node with that label if node is not None: if node.left is None and node.right is None: # If it has no children self.__reassign_nodes(_UpperCAmelCase , _UpperCAmelCase) elif node.left is None: # Has only right children self.__reassign_nodes(_UpperCAmelCase , node.right) elif node.right is None: # Has only left children self.__reassign_nodes(_UpperCAmelCase , node.left) else: __A : str = self.get_max( node.left) # Gets the max value of the left branch self.remove(tmp_node.value) # type: ignore __A : List[Any] = ( tmp_node.value # type: ignore ) # Assigns the value to the node to delete and keep tree structure def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if node is not None: yield node # Preorder Traversal yield from self.preorder_traverse(node.left) yield from self.preorder_traverse(node.right) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase=None): '''simple docstring''' if traversal_function is None: return self.preorder_traverse(self.root) else: return traversal_function(self.root) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' if node: self.inorder(_UpperCAmelCase , node.left) arr.append(node.value) self.inorder(_UpperCAmelCase , node.right) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase): '''simple docstring''' __A : list[int] = [] self.inorder(_UpperCAmelCase , _UpperCAmelCase) # append all values to list using inorder traversal return arr[k - 1] def _lowerCAmelCase ( __snake_case : Node | None ) -> list[Node]: __A : Tuple = [] if curr_node is not None: __A : Optional[Any] = postorder(curr_node.left ) + postorder(curr_node.right ) + [curr_node] return node_list def _lowerCAmelCase ( ) -> None: __A : Optional[int] = (8, 3, 6, 1, 10, 14, 13, 4, 7) __A : str = BinarySearchTree() for i in testlist: t.insert(__snake_case ) # Prints all the elements of the list in order traversal print(__snake_case ) if t.search(6 ) is not None: print('The value 6 exists' ) else: print('The value 6 doesn\'t exist' ) if t.search(-1 ) is not None: print('The value -1 exists' ) else: print('The value -1 doesn\'t exist' ) if not t.empty(): print('Max Value: ' , t.get_max().value ) # type: ignore print('Min Value: ' , t.get_min().value ) # type: ignore for i in testlist: t.remove(__snake_case ) print(__snake_case ) if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
190
0
import warnings from ...utils import logging from .image_processing_poolformer import PoolFormerImageProcessor lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( A_ ): """simple docstring""" def __init__( self : Any , *_A : int , **_A : str ): """simple docstring""" warnings.warn( '''The class PoolFormerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.''' ''' Please use PoolFormerImageProcessor instead.''' , _snake_case , ) super().__init__(*_snake_case , **_snake_case )
303
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = '▁' lowerCAmelCase_ = {'vocab_file': 'sentencepiece.bpe.model'} lowerCAmelCase_ = { 'vocab_file': { 'facebook/xglm-564M': 'https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model', } } lowerCAmelCase_ = { 'facebook/xglm-564M': 2_048, } class __A ( A_ ): '''simple docstring''' lowerCAmelCase : List[Any] = VOCAB_FILES_NAMES lowerCAmelCase : Any = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase : int = ["input_ids", "attention_mask"] def __init__( self : int ,_snake_case : Dict ,_snake_case : Dict="<s>" ,_snake_case : Dict="</s>" ,_snake_case : str="</s>" ,_snake_case : Optional[Any]="<s>" ,_snake_case : Optional[Any]="<unk>" ,_snake_case : Optional[int]="<pad>" ,_snake_case : Optional[Dict[str, Any]] = None ,**_snake_case : str ,) -> None: """simple docstring""" lowercase__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer lowercase__ : Any = 7 lowercase__ : Optional[int] = [f"""<madeupword{i}>""" for i in range(self.num_madeup_words )] lowercase__ : Dict = kwargs.get('''additional_special_tokens''' ,[] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=_snake_case ,eos_token=_snake_case ,unk_token=_snake_case ,sep_token=_snake_case ,cls_token=_snake_case ,pad_token=_snake_case ,sp_model_kwargs=self.sp_model_kwargs ,**_snake_case ,) lowercase__ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_snake_case ) ) lowercase__ : str = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab lowercase__ : Optional[int] = 1 # Mimic fairseq token-to-id alignment for the first 4 token lowercase__ : Optional[int] = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} lowercase__ : List[str] = len(self.sp_model ) lowercase__ : Tuple = {f"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(_snake_case ) lowercase__ : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : int ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = self.__dict__.copy() lowercase__ : Optional[int] = None lowercase__ : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : Dict ,_snake_case : List[str] ) -> Any: """simple docstring""" lowercase__ : int = d # for backward compatibility if not hasattr(self ,'''sp_model_kwargs''' ): lowercase__ : Dict = {} lowercase__ : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.sep_token_id] + token_ids_a lowercase__ : Optional[Any] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def UpperCAmelCase ( self : Any ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ,_snake_case : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case ,token_ids_a=_snake_case ,already_has_special_tokens=_snake_case ) if token_ids_a is None: return [1] + ([0] * len(_snake_case )) return [1] + ([0] * len(_snake_case )) + [1, 1] + ([0] * len(_snake_case )) def UpperCAmelCase ( self : Union[str, Any] ,_snake_case : List[int] ,_snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" lowercase__ : List[Any] = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def UpperCAmelCase ( self : str ) -> Tuple: """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" lowercase__ : Union[str, Any] = {self.convert_ids_to_tokens(_snake_case ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self : List[Any] ,_snake_case : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(_snake_case ,out_type=_snake_case ) def UpperCAmelCase ( self : int ,_snake_case : Optional[int] ) -> List[Any]: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] lowercase__ : Tuple = self.sp_model.PieceToId(_snake_case ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self : Any ,_snake_case : List[str] ) -> Any: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self : Tuple ,_snake_case : Tuple ) -> Union[str, Any]: """simple docstring""" lowercase__ : Optional[Any] = ''''''.join(_snake_case ).replace(_snake_case ,''' ''' ).strip() return out_string def UpperCAmelCase ( self : Any ,_snake_case : str ,_snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(_snake_case ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase__ : Any = os.path.join( _snake_case ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file ,_snake_case ) elif not os.path.isfile(self.vocab_file ): with open(_snake_case ,'''wb''' ) as fi: lowercase__ : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (out_vocab_file,)
16
0
"""simple docstring""" import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def a__ ( __lowercase , __lowercase , __lowercase ) -> Any: # Initialise PyTorch model _A = AlbertConfig.from_json_file(__lowercase ) print(f"""Building PyTorch model from configuration: {config}""" ) _A = AlbertForPreTraining(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--albert_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained ALBERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) a_ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
361
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( _UpperCamelCase , unittest.TestCase): __UpperCamelCase = GPTSanJapaneseTokenizer __UpperCamelCase = False __UpperCamelCase = {'do_clean_text': False, 'add_prefix_space': False} def a_ ( self : str ) -> List[Any]: '''simple docstring''' super().setUp() # fmt: off _A = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on _A = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 _A = {"unk_token": "<unk>"} _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) _A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(a__ ) ) def a_ ( self : str , **a__ : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **a__ ) def a_ ( self : Dict , a__ : str ) -> int: '''simple docstring''' _A = "こんにちは、世界。 \nこんばんは、㔺界。😀" _A = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def a_ ( self : Union[str, Any] , a__ : Optional[int] ) -> Any: '''simple docstring''' _A , _A = self.get_input_output_texts(a__ ) _A = tokenizer.encode(a__ , add_special_tokens=a__ ) _A = tokenizer.decode(a__ , clean_up_tokenization_spaces=a__ ) return text, ids def a_ ( self : List[Any] ) -> str: '''simple docstring''' pass # TODO add if relevant def a_ ( self : List[str] ) -> Dict: '''simple docstring''' pass # TODO add if relevant def a_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' pass # TODO add if relevant def a_ ( self : Any ) -> Optional[Any]: '''simple docstring''' _A = self.get_tokenizer() # Testing tokenization _A = "こんにちは、世界。 こんばんは、㔺界。" _A = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] _A = tokenizer.tokenize(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids without special tokens _A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] _A = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , a__ ) # Testing conversion to ids with special tokens _A = tokens + [tokenizer.unk_token] _A = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] _A = tokenizer.convert_tokens_to_ids(a__ ) self.assertListEqual(a__ , a__ ) def a_ ( self : Optional[int] ) -> str: '''simple docstring''' _A = self.get_tokenizer() # Testing tokenization _A = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" _A = "こんにちは、、、、世界。こんばんは、、、、世界。" _A = tokenizer.encode(a__ ) _A = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ ) @slow def a_ ( self : Any ) -> Optional[int]: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _A = "こんにちは、世界。" _A = "こんばんは、㔺界。😀" _A = "こんにちは、世界。こんばんは、世界。😀" _A = tokenizer.encode(prefix_text + input_text ) _A = tokenizer.encode("" , prefix_text=prefix_text + input_text ) _A = tokenizer.encode(a__ , prefix_text=a__ ) _A = tokenizer.decode(a__ ) _A = tokenizer.decode(a__ ) _A = tokenizer.decode(a__ ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) self.assertEqual(a__ , a__ ) @slow def a_ ( self : str ) -> str: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization _A = "こんにちは、世界。" _A = "こんばんは、㔺界。😀" _A = len(tokenizer.encode(a__ ) ) - 2 _A = len(tokenizer.encode(a__ ) ) - 2 _A = [1] + [0] * (len_prefix + len_text + 1) _A = [1] * (len_prefix + len_text + 1) + [0] _A = [1] + [1] * (len_prefix) + [0] * (len_text + 1) _A = tokenizer(prefix_text + input_text ).token_type_ids _A = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids _A = tokenizer(a__ , prefix_text=a__ ).token_type_ids self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) self.assertListEqual(a__ , a__ ) @slow def a_ ( self : int ) -> Dict: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _A = tokenizer.encode("あンいワ" ) _A = tokenizer.encode("" , prefix_text="あンいワ" ) _A = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(a__ ) , tokenizer.decode(a__ ) ) self.assertEqual(tokenizer.decode(a__ ) , tokenizer.decode(a__ ) ) self.assertNotEqual(a__ , a__ ) self.assertNotEqual(a__ , a__ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def a_ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' _A = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) _A = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] _A = tokenizer(a__ , padding=a__ ) _A = tokenizer.batch_encode_plus(a__ , padding=a__ ) # fmt: off _A = [[3_59_93, 86_40, 2_59_48, 3_59_98, 3_06_47, 3_56_75, 3_59_99, 3_59_99], [3_59_93, 1_03_82, 98_68, 3_59_98, 3_06_46, 94_59, 3_06_46, 3_56_75]] _A = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] _A = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , a__ ) self.assertListEqual(x_token.token_type_ids , a__ ) self.assertListEqual(x_token.attention_mask , a__ ) self.assertListEqual(x_token_a.input_ids , a__ ) self.assertListEqual(x_token_a.token_type_ids , a__ ) self.assertListEqual(x_token_a.attention_mask , a__ ) def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass def a_ ( self : Optional[int] ) -> Tuple: '''simple docstring''' pass
163
0
'''simple docstring''' import re import jax.numpy as jnp from flax.traverse_util import flatten_dict, unflatten_dict from jax.random import PRNGKey from ..utils import logging lowercase : Optional[int] = logging.get_logger(__name__) def lowerCAmelCase_ ( snake_case__ ): '''simple docstring''' A : Union[str, Any] = R'''\w+[.]\d+''' A : Optional[int] = re.findall(snake_case__ , snake_case__ ) for pat in pats: A : List[Any] = key.replace(snake_case__ , '''_'''.join(pat.split('''.''' ) ) ) return key def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = pt_tuple_key[:-1] + ('''scale''',) if ( any('''norm''' in str_ for str_ in pt_tuple_key ) and (pt_tuple_key[-1] == "bias") and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict) and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict) ): A : Tuple = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict: A : int = pt_tuple_key[:-1] + ('''scale''',) return renamed_pt_tuple_key, pt_tensor # embedding if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict: A : Dict = pt_tuple_key[:-1] + ('''embedding''',) return renamed_pt_tuple_key, pt_tensor # conv layer A : str = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4: A : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 ) return renamed_pt_tuple_key, pt_tensor # linear layer A : List[str] = pt_tuple_key[:-1] + ('''kernel''',) if pt_tuple_key[-1] == "weight": A : List[str] = pt_tensor.T return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm weight A : List[str] = pt_tuple_key[:-1] + ('''weight''',) if pt_tuple_key[-1] == "gamma": return renamed_pt_tuple_key, pt_tensor # old PyTorch layer norm bias A : Any = pt_tuple_key[:-1] + ('''bias''',) if pt_tuple_key[-1] == "beta": return renamed_pt_tuple_key, pt_tensor return pt_tuple_key, pt_tensor def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__=42 ): '''simple docstring''' A : Dict = {k: v.numpy() for k, v in pt_state_dict.items()} # Step 2: Since the model is stateless, get random Flax params A : Optional[int] = flax_model.init_weights(PRNGKey(snake_case__ ) ) A : Optional[Any] = flatten_dict(snake_case__ ) A : int = {} # Need to change some parameters name to match Flax names for pt_key, pt_tensor in pt_state_dict.items(): A : Any = rename_key(snake_case__ ) A : Dict = tuple(renamed_pt_key.split('''.''' ) ) # Correctly rename weight parameters A, A : Optional[Any] = rename_key_and_reshape_tensor(snake_case__ , snake_case__ , snake_case__ ) if flax_key in random_flax_state_dict: if flax_tensor.shape != random_flax_state_dict[flax_key].shape: raise ValueError( F'PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape ' F'{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}.' ) # also add unexpected weight so that warning is thrown A : Union[str, Any] = jnp.asarray(snake_case__ ) return unflatten_dict(snake_case__ )
3
'''simple docstring''' import pytest import datasets.config from datasets.utils.info_utils import is_small_dataset @pytest.mark.parametrize('''dataset_size''' , [None, 400 * 2**20, 600 * 2**20] ) @pytest.mark.parametrize('''input_in_memory_max_size''' , ['''default''', 0, 100 * 2**20, 900 * 2**20] ) def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if input_in_memory_max_size != "default": monkeypatch.setattr(datasets.config , '''IN_MEMORY_MAX_SIZE''' , snake_case__ ) A : Dict = datasets.config.IN_MEMORY_MAX_SIZE if input_in_memory_max_size == "default": assert in_memory_max_size == 0 else: assert in_memory_max_size == input_in_memory_max_size if dataset_size and in_memory_max_size: A : Dict = dataset_size < in_memory_max_size else: A : Tuple = False A : int = is_small_dataset(snake_case__ ) assert result == expected
3
1
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCAmelCase__ = logging.get_logger(__name__) UpperCAmelCase__ = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCAmelCase__ ( A_ ): __a = """umt5""" __a = ["""past_key_values"""] def __init__( self : str , _lowerCamelCase : Optional[Any]=250112 , _lowerCamelCase : List[Any]=512 , _lowerCamelCase : int=64 , _lowerCamelCase : Dict=1024 , _lowerCamelCase : List[Any]=8 , _lowerCamelCase : int=None , _lowerCamelCase : str=6 , _lowerCamelCase : Union[str, Any]=32 , _lowerCamelCase : Union[str, Any]=128 , _lowerCamelCase : str=0.1 , _lowerCamelCase : Tuple=1e-6 , _lowerCamelCase : List[Any]=1.0 , _lowerCamelCase : List[str]="gated-gelu" , _lowerCamelCase : Any=True , _lowerCamelCase : Union[str, Any]=True , _lowerCamelCase : Tuple="T5Tokenizer" , _lowerCamelCase : List[str]=True , _lowerCamelCase : Tuple=0 , _lowerCamelCase : List[str]=1 , _lowerCamelCase : Optional[Any]=0 , **_lowerCamelCase : Dict , ): super().__init__( is_encoder_decoder=_lowerCamelCase , tokenizer_class=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) _snake_case = vocab_size _snake_case = d_model _snake_case = d_kv _snake_case = d_ff _snake_case = num_layers _snake_case = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _snake_case = num_heads _snake_case = relative_attention_num_buckets _snake_case = relative_attention_max_distance _snake_case = dropout_rate _snake_case = layer_norm_epsilon _snake_case = initializer_factor _snake_case = feed_forward_proj _snake_case = use_cache _snake_case = self.feed_forward_proj.split('''-''' ) _snake_case = act_info[-1] _snake_case = act_info[0] == '''gated''' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( f'''`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.''' '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": _snake_case = '''gelu_new''' @property def lowercase ( self : Dict ): return self.d_model @property def lowercase ( self : Union[str, Any] ): return self.num_heads @property def lowercase ( self : Tuple ): return self.num_layers class lowerCAmelCase__ ( A_ ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def lowercase ( self : Union[str, Any] ): _snake_case = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: _snake_case = '''past_encoder_sequence + sequence''' _snake_case = {0: '''batch'''} _snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: _snake_case = {0: '''batch''', 1: '''decoder_sequence'''} _snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def lowercase ( self : Optional[Any] ): return 13 @property def lowercase ( self : Optional[Any] ): return 5e-4
356
"""simple docstring""" from __future__ import annotations def _UpperCAmelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int ) -> list[list[int]]: _snake_case = [] _snake_case = [] _snake_case = 0 _snake_case = sum(__lowerCamelCase ) create_state_space_tree(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) return result def _UpperCAmelCase ( __lowerCamelCase : list[int] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : list[int] , __lowerCamelCase : list[list[int]] , __lowerCamelCase : int , ) -> None: if sum(__lowerCamelCase ) > max_sum or (remaining_nums_sum + sum(__lowerCamelCase )) < max_sum: return if sum(__lowerCamelCase ) == max_sum: result.append(__lowerCamelCase ) return for index in range(__lowerCamelCase , len(__lowerCamelCase ) ): create_state_space_tree( __lowerCamelCase , __lowerCamelCase , index + 1 , [*path, nums[index]] , __lowerCamelCase , remaining_nums_sum - nums[index] , ) UpperCAmelCase__ = [3, 34, 4, 12, 5, 2] UpperCAmelCase__ = 9 UpperCAmelCase__ = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
40
0
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase :List[Any] = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase :int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.weight', F'encoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.encoder.layers.{i}.self_attn.out_proj.bias', F'encoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.weight', F'encoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear1.bias', F'encoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.weight', F'encoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.linear2.bias', F'encoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.encoder.layers.{i}.norm1.weight', F'encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.encoder.layers.{i}.norm1.bias', F'encoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.weight', F'encoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.encoder.layers.{i}.norm2.bias', F'encoder.layers.{i}.final_layer_norm.bias')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.weight', F'decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.self_attn.out_proj.bias', F'decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.weight', F'decoder.layers.{i}.encoder_attn.out_proj.weight', ) ) rename_keys.append( ( F'transformer.decoder.layers.{i}.cross_attn.out_proj.bias', F'decoder.layers.{i}.encoder_attn.out_proj.bias', ) ) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.weight', F'decoder.layers.{i}.fc1.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear1.bias', F'decoder.layers.{i}.fc1.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.weight', F'decoder.layers.{i}.fc2.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.linear2.bias', F'decoder.layers.{i}.fc2.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm1.weight', F'decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm1.bias', F'decoder.layers.{i}.self_attn_layer_norm.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.weight', F'decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.norm2.bias', F'decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.weight', F'decoder.layers.{i}.final_layer_norm.weight')) rename_keys.append((F'transformer.decoder.layers.{i}.norm3.bias', F'decoder.layers.{i}.final_layer_norm.bias')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.weight', F'decoder.layers.{i}.sa_qcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.weight', F'decoder.layers.{i}.sa_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qpos_proj.weight', F'decoder.layers.{i}.sa_qpos_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kpos_proj.weight', F'decoder.layers.{i}.sa_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.weight', F'decoder.layers.{i}.sa_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.weight', F'decoder.layers.{i}.ca_qcontent_proj.weight') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.weight', F'decoder.layers.{i}.ca_kcontent_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kpos_proj.weight', F'decoder.layers.{i}.ca_kpos_proj.weight') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.weight', F'decoder.layers.{i}.ca_v_proj.weight')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight', F'decoder.layers.{i}.ca_qpos_sine_proj.weight') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_qcontent_proj.bias', F'decoder.layers.{i}.sa_qcontent_proj.bias') ) rename_keys.append( (F'transformer.decoder.layers.{i}.sa_kcontent_proj.bias', F'decoder.layers.{i}.sa_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.sa_qpos_proj.bias', F'decoder.layers.{i}.sa_qpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_kpos_proj.bias', F'decoder.layers.{i}.sa_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.sa_v_proj.bias', F'decoder.layers.{i}.sa_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qcontent_proj.bias', F'decoder.layers.{i}.ca_qcontent_proj.bias') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_kcontent_proj.bias', F'decoder.layers.{i}.ca_kcontent_proj.bias') ) rename_keys.append((F'transformer.decoder.layers.{i}.ca_kpos_proj.bias', F'decoder.layers.{i}.ca_kpos_proj.bias')) rename_keys.append((F'transformer.decoder.layers.{i}.ca_v_proj.bias', F'decoder.layers.{i}.ca_v_proj.bias')) rename_keys.append( (F'transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias', F'decoder.layers.{i}.ca_qpos_sine_proj.bias') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Optional[int] ): """simple docstring""" __magic_name__ : Union[str, Any] = state_dict.pop(_lowerCAmelCase ) __magic_name__ : Union[str, Any] = val def lowerCamelCase ( lowerCAmelCase : List[Any] ): """simple docstring""" __magic_name__ : Union[str, Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: __magic_name__ : Tuple = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) __magic_name__ : Any = value else: __magic_name__ : List[Any] = value return new_state_dict def lowerCamelCase ( lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple=False ): """simple docstring""" __magic_name__ : int = """""" if is_panoptic: __magic_name__ : str = """conditional_detr.""" # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __magic_name__ : Dict = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight' ) __magic_name__ : Union[str, Any] = state_dict.pop(f'{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __magic_name__ : Any = in_proj_weight[:256, :] __magic_name__ : Tuple = in_proj_bias[:256] __magic_name__ : Optional[int] = in_proj_weight[256:512, :] __magic_name__ : str = in_proj_bias[256:512] __magic_name__ : int = in_proj_weight[-256:, :] __magic_name__ : List[Any] = in_proj_bias[-256:] def lowerCamelCase ( ): """simple docstring""" __magic_name__ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __magic_name__ : Dict = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def lowerCamelCase ( lowerCAmelCase : Tuple , lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : str = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: __magic_name__ : Dict = """resnet101""" if "dc5" in model_name: __magic_name__ : Union[str, Any] = True __magic_name__ : Optional[Any] = """panoptic""" in model_name if is_panoptic: __magic_name__ : Optional[int] = 250 else: __magic_name__ : str = 91 __magic_name__ : Optional[int] = """huggingface/label-files""" __magic_name__ : str = """coco-detection-id2label.json""" __magic_name__ : Any = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type='dataset' ) , 'r' ) ) __magic_name__ : Union[str, Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} __magic_name__ : List[str] = idalabel __magic_name__ : Optional[int] = {v: k for k, v in idalabel.items()} # load image processor __magic_name__ : Optional[int] = """coco_panoptic""" if is_panoptic else """coco_detection""" __magic_name__ : int = ConditionalDetrImageProcessor(format=_lowerCAmelCase ) # prepare image __magic_name__ : List[str] = prepare_img() __magic_name__ : Any = image_processor(images=_lowerCAmelCase , return_tensors='pt' ) __magic_name__ : Any = encoding["""pixel_values"""] logger.info(f'Converting model {model_name}...' ) # load original model from torch hub __magic_name__ : Tuple = torch.hub.load('DeppMeng/ConditionalDETR' , _lowerCAmelCase , pretrained=_lowerCAmelCase ).eval() __magic_name__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: __magic_name__ : Optional[int] = """conditional_detr.""" + src rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __magic_name__ : Optional[Any] = rename_backbone_keys(_lowerCAmelCase ) # query, key and value matrices need special treatment read_in_q_k_v(_lowerCAmelCase , is_panoptic=_lowerCAmelCase ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __magic_name__ : List[str] = """conditional_detr.model.""" if is_panoptic else """model.""" for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): __magic_name__ : Tuple = state_dict.pop(_lowerCAmelCase ) __magic_name__ : Any = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __magic_name__ : Optional[Any] = state_dict.pop(_lowerCAmelCase ) __magic_name__ : Union[str, Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: __magic_name__ : Tuple = state_dict.pop(_lowerCAmelCase ) __magic_name__ : Optional[int] = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): __magic_name__ : Tuple = state_dict.pop(_lowerCAmelCase ) __magic_name__ : Any = val # finally, create HuggingFace model and load state dict __magic_name__ : Union[str, Any] = ConditionalDetrForSegmentation(_lowerCAmelCase ) if is_panoptic else ConditionalDetrForObjectDetection(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() model.push_to_hub(repo_id=_lowerCAmelCase , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion __magic_name__ : Any = conditional_detr(_lowerCAmelCase ) __magic_name__ : int = model(_lowerCAmelCase ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCAmelCase :List[str] = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase :int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
331
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def UpperCamelCase ( _lowerCAmelCase : Any, _lowerCAmelCase : List[str], _lowerCAmelCase : Dict ) -> str: _UpperCAmelCase : Union[str, Any] = OmegaConf.load(_lowerCAmelCase ) _UpperCAmelCase : str = torch.load(_lowerCAmelCase, map_location="""cpu""" )["""model"""] _UpperCAmelCase : Dict = list(state_dict.keys() ) # extract state_dict for VQVAE _UpperCAmelCase : List[str] = {} _UpperCAmelCase : List[str] = """first_stage_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Dict = state_dict[key] # extract state_dict for UNetLDM _UpperCAmelCase : str = {} _UpperCAmelCase : Tuple = """model.diffusion_model.""" for key in keys: if key.startswith(_lowerCAmelCase ): _UpperCAmelCase : Tuple = state_dict[key] _UpperCAmelCase : Optional[Any] = config.model.params.first_stage_config.params _UpperCAmelCase : Optional[Any] = config.model.params.unet_config.params _UpperCAmelCase : List[str] = VQModel(**_lowerCAmelCase ).eval() vqvae.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : List[Any] = UNetLDMModel(**_lowerCAmelCase ).eval() unet.load_state_dict(_lowerCAmelCase ) _UpperCAmelCase : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule="""scaled_linear""", beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=_lowerCAmelCase, ) _UpperCAmelCase : Tuple = LDMPipeline(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) pipeline.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', type=str, required=True) parser.add_argument('''--config_path''', type=str, required=True) parser.add_argument('''--output_path''', type=str, required=True) lowerCamelCase__ : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
246
0
def lowerCamelCase_ ( UpperCamelCase__ : list[int], UpperCamelCase__ : list[int], UpperCamelCase__ : int ): '''simple docstring''' return not any( neighbour == 1 and colored_vertices[i] == color for i, neighbour in enumerate(UpperCamelCase__ ) ) def lowerCamelCase_ ( UpperCamelCase__ : list[list[int]], UpperCamelCase__ : int, UpperCamelCase__ : list[int], UpperCamelCase__ : int ): '''simple docstring''' if index == len(UpperCamelCase__ ): return True # Recursive Step for i in range(UpperCamelCase__ ): if valid_coloring(graph[index], UpperCamelCase__, UpperCamelCase__ ): # Color current vertex UpperCamelCase__ = i # Validate coloring if util_color(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, index + 1 ): return True # Backtrack UpperCamelCase__ = -1 return False def lowerCamelCase_ ( UpperCamelCase__ : list[list[int]], UpperCamelCase__ : int ): '''simple docstring''' UpperCamelCase__ = [-1] * len(UpperCamelCase__ ) if util_color(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__, 0 ): return colored_vertices return []
360
from __future__ import annotations import unittest from transformers import AutoTokenizer, MBartConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel @require_tf class __lowercase : '''simple docstring''' _A : int = MBartConfig _A : str = {} _A : str = '''gelu''' def __init__( self : Tuple , _a : Dict , _a : Optional[Any]=13 , _a : List[Any]=7 , _a : Any=True , _a : List[Any]=False , _a : List[Any]=99 , _a : int=32 , _a : Optional[Any]=2 , _a : Optional[Any]=4 , _a : Any=37 , _a : Any=0.1 , _a : Any=0.1 , _a : Dict=20 , _a : Optional[Any]=2 , _a : List[str]=1 , _a : List[str]=0 , ): UpperCamelCase__ = parent UpperCamelCase__ = batch_size UpperCamelCase__ = seq_length UpperCamelCase__ = is_training UpperCamelCase__ = use_labels UpperCamelCase__ = vocab_size UpperCamelCase__ = hidden_size UpperCamelCase__ = num_hidden_layers UpperCamelCase__ = num_attention_heads UpperCamelCase__ = intermediate_size UpperCamelCase__ = hidden_dropout_prob UpperCamelCase__ = attention_probs_dropout_prob UpperCamelCase__ = max_position_embeddings UpperCamelCase__ = eos_token_id UpperCamelCase__ = pad_token_id UpperCamelCase__ = bos_token_id def A_ ( self : Any ): UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase__ = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase__ = prepare_mbart_inputs_dict(_a , _a , _a ) return config, inputs_dict def A_ ( self : Union[str, Any] , _a : Tuple , _a : Dict ): UpperCamelCase__ = TFMBartModel(config=_a ).get_decoder() UpperCamelCase__ = inputs_dict['''input_ids'''] UpperCamelCase__ = input_ids[:1, :] UpperCamelCase__ = inputs_dict['''attention_mask'''][:1, :] UpperCamelCase__ = inputs_dict['''head_mask'''] UpperCamelCase__ = 1 # first forward pass UpperCamelCase__ = model(_a , attention_mask=_a , head_mask=_a , use_cache=_a ) UpperCamelCase__ , UpperCamelCase__ = outputs.to_tuple() UpperCamelCase__ = past_key_values[1] def lowerCamelCase_ ( UpperCamelCase__ : Dict, UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any]=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Dict=None, UpperCamelCase__ : Tuple=None, UpperCamelCase__ : Tuple=None, ): '''simple docstring''' if attention_mask is None: UpperCamelCase__ = tf.cast(tf.math.not_equal(UpperCamelCase__, config.pad_token_id ), tf.inta ) if decoder_attention_mask is None: UpperCamelCase__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape, dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:], config.pad_token_id ), tf.inta ), ], axis=-1, ) if head_mask is None: UpperCamelCase__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class __lowercase ( A, A, unittest.TestCase ): '''simple docstring''' _A : List[str] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else () _A : List[str] = (TFMBartForConditionalGeneration,) if is_tf_available() else () _A : List[Any] = ( { '''conversational''': TFMBartForConditionalGeneration, '''feature-extraction''': TFMBartModel, '''summarization''': TFMBartForConditionalGeneration, '''text2text-generation''': TFMBartForConditionalGeneration, '''translation''': TFMBartForConditionalGeneration, } if is_tf_available() else {} ) _A : List[Any] = True _A : Any = False _A : List[Any] = False def A_ ( self : Any , _a : Tuple , _a : List[Any] , _a : Tuple , _a : List[str] , _a : List[Any] ): if pipeline_test_casse_name != "FeatureExtractionPipelineTests": # Exception encountered when calling layer '...' return True return False def A_ ( self : List[Any] ): UpperCamelCase__ = TFMBartModelTester(self ) UpperCamelCase__ = ConfigTester(self , config_class=_a ) def A_ ( self : Tuple ): self.config_tester.run_common_tests() def A_ ( self : Optional[Any] ): UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_a ) @require_sentencepiece @require_tokenizers @require_tf class __lowercase ( unittest.TestCase ): '''simple docstring''' _A : Union[str, Any] = [ ''' UN Chief Says There Is No Military Solution in Syria''', ] _A : Dict = [ '''Şeful ONU declară că nu există o soluţie militară în Siria''', ] _A : Dict = '''facebook/mbart-large-en-ro''' @cached_property def A_ ( self : Any ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def A_ ( self : str ): UpperCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def A_ ( self : Optional[int] , **_a : Optional[int] ): UpperCamelCase__ = self.translate_src_text(**_a ) self.assertListEqual(self.expected_text , _a ) def A_ ( self : List[str] , **_a : Dict ): UpperCamelCase__ = self.tokenizer(self.src_text , **_a , return_tensors='''tf''' ) UpperCamelCase__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 ) UpperCamelCase__ = self.tokenizer.batch_decode(_a , skip_special_tokens=_a ) return generated_words @slow def A_ ( self : Optional[Any] ): self._assert_generated_batch_equal_expected()
35
0
'''simple docstring''' import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler from tensorflow.keras.layers import LSTM, Dense from tensorflow.keras.models import Sequential if __name__ == "__main__": a_ : List[Any] = pd.read_csv("""sample_data.csv""", header=None) a_ : Union[str, Any] = df.shape[:1][0] # If you're using some other dataset input the target column a_ : Any = df.iloc[:, 1:2] a_ : int = actual_data.values.reshape(len_data, 1) a_ : int = MinMaxScaler().fit_transform(actual_data) a_ : Dict = 10 a_ : List[str] = 5 a_ : Dict = 20 a_ : Dict = len_data - periods * look_back a_ : Any = actual_data[:division] a_ : Optional[int] = actual_data[division - look_back :] a_ : Optional[Any] = [], [] a_ : Tuple = [], [] for i in range(0, len(train_data) - forward_days - look_back + 1): train_x.append(train_data[i : i + look_back]) train_y.append(train_data[i + look_back : i + look_back + forward_days]) for i in range(0, len(test_data) - forward_days - look_back + 1): test_x.append(test_data[i : i + look_back]) test_y.append(test_data[i + look_back : i + look_back + forward_days]) a_ : List[Any] = np.array(train_x) a_ : List[Any] = np.array(test_x) a_ : str = np.array([list(i.ravel()) for i in train_y]) a_ : Any = np.array([list(i.ravel()) for i in test_y]) a_ : Optional[Any] = Sequential() model.add(LSTM(128, input_shape=(look_back, 1), return_sequences=True)) model.add(LSTM(64, input_shape=(128, 1))) model.add(Dense(forward_days)) model.compile(loss="""mean_squared_error""", optimizer="""adam""") a_ : Tuple = model.fit( x_train, y_train, epochs=150, verbose=1, shuffle=True, batch_size=4 ) a_ : int = model.predict(x_test)
55
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BertTokenizer, BlipImageProcessor, BlipProcessor, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = tempfile.mkdtemp() __A : Optional[int] = BlipImageProcessor() __A : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-BertModel') __A : Any = BlipProcessor(_UpperCAmelCase , _UpperCAmelCase) processor.save_pretrained(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).tokenizer def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase).image_processor def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)] __A : Union[str, Any] = [Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs] return image_inputs def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = BlipProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor()) processor.save_pretrained(self.tmpdirname) __A : int = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : List[Any] = self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0) __A : Tuple = BlipProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=_UpperCAmelCase , padding_value=1.0) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) self.assertIsInstance(processor.tokenizer , _UpperCAmelCase) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string()) self.assertIsInstance(processor.image_processor , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[str] = self.get_image_processor() __A : str = self.get_tokenizer() __A : int = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : List[str] = self.prepare_image_inputs() __A : str = image_processor(_UpperCAmelCase , return_tensors='np') __A : str = processor(images=_UpperCAmelCase , return_tensors='np') for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Tuple = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : Dict = processor(text=_UpperCAmelCase) __A : Tuple = tokenizer(_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key]) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : List[Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Dict = 'lower newer' __A : int = self.prepare_image_inputs() __A : List[Any] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask']) # test if it raises when no input is passed with pytest.raises(_UpperCAmelCase): processor() def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Union[str, Any] = self.get_image_processor() __A : Optional[Any] = self.get_tokenizer() __A : Union[str, Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __A : List[str] = processor.batch_decode(_UpperCAmelCase) __A : List[str] = tokenizer.batch_decode(_UpperCAmelCase) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Any = self.get_image_processor() __A : Union[str, Any] = self.get_tokenizer() __A : Optional[Any] = BlipProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase) __A : str = 'lower newer' __A : str = self.prepare_image_inputs() __A : Optional[int] = processor(text=_UpperCAmelCase , images=_UpperCAmelCase) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys()) , ['pixel_values', 'input_ids', 'attention_mask'])
190
0
import unittest from typing import Dict, List, Optional, Union import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import BridgeTowerImageProcessor class A ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str],lowercase_ : List[str],lowercase_ : bool = True,lowercase_ : Dict[str, int] = None,lowercase_ : int = 3_2,lowercase_ : bool = True,lowercase_ : Union[int, float] = 1 / 2_5_5,lowercase_ : bool = True,lowercase_ : bool = True,lowercase_ : Optional[Union[float, List[float]]] = [0.48_145_466, 0.4_578_275, 0.40_821_073],lowercase_ : Optional[Union[float, List[float]]] = [0.26_862_954, 0.26_130_258, 0.27_577_711],lowercase_ : bool = True,lowercase_ : Tuple=7,lowercase_ : str=3_0,lowercase_ : Union[str, Any]=4_0_0,lowercase_ : Dict=3,)-> List[Any]: '''simple docstring''' A__ = parent A__ = do_resize A__ = size if size is not None else {'shortest_edge': 2_8_8} A__ = size_divisor A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = do_center_crop A__ = image_mean A__ = image_std A__ = do_pad A__ = batch_size A__ = num_channels A__ = min_resolution A__ = max_resolution def snake_case__ ( self : Optional[Any] )-> Optional[int]: '''simple docstring''' return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "size_divisor": self.size_divisor, } def snake_case__ ( self : int,lowercase_ : Optional[int],lowercase_ : List[str]=False )-> Any: '''simple docstring''' if not batched: A__ = self.size['shortest_edge'] A__ = image_inputs[0] if isinstance(lowercase_,Image.Image ): A__ , A__ = image.size else: A__ , A__ = image.shape[1], image.shape[2] A__ = size / min(lowercase_,lowercase_ ) if h < w: A__ , A__ = size, scale * w else: A__ , A__ = scale * h, size A__ = int((1_3_3_3 / 8_0_0) * size ) if max(lowercase_,lowercase_ ) > max_size: A__ = max_size / max(lowercase_,lowercase_ ) A__ = newh * scale A__ = neww * scale A__ , A__ = int(newh + 0.5 ), int(neww + 0.5 ) A__ , A__ = ( newh // self.size_divisor * self.size_divisor, neww // self.size_divisor * self.size_divisor, ) else: A__ = [] for image in image_inputs: A__ , A__ = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) A__ = max(lowercase_,key=lambda lowercase_ : item[0] )[0] A__ = max(lowercase_,key=lambda lowercase_ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class A ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" lowerCamelCase = BridgeTowerImageProcessor if is_vision_available() else None def snake_case__ ( self : str )-> Optional[int]: '''simple docstring''' A__ = BridgeTowerImageProcessingTester(self ) @property def snake_case__ ( self : Dict )-> List[str]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def snake_case__ ( self : Optional[Any] )-> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_,'image_mean' ) ) self.assertTrue(hasattr(lowercase_,'image_std' ) ) self.assertTrue(hasattr(lowercase_,'do_normalize' ) ) self.assertTrue(hasattr(lowercase_,'do_resize' ) ) self.assertTrue(hasattr(lowercase_,'size' ) ) self.assertTrue(hasattr(lowercase_,'size_divisor' ) ) def snake_case__ ( self : Any )-> List[str]: '''simple docstring''' pass def snake_case__ ( self : int )-> Any: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,Image.Image ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case__ ( self : List[str] )-> Tuple: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_,numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,np.ndarray ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),) def snake_case__ ( self : Optional[Any] )-> List[Any]: '''simple docstring''' A__ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors A__ = prepare_image_inputs(self.image_processor_tester,equal_resolution=lowercase_,torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_,torch.Tensor ) # Test not batched input A__ = image_processing(image_inputs[0],return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_ ) self.assertEqual( encoded_images.shape,(1, self.image_processor_tester.num_channels, expected_height, expected_width),) # Test batched A__ = image_processing(lowercase_,return_tensors='pt' ).pixel_values A__ , A__ = self.image_processor_tester.get_expected_values(lowercase_,batched=lowercase_ ) self.assertEqual( encoded_images.shape,( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ),)
282
import argparse import datetime import json import time import warnings from logging import getLogger from pathlib import Path from typing import Dict, List import torch from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params lowercase_ = getLogger(__name__) lowercase_ = "cuda" if torch.cuda.is_available() else "cpu" def _snake_case( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : str = DEFAULT_DEVICE , SCREAMING_SNAKE_CASE__ : Optional[Any]=False , SCREAMING_SNAKE_CASE__ : Dict="summarization" , SCREAMING_SNAKE_CASE__ : Any=None , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: '''simple docstring''' A__ = Path(SCREAMING_SNAKE_CASE__ ).open('w' , encoding='utf-8' ) A__ = str(SCREAMING_SNAKE_CASE__ ) A__ = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ).to(SCREAMING_SNAKE_CASE__ ) if fpaa: A__ = model.half() A__ = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. A__ = time.time() # update config with task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if prefix is None: A__ = prefix or getattr(model.config , 'prefix' , '' ) or '' for examples_chunk in tqdm(list(chunks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ): A__ = [prefix + text for text in examples_chunk] A__ = tokenizer(SCREAMING_SNAKE_CASE__ , return_tensors='pt' , truncation=SCREAMING_SNAKE_CASE__ , padding='longest' ).to(SCREAMING_SNAKE_CASE__ ) A__ = model.generate( input_ids=batch.input_ids , attention_mask=batch.attention_mask , **SCREAMING_SNAKE_CASE__ , ) A__ = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) for hypothesis in dec: fout.write(hypothesis + '\n' ) fout.flush() fout.close() A__ = int(time.time() - start_time ) # seconds A__ = len(SCREAMING_SNAKE_CASE__ ) return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )} def _snake_case( ) -> Tuple: '''simple docstring''' return datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' ) def _snake_case( SCREAMING_SNAKE_CASE__ : Optional[int]=True ) -> Dict: '''simple docstring''' A__ = argparse.ArgumentParser() parser.add_argument('model_name' , type=SCREAMING_SNAKE_CASE__ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('input_path' , type=SCREAMING_SNAKE_CASE__ , help='like cnn_dm/test.source' ) parser.add_argument('save_path' , type=SCREAMING_SNAKE_CASE__ , help='where to save summaries' ) parser.add_argument('--reference_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help='like cnn_dm/test.target' ) parser.add_argument('--score_path' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default='metrics.json' , help='where to save metrics' ) parser.add_argument('--device' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='cuda, cuda:1, cpu etc.' ) parser.add_argument( '--prefix' , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help='will be added to the begininng of src examples' ) parser.add_argument('--task' , type=SCREAMING_SNAKE_CASE__ , default='summarization' , help='used for task_specific_params + metrics' ) parser.add_argument('--bs' , type=SCREAMING_SNAKE_CASE__ , default=8 , required=SCREAMING_SNAKE_CASE__ , help='batch size' ) parser.add_argument( '--n_obs' , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help='How many observations. Defaults to all.' ) parser.add_argument('--fp16' , action='store_true' ) parser.add_argument('--dump-args' , action='store_true' , help='print the custom hparams with the results' ) parser.add_argument( '--info' , nargs='?' , type=SCREAMING_SNAKE_CASE__ , const=datetime_now() , help=( 'use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g.' ' lang=en-ru. If no value is passed, the current datetime string will be used.' ) , ) # Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate A__ , A__ = parser.parse_known_args() A__ = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE__ ) if parsed_args and verbose: print(f'parsed the following generate kwargs: {parsed_args}' ) A__ = [' ' + x.rstrip() if 't5' in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()] if args.n_obs > 0: A__ = examples[: args.n_obs] Path(args.save_path ).parent.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) if args.reference_path is None and Path(args.score_path ).exists(): warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' ) if args.device == "cpu" and args.fpaa: # this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half' raise ValueError('Can\'t mix --fp16 and --device cpu' ) A__ = generate_summaries_or_translations( SCREAMING_SNAKE_CASE__ , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **SCREAMING_SNAKE_CASE__ , ) if args.reference_path is None: return {} # Compute scores A__ = calculate_bleu if 'translation' in args.task else calculate_rouge A__ = [x.rstrip() for x in open(args.save_path ).readlines()] A__ = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(SCREAMING_SNAKE_CASE__ )] A__ = score_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) scores.update(SCREAMING_SNAKE_CASE__ ) if args.dump_args: scores.update(SCREAMING_SNAKE_CASE__ ) if args.info: A__ = args.info if verbose: print(SCREAMING_SNAKE_CASE__ ) if args.score_path is not None: json.dump(SCREAMING_SNAKE_CASE__ , open(args.score_path , 'w' ) ) return scores if __name__ == "__main__": # Usage for MT: # python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@ run_generate(verbose=True)
282
1
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxCrossAttnUpBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, FlaxUpBlockaD, ) @flax.struct.dataclass class __lowerCAmelCase ( a__ ): lowercase = 42 @flax_register_to_config class __lowerCAmelCase ( nn.Module , a__ , a__ ): lowercase = 32 lowercase = 4 lowercase = 4 lowercase = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) lowercase = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D") lowercase = False lowercase = (320, 640, 1_280, 1_280) lowercase = 2 lowercase = 8 lowercase = None lowercase = 1_280 lowercase = 0.0 lowercase = False lowercase = jnp.floataa lowercase = True lowercase = 0 lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = (1, self.in_channels, self.sample_size, self.sample_size) __UpperCamelCase = jnp.zeros(_lowerCamelCase , dtype=jnp.floataa ) __UpperCamelCase = jnp.ones((1,) , dtype=jnp.intaa ) __UpperCamelCase = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) __UpperCamelCase = jax.random.split(_lowerCamelCase ) __UpperCamelCase = {"""params""": params_rng, """dropout""": dropout_rng} return self.init(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase )["params"] def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.block_out_channels __UpperCamelCase = block_out_channels[0] * 4 if self.num_attention_heads is not None: raise ValueError( 'At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19.' ) # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. __UpperCamelCase = self.num_attention_heads or self.attention_head_dim # input __UpperCamelCase = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time __UpperCamelCase = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) __UpperCamelCase = FlaxTimestepEmbedding(_lowerCamelCase , dtype=self.dtype ) __UpperCamelCase = self.only_cross_attention if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase = (num_attention_heads,) * len(self.down_block_types ) # down __UpperCamelCase = [] __UpperCamelCase = block_out_channels[0] for i, down_block_type in enumerate(self.down_block_types ): __UpperCamelCase = output_channel __UpperCamelCase = block_out_channels[i] __UpperCamelCase = i == len(_lowerCamelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": __UpperCamelCase = FlaxCrossAttnDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __UpperCamelCase = FlaxDownBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(_lowerCamelCase ) __UpperCamelCase = down_blocks # mid __UpperCamelCase = FlaxUNetMidBlockaDCrossAttn( in_channels=block_out_channels[-1] , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) # up __UpperCamelCase = [] __UpperCamelCase = list(reversed(_lowerCamelCase ) ) __UpperCamelCase = list(reversed(_lowerCamelCase ) ) __UpperCamelCase = list(reversed(_lowerCamelCase ) ) __UpperCamelCase = reversed_block_out_channels[0] for i, up_block_type in enumerate(self.up_block_types ): __UpperCamelCase = output_channel __UpperCamelCase = reversed_block_out_channels[i] __UpperCamelCase = reversed_block_out_channels[min(i + 1 , len(_lowerCamelCase ) - 1 )] __UpperCamelCase = i == len(_lowerCamelCase ) - 1 if up_block_type == "CrossAttnUpBlock2D": __UpperCamelCase = FlaxCrossAttnUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , num_attention_heads=reversed_num_attention_heads[i] , add_upsample=not is_final_block , dropout=self.dropout , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) else: __UpperCamelCase = FlaxUpBlockaD( in_channels=_lowerCamelCase , out_channels=_lowerCamelCase , prev_output_channel=_lowerCamelCase , num_layers=self.layers_per_block + 1 , add_upsample=not is_final_block , dropout=self.dropout , dtype=self.dtype , ) up_blocks.append(_lowerCamelCase ) __UpperCamelCase = output_channel __UpperCamelCase = up_blocks # out __UpperCamelCase = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) __UpperCamelCase = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase = True , __UpperCAmelCase = False , ): '''simple docstring''' if not isinstance(_lowerCamelCase , jnp.ndarray ): __UpperCamelCase = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(_lowerCamelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: __UpperCamelCase = timesteps.astype(dtype=jnp.floataa ) __UpperCamelCase = jnp.expand_dims(_lowerCamelCase , 0 ) __UpperCamelCase = self.time_proj(_lowerCamelCase ) __UpperCamelCase = self.time_embedding(_lowerCamelCase ) # 2. pre-process __UpperCamelCase = jnp.transpose(_lowerCamelCase , (0, 2, 3, 1) ) __UpperCamelCase = self.conv_in(_lowerCamelCase ) # 3. down __UpperCamelCase = (sample,) for down_block in self.down_blocks: if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase = down_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) else: __UpperCamelCase = down_block(_lowerCamelCase , _lowerCamelCase , deterministic=not train ) down_block_res_samples += res_samples if down_block_additional_residuals is not None: __UpperCamelCase = () for down_block_res_sample, down_block_additional_residual in zip( _lowerCamelCase , _lowerCamelCase ): down_block_res_sample += down_block_additional_residual new_down_block_res_samples += (down_block_res_sample,) __UpperCamelCase = new_down_block_res_samples # 4. mid __UpperCamelCase = self.mid_block(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , deterministic=not train ) if mid_block_additional_residual is not None: sample += mid_block_additional_residual # 5. up for up_block in self.up_blocks: __UpperCamelCase = down_block_res_samples[-(self.layers_per_block + 1) :] __UpperCamelCase = down_block_res_samples[: -(self.layers_per_block + 1)] if isinstance(_lowerCamelCase , _lowerCamelCase ): __UpperCamelCase = up_block( _lowerCamelCase , temb=_lowerCamelCase , encoder_hidden_states=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train , ) else: __UpperCamelCase = up_block(_lowerCamelCase , temb=_lowerCamelCase , res_hidden_states_tuple=_lowerCamelCase , deterministic=not train ) # 6. post-process __UpperCamelCase = self.conv_norm_out(_lowerCamelCase ) __UpperCamelCase = nn.silu(_lowerCamelCase ) __UpperCamelCase = self.conv_out(_lowerCamelCase ) __UpperCamelCase = jnp.transpose(_lowerCamelCase , (0, 3, 1, 2) ) if not return_dict: return (sample,) return FlaxUNetaDConditionOutput(sample=_lowerCamelCase )
316
'''simple docstring''' from math import sqrt def _UpperCamelCase ( UpperCamelCase__ = 1_0_0_0_0_0_0 ): UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int = 0 UpperCAmelCase__ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(UpperCamelCase__ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(f"""{solution() = }""")
163
0
def UpperCamelCase_( snake_case__: str , snake_case__: str ) -> int: if len(snake_case__ ) != len(snake_case__ ): raise ValueError('String lengths must match!' ) UpperCAmelCase__ = 0 for chara, chara in zip(snake_case__ , snake_case__ ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
335
import unittest import numpy as np from transformers import RobertaConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.roberta.modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, ) class lowercase ( unittest.TestCase ): '''simple docstring''' def __init__(self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=4 , ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = parent UpperCAmelCase__ = batch_size UpperCAmelCase__ = seq_length UpperCAmelCase__ = is_training UpperCAmelCase__ = use_attention_mask UpperCAmelCase__ = use_token_type_ids UpperCAmelCase__ = use_labels UpperCAmelCase__ = vocab_size UpperCAmelCase__ = hidden_size UpperCAmelCase__ = num_hidden_layers UpperCAmelCase__ = num_attention_heads UpperCAmelCase__ = intermediate_size UpperCAmelCase__ = hidden_act UpperCAmelCase__ = hidden_dropout_prob UpperCAmelCase__ = attention_probs_dropout_prob UpperCAmelCase__ = max_position_embeddings UpperCAmelCase__ = type_vocab_size UpperCAmelCase__ = type_sequence_label_size UpperCAmelCase__ = initializer_range UpperCAmelCase__ = num_choices def UpperCamelCase__ (self ) -> List[Any]: """simple docstring""" UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ = None if self.use_attention_mask: UpperCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase__ = None if self.use_token_type_ids: UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ = RobertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase__ (self ) -> List[str]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCamelCase__ (self ) -> Optional[int]: """simple docstring""" UpperCAmelCase__ = self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = config_and_inputs UpperCAmelCase__ = True UpperCAmelCase__ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) UpperCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax class lowercase ( _UpperCamelCase , unittest.TestCase ): '''simple docstring''' __SCREAMING_SNAKE_CASE = True __SCREAMING_SNAKE_CASE = ( ( FlaxRobertaModel, FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase__ (self ) -> str: """simple docstring""" UpperCAmelCase__ = FlaxRobertaModelTester(self ) @slow def UpperCamelCase__ (self ) -> str: """simple docstring""" for model_class_name in self.all_model_classes: UpperCAmelCase__ = model_class_name.from_pretrained('roberta-base' , from_pt=__a ) UpperCAmelCase__ = model(np.ones((1, 1) ) ) self.assertIsNotNone(__a )
335
1
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device _lowerCamelCase : Dict = False class __UpperCAmelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): def __magic_name__ ( self : Dict ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : Any ): UpperCAmelCase : Union[str, Any] = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase : Optional[Any] = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase : Optional[Any] = torch.manual_seed(0 ) UpperCAmelCase : Union[str, Any] = pipe.dual_guided( prompt='''first prompt''', image=__UpperCAmelCase, text_to_image_strength=0.7_5, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''', ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCAmelCase ) UpperCAmelCase : Optional[Any] = VersatileDiffusionPipeline.from_pretrained(__UpperCAmelCase, torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase : int = generator.manual_seed(0 ) UpperCAmelCase : Any = pipe.dual_guided( prompt='''first prompt''', image=__UpperCAmelCase, text_to_image_strength=0.7_5, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=2, output_type='''numpy''', ).images assert np.abs(image - new_image ).sum() < 1E-5, "Models don't have the same forward pass" def __magic_name__ ( self : List[str] ): UpperCAmelCase : str = VersatileDiffusionPipeline.from_pretrained('''shi-labs/versatile-diffusion''', torch_dtype=torch.floataa ) pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) UpperCAmelCase : Any = "cyberpunk 2077" UpperCAmelCase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg''' ) UpperCAmelCase : List[str] = torch.manual_seed(0 ) UpperCAmelCase : Optional[int] = pipe.dual_guided( prompt=__UpperCAmelCase, image=__UpperCAmelCase, text_to_image_strength=0.7_5, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=5_0, output_type='''numpy''', ).images UpperCAmelCase : Any = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase : str = np.array([0.1_4_4_8, 0.1_6_1_9, 0.1_7_4_1, 0.1_0_8_6, 0.1_1_4_7, 0.1_1_2_8, 0.1_1_9_9, 0.1_1_6_5, 0.1_0_0_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase : Union[str, Any] = "A painting of a squirrel eating a burger " UpperCAmelCase : Any = torch.manual_seed(0 ) UpperCAmelCase : Tuple = pipe.text_to_image( prompt=__UpperCAmelCase, generator=__UpperCAmelCase, guidance_scale=7.5, num_inference_steps=5_0, output_type='''numpy''' ).images UpperCAmelCase : List[Any] = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase : str = np.array([0.3_3_6_7, 0.3_1_6_9, 0.2_6_5_6, 0.3_8_7_0, 0.4_7_9_0, 0.3_7_9_6, 0.4_0_0_9, 0.4_8_7_8, 0.4_7_7_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1 UpperCAmelCase : Dict = pipe.image_variation(__UpperCAmelCase, generator=__UpperCAmelCase, output_type='''numpy''' ).images UpperCAmelCase : Dict = image[0, 2_5_3:2_5_6, 2_5_3:2_5_6, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCAmelCase : Any = np.array([0.3_0_7_6, 0.3_1_2_3, 0.3_2_8_4, 0.3_7_8_2, 0.3_7_7_0, 0.3_8_9_4, 0.4_2_9_7, 0.4_3_3_1, 0.4_4_5_6] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-1
336
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json""" ), } class _A ( _a ): """simple docstring""" UpperCAmelCase : int = """dpr""" def __init__( self : List[Any] , __UpperCAmelCase : int=30522 , __UpperCAmelCase : Union[str, Any]=768 , __UpperCAmelCase : Dict=12 , __UpperCAmelCase : List[str]=12 , __UpperCAmelCase : Any=3072 , __UpperCAmelCase : Optional[int]="gelu" , __UpperCAmelCase : Any=0.1 , __UpperCAmelCase : Union[str, Any]=0.1 , __UpperCAmelCase : str=512 , __UpperCAmelCase : List[str]=2 , __UpperCAmelCase : Tuple=0.02 , __UpperCAmelCase : List[str]=1e-12 , __UpperCAmelCase : List[str]=0 , __UpperCAmelCase : str="absolute" , __UpperCAmelCase : int = 0 , **__UpperCAmelCase : Tuple , ): super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase) a : List[Any] = vocab_size a : Optional[Any] = hidden_size a : Union[str, Any] = num_hidden_layers a : Dict = num_attention_heads a : int = hidden_act a : Any = intermediate_size a : Any = hidden_dropout_prob a : Dict = attention_probs_dropout_prob a : Any = max_position_embeddings a : Union[str, Any] = type_vocab_size a : Optional[Any] = initializer_range a : Dict = layer_norm_eps a : int = projection_dim a : str = position_embedding_type
40
0
import unittest from knapsack import knapsack as k class __a ( unittest.TestCase ): def __lowercase ( self : Dict ): '''simple docstring''' UpperCamelCase__ : int = 0 UpperCamelCase__ : Dict = [0] UpperCamelCase__ : Optional[int] = [0] UpperCamelCase__ : Tuple = len(SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 0 ) UpperCamelCase__ : Union[str, Any] = [60] UpperCamelCase__ : Dict = [10] UpperCamelCase__ : List[str] = len(SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 0 ) def __lowercase ( self : Tuple ): '''simple docstring''' UpperCamelCase__ : Tuple = 3 UpperCamelCase__ : List[str] = [1, 2, 3] UpperCamelCase__ : Any = [3, 2, 1] UpperCamelCase__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 5 ) def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[int] = 50 UpperCamelCase__ : Tuple = [60, 1_00, 1_20] UpperCamelCase__ : Optional[int] = [10, 20, 30] UpperCamelCase__ : List[str] = len(SCREAMING_SNAKE_CASE ) self.assertEqual(k.knapsack(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , 2_20 ) if __name__ == "__main__": unittest.main()
196
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class __a ( unittest.TestCase ): def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[Any]=7 , SCREAMING_SNAKE_CASE : str=3 , SCREAMING_SNAKE_CASE : Dict=18 , SCREAMING_SNAKE_CASE : str=30 , SCREAMING_SNAKE_CASE : Union[str, Any]=4_00 , SCREAMING_SNAKE_CASE : int=True , SCREAMING_SNAKE_CASE : Any=32 , SCREAMING_SNAKE_CASE : int=True , ): '''simple docstring''' UpperCamelCase__ : Optional[int] = parent UpperCamelCase__ : Dict = batch_size UpperCamelCase__ : Optional[Any] = num_channels UpperCamelCase__ : int = image_size UpperCamelCase__ : Dict = min_resolution UpperCamelCase__ : List[str] = max_resolution UpperCamelCase__ : Union[str, Any] = do_resize UpperCamelCase__ : Optional[Any] = size_divisor UpperCamelCase__ : int = do_rescale def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class __a ( A__ , unittest.TestCase ): _lowerCAmelCase : List[Any] = GLPNImageProcessor if is_vision_available() else None def __lowercase ( self : Optional[int] ): '''simple docstring''' UpperCamelCase__ : Tuple = GLPNImageProcessingTester(self ) @property def __lowercase ( self : int ): '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __lowercase ( self : List[Any] ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_resize" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "size_divisor" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "resample" ) ) self.assertTrue(hasattr(SCREAMING_SNAKE_CASE , "do_rescale" ) ) def __lowercase ( self : List[str] ): '''simple docstring''' pass def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : Any = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : List[Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self : Any ): '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , numpify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCamelCase__ : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=SCREAMING_SNAKE_CASE , torchify=SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ : Dict = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
196
1
'''simple docstring''' import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings lowercase_ = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __A ( _a ): '''simple docstring''' __lowerCamelCase : Dict = field(default=_a , metadata={'help': 'Whether to use SortishSampler or not.'} ) __lowerCamelCase : Optional[Any] = field( default=_a , metadata={'help': 'Whether to use generate to calculate generative metrics (ROUGE, BLEU).'} ) __lowerCamelCase : Tuple = field( default=_a , metadata={ 'help': ( 'The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `max_length` value of the model configuration.' ) } , ) __lowerCamelCase : Tuple = field( default=_a , metadata={ 'help': ( 'The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default ' 'to the `num_beams` value of the model configuration.' ) } , ) __lowerCamelCase : List[str] = field( default=_a , metadata={ 'help': 'Model id, file path or url pointing to a GenerationConfig json file, to use during prediction.' } , ) def a__ (self ) -> List[str]: """simple docstring""" _a = super().to_dict() for k, v in d.items(): if isinstance(snake_case_ , snake_case_ ): _a = v.to_dict() return d
211
'''simple docstring''' __a = frozenset( [ "prompt", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset([]) __a = frozenset(["image"]) __a = frozenset( [ "image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image"]) __a = frozenset( [ "prompt", "image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "negative_prompt"]) __a = frozenset( [ # Text guided image variation with an image mask "prompt", "image", "mask_image", "height", "width", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", ] ) __a = frozenset(["prompt", "image", "mask_image", "negative_prompt"]) __a = frozenset( [ # image variation with an image mask "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["image", "mask_image"]) __a = frozenset( [ "example_image", "image", "mask_image", "height", "width", "guidance_scale", ] ) __a = frozenset(["example_image", "image", "mask_image"]) __a = frozenset(["class_labels"]) __a = frozenset(["class_labels"]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset(["batch_size"]) __a = frozenset([]) __a = frozenset( [ "prompt", "audio_length_in_s", "guidance_scale", "negative_prompt", "prompt_embeds", "negative_prompt_embeds", "cross_attention_kwargs", ] ) __a = frozenset(["prompt", "negative_prompt"]) __a = frozenset(["input_tokens"]) __a = frozenset(["input_tokens"])
35
0
"""simple docstring""" import logging import os import threading import time try: import warnings except ImportError: lowercase__ : List[str] = None try: import msvcrt except ImportError: lowercase__ : Optional[Any] = None try: import fcntl except ImportError: lowercase__ : Union[str, Any] = None # Backward compatibility # ------------------------------------------------ try: TimeoutError except NameError: lowercase__ : Dict = OSError # Data # ------------------------------------------------ lowercase__ : Union[str, Any] = [ '''Timeout''', '''BaseFileLock''', '''WindowsFileLock''', '''UnixFileLock''', '''SoftFileLock''', '''FileLock''', ] lowercase__ : Dict = '''3.0.12''' lowercase__ : Optional[Any] = None def SCREAMING_SNAKE_CASE ( ) -> int: global _logger a = _logger or logging.getLogger(__name__) return _logger class a__ ( A__ ): def __init__( self , A ) -> int: '''simple docstring''' a = lock_file return None def __str__( self ) -> Union[str, Any]: '''simple docstring''' a = F'''The file lock \'{self.lock_file}\' could not be acquired.''' return temp class a__ : def __init__( self , A ) -> str: '''simple docstring''' a = lock return None def __enter__( self ) -> Dict: '''simple docstring''' return self.lock def __exit__( self , A , A , A ) -> Any: '''simple docstring''' self.lock.release() return None class a__ : def __init__( self , A , A=-1 , A=None ) -> Tuple: '''simple docstring''' a = max_filename_length if max_filename_length is not None else 255 # Hash the filename if it's too long a = self.hash_filename_if_too_long(lowerCamelCase__ , lowerCamelCase__ ) # The path to the lock file. a = lock_file # The file descriptor for the *_lock_file* as it is returned by the # os.open() function. # This file lock is only NOT None, if the object currently holds the # lock. a = None # The default timeout value. a = timeout # We use this lock primarily for the lock counter. a = threading.Lock() # The lock counter is used for implementing the nested locking # mechanism. Whenever the lock is acquired, the counter is increased and # the lock is only released, when this value is 0 again. a = 0 return None @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' return self._lock_file @property def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' return self._timeout @timeout.setter def lowerCAmelCase_ ( self , A ) -> Optional[Any]: '''simple docstring''' a = float(lowerCamelCase__ ) return None def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' raise NotImplementedError() def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' raise NotImplementedError() @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' return self._lock_file_fd is not None def lowerCAmelCase_ ( self , A=None , A=0.0_5 ) -> int: '''simple docstring''' if timeout is None: a = self.timeout # Increment the number right at the beginning. # We can still undo it, if something fails. with self._thread_lock: self._lock_counter += 1 a = id(self ) a = self._lock_file a = time.time() try: while True: with self._thread_lock: if not self.is_locked: logger().debug(F'''Attempting to acquire lock {lock_id} on {lock_filename}''' ) self._acquire() if self.is_locked: logger().debug(F'''Lock {lock_id} acquired on {lock_filename}''' ) break elif timeout >= 0 and time.time() - start_time > timeout: logger().debug(F'''Timeout on acquiring lock {lock_id} on {lock_filename}''' ) raise Timeout(self._lock_file ) else: logger().debug( F'''Lock {lock_id} not acquired on {lock_filename}, waiting {poll_intervall} seconds ...''' ) time.sleep(lowerCamelCase__ ) except: # noqa # Something did go wrong, so decrement the counter. with self._thread_lock: a = max(0 , self._lock_counter - 1 ) raise return _Acquire_ReturnProxy(lock=self ) def lowerCAmelCase_ ( self , A=False ) -> List[str]: '''simple docstring''' with self._thread_lock: if self.is_locked: self._lock_counter -= 1 if self._lock_counter == 0 or force: a = id(self ) a = self._lock_file logger().debug(F'''Attempting to release lock {lock_id} on {lock_filename}''' ) self._release() a = 0 logger().debug(F'''Lock {lock_id} released on {lock_filename}''' ) return None def __enter__( self ) -> List[Any]: '''simple docstring''' self.acquire() return self def __exit__( self , A , A , A ) -> List[Any]: '''simple docstring''' self.release() return None def __del__( self ) -> int: '''simple docstring''' self.release(force=lowerCamelCase__ ) return None def lowerCAmelCase_ ( self , A , A ) -> int: '''simple docstring''' a = os.path.basename(lowerCamelCase__ ) if len(lowerCamelCase__ ) > max_length and max_length > 0: a = os.path.dirname(lowerCamelCase__ ) a = str(hash(lowerCamelCase__ ) ) a = filename[: max_length - len(lowerCamelCase__ ) - 8] + "..." + hashed_filename + ".lock" return os.path.join(lowerCamelCase__ , lowerCamelCase__ ) else: return path class a__ ( A__ ): def __init__( self , A , A=-1 , A=None ) -> Dict: '''simple docstring''' from .file_utils import relative_to_absolute_path super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) a = "\\\\?\\" + relative_to_absolute_path(self.lock_file ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' a = os.O_RDWR | os.O_CREAT | os.O_TRUNC try: a = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: try: msvcrt.locking(lowerCamelCase__ , msvcrt.LK_NBLCK , 1 ) except OSError: os.close(lowerCamelCase__ ) else: a = fd return None def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' a = self._lock_file_fd a = None msvcrt.locking(lowerCamelCase__ , msvcrt.LK_UNLCK , 1 ) os.close(lowerCamelCase__ ) try: os.remove(self._lock_file ) # Probably another instance of the application # that acquired the file lock. except OSError: pass return None class a__ ( A__ ): def __init__( self , A , A=-1 , A=None ) -> Any: '''simple docstring''' a = os.statvfs(os.path.dirname(lowerCamelCase__ ) ).f_namemax super().__init__(lowerCamelCase__ , timeout=lowerCamelCase__ , max_filename_length=lowerCamelCase__ ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' a = os.O_RDWR | os.O_CREAT | os.O_TRUNC a = os.open(self._lock_file , lowerCamelCase__ ) try: fcntl.flock(lowerCamelCase__ , fcntl.LOCK_EX | fcntl.LOCK_NB ) except OSError: os.close(lowerCamelCase__ ) else: a = fd return None def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' a = self._lock_file_fd a = None fcntl.flock(lowerCamelCase__ , fcntl.LOCK_UN ) os.close(lowerCamelCase__ ) return None class a__ ( A__ ): def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' a = os.O_WRONLY | os.O_CREAT | os.O_EXCL | os.O_TRUNC try: a = os.open(self._lock_file , lowerCamelCase__ ) except OSError: pass else: a = fd return None def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' os.close(self._lock_file_fd ) a = None try: os.remove(self._lock_file ) # The file is already deleted and that's what we want. except OSError: pass return None lowercase__ : List[str] = None if msvcrt: lowercase__ : Optional[int] = WindowsFileLock elif fcntl: lowercase__ : List[str] = UnixFileLock else: lowercase__ : Any = SoftFileLock if warnings is not None: warnings.warn("only soft file lock is available")
357
lowercase__ : List[Any] = { "a": "AAAAA", "b": "AAAAB", "c": "AAABA", "d": "AAABB", "e": "AABAA", "f": "AABAB", "g": "AABBA", "h": "AABBB", "i": "ABAAA", "j": "BBBAA", "k": "ABAAB", "l": "ABABA", "m": "ABABB", "n": "ABBAA", "o": "ABBAB", "p": "ABBBA", "q": "ABBBB", "r": "BAAAA", "s": "BAAAB", "t": "BAABA", "u": "BAABB", "v": "BBBAB", "w": "BABAA", "x": "BABAB", "y": "BABBA", "z": "BABBB", " ": " ", } lowercase__ : str = {value: key for key, value in encode_dict.items()} def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: a = "" for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception("encode() accepts only letters of the alphabet and spaces") return encoded def SCREAMING_SNAKE_CASE ( __UpperCamelCase) -> str: if set(__UpperCamelCase) - {"A", "B", " "} != set(): raise Exception("decode() accepts only 'A', 'B' and spaces") a = "" for word in coded.split(): while len(__UpperCamelCase) != 0: decoded += decode_dict[word[:5]] a = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
180
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class SCREAMING_SNAKE_CASE__ : '''simple docstring''' def __init__( self : Dict , lowercase : List[Any] , lowercase : Tuple=13 , lowercase : Optional[Any]=7 , lowercase : Tuple=True , lowercase : Optional[Any]=True , lowercase : str=True , lowercase : Dict=True , lowercase : List[str]=99 , lowercase : Tuple=32 , lowercase : str=2 , lowercase : Any=4 , lowercase : Tuple=37 , lowercase : List[str]="gelu" , lowercase : Dict=0.1 , lowercase : Any=0.1 , lowercase : List[str]=512 , lowercase : Optional[int]=16 , lowercase : str=2 , lowercase : Dict=0.02 , lowercase : Any=3 , lowercase : List[Any]=4 , lowercase : List[Any]=None , lowercase : Optional[Any]=0 , ): '''simple docstring''' _snake_case = parent _snake_case = batch_size _snake_case = seq_length _snake_case = is_training _snake_case = use_input_mask _snake_case = use_token_type_ids _snake_case = use_labels _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = intermediate_size _snake_case = hidden_act _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = type_sequence_label_size _snake_case = initializer_range _snake_case = num_labels _snake_case = num_choices _snake_case = scope _snake_case = projection_dim def A ( self : int ): '''simple docstring''' _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _snake_case = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _snake_case = random_attention_mask([self.batch_size, self.seq_length] ) _snake_case = None if self.use_token_type_ids: _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _snake_case = None _snake_case = None _snake_case = None if self.use_labels: _snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _snake_case = ids_tensor([self.batch_size] , self.num_choices ) _snake_case = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase , initializer_range=self.initializer_range , ) _snake_case = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Union[str, Any] , lowercase : Dict , lowercase : List[Any] , lowercase : Tuple , lowercase : Dict , lowercase : List[str] , lowercase : Union[str, Any] , lowercase : Any ): '''simple docstring''' _snake_case = TFDPRContextEncoder(config=lowercase ) _snake_case = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) _snake_case = model(lowercase , token_type_ids=lowercase ) _snake_case = model(lowercase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A ( self : List[str] , lowercase : Optional[int] , lowercase : int , lowercase : str , lowercase : Dict , lowercase : int , lowercase : Union[str, Any] , lowercase : List[Any] ): '''simple docstring''' _snake_case = TFDPRQuestionEncoder(config=lowercase ) _snake_case = model(lowercase , attention_mask=lowercase , token_type_ids=lowercase ) _snake_case = model(lowercase , token_type_ids=lowercase ) _snake_case = model(lowercase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def A ( self : List[str] , lowercase : Optional[int] , lowercase : Union[str, Any] , lowercase : Union[str, Any] , lowercase : Optional[Any] , lowercase : Optional[Any] , lowercase : List[str] , lowercase : List[str] ): '''simple docstring''' _snake_case = TFDPRReader(config=lowercase ) _snake_case = model(lowercase , attention_mask=lowercase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def A ( self : List[Any] ): '''simple docstring''' _snake_case = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) = config_and_inputs _snake_case = {'input_ids': input_ids} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ,UpperCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCAmelCase : str = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _UpperCAmelCase : str = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} _UpperCAmelCase : str = False _UpperCAmelCase : Optional[int] = False _UpperCAmelCase : Union[str, Any] = False _UpperCAmelCase : Tuple = False _UpperCAmelCase : Union[str, Any] = False def A ( self : Optional[Any] ): '''simple docstring''' _snake_case = TFDPRModelTester(self ) _snake_case = ConfigTester(self , config_class=lowercase , hidden_size=37 ) def A ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def A ( self : List[str] ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*lowercase ) def A ( self : Dict ): '''simple docstring''' _snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*lowercase ) @slow def A ( self : Any ): '''simple docstring''' for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRContextEncoder.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRContextEncoder.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRQuestionEncoder.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case = TFDPRReader.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) @require_tf class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' @slow def A ( self : Any ): '''simple docstring''' _snake_case = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _snake_case = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _snake_case = model(lowercase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _snake_case = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
282
import warnings from ...utils import logging from .image_processing_chinese_clip import ChineseCLIPImageProcessor _lowerCamelCase : Dict = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase ): '''simple docstring''' def __init__( self : Tuple , *lowercase : Optional[int] , **lowercase : Any ): '''simple docstring''' warnings.warn( 'The class ChineseCLIPFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ChineseCLIPImageProcessor instead.' , lowercase , ) super().__init__(*lowercase , **lowercase )
282
1
from bisect import bisect from itertools import accumulate def a( A : Optional[int] , A : List[Any] , A : List[str] , A : str ) -> Union[str, Any]: """simple docstring""" a = sorted(zip(A , A ) , key=lambda A : x[0] / x[1] , reverse=A ) a , a = [i[0] for i in r], [i[1] for i in r] a = list(accumulate(A ) ) a = bisect(A , A ) return ( 0 if k == 0 else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k]) if k != n else sum(vl[:k] ) ) if __name__ == "__main__": import doctest doctest.testmod()
366
import os import unittest from transformers import LxmertTokenizer, LxmertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( lowerCAmelCase, unittest.TestCase ): """simple docstring""" __A = LxmertTokenizer __A = LxmertTokenizerFast __A = True __A = True def UpperCamelCase_ (self ): """simple docstring""" super().setUp() a = [ "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] a = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def UpperCamelCase_ (self , lowerCamelCase_ ): """simple docstring""" a = "UNwant\u00E9d,running" a = "unwanted, running" return input_text, output_text def UpperCamelCase_ (self ): """simple docstring""" a = self.tokenizer_class(self.vocab_file ) a = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(lowerCamelCase_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def UpperCamelCase_ (self ): """simple docstring""" if not self.test_rust_tokenizer: return a = self.get_tokenizer() a = self.get_rust_tokenizer() a = "I was born in 92000, and this is falsé." a = tokenizer.tokenize(lowerCamelCase_ ) a = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) a = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) a = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) a = self.get_rust_tokenizer() a = tokenizer.encode(lowerCamelCase_ ) a = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ )
71
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={ "xlm-mlm-en-2048": "https://huggingface.co/xlm-mlm-en-2048/resolve/main/config.json", "xlm-mlm-ende-1024": "https://huggingface.co/xlm-mlm-ende-1024/resolve/main/config.json", "xlm-mlm-enfr-1024": "https://huggingface.co/xlm-mlm-enfr-1024/resolve/main/config.json", "xlm-mlm-enro-1024": "https://huggingface.co/xlm-mlm-enro-1024/resolve/main/config.json", "xlm-mlm-tlm-xnli15-1024": "https://huggingface.co/xlm-mlm-tlm-xnli15-1024/resolve/main/config.json", "xlm-mlm-xnli15-1024": "https://huggingface.co/xlm-mlm-xnli15-1024/resolve/main/config.json", "xlm-clm-enfr-1024": "https://huggingface.co/xlm-clm-enfr-1024/resolve/main/config.json", "xlm-clm-ende-1024": "https://huggingface.co/xlm-clm-ende-1024/resolve/main/config.json", "xlm-mlm-17-1280": "https://huggingface.co/xlm-mlm-17-1280/resolve/main/config.json", "xlm-mlm-100-1280": "https://huggingface.co/xlm-mlm-100-1280/resolve/main/config.json", } class a_ ( lowerCamelCase_ ): """simple docstring""" __UpperCAmelCase = 'xlm' __UpperCAmelCase = { 'hidden_size': 'emb_dim', 'num_attention_heads': 'n_heads', 'num_hidden_layers': 'n_layers', 'n_words': 'vocab_size', # For backward compatibility } def __init__( self : Optional[Any] ,snake_case : Optional[Any]=30145 ,snake_case : Optional[int]=2048 ,snake_case : List[Any]=12 ,snake_case : List[str]=16 ,snake_case : Dict=0.1 ,snake_case : int=0.1 ,snake_case : Union[str, Any]=True ,snake_case : Optional[int]=False ,snake_case : Any=False ,snake_case : Tuple=False ,snake_case : Union[str, Any]=1 ,snake_case : Any=True ,snake_case : Tuple=512 ,snake_case : Dict=2048**-0.5 ,snake_case : Union[str, Any]=1e-12 ,snake_case : List[Any]=0.02 ,snake_case : List[str]=0 ,snake_case : int=1 ,snake_case : Optional[Any]=2 ,snake_case : Optional[int]=3 ,snake_case : Union[str, Any]=5 ,snake_case : List[str]=True ,snake_case : Union[str, Any]="first" ,snake_case : Optional[int]=True ,snake_case : int=None ,snake_case : List[Any]=True ,snake_case : str=0.1 ,snake_case : List[Any]=5 ,snake_case : Optional[Any]=5 ,snake_case : Optional[Any]=0 ,snake_case : List[Any]=0 ,snake_case : List[str]=2 ,snake_case : Optional[Any]=0 ,**snake_case : Any ,): SCREAMING_SNAKE_CASE =vocab_size SCREAMING_SNAKE_CASE =emb_dim SCREAMING_SNAKE_CASE =n_layers SCREAMING_SNAKE_CASE =n_heads SCREAMING_SNAKE_CASE =dropout SCREAMING_SNAKE_CASE =attention_dropout SCREAMING_SNAKE_CASE =gelu_activation SCREAMING_SNAKE_CASE =sinusoidal_embeddings SCREAMING_SNAKE_CASE =causal SCREAMING_SNAKE_CASE =asm SCREAMING_SNAKE_CASE =n_langs SCREAMING_SNAKE_CASE =use_lang_emb SCREAMING_SNAKE_CASE =layer_norm_eps SCREAMING_SNAKE_CASE =bos_index SCREAMING_SNAKE_CASE =eos_index SCREAMING_SNAKE_CASE =pad_index SCREAMING_SNAKE_CASE =unk_index SCREAMING_SNAKE_CASE =mask_index SCREAMING_SNAKE_CASE =is_encoder SCREAMING_SNAKE_CASE =max_position_embeddings SCREAMING_SNAKE_CASE =embed_init_std SCREAMING_SNAKE_CASE =init_std SCREAMING_SNAKE_CASE =summary_type SCREAMING_SNAKE_CASE =summary_use_proj SCREAMING_SNAKE_CASE =summary_activation SCREAMING_SNAKE_CASE =summary_proj_to_labels SCREAMING_SNAKE_CASE =summary_first_dropout SCREAMING_SNAKE_CASE =start_n_top SCREAMING_SNAKE_CASE =end_n_top SCREAMING_SNAKE_CASE =mask_token_id SCREAMING_SNAKE_CASE =lang_id if "n_words" in kwargs: SCREAMING_SNAKE_CASE =kwargs['n_words'] super().__init__(pad_token_id=snake_case ,bos_token_id=snake_case ,**snake_case ) class a_ ( lowerCamelCase_ ): """simple docstring""" @property def _lowerCAmelCase ( self : Dict ): if self.task == "multiple-choice": SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE ={0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('token_type_ids', dynamic_axis), ] )
334
def snake_case__ ( lowerCAmelCase_ ): """simple docstring""" return " ".join( ''.join(word[::-1] ) if len(lowerCAmelCase_ ) > 4 else word for word in sentence.split() ) if __name__ == "__main__": import doctest doctest.testmod() print(reverse_long_words("Hey wollef sroirraw"))
334
1
'''simple docstring''' import unittest from parameterized import parameterized from transformers import LlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer class _A : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : List[str] = parent __UpperCAmelCase : Union[str, Any] = batch_size __UpperCAmelCase : Tuple = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : List[Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : Union[str, Any] = hidden_size __UpperCAmelCase : Optional[int] = num_hidden_layers __UpperCAmelCase : str = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : List[str] = attention_probs_dropout_prob __UpperCAmelCase : Tuple = max_position_embeddings __UpperCAmelCase : Dict = type_vocab_size __UpperCAmelCase : List[Any] = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : str = num_choices __UpperCAmelCase : List[Any] = scope def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : str = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : int = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Optional[int] = None __UpperCAmelCase : List[Any] = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : Any = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : Dict = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[Any]: '''simple docstring''' return LlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Optional[int] = LlamaModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Dict = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = True __UpperCAmelCase : List[str] = LlamaModel(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , ) __UpperCAmelCase : Tuple = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Any: '''simple docstring''' __UpperCAmelCase : List[Any] = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : int = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Any = True __UpperCAmelCase : Tuple = LlamaForCausalLM(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() # first forward pass __UpperCAmelCase : Optional[int] = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , ) __UpperCAmelCase : Union[str, Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCAmelCase : List[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __UpperCAmelCase : str = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCAmelCase : Union[str, Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __UpperCAmelCase : int = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] __UpperCAmelCase : Dict = model( __UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )["""hidden_states"""][0] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCAmelCase : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Tuple = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : Any = config_and_inputs __UpperCAmelCase : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else () _SCREAMING_SNAKE_CASE : Any = (LlamaForCausalLM,) if is_torch_available() else () _SCREAMING_SNAKE_CASE : List[str] = ( { "feature-extraction": LlamaModel, "text-classification": LlamaForSequenceClassification, "text-generation": LlamaForCausalLM, "zero-shot": LlamaForSequenceClassification, } if is_torch_available() else {} ) _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : List[str] = False def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = LlamaModelTester(self ) __UpperCAmelCase : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : str = type self.model_tester.create_and_check_model(*__UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Any = 3 __UpperCAmelCase : Optional[Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : List[Any] = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[int] = 3 __UpperCAmelCase : Optional[Any] = """single_label_classification""" __UpperCAmelCase : int = input_dict["""input_ids"""] __UpperCAmelCase : List[Any] = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __UpperCAmelCase : Tuple = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Optional[Any] = 3 __UpperCAmelCase : str = """multi_label_classification""" __UpperCAmelCase : Union[str, Any] = input_dict["""input_ids"""] __UpperCAmelCase : int = input_ids.ne(1 ).to(__UpperCAmelCase ) __UpperCAmelCase : str = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __UpperCAmelCase : Dict = LlamaForSequenceClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCAmelCase : Tuple = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""LLaMA buffers include complex numbers, which breaks this test""" ) def __A ( self ) -> Dict: '''simple docstring''' pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def __A ( self , __UpperCAmelCase ) -> Tuple: '''simple docstring''' __UpperCAmelCase , __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = ids_tensor([1, 10] , config.vocab_size ) __UpperCAmelCase : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) original_model.to(__UpperCAmelCase ) original_model.eval() __UpperCAmelCase : int = original_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = original_model(__UpperCAmelCase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights __UpperCAmelCase : Dict = {"""type""": scaling_type, """factor""": 10.0} __UpperCAmelCase : Optional[Any] = LlamaModel(__UpperCAmelCase ) scaled_model.to(__UpperCAmelCase ) scaled_model.eval() __UpperCAmelCase : Optional[Any] = scaled_model(__UpperCAmelCase ).last_hidden_state __UpperCAmelCase : List[str] = scaled_model(__UpperCAmelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) ) @require_torch class _A ( unittest.TestCase ): @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Any: '''simple docstring''' __UpperCAmelCase : Optional[int] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Optional[int] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-7b-hf""" , device_map="""auto""" ) __UpperCAmelCase : int = model(torch.tensor([input_ids] ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-6.6550, -4.1227, -4.9859, -3.2406, 0.8262, -3.0033, 1.2964, -3.3699]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[Any] = torch.tensor([-12.8281, -7.4453, -0.4639, -8.0625, -7.2500, -8.0000, -6.4883, -7.7695, -7.8438, -7.0312, -6.2188, -7.1328, -1.8496, 1.9961, -8.6250, -6.7227, -12.8281, -6.9492, -7.0742, -7.7852, -7.5820, -7.9062, -6.9375, -7.9805, -8.3438, -8.1562, -8.0469, -7.6250, -7.7422, -7.3398,] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-hf""" , device_map="""auto""" ) __UpperCAmelCase : str = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : str = torch.tensor([[-2.0622, -1.2794, -1.1638, -0.9788, -1.4603, -1.0238, -1.7893, -1.4411]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-8.1406, -8.0547, 2.7461, -1.2344, -0.1448, -1.8262, -1.0020, -1.8154, -1.6895, -1.8516, -2.3574, -0.9277, 3.7598, 6.5742, -1.2998, -0.1177, -8.1406, -2.9688, -2.9199, -3.1699, -3.5254, -2.3555, -2.7988, -3.4141, -2.8262, -4.5195, -3.3379, -3.3164, -2.7832, -3.0273] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Logits are not exactly the same, once we fix the instabalities somehow, will update!""" ) @slow def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : Union[str, Any] = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" , device_map="""auto""" ) __UpperCAmelCase : Union[str, Any] = model(torch.tensor(__UpperCAmelCase ) ) # Expected mean on dim = -1 __UpperCAmelCase : Dict = torch.tensor([[-0.8562, -1.8520, -0.7551, -0.4162, -1.5161, -1.2038, -2.4823, -2.3254]] ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # slicing logits[0, 0, 0:30] # fmt: off __UpperCAmelCase : Any = torch.tensor([-2.2227, 4.8828, 0.9023, -0.4578, -0.7871, -0.1033, -0.6221, -0.5786, -0.7803, -1.0674, -1.2920, -0.1570, 0.8008, 2.0723, -0.9497, 0.2771, -2.2227, -0.7612, -1.4346, -1.2061, -1.6426, -0.3000, -0.7139, -1.1934, -1.8691, -1.6973, -1.5947, -1.2705, -0.3523, -0.5513] ) # fmt: on torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) @unittest.skip( """Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test""" ) @slow def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Any = [1, 306, 4_658, 278, 6_593, 310, 2_834, 338] __UpperCAmelCase : str = LlamaForCausalLM.from_pretrained("""meta-llama/Llama-2-70b-hf""" , device_map="""auto""" ) __UpperCAmelCase : List[Any] = model(torch.tensor(__UpperCAmelCase ) ) __UpperCAmelCase : Dict = torch.tensor( [[-4.2327, -3.3360, -4.6665, -4.7631, -1.8180, -3.4170, -1.4211, -3.1810]] , dtype=torch.floataa ) torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 ) # fmt: off __UpperCAmelCase : List[str] = torch.tensor([-9.4922, -3.9551, 1.7998, -5.6758, -5.1055, -5.8984, -4.8320, -6.8086, -6.5391, -5.6172, -5.5820, -5.5352, 1.7881, 3.6289, -6.5117, -3.4785, -9.5000, -6.0352, -6.8125, -6.0195, -6.6836, -5.4727, -6.2812, -6.0391, -7.3398, -7.4297, -7.4844, -6.5820, -5.8789, -5.5312] ) # fmt: on torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 ) @unittest.skip("""Model is curently gated""" ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Optional[int] = """Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the \"princi""" __UpperCAmelCase : Dict = """Simply put, the theory of relativity states that """ __UpperCAmelCase : int = LlamaTokenizer.from_pretrained("""meta-llama/Llama-2-13b-chat-hf""" ) __UpperCAmelCase : int = tokenizer.encode(__UpperCAmelCase , return_tensors="""pt""" ) __UpperCAmelCase : int = LlamaForCausalLM.from_pretrained( """meta-llama/Llama-2-13b-chat-hf""" , device_map="""sequential""" , use_safetensors=__UpperCAmelCase ) # greedy generation outputs __UpperCAmelCase : Tuple = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase ) __UpperCAmelCase : Optional[int] = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase ) self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
16
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class _A ( unittest.TestCase ): _SCREAMING_SNAKE_CASE : List[str] = ViTImageProcessor if is_vision_available() else None @property def __A ( self ) -> Optional[Any]: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Dict: '''simple docstring''' __UpperCAmelCase : str = (3, 32, 128) __UpperCAmelCase : Tuple = tempfile.mkdtemp() # fmt: off __UpperCAmelCase : Any = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on __UpperCAmelCase : Optional[int] = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) __UpperCAmelCase : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + """\n""" ) __UpperCAmelCase : List[Any] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 32, """width""": 128}, } __UpperCAmelCase : Tuple = os.path.join(self.tmpdirname , __UpperCAmelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> Tuple: '''simple docstring''' return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self , **__UpperCAmelCase ) -> List[str]: '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def __A ( self ) -> str: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta ) __UpperCAmelCase : Dict = Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) return image_input def __A ( self ) -> str: '''simple docstring''' __UpperCAmelCase : str = self.get_tokenizer() __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : Optional[Any] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__UpperCAmelCase ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Dict = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) __UpperCAmelCase : Union[str, Any] = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) __UpperCAmelCase : Union[str, Any] = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCAmelCase : List[Any] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def __A ( self ) -> List[Any]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Tuple = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[str] = self.prepare_image_inputs() __UpperCAmelCase : str = image_processor(__UpperCAmelCase , return_tensors="""np""" ) __UpperCAmelCase : int = processor(images=__UpperCAmelCase , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __A ( self ) -> Tuple: '''simple docstring''' __UpperCAmelCase : Tuple = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : int = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Dict = """test""" __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase ) __UpperCAmelCase : Optional[Any] = tokenizer(__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : List[Any] = self.get_image_processor() __UpperCAmelCase : Tuple = self.get_tokenizer() __UpperCAmelCase : Optional[int] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : List[Any] = """test""" __UpperCAmelCase : int = self.prepare_image_inputs() __UpperCAmelCase : Tuple = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def __A ( self ) -> Union[str, Any]: '''simple docstring''' __UpperCAmelCase : Optional[Any] = self.get_image_processor() __UpperCAmelCase : List[Any] = self.get_tokenizer() __UpperCAmelCase : List[str] = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] __UpperCAmelCase : Optional[Any] = processor.char_decode(__UpperCAmelCase ) __UpperCAmelCase : Union[str, Any] = tokenizer.batch_decode(__UpperCAmelCase ) __UpperCAmelCase : int = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __A ( self ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : Dict = self.get_image_processor() __UpperCAmelCase : Optional[Any] = self.get_tokenizer() __UpperCAmelCase : Any = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : str = None __UpperCAmelCase : Dict = self.prepare_image_inputs() __UpperCAmelCase : Union[str, Any] = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __A ( self ) -> int: '''simple docstring''' __UpperCAmelCase : Any = self.get_image_processor() __UpperCAmelCase : List[str] = self.get_tokenizer() __UpperCAmelCase : str = MgpstrProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCAmelCase : Tuple = torch.randn(1 , 27 , 38 ) __UpperCAmelCase : Union[str, Any] = torch.randn(1 , 27 , 50_257 ) __UpperCAmelCase : Any = torch.randn(1 , 27 , 30_522 ) __UpperCAmelCase : Tuple = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
16
1